Technical Summary

November 2023

Pit Name: Turcotte

Provincial Pit Number: 0384

Location: The pit is located approximately 4km northeast of Pritchard via Hwy 1 (TransCanada Highway) then south via Stoney Flats Road, turning south onto Gravel Pit Road. (Figure 1).

Legal Land Description: The pit is legally described as That Part of the Southeast ¼ of Section 20, Township 20, Range 13, W6M, KDYD, except Block A. The pit is covered by a Crown Land Act Section 16 Map Reserve No. 0255072 in the name of the Ministry of Transportation and Infrastructure. The Map Reserve is 54 hectares, more or less. The geographical coordinates are Universal Transverse Mercator Grid Zone 11, 304300 Easting, 5620800 Northing. The layout of the Map Reserve boundary is shown in the pit plan (Figure 2).

Subsurface Investigation: Subsurface investigations at Turcotte Pit were carried out in September 2023 and August 2012 by the Ministry of Transportation & Infrastructure.

In 2023 eleven (11) test pits were excavated to depths ranging from 1.0m to 5.5m and in 2012, nineteen (19) test pits were excavated to depths ranging from 3.2m to 4.2m. During the test pitting, subsurface soil and groundwater conditions were logged and representative samples of the granular materials were collected for laboratory testing and future reference. Laboratory testing was carried out on nine (9) and twelve (12) of these samples at WSP laboratories to assess the gradation and durability characteristics. The tests completed were wet sieve analysis, micro-deval, sand equivalent, relative density, and absorption.

Based on the results of the 2023 and 2012 investigations, a suitable granular area for mining has been defined (Figure 3). The detailed results of the subsurface testing are provided in the Test Pit Summaries and test pit locations are shown on the Pit Development Plan (Figure 3).

Material Gradation: Table 1 shows the gradation as a percentage by weight of the fines (silts and clays), sand and gravel components as well as the Unified Soil Classification (USC [included after test pit summary]) for the samples tested from 2023 and 2012.

Test Pit	Depth (m) Fines (%)* <0.075mm		Sand (%)* 0.075- 4.75mm	Gravel (%)* 4.75-75mm	USC							
2023												
23-01	0-4.8	10.7	61.9	27.4	SWSM							
23-02	0.3-5	1.8	55.3	42.8	SP							
23-03	0.5-3	2	59.1	38.9	SP							
23-04	0.4-4.4	3.2	56.7	40.1	SP							
23-05	1.8-5.5	1.8	55.1	43.1	SP							
23-06	1.3-4.5	2.7	65.6	31.7	SP							
23-07	0.5-5.3	0.7	59.1	40.2	SP							
23-08	1-4.3	18	38.2	43.8	GM1							
23-10	0-1	GM2										
Ave	rage	7	40.4	SPSM								
		20	12									
12-01	0.2-4.1	3	47	50	GP							
12-04	1-4	3	67	30	SP							
12-06	2.2-4	1	60	39	SP							
12-09	0.4-2	5	43	52	GPGM							
12-11	0.3-2.1	4	38	58	GP							
12-14	2-3.6	2	56	42	SP							
12-15	2.2-3.6	1	61	38	SP							
12-17	0.3-4	2	54	44	SP							
12-19	0.2-3.6	3	58	39	SP							
Ave	rage	2.6	53.8	43.6	SP							

Table 1: Pit Run Gradation

Oversize Field Estimates: Table 2 shows the estimated percent of oversize rock as noted in the field during exploration.

Table 2: Oversize Field Estimates

2023

Classification:	Average (%)	Range (%)
Boulders (>375mm)	0.6	0-2
Cobbles (150-375mm)	1.8	1-3
Cobbles (75-150mm)	4	2-8

Maximum rock size observed was 500mm.

2012

Classification:	Average (%)	Range (%)		
Boulders (>375mm)	<1	0-2		
Cobbles (150-375mm)	3	0-8		
Cobbles (75-150mm)	4	1-10		

Maximum rock size observed was 700mm.

Material Durability: Table 3 shows the results of the durability tests as well as the specifications as required in the Standard Specifications for Highway Construction.

Table 3: Durability Test Results

Test Pit	Sand	Micro Deval	Abso	orption	Relative Density				
	Equivalent	C/F	Coarse	Coarse	Fine				
2023									
		13.1							
		Coarse							
TP23-02		only							
TP23-05	77								
TP23-06			1.63	1.04	2.576	2.666			
			2012		P				
TP12-04		12.3/11							
TP12-09		12.8/15							
TP12-14		13.9/12.6							
TP12-17		11/14.3							
		BC MoTI	Specifica	tions					
		≥40 for Ba	se Course	and fine ag	gregates fo	r Asphalt			
Sand E	auivalant	Mix Aggregates							
	quivalent	≥20 for Surfacing, Sub-Base and Bridge End Fill							
				aggregates					
		≤30% for	Sub-Base	and Bridge	End Fill agg	gregates			
Micro		≤25% for Surfacing & Base Course Aggregates							
IVIICI	Devai	≤18% for	Class 1 Pa	vement asp	halt mix ag	gregates			
		≤20% for	Class 2 Pa	vement asp	halt mix ag	gregates			
		<2	2.0% for co	arse paving	g aggregates	S			
Abso	orption	≤1.0% for coarse and ≤1.5% for fine Graded Aggregate							
		Seal Coat aggregates							
Relativ	e Density	~2.65 for all aggregate products							

Material Suitability: Based on the 2023 investigation results, the material in the proposed suitability area is judged to be suitable for the following purposes:

	Pit Run	Crush
Turcotte Suitability area	Bridge End Fill* SGSB HFSA Winter Abrasive *with sand rejection	25-50mm WGB* Coarse & Medium Asphalt Mix Aggregates GAS* *with sand rejection

The samples tested meet the gradation (with some sand bleeding required), sand equivalent, and micro-deval specifications for Base Course, SGSB, Bridge End Fill and Coarse/Fine Asphalt Mix Aggregate. Based on the absorption results the samples meet the specification for coarse paving aggregate and fine Graded Aggregate Seals; however, did not meet the specifications for coarse Graded Aggregate Seals. With additional processing, such as crushing the oversize rocks (>75 mm diameter) with the gravel, absorption values may improve. Should the quality improve, the material may then be suitable for other aggregate products.

Sulphate and Chloride Testing: Sulphate and Chloride testing was conducted in October 2023 by CARO Analytical Services with the results coming back as having a low/moderate (S3) degree of exposure.

General Parameters	Result	RL (%)		
Sulfate, Water-Soluble	<0.050	0.050		
Chloride, Water-Soluble	<0.002	0.002		

Volume Estimates: Table 6 shows the volume estimates that can be expected for topsoil, overburden and gravel from the proposed suitability area. This is based on the measured depths encountered during the subsurface investigation. The potential volumes of granular material were calculated by averaging the total thickness of granular material encountered in test pits and multiplying by the estimated surface area. Because the pit area has different ownership (some Section 16 Crown Land, some leased private property), the suitability has been divided as any material mined from the leased area is subject to fees.

Table 6: Volume Estimates

Section 16 Area

Suitability Area ~ha.	Topsoil	Asphalt	Granular Material		
Average Layer Thickness (m)	0.0	0.5	4.0		
Volume (m³)	0	4,350	34,800		

Leased Pit Area

Suitability Area ~ha.	Topsoil	Asphalt	Granular Material		
Average Layer Thickness (m)	0.0	0.5	4.0		
Volume (m ³)	0	4,350	34,800		

Pit Development Notes

- All development must be carried out in accordance with the Health, Safety, and Reclamation Code for Mines in British Columbia, BC Ministry of Energy and Mines (2022, or later edition), the Standard Specifications for Highway Construction, BC Ministry of Transportation and Infrastructure (2020, or later edition) and the Aggregate Operators Best Management Practices Handbook for BC.
- All trees, vegetation, and overburden are to be removed within 2m of the top of the pit faces. Topsoil, overburden, and aggregate cannot be removed within five meters of the reserve boundary.
- Turcotte Pit has been previously mined so that 6.8ha has been developed and mined of an MoTI-leased private property. Substantial mining can take place within the Ministry-held Crown Land tenure (as indicated in the suitability areas) but any mining taking place within the leased area, while allowed, will need to have a survey of the pit done prior to mining in order to properly calculate gravel usage fees.
- The crusher is recommended to be located on lower bench as identified on the Pit Development Plan (between TPs 23-03 and 23-05), with mining proceeding in an eastern and southeastern direction.

- Processed aggregate may be stockpiled to the north or west of the production site, where space permits as indicated on the Pit Development Plan. There is limited stockpile space on the pit floor.
- No dumping of debris or petroleum products will be permitted, and the site must be left in a clean and safe condition.
- It will be necessary to utilize a primary crusher capable of reducing material as large as 375x450mm.
- The contractor is recommended to crush and blend the existing stockpiles to produce the road building materials (including any oversize rock on the pit faces).
- The contractor must not mine the gravel berm, as marked/noted in the field, at the south end of the pit. This is not in the MoTI tenure or lease boundaries.
- To avoid an excessively high pit face, a bulldozer will be required to push material to the production area while mining.
- At the completion of the pit development operations, but prior to the depletion of the pit, the sides of the pit faces, waste piles, and overburden stockpiles must be trimmed to a 1.5H:1V slope. Active pit faces must be reshaped with native granular materials.
- Upon depletion of the pit, all disturbed areas are to be reclaimed. The minimum reclamation procedure should include re-sloping of the pit faces and waste piles to a 2H:1V slope, contouring the area for appropriate drainage, spreading of overburden followed by topsoil, and seeding.
- Should any of the above conditions conflict with the Health, Safety, and Reclamation Code for Mines in British Columbia, then the Code will prevail.

Closure

The findings of this report and the soil conditions noted above are inferred from the extrapolation of limited surface and subsurface data collected during the site investigation. It should be noted that different and possibly poorer soil conditions may exist between the test pit locations and volume estimates may vary from those reported in this report.

Prepared by:

Samantha Kinniburgh Senior Aggregate Resource Specialist Reviewed by:

Al Mitchell Aggregate Resource Manager

Enclosures

Figures: Figure 1 - Location Plan Figure 2 - Legal Plan Figure 3 - Development Plan Test Pit Logs (2023 and 2012) Wet Sieve Analysis Chart (2023 and 2012) Aggregate Gradation Charts (2023 and 2012) USC Legend Photos Figures

This drawing was originally produced in colour.

This drawing was originally produced in colour.

	PIT DE	EVELOPMENT	LEG	END					
		NKMENT	. TRE	ELINE					
	PIT FACE	800m	- CON	TOURS					
		L.	BUIL	DING (SYMDOIIC)					
/									
/	ROAD			TING STOCKPILE					
	CREEK	E		POSED STOCKPILE					
1999	TRAIL		CRU	SHER LOCATION					
18	CADASTRE			DISTURBANCE					
	TANTALIS		MINI	NG SUITABILITY AREA					
	GRAVEL RESERV	/E BOUNDARY							
	PROPOSED GRA	VEL RESERVE BOUND	ARY						
	<u>1 Contour Interval 20 y</u>	natraa							
$\langle \rangle$	2 Base Man derived fr	om Trim Map 82I 07:)						
		om map 02201	-						
	LEGAL NOTE.		~	1					
- \	District Lot Lines are de	rived from digital Cro	wn Ca	dastral					
				JISTRY, VICIONA					
	DRAWING NOTE	<u>=S:</u>							
	1. Some testpits and/or	testholes may not be	e repres	sentative of					
387	current conditions du	e to development an	d exca	ation done					
7 /	2 Some extraction may	uucleu.	the los	at GPS survey					
— / / I	of the bit was undert	aken, therefore nit far	es and	l stockpiles					
	may not be represent	tative of current cond	itions.						
		•							
/ /	1 All development mu	the carried out in a	cordon	ce with the					
	Health Safety and F	eclamation Code for	Mines	in British					
	Columbia BC Minist	rv of Energy and Min	es (202	2 or later					
/ /	edition), the Standar	d Specifications for H	lighwa\	Construction.					
/ /	BC Ministry of Trans	portation and Infrastr	ucture	••••••					
/	2. All trees, vegetation	and overburden are	o be re	moved within					
	2m of the top of the	oit faces. Topsoil, ove	erburde	n and					
	aggregate cannot be	removed within five	meters	of the reserve					
	boundary.								
32	3. A survey of the pit m	ust be done prior to	he star	t of mining and					
1	after the completion	of mining and submit	ted to t	he Aggregate					
	Resource Manager. Drone survey is acceptable.								
	 I ne contractor must ensure that all materials passing through 375mm x 450mm slotted openings shall be used in the 								
	production of crushe	d aggregates.							
TP 20	5. The contractor must	not mine the gravel l	perm as	s marked/noted					
KDYD	in the field, at the so	uth end of the pit. It is	s outsid	e MoTI					
VINCIAL	lease/tenure.								
	6. To avoid an excessiv	/ely high pit face, a b	ulldoze	r will be					
	required to push mat	erial to the productio	n area	while mining.					
	7. At the completion of	the pit operations, the	e contr	actor will trim all					
	must be resbaped w	ith native granular m	siope. v storiale						
	permanent slopes m	ust be re-sloped to n	o steen	er than 2H:1V.					
	8. No dumping of debri	s or petroleum produ	cts is p	ermitted. The					
	pit must be left in a c	lean and safe condit	on upo	n contractor					
	completing operatior	ns and vacating the p	it.						
		0m 50	1	00 150 200					
		ليليليليا							
		1 : 5000							
R 13 W6N		1 : 5000							
R 13 W6N VINCIAL	Ministry c	1 : 5000 f Transportation ar	nd Infra	astructure					
R 13 W6N VINCIAL	BRITISH COLUMBIA Geot	1 : 5000 f Transportation ar South Coast Re	nd Infra gion						
R 13 W6N VINCIAL	Ministry c BRITISH COLUMBIA Geot	1 : 5000 f Transportation ar South Coast Re echnical and Mater	nd Infra gion rials Br	astructure					
R 13 W6N VINCIAL	Ministry c BRITISH COLUMBIA Geot	1 : 5000 f Transportation ar South Coast Re echnical and Mater	nd Infra gion ials Br	astructure					
R 13 W6N VINCIAL	Ministry c BRITISH COLUMBIA Geot PIT D	1 : 5000 f Transportation ar South Coast Re echnical and Mater	nd Infra gion rials Br NT P	astructure					
R 13 W6N VINCIAL	Ministry of BRITISH COLUMBIA Geot PIT D TU	1 : 5000 f Transportation ar South Coast Re echnical and Mater EVELOPME RCOTTE PIT	nd Infra gion ials Br NT P #03	astructure ranch					
R 13 W6N VINCIAL	Ministry of BRITISH COLUMBIA Geot PIT D TU SA13 - OK	1 : 5000 f Transportation ar South Coast Re echnical and Mater PEVELOPMEI RCOTTE PIT ANAGAN-SHUS	nd Infra gion ials Br NT P #03 WAP	astructure ranch PLAN 84 DISTRICT					
R 13 W6N VINCIAL	Ministry of BRITTSH COLUMBIA Geot PIT D TU SA13 - OK DRAWN BY:	1 : 5000 f Transportation ar South Coast Re echnical and Mater PEVELOPME RCOTTE PIT ANAGAN-SHUS'	nd Infra gion ials Br NT P #03 WAP	astructure ranch PLAN 84 DISTRICT					
R 13 W6N VINCIAL	Ministry of BRITTSH COLUMBIA Geot PIT D TU SA13 - OK DRAWN BY: S.Ruiz	1 : 5000 f Transportation ar South Coast Re echnical and Mater PEVELOPMEI RCOTTE PIT ANAGAN-SHUS ¹ PROJECTION: UTM Zone 11	nd Infra gion ials Br NT P WAP	astructure anch LAN 84 DISTRICT					
R 13 W6N VINCIAL	Ministry of BRITISH COLUMBIA Geot PIT D SA13 - OKA DRAWN BY: S.Ruiz CHECKED BY: A Mitchell	1 : 5000 f Transportation ar South Coast Re echnical and Mater PEVELOPME RCOTTE PIT ANAGAN-SHUS PROJECTION: UTM Zone 11 DATUM: NAD83	nd Infra gion rials Br NT P #03 WAP	astructure anch LAN 84 DISTRICT SCALE: AS SHOWN DATE: 15 Nov 2023					
R 13 W6N VINCIAL	Ministry of BRITISH COLUMBIA Geot PIT D TU SA13 - OKA DRAWN BY: S.Ruiz CHECKED BY: A.Mitchell FILE NAME:	1 : 5000 f Transportation ar South Coast Re echnical and Mater PEVELOPMEI RCOTTE PII ANAGAN-SHUS' PROJECTION: UTM Zone 11 DATUM: NAD83	nd Infra gion rials Br NT P #03 WAP	astructure anch LAN 84 DISTRICT SCALE: AS SHOWN DATE: 15 Nov 2023 DRAWING NUMBER:					
R 13 W6N VINCIAL	Ministry of BRITISH COLUMBIA Geot PIT D TU SA13 - OKA DRAWN BY: S.Ruiz CHECKED BY: A.Mitchell FILE NAME: F3P_0384_2023.dwg	1 : 5000 f Transportation ar South Coast Re echnical and Mater PEVELOPMEI RCOTTE PII ANAGAN-SHUS PROJECTION: UTM Zone 11 DATUM: NAD83	nd Infra gion ials Br NT P #03 WAP	astructure anch LAN 84 DISTRICT SCALE: AS SHOWN DATE: 15 Nov 2023 DRAWING NUMBER: FIGURE 3					

Test Pit Summaries

						-								
						ł	١GG	GREG	ATI	ΕL	.OG			
PROJ	ECT:	CT: Turcotte								LED	BY:		Samantha Kinnihurah	
F	PIT #:			384				-	м	ЕТН	OD:		Excavator	
DISTR	RICT:		Okan	agan S	huswa	an		-		DA	TE:		Sept 28 2023	
				agan e		۳ -		-					0000 20 2020	
TEST PIT	DE	PTH	SAMPL F	SOIL S	E: Gi	STIMATE RADATI(ed On	ESTIMA	TED RC	DCK 75	ōmm	SAND TYPE	REMARKS	
NO.	FROM	то	BAG NO.	CLASS	G	s	F	MAX SIZE	75mm - 150mm	150mm 375mm	>375m m	FMC	Lab Sieve	
		1 8	23.01	SD.	33	60	7	200	·····		0		Seems like packed fill tree debris at	
23-01		4.0	23-01	SM1	27.4	61.9	10.7	290	-	~~~!~~			3m	
													SM1 - G27.4/S61.9/F10.7	
	0	0.3		Floor										
	0.3	5	23-02	GP	55	43	2	350	3	2	0	<u>M</u>	Much better than TP 23-01, less fill,	
23-02				SP	42.8	55.3	1.8						no sloughing, sandy with OS,	
													SP - G42 8/S55 3/F1 8	
	0	0.5		Floor									01 - 042.0/000.0/11.0	
00.00	0.5	3	23-03	SP	42	56	2	330	4	2	0	М	Sloughing here below 0.5m, some OS	
23-03	3	4.8		SP									very sandy	
				SP	38.9	59.1	2						SP - G 38.9/S 59.1/F 2	
ſ	0	0.4		Floor									Large OS here, sloughing badly	
23-04	0.4	4.4	23-04	SP	4/	50	3	500	3	2	1	M	below the floor, hitting GP below 4m	
				5P	40.1	30.7	3.2						SP - G 40.1/ S 56.7/ F 3.2	
-													Lots of OS here, a whole layer below	
	0	1.1		Floor									the floor (buried?) then SP	
23-05	1.1	1.8		OS										
	1.8	5.5	23-05	SP	45	52	3	380	7	3	2	M	SP - G 43.1/ S 55.1/ F 1.8	
-	_	4.0		SP	43.1	55.1	1.8						After the note to notice metanial	
	13	1.3	23-06	SP	35	62	3	/20	3	1		M	Alter Im, gets to halive material,	
23-06			20-00	SP	31.7	65.6	2.7			····	····		SP - G 31.7/ S 65.6/ F 2.7	
	0	0.5												
23-07	0.5	5.3	23-07	SP	32	65	3	360	3	1	0	M	Consistent, more rock at bottom	
20 01				SP	40.2	<u>59.1</u>	0.7						of hole	
				0.0									SP - G 40.2/ S 59.1/ F 0.7	
		1	23.00	SP CD	20	E0		300		· · ·			TP dug on the W clone condicr	
23-08	-	4.5	23-00	GM1	43.8	38.2	18						on SW end of hole rocky to NE	
					10.0				+				GM1 - G 43.8/ S 38.2/ F 18	

						AC	GR	EGA	TE	LO	G		
PROJE	ECT:			Turcotte SAMPLED BY:			BY:		Samantha Kinniburgh				
Р	'IT #:			384					М	ETH	OD:		Excavator
DISTR	ICT:		Ok	anagan Shus	swap					DA	TE:		Sept 28 2023
TEST PIT	DEF	PTH	SAMPLE		ES GF	STIMATE RADATI(:D ON	ESTIMA	ESTIMATED ROCK 75mm		₹OCK 75mm		REMARKS
NO.	FROM	то	BAG NO.	SOILS CLASS	G	s	F	MAX SIZE	75mm - 150mm	150mm 375mm	>375m m	FMC	Lab Sieve
	0	0.5		Floor									
	0.5	1.1		2nd Floor	'	ļ!	'	ļ!					Layers upon layers of previous
	1.1	1.8		3rd Floor			······						pit floors, reject and buried OS
23-09	1.8	2	NS	Asphalt									No real native material until bottom of
	2	4		Buried rock									TP
	4	5.2		SP				380	5	2	2	M-F	See photos
		\square'						!					
	0	1	23-10	ML	['	[!	['	<u> </u>					
		L			L!			150	2	1	0	M-F	Clay, could be runoff from
23-10		í '			ſ !	[I					upslope? Excavator couldn't break
		ا ۔۔۔۔۔'		GM2	55.2	22.7	22.1	<u>ا</u> ــــــــــــــــــــــــــــــــــــ					through
		\square'						!					GM - G 55.2/ S 22.7/ F22.1
		ļ		ļ!	!								
23-11	0	3.7	NS	ML	l!		'	<u> </u> '					Some rock, straight compacted
20-11		L						ļ!					clays. See photos.
		ı '			1 '	1 /	1	1 '				1 1	

1	OF	1											
AGGREG	ATE LO	OG											
PROJECT:			Turcotte	Pit					S	AMPLE	D BY:		WSR
	PIT #:		384							MET	THOD:		Excavator
DIS	TRICT:	Okan	agan Shu	uswap							DATE:		Aug 4 2012 AND Jan 1990
TH / TP	DEPT H		SAMPLE	SOILS	ESTI MAT			ESTI MAT				SAND	REMARKS
				ULAUU				III AI	75mm	150m		1112	
								мах	-	m -		FМ	
	FROM	то	BAG No.		G	S	F	SIZE	150m	275m	375m	·	
								OILL	130111	575111	m	Ŭ	
TD 10.01	0.0	0.0		Asshalt					m	m			
IP 12-01	0.0	0.2	220	Asphait	60	20	2	250	•	4	0	М	
	0.2	1.0	320	SD	40	58	2	250	0	4	0	IVI	COMBINED SAMPLE
	1.0	Z.1		GP	70	28	2	250	6	3	0	М	
	2.1	4.1		GP	50	47	2	230	- ⁰	5	0	IVI	LAB TESTED
				0	50	77	5						
TP 12-02	0.0	3.0		GP	65	33	2	300	7	5	0	м	
11 12 02	3.0	3.6		GP	52	46	2	250	5	3	0	M	
	3.6	4 1		SP	46	52	2	200	2	1	0		
	0.0			01		02	-	200		•	Ŭ		
TP 12-03	0.0	10		OB									
	1.0	2.0		SP	40	56	4	200	3	1	0		
	2.0	2.6		GP	50	46	4	700	2	3	1		
	2.6	4.2		SP	18	78	4	200		-			
TP 12-04	0.0	0.4		OB									
	4.0	1.0		SP	20	76	4	250	1	0	0		COMBINED SAMPLE
	1.0	4.0	318	SP	40	56	4		4	0	0		
				SP	30	67	3						LAB TESTED
TP 12-05	0.0	0.4		OB									
	0.4	2.0		GP	70	26	4	300	10	6	0		
	2.0	4.2		SP/SM	41	54	5	100	0	0	0		
											L		
TP 12-06	0.0	0.4		OB			L .	0.000				<u> </u>	
	0.4	2.2	0.17	GP	65	31	4	300	6	4	0	M-F	
	2.2	4.0	317	GP	56	42	2	250	4	2	0		
				52	39	60	1						LAB IESIED
TD 40.07	0.0	0.4											
11-12-07	0.0	0.4		CD, OR	56	40	1	250	2	1	0		
	0.4	1.0	<u> </u>	SD SD	30	40 59	4	200	3 2	4 2	0		
	1.0	4.0		35	50	50	4	300	<u> </u>	2	0		
TP 12-08	0.0	04		OR									
11 12-00	0.0	20		GP	62	34	4	300	6	8	0		
	2.0	4.0	1	GP	56	40	4		2	1	Ő		
								1		<u> </u>	Ť		

TP 12-09	0.0	0.4		OB									
	04	20	316	GP/GM	76	18	6	375	7	5	1	F	
	2.0	3.2	0.0	GP/GM	70	25	5	0.0			· ·		
	2.0	0.2		CP/CM	52	13	5						
					52	40	5						EABTESTED
TD 40 40	0.0	0.0		00									
TP 12-10	0.0	0.3		UB	74		_	500	_			•	
	0.3	2.2		GP/GM	/4	21	5	500	/	6	2	C	
	2.2	4.0		SP	43	54	3	200	0	0	0	М	
TP 12-11	0.0	0.3		OB									
	0.3	2.1	315	GP	76	20	4	300	7	3	0	F	COMBINED SAMPLE
	2.1	4.0		SP	19	78	3						
				GP	58	38	4						LAB TESTED
TP 12-12	0.0	0.2		OB									
	0.2	1.0		SP	42	54	4	400	2	1	0		
	1.0	2.6		GP	62	34	4						
	2.6	42		GP	56	42	2						
	2.0			0.	00		-						
TD 12-13	0.0	0.1		OB									
11 12-13	0.0	1.0		CP	62	24	1	250	4	3	0	E	
	1.0	1.0		GP	02	54	4	250	4	3	0	Г	
	1.0	2.2		3P 0D	45	55	2	200	4	2	0		
	2.2	4.0		GP	66	32	2	150	2	1	0		
IP 12-14	0.0	0.2		OB					_	_			
	0.2	2.0		GP	70	37	1	200	5	2	0	M	
	2.0	3.6	314	GP	53	46	1	200	4	2	0	F	
				SP	42	56	2						LAB TESTED
TP 12-15	0.0	0.2		OB									
	0.2	2.2		GP`	62	35	3	250	2	1	1	М	
	2.2	3.6	311	SP	41	57	2	150	1	0	0	F	
				SP	38	61	1						LAB TESTED
TP 12-16	0.0	02		OB									
	0.2	26		GP	68	28	4	250	4	2	0		
	2.6	2.0		GP	56	40	4	200	2	1	0		
	2.0			0.	00	10			-	· ·	- Ŭ		
TP 12-17	0.0	03		OB									
11 12-17	0.0	4.0	312	CP	65	33	2	300	6	1	0	ME	
	0.5	4.0	512	01 80	44	50	2	300	0	4	0	101-1	
				or	44	54	2						LABTESTED
TD 10 10				0.5									
IP 12-18	0.0	0.2		OB			<u> </u>	0.000		-			
	0.2	2.0		GP`	/1	25	4	300	3	5	0	М	
	1.6	3.2		SP	52	46	2	375	6	8	1		
TP 12-19	0.0	0.2		OB									
	0.2	3.6	313	GP	52	45	2						
				SP	39	58	3						LAB TESTED
TP 90-01	0.0	1.2		ML		40	60						
	1.2	6.0	X845	GP-GM	58	37	5	750	10	10	2	F	LAB TESTED

Wet Sieve Analysis

2023

PROJEC	T REPOR	RT OF															
SIEVE A	NALYSIS	SUMMA	ARIES						PERC	ENT PAS	SING						
Project:			0						F	roject No.:			86004				
Sample So	ource:		Turcotte Pi	t						Client:			MoTI				
Material:		PIT RUN								Date:		Sept 28 2023					
San	nole Informa	ation							Pe	rcent Passi	na						
Test Pit	Test Pit Depth Bag #								Pit Run Sieve Sizes (mm)								
	(m)		75	63	50	37.5	25	19	12.5	9.5	4.75	2.36	1.18	0.6	0.3	0.15	0.075
23-01	0-4.8	23-01	100.0	100.0	97.2	95.8	93.6	91.4	86.4	83.7	72.6	63.7	51.7	40.3	26.0	16.1	10.7
23-02	0.3-5	23-02	96.6	94.3	94.3	93.5	86.8	82.2	73.6	68.6	57.2	45.9	34.7	22.6	9.7	3.7	1.8
23-03	0.5-3	23-03	100.0	100.0	95.2	94.2	86.5	81.7	74.9	71.3	61.1	52.5	42.7	32.7	17.1	5.3	2.0
23-04	0.4-4.4	23-04	100.0	100.0	100.0	95.8	88.2	83.2	75.7	71.0	59.9	49.3	38.6	28.0	14.4	6.0	3.2
23-05	1.8-5.5	23-05	100.0	100.0	98.5	92.2	84.3	80.9	73.7	69.0	56.9	46.9	35.6	24.1	9.8	3.4	1.8
23-06	1.3-4.5	23-06	100.0	100.0	98.3	95.1	92.2	87.7	82.3	78.3	68.3	55.7	46.0	35.1	18.4	6.2	2.7
23-07	0.5-5.3	23-07	100.0	100.0	97.5	88.9	83.7	80.2	74.0	69.8	59.8	50.1	37.8	24.3	8.6	1.9	0.7
23-08	1-4.3	23-08	100.0	100.0	100.0	93.7	87.9	83.0	73.9	68.8	56.2	50.5	43.8	36.6	28.1	22.7	18.0
23-10	0-1	23-10	100.0	95.2	87.1	83.0	79.8	73.9	64.4	58.4	44.8	42.7	40.1	37.4	33.5	28.1	22.1

PROJEC	T REPOI	RT OF														
SIEVE ANALYSIS SUMMARIES								PERC	ENT PAS	SING						
Project:			0					P	roiect No :			0				
Sample Source:			Turcotte Pi	t No. 0384					Client:			0				
Material:			PIT RUN						Date:			2012-08-04				
Sample Information							Percent Passing									
Test Pit	Depth	Bag #						Pit Run	Run Sieve Sizes (mm)							
	(m)		75	50	37.5	25	19	12.5	9.5	4.75	2.36	1.18	0.6	0.3	0.15	0.075
TP 12-01-3	20		97.5	83.3	79.7	71.9	67.6	61.6	58.3	50.1	42.5	35.1	26.9	14.2	5.5	2.9
TP 12-04-3	18		100.0	99.1	96.2	89.2	86.9	80.2	77.2	69.6	60.0	49.3	37.7	21.8	8.7	3.3
TP 12-06-3	17		100.0	91.3	89.4	81.8	78.8	74.1	70.2	62.1	51.9	39.3	25.2	10.3	3.4	1.4
TP 12-09-3	16		100.0	93.8	85.6	76.7	71.1	62.9	57.7	47.5	37.0	27.3	19.1	11.7	7.1	4.6
TP 12-11-3	15		100.0	86.2	76.1	69.7	64.1	56.0	52.1	42.1	33.8	26.1	18.8	11.1	6.7	4.2
TP 12-14-3	14		100.0	92.8	87.3	81.2	77.4	73.0	69.2	58.4	46.1	32.0	19.1	8.6	3.8	2.2
TP 12-15-3	11		100.0	94.2	88.6	83.3	78.8	72.2	69.2	61.8	53.4	42.2	28.0	10.8	2.9	1.0
TP 12-17-312			100.0	93.0	84.1	77.5	75.2	67.3	65.0	55.6	45.2	32.2	19.6	8.8	3.7	2.0
TP 12-19-313			100.0	94.1	92.3	88.8	85.8	79.5	75.7	61.4	44.9	27.9	15.5	7.5	4.0	2.5

Aggregate Gradation Charts

USC Legend

•	1 ^ -										
۱ 	V IA	IERI	als (CLASSIFICATION LEGEND							
MAJOR DIVISIONS SYMBOL			SYMBOL	SOIL TYPE							
		LS	GW	WELL GRADED GRAVELS OR GRAVEL-SAND MIXTURES. < 5% FINES							
		SOI	GP	POORLY-GRADED GRAVELS OR GRAVEL-SAND							
	ה ה	RAVEL	GM*	SILTY GRAVELS, GRAVEL-SAND-SILT							
		GRA	GC*	CLAYEY GRAVELS, GRAVEL-SAND-CLAY							
	עא פרא	(0)	SW	WELL-GRADED SANDS OR GRAVELLY SANDS,							
L		AND SOILS	SP	POORLY-GRADED SANDS OR GRAVELLY							
	YAN Var	SAND	SM*	SILTY SANDS SAND-SILT MIXTURES							
		S, S	SC*	CLAYEY SANDS SAND-CLAY MIXTURES							
	0	ND <50	ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY							
		SILTS AN AYS wL	CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS							
	Ч Г Г	CL	OL	ORGANIC SILTS AND ORGANIC SILT-CLAYS OF LOW PLASTICITY							
	GRAII'	AND - >50	MH	INORGANIC SILTS, MICACEOUS OR DIATOM- ACEOUS FINE SANDY OR SILTY SOILS, PLASTIC SILTS							
		,S ∝L	СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS							
	-	SI	ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS							
0	RGA SOI	ANIC LS	Pt	PEAT AND OTHER HIGHLY ORGANIC SOILS							
Т	OPS	SOIL	TS	TOPSOIL WITH ROOTS, ETC.							
С	OBE	BLES	SB	ROCK FRAGMENTS AND COBBLES, PARTICLE SIZE 75mm TO 300mm							
ВС	LAR)ULI	GE DERS	LB	BOULDERS, PARTICLE SIZE OVER 300mm							
B	EDR	OCK	BR	BEDROCK							
FO *GM GM GM	0R S(11; (12; (13; (14; (DILS HA GC1; SI GC2; SI GC3; SI GC4; SI	VING 5 – M1; SC1; M2; SC2; M3; SC3; M4; SC4;	12% PASSING .075 SIEVE, USE DUAL SYMBOL 12 - 20% 20 - 30% 30 - 40% 40 - 50%							
				REV. 90-04-26							
				PROVINCE of BRITISH COLUMBIA MINISTRY OF TRANSPORTATION & HIGHWAYS Geotechnical & Materials Engineering							
				UNIFIED SOIL CLASSIFICATION LEGEND							

Drawn: LU Date: JULY'97 Scale: File No.: ACAD File: ACADSTDS Photos

Looking north over Crown-tenured suitability area, September 2023.

Looking south at suitability area, and crusher setup area in foreground, September 2023.

Northwest view of lower suitability (Section 16 to right and leased to left in photo) area and proposed crusher set up location, August 2023.

West view into leased area of pit with potential stockpile location in background where truck is parked, September 2023.

TP 23-03 Spoil pile, September 2023.

TP 23-05, September 2023.

TP 23-07, September 2023.

TP 12-06, August 2012.

TP 12-09 Spoil Pile, August 2012.