

MEMORANDUM

To: Priscilla Tsang, P.Eng. Associated Engineering Ltd. Date: February 3, 2023

From: Christopher Clarke, P.Eng. (Reviewed by David Tara, P.Eng.)

File: 26141

HIGHWAY 1 - 216 STREET TO 264 STREET WIDENING 232ND STREET TEST PILE RESULTS

Thurber was retained by Associated Engineering Ltd. (AE) to provide geotechnical design input for Functional and Advanced Works Design of the BC Ministry of Transportation and Infrastructure's (the Ministry) Highway 1 - 216 Street to 264 Street Widening project. As part of this scope, the Ministry has elected to complete a test pile, along with an adjacent seismic cone penetration test (SCPT) to assess the amount of pile setup that is expected to occur following pile installation to help reduce the risk of needing to drive more piles than necessary during construction. This memo provides the SCPT results, summarizes the results of the dynamic load testing (DLT) and provides an estimate of the final axial resistance of the pile.

It is a condition of this memo that Thurber's performance of its professional services is subject to the attached Statement of Limitations and Conditions.

1. BACKGROUND GEOTECHNICAL INFORMATION

1.1 Functional Design Geotechnical Investigation

Thurber coordinated the completion of four CPTs to 50 m depth (CPT19-05 to -08), two CPTs adjacent to the north abutment of the 232nd Street Underpass and two adjacent to the south, through the outside shoulder of Highway 1 or in gravel pullouts as the final configuration of the interchange had not yet been confirmed at the time of our investigation. Solid stem auger test holes were completed to approximately 6 m depth adjacent to each CPT. The test holes were completed by Southlands Drilling Co. and the CPTs were completed by Schwartz Soil Tech Inc. using a CPT ramset that was mounted to Southland's drill rig.

The CPTs encountered silt and clay that extended to approximately 25 m depth. Sand layers of variable thickness interbedded with silt and clay layers were encountered below 25 m depth in most locations. However, CPT19-07 encountered predominately silt and clay to 50 m depth, with only thin sand layers encountered below 25 m depth. The CPTs suggest the silt and clay is relatively softer at 232nd Street than at Glover Road or the CP Rail locations. Further information including the CPT and test hole logs can be found in our April 27, 2020 Factual Report and our July 28, 2020 100% Functional Geotechnical Design Report.

1.2 Advanced Works Design Geotechnical Investigation

Two supplementary test holes were completed near the proposed north and south abutments of the 232nd Street Flyover, TH20-01 and TH20-02, on October 6 and 7, 2020. SCPT20-01 was completed adjacent to TH20-01. The test holes and SCPT were completed by Mud Bay Drilling Co Ltd.

The purpose of the test holes was to collect relatively undisturbed, thin-walled tube samples for oedometer testing and to complete vane shear testing. The test holes and SCPT encountered similar ground conditions as the CPTs described above that were completed as part of Functional Design. Further information including the SCPT and test hole logs can be found in our February 5, 2021 Advanced Works Geotechnical Report.

2. GEOTECHNICAL INVESTIGATION

A SCPT, SCPT21-01, was completed to approximately 64 m depth, about 10 m away from the test pile following pile installation. The purpose of the SCPT was to confirm soil conditions in relatively close proximity to the test pile location. The SCPT was completed by On-Track Drilling Inc. on May 6, 2021. The SCPT encountered silt and clay to 30 m depth. Interlayered sand and silt were encountered between approximately 30 m and 40 m depth. Material comprised predominately of silt and clay was encountered below 40 m depth until CPT refusal in sand at 64 m depth.

Artesian pressures are apparent in the sandy layers encountered between 30 m and 40 m depth, with an estimated pressure head of about 40 m. There also appears to be artesian pressure in the silt and clay between 15 m and 30 m depth, as well as possible artesian pressure in the deep silt and clay below 40 m depth.

3. PILE INSTALLATION

The test pile comprised a 914 mm diameter steel pipe with a wall thickness of 25.4mm. Pile installation was completed by Surespan Construction Ltd. between April 24 and April 28, 2021. A copy of the pile installation record is attached. As noted, the pile was installed by impact driving using a 48.9 kN (11 kip) drop hammer, typically using a 2.4 m drop height. Pertinent information from the installation record is shown on Figure 1 and is described below.

- The first 18 m pile segment was driven on April 24.
- The second 18 m pile segment was driven on April 26.
- The third 18 m pile segment was driven on April 27.
- The final 12 m pile segment was driven on April 28.

The soil plug was measured to be 4.4 m below ground elevation upon completion of pile installation. This suggests that the pile predominantly cored during pile installation.

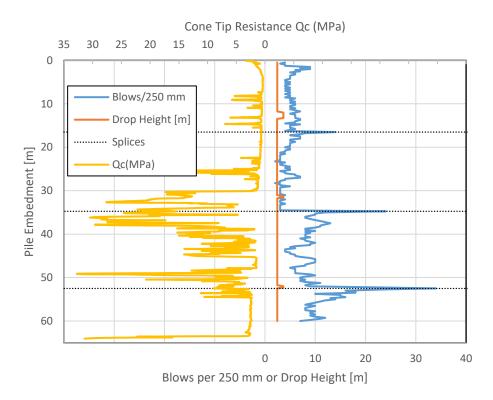


Figure 1 – Pile Installation Record and CPT Tip Resistance

4. DYNAMIC LOAD TEST RESULTS

Dynamic Load Tests (DLT) / Pile Driving Analyzer (PDA) tests were completed by the Ministry at End of Initial Drive (EOID) on April 28, 2021 using a 48.9 kN drop hammer. A 73.8 kN drop hammer was used for DLTs 3 days after EOID on May 1, 2021 and 14 days after EOID on May 12, 2021. The Ministry completed the final DLT on the test pile 40 days after EOID with the contractor again using the same 73.8 kN drop hammer. The Ministry provided Thurber with the draft results of the DLT test, finalized results were not provided. The results of the DLT tests provided to Thurber are summarized below in Table 1.

The Ministry drove the test pile approximately 3.2 m to within 300 mm of site grade, according to MoTI records, and completed an end of redrive DLT following the 40 days after EOID restrike. We understand that this was directed by the Detailed Design team to investigate if the CPT refusal was from a dense stratum. It should be noted that significant disturbance of the soil surrounding the pile occurred as a result of advancing the test pile an additional 3.2 m which could result in a significant reduction of the long-term unit shaft resistances compared to what was measured in the 40 day DLT.

	Hammer Type	Drop Height (m)	Shaft Resistance (kN)	Toe Resistance (kN)	Total Mobilized Resistance (kN)
EOID	48.9 kN Drop Hammer	2.4	1460	400	1860
3 Days After EOID	73.8 kN Drop Hammer	2.4	3100	500	3600
14 Days After EOID	73.8 kN Drop Hammer	3.7	4420	580	5000
40 Days After EOID	73.8 kN Drop Hammer	3.7	5180	620	5800
End of redrive after remobilization of pile on Day 40	73.8 kN Drop Hammer	unknown	2400	450	2850

Table 1 – DLT Test Result Summary

We have plotted the results of the DLTs completed to date on Figure 4.21 from Piling Engineering (Fleming et al., 2009) as we have done for several other projects in similar soils in Surrey and Langley. By inspection, the test results plot reasonably similar to existing test pile database in Piling Engineering with an assumed ultimate resistance of about 6100 kN (toe resistance of 600 kN and shaft resistance of 5500 kN). This assumes an equivalent diameter of the pile is 220 mm, less than the pile diameter due to the pile coring during installation. Accordingly, this suggests that the anticipated ultimate axial compressive resistance of the test pile should be in the range of 6100 kN, with the majority of the axial resistance being developed as shaft resistance.

The total mobilized axial resistance 40 days after EOID is less than expected based on our projected axial resistance following the 14 days after EOID DLT. It is likely that the intermediate DLTs resulted in a minor reduction of the unit shaft resistance compared to the situation where a DLT was completed on the test pile 40 days after EOID without intermediate testing. However, the ultimate purpose of the test pile was to provide DLT results shortly after EOID so that the design team could use those results to predict the long-term, axial resistance without the extended waiting period.

It should be noted that in the case where a DLT is completed weeks after EOID to allow for pile setup and the resultant axial resistance is shown to be insufficient, advancing the pile deeper to achieve more axial resistance could permanently reduce the unit shaft resistances due to remolding which might lead to the pile needing to be longer than if it were driven to the same embedment initially.

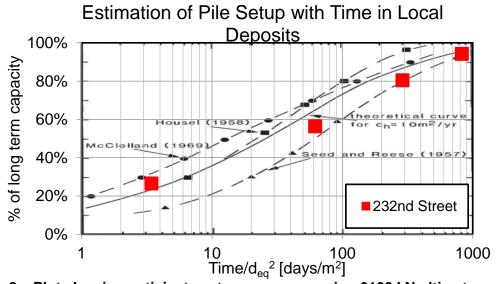


Figure 2 – Plot showing anticipate setup curve assuming 6100 kN ultimate resistance (excerpt from Piling Engineering).

The detailed design team may wish to rely on the 40-day DLT which mobilized an axial resistance of 5800 kN for detailed design, approximately 5% less than the long-term axial resistance estimate based on Figure 4.21.

After redriving the pile, we would expect significantly lower unit shaft resistances along the pile. The DLT test data from the end of redrive on Day 40 seems peculiar. While it does show a significant reduction of shaft resistance in the middle portion of the pile, it also shows much larger unit shaft resistance near the top of the pile compared to previously completed DLTs. Previous DLTs show very little to no axial resistance near the top of the pile and more resistance below.

5. COMPARISONS TO FUNCTIONAL DESIGN AXIAL RESISTANCE ESTIMATE

Our Functional Design Report provided an estimated factored axial pile compressive resistance of 2350 kN for a 50 m long, 914 mm diameter pipe pile. This factored axial resistance incorporated a resistance factor of 0.4 (ultimate axial resistance of 5875 kN). Using SCPT21-01 and the same methods used to estimate the axial resistance from Functional Design, we would have estimated that the ultimate axial resistance of the test pile to be approximately 7100 kN. This is about 16% higher than the projected ultimate axial resistance of 6100 kN from the PDA testing. Based on this, 50 m piles would be expected to have an unfactored axial resistance of approximately 4900 kN. It is worth noting that the estimated shaft resistance of a 914 mm diameter pile during Functional Design was about 18% greater and the toe resistance was about 65% greater than what was mobilized with the DLTs.

Attachments: Statement of Limitations and Conditions SCPT Plots (11 Pages) Ministry PDA Test Results (18 Pages)

Thurber Engineering Ltd. Permit to Practice #1001319

STATEMENT OF LIMITATIONS AND CONDITIONS

1. STANDARD OF CARE

This Report has been prepared in accordance with generally accepted engineering or environmental consulting practices in the applicable jurisdiction. No other warranty, expressed or implied, is intended or made.

2. COMPLETE REPORT

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment are a part of the Report, which is of a summary nature and is not intended to stand alone without reference to the instructions given to Thurber by the Client, communications between Thurber and the Client, and any other reports, proposals or documents prepared by Thurber for the Client relative to the specific site described herein, all of which together constitute the Report.

IN ORDER TO PROPERLY UNDERSTAND THE SUGGESTIONS, RECOMMENDATIONS AND OPINIONS EXPRESSED HEREIN, REFERENCE MUST BE MADE TO THE WHOLE OF THE REPORT. THURBER IS NOT RESPONSIBLE FOR USE BY ANY PARTY OF PORTIONS OF THE REPORT WITHOUT REFERENCE TO THE WHOLE REPORT.

3. BASIS OF REPORT

The Report has been prepared for the specific site, development, design objectives and purposes that were described to Thurber by the Client. The applicability and reliability of any of the findings, recommendations, suggestions, or opinions expressed in the Report, subject to the limitations provided herein, are only valid to the extent that the Report expressly addresses proposed development, design objectives and purposes, and then only to the extent that there has been no material alteration to or variation from any of the said descriptions provided to Thurber, unless Thurber is specifically requested by the Client to review and revise the Report in light of such alteration or variation.

4. USE OF THE REPORT

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client, the BC Ministry of Transportation and Infrastructure (MoTI) and Authorized Users as defined in the MoTI Special Conditions Form H0461d. NO OTHER PARTY MAY USE OR RELY UPON THE REPORT OR ANY PORTION THEREOF WITHOUT THURBER'S WRITTEN CONSENT AND SUCH USE SHALL BE ON SUCH TERMS AND CONDITIONS AS THURBER MAY EXPRESSLY APPROVE. Any use which an unauthorized third party makes of the Report, is the sole responsibility of such third party. Thurber accepts no responsibility whatsoever for damages suffered by any unauthorized third party resulting from use of the Report without Thurber's express written permission.

5. INTERPRETATION OF THE REPORT

- a) Nature and Exactness of Soil and Contaminant Description: Classification and identification of soils, rocks, geological units, contaminant materials and quantities have been based on investigations performed in accordance with the standards set out in Paragraph 1. Classification and identification of these factors are judgmental in nature. Comprehensive sampling and testing programs implemented with the appropriate equipment by experienced personnel may fail to locate some conditions. All investigations utilizing the standards of Paragraph 1 will involve an inherent risk that some conditions will not be detected and all documents or records summarizing such investigations will be based on assumptions of what exists between the actual points sampled. Actual conditions may vary significantly between the points investigated and the Client and all other persons making use of such documents or records with our express written consent should be aware of this risk and the Report is delivered subject to the express condition that such risk is accepted by the Client and such other persons. Some conditions are subject to change over time and those making use of the Report should be aware of this possibility and understand that the Report only presents the conditions at the sampled points at the time of sampling. If special concerns exist, or the Client has special considerations or requirements, the Client should disclose them so that additional or special investigations may be undertaken which would not otherwise be within the scope of investigations made for the purposes of the Report.
- b) Reliance on Provided Information: The evaluation and conclusions contained in the Report have been prepared on the basis of conditions in evidence at the time of site inspections and on the basis of information provided to Thurber. Thurber has relied in good faith upon representations, information and instructions provided by the Client and others concerning the site. Accordingly, Thurber does not accept responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of misstatements, omissions, misrepresentations, or fraudulent acts of the Client or other persons providing information relied on by Thurber. Thurber is entitled to rely on such representations, information and instructions and is not required to carry out investigations to determine the truth or accuracy of such representations, information and instructions.
- c) Design Services: The Report may form part of design and construction documents for information purposes even though it may have been issued prior to final design being completed. Thurber should be retained to review final design, project plans and related documents prior to construction to confirm that they are consistent with the intent of the Report. Any differences that may exist between the Report's recommendations and the final design detailed in the contract documents should be reported to Thurber immediately so that Thurber can address potential conflicts.
- d) Construction Services: During construction Thurber should be retained to provide field reviews. Field reviews consist of performing sufficient and timely observations of encountered conditions in order to confirm and document that the site conditions do not materially differ from those interpreted conditions considered in the preparation of the report. Adequate field reviews are necessary for Thurber to provide letters of assurance, in accordance with the requirements of many regulatory authorities.

6. RELEASE OF POLLUTANTS OR HAZARDOUS SUBSTANCES

Geotechnical engineering and environmental consulting projects often have the potential to encounter pollutants or hazardous substances and the potential to cause the escape, release or dispersal of those substances. Thurber shall have no liability to the Client under any circumstances, for the escape, release or dispersal of pollutants or hazardous substances, unless such pollutants or hazardous substances have been specifically and accurately identified to Thurber by the Client prior to the commencement of Thurber's professional services.

7. INDEPENDENT JUDGEMENTS OF CLIENT

The information, interpretations and conclusions in the Report are based on Thurber's interpretation of conditions revealed through limited investigation conducted within a defined scope of services. Thurber does not accept responsibility for independent conclusions, interpretations, interpolations and/or decisions of the Client, or others who may come into possession of the Report, or any part thereof, which may be based on information contained in the Report. This restriction of liability includes but is not limited to decisions made to develop, purchase or sell land.

CONE PENETRATION TEST REPORT

Prepared for:

Site: Highway 1 & 232nd Street, Langley, BC Date Drilled: May 6, 2021

Prepared by:

On Track Drilling 20626 Mufford Crescent Langley, BC V2Y 1N8

Phone: 604-523-1200 zach@ontrackdrilling.com www.ontrackdrilling.com

Cone Penetration Testing (CPT) Equipment & Calculated Geotechnical Parameters

On Track Drilling Inc. owns and operates a cone penetration test (CPT) system, supplied by Vertek – A Division of Applied Research and Associates. The Hogentogler electronic system is used with a 15 cm², 20 ton cone that records tip resistance, sleeve friction, pore pressure, inclination and temperature at desired intervals chosen by the operator. The cone penetrometers are designed with equal end area friction sleeves, a net end area ratio 0.8 and 60° apex angle on the tip. The cone consists of two strain gauge transducers, with the cone electronics packaged directly behind the transducers. The cone can be stopped at desired depths and dissipation tests can be completed to determine the groundwater pressures.

All testing is performed in accordance with the current ASTM D5778 standards.

The CPT calculations displayed on the plots are based on the measured tip resistance, sleeve friction and pore water pressure recorded at each specified data point. The recorded tip resistance (qc) is corrected for pore pressure effects (qt) and is used for all the calculations.

The following empirical correlations have been used to calculate the geotechnical parameters used in the CPT plots:

Corrected cone tip resistance:

$$q_t = q_c + (1-a) \cdot u2$$

where: q_c = the recorded tip resistance a = net area ratio for cone (0.8) u2 = the recorded dynamic pore pressure

Soil Behavior Type (Normalized): based on SBTn Robertson (1990) (Linear normalization)

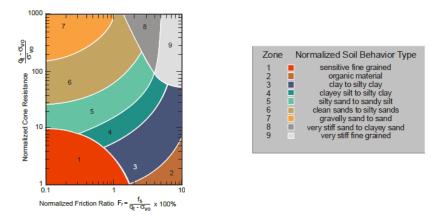


Figure 1: Normalized Soil Behavior Type (SBTn) Classification Chart

Undrained Shear Strength (Su):

$$Su = (q_t - \sigma_v) N_{kt}$$

where: q_t = the corrected tip resistance

 $\sigma_{\underline{v}}$ = the effective overburden stress

N_{kt} = cone constant (user selectable)

Standard Penetration Test Correlation N₁₍₆₀₎:

$$(N_1)_{60} = C_n N_{60}$$

The SPT N₆₀ value corrected for overburden pressure (C_n)

Equivalent SPT N₆₀, (blows/30cm) Lunne et al. (1997) :

$$\frac{\left(\frac{q_t}{p_a}\right)}{N_{60}} = 8.5 \left(1 - \frac{I_c}{4.6}\right)$$

Over Consolidation Ratio (OCR):

$$OCR = k_{OCR} Q_{t1}$$

Only SBTn 1, 2, 3, 4, & 9 (see Lunne et al., 1997)

Shear Wave Velocity (Vs) Testing:

Shear wave velocity measurements can be recorded at desired intervals in conjunction with the cone penetrometer test. The shear waves are typically generated by using a heavy hammer to horizontally strike a beam that is held in place on the ground by a normal force, in this case the outriggers of the drill rig. Two accelerometers mounted directly to the source are used as the contact triggers to initiate the recording of the seismic wave traces. The seismic source is oriented parallel to the axis of the active geophone being used.

The geophones are located 0.2 meters behind the cone tip and the source offset to the cone is recorded for each test.

The velocities of each interval are calculated by choosing a first arrival feature of each recorded wave set and taking the difference in ray path, divided by the time difference between subsequent first arrival times.

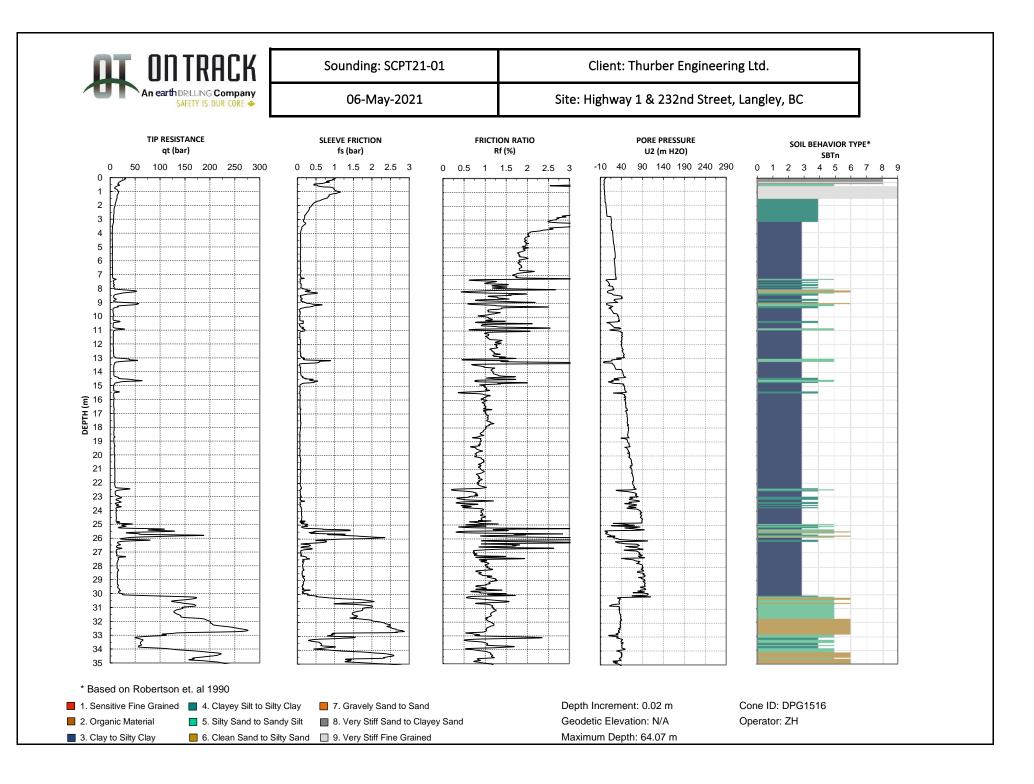
All testing is performed in accordance with the current ASTM D7400 standards.

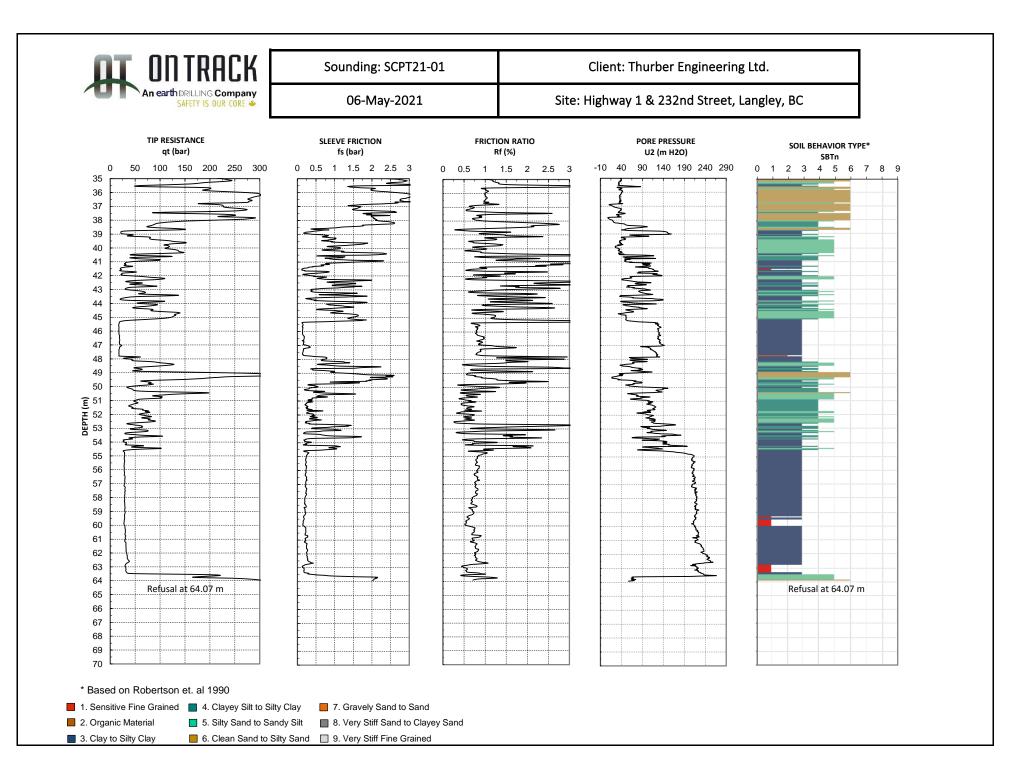
On Track Drilling Inc. 20626 Mufford Crescent Langley, BC, V2Y 1N8 Phone: 604 523 1200 Website: <u>www.ontrackdrilling.com</u>

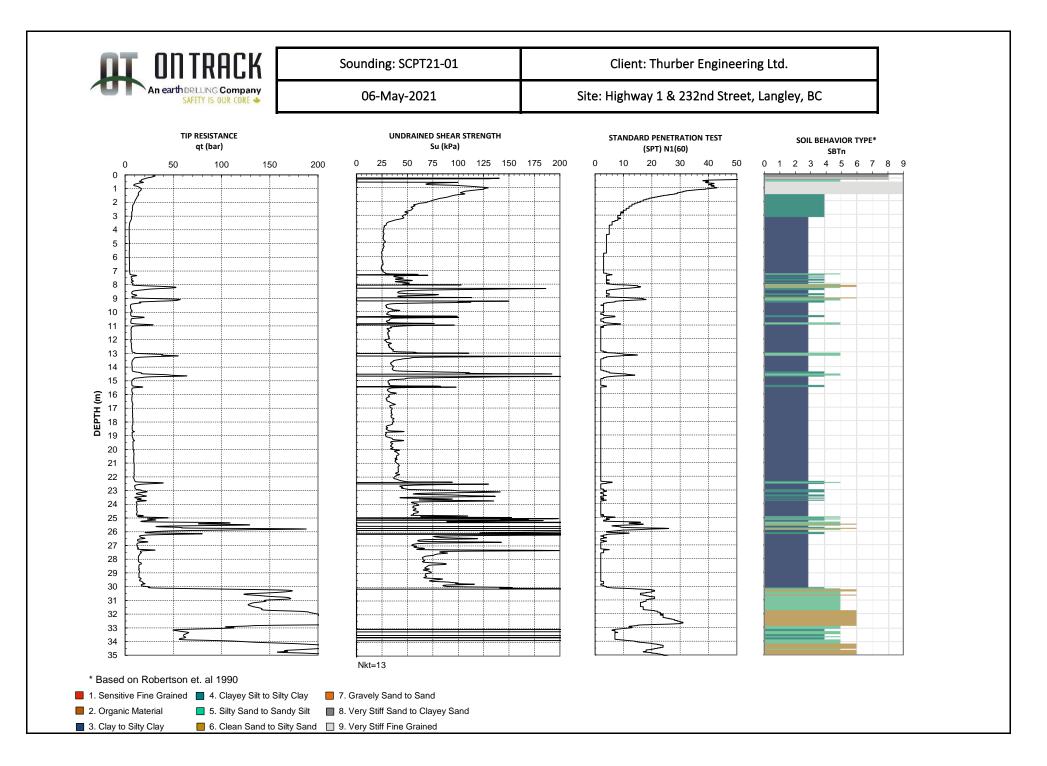
All calculations have been carried out automatically using the software program CPeT-IT v.3.0.3.2. supplied by Geologismiki. The parameters selected are based on current published CPT correlations and are subject to change to reflect the current state of practice. On Track Drilling does not warrant the correctness or the applicability of any of the calculations carried out by the software and does not assume liability for the use of the data in any design or review.

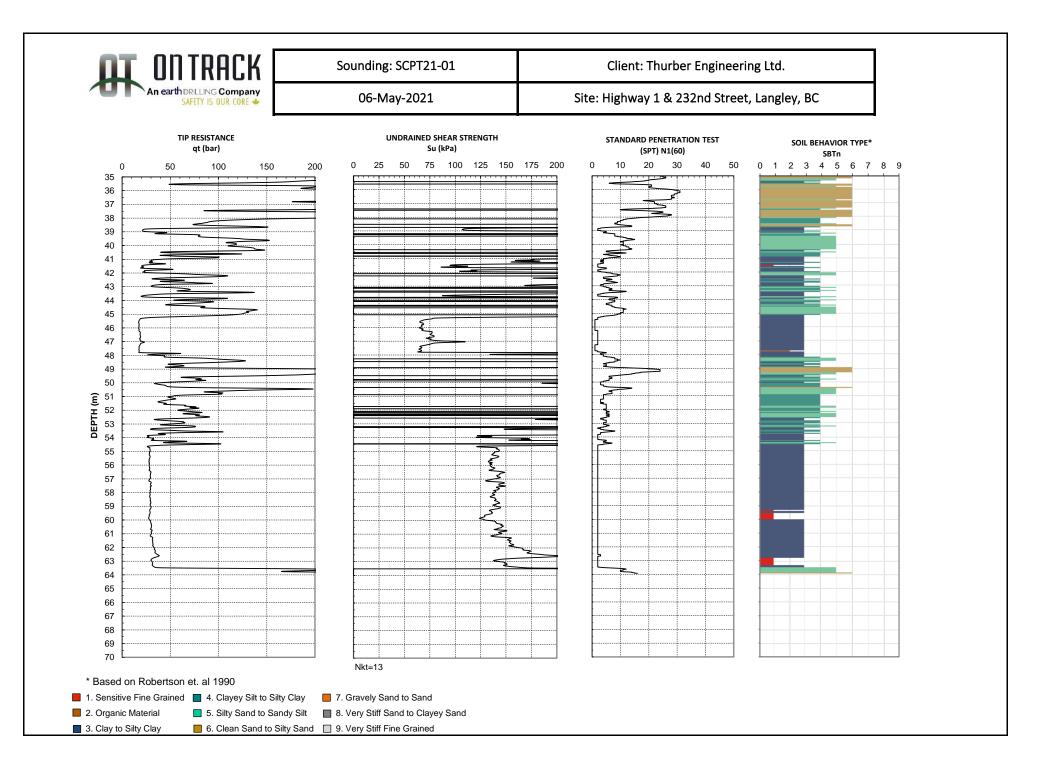
References:

ASTM D5778-12, 2012, "Standard Test Method for Performing Electronic Friction Cone and Piezocone Penetration Testing of Soils", ASTM International, West Conshohocken, PA. DOI: 10.1520/D5778-12.


ASTM D7400/D7400M-19, 2019, "Standard Test Methods for Downhole Seismic Testing", ASTM International, West Conshohocken, PA. DOI: 10.1520/D7400_D7400M-19.


Lunne, T., Robertson, P.K. and Powell, J. J. M., 1997, "Cone Penetration Testing in Geotechnical Practice", Blackie Academic and Professional.

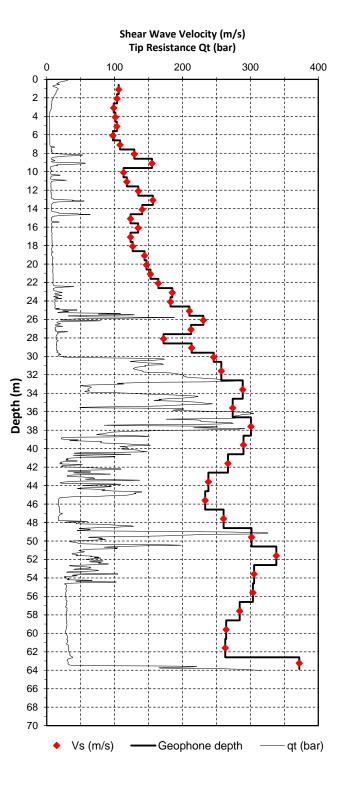

Robertson, P.K., Campanella, R.G., Gillespie, D. and Greig, J., 1986, "Use of Piezometer Cone Data", Proceedings of InSitu 86, ASCE Specialty Conference, Blacksburg, Virginia.


Robertson, P.K., 1990, "Soil Classification Using the Cone Penetration Test", Canadian Geotechnical Journal, Volume 27: 151-158. DOI: 10.1139/T90-014.

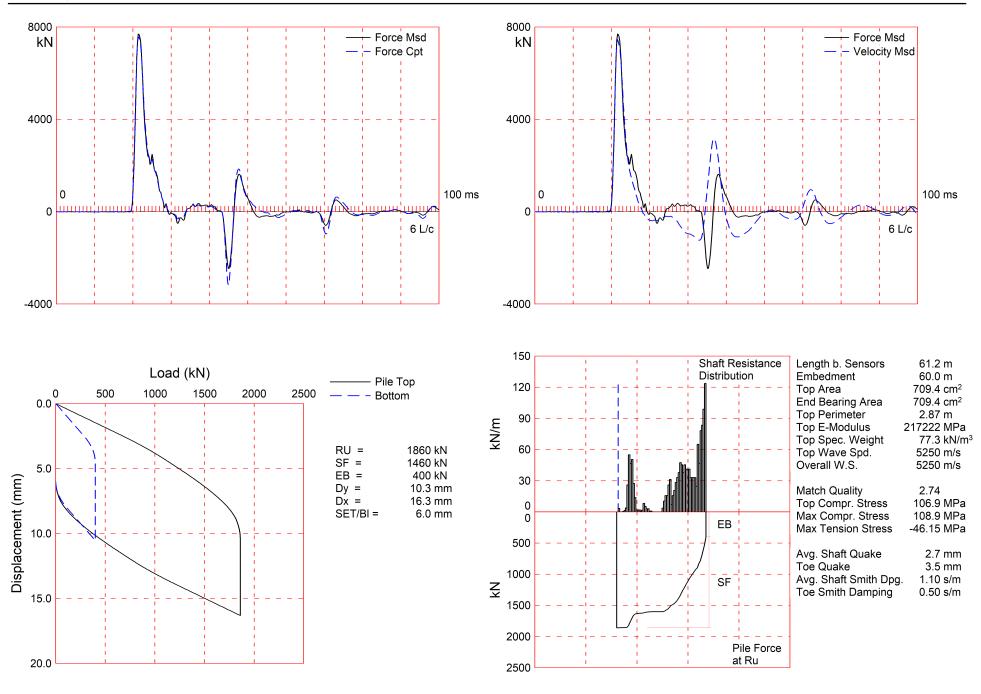
On Track Drilling Inc. 20626 Mufford Crescent Langley, BC, V2Y 1N8 Phone: 604 523 1200 Website: <u>www.ontrackdrilling.com</u>

06-May-21

Client: Thurber Engineering Ltd.


Site: Highway 1 & 232nd Street, Langley, BC

Seismic Source: Beam Source to cone (m): 0.8 Geodetic Elevation: N/A Cone ID: DPG1516 Operator: ZH


Shear Wave Velocity Data (Vs)

Depth (m)	Geophone Depth (m)	Ray Path (m)	Ray Path Difference (m)	Time Difference (ms)	Shear Wave Velocity Vs (m/s)
0.80	0.60	1.00			
1.80	1.60	1.79	0.79	7.43	106
2.80	2.60	2.72	0.93	8.99	104
3.80	3.60	3.69	0.97	9.81	99
4.80	4.60	4.67	0.98	9.70	101
5.80	5.60	5.66	0.99	9.56	103
6.80	6.60	6.65	0.99	10.17	97
7.80	7.60	7.64	0.99	9.19	108
8.80	8.60	8.64	1.00	7.70	129
9.80	9.60	9.63	1.00	6.42	155
10.80	10.60	10.63	1.00	8.80	113
11.80	11.60	11.63	1.00	8.45	118
12.80	12.60	12.63	1.00	7.39	135
13.80	13.60	13.62	1.00	6.38	156
14.80	14.60	14.62	1.00	7.10	141
15.80	15.60	15.62	1.00	8.09	123
16.80	16.60	16.62	1.00	7.42	135
17.80	17.60	17.62	1.00	8.10	123
18.80	18.60	18.62	1.00	7.89	127
19.80	19.60	19.62	1.00	6.93	144
20.80	20.60	20.62	1.00	6.79	147
21.80	21.60	21.61	1.00	6.54	153
22.80	22.60	22.61	1.00	6.08	164
23.80	23.60	23.61	1.00	5.40	185
24.80	24.60	24.61	1.00	5.48	182
25.80	25.60	25.61	1.00	4.76	210
26.80	26.60	26.61	1.00	4.33	231
27.80	27.60	27.61	1.00	4.70	213
28.80	28.60	28.61	1.00	5.81	172
29.80	29.60	29.61	1.00	4.68	213
30.80	30.60	30.61	1.00	4.06	246
32.80	32.60	32.61	2.00	7.77	257

289	6.93	2.00	34.61	34.60	34.80
274	7.30	2.00	36.61	36.60	36.80
301	6.65	2.00	38.61	38.60	38.80
290	6.90	2.00	40.61	40.60	40.80
267	7.49	2.00	42.61	42.60	42.80
238	8.40	2.00	44.61	44.60	44.80
233	8.57	2.00	46.61	46.60	46.80
260	7.68	2.00	48.61	48.60	48.80
302	6.63	2.00	50.61	50.60	50.80
338	5.91	2.00	52.61	52.60	52.80
305	6.55	2.00	54.61	54.60	54.80
304	6.59	2.00	56.61	56.60	56.80
284	7.03	2.00	58.61	58.60	58.80
264	7.56	2.00	60.61	60.60	60.80
263	7.60	2.00	62.61	62.60	62.80
372	3.41	1.27	63.88	63.87	64.07

Livingstone Rd UP; Pile: Test Pile_4; EOID; Blow: 5 (Test: 28-Apr-2021 11:28:) BC Ministry of Transportation (BC MOTI)

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. Livingstone Rd UP; Pile: Test Pile_4 EOID; Blow: 5 Test: 28-Apr-2021 11:28 CAPWAP(R) 2014-3

BC Ministry of Transportation (BC MOTI)

OP: SG

	1		RESULTS	a 1 c .	o 1 -			
	kN				0.1; along			
Smi	Unit	Unit	Sum	Force	Ru	Depth	Dist.	Soil
Dampi	Resist.	Resist.	of	in Pile		Below	Below	Sgmnt
Fact	(Area)	(Depth)	Ru			Grade	Gages	No.
s	kPa	kN/m	kN	kN	kN	m	m	
				1860.1				
1.	1.17	3.35	2.7	1857.4	2.7	0.8	2.0	1
0.	0.00	0.00	2.7	1857.4	0.0	1.8	3.0	2
0.	0.00	0.00	2.7	1857.4	0.0	2.8	4.0	3
1.	0.17	0.50	3.2	1856.9	0.5	3.8	5.0	4
1.	0.49	1.40	4.6	1855.5	1.4	4.8	6.0	5
1.	1.32	3.79	8.4	1851.7	3.8	5.8	7.0	6
1.	9.02	25.92	34.4	1825.7	26.0	6.8	8.0	7
1.	19.15	55.02	89.6	1770.5	55.2	7.8	9.0	8
1.	16.17	46.45	136.2	1723.9	46.6	8.8	10.0	9
1.	17.56	50.43	186.8	1673.3	50.6	9.8	11.0	10
1.	9.58	27.51	214.4	1645.7	27.6	10.8	12.0	11
1.	4.79	13.75	228.2	1631.9	13.8	11.8	13.0	12
1.	0.69	1.99	230.2	1629.9	2.0	12.8	14.0	13
1.	0.69	1.99	232.2	1627.9	2.0	13.8	15.0	14
1.	0.69	1.99	234.2	1625.9	2.0	14.9	16.1	15
1.	0.31	0.90	235.1	1625.0	0.9	15.9	17.1	16
1.	0.62	1.79	236.9	1623.2	1.8	16.9	18.1	17
1.	2.88	8.27	245.2	1614.9	8.3	17.9	19.1	18
1.	1.87	5.38	250.6	1609.5	5.4	18.9	20.1	19
1.	1.08	3.09	253.7	1606.4	3.1	19.9	21.1	20
1.	1.08	3.09	256.8	1603.3	3.1	20.9	22.1	21
1.	0.28	0.80	257.6	1602.5	0.8	21.9	23.1	22
1.	0.28	0.80	258.4	1601.7	0.8	22.9	23.1	23
0.	0.00	0.00	258.4	1601.7	0.0	22.9	24.1	23
0.	0.00	0.00	258.4	1601.7	0.0	23.9 24.9	25.1	24 25
0.	0.00	0.00	258.4	1601.7	0.0	24.9 25.9	20.1	26
0.	0.00	0.00	258.4	1601.7	0.0	25.9 26.9	27.1 28.1	20 27
0.	0.00	0.00		1601.7	0.0	27.9	29.1	28
0.	0.00			1601.7	0.0	28.9	30.1	29
0.	0.00			1601.7	0.0	29.9	31.1	30
1.	1.28		262.1	1598.0	3.7	30.9	32.1	31
1.	3.64	10.47	272.6	1587.5	10.5	31.9	33.1	32
1.	5.45	15.65	288.3	1571.8	15.7	32.9	34.1	33
1.	5.45	15.65	304.0	1556.1	15.7	33.9	35.1	34
1.	9.02	25.92	330.0	1530.1	26.0	34.9	36.1	35
1.	10.86	31.20	361.3	1498.8	31.3	35.9	37.1	36
1.	2.53		368.6	1491.5	7.3	36.9	38.1	37
1.	5.48		384.4	1475.7	15.8	37.9	39.1	38
1.	7.22	20.73	405.2	1454.9	20.8	38.9	40.1	39
1.	9.89	28.41	433.7	1426.4	28.5	39.9	41.1	40

Livingstone Rd UP; Pile: Test Pile_4 EOID; Blow: 5 Test: 28-Apr-2021 11:28 CAPWAP(R) 2014-3 OP: SG

BC Ministry of Transportation (BC MOTI)

			CAPWA	P SUMMAR	SUMMARY RESULTS					
otal CAPV	WAP Capacit	y: 1860	.1; along	Shaft	1460.1; at	: Toe	400.0	kN		
Soil	Dist.	Depth	Ru	Force	Su	n	Unit	Unit	Smit	
Sgmnt	Below	Below		in Pile	0:	f Res	sist.	Resist.	Dampin	
No.	Gages	Grade			R	ם (De	epth)	(Area)	Facto	
	m	m	kN	kN	kl	N	kN/m	kPa	s/	
41	42.1	40.9	33.3	1393.1	467.0	o :	33.19	11.55	1.1	
42	43.1	41.9	38.0	1355.1	505.0	D :	37.88	13.18	1.1	
43	44.1	42.9	47.6	1307.5	552.0	6 4	17.44	16.52	1.1	
44	45.1	43.9	45.5	1262.0	598.3	1 4	45.35	15.79	1.1	
45	46.2	45.0	38.0	1224.0	636.3	1 :	37.88	13.18	1.1	
46	47.2	46.0	45.5	1178.5	681.	6 4	45.35	15.79	1.1	
47	48.2	47.0	41.3	1137.2	722.	9 4	11.17	14.33	1.1	
48	49.2	48.0	41.3	1095.9	764.2	2 4	11.17	14.33	1.1	
49	50.2	49.0	41.3	1054.6	805.	5 4	11.17	14.33	1.1	
50	51.2	50.0	33.1	1021.5	838.	6 3	32.99	11.48	1.1	
51	52.2	51.0	33.1	988.4	871.	7 :	32.99	11.48	1.1	
52	53.2	52.0	33.1	955.3	904.8	в :	32.99	11.48	1.1	
53	54.2	53.0	33.1	922.2	937.	9 :	32.99	11.48	1.1	
54	55.2	54.0	24.8	897.4	962.	7 2	24.72	8.60	1.1	
55	56.2	55.0	65.3	832.1	1028.0) (65.09	22.66	1.1	
56	57.2	56.0	46.6	785.5	1074.0	6 4	46.45	16.17	1.1	
57	58.2	57.0	78.5	707.0	1153.3	ı .	78.24	27.24	1.1	
58	59.2	58.0	83.8	623.2	1236.	9 8	33.53	29.08	1.1	
59	60.2	59.0	99.2	524.0	1336.3	1 9	98.88	34.42	1.1	
60	61.2	60.0	124.0	400.0	1460.3	1 12	23.59	43.02	1.1	
Avg. Sh	aft		24.3			2	24.33	8.47	1.1	
То	e		400.0					5638.65	0.5	
oil Model	l Parameter	s/Extensi	ons			Shaft	То	e		
uake		(m	m)			2.7	3.	5		
ase Dampi	ing Factor					0.55	0.0	7		
amping Ty	-				v	iscous	Sm+Vis	с		
eloading		(%	of Ru)			100	10	0		
Soil Plug		(k					3.00	0		
soil Suppo	ort Dashpot					0.150	3.00	0		
	ort Weight	(k	N)			14.41	14.4	1		
APWAP mat	tch quality	=	2.74	(ស	ave Up Mat	ch) : F	SA = 0			
	Final Set	=	6.0 mm	•	ow Count	•	= 167 b/m			
	Final Set	=	6.0 mm		ow Count	=		167 D/m 168 b/m		
ransducer	F6 (0526			•	27) CAL: 14			/		
	A5 (5613		930; RF: 1.			955; RF				

Livingstone Rd UP; Pile: Test Pile_4 EOID; Blow: 5 BC Ministry of Transportation (BC MOTT)

OP:	SG

max.

mm

8.4

8.3

Displ.

BC Ministry of Transporta	ation	(BC MOTI)		OP: SG
max. Top Comp. Stress	=	106.9 MPa	(T= 21.8 ms, max= 1.019 x Top)	
max. Comp. Stress	=	108.9 MPa	(Z= 8.0 m, T= 23.1 ms)	
max. Tens. Stress	=	-46.15 MPa	(Z= 1.0 m, T= 45.1 ms)	•
max. Energy (EMX)	=	42.1 kJ;	max. Measured Top Displ. (DMX)=	8.3 mm

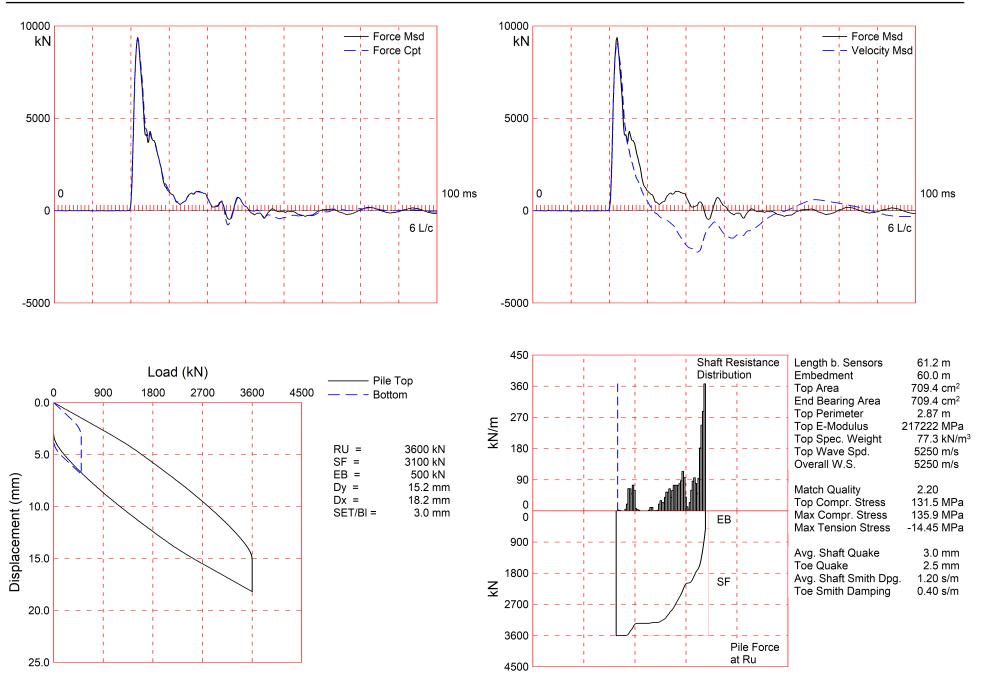
EXTREMA TABLE

Pile	Dist.	max.	min.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.
No.	Gages			Stress	Stress	Energy	
	m	kN	kN	MPa	MPa	kJ	m/s
1	1.0	7583.6	-3273.5	106.9	-46.15	42.1	2.58
2	2.0	7582.6	-3264.4	106.9	-46.02	42.0	2.58
5	5.0	7586.2	-3124.7	106.9	-44.05	42.0	2.57
8	8.0	7725.5	-3103.0	108.9	-43.74	41.8	2.51
11	11.0	7461.5	-2992.6	105.2	-42.19	39.3	2.45
14	14.0	7183.0	-2970.1	101.3	-41.87	37.5	2.44
17	17.1	7169.1	-2878.5	101.1	-40.58	37.3	2.43
20	20.1	7145.3	-2745.0	100.7	-38.69	37.0	2.42
23	23.1	7105.5	-2706.8	100.2	-38.16	36.8	2.42

5	5.0	7586.2	-3124.7	106.9	-44.05	42.0	2.57	8.1
8	8.0	7725.5	-3103.0	108.9	-43.74	41.8	2.51	8.0
11	11.0	7461.5	-2992.6	105.2	-42.19	39.3	2.45	8.0
14	14.0	7183.0	-2970.1	101.3	-41.87	37.5	2.44	7.9
17	17.1	7169.1	-2878.5	101.1	-40.58	37.3	2.43	7.9
20	20.1	7145.3	-2745.0	100.7	-38.69	37.0	2.42	7.8
23	23.1	7105.5	-2706.8	100.2	-38.16	36.8	2.42	7.8
26	26.1	7091.7	-2683.7	100.0	-37.83	36.7	2.42	7.9
29	29.1	7091.2	-2827.0	100.0	-39.85	36.6	2.41	8.0
32	32.1	7137.2	-2993.2	100.6	-42.19	36.5	2.40	8.0
35	35.1	7136.5	-3181.6	100.6	-44.85	35.8	2.36	8.0
38	38.1	6988.0	-3109.1	98.5	-43.83	34.4	2.33	8.1
41	41.1	6998.3	-3118.9	98.7	-43.97	33.6	2.28	8.3
44	44.1	6881.1	-3035.7	97.0	-42.79	31.9	2.21	8.5
47	47.2	6668.9	-2728.8	94.0	-38.47	29.8	2.15	8.7
50	50.2	6448.8	-2273.3	90.9	-32.05	27.4	2.10	8.8
53	53.2	6284.9	-1994.4	88.6	-28.11	25.1	2.05	9.0
56	56.2	6244.3	-1453.8	88.0	-20.49	21.6	2.07	9.0
59	59.2	4558.8	-500.3	64.3	-7.05	15.2	3.02	9.0
61	61.2	1479.1	-138.5	20.9	-1.95	6.0	3.25	9.0
Absolute	8.0			108.9			(т =	23.1 ms)
	1.0				-46.15		(T =	45.1 ms)

Livingst EOID; Bl	cone Rd UP; Low: 5	Pile: To	est Pile	_4			2	lest: 28- CA	Apr-202: APWAP (R)	
BC Minis	stry of Tra	nsportat	ion (BC 1	MOTI)						OP: SG
				CASI	E METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	5971	5046	4121	3195	2270	1345	420	0	0	0
RX	5971	5046	4121	3195	2270	1345	1173	1117	1075	1061
RU	6340	5452	4563	3675	2786	1898	1010	121	0	0
RAU =	1058 (kN); RA2 :	= 160	08 (kN)						
Current	CAPWAP Ru	= 1860 ()	kN); Cori	respondir	ng J(RP)=	= 0.44;	J(RX) = 0	.44		
VMD	K TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
m/s	s ms	kN	kN	kN	mm	mm	mm	kJ	kN	kN/mm
2.55	5 21.59	7487	7736	7736	8.3	6.0	6.0	42.8	5968	114

		PILE PROFI	LE AND PILE MODE	EL		
	Depth	Area	E-Modulus	Spec.	Weight	Perim.
	m	cm ²	MPa		kN/m ³	m
	0.0	709.4	217222.3		77.287	2.87
	61.2	709.4	217222.3		77.287	2.87
Toe Area		709.4	cm^2			


Top Segment Length 1.00 m, Top Impedance 2935 kN/m/s

Wave Speed: Pile Top 5250.0, Elastic 5250.0, Overall 5250.0 m/s

Pile Damping 1.00 %, Time Incr 0.191 ms, 2L/c 23.3 ms

Total volume: 4.341 m^{3;} Volume ratio considering added impedance: 1.000

Livingstone Rd UP; Pile: Test Pile_5; 3 day resrike; Blow: 5 (Test: 01-May-2021 10:52:) BC Ministry of Transportation (BC MOTI)

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. Livingstone Rd UP; Pile: Test Pile_5

3 day resrike; Blow: 5 BC Ministry of Transportation (BC MOTI) Test: 01-May-2021 10:52 CAPWAP(R) 2014-3 OP: SG

			RESULTS	P SUMMAR	CAPWA			
	kN	Toe 500.0	3100.0; at	Shaft	0.0; along	r: 360	WAP Capacity	otal CAPW
Smi	Unit	Unit	Sum	Force	Ru	Depth	Dist.	Soil
Dampi	Resist.	Resist.	of	in Pile		Below	Below	Sgmnt
Fact	(Area)	(Depth)	Ru			Grade	Gages	No.
S	kPa	kN/m	kN	kN	kN	m	m	
				3600.0				
1.	0.84	2.42	2.0	3598.0	2.0	0.8	2.0	1
1.	0.35	1.00	3.0	3597.0	1.0	1.8	3.0	2
0.	0.00	0.00	3.0	3597.0	0.0	2.8	4.0	3
0.	0.00	0.00	3.0	3597.0	0.0	3.8	5.0	4
0.	0.00	0.00	3.0	3597.0	0.0	4.8	6.0	5
1.	1.70	4.89	7.9	3592.1	4.9	5.8	7.0	6
1.	6.94	19.94	27.9	3572.1	20.0	6.8	8.0	7
1.	22.46	64.51	92.6	3507.4	64.7	7.8	9.0	8
1.	22.32	64.11	156.9	3443.1	64.3	8.8	10.0	9
1.	17.22	49.45	206.5	3393.5	49.6	9.9	11.0	10
1.	25.93	74.48	281.2	3318.8	74.7	10.9	12.0	11
1.	20.76	59.62	341.0	3259.0	59.8	11.9	13.0	12
1.	2.43	6.98	348.0	3252.0	7.0	12.9	14.0	13
1.	1.39	3.99	352.0	3248.0	4.0	13.9	15.0	14
1.	0.69	1.99	354.0	3246.0	2.0	14.9	16.0	15
0.	0.00	0.00	354.0	3246.0	0.0	15.9	17.1	16
0.	0.00	0.00	354.0	3246.0	0.0	16.9	18.1	17
0.	0.00	0.00	354.0	3246.0	0.0	17.9	19.1	18
0.	0.00	0.00	354.0	3246.0	0.0	18.9	20.1	19
0.	0.00	0.00	354.0	3246.0	0.0	19.9	21.1	20
0.	0.00	0.00	354.0	3246.0	0.0	20.9	22.1	21
1.	0.69	1.99	356.0	3244.0	2.0	20.9	23.1	22
1.	3.47	9.97	366.0	3234.0	10.0	22.9	24.1	23
1.	3.47	9.97	376.0	3234.0	10.0	22.9	25.1	24
	0.00	0.00	376.0	3224.0	0.0	23.9 24.9	26.1	24 25
0.		1.10	378.0		1.1			
1. 1.	0.38 0.38	1.10	378.2	3222.9 3221.8	1.1	25.9 26.9	27.1 28.1	26 27
1.	0.66			3219.9		27.9		28
1.	6.94			3199.9	20.0	28.9	30.1	29
1.	10.34			3170.1	29.8	29.9	31.1	30
1.	8.61			3145.3	24.8	30.9	32.1	31
1.	8.23			3121.6	23.7	31.9	33.1	32
1.	13.74	39.48		3082.0	39.6	32.9	34.1	33
1.	18.88			3027.6	54.4	33.9	35.1	34
1.	18.88			2973.2	54.4	34.9	36.1	35
1.	22.32			2908.9	64.3	35.9	37.1	36
1.	13.74			2869.3	39.6	36.9	38.1	37
1.	20.65			2809.8	59.5	37.9	39.1	38
1.	25.82	74.18	864.6	2735.4	74.4	38.9	40.1	39
1.	25.82	74.18	939.0	2661.0	74.4	39.9	41.1	40

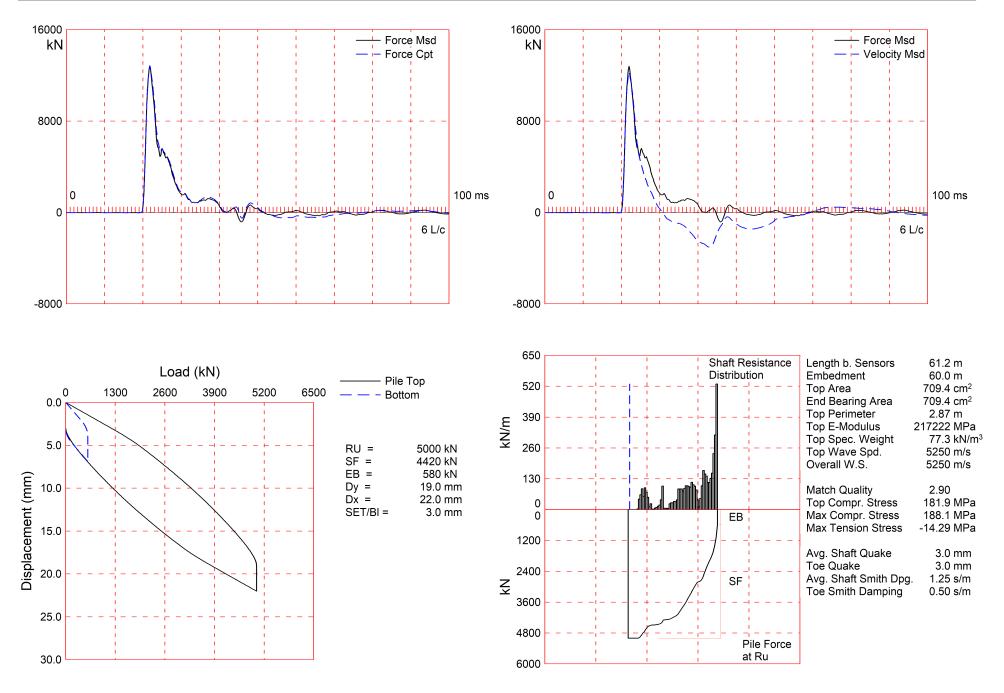
Livingstone Rd UP; Pile: Test Pile_5 3 day resrike; Blow: 5 Test: 01-May-2021 10:52 CAPWAP(R) 2014-3 OP: SG

BC Ministry of Transportation (BC MOTI)

Total CAPWAP Capacity: 3600.0; along Shaft 3100.0; at Toe 500.0 kN Soil Dist. Depth Ru Force Sum Unit Unit Sgmnt Below Below in Pile of Resist. Resist. Resist. No. Gages Grade Ru kN kN kN/m kPa 41 42.1 40.9 74.4 2586.6 1013.4 74.18 25.82 42 43.1 41.9 74.4 2512.2 1087.8 74.18 25.82 43 44.1 42.9 79.2 2433.0 1167.0 78.97 27.49 44 45.1 44.0 87.5 2345.5 1254.5 87.24 30.37 45 46.1 45.0 114.4 2231.1 1368.9 114.06 39.71 46 47.1 46.0 96.4 2134.7 1465.3 96.12 33.46 47 48.1 47.0 39.9 2094.	
Sgmnt Below Below in Pile of Resist. Resist. No. Gages Grade Ru (Depth) (Area) m m m kN kN kN kN/m kPa 41 42.1 40.9 74.4 2586.6 1013.4 74.18 25.82 42 43.1 41.9 74.4 2512.2 1087.8 74.18 25.82 43 44.1 42.9 79.2 2433.0 1167.0 78.97 27.49 44 45.1 44.0 87.5 2345.5 1254.5 87.24 30.37 45 46.1 45.0 114.4 2231.1 1368.9 114.06 39.71 46 47.1 46.0 96.4 2134.7 1465.3 96.12 33.46	
No.Gages mGradeRu kN(Depth) kN/m(Area) kPa4142.140.974.42586.61013.474.1825.824243.141.974.42512.21087.874.1825.824344.142.979.22433.01167.078.9727.494445.144.087.52345.51254.587.2430.374546.145.0114.42231.11368.9114.0639.714647.146.096.42134.71465.396.1233.46	Smit
m m kN kN kN kN/m kPa 41 42.1 40.9 74.4 2586.6 1013.4 74.18 25.82 42 43.1 41.9 74.4 2512.2 1087.8 74.18 25.82 43 44.1 42.9 79.2 2433.0 1167.0 78.97 27.49 44 45.1 44.0 87.5 2345.5 1254.5 87.24 30.37 45 46.1 45.0 114.4 2231.1 1368.9 114.06 39.71 46 47.1 46.0 96.4 2134.7 1465.3 96.12 33.46	Dampir
41 42.1 40.9 74.4 2586.6 1013.4 74.18 25.82 42 43.1 41.9 74.4 2512.2 1087.8 74.18 25.82 43 44.1 42.9 79.2 2433.0 1167.0 78.97 27.49 44 45.1 44.0 87.5 2345.5 1254.5 87.24 30.37 45 46.1 45.0 114.4 2231.1 1368.9 114.06 39.71 46 47.1 46.0 96.4 2134.7 1465.3 96.12 33.46	Facto
4243.141.974.42512.21087.874.1825.824344.142.979.22433.01167.078.9727.494445.144.087.52345.51254.587.2430.374546.145.0114.42231.11368.9114.0639.714647.146.096.42134.71465.396.1233.46	s/
4344.142.979.22433.01167.078.9727.494445.144.087.52345.51254.587.2430.374546.145.0114.42231.11368.9114.0639.714647.146.096.42134.71465.396.1233.46	1.2
4445.144.087.52345.51254.587.2430.374546.145.0114.42231.11368.9114.0639.714647.146.096.42134.71465.396.1233.46	1.2
4546.145.0114.42231.11368.9114.0639.714647.146.096.42134.71465.396.1233.46	1.2
46 47.1 46.0 96.4 2134.7 1465.3 96.12 33.46	1.2
	1.2
47 48.1 47.0 39.9 2094.8 1505.2 39.78 13.85	1.2
	1.2
48 49.1 48.0 12.0 2082.8 1517.2 11.96 4.17	1.2
49 50.1 49.0 4.9 2077.9 1522.1 4.89 1.70	1.2
50 51.2 50.0 24.9 2053.0 1547.0 24.83 8.64	1.2
51 52.2 51.0 59.7 1993.3 1606.7 59.52 20.72	1.2
52 53.2 52.0 86.4 1906.9 1693.1 86.15 29.99	1.2
53 54.2 53.0 96.0 1810.9 1789.1 95.72 33.32	1.2
54 55.2 54.0 79.6 1731.3 1868.7 79.37 27.63	1.2
55 56.2 55.0 49.7 1681.6 1918.4 49.55 17.25	1.2
56 57.2 56.0 94.4 1587.2 2012.8 94.12 32.76	1.2
57 58.2 57.0 182.5 1404.7 2195.3 181.96 63.34	1.2
58 59.2 58.0 248.5 1156.2 2443.8 247.77 86.25	1.2
59 60.2 59.0 288.3 867.9 2732.1 287.45 100.06	1.2
60 61.2 60.0 367.9 500.0 3100.0 366.82 127.69	1.2
Avg. Shaft 51.7 51.67 17.99	1.2
Toe 500.0 7048.31	0.4
oil Model Parameters/Extensions Shaft Toe	
yuake (mm) 3.0 2.5	
Case Damping Factor 1.27 0.07	
amping Type Viscous Sm+Visc	
eloading Level (% of Ru) 100 100	
Inloading Level (% of Ru) 20	
Soil Plug Weight (kN) 6.000 2.000	
CAPWAP match quality = 2.20 (Wave Up Match) ; RSA = 0	
Observed: Final Set = 3.0 mm; Blow Count = 333 b/m	
Computed: Final Set = 3.2 mm; Blow Count = 313 b/m	
ransducer F6 (0526) CAL: 149.0; RF: 1.00; F8 (0527) CAL: 149.9; RF: 1.00	
A5 (56138) CAL: 930; RF: 1.00; A7 (56111) CAL: 955; RF: 1.00	

Livingstone Rd UP; Pile: Test Pile_5 3 day resrike; Blow: 5 BC Ministry of Transportation (BC MOTI

BC Ministry of Transport	atio	n (BC MOTI)		OP: SG
max. Top Comp. Stress	=	131.5 MPa	(T= 22.2 ms, max= 1.034 x Top)	
max. Comp. Stress	=	135.9 MPa	(Z= 9.0 m, T= 23.7 ms)	
max. Tens. Stress	=	-14.45 MPa	(Z = 7.0 m, T = 44.1 ms)	
max. Energy (EMX)	=	75.8 kJ;	<pre>max. Measured Top Displ. (DMX) =</pre>	12.8 mm


				EXTI	REMA TABLE				
	Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
	Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
	No.	Gages			Stress	Stress	Energy		
		m	kN	kN	MPa	MPa	kJ	m/s	mm
	1	1.0	9326.1	-772.4	131.5	-10.89	75.8	3.12	12.4
	2	2.0	9325.6	-745.9	131.5	-10.51	75.8	3.12	12.4
	5	5.0	9349.1	-897.9	131.8	-12.66	75.6	3.10	12.2
	8	8.0	9604.7	-1007.2	135.4	-14.20	75.3	3.00	12.1
	11	11.0	9279.3	-856.1	130.8	-12.07	69.8	2.89	11.9
	14	14.0	8573.0	-786.5	120.8	-11.09	63.3	2.85	11.7
	17	17.1	8511.0	-813.4	120.0	-11.47	62.6	2.85	11.4
	20	20.1	8501.8	-827.8	119.8	-11.67	62.4	2.84	11.1
	23	23.1	8520.0	-850.8	120.1	-11.99	62.0	2.83	10.7
	26	26.1	8432.4	-828.3	118.9	-11.68	60.8	2.82	10.3
	29	29.1	8531.1	-876.3	120.3	-12.35	60.1	2.78	9.8
	32	32.1	8523.3	-933.0	120.1	-13.15	57.9	2.71	9.3
	35	35.1	8468.8	-955.8	119.4	-13.47	55.0	2.61	8.9
	38	38.1	8135.3	-888.4	114.7	-12.52	50.2	2.50	8.4
	41	41.1	7885.1	-921.6	111.2	-12.99	45.9	2.37	8.2
	44	44.1	7534.1	-908.2	106.2	-12.80	41.3	2.22	8.1
	47	47.1	6851.9	-730.5	96.6	-10.30	35.8	2.14	8.0
	50	50.1	6550.3	-702.4	92.3	-9.90	32.9	2.08	7.8
	53	53.2	6610.9	-620.6	93.2	-8.75	31.2	1.97	7.6
	56	56.2	6324.8	-519.8	89.2	-7.33	26.5	1.81	7.4
	59	59.2	4664.8	-433.7	65.8	-6.11	20.8	2.27	7.1
	61	61.2	2088.8	-185.5	29.4	-2.61	4.5	2.38	7.0
Abso	lute	9.0			135.9			(T =	23.7 ms)
		7.0				-14.45		(т =	44.1 ms)

Livin	gsto	ne Rd UP;	Pile: To	est Pile	5			г	est: 01-	May-202	1 10:52
3 day	res	rike; Blow	r: 5	_	_				CA	PWAP (R)	2014-3
BC Mi	nist	ry of Tran	nsportat	ion (BC M	(OTI)						OP: SG
:					CASE	E METHOD					
J =		0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP		9608	8714	7820	6926	6032	5138	4244	3350	2456	1562
RX		9608	8714	7820	6926	6032	5138	4244	3350	2456	1826
RU		10258	9429	8600	7771	6942	6113	5284	4455	3626	2797
RAU =		1139 (kN)	; RA2 :	= 192	27 (kN)						
Curre	nt C	APWAP Ru =	= 3600 ()	kN); Cori	respondir	ng J(RP)=	= 0.67;	J(RX) = 0	. 67		
	VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
1	m/s	ms	kN	kN	kN	mm	mm	mm	kJ	kN	kN/mm
3	.11	21.97	9139	9409	9409	12.8	3.0	3.0	76.0	9599	200

		PILE	PROFILE AND	PILE MO	DEL		
	Depth	Area	E-M	lodulus	Spec.	Weight	Perim.
	m	Cm ²		MPa		kN/m ³	m
	0.0	709.4	21	7222.3		77.287	2.87
	61.2	709.4	21	7222.3		77.287	2.87
Toe Area		709.4	\mathbf{cm}^2				

Se	gmnt	Dist.	Impedance	Imped.		Tension	Comp	ression	Perim.	Wave	Soil
Nu	mber	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
		m	kN/m/s	8	mm		mm		m	m/s	kN
	1	1.0	2935.2	0.0	0.00	0.000	-0.00	0.000	2.87	5250.0	0.000
	2	2.0	2935.2	0.0	0.00	0.000	-0.00	0.000	2.87	5250.0	0.100
	61	61.2	2935.2	0.0	0.00	0.000	-0.00	0.000	2.87	5250.0	0.100

Wave Speed: Pile Top 5250.0, Elastic 5250.0, Overall 5250.0 m/s Pile Damping 1.00 %, Time Incr 0.191 ms, 2L/c 23.3 ms Total volume: 4.340 m^{3;} Volume ratio considering added impedance: 1.000

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. Livingstone Rd UP; Pile: Test Pile_6

14 day restrike; Blow: 7 BC Ministry of Transportation (BC MOTI) Test: 12-May-2021 10:44 CAPWAP(R) 2014-3 OP: SG

			ESULTS	P SUMMARY	CAPWA			
	kN	oe 580.0	20.4; at To	Shaft	0.4; along	y: 5000	MAP Capacit	otal CAPW
Smi	Unit	Unit	Sum	Force	Ru	Depth	Dist.	Soil
Dampin	Resist.	Resist.	of	in Pile		Below	Below	Sgmnt
Facto	(Area)	(Depth)	Ru			Grade	Gages	No.
S	kPa	kN/m	kN	kN	kN	m	m	
				5000.4				
1.2	0.17	0.50	0.5	4999.9	0.5	-0.2	1.0	1
0.0	0.00	0.00	0.5	4999.9	0.0	0.8	2.0	2
0.0	0.00	0.00	0.5	4999.9	0.0	1.8	3.0	3
0.0	0.00	0.00	0.5	4999.9	0.0	2.8	4.0	4
0.0	0.00	0.00	0.5	4999.9	0.0	3.8	5.0	5
0.0	0.00	0.00	0.5	4999.9	0.0	4.8	6.0	6
1.2	1.04	2.99	3.5	4996.9	3.0	5.8	7.0	7
1.2	15.55	44.67	48.3	4952.1	44.8	6.8	8.0	8
1.2	21.80	62.62	111.1	4889.3	62.8	7.8	9.0	9
1.2	30.72	88.24	199.6	4800.8	88.5	8.8	10.0	10
1.2	19.12	54.94	254.7	4745.7	55.1	9.9	11.0	11
1.2	32.14	92.33	347.3	4653.1	92.6	10.9	12.0	12
1.2	25.48	73.18	420.7	4579.7	73.4	11.9	13.0	13
1.2	18.19	52.25	473.1	4527.3	52.4	12.9	14.0	14
1.2	4.37	12.56	485.7	4514.7	12.6	13.9	15.0	15
1.2	8.71	25.03	510.8	4489.6	25.1	14.9	16.0	16
1.2	0.83	2.39	513.2	4487.2	2.4	15.9	17.1	10
1.2	0.83	2.39	515.6	4487.2	2.4	16.9	18.1	18
1.2	2.50	7.18	522.8	4477.6	7.2	17.9	19.1	19
1.2	3.33	9.57	532.4	4468.0	9.6	18.9	20.1	20
1.2	5.03	14.46	546.9	4453.5	14.5	19.9	21.1	21
1.2	6.73	19.34	566.3	4434.1	19.4	20.9	22.1	22
1.2	14.58	41.88	608.3	4392.1	42.0	21.9	23.1	23
1.2	34.53	99.21	707.8	4292.6	99.5	22.9	24.1	24
1.2	2.19	6.28	714.1	4286.3	6.3	23.9	25.1	25
1.2	2.19	6.28	720.4	4280.0	6.3	24.9	26.1	26
1.2	2.19	6.28	726.7	4273.7	6.3	25.9	27.1	27
1.2	1.80	5.18	731.9	4268.5	5.2	26.9	28.1	28
1.2	8.71	25.03	757.0	4243.4	25.1	27.9	29.1	29
1.2	10.24	29.41	786.5	4213.9	29.5	28.9	30.1	30
1.2	10.24	29.41	816.0	4184.4	29.5	29.9	31.1	31
1.2	12.04	34.60	850.7	4149.7	34.7	30.9	32.1	32
1.2	12.04	34.60	885.4	4115.0	34.7	31.9	33.1	33
1.2	14.61	41.98	927.5	4072.9	42.1	32.9	34.1	34
1.2	30.51	87.64	1015.4	3985.0	87.9	33.9	35.1	35
1.2	30.51	87.64	1103.3	3897.1	87.9	34.9	36.1	36
1.2	30.51	87.64	1191.2	3809.2	87.9	35.9	37.1	37
1.2	27.28	78.37	1269.8	3730.6	78.6	36.9	38.1	38
1.2	31.17	89.54	1359.6	3640.8	89.8	37.9	39.1	39
±.,	JT.T/	52.54	1000.0	2010.0	02.0	21.3	JJ. I	

Livingstone Rd UP; Pile: Test Pile_6 14 day restrike; Blow: 7 Test: 12-May-2021 10:44 CAPWAP(R) 2014-3 OP: SG

BC Ministry of Transportation (BC MOTI)

			RESULTS	P SUMMARY	CAPWA			
	kN	loe 580.0	420.4; at 1	Shaft	0.4; along	5000	AP Capacity	otal CAPW
Smi	Unit	Unit	Sum	Force	Ru	Depth	Dist.	Soil
Dampi	Resist.	Resist.	of	in Pile		Below	Below	Sgmnt
Fact	(Area)	(Depth)	Ru			Grade	Gages	No.
s	kPa	kN/m	$\mathbf{k}\mathbf{N}$	kN	kN	m	m	
1.	35.09	100.80	1561.8	3438.6	101.1	39.9	41.1	41
1.	33.94	97.51	1659.6	3340.8	97.8	40.9	42.1	42
1.	32.87	94.42	1754.3	3246.1	94.7	41.9	43.1	43
1.	40.16	115.36	1870.0	3130.4	115.7	42.9	44.1	44
1.	36.41	104.59	1974.9	3025.5	104.9	44.0	45.1	45
1.	34.57	99.31	2074.5	2925.9	99.6	45.0	46.1	46
1.	29.09	83.55	2158.3	2842.1	83.8	46.0	47.1	47
1.	14.58	41.88	2200.3	2800.1	42.0	47.0	48.1	48
1.	3.99	11.47	2211.8	2788.6	11.5	48.0	49.1	49
1.	16.45	47.26	2259.2	2741.2	47.4	49.0	50.1	50
1.	35.09	100.80	2360.3	2640.1	101.1	50.0	51.2	51
1.	57.55	165.31	2526.1	2474.3	165.8	51.0	52.2	52
1.	52.41	150.56	2677.1	2323.3	151.0	52.0	53.2	53
1.	49.11	141.08	2818.6	2181.8	141.5	53.0	54.2	54
1.	40.02	114.96	2933.9	2066.5	115.3	54.0	55.2	55
1.	40.02	114.96	3049.2	1951.2	115.3	55.0	56.2	56
1.	46.02	132.21	3181.8	1818.6	132.6	56.0	57.2	57
1.	53.73	154.34	3336.6	1663.8	154.8	57.0	58.2	58
1.	82.26	236.30	3573.6	1426.8	237.0	58.0	59.2	59
1.	109.64	314.97	3889.5	1110.9	315.9	59.0	60.2	60
1.	184.27	529.34	4420.4	580.0	530.9	60.0	61.2	61
1.	25.22	73.67			72.5		aft	Avg. Sha
0.	8176.04				580.0		9	Тое

*Guide friction or other non-soil resistance.

Soil Model Parameters/E	xtensions	Shaft Toe	
Quake	(mm)	3.0 3.0	
Case Damping Factor		1.88 0.10	
Damping Type		Viscous Sm+Visc	
Reloading Level	(% of Ru)	100 100	
Unloading Level	(% of Ru)	15	
Soil Plug Weight	(kN)	20.807 2.079	
CAPWAP match quality	= 2.90	(Wave Up Match) ; RSA = 0	
Observed: Final Set	= 3.0 mm;	Blow Count = 333 b/m	
Computed: Final Set	= 3.1 mm;	Blow Count = 323 b/m	
Transducer F6 (0526) A5 (56138)		(0527) CAL: 149.9; RF: 1.00 (56111) CAL: 955; RF: 1.00	

Livingstone Rd UP; Pile: Test Pile_6 14 day restrike; Blow: 7 BC Ministry of Transportation (BC MOTI)

14 day restrike; Blow: /		CAPWAP(R) 2014-3
BC Ministry of Transporta	ation (BC MOTI)	OP: SG
max. Top Comp. Stress	= 181.9 MPa	(T= 22.2 ms, max= 1.034 x Top)
max. Comp. Stress	= 188.1 MPa	(Z = 8.0 m, T = 23.7 ms)
max. Tens. Stress	= -14.29 MPa	(Z = 8.0 m, T = 44.7 ms)
max. Energy (EMX)	= 135.8 kJ;	max. Measured Top Displ. (DMX) = 16.6 mm

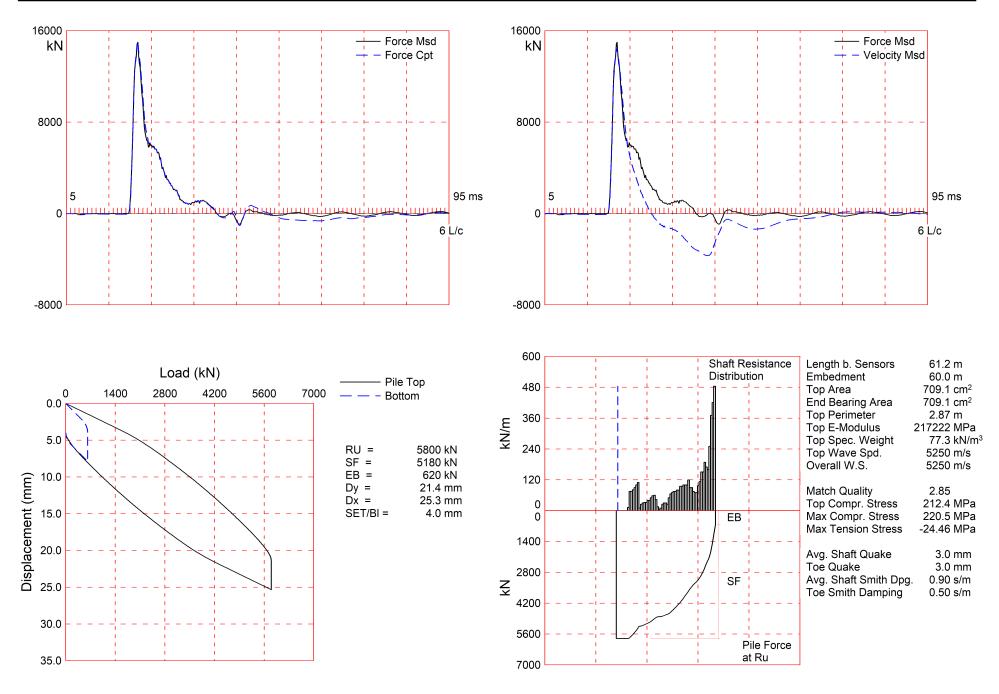
			EXTI	REMA TABLE				•
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	m	kN	kN	MPa	MPa	kJ	m/s	mm
1	1.0	12905.7	-610.9	181.9	-8.61	135.8	4.15	15.7
2	2.0	12900.3	-636.0	181.9	-8.96	135.7	4.15	15.6
5	5.0	12938.5	-684.8	182.4	-9.65	135.2	4.12	15.2
8	8.0	13344.9	-1013.7	188.1	-14.29	134.6	3.96	14.8
11	11.0	12810.5	-847.7	180.6	-11.95	123.1	3.75	14.5
14	14.0	11842.1	-751.3	166.9	-10.59	110.7	3.66	14.1
17	17.1	11406.6	-751.8	160.8	-10.60	105.5	3.64	13.7
20	20.1	11462.9	-775.9	161.6	-10.94	104.2	3.59	13.2
23	23.1	11508.1	-784.6	162.2	-11.06	101.1	3.48	12.7
26	26.1	10828.4	-733.9	152.6	-10.35	93.2	3.44	12.0
29	29.1	10941.2	-770.4	154.2	-10.86	91.1	3.38	11.3
32	32.1	10813.6	-808.2	152.4	-11.39	86.4	3.28	10.7
35	35.1	10777.5	-832.9	151.9	-11.74	81.2	3.10	10.0
38	38.1	10145.5	-772.0	143.0	-10.88	71.4	2.91	9.3
41	41.1	9574.3	-786.1	135.0	-11.08	62.4	2.71	8.6
44	44.1	8938.1	-756.0	126.0	-10.66	54.3	2.51	8.2
47	47.1	8026.1	-655.4	113.1	-9.24	46.8	2.40	8.0
50	50.1	7980.9	-577.8	112.5	-8.14	43.6	2.25	7.7
53	53.2	7545.2	-480.0	106.4	-6.77	37.4	2.05	7.3
56	56.2	6929.8	-376.9	97.7	-5.31	30.2	1.86	7.0
59	59.2	5231.5	-290.1	73.7	-4.09	23.3	2.20	6.7
61	61.2	2696.5	-154.7	38.0	-2.18	4.9	2.32	6.5
Absolute	8.0			188.1			(T =	23.7 ms)
	8.0				-14.29		(T =	44.7 ms)

Test: 12-May-2021 10:44 CAPWAP(R) 2014-3

3.0 3.0 136.9 13967 193

14 day 1	restrike; B	low 7		_				CA	- PWAP (R)	2014-3
-									EWAP (K)	
BC Minis	stry of Tra	nsportat	ion (BC	MOTI)						OP: SG
				CASE	METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	13100	11893	10685	9477	8270	7062	5855	4647	3439	2232
RX	13100	11893	10685	9477	8270	7062	5855	4647	3439	2232
RU	13974	12853	11733	10613	9492	8372	7252	6131	5011	3891
RAU =	1140 (kN	i); RA2	= 28	61 (kN)						
Current	CAPWAP Ru	= 5000 (kN); Cor	respondin	ng J(RP)=	= 0.67; 3	$J(\mathbf{R}\mathbf{X}) = 0$. 67		
VM	X TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
m/:	s ms	kN	kN	kN	mm	mm	mm	kJ	kN	kN/mm

Livingstone Rd UP; Pile: Test Pile_6


4.21 21.97 12350 12826 12868 16.6

PILE PROFILE AND PILE MODEL

De	epth	Area	E-Modulus	Spec. Weight	Perim.
	m	Cm ²	MPa	kN/m ³	m
	0.0	709.4	217222.3	77.287	2.87
6	51.2	709.4	217222.3	77.287	2.87
Toe Area		709.4	cm ²		

Segmnt	Dist.	Impedance	Imped.	1	Tension	Comp	ression	Perim.	Wave	Soil
Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
	m	kN/m/s	ક	mm		mm		m	m/s	kN
1	1.0	2935.2	0.0	0.00	0.000	-0.00	0.000	2.87	5250.0	0.000
2	2.0	2935.2	0.0	0.00	0.000	-0.00	0.000	2.87	5250.0	0.350
3	3.0	2935.2	0.0	0.00	0.000	-0.00	0.000	2.87	5250.0	0.347
61	61.2	2935.2	0.0	0.00	0.000	-0.00	0.000	2.87	5250.0	0.347

Wave Speed: Pile Top 5250.0, Elastic 5250.0, Overall 5250.0 m/s Pile Damping 1.00 %, Time Incr 0.191 ms, 2L/c 23.3 ms Total volume: 4.340 m^{3;} Volume ratio considering added impedance: 1.000

Livingstone Rd UP; Pile: Test Pile _5 40 day restrike; Blow: 6 BC Ministry of Transportation (BC MOTI) About the CAPWAP Results

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. Livingstone Rd UP; Pile: Test Pile _5

40 day restrike; Blow: 6 BC Ministry of Transportation (BC MOTI) Test: 07-Jun-2021 10:01 CAPWAP(R) 2014-3

OP: ec

			RESULTS	P SUMMAR	CAPWA			
	kN	oe 620.0	179.8; at !	Shaft	8; along	r: 5799	WAP Capacit	tal CAPV
Smi	Unit	Unit	Sum	Force	Ru	Depth	Dist.	Soil
Dampi	Resist.	Resist.	of	in Pile		Below	Below	Sgmnt
Fact	(Area)	(Depth)	Ru			Grade	Gages	No.
5	kPa	kN/m	kN	kN	kN	m	m	
				5799.8				
0.	0.26	0.74	0.6	5799.2	0.6	0.8	2.0	1
0.	0.00	0.00	0.6	5799.2	0.0	1.8	3.0	2
0.	0.00	0.00	0.6	5799.2	0.0	2.8	4.0	3
0.	0.00	0.00	0.6	5799.2	0.0	3.8	5.0	4
0.	0.00	0.00	0.6	5799.2	0.0	4.8	6.0	5
0.	0.00	0.00	0.6	5799.2	0.0	5.8	7.0	6
0.	4.41	12.66	13.3	5786.5	12.7	6.8	8.0	7
0.	26.17	75.15	88.7	5711.1	75.4	7.8	9.0	8
0.	26.28	75.45	164.4	5635.4	75.7	8.8	10.0	9
0.	28.22	81.03	245.7	5554.1	81.3	9.8	11.0	10
0.	31.38	90.10	336.1	5463.7	90.4	10.8	12.0	11
0.	34.89	100.17	436.6	5363.2	100.5	11.8	13.0	12
0.	38.36	110.14	547.1	5252.7	110.5	12.8	14.0	13
0.	3.47	9.97	557.1	5242.7	10.0	13.8	15.0	14
0	8.71	25.02	582.2	5217.6	25.1	14.9	16.1	15
0	10.45	30.00	612.3	5187.5	30.1	15.9	17.1	16
0.	11.28	32.39	644.8	5155.0	32.5	16.9	18.1	17
0.	11.28	32.39	677.3	5122.5	32.5	17.9	19.1	18
0.	13.95	40.07	717.5	5082.3	40.2	18.9	20.1	19
0.	13.95	40.07	757.7	5042.1	40.2	19.9	21.1	20
0.	17.43	50.04	807.9	4991.9	50.2	20.9	22.1	21
0.	20.24	58.11	866.2	4933.6	58.3	21.9	23.1	22
0	20.93	60.10	926.5	4873.3	60.3	22.9	24.1	23
0	15.03	43.16	969.8	4830.0	43.3	23.9	25.1	24
0	5.21	14.95	984.8	4815.0	15.0	24.9	26.1	25
0	1.74	4.98	989.8	4810.0	5.0	25.9	27.1	26
0	3.51	10.07	999.9	4799.9	10.1	26.9	28.1	27
0.	8.71			4774.8	25.1	27.9	29.1	28
0	10.45	30.00		4744.7	30.1	28.9	30.1	29
0	10.45	30.00		4714.6	30.1	29.9	31.1	30
0	8.71	25.02		4689.5	25.1	30.9	32.1	31
0.	17.43	50.04	1160.5	4639.3	50.2	31.9	33.1	32
0.	22.70	65.19	1225.9	4573.9	65.4	32.9	34.1	33
0.	22.70	70.17	1225.9	4503.5	70.4	33.9	35.1	34
0.	24.44 26.14	75.05	1290.5	4428.2	70.4 75.3	34.9	36.1	35
	26.14		1446.9	4428.2	75.3	34.9	30.1	36
	20.14 27.91			4352.9	80.4	36.9	37.1	36
0.	27.91	80.14	1607.7 1702 1	4192.1	80.4 05.4	37.9	39.1	38
0.	33.12	95.09		4096.7	95.4	38.9	40.1	39
0.	33.12	95.09	1798.5	4001.3	95.4	39.9	41.1	40

Livingstone Rd UP; Pile: Test Pile _5

40 day restrike; Blow: 6 BC Ministry of Transportation (BC MOTI) Test: 07-Jun-2021 10:01 CAPWAP(R) 2014-3 OP: ec

	kN	e 620.0	Toe	at	5179.8;	Shaft	along	5799.8;	ity:	? Capaci	tal CAPWAP
Smi	Unit	Unit		Sum		Force	Ru	th	Dep	Dist.	Soil
Dampin	Resist.	Resist.		of		in Pile		ow	Bel	Below	Sgmnt
Facto	(Area)	(Depth)		Ru				.de	Gra	Gages	No.
s,	kPa	kN/m		kN		kN	kN	m		m	
0.9	34.89	100.17		9.0	189	3900.8	00.5	.9 1	40	42.1	41
0.9	34.89	100.17		9.5	199	3800.3	00.5	.9 1	41	43.1	42
0.9	34.89	100.17		0.0	210	3699.8	00.5	.9 1	42	44.1	43
0.9	41.69	119.71		0.1	222	3579.7	20.1	.9 1	43	45.1	44
0.9	31.28	89.81		0.2	231	3489.6	90.1	.0	45	46.2	45
0.9	31.28	89.81		0.3	240	3399.5	90.1	5.0	46	47.2	46
0.9	26.14	75.05		5.6	247	3324.2	75.3	.0	47	48.2	47
0.9	24.44	70.17		6.0	254	3253.8	70.4	.0	48	49.2	48
0.9	24.44	70.17		6.4	261	3183.4	70.4	.0	49	50.2	49
0.9	33.84	97.18		3.9	271	3085.9	97.5	.0	50	51.2	50
0.9	39.29	112.83		7.1	282	2972.7	13.2	.0 1	51	52.2	51
0.9	52.42	150.51		8.1	297	2821.7	51.0	.0 1	52	53.2	52
0.9	52.42	150.51		9.1	312	2670.7	51.0	.0 1	53	54.2	53
0.9	65.47	187.98		7.7	331	2482.1	88.6	.0 1	54	55.2	54
0.9	59.29	170.24		8.5	348	2311.3	70.8	.0 1	55	56.2	55
0.9	55.78	160.17		9.2	364	2150.6	60.7	.0 1	56	57.2	56
0.9	87.16	250.28		0.3	390	1899.5	51.1	.0 2	57	58.2	57
0.9	129.03	370.49		2.0	427	1527.8	71.7	.0 3	58	59.2	58
0.9	146.59	420.92		4.3	469	1105.5	22.3	.0 4	59	60.2	59
0.9	168.53	483.91		9.8	517	620.0	85.5	.0 4	60	61.2	60
0.9	30.07	86.33					86.3			t	Avg. Shaft
0.9	8743.84						20.0	6			Toe
	2	ft Toe	Shai					tensions	ers/Ex	Paramete	il Model P
	0	.0 3.0	3.					(mm)			lake
	1	59 0.11	1.5						r	g Factor	se Damping
	2	us Sm+Viso	scoi	Vi						3	mping Type
	C	00 100	10				Ru)	(% of		evel	loading Le
		15	1				Ru)	(% of			loading Le
	C	33 2.500	8.03	1				(kN)		eight	oil Plug We
		; RSA = 0	h)	lato	ave Up N	(W	2.85	= 2		n gualit	APWAP match
	b/m	= 250			ow Count		4.0 mm	=	-	-	served: Fi
	· · .	= 258			ow Count		3.9 mm	=			omputed: Fi
	,	RF: 1.00									ansducer

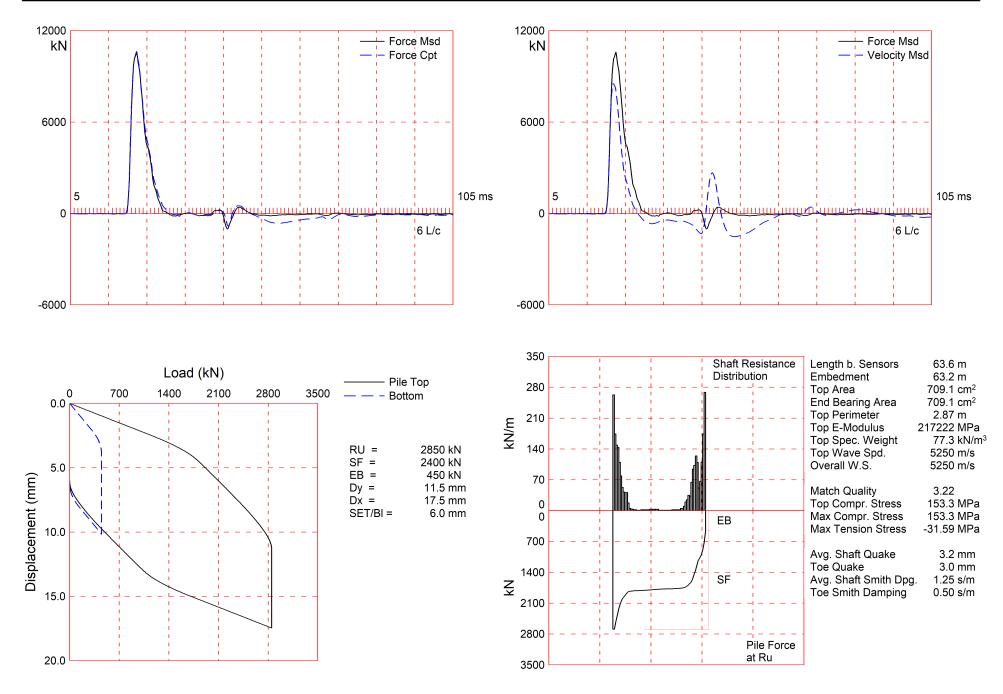
Livingstone Rd UP; Pile: Test Pile _5 40 day restrike; Blow: 6 BC Ministry of Transportation (BC MOTI)

40 day rescrike, brow. 0		CAPWAP(R) = 2014 - 5
BC Ministry of Transporta	tion (BC MOTI)	OP: ec
max. Top Comp. Stress	= 212.4 MPa	(T= 22.2 ms, max= 1.038 x Top)
max. Comp. Stress	= 220.5 MPa	(Z = 9.0 m, T = 23.7 ms)
max. Tens. Stress	= -24.46 MPa	(Z = 9.0 m, T = 44.3 ms)
max. Energy (EMX)	= 180.9 kJ;	max. Measured Top Displ. (DMX) = 18.7 mm

EXTREMA	TABLE

max	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
mr	m/s	kJ	MPa	MPa	kN	kN	m	
18.2	4.89	180.9	-16.19	212.4	-1148.1	15057.3	1.0	1
18.0	4.89	180.6	-17.06	212.1	-1209.9	15039.2	2.0	2
17.5	4.89	179.9	-21.60	213.0	-1531.7	15102.2	5.0	5
17.1	4.76	179.2	-24.24	218.6	-1719.0	15500.1	8.0	8
16.7	4.54	169.1	-21.78	215.4	-1544.2	15272.6	11.0	11
16.3	4.40	153.4	-15.94	201.2	-1130.6	14266.7	14.0	14
15.8	4.31	145.0	-12.64	193.3	-896.2	13708.0	17.1	17
15.3	4.19	139.3	-12.46	190.4	-883.6	13499.7	20.1	20
14.8	4.08	132.0	-12.01	186.6	-851.8	13231.9	23.1	23
14.1	4.05	123.4	-11.36	177.9	-805.8	12617.7	26.1	26
13.5	3.99	120.9	-11.77	178.4	-834.3	12648.8	29.1	29
12.8	3.89	116.0	-13.73	176.6	-973.4	12522.4	32.1	32
12.1	3.73	109.3	-15.50	173.6	-1099.2	12309.3	35.1	35
11.4	3.55	100.0	-16.36	167.4	-1160.0	11869.2	38.1	38
10.0	3.35	90.1	-16.59	160.8	-1176.6	11402.3	41.1	41
10.3	3.16	80.7	-15.98	152.4	-1133.2	10805.2	44.1	44
10.1	3.02	72.1	-15.17	142.2	-1075.5	10084.6	47.2	47
9.8	2.87	65.9	-14.41	136.9	-1021.7	9710.5	50.2	50
9.4	2.65	58.9	-13.31	133.2	-943.5	9447.7	53.2	53
9.0	2.37	48.2	-10.77	124.8	-764.0	8851.2	56.2	56
8.7	2.87	35.9	-8.12	93.3	-575.9	6615.6	59.2	59
8.5	3.01	8.3	-3.99	40.5	-282.9	2874.2	61.2	61
23.7 ms)	(T =			220.5			9.0	solute
44.3 ms)	(T =		-24.46				9.0	

Livings	tone Rd UP;	Pile: 1	est Pile!	• _5			2	lest: 07-	Jun-2021	10:01
40 day	restrike; B	Blow: 6						CA	PWAP (R)	2014-3
BC Mini	stry of Tra	insportat	ion (BC	MOTI)						OP: ec
				CAS	E METHOD)				
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	15706	14293	12880	11467	10053	8640	7227	5814	4401	2988
RX	15706	14293	12880	11467	10053	8640	7227	5814	4401	2988
RU	16681	15365	14050	12734	11418	10102	8787	7471	6155	4840
RAU =	1027 (kN	I); RA2	= 34	93 (kN)						
Current	CAPWAP Ru	= 5800 ((kN); Cor	respondi	ng J(RP)	= 0.70;	J(RX) = 0	.70		


VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
m/s	ms	kN	kN	kN	mm	mm	mm	kJ	kN	kN/mm
4.94	21.98	14499	15339	15339	18.7	4.0	4.0	181.5	15975	207

PILE PROFILE AND PILE MODEL

Depth	L	Area	E-Modulus	Spec. Weight	Perim.
m	ı	Cm ²	MPa	kN/m ³	m
0.0	1	709.1	217222.3	77.287	2.87
61.2	!	709.1	217222.3	77.287	2.87
Toe Area		709.1	Cm ²		

Se	gmnt	Dist.	Impedance	Imped.	5	Tension	Comp	ression	Perim.	Wave	Soil
Nu	mber	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
		m	kN/m/s	8	mm		mm		m	m/s	kN
	1	1.0	2933.8	0.0	0.00	0.000	-0.00	0.000	2.87	5250.0	0.000
	2	2.0	2933.8	0.0	0.00	0.000	-0.00	0.000	2.87	5250.0	0.300
	61	61.2	2933.8	0.0	0.00	0.000	-0.00	0.000	2.87	5250.0	0.301

Wave Speed: Pile Top 5250.0, Elastic 5250.0, Overall 5250.0 m/s Pile Damping 1.00 %, Time Incr 0.191 ms, 2L/c 23.3 ms Total volume: 4.340 m^{3;} Volume ratio considering added impedance: 1.000

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. Livingstone Rd UP; Pile: Test Pile _6 eoid 2; Blow: 7 Test: 07-Jun-2021 13:25 CAPWAP(R) 2014-3 OP: ec

вС	Ministry	of	Transportation	(BC	MOTI)
			F	•	,

			CAPWAP SUMMARY RESULTS											
	.0 kN	Toe 450	2399.9; at	along Shaft	2849.9;	Capacity:	otal CAPWAI							
Un	Unit	Sum	Force	Ru	Depth	Dist.	Soil							
Resis	Resist.	of	in Pile		Below	Below	Sgmnt							
(Area	(Depth)	Ru			Grade	Gages	No.							
k	kN/m	kN	kN	kN	m	m								
			2849.9											
91.	262.83	160.2	2689.7	160.2	0.6	1.0	1							
60.	174.14	336.0	2513.9	175.8	1.6	2.0	2							
51.	148.49	485.9	2364.0	149.9	2.6	3.0	3							
49.	143.43	630.7	2219.2	144.8	3.6	4.0	4							
38.	109.66	741.4	2108.5	110.7	4.6	5.0	5							
27.	78.95	821.1	2028.8	79.7	5.7	6.1	6							
18.	52.60	874.2	1975.7	53.1	6.7	7.1	7							
14.	42.10	916.7	1933.2	42.5	7.7	8.1	8							
14.3	40.91	958.0	1891.9	41.3	8.7	9.1	9							
14.3	40.91	999.3	1850.6	41.3	9.7	10.1	10							
6.	17.43	1016.9	1833.0	17.6	10.7	11.1	11							
1.	5.15	1022.1	1827.8	5.2	11.7	12.1	12							
1.	4.06	1026.2	1823.7	4.1	12.7	13.1	13							
1.	3.07	1029.3	1820.6	3.1	13.7	14.1	14							
0.	2.08	1031.4	1818.5	2.1	14.7	15.1	15							
0.	2.08	1033.5	1816.4	2.1	15.8	16.2	16							
0.	0.99	1034.5	1815.4	1.0	16.8	17.2	17							
0.	0.99	1035.5	1814.4	1.0	17.8	18.2	18							
0.	0.99	1036.5	1813.4	1.0	18.8	19.2	19							
0.	2.08	1038.6	1811.3	2.1	19.8	20.2	20							
0.	2.08	1040.7	1809.2	2.1	20.8	21.2	21							
0.	2.08	1042.8	1807.1	2.1	21.8	22.2	22							
0.	2.08	1044.9	1805.0	2.1	22.8	23.2	23							
0.	2.08	1047.0	1802.9	2.1	23.8	24.2	24							
0.	2.08	1049.1	1800.8	2.1	24.8	25.2	25							
1.	3.07	1052.2	1797.7	3.1	25.8	26.2	26							
1.	3.07	1055.3	1794.6	3.1	26.9	27.3	27							
1.	3.07	1058.4	1791.5	3.1	27.9	28.3	28							
1.	3.07	1061.5	1788.4	3.1	28.9	29.3	29							
1.	3.07	1064.6	1785.3	3.1	29.9	30.3	30							
1.	3.07	1067.7	1782.2	3.1	30.9	31.3	31							
0.	0.99	1068.7	1781.2	1.0	31.9	32.3	32							
0.	0.99	1069.7	1780.2	1.0	32.9	33.3	33							
0.	0.99	1070.7	1779.2	1.0	33.9	34.3	34							
0.	0.99	1071.7	1778.2	1.0	34.9	35.3	35							
0.1	0.99	1072.7	1777.2	1.0	35.9	36.3	36							
0.1	0.99	1073.7	1776.2	1.0	37.0	37.4	37							
0.	0.99	1074.7	1775.2	1.0	38.0	38.4	38							
0.	0.99	1075.7	1774.2	1.0	39.0	39.4	39							
•••	0.99	1076.7	±113,6	1.0	40.0	33.4								

Livingstone Rd UP; Pile: Test Pile _6 eoid 2; Blow: 7 Test: 07-Jun-2021 13:25 CAPWAP(R) 2014-3 OP: ec

BC	Ministry	of	Transportation	(BC	MOTI)

			CAPWAP SUMM	ARY RESULTS			
otal CAPWAP	Capacity:	2849.9;	along Shaft	2399.9; a	t Toe 4	50.0 kN	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Un
Sgmnt	Below	Below		in Pile	of	Resist.	Resis
No.	Gages	Grade			Ru	(Depth)	(Are
	m	m	kN	kN	kN	kN/m	k
41	41.4	41.0	2.1	1771.1	1078.8	2.08	0.
42	42.4	42.0	2.1	1769.0	1080.9	2.08	0.
43	43.4	43.0	2.1	1766.9	1083.0	2.08	0.
44	44.4	44.0	2.1	1764.8	1085.1	2.08	0.
45	45.4	45.0	2.1	1762.7	1087.2	2.08	0.
46	46.4	46.0	2.1	1760.6	1089.3	2.08	0.
47	47.4	47.0	5.2	1755.4	1094.5	5.15	1.
48	48.5	48.1	5.2	1750.2	1099.7	5.15	1.
49	49.5	49.1	10.0	1740.2	1109.7	9.91	3
50	50.5	50.1	20.1	1720.1	1129.8	19.91	6.
51	51.5	51.1	25.1	1695.0	1154.9	24.86	8.
52	52.5	52.1	35.1	1659.9	1190.0	34.77	12
53	53.5	53.1	33.1	1626.8	1223.1	32.79	11
54	54.5	54.1	65.2	1561.6	1288.3	64.58	22
55	55.5	55.1	95.3	1466.3	1383.6	94.40	32
56	56.5	56.1	103.4	1362.9	1487.0	102.42	35
57	57.5	57.1	125.4	1237.5	1612.4	124.22	43
58	58.6	58.2	110.4	1127.1	1722.8	109.36	38
59	59.6	59.2	51.7	1075.4	1774.5	51.21	17
60	60.6	60.2	67.2	1008.2	1841.7	66.57	23
61	61.6	61.2	111.7	896.5	1953.4	110.65	38
62	62.6	62.2	175.6	720.9	2129.0	173.94	60
63	63.6	63.2	270.9	450.0	2399.9	268.34	93
Avg. Shaf	ťt		38.1			37.97	13
Toe			450.0				6346.
oil Model Pa	arameters/E	xtensions			Shaft	Тое	
nith Damping	T Factor				1.25	0.50	
lake	_	(mm)			3.2	3.0	
ase Damping	Factor	()			1.02	0.08	
amping Type				7		+Visc	
loading Le		(% of	R11)		100	100	
oil Plug We		(kN)	,		15.500	2.000	
APWAP match	muali+v	= 3	.22	(Wave Up Ma	tch) · PGA	= 0	
oserved: Fi				Wave op Ma Blow Count	=	- 0 167 b/m	
				Blow Count		160 b/m	
omputed: Fin	Har Set	-		Brow Count	-	T00 D/m	

Livingstone Rd UP; Pile: Test Pile _6 eoid 2; Blow: 7

BC Ministry of Transporta	tion	(BC MOTI)		OP: ec
max. Top Comp. Stress	=	153.3 MPa	(T= 22.7 ms, max= 1.000 x Top)	
max. Comp. Stress	=	153.3 MPa	(Z= 1.0 m, T= 22.7 ms)	
max. Tens. Stress	=	-31.59 MPa	(Z = 38.4 m, T = 39.4 ms)	•
max. Energy (EMX)	=	80.0 kJ;	<pre>max. Measured Top Displ. (DMX) = 10.</pre>	2 mm .

Pile	Dist.	max.	min.	max.	max.	max.	max.	max
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages	FOICe	FOICE	Stress	Stress	Energy	veroc.	ртэрт.
NO .	m u dages	kN	kN	MPa	MPa	kJ	m/s	mn
							•	
1	1.0	10871.1	-1340.9	153.3	-18.91	80.0	2.80	9.5
2	2.0	10364.4	-1718.2	146.2	-24.23	74.6	2.71	9.4
6	6.1	8416.7	-2052.8	118.7	-28.95	57.9	2.51	9.3
10	10.1	7698.3	-1755.4	108.6	-24.76	52.0	2.44	9.2
14	14.1	7455.2	-1804.0	105.1	-25.44	50.1	2.42	9.2
18	18.2	7439.6	-1881.6	104.9	-26.54	49.8	2.42	9.1
22	22.2	7432.6	-1948.5	104.8	-27.48	49.5	2.42	9.1
26	26.2	7422.3	-1921.2	104.7	-27.10	49.1	2.41	9.1
30	30.3	7387.7	-1984.5	104.2	-27.99	48.5	2.40	9.1
34	34.3	7362.5	-2148.8	103.8	-30.30	48.1	2.40	9.0
38	38.4	7370.6	-2239.7	103.9	-31.59	48.0	2.40	8.9
42	42.4	7372.5	-2154.2	104.0	-30.38	47.6	2.40	8.7
46	46.4	7385.2	-1945.4	104.2	-27.44	47.0	2.39	9.0
50	50.5	7491.9	-1391.5	105.7	-19.62	46.0	2.32	9.3
54	54.5	7662.8	-916.1	108.1	-12.92	42.5	2.15	9.5
58	58.6	6770.2	-647.1	95.5	-9.13	32.1	2.32	9.5
59	59.6	6309.4	-572.4	89.0	-8.07	28.9	2.55	9.5
60	60.6	5816.8	-527.0	82.0	-7.43	27.4	2.73	9.5
61	61.6	4881.8	-463.1	68.8	-6.53	25.3	2.87	9.5
62	62.6	3413.6	-357.5	48.1	-5.04	21.7	2.92	9.4
63	63.6	2252.3	-214.0	31.8	-3.02	7.2	2.91	9.4
solute	1.0			153.3			(T =	22.7 ms)
	38.4				-31.59		(T =	39.4 ms)

Livings	tone Rd UP;	Pile: To	est Pile	_6			Т	est: 07	-Jun-202	1 13:25
eoid 2;	Blow: 7							C	APWAP (R)	2014-3
BC Minia	stry of Tra	insportat:	ion (BC	MOTI)						OP: ec
				CASI	E METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	8595	7612	6630	5648	4665	3683	2701	1718	736	0.
RX	8666	7650	6634	5648	4665	3683	2701	1718	1433	1418
RU	8154	7128	6102	5075	4049	3023	1996	970	0	0
RAU =	1334 (kN	I); RA2 =	= 28	58 (kN)						
Current	CAPWAP Ru	= 2850 (1	kN); Cor	respondir	ng J(RP)=	= 0.58;	J(RX) = 0	.58		
VM	X TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
m/	s ms	kN	kN	kN	mm	mm	mm	kJ	kN	kN/mm
2.9	2 21.92	8580	9838	10679	10.2	6.0	6.0	81.4	10083	150

	Depth	Area	E-Modulus	Spec. Weight	Perim.
	m	cm ²	MPa	kN/m ³	m
	0.0	709.1	217222.3	77.287	2.87
	63.6	709.1	217222.3	77.287	2.87
Toe Area		709.1	cm ²		

Se	gmnt	Dist.	Impedance	Imped.	5	Tension	Comp	ression	Perim.	Wave	Soil
Nu	mber	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed	Plug
		m	kN/m/s	8	mm		mm		m	m/s	kN
	1	1.0	2933.8	0.0	0.00	0.000	-0.00	0.000	2.87	5250.0	0.000
	2	2.0	2933.8	0.0	0.00	0.000	-0.00	0.000	2.87	5250.0	0.250
	63	63.6	2933.8	0.0	0.00	0.000	-0.00	0.000	2.87	5250.0	0.250

Wave Speed: Pile Top 5250.0, Elastic 5250.0, Overall 5250.0 m/s Pile Damping 1.00 %, Time Incr 0.192 ms, 2L/c 24.2 ms Total volume: 4.510 m^{3;} Volume ratio considering added impedance: 1.000