

Ministry of Forests, Lands, Natural Resource Operations and Rural Development

ENGINEERING BRANCH

STANDARD BRIDGE DRAWINGS:
SUBSTRUCTURES

	DRAWING SCHEDULE		
DRAWING NUMBER	DRAWING TITLE	REV.	DATE
STD-EC-050-01	GENERAL NOTES	1	MARCH 2015
STD-EC-050-02	CONCEPTUAL CONCRETE BALLAST WALL FOR STEEL BRIDGES	1	JANUARY 2022
STD-EC-050-03	CONCRETE BALLAST WALL DETAILS FOR STEEL BRIDGES - SHEET 1	1	JANUARY 2022
STD-EC-050-04	CONCRETE BALLAST WALL DETAILS FOR STEEL BRIDGES - SHEET 2	1	JANUARY 2022
STD-EC-050-05	SUBSTRUCTURE DETAILS FOR STEEL BRIDGES - SHEET 1	1	MARCH 2015
STD-EC-050-06	SUBSTRUCTURE DETAILS FOR STEEL BRIDGES - SHEET 2	1	MARCH 2015
STD-EC-050-07	SUBSTRUCTURE DETAILS FOR STEEL BRIDGES - SHEET 3	0	APRIL 2014
STD-EC-050-08	SUBSTRUCTURE DETAILS FOR STEEL BRIDGES - SHEET 4	0	APRIL 2014
STD-EC-050-09	ABUTMENT CAP FOR STEEL BRIDGES	1	MARCH 2015
STD-EC-050-10	PIER CAP FOR STEEL BRIDGES	1	MARCH 2015
STD-EC-050-11	LOCK BLOCK ABUTMENT FOR STEEL BRIDGES	1	MARCH 2015
STD-EC-050-12	LOCK BLOCK ABUTMENT FOR ALL STEEL PORTABLE BRIDGES	0	APRIL 2014
STD-EC-050-13	LOCK BLOCK ABUTMENT FOR CONCRETE BRIDGES	0	APRIL 2014
STD-EC-050-14	CONCEPTUAL CONCRETE SILLS FOR CONCRETE BLOCK ABUTMENTS	1	APRIL 2021
STD-EC-050-15	PRECAST CONCRETE BASE SLAB DETAILS	0	APRIL 2014
STD-EC-050-16	INVERTED " T " ABUTMENT DETAILS	0	APRIL 2014
STD-EC-050-17	CONCEPTUAL INTEGRAL CAP BEAM/WINGWALL FOR CONCRETE SLAB BRIDGES	1	APRIL 2021
STD-EC-050-18	SUBSTRUCTURE DETAILS FOR CONCRETE SLAB BRIDGES - SHEET 1	0	APRIL 2014
STD-EC-050-19	SUBSTRUCTURE DETAILS FOR CONCRETE SLAB BRIDGES - SHEET 2	0	APRIL 2014
STD-EC-050-20	SUBSTRUCTURE DETAILS FOR CONCRETE SLAB BRIDGES - SHEET 3	0	APRIL 2014
STD-EC-050-21	SUBSTRUCTURE DETAILS FOR CONCRETE SLAB BRIDGES - SHEET 4	0	APRIL 2014

1 GENERAL

- 1.1 THESE STANDARD DRAWINGS APPLY ONLY TO THE DESIGN AND SUPPLY OF SIMPLE SPAN, SINGLE LANE BRIDGE SUBSTRUCTURES. THE STANDARD DRAWINGS PROVIDE DESIGN GUIDELINES AND STANDARD DETAILS.
- 1.2 VARIATIONS FROM THE STANDARD DESIGN REQUIREMENTS MAY BE ACCEPTABLE IN CERTAIN SITUATIONS. ALL SUCH VARIATIONS SHALL BE DOCUMENTED AND REQUIRE APPROVAL FROM FLNR PRIOR TO USE.
- 1.3 A PROFESSIONAL ENGINEER REGISTERED TO PRACTICE IN THE PROVINCE OF BRITISH COLUMBIA SHALL DESIGN ALL BRIDGE COMPONENTS.

1.4 DEFINITIONS

- ENGINEER:

- A PROFESSIONAL ENGINEER REGISTERED IN THE PROVINCE OF BRITISH COLUMBIA EXPERIENCED IN THE DESIGN OF STEEL AND CONCRETE BRIDGES, WHO IS RESPONSIBLE FOR THE DETAILED STRUCTURAL DESIGN OF A BRIDGE IN CONFORMANCE WITH THESE DRAWINGS

- A PROFESSIONAL ENGINEER DESIGNATED BY THE MINISTRY OF FORESTS, LANDS AND NATURAL RESOURCE OPERATIONS (FLNR)

1.5 APPLICABLE OVERALL BRIDGE LENGTH (OUT-TO-OUT):

- OVERALL BRIDGE GIRDER LENGTHS GREATER THAN 40m (130') FOR STEEL BRIDGES AND 15m (50') FOR CONCRETE BRIDGES, OR CONTINUOUS MULTI-SPAN BRIDGES WILL REQUIRE SPECIAL INVESTIGATION. DETAILS TO BE APPROVED BY FLNR PRIOR TO USE.

1.6 STANDARD DECK WIDTHS

- THE FOLLOWING TABLE SPECIFIES STANDARD DECK WIDTHS FOR THE DESIGNATED DESIGN VEHICLES.

DESIGN VEHICLE	STANDARD DECK WIDTH (mm)
BCL-625, L100	4268
L150, L165	4876

- THESE STANDARD DRAWINGS ARE BASED ON THESE STANDARD DECK WIDTHS.

1.7 STANDARD GIRDER AND COLUMN SPACING

- THE FOLLOWING TABLE SPECIFIES STANDARD GIRDER AND COLUMN / FOOTING SPACING.

DECK WIDTH mm(ft)	STANDARD COLUMN SPACING (mm) (PERPENDICULAR TO BRIDGE)
4268 (14')	3000
4876 (16')	3600
5486 (18')	4200

1.8 COMPONENT WEIGHTS

- PRECAST CONCRETE COMPONENT WEIGHTS SUCH AS BASE SLAB, BALLAST WALL, CAP AND FOOTINGS, SHALL BE SPECIFIED ON THE DESIGN DRAWINGS.
- 1.9 DRAWINGS INCORPORATING ENGINEERED DETAILS APPLY TO STANDARD WIDTH SQUARE BRIDGES ONLY.
- 1.10 ACCOMMODATE GRADES IN EXCESS OF 2% WITH A BEVEL PLATE OR SLOPED CAP BEAM.
- 1.11 ALL DIMENSIONS ARE IN MILLIMETERS, UNLESS NOTED OTHERWISE
- 1.12 ENGINEER SHOULD PROVIDE A LAYOUT TABLE ON THE SHOP DRAWINGS FOR FOOTING LOCATION ON SKEWED
- 1.13 FLNR PROJECT SPECIFICATIONS WILL TAKE PRECEDENCE OVER THE STANDARD DRAWINGS.

2 DESIGN

2.1 DESIGN LIFE:

- FOR SPAN LESS THAN OR EQUAL TO 40m (130'), DEFORMATION AND TRANSLATION CAN BE ACCOMMODATED AS DETAILED IN THE STANDARD DRAWINGS
- FOR SPAN GREATER THAN 40m (130'), ENGINEER TO DESIGN BEARINGS TO ACCOMMODATE DEFORMATION AND

2.5 DYNAMIC LOAD ALLOWANCE:

- DYNAMIC LOAD ALLOWANCE SHALL BE APPLIED IN ACCORDANCE WITH CAN/CSA-S6 AND FLNR STANDARD DRAWINGS STD-EC-000-01 TO -02

2.6 STANDARD CONCRETE COVER:

- THE FOLLOWING ARE THE STANDARD CONCRETE COVERS, UNLESS NOTED OTHERWISE:

- CONCRETE FOOTING, ALL FACES - CONCRETE BALLAST WALL - CONCRETE CAP (ALL AROUND) 35 MM

2.7 BEARINGS:

- MAXIMUM AVERAGE PRESSURE ON PLAIN ELASTOMERIC BEARING NOT TO EXCEED 4.5 MPA

AT SLS COMBINATION 1, INCLUDING DYNAMIC LOAD ALLOWANCE.

- WHERE LAMINATED BEARING PADS ARE USED. THEY SHOULD INCORPORATE A MINIMUM OF TWO REINFORCING PLATES AS SHOWN ON THE STANDARD DRAWINGS.

3 MATERIALS AND FABRICATION

3.1 STRUCTURAL STEEL FOR SUBSTRUCTURE:

- CONFORM TO CAN/CSA-G40 21M GRADE AS FOLLOWS

- PLATES:	GRADE 350A
- SECTIONS (EXCEPT COLUMN BRACING):	GRADE 350A
- COLUMN BRACING, INCLUDING BASE PLATES, GUSSETS & SECTIONS, (PAINTED)	GRADE 300V
- HP SECTIONS: (PAINTED)	GRADE 300V

- ANY REQUIRED VARIATION REQUIRES FLNR APPROVAL

- CONFORM TO ASTM A252 GRADE 2 OR BETTER

3.3 WELDING

- ALL WELDS TO BE COMPLETED IN ACCORDANCE WITH CSA W59.
- MINIMUM 6 mm FILLET WELD. U.N.O.

3.4 STEEL SUBSTRUCTURE FABRICATION CERTIFICATION

- STEEL CAP: FABRICATOR TO BE CERTIFIED FOR DIVISION 1 OR 2 IN ACCORDANCE WITH CSA W47.1 - OTHER STEEL COMPONENTS: FABRICATOR TO BE CERTIFIED FOR DIVISION 1, 2 OR 3 IN ACCORDANCE WITH CSA W47.1

3.5 FIELD WELDING:

- BY COMPANY CERTIFIED TO CSA W47.1 DIVISION 1, 2 OR 3

3.6 STRUCTURAL BOLTS:

- CONFORM TO ASTM A325 TYPE 3 M22 U.N.O. INSTALL IN ACCORDANCE WITH CAN/CSA-S6

3.7 ANCHOR BOLTS:

- CONFORM TO ASTM A193 GRADE B7 THREADED ROD AS INDICATED IN DRAWINGS.
- CONFORM TO ASTM A307 GRADE B GALV, AS INDICATED IN DRAWINGS

3.8 STUDS:

- CONFORM TO CSA W59 APPENDIX H FOR TYPE A AND B STUDS
- ASTM A108 GRADE 1015, 1018 OR 1020

3.9 PAINTING

- COAT STEEL SUBSTRUCTURE INCLUDING BASE PLATES AND ANCHOR BOLTS WITH ONE COAT XYMAX MONOGUARD OR APPROVED EQUAL PRIOR TO BACKFILLING.

3.10 GALVANIZING

- ALL ITEMS SPECIFIED AS GALVANIZED ARE TO BE HOT DIP GALVANIZED TO CSA G164

3.11 REINFORCING:

- TO CAN/CSA G30.18M GRADE 400R
- REINFORCING STEEL MUST NOT BE WELDED OR TACK WELDED

- GROUT TARGET TRAFFIC PATCH (FINE) TO BE INSTALLED ACCORDING TO MANUFACTURERS INSTRUCTIONS. EQUIVALENT PRODUCTS MUST BE APPROVED BY FLNR PRIOR TO USE.

DESIGN ENGINEER

PROFESSIONAL SEAL

3.13 PRECAST CONCRETE:

- CSA A23 1 EXPOSURE CLASS C1 F'C = 35 MPA @ 28 DAYS
- PRECAST CONCRETE TO BE FABRICATED IN ACCORDANCE WITH CSA A23.4, COMPANIES MUST BE CERTIFIED BY THE CANADIAN STANDARD ASSOCIATION (CSA), OR THE CANADIAN PRECAST / PRESTRESSED CONCRETE INSTITUTE
- FABRICATION TOLERANCES TO CAN/CSA-A23.4
- ALL CORNERS C/W 20X20 CHAMFER U.N.O. ON THE APPLICABLE STANDARD DRAWING

3.14 PRECAST CONCRETE UNREINFORCED INTERLOCKING BLOCKS:

- MIN. fc = 20 MPa @ 28 DAYS TO CAN/CSA A23.1 AND A23.4 - BLOCKS SHALL BE CAST MONOLITHICALLY, NO COLD JOINTS ALLOWED
- ALL EXPOSED SURFACES SHALL HAVE A SMOOTH FINISH CONFORMING TO CSA CAN3-A23.4-00 SECTION 24.2.5 GRADE A. THE FINISH MUST NOT BE HONEYCOMBED.
- BLOCKS SIZE MUST BE 750MM x 750MM x 1500MM LONG, PROVIDED WITH SHEAR KEY. DIMENSIONAL TOLERANCE MUST BE \pm 20 MM FOR LENGTH, WIDTH AND HEIGHT AND THE BLOCKS SHALL BE
- REASONABLY SQUARE, WITH THE DIAGONALS WITHIN A TOLERANCE OF ± 15 MM OF EACH OTHER.
- TOP AND BOTTOM SURFACES MUST BE FLAT TO A TOLERANCE OF \pm 3 mm UNDER 600mm STRAIGHT EDGE. - CONCRETE SHALL BE AIR ENTRAINED 4-7% TO PROTECT THE SURFACE FROM FREEZE THAW DEGRADATION.
- EACH BLOCK MUST CONTAIN A SATISFACTORY EMBEDDED LIFTING DEVICE.
- INTERLOCK PATTERN AND GEOMETRY MUST BE APPROVED BY THE MINISTRY
- EDGED SHALL BE CHAMEERED
- BEFORE A NEW SUPPLIER IS APPROVED TO SUPPLY CONCRETE BLOCKS TO THE FLNR FOR BRIDGE PROJECTS, THE
- FLNR SHALL INSPECT THE SUPPLIER'S OPERATION AND A SAMPLE OF THEIR PRODUCT FOR CONFORMANCE TO THE

3.15 BEARINGS

- TO CAN/CSA-S6: OZONE RESISTING NATURAL RUBBER. (NATURAL POLYISOPRENE)
- LAMINATED BEARING REINFORCING STEEL PLATE: CAN/CSA-G40.21M, GRADE 300W

3.16 DOWEL BLOCKOUT:

- GALVANIZED CORRUGATED METAL STAY-IN-PLACE BLOCK-OUT FORMS

TRANSPORTATION AND ERECTION OF BRIDGES

SUPPORT PRECAST AND STEEL COMPONENTS IN SUCH A WAY THAT THEY SUSTAIN NO DAMAGE DURING TRANSPORTATION

4.2 LIFTING DEVICES:

- ALL PRECAST COMPONENTS (EXCEPT UNREINFORCED INTERLOCKING CONCRETE BLOCKS) MUST UTILIZE BURKE LIFTING INSERTS (OR PRE-APPROVED EQUIVALENT) AS LIFTING DEVICES. FILL RECESS AFTER INSTALLATION USING GROUT OR ASPHALT.
- ENGINEER TO DESIGN LIFTING INSERTS TO FACILITATE LIFTING USING FOUR EQUAL LENGTH SLINGS/CHAINS
- ONLY LOW IMPACT LIFTS ARE PERMITTED. ANGLE OF LIFT MUST NOT EXCEED 30 DEGREES FROM VERTICAL.

5 CERTIFICATION AND QUALITY CONTROL

- 5.1 PROVIDE CONCRETE TEST RESULTS BY AN APPROVED TESTING LABORATORY FOR ALL PRECAST CONCRETE COMPONENTS. EXCEPT FOR INTERLOCKING BLOCK
- 5.2 PROVIDE MILL CERTIFICATES FOR ALL STEEL INCORPORATED INTO THE STRUCTURE.
- 5.3 CERTIFICATION TO CSA STANDARD FOR STEEL AND PRECAST CONCRETE MANUFACTURE MUST BE IN EFFECT AT THE TIME OF OPENING THE TENDERS AND ALSO THROUGHOUT THE PERIOD OF MANUFACTURE

5.4 TEST RESULTS FOR STEEL:

- MILL TEST CERTIFICATES OF STRUCTURAL STEEL PLATES PLATES AND SECTIONS.
- ANY RADIOGRAPHIC OR ULTRASONIC TEST REPORTS.

5.5 TEST RESULTS FOR CONCRETE:

- FORMWORK RELEASE CONCRETE COMPRESSIVE STRENGTH TEST RESULTS.
- 7 DAY CONCRETE COMPRESSIVE STRENGTH REST RESULT.
- 28 DAY CONCRETE COMPRESSIVE STRENGTH REST RESULT.
- 5.6 IN-PLANT QUALITY ASSURANCE INSPECTION:
- ALL BRIDGE MATERIALS MUST CONFORM TO THE CURRENT MINISTRY STANDARDS AND SHALL NOT BE ACCEPTABLE WITHOUT IN-PLANT INSPECTION BY THE MINISTRY'S IN-PLANT QUALITY ASSURANCE INSPECTION AGENCY.

ASSUME NOT TO SCALE NOT FOR CONSTRUCTION

- FLNR INTERIM BRIDGE DESIGN GUIDELINES

- CAN/CSA-S6-06 C/W S6S1-10, S6S2-11 AND S6S3-13 (CSA-S6)

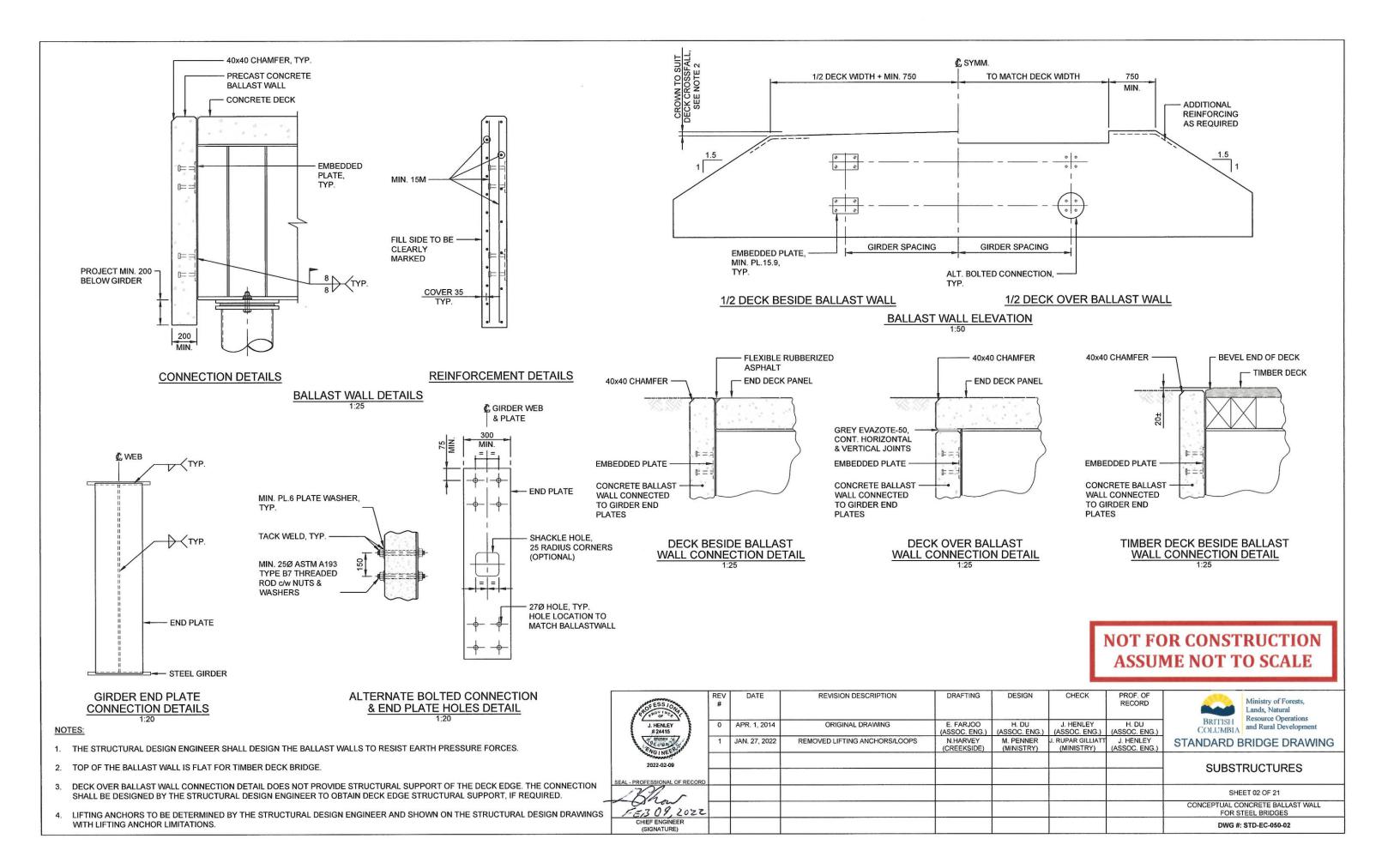
- FLNR BRIDGE DESIGN AND CONSTRUCTION MANUAL

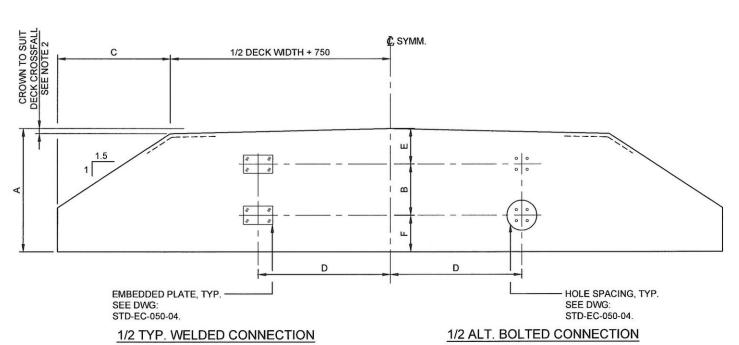
2.3 DESIGN VEHICLES

- BRIDGE DESIGN LIFE: 45 YEARS

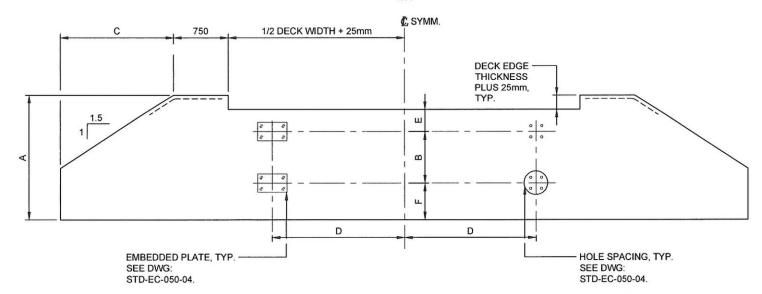
2.2 DESIGN CODE AND FLNR REFERENCE STANDARDS:

- REFER TO FLNR STANDARD DRAWINGS STD-EC-000-01 TO -02


- THE DESIGN DRAWINGS SHOULD CLEARLY SPECIFY THE DESIGN VEHICLE THAT WAS USED FOR

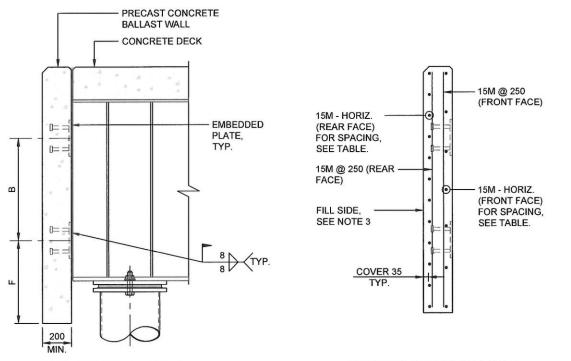

2.4 MULTI-LANE LOADING

- WHERE A BRIDGE IS ABLE TO SIMULTANEOUSLY SUPPORT MORE THAN ONE LANE OF TRAFFIC. THE ENGINEER SHOULD SEEK CLARIFICATION FROM FLNR ON HOW TO ACCOUNT FOR MULTI-LANE LOADING.


2 4 6 8 10 meters Ministry of **ENGINEERING** Forests, Lands and **BRANCH** SCALE Natural Resource Operations AS SHOWN BAR LENGTH IS 40mm ON ORIGINAL STANDARD BRIDGE DRAWING Checked JULIEN HENLEY Date 14/04/01 Drawn ERFUN FARJOO Date 14/04/01 DRAWING TITLE: GENERAL NOTES Rev Date DESCRIPTION 15/03/31 REVISED NOTES APPROVED BY: HELEN DU, P.ENG COORDINATING REGISTERED PROFESSIONAL: FLNR ENGINEER: FILE No. STD-EC-050-01 REVISIONS

CANCEL PRINTS BEARI PREVIOUS LETTER

TYPICAL DECK BESIDE BALLAST WALL ELEVATION


1/2 TYP. WELDED CONNECTION

1/2 ALT. BOLTED CONNECTION

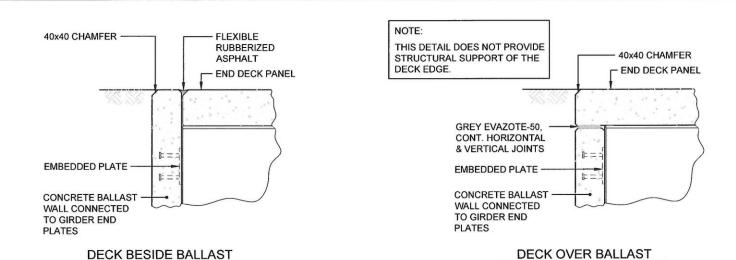
TYPICAL DECK OVER BALLAST WALL ELEVATION

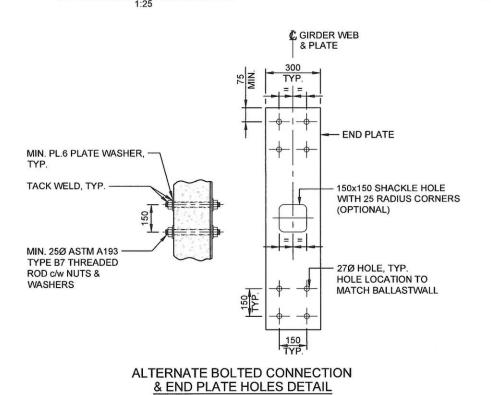
NOTES:

- LIFTING ANCHORS TO BE DETERMINED BY THE STRUCTURAL DESIGN ENGINEER AND SHOWN ON THE STRUCTURAL DESIGN DRAWINGS WITH LIFTING ANCHOR LIMITATIONS.
- 2. TOP OF BALLAST WALL IS FLAT FOR TIMBER DECK BRIDGE.
- FILL SIDE OF WALL TO BE CLEARLY MARKED IF BOLTED CONNECTION TO GIRDER IS USED.

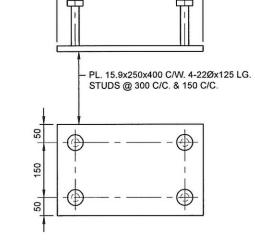
CONNECTION DETAILS

REINFORCEMENT DETAILS

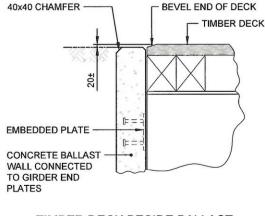

BALLAST WALL DETAILS

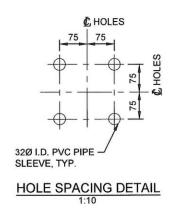

	STANDARD DIMENSIONS (mm)			
Α	TYPICALLY (G + HG + 250)			
^	MINIMUM = (G + HG + 100)			
В	(Hw - 500)			
С	1.5 x (A - 470)			
	GIRDER SPACING:			
D	1500 - (FOR 4267 WIDE DECK)			
	1800 - (FOR 4877 WIDE DECK)			
	(G + 265) - (FOR DECK BESIDE BALLAST WALL)			
E	265 (FOR DECK OVER BALLAST WALL)			
	MAXIMUM = 500			
F	MINIMUM = 300			
	ENSURE NO CONFLICT BETWEEN			
	BOTTOM OF WALL & SUPERSTRUCTURE			
	BCL-625 = 225			
G	L-100 = 250			
	L-150 & L-165 = 275			
	G = DECK THICKNESS ON C			
LEGEND	Hg = OVERALL GIRDER HEIGHT			
	Hw = GIRDER WEB HEIGHT			

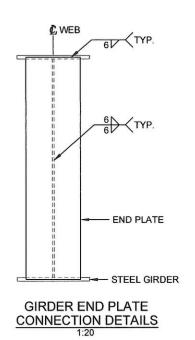
HORIZONTAL REINFORCEMENT TABLE							
DIMENSIONS (mm)	SPACING (mm)						
DIMENSIONS (MIII)	REAR FACE	FRONT FACE					
A ≤ 1600	150	250					
1600 < A ≤ 2000	125	250					
2000 < A ≤ 2400	100	200					
2400 < A ≤ 2800	75	150					


NOT FOR CONSTRUCTION
ASSUME NOT TO SCALE

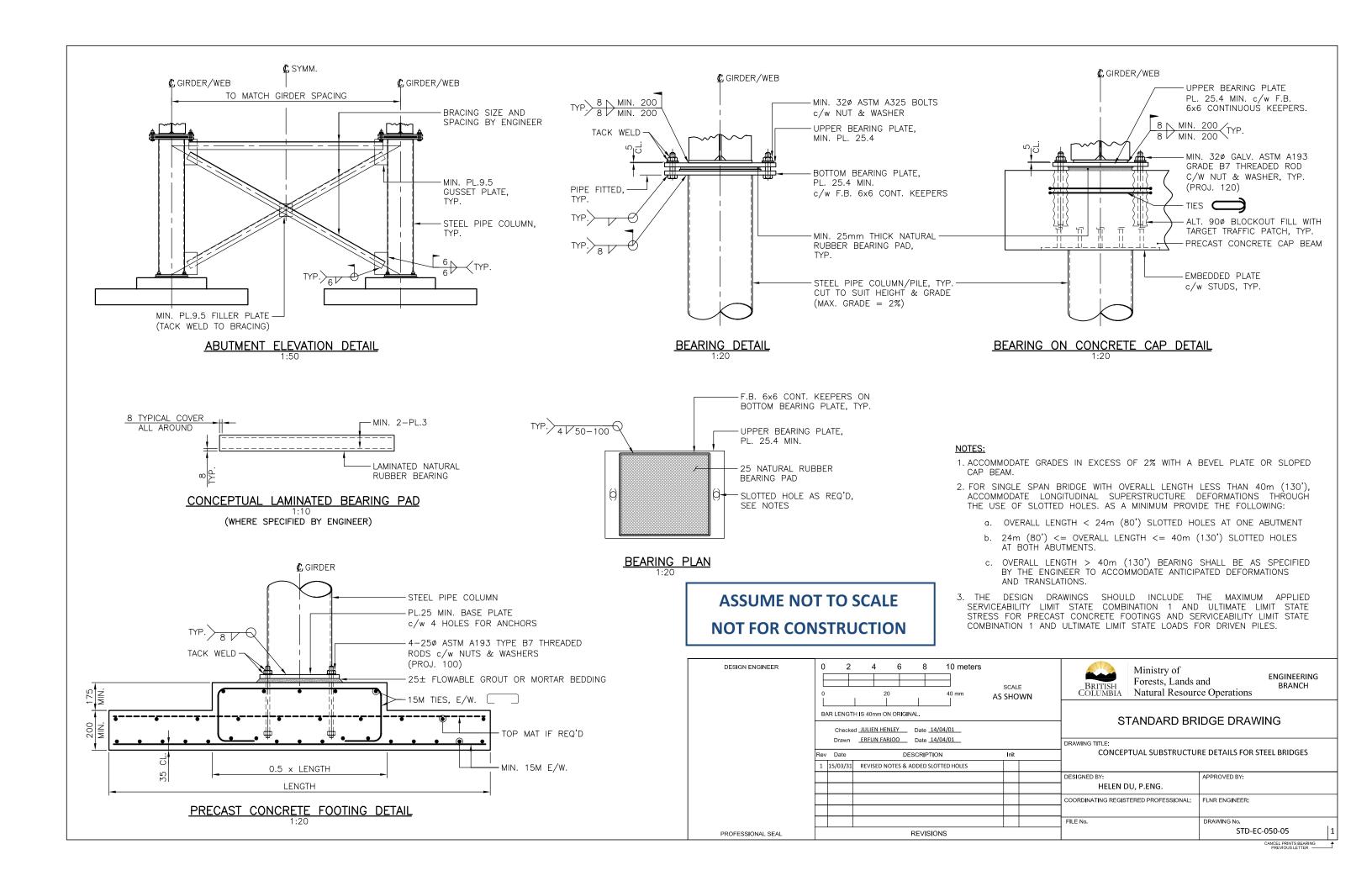
QUEESS ION		REV #	DATE	REVISION DESCRIPTION	DRAFTING	DESIGN	CHECK	PROF. OF RECORD	Ministry of Forests, Lands, Natural
J. HENLEY # 24415	1	0	APR. 1, 2014	ORIGINAL DRAWING	E. FARJOO (ASSOC. ENG.)	H. DU (ASSOC. ENG.)	J. HENLEY (ASSOC. ENG.)	H. DU (ASSOC. ENG.)	BRITISH COLUMBIA Resource Operations and Rural Development
ENG I NEEP		1	JAN. 27, 2022	REMOVED LIFTING ANCHORS/LOOPS	N.HARVEY (CREEKSIDE)	M. PENNER (MINISTRY)	J. RUPAR GILLIATT (MINISTRY)	J. HENLEY (ASSOC. ENG.)	STANDARD BRIDGE DRAWING
2022-02-09									SUBSTRUCTURES
SEAL - PROFESSIONAL OF RE	ECORD								
18how	_								SHEET 03 OF 21
FEB 09,20	25								CONCRETE BALLAST WALL DETAILS FOR STEEL BRIDGES - SHEET 1
CHIEF ENGINEER (SIGNATURE)									DWG #: STD-EC-050-03

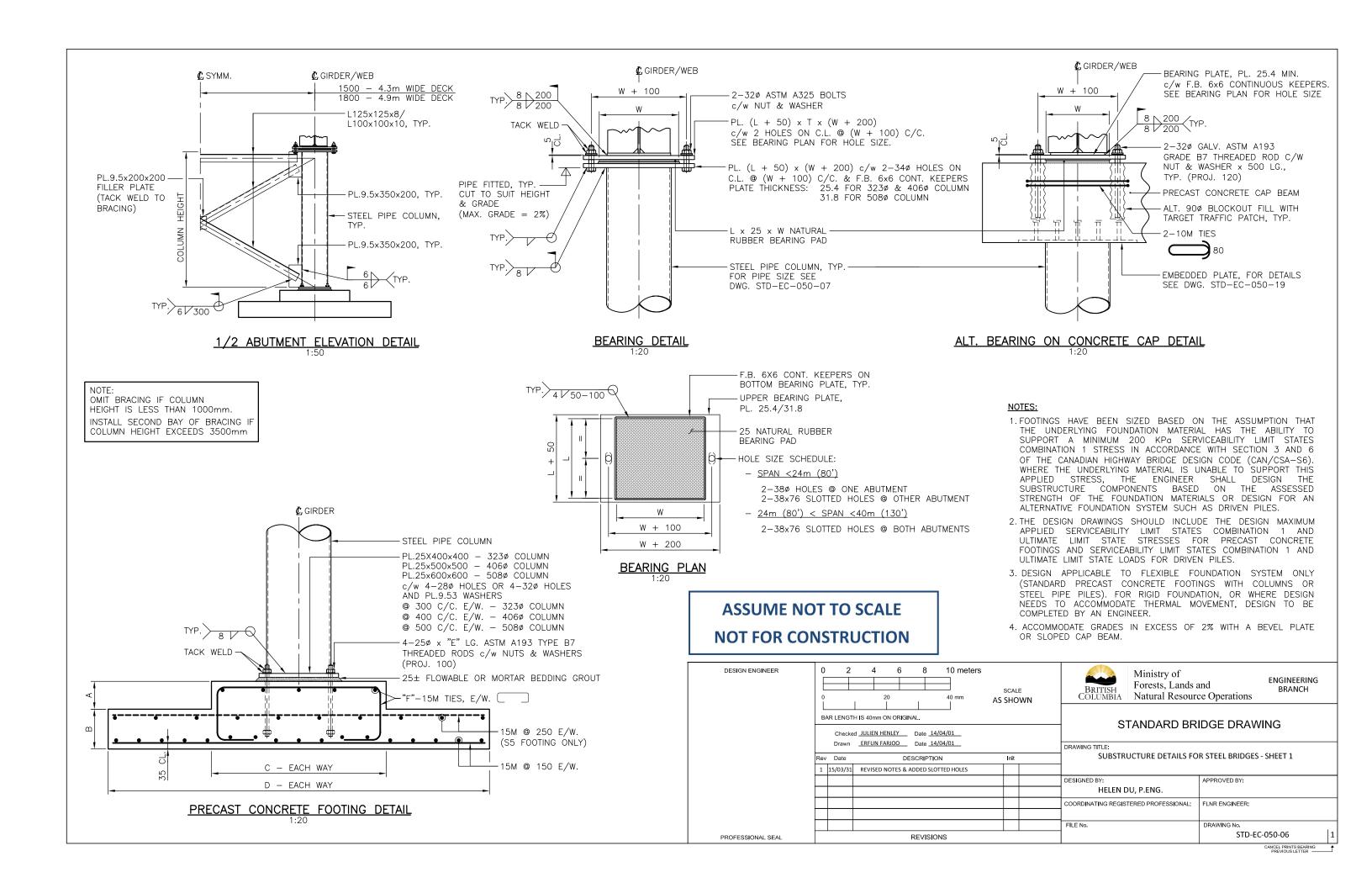

WALL CONNECTION DETAIL


EMBEDDED PLATE DETAIL


300

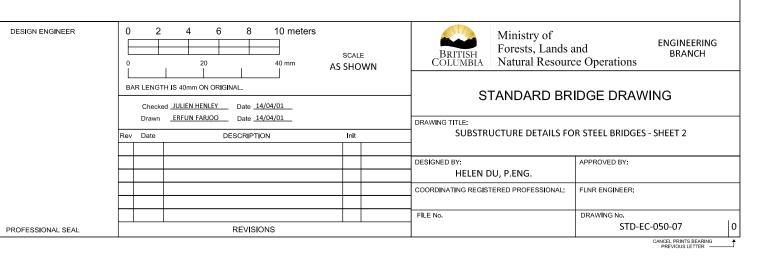
WALL CONNECTION DETAIL

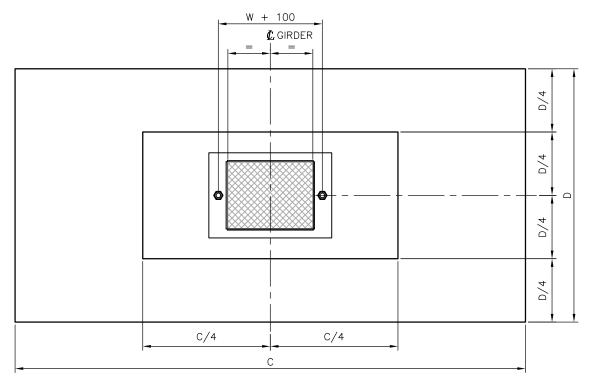

TIMBER DECK BESIDE BALLAST WALL CONNECTION DETAIL



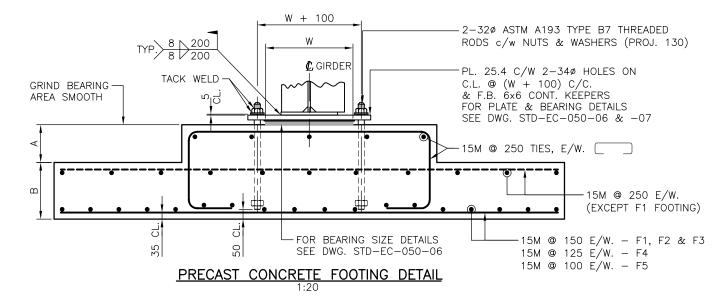
NOT FOR CONSTRUCTION ASSUME NOT TO SCALE

OFESS ION	REV #	DATE	REVISION DESCRIPTION	DRAFTING	DESIGN	CHECK	PROF. OF RECORD	Ministry of Forests, Lands, Natural Resource Operations
J. HENLEY # 24415	0	APR. 1, 2014	ORIGINAL DRAWING	E. FARJOO (ASSOC. ENG.)	H. DU (ASSOC. ENG.)	J. HENLEY (ASSOC. ENG.)	H. DU (ASSOC. ENG.)	BRITISH COLUMBIA and Rural Development
ENG I NE P	1	JAN. 27, 2022	REMOVED LIFTING ANCHORS/LOOPS	N.HARVEY (CREEKSIDE)	M. PENNER (MINISTRY)	J. RUPAR GILLIATT (MINISTRY)	J. HENLEY (ASSOC. ENG.)	STANDARD BRIDGE DRAWING
2022-02-09								SUBSTRUCTURES
SEAL - PROFESSIONAL OF RECORD								SHEET 04 OF 21
FE3 09 2022								CONCRETE BALLAST WALL DETAILS FOR STEEL BRIDGES - SHEET 2
CHIEF ENGINEER (SIGNATURE)								DWG #: STD-EC-050-04


FOOTING SELECTION FOR STEEL BRIDGES								
FOOTING		MAXIMU	M SPAN					
TYPE	BCL-625 L100		L150	L165				
S1	22 000	14 000						
S2	34 000	22 000	14 000	12 000				
S3	40 000	30 000	24 000	20 000				
S4		40 000	32 000	30 000				
S5			40 000	40 000				


STEEL	COLUMN	SELECTION	ON FOR	STEEL E	BRIDGES				
PIPE	SIZE		MAXIMUM SPAN						
DIAMETER	THICKNESS	BCL-625	L100	L150	L165				
323	9.53	34 000	20 000						
406	9.53	40 000	32 000	20 000	14 000				
406	12.7		40 000	32 000	30 000				
508	12.7			40 000	40 000				
	BASED ON MAXIMUM COLUMN HEIGHT OF 4000								

ASSUME NOT TO SCALE NOT FOR CONSTRUCTION


FOOTING DIMENSIONS FOR STEEL BRIDGES										
FOOTING SIZE										
TYPE										
S1	175	200	900	1800	425	5	1960			
S2	175	250	1100	2100	475	5	3350			
S3	175	250	1200	2400	475	6	4310			
S4	200	250	1400	2700	500	6	5640			
S5	225	275	1600	3000	550	6	7775			

RUBBER BEARING DIMENSIONS AND TOP BEARING PLATE THICKNESS FOR STEEL BRIDGES								
L	MAXIMUM SPAN							
(LENGTH)	(WIDTH)	'	BCL-625	L100	L150	L165		
400	450	25.4	24 000	14 000				
400	500	25.4	36 000	20 000	14 000			
450	500	25.4	40 000	28 000	18 000	14 000		
450	550	25.4		36 000	22 000	20 000		
500	550	25.4		40 000	28 000	24 000		
500	600	31.8			34 000	32 000		
550	600	31.8			40 000	38 000		
550	650	31.8				40 000		

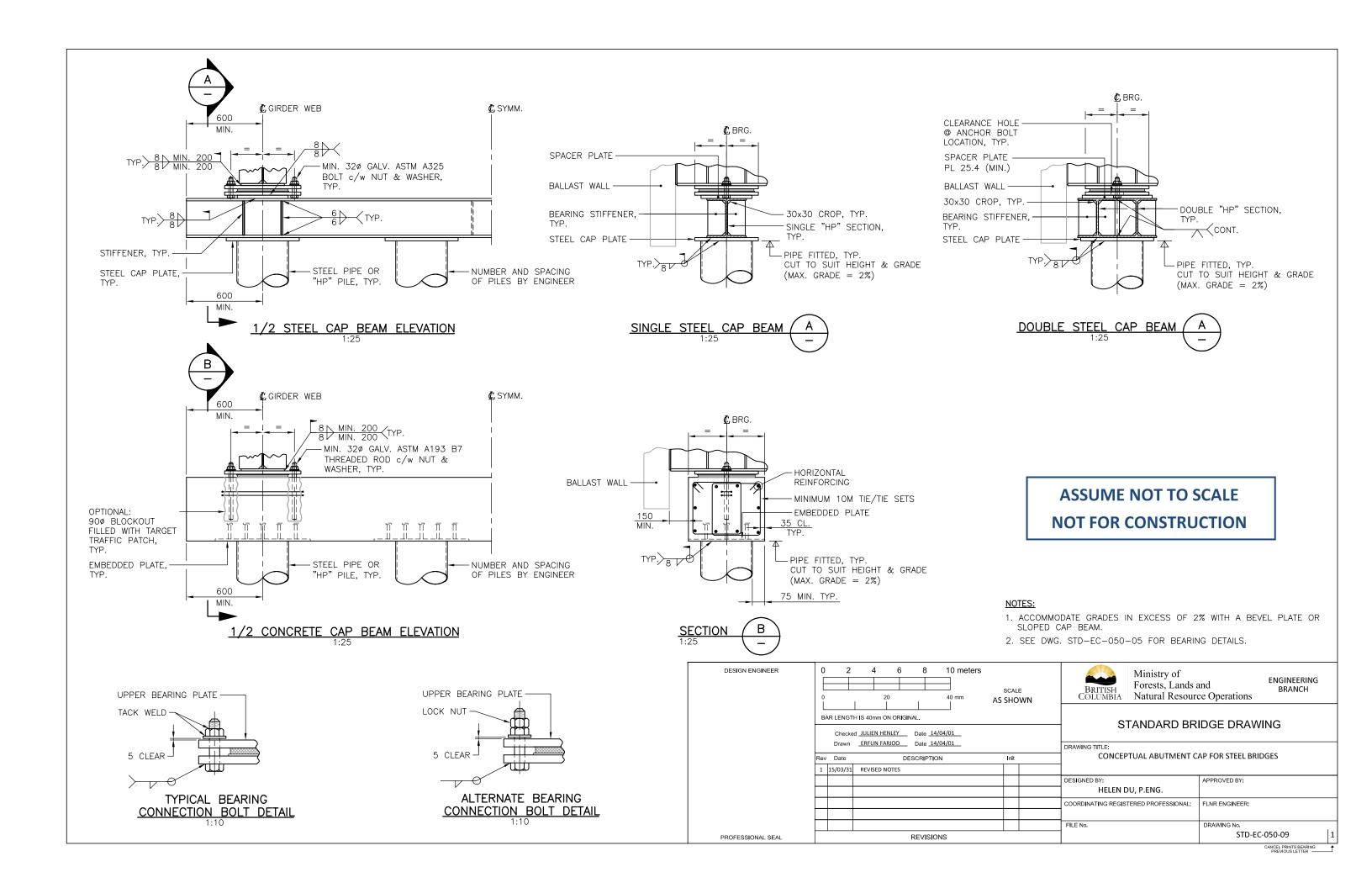
PRECAST CONCRETE FOOTING PLAN

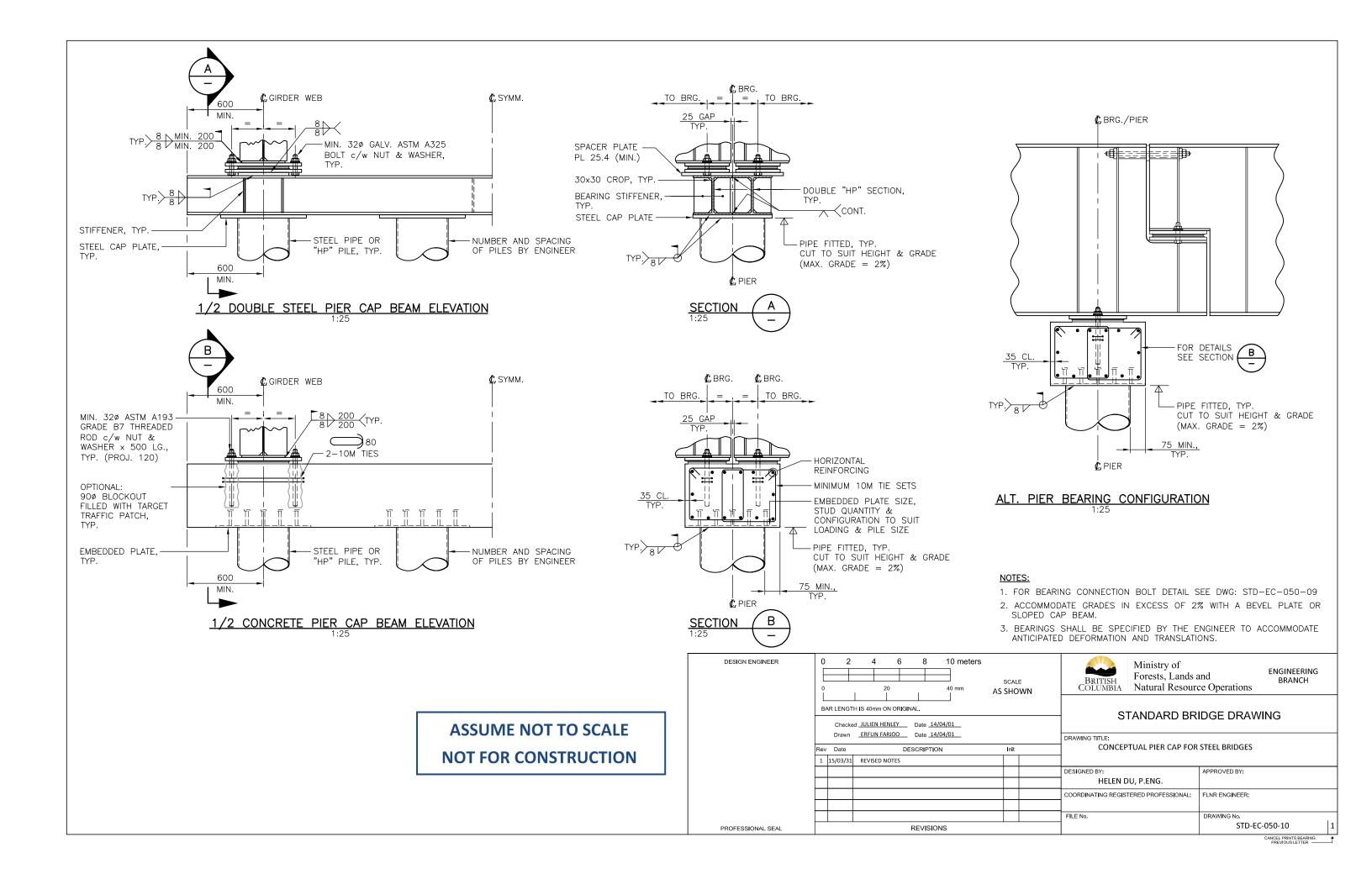
STEEL GIRDER ———————————————————————————————————	CONCRETE OR TIMBER BALLAST WALL
1 1.5	
TOE OF SLOPE	D/4 D/4 D/4 D/4 LOAD LINES FROM UNDERSIDE OF FOOTING
LOAD LINES MUST NO OUTSIDE TOE OF SLO	F EXTEND PE

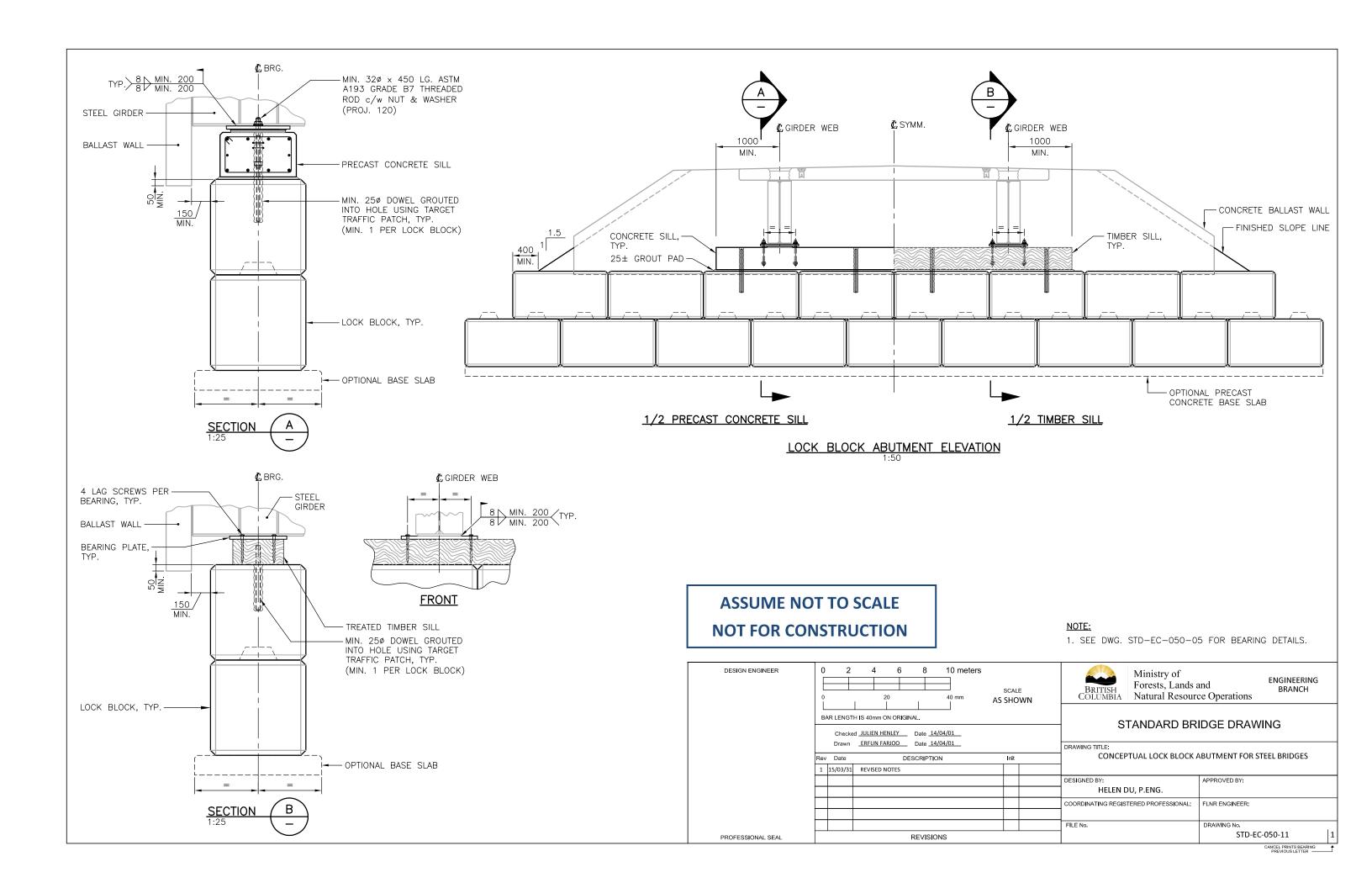
FOOTING SELECTION							
FOOTING TYPE		MAXIMUM SPAN					
	BCL-625	L100	L100 L150				
F1	20 000	12 000					
F2	28 000	20 000	12 000	10 000			
F3	30 000	24 000	16 000	14 000			
F4*		28 000	22 000	18 000			
F5*		30 000	30 000	26 000			
*USE F	OR 3600 (GIRDERS CE	ENTERS ON	LY			

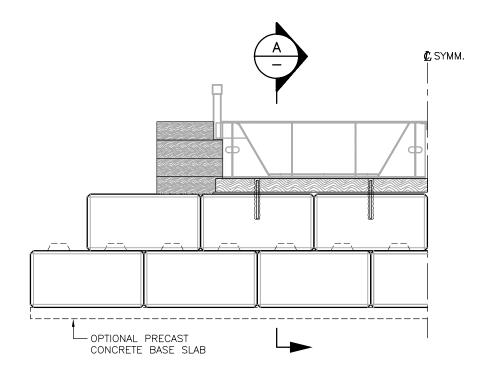
NOTES:

1. FOOTINGS HAVE BEEN SIZED BASED ON THE ASSUMPTION THAT THE UNDERLYING FOUNDATION MATERIAL HAS THE ABILITY TO SUPPORT A MINIMUM 200 KPa SERVICEABILITY LIMIT STATES COMBINATION 1 STRESS IN ACCORDANCE WITH SECTION 3 AND 6 OF THE CANADIAN HIGHWAY BRIDGE DESIGN CODE (CAN/CSA-S6). WHERE THE UNDERLYING MATERIAL IS UNABLE TO SUPPORT THIS APPLIED STRESS, THE ENGINEER SHALL DESIGN THE SUBSTRUCTURE COMPONENTS BASED ON THE ASSESSED STRENGTH OF THE FOUNDATION MATERIALS OR DESIGN FOR AN ALTERNATIVE FOUNDATION SYSTEM SUCH AS DRIVEN PILES.

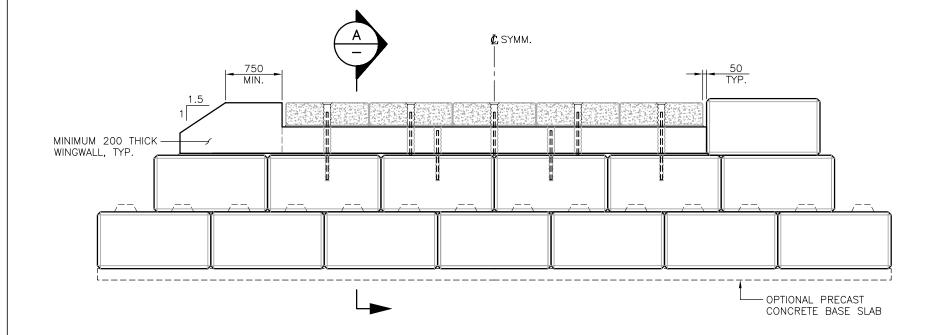

ABUTMENT ELEVATION


- 2. THE DESIGN DRAWINGS SHOULD INCLUDE THE DESIGN MAXIMUM APPLIED SERVICEABILITY LIMIT STATES COMBINATION 1 AND ULTIMATE LIMIT STATE STRESSES FOR PRECAST CONCRETE FOOTINGS AND SERVICEABILITY LIMIT STATES COMBINATION 1 AND ULTIMATE LIMIT STATE LOADS FOR DRIVEN PILES
- 3. ACCOMMODATE GRADES IN EXCESS OF 2% WITH A BEVEL PLATE OR SLOPED CAP BEAM.


	FOOTING DIMENSIONS							
F0/	OTING		FOOTING SIZE					
	YPE	Α	В	С	D	kg		
	F1	175	250	2400	1200	2030		
	F2	200	300	2700	1400	3180		
	F3	225	350	2900	1500	4250		
	F4	225	350	3200	1600	5000		
	F5	225	350	3500	1800	6150		


ASSUME NOT TO SCALE NOT FOR CONSTRUCTION

DESIGN ENGINEER	0 2	4 6 8 10 meters	SCAL AS SHO	BRITISH COLUMBIA Natural Resour	
		H IS 40mm ON ORIGINAL.		STANDARD BR	IDGE DRAWING
	Drawn Rev Date	ERFUN FARJOO Date 14/04/01 DESCRIPTION	Init	DRAWING TITLE: SUBSTRUCTURE DETAILS FO	DR STEEL BRIDGES - SHEET 3
<u> </u>				250005000	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
				DESIGNED BY: HELEN DU, P.ENG.	APPROVED BY:
				COORDINATING REGISTERED PROFESSIONAL:	FLNR ENGINEER:
				FILE No.	DRAWING No.
PROFESSIONAL SEAL		REVISIONS			STD-EC-050-08 0
			•		CANCEL PRINTS BEARING PREVIOUS LETTER


1/2 LOCK BLOCK ABUTMENT ELEVATION

BALLAST WALL AS PRESCRIBED BY ENGINEER — AS A FUNCTION OF IN-PLACE LIFE; MAY CONSIST OF LOCK BLOCK OR TREATED TIMBER FOR MORE PERMANENT INSTALLATION; SOUND LOGS (PREFERABLY CEDAR FOR TEMPORARY INSTALLATIONS) - ALL STEEL PORTABLE BRIDGE - BEARING PLATE, TYP. MIN. 400 x 200 TREATED TIMBER SILL - MIN. 25ø DRIFT PIN GROUTED INTO HOLE USING TARGET TRAFFIC PATCH, TYP. (MIN. 1 PER LOCK BLOCK) (FOR TEMPORARY INSTALLATION FILL BLOCKOUT WITH COLD MIX ASPHALT) -LOCK BLOCK, TYP. - OPTIONAL CONCRETE BASE SLAB

₡, BRG.

ASSUME NOT TO SCALE NOT FOR CONSTRUCTION

DESIGN ENGINEER	0 2 4 6 8 10 me	eters SCALE AS SHOWN	BRITISH COLUMBIA Natural Resource	
	BAR LENGTH IS 40mm ON ORIGINAL. Checked JULIEN HENLEY Date 14/04/01		STANDARD BR	IDGE DRAWING
	Drawn <u>ERFUN FARIOO</u> Date <u>14/04/01</u>		BBANNING FITTS	
			DRAWING TITLE:	ABUTMENT FOR ASP BRIDGES
	Rev Date DESCRIPTION	Init	CONCEPTUAL LOCK BLOCK A	ABUTIVIENT FOR ASP BRIDGES
			DESIGNED BY:	APPROVED BY:
			HELEN DU, P.ENG.	
			COORDINATING REGISTERED PROFESSIONAL:	FLNR ENGINEER:
			1	
			FILE No.	DRAWING No.
PROFESSIONAL SEAL	REVISIONS		1	STD-EC-050-12 0
				CANCEL PRINTS BEARING

1/2 INTEGRAL CONCRETE WINGWALL

20mm THICK NATURAL RUBBER STRIP BEARING.
PLACE ON GROUT BED OR SECURE WITH
RUBBER CEMENT TO SILL.
CUT 50¢ HOLES TO SUIT DUCTS

CONCRETE SLAB GIRDER, TYP.

PRECAST CONCRETE SILL

25± GROUT PAD

MIN. 25¢ DOWEL GROUTED
INTO HOLE USING TARGET
TRAFFIC PATCH, TYP.
(MIN. 1 PER LOCK BLOCK)

LOCK BLOCK, TYP.

OPTIONAL CONCRETE BASE SLAB

SECTION A

1:25

MIN. 25¢ SMOOTH BAR WRAPPED

c/w 30øX25 LG. COMPRESSIBLE STYROFOAM BONDED TO TOP OF BAR

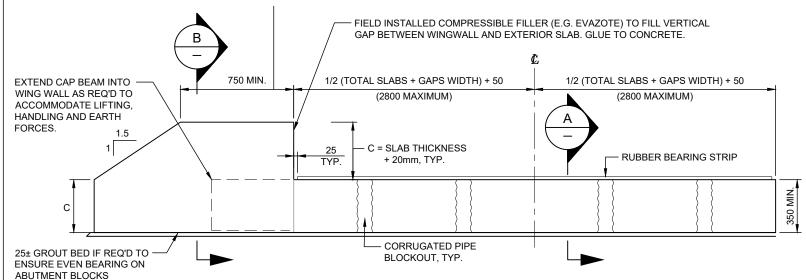
WITH TAPE ALL ROUND (ABOVE BEARING STRIP ONLY)

⊈ BRG.

LOCK BLOCK ABUTMENT ELEVATION

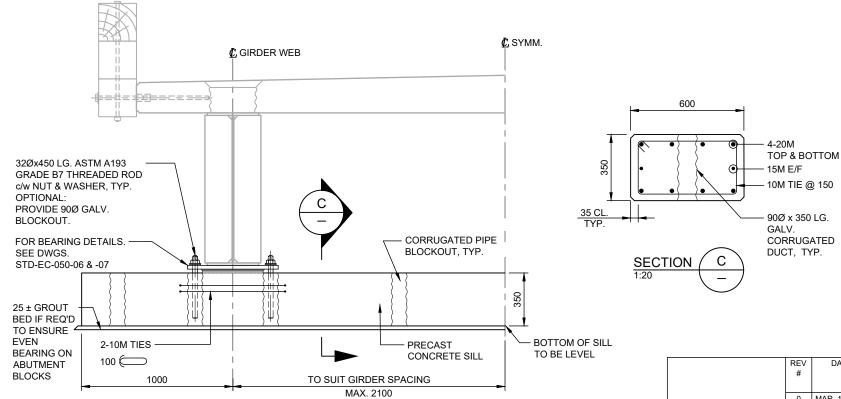
ASSUME NOT TO SCALE NOT FOR CONSTRUCTION

1/2 ALT. LOCK BLOCK WINGWALL


DESIGN ENGINEER

PROFESSIONAL SEAL

0 BAR	2 4 6 8 10 meters 20 40 mm LENGTH IS 40mm ON ORIGINAL.	SCALE AS SHOWN	BRITISH COLUMBIA Ministry of Forests, Lands a Natural Resource	
	Checked JULIEN HENLEY Date 14/04/01	Init	DRAWING TITLE:	IDGE DRAWING ABUTMENT FOR CONCRETE BRII
			DESIGNED BY: HELEN DU, P.ENG.	APPROVED BY:
				SIND SHOWEST
			COORDINATING REGISTERED PROFESSIONAL:	FLNR ENGINEER:


NOTE: THIS LENGTH TO BE INCREASED AS REQ'D TO ENSURE 300MM LEVEL ROAD GRADE BEHIND APPROACH BARRIERS (SEE STANDARD BARRIER DWGS). INCREASED LENGTH MAY BE REQ'D FOR SKEWED BRIDGES AND APPROACHES WITH HORIZONTAL CURVES.

1/2 SILL WITH INTEGRATED WINGWALL

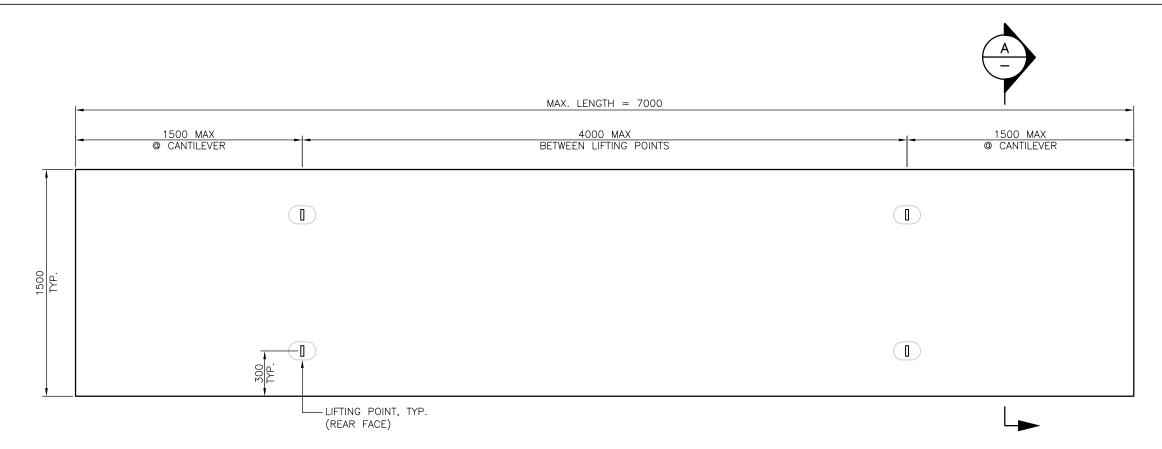
PRECAST CONCRETE SILL FOR CONCRETE SLAB GIRDER BRIDGE - ELEVATION

1/2 SILL WITHOUT WINGWALL

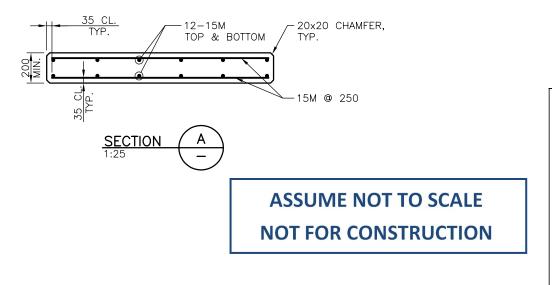
MIN. CONCRETE SLAB, TYP. MIN. 150 x 20 FULL WIDTH NATURAL RUBBER STRIP BEARING. PLACE ON DURABLE MIN. 15M GROUT BED OR SECURE WITH MIN. 15M @ 150 E/F @ 250 RUBBER CEMENT TO SILL. CUT 50Ø HOLES AT DUCT LOCATIONS. TOP OF SILL TO BE 150 MAX. SPACE E/F CAST SLOPED TO - MIN. 2-25M MATCH BRIDGE DECK LOWER WINGWALL HORIZ. TOP & BOTTOM LONGIT. GRADE REINFORCEMENT TO BE - MIN. 15M E/F CONTINUATION OF SILL - MIN. 10M TIE @ 150 REINFORCEMENT AND/OR 90Ø GALV. REINFORCEMENT CORRUGATED DUCT, SUFFICIENTLY 400 MIN. **BOTTOM OF SILL** PROJECTING INTO SILL. TYP. @ DOWEL TO BE LEVEL 400 MIN. LOCATIONS (MIN. 15M @ 150 E/F; MIN. PROJ. INTO SILL = 700MM) **SECTION SECTION**

NOTES:

- 1. THE ENGINEER SHALL DESIGN THE WINGWALLS TO RESIST EARTH PRESSURE FORCES.
- LIFTING DEVICES AND LIFTING PROCEDURES TO BE DETERMINED BY ENGINEER AND SHOWN ON THE DETAILED DESIGN DWGS.
- 3. NUMBER AND LOCATION OF GALV. CORRUGATED BLOCKOUTS SHALL SUIT LAYOUT OF SLAB GIRDERS, STEEL GIRDERS, SILLS, CONCRETE BLOCKS AND BEARING ASSEMBLIES AND SHALL BE AS PER THE FOLLOWING:
 - MIN. ONE BLOCKOUT ABOVE EACH CONCRETE BLOCK, WITH MATCHING HOLE IN BLOCK TO BE LOCATED > 250 FROM BLOCK EDGES AND > 250 FROM LIFTING CABLE AT CENTER OF BLOCK.
- LOCATION AND MIN. NUMBER OF BLOCKOUTS (FOR DOWELS TO CONNECT SLAB GIRDERS TO SILLS) SHALL BE AS PER GENERAL NOTES STD-EC-070-01.

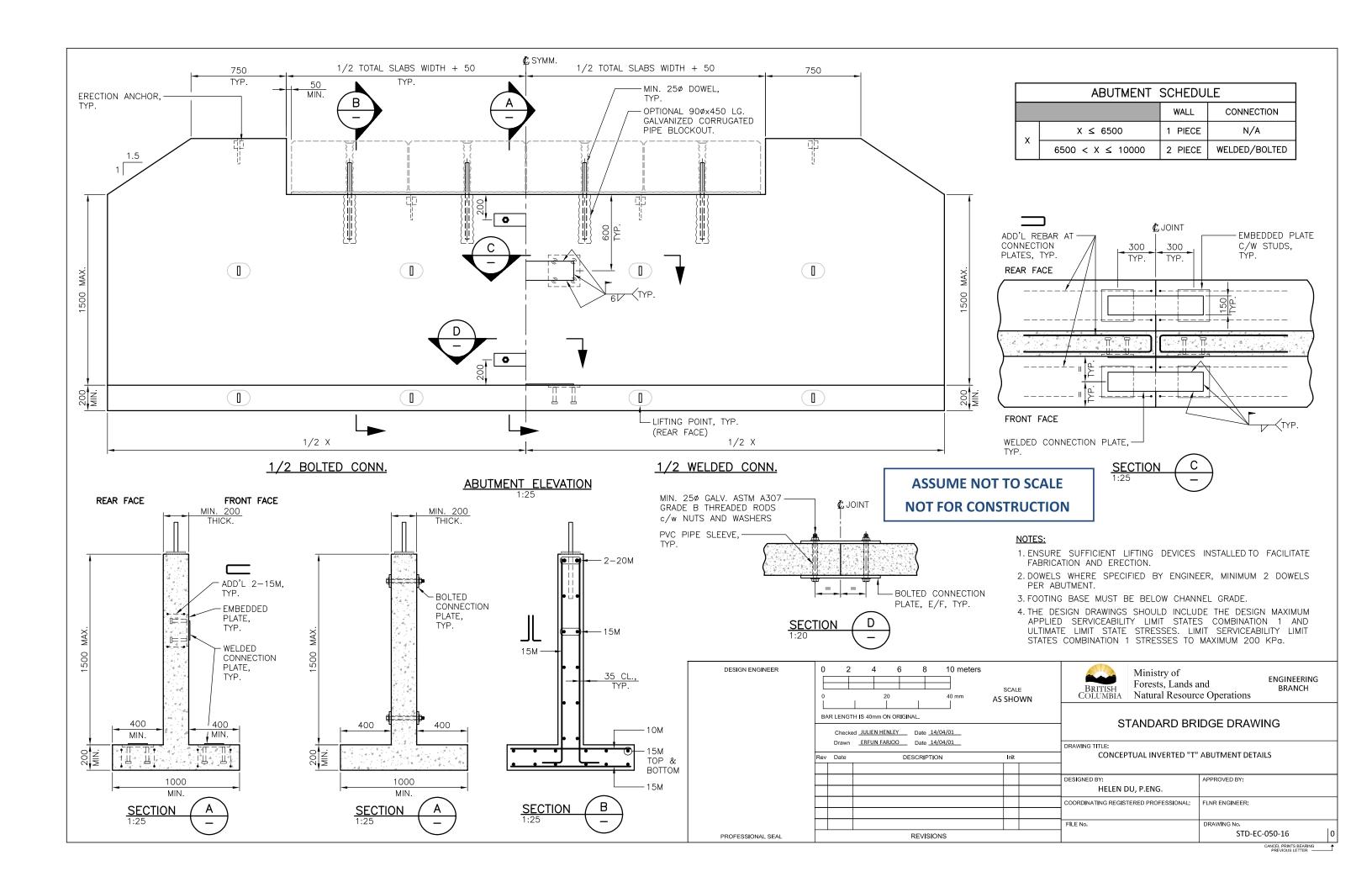

NOT FOR CONSTRUCTION ASSUME NOT TO SCALE

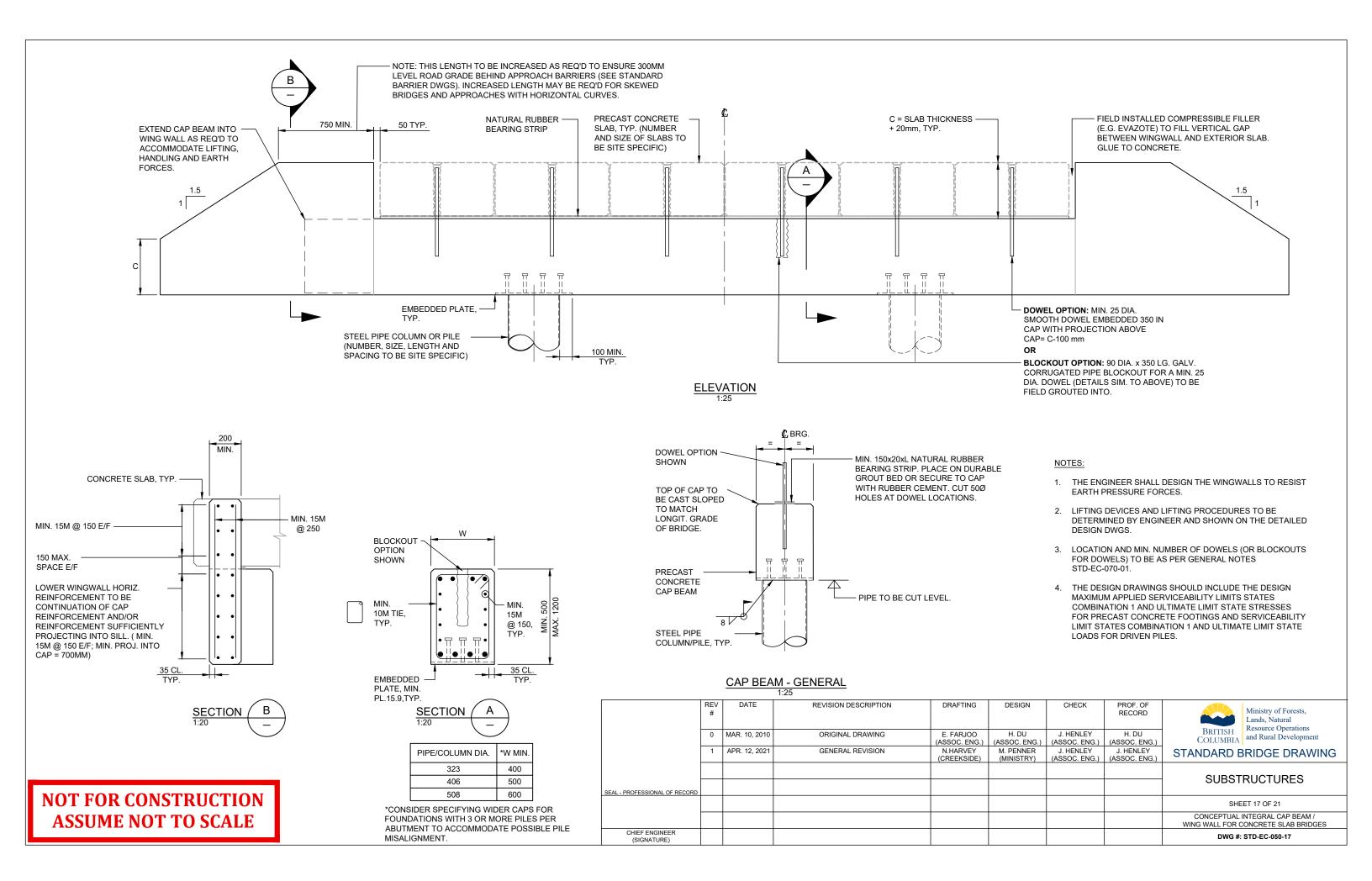
	REV #	DATE	REVISION DESCRIPTION	DRAFTING	DESIGN	CHECK	PROF. OF RECORD	Ministry of Forests,
	"						REGORD	Lands, Natural
	0	MAR. 10, 2010	ORIGINAL DRAWING	E. FARJOO (ASSOC. ENG.)	H. DU (ASSOC. ENG.)	J. HENLEY (ASSOC. ENG.)	H. DU (ASSOC. ENG.)	BRITISH COLUMBIA Resource Operations and Rural Development
	1	APR. 12, 2021	GENERAL REVISION	N.HARVEY (CREEKSIDE)	M. PENNER (MINISTRY)	J. HENLEY (ASSOC. ENG.)	J. HENLEY (ASSOC. ENG.)	STANDARD BRIDGE DRAWING
								SUBSTRUCTURES
SEAL - PROFESSIONAL OF RECORD								SUBSTRUCTURES
								SHEET 14 OF 21
								CONCEPTUAL CONCRETE SILLS FOR CONCRETE BLOCK ABUTMENTS
CHIEF ENGINEER (SIGNATURE)								DWG #: STD-EC-050-14

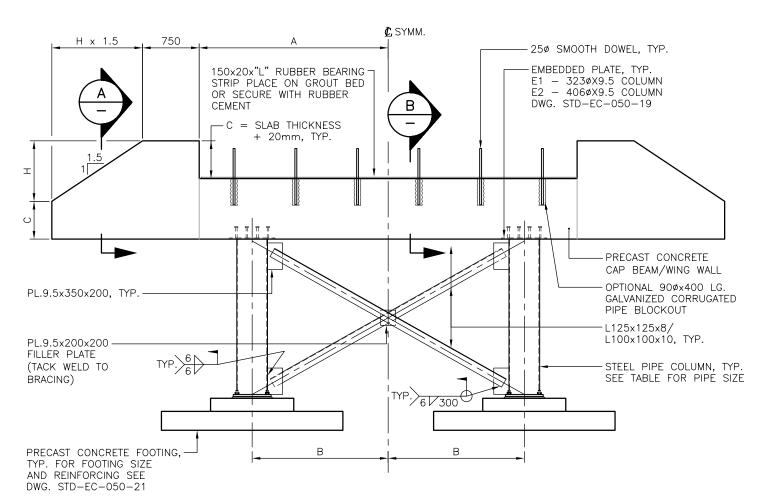

1/2 PRECAST CONCRETE SILL FOR STEEL I-GIRDER BRIDGE - ELEVATION

NOTE:

- BEARING PLATE TO BE BEVELED OR TOP OF SILL TO BE CAST SLOPED TO MATCH BRIDGE LONGITUDINAL GRADE.



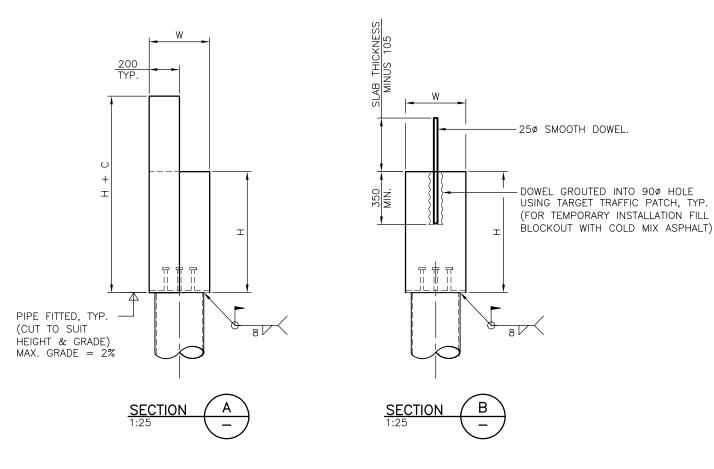



NOTES:

- 1. PRECAST CONCRETE BASE SLAB IS OPTIONAL AS PRESCRIBED BY ENGINEER. FOR USE WITH LOCK BLOCK ABUTMENT, REFER TO DWG. STD-EC-050-11 THRU STD-EC-050-13.
- 2. INSTALL LIFTING DEVICES AS REQUIRED.
- 3. NUMBER AND LENGTH OF PRECAST BASE SLAB SPECIFIED IN CONTRACT DOCUMENTS.

DESIGN ENGINEER	00 40	CALE H OWN	BRITISH COLUMBIA Natural Resource	
	BAR LENGTH IS 40mm ON ORIGINAL. Checked JULIEN HENLEY Date 14/04/01		STANDARD BRIDGE DRAWING	
	Drawn ERFUN FARJOO Date 14/04/01 Rev Date DESCRIPTION	Init	DRAWING TITLE: PRECAST CONCRETE BASE S	
			(OPTIONAL FOR USE WITH I	APPROVED BY:
			HELEN DU, P.ENG. COORDINATING REGISTERED PROFESSIONAL:	FLNR ENGINEER:
PROFESSIONAL OF AL	DEVICIONS		FILE No.	DRAWING No. STD-EC-050-15
PROFESSIONAL SEAL	REVISIONS			CANCEL PRINTS BEARING PREVIOUS LETTER

1/2 CAP BEAM/WING WALL 1/2 CAP BEAM

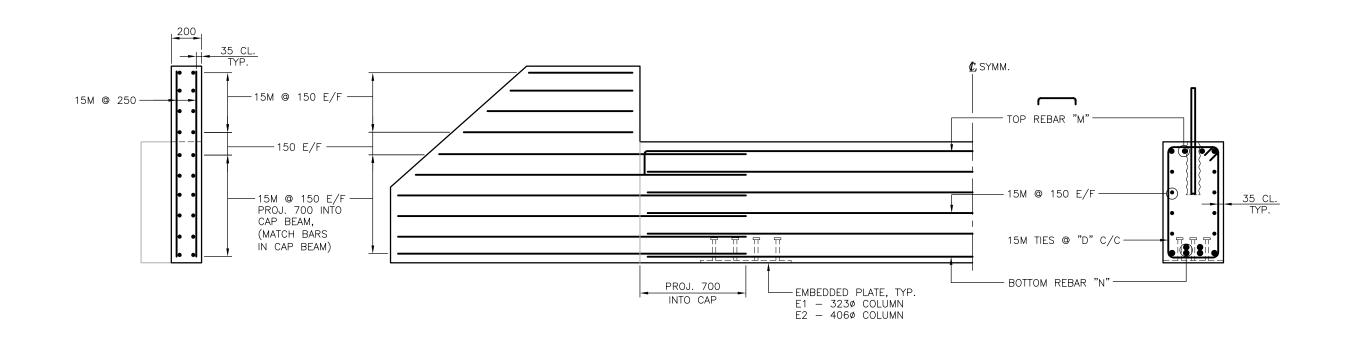

TYPICAL ELEVATION 1:50

OMIT BRACING IF COLUMN HEIGHT IS LESS THAN 1000mm. INSTALL SECOND BAY OF BRACING IF COLUMN HEIGHT EXCEEDS 3500mm

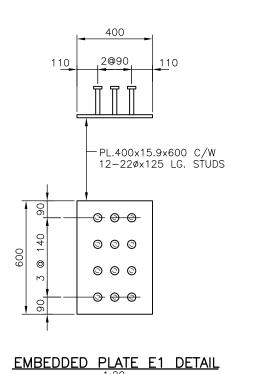
CAP BEAM DIMENSIONS					
DECK WIDTH	Α	В	L		
4268	2184	1500	4318		
4876	2488	1800	4926		
5486	2793	2100	5536		
6096	3098	2100	6146		

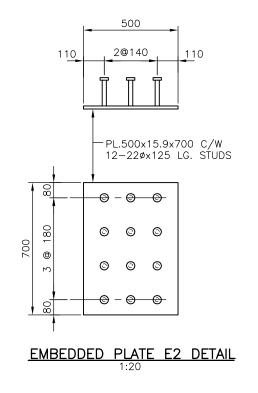
CAP BEAM	WIDTH
COLUMN DIAMATER	W
323ø	400
406ø	500

ASSUME NOT TO SCALE NOT FOR CONSTRUCTION



STEEL PIPE COLUMN SIZE							
SPAN BCL-625 L100 L150 L165							
9000	323øx9.5	323øX9.5	406øX9.5	406øX9.5			
12000	323øX9.5	323øX9.5	406øX9.5	406øX9.5			
15000	323øX9.5	406øX9.5	406øX9.5	406øX12.7			


NOTES:


1. ACCOMMODATE GRADES IN EXCESS OF 2% WITH A SLOPED CAP BEAM.

DESIGN ENGINEER	0 2	20 40 mm	SCALE AS SHOWN	BRITISH COLUMBIA Natural Resource	
	Check	TH IS 40mm ON ORIGINAL. red HELEN DU Date 14/04/01 ERFUN FARIOO Date 14/04/01		STANDARD BRID	DGE DRAWING
	Rev Date	DESCRIPTION	Init		CONCRETE SLAB BRIDGES - SHE
				DESIGNED BY: HELEN DU, P.ENG.	APPROVED BY:
				COORDINATING REGISTERED PROFESSIONAL:	FLNR ENGINEER:
				FILE No.	DRAWING No. STD-EC-050-18

1/2 CAP BEAM/WINGWALL REINFORCEMENT DETAIL

ASSUME NOT TO SCALE NOT FOR CONSTRUCTION

NOTE:

1. FOR REINFORCING DETAILS REFER TO DWG. STD-EC-050-20

DESIGN ENGINEER	0 2 4 6 8 10 meters SCALE O 20 40 mm AS SHOWN BRITISH COLUMBIA	Ministry of Forests, Lands and Natural Resource Operations ENGINEERING BRANCH		
	Checked JULIEN HENLEY Date 14/04/01	STANDARD BRIDGE DRAWING		
	Drawn ERFUN FARIOO Date 14/04/01 DRAWING TITLE: Rev Date DESCRIPTION Init SUBST	DRAWING TITLE: SUBSTRUCTURE DETAILS FOR CONCRETE SLAB BRIDGES - SHEET 2		
	DESIGNED BY: HELEN	APPROVED BY:		
	COORDINATING REG	ISTERED PROFESSIONAL: FLNR ENGINEER:		
PROFESSIONAL SEAL	REVISIONS FILE No.	DRAWING No. STD-EC-050-19 0		
		CANCEL PRINTS BEARING PREVIOUS LETTER		

	CAP BEAM DEPTH & TIE SPACING - BCL-625							
SPAN	MAX. SLAB			DECK WIDTH				
SPAN	DEPTH		4276	4876	5486	6096		
		Н	550	600	600	600		
9000	350	D	150	150	150	150		
9000	330	М	4-20M	4-20M	4-20M	4-25M		
		N	4-30M	4-30M	5-30M	5-30M		
		Н	550	650	650	650		
12000	400	D	150	150	150	150		
12000	400	М	4-20M	4-20M	4-20M	4-25M		
		N	4-30M	4-30M	6-30M	6-30M		
		Н	550	700	700	700		
15000	480	D	150	150	150	150		
13000	400	М	4-20M	4-20M	4-20M	4-25M		
		N	4-30M	5-30M	6-30M	6-30M		

	CAP BEAM DEPTH & TIE SPACING - L100								
SPAN	MAX. SLAB			DECK	WIDTH				
SPAIN	DEPTH		4276	4876	5486	6096			
		Н	600	650	700	700			
9000	430	D	150	150	150	150			
9000	450	М	4-25M	4-25M	4-25M	4-25M			
		N	4-30M	5-30M	6-30M	6-30M			
		Н	700	750	800	800			
12000	480	D	150	150	150	150			
12000	460	М	4-25M	4-25M	4-25M	4-25M			
		N	4-30M	5-30M	6-30M	6-30M			
		Н	750	800	900	900			
15000	530	D	150	150	150	150			
13000	330	М	4-25M	4-25M	4-25M	5-25M			
		N	4-30M	6-30M	6-30M	6-30M			

	CAP BEAM DEPTH & TIE SPACING - L150							
SPAN	MAX. SLAB			DECK WIDTH				
SPAN	DEPTH		4876	5486	6096			
		Η	800	900	900			
9000	480	D	150	150	150			
9000	460	М	4-25M	4-25M	4-25M			
		Z	5-30M	6-30M	6-30M			
		Η	800	950	950			
12000	550	D	125	125	125			
12000	330	М	4-25M	4-25M	5-25M			
		N	6-30M	6-30M	6-30M			
		Н	850	1050	1050			
15000	600	D	125	125	125			
13000	600	М	4-25M	4-25M	5-25M			
		N	6-30M	6-30M	6-30M			

CAP BEAM DEPTH & TIE SPACING - L165								
SPAN	MAX. SLAB			DECK WIDTH				
SPAN	DEPTH		4876	5486	6096			
		Ι	800	900	900			
9000	500	D	125	125	125			
9000	300	М	4-25M	4-25M	5-25M			
		z	6-30M	6-30M	6-30M			
	500	Ι	900	1100	1100			
12000		580	D	125	125	125		
12000	380	М	4-25M	4-25M	5-25M			
		Z	6-30M	6-30M	6-30M			
		Ι	1000	1150	1150			
15000	650	D	125	125	125			
13000	030	М	4-25M	5-25M	5-25M			
		N	6-30M	6-30M	6-30M			

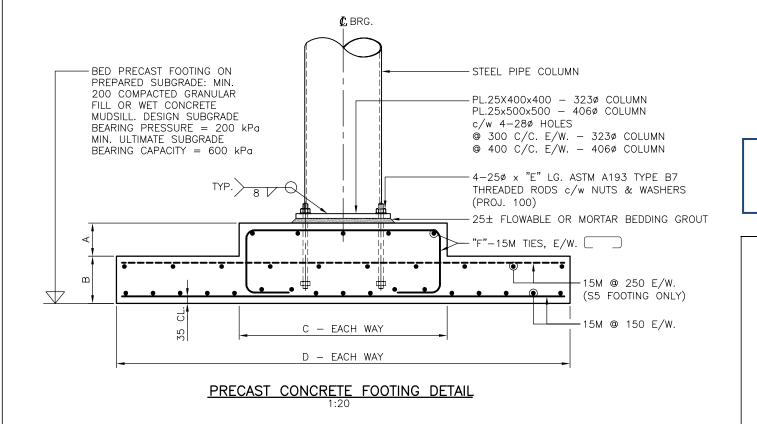
ASSUME NOT TO SCALE NOT FOR CONSTRUCTION

NOTES:

1. PRECAST CONCRETE CAP BEAM DESIGNED BASED ON THE MAXIMUM SLAB DEPTH SHOWN. IF THE SLAB DEPTH EXCEEDS THAT SHOWN, DWG'S STD-EC-050-18 THROUGH 21 ARE NOT APPLICABLE AND AN ENGINEER SHOULD COMPLETE A PROJECT SPECIFIC SUBSTRUCTURE DESIGN.

DESIGN ENGINEER	0	2 4 6		0 meters	SCALI AS SHO		BRITISH COLUMBIA	Ministry of Forests, Lands a Natural Resource		ENGINEERING BRANCH	
		ENGTH IS 40mm ON ORIG	Date <u>14/04/0</u>				- s	TANDARD BR	IDGE DRAW	NG	
	Dr	Drawn ERFUN FARJOO Date 14/04/01			DRAWING TITLE:				_		
	Rev Da	ate D	ESCRIPTION		Init		SUBSTRI	JCTURE DETAILS FO	R CONCRETE SLAE	BRIDGES - SHEET	3
							DESIGNED BY:		APPROVED BY:		
							HELEN C	OU, P.ENG.			
							COORDINATING REGIST	TERED PROFESSIONAL:	FLNR ENGINEER:		
							FILE No.		DRAWING No.		_
PROFESSIONAL SEAL			REVISIONS						STD-EC	-050-20	0
							•			CANCEL DRINTS DEADING	_

CANCEL PRINTS BEARING PREVIOUS LETTER


CONCRETE SLAB BRIDGES FOOTING SIZE SELECTION BCL-625						
DECK WIDTH	4276	4876	5486	6096		
SPAN	MIN. FOOTING	MIN. FOOTING MIN. FOOTING MIN. FOOTING MIN. FO				
9000	S1	S1	S1	S1		
12000	12000 S1 S1 S1 S1					
15000	S1	S1	S2	S2		

CONCRETE S	CONCRETE SLAB BRIDGES FOOTING SIZE SELECTION L150						
DECK WIDTH	4876	5486	6096				
SPAN	MIN. FOOTING	MIN. FOOTING	MIN. FOOTING				
9000	S2	S2	S2				
12000	S2	S3	S 3				
15000	S3	S3	S3				

FC	FOOTING DIMENSIONS FOR CONCRETE SLAB BRIDGES								
FOOTING			FOOTIN	G SIZE			WEIGHT		
TYPE	Α	В	С	D	E	F	(kg)		
S1	175	200	900	1800	425	5	1960		
S2	175	175 250 1100 2100 475 5							
S3	175	175 250 1200 2400 475 6							
S4	200	250	1400	2700	500	6	5640		

CONCRETE SLAB BRIDGES FOOTING SIZE SELECTION L100							
DECK WIDTH	4276	4876	5486	6096			
SPAN	MIN. FOOTING	MIN. FOOTING	MIN. FOOTING	MIN. FOOTING			
9000	S1	S1	S1	S1			
12000	S1	S1	S2	S2			
15000	S2	S2	S2	S3			

CONCRETE SLAB BRIDGES FOOTING SIZE SELECTION L165						
DECK WIDTH	4876	5486	6096			
SPAN	MIN. FOOTING	MIN. FOOTING	MIN. FOOTING			
9000	S2	S2	S3			
12000	S3	S3	S3			
15000	S3	S4	S4			

ASSUME NOT TO SCALE NOT FOR CONSTRUCTION

NOTES:

- 1. FOOTINGS HAVE BEEN SIZED BASED ON THE ASSUMPTION THAT THE UNDERLYING FOUNDATION MATERIAL HAS THE ABILITY TO SUPPORT A MINIMUM 200 KPa SERVICEABILITY LIMIT STATES COMBINATION 1 STRESS IN ACCORDANCE WITH SECTION 3 AND 6 OF THE CANADIAN HIGHWAY BRIDGE DESIGN CODE (CAN/CSA-S6). WHERE THE UNDERLYING MATERIAL IS UNABLE TO SUPPORT THIS APPLIED STRESS, THE ENGINEER SHALL DESIGN THE SUBSTRUCTURE COMPONENTS BASED ON THE ASSESSED STRENGTH OF THE FOUNDATION MATERIALS OR DESIGN FOR AN ALTERNATIVE FOUNDATION SYSTEM SUCH AS DRIVEN PILES.
- 2. FOOTING DESIGNED BASED ON THE MAXIMUM SLAB DEPTH SHOWN ON DWG. STD-EC-050-20. IF THE SLAB DEPTH EXCEEDS THE SPECIFIED LIMITS, DWG'S STD-EC-050-18 THROUGH 21 ARE NOT APPLICABLE AND AN ENGINEER SHOULD COMPLETE A PROJECT SPECIFIC SUBSTRUCTURE DESIGN.

	_					
DESIGN ENGINEER	0 2	2 4 6 8 10 meters	SCALE AS SHOWN	Ministry of Forests, Lands and Natural Resource Operations Ministry of Forests, Lands and BRANCH		
BAR LENGTH IS 40mm ON ORIGINAL. Checked HELEN DU Date 14/04/01				STANDARD BRIDGE DRAWING		
Drawn <u>ERFUN FARJOO</u> Date <u>14/04/01</u>			DRAWING TITLE:			
	Rev Date	DESCRIPTION	Init	SUBSTRUCTURE DETAILS FOR CONCRETE SLAB BRIDGES - SHEE		
				DESIGNED BY: HELEN DU, P.ENG.	APPROVED BY:	
				COORDINATING REGISTERED PROFESSIONAL:	FLNR ENGINEER:	
				FILE No.	DRAWING No.	
PROFESSIONAL SEAL		REVISIONS	1 1		STD-EC-050-21 0	
					CANCEL PRINTS BEARING ♠	