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PROSPECTIVITY
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ABSTRACT

The Nechako Geoscience Project of the BC Ministry of Energy, Mines and Petroleum Resources’ Oil
and Gas Division began in 2004. Fieldwork and sample gathering ended in 2007, and sample analyses
are largely complete. Interpretation and publication of data continues. This paper presents a summary of
17 radiometric dates and 69 apatite fission-track analyses completed during the life of the project. New
radiometric ages from surface outcrops and wells provide constraints on the distribution of prospective
rocks and the locations of important structures. Apatite fission-track (AFT) ages constrain the time limits
of a rock’s most recent passage through the oil and gas windows. The AFT data for each sample indicate
whether it has been heated enough for hydrocarbon generation since trap-forming compressional tectonic

events occurred in the central Cordillera.
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INTRODUCTION

The Nechako Geoscience Project began in 2004
with the goal of assessing the oil and gas potential of the
Nechako region, specifically by evaluating critical factors
of a petroleum system: the quality of petroleum source and
reservoir rocks, an appropriate thermal history, and timing
of potential trap formation and petroleum migration. The
project involved fieldwork and sampling, regional strati-
graphic correlations, thermal history studies and radiomet-
ric and fossil dating. The integration of these results with
those of concurrent Nechako geoscience projects led by the
Geological Survey of Canada, Geoscience BC and other
partners, is ongoing.

Previous publications generated by the project have
reported on fieldwork, surface geology, vitrinite reflectance
and palynology (Ferri and Riddell, 2006; Riddell et al.,
2007; Riddell and Ferri, 2008) and reservoir quality (Brown
et al., 2008).

This paper presents a summary of radiometric dates and
apatite fission-track analyses completed during the life of
the project. Comprehensive analytical datasets from these
studies will be released this year as open file publications.

Early Jurassic to Early Eocene formations host potential
source and reservoir units in the region, so an understanding
of their distribution and structure is important to the assess-
ment of their oil and gas potential. However, in the Nechako
region, rocks older than the volcanic and sedimentary rocks
of the Early Eocene Ootsa Lake Group are poorly exposed
and structures cannot be mapped directly. The radiometric
dates and apatite fission-track analyses summarized here
provide constraints on the distribution of prospective rocks
and the locations of important structures.

We can infer the regional tectonic history of the cov-
ered area by assuming continuity with the areas along the
strike of the Cordillera to the northwest and southeast. A
large-scale compressional-transpressional regime was ac-
tive from the mid-Cretaceous to the earliest Tertiary dur-
ing the accretion of outboard terranes to North America.
Events associated with this regime are expressed along the
Intermontane Belt (in the Bowser Basin to the northwest
of Nechako and in the Chilcotin Mountains to the south-
east) as thrust faults and folds and by accumulations of
synorogenic clastic deposits of locally derived detritus on
angular unconformities (Schiarizza et al., 1997; Evenchick
et al., 2007). In the Chilcotin Mountains, the main con-
tractional structures predate the Cenomanian and younger
Powell Creek formation (Schiarizza et al., 1997, 2003). In
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Figure 1. Nechako Basin map with radiometric and AFT sample locations.
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the Bowser Basin, evidence of thrust faulting and clastic
deposition continued until the Maastrichtian (Evenchick et
al., 2007). The shift to Eocene transtensional tectonics is
marked along the Intermontane Belt by continued and sig-
nificant dextral movement along steeply dipping strike-slip
structures such as the Pinchi, Fraser-Straight Creek, Yala-
kom and associated faults, and unroofing of metamorphic
core complexes such as the Wolverine (Struik, 1993), Tatla
Lake (Friedman and Armstrong, 1988) and Vanderhoof
(Grainger et al., 2001) complexes. The initiation of strike-
slip movement is documented in the Chilcotin Mountains
beginning sometime between 70 and 65 Ma, and continu-
ing until about 35 Ma (Umhoefer and Schiarizza, 1996).
Eocene normal faulting is mapped in the south part of the
Bowser Basin (O’Sullivan et al., 2009) and is inferred from
interpretations of magnetic and paleomagnetic data (Lowe
et al., 2001) in the Endako region.

Similar structural patterns are assumed to underlie the
covered areas of the Nechako. The loci and timing of these
inferred structures have direct implications for oil and gas
prospectivity. Favourable conditions for the construction of
important components of functioning petroleum systems
would have occurred during the compressional regime;

deposition of coarse clastic reservoir units, the formation
of fold and thrust-fault traps, and the burial/heating of po-
tential source-rock units. During the Eocene transtensional
regime, the deposition of volcanic, volcaniclastic and clas-
tic sedimentary rocks of the Ootsa Lake Group may have
buried and heated prospective Mesozoic source-rock units.
Clastic rocks in these Eocene sequences represent addition-
al potential reservoir units. However, Eocene movement
along steeply dipping strike-slip faults would have a det-
rimental effect on oil and gas prospectivity by introducing
vertical conduits from hydrocarbon traps to the surface, and
by fragmenting plays.

RADIOMETRIC DATES

Table 1 summarizes data from 17 U-Pb radiometric
zircon dates from plutonic and volcanic rocks from the
Interior Plateau of south-central British Columbia. Four
samples are from surface outcrops and 13 are from archived
oil and gas exploration well cuttings and core. The samples
were analyzed to address stratigraphic questions about the
underlying, poorly exposed Mesozoic and early Cenozoic

TABLE 1. SUMMARY OF 17 RADIOMETRIC DATES*

. i Easting Northing U/Pb age :
Field label Report # Location UTMNAD 83  UTM NAD 83 Rock type Sample type (or youngest _Geological
(Ato Zlab #) Zone 10 Zone 10 population) implications
Sub-surface samples
. mid-Jurassic pluton,
a-4-L 10625-10864 ft 965-03 Honolulu Nazko 471599 5835406 Diorite igneous 170.8+0.8 co-eval with ség Lake
well Stock and Spike Peak
(a-4-L/93-8-11) Stock
. . . Paleocene or younger
b-16-J 1060-1120m 738-27 (2-2) ot . Clastic rocks with tuff and ash detrital 57.0+25 deposition above 1720 m
anHunter Esso
b-16-J 1640-1720m 738-28 (2-3) Nazko well 486398 5836290 Castic rocks with tuff and ash detrital 575114 Volcanics at well-base
(b-16-J/93-B-11) . are early Cretaceous,
b-16-J 2300-2385m 738-30 (2-5) Volcaniclastic_tuffs and ash igneous 1406 + 1.6 correlation unknown
b-22-K 2020-2095m 738-45 (5-3) Ash tuff igneous 524+16 Eaflvagzrga{y
. B rom (o]
b-22-K 2570-2670m 738-44 (5-2) Canhunter et al. 413936 5837960 Andesite flow igneous 540+2.1 3745 m
Chilcoi . Mainly Early E
b-22-K 3119-3124.5m 824 (22 KIssC1a) Flow or tuff igneous 60322 Sk i
volcanics
b-22-K 3625-3745m 738-43 (5-1) Fragmental volcanic igneous 50.6 +1.6
b-82-C 635-730m 738-49 (6-3) Cag“‘é"tef etal Siltstone detrital 101.7 ¢ 2.2 Depositon is Albi
edstone eposition Is lan or
(b-82-C/92-0-14) 480980 5740701 later, dominant source
b-82-C 1100-1200m 805-01 Siltstone, claystone, sst detrital 107.3+0.9 terrane is Albian
Granite at well-base
b-82-C_1640-1700m 738-47 (6-1) Granite igneous 101.4£1.9 is Albian-aged
CanHunter Andesite at well-base
Redstone could be Powell Creek
d-94-G 2050-2160m 738-36 (3-6)  (d-94-G/92-012) 453711 5723900 Andesite igneous 93732 Volcanics, OR Spences
Bridge Group
CanHunter et al. Volcaniclastic L\/toltjanics areA
- - - o ithid i ate Jurassic.
d-96-E 3180-3320m 805-02 y QGNE%EOB " 470283 5834950 lithic tuffs igneous 150.2 + 3.1 possible correlation is
(d-96- -B-11) Nechako volcanics
Surface samples
Probably Spencesv
FF05-85 857-05 Puntzi Lake 434471 5785920 andesite igneous 1011222 Bridge Group voleanics
Probably Bowser Lake
FF06-66 857-04 Batnuni Lake 413345 5917087 tuff igneous 161.6 2.4 Gp, possibly Hazelton
JRO06-28 857-09 Batnuni Cone 422969 5917545 rhyolite igneous 48.51+0.99 Ootsa Lake Group
. Probably Spences
JR06-112 857-12 Choelquoit Lake 422274 5731989 andesite igneous 1011+ 2.8 Bridge Group volcanics

*Surface samples were collected in 2005 and 2006; locations on Figure 1. Archived well cuttings were sampled in 2006. Analyses were

performed by Apatite to Zircon, Inc. of Viola, Idaho.
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stratigraphy, and to constrain timing and location of im-
portant structures. In some locations, apatite fission-track
samples were collected concurrently. The specific impli-
cations of the results of U-Pb zircon dates for individual
samples will be discussed in detail in a forthcoming open
file publication. Some general implications about regional
scale structures can be made:

e Four Paleocene to Early Eocene dates were returned
from cuttings from the CanHunter et al. Chilcotin well
(b-22-K/93-C-14) at depths between 2020 and 3745 m.
This represents an anomalously thick section of early
Paleogene and younger deposits, and may represent
the location of an Eocene pull-apart basin between two
en-echelon strike-slip faults. The same interpretation
is made by Hayward and Calvert (in prep) based on
observations of Canadian Hunter seismic and grav-
ity surveys of the early 1980s. Bouguer low-gravity
anomalies and magnetic lineations show that the well
is within a rhomboidal basin.

e Two detrital and one igneous sample from the well
cuttings of the CanHunter et al. Redstone well (b-82-
C/92-0-14) produced ages between 101 and 108 Ma,
putting them in Albian time. Granite at the base of the
well is about the same age as the detrital zircons in
overlying coarse clastic sediment. This is similar to
what is observed during Albian time in the Bowser
Basin to the north (Evenchick et al., 2007) and in the
Chilcotin Mountains to the south; the peak of compres-
sional tectonics along the Cordillera was accompanied
by magmatism, concurrent rapid uplift and shedding of
local detritus into adjacent basins. This is an important
time in the region for the deposition of Cretaceous res-
ervoir beds, formation of structural traps and matura-
tion of potential source rocks by burial.

e Two surface samples from Puntzi Lake and Choelquoit
Lake produced very similar ages of around 101 Ma.
Both samples came from outcrops of purple and green
andesitic flows and breccia that were originally mapped
by Tipper (1959, 1968) as the Jurassic Hazelton Group.
The new dates indicate that they are actually part of a
broad but poorly exposed belt of mid-Cretaceous vol-
canic rocks that also crops out in the Taseko Lake map
area (920) to the east-southeast (Hickson and Higman,
1993; Riesterer et al., 2001; Schiarizza et al., 2002),
where they have been correlated with the Spences
Bridge Group.
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APATITE FISSION-TRACK ANALYSES

Results of 69 surface and subsurface apatite fis-
sion-track analyses are summarized in Table 2. Apatite
fission-track data are used for oil and gas studies because
the temperature range over which track annealing occurs,
60° to 160°C (Ketcham et al., 1999), is about the same as
temperatures required for oil and gas generation. Apatite
fission-track ages can thereby be used to constrain the
time limits of a rock’s most recent cooling through the oil
and gas windows. Samples with more than one species of
apatite, such as detrital samples with mixed source terrains,
can contain multiple apatite geothermometers in a single
sample, and can provide improved detail of the sample’s
cooling history.

The implications of AFT analyses for individual sam-
ples or sample sets will be discussed in detail in a forthcom-
ing open file publication. Some general implications about
regional scale structures can be made:

Figure 2 is a histogram of the oldest apatite dates from
samples from the Nechako region. The oldest apatite age
of a given sample indicates the earliest period of cooling
through the annealing temperature of apatite. The smaller,
flatter peak between 75 and 125 Ma shows samples that
cooled following compressional events of the mid-Meso-
zoic and were not reheated again before the present. The
larger histogram peak at about 50 Ma represents rocks that
either formed or were reheated enough to anneal older
apatite fission tracks during magmatic and volcanic events
associated with the transtensional regime of the Paleocene
and Eocene.
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Figure 2. Histogram of ages of oldest apatite fission tracks in Nechako samples. The age of the oldest apatite in a sample is an indication
of the last time the sample cooled through the higher end of the apatite annealing temperature range, about 160° C.
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