Morice TSA

Documentation of Vegetation Resources Inventory Analysis

Prepared for: Ministry of Forests, Lands and Natural Resource Operations Forest Analysis and Inventory Branch Victoria, BC

> Prepared by: Jahraus Consulting Inc. Maple Ridge, BC

> > **MARCH 2013**

EXECUTIVE SUMMARY

The objective of this project was to complete a VRI sample data analysis of selected Phase I inventory attributes to provide an assessment of the accuracy of the inventory in two target populations of interest in the Morice TSA. The analysis was based on current Ministry of Forests, Lands and Natural Resource Operations (MFLNRO) standards. Fifty Phase II ground samples were established in the 2012 field season in each of two target populations: 1) Young Stand Monitoring (YSM) stands between 15 and 50 years of age (in 2011), and 2) Volume Audit stands 51 years and older (in 2011) in the Vegetated Treed portion of the landbase.

Lodgepole pine stands in the Morice TSA have been significantly impacted by the Mountain Pine Beetle (MPB) infestation. Since the majority of the Phase I photo acquisition in this TSA pre-dates the MPB infestation, the Ministry's BCMPB mortality algorithm was used to adjust the lodgepole pine trees/ha and volume/ha in the Phase I inventory to reflect losses due to MPB.

The analysis focused on seven inventory attributes: age, height, basal area/ha at 7.5cm+ dbh (BA), trees/ha at 7.5cm+ dbh (TPH), Lorey height (LH), volume/ha net dwb at 12.5cm+ dbh and site index (SI). The ratio of the weighted mean Phase II ground value to the weighted mean Phase I inventory value was computed for each attribute. A ratio greater than 1.0 suggests that, on average, the Phase I inventory is *under*estimating an attribute, based on the Phase II ground sample information. Similarly, a ratio less than 1.0 suggests that, on average, the Phase I inventory is *over*estimating the value of an attribute. The resulting VRI analysis ratios, and their associated sampling errors, are shown for each attribute, by stratum, in Table 1.

			Ratio o	Ratio of weighted means (with 95% sampling error shown as % of the ratio)					
	Stratum	n	Age (years)	Height (m)	Basal area @7.5cm+ (m²/ha)	Trees/ha @7.5cm+	Lorey height @7.5cm+ (m)	Volume net dwb @12.5cm+ (m ³ /ha)	SI (m)
YSM	(Immature)	50	1.175 (±15.4%)	1.270 (±10.7%)	4.825 (±38.5%)	0.869 (±41.4%)	1.107 (±12.8%)	7.995 (±74.1%)	1.108 (±7.5%)
Voluı (Mat	me Audit ure)								
	Balsam	19	0.902 (±14.1%)	0.943 (±12.0%)	1.517 (±26.2%)	1.884 (±20.2%)	1.042 (±15.3%)	1.695 (±37.8%)	0.994 (±23.6%)
	Pine	17	0.923 (±12.3%)	0.962 (±8.0%)	0.644 (±30.5%)	1.297 (±34.4%)	0.980 (±13.0%)	1.018 (±43.5%)	1.030 (±19.2%)
	Spruce	11	0.776 (±31.3%)	0.839 (±21.4%)	0.792 (±31.1%)	1.169 (±31.3%)	0.897 (±17.1%)	0.831 (±34.8%)	1.142 (±24.6%)
	Other (decid)	3	0.881 (±25.1%)	1.134 (±6.3%)	0.803 (±41.3%)	0.707 (±13.0%)	1.205 (±19.7%)	1.272 (±54.7%)	1.300 (±8.2%)
	Subtotal	50	0.878 (±9.5%)	0.934 (±6.8%)	1.003 (±17.1%)	1.469 (±18.5%)	0.994 (±8.3%)	1.249 (±23.6%)	1.054 (±13.3%)

Table 1: Ratio of means (Phase II Ground/Phase I inventory) for seven attributes, by stratum, for the	e
target populations in the Morice TSA. Shaded cells indicate small sample size.	

The Volume Audit sample suggests that the Phase I volume is underestimated by 25%. *However, this result must be interpreted with caution*. The sampling error associated with this estimate is very high $(\pm 24\%)$ and does not meet the target sampling error level of $\pm 15\%$.

With the exception of the Pine leading stratum, trends in basal area bias are reflected in the trends in volume bias. The Phase I volume/ha and trees/ha in VRIMS have been adjusted for pine mortality using the BCMPB algorithm. However, the BCMPB model does not adjust Phase I basal area. As a result, the observed Phase I basal area overestimation in the Pine leading stratum is likely due to a significant dead pine component. Phase I age and, to a lesser degree, height in the mature stratum is generally overestimated.

Inference for the YSM stratum is limited since many of the stands in this sample have not yet achieved the thresholds required for VDYP7 to produce a basal area or volume estimate. Phase I ages and heights in this stratum appear to be underestimated. Leading species identification was good with 78% of the samples having the same leading species in the Phase I and Phase II.

Based on the inventory analysis in Morice TSA, the following recommendations and observations are made:

- Inference for the Volume Audit (mature) target population is limited because of high variability and low confidence in the estimates. To reduce the sampling error for volume, it is recommended that additional samples be established in this target population.
- The sample suggests that the BCMPB volume adjustment for MPB mortality is performing adequately. However, sampling error, particularly in the Pine leading stratum is high and additional samples may strengthen this inference.
- An examination of whole stem volumes, particularly in the Balsam leading stratum, may provide a better understanding of the contribution of loss factor bias to model-related volume bias.
- Alternative approaches and/or improvements to Phase I basal area estimation should be investigated, particularly in the Balsam leading stratum.
- Analysis procedures tailored specifically for the unique inventory characteristics of younger stands (i.e. stands less than 30 years of age) should be developed for future data analysis of these types of ground samples.
- A uniform extract process from the LRDW that would include all the Phase I attributes required for the VRI sample data analysis and be limited to the set of polygons that have been matched to the Phase II ground samples (e.g. merged based on cluster id and feature id) should be developed for future VRI sample data analyses.
- This report is a technical document intended to provide complete details of the analysis. However, it is also recommended that a template for communicating these results in a uniform, succinct format suitable for wider distribution be developed.

The authors gratefully acknowledge the following Ministry of Forests, Lands and Natural Resource Operations staff for their guidance, assistance, advice and comments throughout this project: Roman Bilek, Graham Hawkins, Bob Krahn, Matt Makar, Chris Mulvihill, Sam Otukol, Marc Rousseau, Will Smith, and Qiong Su. This analysis was prepared with the assistance of Gitte Churlish of Churlish Consulting Ltd.

Table of Contents

EX	EC	CUTIVE SUMMARY	I
A	CKI	NOWLEDGEMENTS	III
1.]	INTRODUCTION	1
	1.1	1 Background	1
	1.2	2 Description of the Target Population Area	1
	1.5	3 Scope and Objectives	3
2.	I	METHODS	3
	2.1	1 Overview of VRI Sample Data Analysis	3
	2.2	2 Populations for Analysis	4
	2.3	3 Phase II Sample Selection Pre-Stratification and Weights	4
	2.4	4 DATA SOURCES	6
	2.5	5 Analysis of Dead Pine	9
3.	I	RESULTS AND DISCUSSION	9
	3.1	1 Attribute bias	9
	3.2	2 MODEL-RELATED AND ATTRIBUTE-RELATED COMPONENTS OF VOLUME BIAS	13
	3.3	3 Leading species comparison	16
	3.4	4 ANALYSIS OF DEAD PINE	17
	3.5	5 Limitations of the approach	18
4.	(CONCLUSIONS AND RECOMMENDATIONS	19
5.	I	LITERATURE CITED	20
6.	A	APPENDIX A: PHASE I INVENTORY ATTRIBUTES	21
7.	A	APPENDIX B: PHASE II COMPILED GROUND ATTRIBUTES	22
8.	A	APPENDIX C: DATA ISSUES AND POTENTIAL "OUTLIERS"	23
9.	A	APPENDIX D: ATTRIBUTE BIAS RESULTS WITH SAMPLE #40 EXCLUDED	24
10		APPENDIX E: HEIGHT AND AGE MATCHING	26
11		APPENDIX F: SCATTERPLOTS AND RESIDUALS FOR RATIO ANALYSIS	30
12		APPENDIX G: GRAPHS OF TOTAL VOLUME BIAS, MODEL BIAS & ATTRIBUTE BIAS	50
13		APPENDIX H: SAMPLE SELECTION DOCUMENTS	53

1. INTRODUCTION

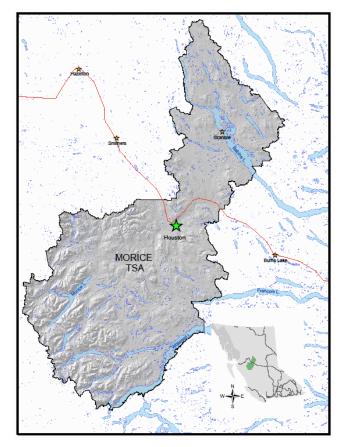
1.1 Background

Details of the ground sampling planning for the Morice TSA are available in the document "Morice Timber Supply Area – TSA 20: Vegetation Resources Inventory Project Implementation Plan for Volume Audit Sampling, Young Stand Monitoring and Net Volume Adjustment Factor Sampling" (Nona Phillips Forestry Consulting 2012b) available from the Ministry of Forests, Lands and Natural Resource Operations (MFLNRO).

1.2 Description of the Target Population Area

The Morice TSA is located in the northwestern part of British Columbia and is situated along the western edge of the province's Interior Plateau. It extends from the north end of Babine Lake in the north to Ootsa and Whitesail Lakes in the south. The topography in the TSA is gently rolling in the north and east, becoming mountainous in the southwest. The SBS biogeoclimatic zone predominates, followed by ESSF and some CWH. The area also includes minor percentages of MH, BAFA and CMA.

The main trees species are lodgepole pine (Pl), subalpine fir (balsam or Bl) and spruce (Sx, Sw and Sb). More than two-thirds of the forests in the TSA are mature and old, age class 6 and older (Timberline 2007). The TSA has been impacted heavily by the Mountain Pine Beetle (MPB) infestation (FAIB 2007).


Table 1, excerpted from the "*Morice TSA Sample Selection Report*" (Nona Phillips Forestry Consulting 2012a), provides a summary of the landbase in the Morice TSA.

Land Classification	Area (ha)	% of TSA
Total TSA Area	1,501,703	100.0%
Net-downs	171,707	11.4%
Parks	134,899	9.0%
Private	34,740	2.3%
Indian Reserve	2,068	0.1%
Net Area	1,329,996	88.6%
Non-Vegetated	291,212	19.4%
Vegetated	1,038,784	69.2%
Non-Treed	180,432	12.0%
Treed	858,352	57.2%

Table 1: Morice TSA Landbase Summary, indicating net-downs.

An overview map of the Morice TSA is provided in Figure 1.

1

Figure 1: Map of the Morice TSA (FAIB 2007).

The Vegetation Resources Inventory (VRI) project implementation plan (VPIP) for the Morice TSA identified two separate populations of interest for Phase II ground sampling:

- 1. Young Stand Monitoring (YSM): stands between 15 and 50 years of age (in 2011), *not* restricted to Vegetated Treed (VT) polygons
- 2. Volume Audit: stands 51 years and older (in 2011) in the Vegetated Treed portion of the landbase

The area distributions by inventory leading species in each of these two populations of interest are provided in Tables 2 and 3 (Nona Phillips Forestry Consulting 2012b).

Table 2: Morice TSA population of interest for Young Stand Monitoring, by leading species.

	-	
Inventory Leading Species	Area (ha)	% of YSM population
Lodgepole pine (PL)	51,152	71%
Spruce (S)	17,232	24%
Balsam (B)	2,566	3%
Cottonwood (AC)	1,146	2%
Birch (EP)	6	<1%
Fir (FD)	4	<1%
Cedar (CW)	1	<1%
total	72,107	100%

Inventory Leading Species	Area (ha)	% of Volume Audit population
Balsam (B)	295,723	37%
Lodgepole pine (PL)	268,645	34%
Spruce (S)	176,907	22%
Cottonwood (AC)	38,045	5%
Hemlock (H)	9,076	1%
Birch (EP)	341	<1%
total	788,737	100%

Table 3: Morice TSA population of interest for Volume Audit, by leading species.

1.3 Scope and Objectives

The objective of this project was to provide a VDYP7-based VRI sample data analysis for the Morice TSA, based on current Ministry of Forests, Lands and Natural Resource Operations (MFLNRO) standards (FAIB 2011). The analysis was to be carried out for the 50 Volume Audit (mature) Phase II samples and the 50 Young Stand Monitoring (Immature) samples that were both established in the 2012 field season.

In addition to the standard VRI sample data analysis, an examination of the bias associated with the inventory volume estimates was examined in more detail. Specifically, the relative contributions of the VDYP7 yield model itself and the inventory attributes used as input for the model were investigated. This part of the analysis was focused on the Volume Audit samples.

An examination of the dead volume as estimated using the MFLNRO's British Columbia Mountain Pine Beetle (BCMPB) mortality algorithm was also completed.

Unless otherwise noted, all Phase II attribute values are based on live trees only. Phase I trees/ha and volume/ha have been adjusted for MPB mortality in lodgepole pine and hence reflect live trees. However, the remaining Phase I estimates (i.e. basal area/ha, species composition) are not adjusted for MPB mortality and hence may reflect some component of dead lodgepole pine.

An addendum to this report, providing stand and stocking tables based on the VRI Phase II data, was produced in an effort to address some of the short-term timber supply-related questions in the Morice TSA.

2. METHODS

2.1 Overview of VRI Sample Data Analysis

The role of the VRI sample data analysis is to evaluate the accuracy of the Phase I photo-interpreted inventory data, using the Phase II ground sample data as the basis for the comparison.

The process involves first running the Phase I inventory data through the VDYP7 yield model to project the attributes to the same year as the ground sampling. The Phase I inventory data corresponding to the Phase II ground samples are identified and rigorous data checking and plots of the Phase II versus Phase I attribute values are carried out to screen for potential data errors and/or inappropriate matching of Phase I and II data. Analysis is usually done at the stratum level, where strata are typically defined by leading species. After calculating and applying the appropriate sampling weights, mean values of the ground samples attributes and the corresponding Phase I inventory attributes are computed. Ratios of these two values (i.e. the mean Phase II ground sample value / the mean Phase I inventory value) are then calculated along with the corresponding sampling errors, by stratum.

These ratios of means, which are developed from the relationship between the Phase II ground sample values and the Phase I photo-interpreted inventory values for the set of polygons that comprised the VRI Phase II

ground sample, form the basis of the inventory assessment. The sampling errors for these ratios can be used to interpret the risk and uncertainty associated with the sampling process.

There are seven timber attributes that are considered in the current VRI ground sample data analysis:

- Age of the first species,
- Height of the first species,
- Basal area at 7.5cm+ dbh utilization (BA7.5),
- Trees per hectare at 7.5cm+ dbh utilization (TPH7.5),
- Lorey height¹ (LH) at 7.5cm+ dbh utilization (LH7.5),
- Volume net top, stump (CU), decay, waste and breakage at 12.5cm+ dbh utilization, and
- Site index.

2.2 Populations for Analysis

The VPIP for the Morice TSA identified two separate target populations of interest for the analysis:

- 1. Young Stand Monitoring (YSM): stands between 15 and 50 years of age (in 2011), *not* restricted to Vegetated Treed (VT) polygons (referred to interchangeably as "immature" or YSM in this document)
- 2. Volume Audit: stands 51 years and older (in 2011) in the Vegetated Treed portion of the landbase (also referred to as "mature" in this document)

The total area of the YSM population of interest was about 72,000 ha whereas the total area of the Volume Audit population of interest was approximately 789,000 ha (see Tables 2 and 3 in Section 1.2 for details).

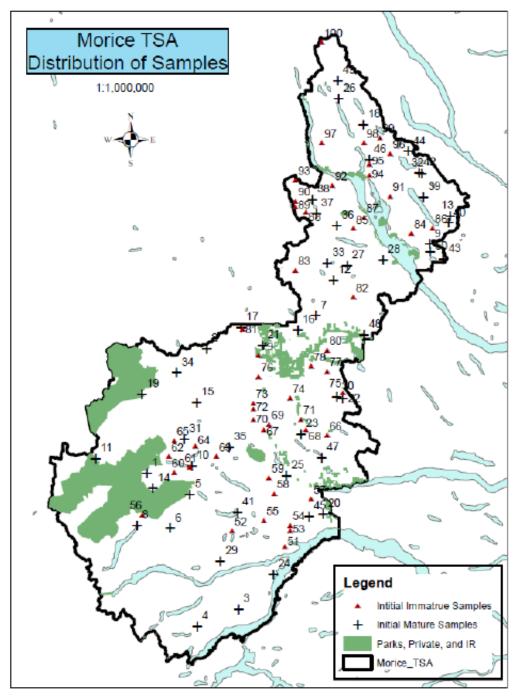
Each of these target populations was analyzed separately and the YSM or immature sample results are shown as a separate "stratum" in the tables that follow.

2.3 Phase II Sample Selection Pre-Stratification and Weights

For the Volume Audit sample selection, pre-stratification was carried out based on leading species. Further sub-stratification, by volume classes, was also applied in the sample selection to ensure adequate representation of the samples across the target population. Samples were selected with Probability Proportional to Size With Replacement (PPSWR).

The population for the YSM portion of the project was not pre-stratified and the sample selection was gridbased². Fifty YSM samples were selected from the total population area of 72,107 hectares, resulting in each sample representing 1442 hectares.

Sampling weights were determined from area information presented in the "*Morice TSA Sample Selection Report*" (Nona Phillips Forestry Consulting 2012a). The weights, as calculated in Table 4 below, were applied in the analysis.


¹ Lorey height is mean height, weighted by tree basal area. This height measure is generally more stable than unweighted mean height and is an important input attribute in the VDYP7 yield prediction model.

² Refer to the sample selection report (Nona Phillips Forestry Consulting 2012a) for details.

Stratum	Sub-stratum (volume class)	Area (ha)	Area %	n	Weight (number of hectares represented by each sample) = A/n
	1	93,255	31.5%	6	15543
Balsam	2	95,553	32.3%	6	15926
leading	3	106,915	36.2%	7	15274
	total	295,723	100.0%	19	
	1	83,791	31.2%	5	16758
Dina loading	2	104,346	38.8%	7	14907
Pine leading	3	80,508	30.0%	5	16102
	total	268,645	100.0%	17	
	1	49,687	28.1%	3	16562
Spruce	2	59,768	33.8%	4	14942
leading	3	67,452	38.1%	4	16863
	total	176,907	100.0%	11	
	1	14,769	31.1%	1	14769
Other spp	2	14,926	31.5%	1	14926
leading	3	17,767	37.4%	1	17767
	total	47,462	100.0%	3	
Volume Audit Total		788,737		50	
Yound Stand	Monitoring Total	72,107		50	1442

Table 4: Sample weights for the inventory analysis of the Morice TSA.

The geographic distribution of the samples in both target populations is shown in Figure 2, which has been reproduced from the sample selection report.

Figure 2: Map of the distribution of YSM (immature) and Volume Audit (mature) samples in the Morice TSA (Nona Phillips Forestry Consulting 2012a).

2.4 Data Sources

2.4.1 Phase I photo-interpreted inventory data

VRIMS inventory data from the LRDW, projected to 2012, was provided by Marc Rousseau (MFLNRO). Since ground sampling was also completed in 2012, values on this file for age, height and volume were used directly in the analysis. However, values for Lorey height (LH) at the 7.5cm+ dbh utilization were not provided on the VRIMS file. Hence VDYP7 Console version 7.7a.33 was used (in conjunction with input values and reference year) to obtain projected values for this attribute.

The VRIMS projected volume and trees/ha from the LRDW reflected the application of the BCMPB mortality algorithm. Hence in addition to live values for these attributes, dead volume/ha and dead trees/ha values (as well as a "stand dead pine percentage" value) were also provided. Note that basal area estimates are NOT adjusted in the BCMPB algorithm hence the VRIMS Phase I basal area values that are used in this analysis have NOT been adjusted for pine mortality.

The inventory for this management unit is relatively old. Table 5 shows the population area distribution by reference year (year of photo-interpretation) of the VT portion of the Morice TSA greater than 15 years of age. Nearly 60% of the area was photo-interpreted in either 1991 or 1992.

Reference year (photo- interpretation) by decade	% of Area
1953 - 1959	2.0%
1960 – 1969	4.4%
1970 – 1979	16.1%
1980 – 1989	1.9%
1990 – 1999	74.1%
2000 – 2012	1.6%
total	100%

Table 5: Morice TSA VT greater than 15 years of age, area distribution by inventory reference year.

Table 6 shows the distribution of samples (both Volume Audit and YSM) by reference year. More than 2/3 of the samples used in this analysis had reference years pre-dating 1992.

Table 6: Volume Audit and YSM samples in the Morice TSA, distribution of samples by inventory reference year.

Reference year (photo- interpretation) by decade	Number of Volume Audit samples	Number of YSM samples
Pre-1980	6	1
1980 - 1984	0	2
1985 – 1989	0	3
1990 - 1994	42	23
1995 – 1999	2	16
2000 – 2012	0	5
total	50	50

The majority of the sample polygons (85%) recorded an F-type inventory standard³. This means that basal area and trees/ha would have been generated in the FIPSTART module of VDYP7 since no photo-interpreted values for these attributes would have been available.

The Phase I inventory attributes used in the analysis are shown in Appendix A.

³ Six samples indicated a V-type inventory standard and 9 samples indicated an incomplete or non-standard (i.e. I-type) inventory type.

2.4.2 Phase II ground sample data

The "*Morice TSA VRI Sample Selection Report*" (Nona Phillips Forestry Consulting Ltd. 2012a) details the selection of the Phase II samples that were established in the Morice TSA. The Phase II data were compiled by MFLNRO and included application of the most up-to-date regional NVAF values. This Phase II compiled data file was provided by Bob Krahn (MFLNRO).

The compiled data were provided under project number 0201. The Phase II site index (SI) value for each sample was computed as the average site index (SI) of the T, L, X and O trees on the "trees_h" file. Site index is computed by the compiler using SINDEX and is provided for each tree where possible.

The Phase II compiled ground sample attributes used in the analysis are provided in Appendix B.

2.4.3 Data issues related to the statistical adjustment

Scatterplots comparing the Phase I and Phase II attributes were examined for potential outliers. Large differences between the ground sample and photo-based estimates, particularly for basal area, tree/ha and volume, were noted for a number of samples. Potential outliers were examined in detail by MFLNRO staff. Details of the findings of this investigation are provided in Appendix C.

For two samples, the ground sample IPC was located close to a polygon boundary and it was determined that the incorrect Phase I polygon data had been provided⁴. The correct polygon identifiers and corresponding attribute data were subsequently obtained.

Sample #40 showed particularly large differences between the Phase I and II attribute values. It was determined by MFLNRO staff that this was likely due to a Phase I photo-typing error. Because of the influence of this sample on the attribute means and ratios of means, a supplementary set of results that excluded this sample are provided in Appendix D (see Section 3.1).

2.4.4 Height and Age data matching

The data matching used to determine the appropriate Phase I and II heights and ages upon which to base the comparison ratios followed the same basic approach outlined in the MFLRNO procedures and standards document.

For each VRI sample polygon, the Phase II ground sample data were matched with the corresponding Phase I inventory data for the same polygon. The ground heights and ages used in the analysis were based on the average values for the T, L, X & O trees⁵ for the ground leading species (by basal area at 4cm + dbh utilization) on the ground. The objective in the matching process was to choose an inventory height and age (i.e. for either the leading or second species) so that the ground and inventory species "matched".

If a leading species match could not be made at the $sp0^6$ level, conifer-to-conifer (or deciduous-to-deciduous) matches were allowed. However, conifer-deciduous matches were not considered acceptable. Appendix E provides the details for the height and age data matching.

⁴ The location for sample #18 was originally specified as polygon 619. The correct polygon was 618. The location for sample #46 was originally specified as polygon 224. The correct polygon was 603.

⁵ T or "top height" tree is the largest DBH in 0.01 ha plot, regardless of species; L or "leading species" tree is the largest DBH in 0.01 ha plot, of leading species. T trees are selected and measured at the IPC only whereas L trees are selected at the IPC and all auxiliary plots. If a suitable (age or height) leading species sample tree is not found in any given plot in a cluster, a "replacement" tree will be selected. An "O" tree is the closest suitable (for height and age) tree of the leading species to the 5.64m radius plot center. An "X" tree is the closest suitable tree of the leading species outside of the 5.64m radius plot but within a maximum 25m radius of plot centre. For further details, refer to the MFLNRO document "VRI Ground Sampling Procedures Version 4.8, May 2008, Amendment # 1: Modifications to the Leading Species Site Tree Selection Procedures", April, 2009.

⁶ sp0 refers to the 16 major species codes and is roughly equivalent to the genus level.

Of the 100 samples used in the analysis, 70% indicated a match between the Phase I inventory leading species and the Phase II ground leading species at 4cm+ dbh utilization. A further 3 samples were matched based on the inventory secondary species. Note that there were 12 samples where the inventory secondary species matched the ground leading species but where no Phase I height or age data were available for the secondary species. It was possible, however, to match these samples on a conifer-to-conifer or deciduous-to-deciduous basis. Thirteen additional samples were also matched on the same (i.e. Case 3) basis. Two samples could not be matched and were therefore excluded from the development of the age and height comparison ratios. Both of these samples (#78 and #92) were in the YSM stratum.

2.4.5 Site Index

The site index comparison was carried out only for samples where the Phase II and Phase I leading species were the same (Case 1 for height and age matching) or where the Phase II leading species and Phase I secondary species were the same and there was a height and age available for the Phase I secondary species (Case 2 for height and age matching). No other case matches were considered acceptable.

As a result, 27 samples were not included in the SI comparison. Among the Volume Audit samples, the samples that were excluded were comprised of 2 Balsam stratum samples, 9 Pine stratum samples, 5 Spruce stratum samples and 1 sample in the Other stratum. Ten among the YSM samples were also excluded from the site index comparison. The large number of excluded samples for the SI comparison may be further justification for the establishment of additional plots in the Morice TSA, especially given the significant midterm timber supply issues in this management unit.

2.5 Analysis of Dead Pine

The BC Mountain Pine Beetle model (BCMPB) was developed to estimate the volume of mature pine mortality associated with the mountain pine beetle (MPB) infestation. The Phase I inventory typically reports live volume only. However, in areas where the BCMPB model is applied, live volume (and trees/ha) by species for all species as well as dead volume (and trees/ha) for lodgepole pine only are reported.

The Phase II ground sample provides live and dead volumes, basal area and trees/ha area by species for all species.

To provide an assessment of the dead pine estimates in the Phase I inventory, the following fractions were computed:

- Dead pine volume as a fraction of the live pine volume + dead pine volume;
- Dead pine volume as a fraction of live all species volume + dead pine volume.

3. RESULTS AND DISCUSSION

3.1 Attribute bias

As a way to compare the Phase I inventory attribute values with the Phase II ground sample values, ratios of the weighted mean Phase II ground sample attribute over the corresponding weighted mean Phase I inventory attribute were computed. The ratios of means were calculated for each of the seven key attributes identified in Section 2.1. The analysis stratification for the Volume Audit population was based on Phase I inventory leading species. The samples from the YSM population were not post-stratified. The means and their ratios are shown in Tables 7 & 8 respectively⁷.

⁷ Appendix E shows a similar set of results with Sample #40 excluded (see Section 2.4.3)

	Weighted Means							
	Immature	Mature (Volume Audit) Samples						
Attribute	(YSM samples)	Balsam	Pine	Spruce	Other	All mature strata		
Age (years)								
n	48	19	17	11	3	50		
Phase II Ground	35	191	117	131	79.1	146		
Phase I Inventory	30	212	127	169	89.7	166		
Height (m)								
n	48	19	17	11	3	50		
Phase II Ground	11.3	20.8	21.3	21.2	23.9	21.2		
Phase I Inventory	8.9	22.1	22.1	25.3	21.0	22.7		
Basal area (m2/ha) at 7.5cm+ dbh								
n	50	19	17	11	3	50		
Phase II Ground	19.2	46.7	22.0	23.0	26.3	31.8		
Phase I Inventory	4.0	30.8	34.2	29.0	32.7	31.7		
Trees/ha at 7.5cm+ dbh								
n	48	19	17	11	3	50		
Phase II Ground	1422	1478	871	644	707	1038		
Phase I Inventory ⁸	1637	785	671	550	1000	706		
Lorey height (m)								
n	31	19	17	11	3	50		
Phase II Ground	10.2	17.8	18.5	18.9	22.6	18.6		
Phase I Inventory	9.2	17.1	18.8	21.1	18.8	18.7		
Volume/ha (m3/ha) at 12.5cm+								
dbh net dwb								
n	50	19	17	11	3	50		
Phase II Ground	49.8	290.2	133.6	164.9	195.6	203.1		
Phase I Inventory ⁹	6.2	171.2	131.2	198.4	153.8	162.7		
Site index (m)								
n	40	17	8	6	2	33		
Phase II Ground	19.6	8.8	15.4	11.0	18.8	11.4		
Phase I Inventory	17.7	8.8	15.0	9.6	14.4	10.8		

The relationship between the Phase II ground and the Phase I inventory attributes corresponding to each ratio were examined in scatterplots (Appendix F). The ratios of means were also evaluated for potential bias by plotting the "residual" values¹⁰ as a function of the ratio-adjusted (or "estimated") value for each attribute. In addition, the residuals were plotted as a function of unadjusted inventory age as a check for any age-related trends in the ratios. These graphs are also included in Appendix F.

⁸ The Phase I trees/ha from VRIMS represent LIVE values (net of dead Pl) after the MPB mortality model has been applied.

⁹ Phase I volume has been adjusted using the MPB mortality model hence represents LIVE trees net of dead pine.

¹⁰ A "residual" is computed as *actual minus estimate*. In this case, the actual is the Phase II sample value and the estimate is the ratio-adjusted Phase I value (i.e. Phase I value multiplied by the ratio of means value).

Careful examination of the scatterplots in Appendix F did not suggest any significant bias patterns associated with the ratios of means. However, many of the graphs illustrated a weak relationship between the ground and the inventory attribute values and a high level of variability.

			Ratio o	Ratio of weighted means (with 95% sampling error shown as % of the ratio)					
	Stratum	n	Age (years)	Height (m)	Basal area @7.5cm+ (m²/ha)	Trees/ha @7.5cm+	Lorey height @7.5cm+ (m)	Volume net dwb @12.5cm+ (m ³ /ha)	SI (m)
YSM	(Immature)	50	1.175 (±15.4%)	1.270 (±10.7%)	4.825 ¹¹ (±38.5%)	0.869 (±41.4%)	1.107 (±12.8%)	7.995 ¹² (±74.1%)	1.108 (±7.5%)
Voluı (Mat	me Audit ure)								
	Balsam	19	0.902 (±14.1%)	0.943 (±12.0%)	1.517 (±26.2%)	1.884 (±20.2%)	1.042 (±15.3%)	1.695 (±37.8%)	0.994 (±23.6%)
	Pine	17	0.923 (±12.3%)	0.962 (±8.0%)	0.644 (±30.5%)	1.297 (±34.4%)	0.980 (±13.0%)	1.018 (±43.5%)	1.030 (±19.2%)
	Spruce	11	0.776 (±31.3%)	0.839 (±21.4%)	0.792 (±31.1%)	1.169 (±31.3%)	0.897 (±17.1%)	0.831 (±34.8%)	1.142 (±24.6%)
	Other	3	0.881 (±25.1%)	1.134 (±6.3%)	0.803 (±41.3%)	0.707 (±13.0%)	1.205 (±19.7%)	1.272 (±54.7%)	1.300 (±8.2%)
	Subtotal	50	0.878 (±9.5%)	0.934 (±6.8%)	1.003 (±17.1%)	1.469 (±18.5%)	0.994 (±8.3%)	1.249 (±23.6%)	1.054 (±13.3%)

Table 8: Ratio of means comparisons (and sampling error % at a 95% confidence level) for seven attributes,
for the target populations in the Morice TSA. Shading indicates small sample size.

The ratios of means in Table 8 can be used to assess the accuracy of selected attributes within the Phase I inventory. Since the ratios are computed as the Phase II value over the Phase I value, *a ratio of means greater than 1 suggests that the Phase I attribute is underestimated.* Similarly, *a ratio of means value less than 1 indicates that the Phase I is overestimating* the attribute value.

The sample size of 3 in the "Other species leading" stratum (all samples were At leading) was too small to allow for any reasonable conclusions.

The sample suggests that, on average, the inventory overestimates age among the three main leading species strata (i.e. Balsam, Pine and Spruce leading) in the mature target population in the Morice TSA, with an average age overestimation of about 14% relative to the average ground age^{13} (ratio of means = 0.878).

In the three main mature strata, the sample suggests that height is also overestimated. Average height overestimation appears greatest in the Spruce leading stratum. However, the variability in this stratum (for both age and height) is quite high.

The Volume Audit sample suggests that the Phase I underestimated trees/ha in all three main mature strata. However, strata sampling errors were relatively high for this attribute. Note that the Phase I trees/ha values

¹¹ Twenty YSM samples had insufficient height for VDYP7 to produce a BA estimate and hence zero values were assumed for this analysis. Similarly, VDYP7 did not generate a Phase I volume for 22 samples. The zero values for these attributes assumed in the analysis had a considerable impact on the ratios.

¹² Ibid. 12

¹³ Computed as: ((Ground vol –Inventory vol)/Ground vol) X 100%= (1- (Inventory vol/Ground vol))X100%

reflected in the Table 8 have been adjusted for MPB mortality in the pine component of these polygons. The extent to which the MPB mortality algorithm may be exacerbating the trees/ha underestimation in the inventory is unknown.

Among the three primary mature strata, bias trends in Lorey height were relatively minor. Although the Phase I underestimated site index in the spruce leading stratum, site index bias in the Balsam and Pine strata was relatively low. Note that the SI assessment in the pine and spruce strata is based on only 8 and 6 samples respectively.

Bias in mature basal area/ha is relatively high and is not consistent among the main Volume Audit strata. Note that the sampling errors for the basal area ratios of means are also high. None of the Phase I basal area estimates are adjusted in the MPB mortality algorithm hence the inventory basal area estimates may reflect a component of dead pine. As a result, this might account for some of the observed overestimation of basal area in the Phase I, particularly in the Pine leading stratum.

In the Balsam leading stratum, the Phase I underestimates basal area. This is consistent with trends observed for ESSF samples in the Bulkley TSA. However, it must be noted that the sampling error for the basal area ratio of means in the Balsam stratum is more than 25%.

Trends in basal area bias in the mature Balsam leading and mature Spruce leading strata are mirrored by similar trends in volume/ha bias in these strata. Once again, however, sampling errors in these strata are very high (between 30 and 40%) hence these results must be interpreted with caution.

In all strata, but particularly in the Pine leading stratum¹⁴, results must be interpreted carefully since volume/ha and trees/ha in this stratum are adjusted by the BCMPB mortality algorithm whereas inventory basal area/ha is not changed when this algorithm is applied.

The Phase II ground sample in the Volume Audit target population for the Morice TSA suggests that, on average, Phase I inventory volume is underestimated by about 25%. However, it is important to note that the overall sampling error for the volume bias estimation of 23.6% did not meet the targeted sampling error of 15% specified for the mature population in the VPIP. Hence these results must be interpreted with caution.

Many of the YSM samples did not achieve sufficient height for VDYP7 to produce basal area or volume estimates. Twenty of the samples (40%) had zero Phase I basal area and 22 samples had zero Phase I volume estimates, which may have inflated the ratios of means for these attributes¹⁵. The sampling errors for these ratios, particularly for volume, are also very high. Note that in the timber supply modeling process, yields for young managed stands are typically estimated using the TIPSY model rather than VDYP7, which was designed for yield estimation in natural stands.

Age, height and site index¹⁶ all appear to be underestimated in the YSM stratum. The site index assessment, based on 40 samples in this stratum, suggests that the calculated Phase I site index is underestimated by about 10% in this stratum. Note that in younger stands (i.e. stands less than 30 years of age), site index cannot be reliably estimated from age and height and hence is generally obtained from other sources (growth intercept equations, silvicultural data, etc.).

¹⁴ The MPB algorithm is applied to the pine component of a stand. The inventory identified a dead pine component volume in 2 out of 10 samples in the Balsam leading stratum, 16 out of 17 samples in the Pine leading stratum and 6 out of 11 samples in the Spruce leading stratum among the Volume Audit (Mature) samples.

¹⁵ For the 20 samples with zero Phase I BA, the mean Phase II BA was 18.2 m2/ha. Similarly, for the 22 samples with zero Phase I volume, the mean Phase II volume was 40.9 m3/ha. Hence the basal area and volume ratios of means in the YSM stratum may appear inflated. However, even when these zero samples are excluded from the ratio calculations for these two attributes, the resulting ratios are still over 3 and 5 for basal area and volume respectively.

¹⁶ This assessment is based on the Phase I site index calculated from age and height.

3.2 Model-Related and Attribute-Related Components of Volume Bias

The volume ratios of means, comparing the mean Phase I inventory volume with the mean Phase II ground sample volume, provide an estimate of the total bias in volume estimation for the Volume Audit and YSM populations in the Morice TSA. In the YSM stratum, nearly half (22 out of 50) of the samples were too short for VDYP7 to estimate volumes. For these samples, the VDYP7 volume was set to zero.

The model and attribute-related volume bias analysis focused on the Volume Audit (mature) population, where VDYP7 produced volumes for all samples.

The results vary widely by stratum, ranging from volume overestimation in the Spruce stratum to volume underestimation in the Balsam leading stratum to very little volume estimation bias in the Pine leading stratum. Over all mature strata, the Phase I appears to underestimate volume by nearly 25%. Note that the sampling error of 23.6% (at 95% confidence) for this estimate did not meet the sampling error target of 15% specified in the VPIP.

In the VRI inventory, estimates of volume for a polygon are generated by the VDYP7 yield model, based on a set of input attributes that are typically photo-estimated. As such, this creates two main sources or two potential underlying causes for the volume bias that we observe when we compare the Phase I inventory volume with the Phase II ground volume. These two underlying causes, which each contribute independently and in an additive fashion to the total volume bias, are:

- 1. Attribute-related volume bias: bias associated with providing the yield model with incorrect input attributes i.e. biased photo-estimates of inventory attributes for a polygon (e.g. species composition, height, age, basal area, trees/ha).
- 2. Model-related volume bias: bias associated with poor prediction by the VDYP7 yield model (independent of the input attributes i.e. assuming a correct set of input attributes).

Understanding the cause or source of the volume bias in a management unit may help to focus future efforts for improving volume estimation in the inventory.

Estimates of the relative contribution of each of these bias components to the total inventory volume bias can be obtained by creating a new volume estimate using the polygon attributes from the ground sample (to remove the bias associated with the photo-estimation of these attributes) as inputs to the VDYP7 yield model.

In this manner, the model-related volume bias can be approximated by computing the difference between the ground sample volume and the VDYP7 volume using the ground attributes as input¹⁷. Attribute-related volume bias can be approximated by computing the difference between the VDYP7 inventory volume (using the photo-estimated attributes as input) and the VDYP7 volume using the ground attributes as input¹⁸. In each case, either the "model" or the "attributes" are held constant to isolate their respective effects on volume estimation.

The results of the analysis of model-related and attribute-related volume bias in the Morice TSA are shown in Table 9. This analysis was carried out for volume/ha at a 12.5cm+ dbh net dwb utilization.

¹⁷ To estimate model bias, the bias associated with the inputs to VDYP7 is removed by using the ground attributes, which are assumed to be "correct". Since the ground attributes are used as inputs for both volume computations (i.e. VDYP7 and the compiler), any resulting volume differences are then attributed to the "model". That is, the ground sample compiler (which is assumed to be accurate) is compared as directly as possible to the VDYP7 yield prediction model.


¹⁸ To estimate the attribute-related bias component of the total volume bias, the same "model" is used (i.e. VDYP7 in both cases) but volumes using the ground attributes (which are assumed to be accurate) as inputs to VDYP7 are compared to volumes using the photo-estimated attributes as inputs to VDYP7.

		-		Weighted	l mean vol/ha n	et dwb at 12.5c	m+ dbh	
Stratum		п	Phase II Ground A	VDYP7 Phase I Inventory (VRIMS with MPB adjustment) B	VDYP7 volume with Phase II attributes as input (VRISTART) C	Model- related volume bias A-C	Attribute- related volume bias C-B	Total volume bias A-B
YSM (I	mmature)	50	49.8	6.2	45.9	3.9	39.7	43.6
Volum	e Audit (Mature) Balsam	19	290.2	171.2	223.2	67.0	52.0	119.0
	Pine	17	133.6	131.2	133.0	0.6	1.8	2.4
	Spruce	11	164.9	198.4	146.3	18.6	-52.1	-33.5
	Other		195.6	153.8	168.8	26.8	15.0	41.9
	Subtotal	50	203.1	162.7	172.0	31.1	9.3	40.4

Table 9: Volumes for model-related and attribute-related bias comparison.

For the mature (Volume Audit) target population, the difference between the ground volume and inventory volume (Table 9 column A – column B), referred to as the total volume bias, was 40 m3/ha, indicating that, on average, the inventory is underestimating the overall mature volume by about 40 m3/ha or about 20% relative to the ground volume. The model-related component of the volume bias (column A – column C) was +31 m3/ha, and the attribute-related volume bias was +9 m3/ha.

These results are shown diagrammatically in Figure 3.

Figure 3: The relationship between the model and attribute-associated components of total volume bias for the mature target population in the Morice TSA (from Table 9). A negative bias indicates overestimation whereas a positive bias indicates underestimation.

The results in Table 9 are presented as ratios of means in Table 10. In Table 10, a model bias ratio greater than one indicates that VDYP7 underestimates volume. An attribute bias ratio less than one indicates that inaccuracies in the Phase I estimates may be associated with an overestimation of volume.

On a leading species stratum basis within the mature target population, the trends varied widely. For Balsam leading, the attribute-related and model-related biases associated with the Phase I inventory volume were both substantial and contributed in similar proportions to the total inventory volume underestimation bias. For Pine leading, the level of total volume bias was quite low, with slightly more attribute-related bias than model-related bias. For Spruce leading, the model contributed to a volume underestimation which mitigated, to a limited degree, the rather large attribute-related volume overestimation.

In all strata, the estimates of model bias had relatively low sampling errors whereas the sampling errors for the attribute bias estimates were quite high.

Table 10: Ratios of mean volumes (12.5cm+ dbh net dwb) representing total, model and attribute bias, with associated sampling error % at a 95% confidence level. Shaded cells represent small sample sizes where results must be interpreted with caution.

			,	ed Mean Volume/ha net dw npling error at a 95% confide	
Strat	um	n	Total Bias : Ground/Inventory (Table 9 col A/B)	Model Bias : Ground/ VDYP7 (ground attributes) (Table 9 col A/C)	<i>Attribute Bias</i> : VDYP7 (ground attributes) / Inventory (Table 9 col C/B)
YSM	YSM (Immature)		7.995 (±74.1%)	1.085 (±4.2%)	7.371 (±73.0%)
Volur (Mat	me Audit ure)				
	Balsam	19	1.695 (±37.8%)	1.300 (±9.1%)	1.303 (±34.3%)
	Pine	17	1.018 (±43.5%)	1.004 (±8.1%)	1.014 (±47.1%)
	Spruce	11	0.831 (±34.8%)	1.127 (±10.6%)	0.737 (±40.7%)
Other		3	1.272 (±54.7%)	1.159 (±5.8%)	1.098 (±49.8%)
Subtotal		50	1.248 (±23.6%)	1.181 (±5.1%)	1.057 (±23.0%)

Basal area/ha is known to be an important driver of volume in the VDYP7 model. In the mature Balsam and Spruce leading strata, the trends in basal area/ha bias shown in Table 8 are mirrored in the trends in attribute bias shown in Table 10 above.

Note that in the Pine leading stratum, the same interpretation cannot be made. The estimate of Phase I inventory basal area/ha bias in Table 8 (ratio of means = 0.644) does *not* reflect the MPB mortality that *is* taken into account in the Phase I inventory volume estimate. The attribute bias results in Table 10 would suggest that the BCMPB mortality algorithm is producing acceptable results for volume in the Pine leading stratum.

3.3 Leading species comparison

Tables 11 and 12 below summarizes the correspondence between the leading species on the Phase I inventory files and the leading species from the Phase II ground sample compilation, for the samples from the immature (YSM) target population. For 78% of the samples (39 out of 50), the inventory and the ground sample had the same leading species. This is a relatively good result compared with findings in other units.

Table 11: Phase II ground vs. Phase I inventory leading species cross-tabulation, for the Immature (YSM) target population in the Morice TSA (cell value expressed as a percent of the row i.e. Phase I total, is shown in brackets).

	Immature (YSM) samples											
Phase I	Phase II Ground leading species at 4cm+ dbh utilization											
Inventory leading spp	AT/AC	В	PL	S (Sb/Sw/Sx)	Total %	Total count						
AT	0	0	1 (100%)	0	100%	1						
В	0	2 (100%)	0	0	100%	2						
PL	3 (8%)	0	29 (81%)	4 (11%)	100%	36						
S (Sb/Sw/Sx)	0	2 (18%)	1 (9%)	8 (73%)	100%	11						
Total %	6%	8%	62%	24%	100%							
Total count	3	4	31	12		50						

Table 12: Phase II ground vs. Phase I inventory leading species cross-tabulation, for the Immature (YSM) target population in the Morice TSA (cell value expressed as a percent of the column i.e. Phase II total, is shown in brackets).

	Immature (YSM) samples											
Phase I	Phase II Ground leading species at 4cm+ dbh utilization											
Inventory leading spp	AT/AC	В	PL	S (Sb/Sw/Sx)	Total %	Total count						
AT	0	0	1	0	2%	1						
В	0	2 (50%)	0	0	4%	2						
PL	3 (100%)	0	29	4 (33%)	72%	36						
S (Sb/Sw/Sx)	0	2 (50%)	1	8 (67%)	22%	11						
Total %	otal % 100% 100% 100% 100% 100%											
Total count	3	4	31	12		50						

Tables 13 and 14 show the corresponding results for samples from the mature (Volume Audit) target population. Here, 62% of the samples (31 out of 50) had the same leading species for both the Phase I inventory and Phase II ground.

In the mature Pine leading stratum, only 35% (6 out of 17 samples) were also leading in Pl in the Phase II ground sample. This is likely due to the fact that although the BCMPB mortality algorithm adjusts TPH and volume to account for dead pine, it does not adjust species composition or basal area.

	Mature (Volume Audit) samples											
Phase I	Phase II Ground leading species at 4cm+ dbh utilization											
Inventory leading spp	AT/AC	В	Н	PL	S (Sb/Sw/Sx)	Total %	Total count					
ΑΤ	2 (67%)	0	0	0	1 (33%)	100%	3					
В	0	17 (90%)	1 (5%)	0	1 (5%)	100%	19					
Н	0	0	0	0	0	100%	0					
PL	2 (12%)	4 (24%)	0	6 (35%)	5 (29%)	100%	17					
S (Sb/Sw/Sx)	0	3 (27%)	0	2 (18%)	6 (55%)	100%	11					
Total %	8%	48%	2%	16%	26%	100%						
Total count	4	24	1	8	13		50					

Table 13: Phase II ground vs. Phase I inventory leading species cross-tabulation, for the Mature (Volume Audit) target population in the Morice TSA (cell value expressed as a percent of the row i.e. Phase I total, is shown in brackets).

Table 14: Phase II ground vs. Phase I inventory leading species cross-tabulation, for the Mature (Volume Audit) target population in the Morice TSA (cell value expressed as a percent of the column i.e. Phase II total, is shown in brackets).

	Mature (Volume Audit) samples											
Phase I	Phase II Ground leading species at 4cm+ dbh utilization											
Inventory leading spp	AT/AC	В	н	PL	S (Sb/Sw/Sx)	Total %	Total count					
ΑΤ	2 (50%)	0	0	0	1 (8%)	6%	3					
В	0	17 (71%)	1 (100%)	0	1 (8%)	38%	19					
Н	0	0	0	0	0	0%	0					
PL	2 (50%)	4 (17%)	0	6 (75%)	5 (38%)	34%	17					
S (Sb/Sw/Sx)	0	3 (12%)	0	2 (25%)	6 (46%)	22%	11					
Total %	100%	100%	100%	100%	100%							
Total count	4	24	1	8	13		50					

3.4 Analysis of Dead Pine

With the prevalence of the Mountain Pine Beetle (MPB), the MFLNRO has developed a methodology to estimate and reflect the dead volume proportion in a stand as an inventory attribute. Under this methodology, dead volume (and trees/ha) estimates are produced so long as a minimum 30% dead pine threshold criterion is met.

The Ministry's Phase I estimates of dead pine volume were compared with the Phase II compiled estimates of dead pine. These results for volume/ha are summarized in Table 15.

The BCMPB model is applied in management units where at least 30% of volume in pine leading stands has been killed by MPB. In pine leading stands, the Phase II ground sample suggests that 54% of the volume was represented by dead pine, which justifies the application of the BCMPB model in this unit. In the Morice TSA, the BCMPB model appears to slightly underestimate (45% vs. 54%) the actual level of pine mortality as a percentage of all live volume plus dead pine, based on a comparison with the Phase II data.

Whereas the BCMPB model suggests that, on average for the sample, 52% of the pine in pine leading stands is dead, the Phase II for the same samples indicates a 74% mortality rate in the pine. Given the ramification

for mid-term timber supply, additional sampling in the pine leading sub-stratum of the mature Volume Audit population are recommended in order to confirm these mortality levels.

		Live – all species A		Live – pine only B		Dead – pine only C		Pine mortality as % of pine C/(B+C)		Pine mortality as % of live all + dead Pl C/(A+C)	
Stratum	n	Ph I	Ph II	Ph I	Ph II	Ph I	Ph II	Ph I	Ph II	Ph I	Ph II
YSM	50	6.2	49.8	3.4	29.9	0.7	2.0	17%	6%	10%	4%
Volume Audit											
Balsam	19	171.2	290.2	0.8	4.9	8.3	6.2	91%	56%	5%	2%
Pine	17	131.2	133.6	102.2	55.7	109.5	156.2	52%	74%	45%	54%
Spruce	11	198.4	164.9	22.3	21.6	27.0	37.8	55%	64%	12%	19%
Other	3	153.8	195.6	2.6	28.1	3.6	88.0	58%	76%	2%	31%
Subtotal	50	162.7	203.1	40.3	27.3	46.7	69.3	54%	72%	22%	25%

Table 15: Weighted average volumes/ha (net dwb at 12.5cm+ dbh), by stratum, indicating pine mortality.

3.5 Limitations of the approach

Attribute definitions in young stands – Some of the Phase I attributes for young stands are obtained from silvicultural records and may have different definition and standards of data collection. In particular, although height and age may have been measured in the field, site index for young stands is usually estimated from SIBEC or from the previous stand (Penner 2012).

Sample unit – Whereas in the Phase I the sample unit is the polygon, in the Phase II the sample unit is a single five plot cluster. In highly variable polygons (polygons with small openings, rock, multi-layered stands, mixes of immature and mature, etc.), a photo-interpreter may reflect this within-polygon variability in the Phase I attribute values that are assigned. However, the Phase II single five plot cluster may not be as effective in capturing such variability.

VDYP7 – VDYP7 is used to project the Phase I attributes to the year of ground sampling. For very young stands, VDYP7 uses a module called VRIYoung which does not estimate the full suite of inventory attributes until the polygon meets the minimum criteria of breast height age ≥ 6 years, dominant height ≥ 6 m and basal area (7.5cm+ dbh) ≥ 2 m². Hence VDYP7 may not be the most appropriate model for projecting young managed stands (Penner 2012). In the timber supply analysis process, the table interpolation program for stand yields (TIPSY) is generally used instead of VDYP7 for estimating yields of young coniferous leading managed stands.

Net merchantable volume – VDYP7 and the Phase II ground compiler use different methods to reduce whole stem merchantable volume to merchantable volume net of decay, waste and breakage (DWB). Net factoring, in combination with the net volume adjustment factor (NVAF), is the approach used in the ground compiler and is generally considered more accurate and precise. VDYP7 was fitted based on TSP and PSP data where net volumes were estimated using BEC-based loss factors. Any net volume estimation bias associated with the BEC-based loss factors is built into the VDYP7 model.

BCMPB mortality algorithm – The MPB mortality algorithm is applied to the pine component of the trees/ha and volume/ha estimates from VDYP7. Other attributes such as basal area and species composition are *not* adjusted when this algorithm is implemented. It is important to keep this in mind when interpreting the results herein.

4. CONCLUSIONS AND RECOMMENDATIONS

The VRI statistical analysis for the mature (Volume Audit) target population in the Morice TSA suggests that the Phase I volume is underestimated by 25%. *However, this result must be interpreted with caution*. The sampling error associated with this estimate is very high ($\pm 24\%$) and does not meet the target sampling error level of $\pm 15\%$. Additional sampling may improve the precision of the bias estimates.

With the exception of the Pine leading stratum, trends in basal area bias are reflected in the trends in volume bias. The sample suggests that the Phase I underestimates both basal area and volume in the Balsam leading stratum. In the Spruce leading stratum, these attributes appear to be overestimated in the Phase I. Because of high stratum sampling errors, confidence in these bias trends is limited.

Overall in the mature strata, age and to a lesser degree height is generally overestimated in the Phase I inventory. Site index in the mature strata is slightly underestimated. Of all the Phase I attributes that were examined in this analysis, trees/ha showed the highest levels of bias and was consistently underestimated in all of the main leading species strata. In about 62% of the mature samples, the assignment of leading species matched in both the Phase I.

Inference for the YSM stratum is limited since many of the stands in this sample have not yet achieved the thresholds required for VDYP7 to produce a basal area or volume estimate. Phase I ages and heights in this stratum appear to be underestimated. Leading species identification was good with 78% of the samples having the same leading species in the Phase I and Phase II.

The Phase I volume/ha and trees/ha attributes in VRIMS have been adjusted for pine mortality using the BCMPB algorithm. However, the BCMPB model does not adjust Phase I basal area. As a result, the observed Phase I basal area overestimation in the Pine leading stratum is likely due to a significant dead pine component. In the Morice TSA, the BCMPB model appears to slightly underestimate (45% vs. 54%) the actual level of pine mortality as a percentage of all live volume plus dead pine, based on a comparison with the Phase II data. Whereas the BCMPB model suggests that, on average for the sample, 52% of the pine in pine leading stands is dead, the Phase II for the same samples indicates a 74% mortality rate in the pine.

Based on the inventory analysis in Morice TSA, the following recommendations and observations are made:

- Inference for the Volume Audit (mature) target population is limited because of high variability and low confidence in the estimates. To reduce the sampling error for volume, it is recommended that additional samples be established in this target population.
- The sample suggests that the BCMPB volume adjustment for MPB mortality is performing adequately. However, sampling error, particularly in the Pine leading stratum is high and additional samples may strengthen this inference.
- An examination of whole stem volumes, particularly in the Balsam leading stratum, may provide a better understanding of the contribution of loss factor bias to model-related volume bias.
- Alternative approaches and/or improvements to Phase I basal area estimation should be investigated, particularly in the Balsam leading stratum.
- Analysis procedures tailored specifically for the unique inventory characteristics of younger stands (i.e. stands less than 30 years of age) should be developed for future data analysis of these types of ground samples.
- A uniform extract process from the LRDW that would include all the Phase I attributes required for the VRI sample data analysis and be limited to the set of polygons that have been matched to the Phase II ground sample (merged based on cluster id and feature id) should be developed for future VRI sample data analyses.

• This report is a technical document intended to provide complete details of the analysis. However, it is also recommended that a template for communicating these results in a uniform, succinct format suitable for wider distribution be developed.

5. LITERATURE CITED

- FAIB. 2007. Urgent timber supply review for the Morice timber supply area: Public Discussion Paper. Ministry of Forests and Range, Forest Analysis and Inventory Branch. June 2007. 15p.
- FAIB. 2011. Vegetation Resources Inventory VRI sample data analysis procedures and standards. Version 1, June 2011. Ministry of Forests and Range, Forest Analysis and Inventory Branch. 23p + app.
- Nona Phillips Forestry Consulting. 2012a. Morice TSA VRI Sample Selection Report. March 2012. 26p.
- Nona Phillips Forestry Consulting. 2012b. Morice Timber Supply Area TSA 20: Vegetation Resources Inventory Project Implementation Plan for Volume Audit Sampling, Young Stand Monitoring and Net Volume Adjustment Factor Sampling. March 21, 2012. 14p + app.
- Penner. 2012. TFL 18 Documentation of Vegetation Resources Inventory Statistical Analysis. November 16, 2012. Prepared by Margaret Penner, Forest Analysis Ltd. 14p + app.
- Timberline. 2007. Morice Timber Supply Area Vegetation Resources Inventory Strategic Inventory Plan. Prepared by Timberline Natural Resource Group Ltd. March 2007. 20p + app.

6. APPENDIX A: PHASE I INVENTORY ATTRIBUTES

7. APPENDIX B: PHASE II COMPILED GROUND ATTRIBUTES

See embedded spreadsheet in Appendix A.

8. APPENDIX C: DATA ISSUES AND POTENTIAL "OUTLIERS"

Data issues and potential sample "outliers" were forwarded to the MFLNRO for further investigation, including examination of air photos. Some of these samples have been identified on the scatterplots in Appendix F. The following comments were provided by Graham Hawkins and Will Smith (MFLNRO).

Sample	Comments
3	BA difference is probably OK – phase 1 typing in a polygon with quite a bit of variability
5	BA difference is likely due to it being in a polygon with lots of rock, could also be due to model limitation (very low phase 1 ht and 0 phase 1 BA)
6	BA difference and phase 1 polygon looks OK – could be due to model limitation (FIPSTART VDYP7?)
8	BA difference and phase 1 BA may have been typed too low
10	BA difference and MPB kill noted in this polygon (not contributing to BA)
11	Age difference may be caused by there being two layers in the polygon
18	Sample is misplaced and should be in polygon 618 which is balsam stratum and not in polygon 619. This plot is close to the type line but it would stay in balsam. NOTE: <i>PHASE I ATTRIBUTES FOR POLYGON 618 WERE USED IN THE ANALYSIS</i> .
46	Sample is misplaced and belongs in polygon 603 which puts it in the spruce stratum and not in polygon 224. BA difference in this poly which is a mix of mature and immature NOTE: <i>PHASE I ATTRIBUTES FOR POLYGON 603 WERE USED IN THE ANALYSIS</i> .
23, 25, 29, 30, 32, 34 & 35	These samples are in polygons with significant MPB kill which is likely the reason for the large BA anomalies with these plots
37	BA difference may be due to model limitation (FIPSTART VDYP7?)
40	Height difference appears to be a phase 1 typing error and the polygon looks immature. NOTE: THIS SAMPLE REMAINED IN THE ANALYSIS BUT APPENDIX D SHOWS RESULTS WITH THIS SAMPLE EXCLUDED.
43	BA difference probably OK as there are small openings in the polygon and the sample may have fallen in some of these 'holes'
45	BA difference probably OK (same reason as for sample 43)
YSM samples	Everything for the YSM samples matches up well for location (save a few UTM points or so) with the exception of sample 79 which fell right on a road and had been moved. I noticed a couple of relatively small shifts in three plots but not huge moves (comparing coordinates in the sample file with those in the Nona sample selection file) but these were pretty minor and wouldn't explain the issues with the outliers. The BA issues could be related to model limitations. The couple of age and height anomalies are likely due to poor typing in the old inventory carried up to present (I recall it's '94 vintage) and those two TPH outliers may be caused by carrying over old RESULTS data in the original inventory with the new ground numbers being OK.

9. APPENDIX D: ATTRIBUTE BIAS RESULTS WITH SAMPLE #40 EXCLUDED

Sample #40 showed particularly large differences between the Phase I and II attribute values. It was determined by MFLNRO staff that this was likely due to a Phase I photo-typing error. This sample was not excluded in the main analysis because it was a valid example of a potential source of bias in the inventory.

However, because of the potential influence of this sample on the attribute means and ratios of means, a supplementary set of results that *excluded* this sample are shown in the Tables that follow.

Table D-1: Sample-estimated weighted means for the Phase I inventory and Phase II ground sample for seven key inventory attributes, for the volume audit (mature) target population in the Morice TSA, with Sample #40 excluded. Impacts of Sample #40 are shown in RED. Shading indicates small sample size.

	Weighted Means									
	Immature									
Attribute	(YSM samples) Balsam		Pine	Spruce (sample #40 excluded)	Other	All mature strata				
Age (years)										
n	48	19	17	10	3	49				
Phase II Ground	35	191	117	141	79.1	148				
Phase I Inventory	30	212	127	162	89.7	164				
Height (m)										
n	48	19	17	10	3	49				
Phase II Ground	11.3	20.8	21.3	22.4	23.9	21.5				
Phase I Inventory	8.9	22.1	22.1	25.0	21.0	22.6				
Basal area (m2/ha) at 7.5cm+ dbh										
n	50	19	17	10	3	49				
Phase II Ground	19.2	46.7	22.0	24.0	26.3	32.1				
Phase I Inventory	4.0	30.8	34.2	29.2	32.7	31.8				
Trees/ha at 7.5cm+ dbh										
n	48	19	17	10	3	49				
Phase II Ground	1422	1478	871	631	707	1043				
Phase I Inventory [1]	1637	785	671	559	1000	711				
Lorey height (m)										
n	31	19	17	10	3	49				
Phase II Ground	10.2	17.8	18.5	19.9	22.6	18.8				
Phase I Inventory	9.2	17.1	18.8	21.0	18.8	18.6				
Volume/ha (m3/ha) at 12.5cm+ dbh net dwb										
n	50	19	17	10	3	49				
Phase II Ground	49.8	290.2	133.6	175.0	195.6	205.9				
Phase I Inventory [2]	6.2	171.2	131.2	200.3	153.8	162.4				
Site index (m) [3]										
n	40	17	8	6	2	33				
Phase II Ground	19.6	8.8	15.4	11.0	18.8	11.4				
Phase I Inventory	17.7	8.8	15.0	9.6	14.4	10.8				

NOTES:

[1] The Phase I trees/ha from VRIMS represent LIVE values (net of dead Pl) after the MPB mortality model has been applied.

[2] Phase I volume has been adjusted using the MPB mortality model hence represents LIVE trees net of dead pine.

[3] Sample #40 did not have a suitable Phase I and II leading species match for site index comparison hence exclusion of Sample #40 did not affect site index.

Table D-2: Ratio of means comparisons (and sampling error % at a 95% confidence level) for seven attributes, for the target populations in the Morice TSA, with Sample #40 excluded. Impacts of Sample #40 are shown in RED. Shading indicates small sample size.

			Ratio of	Ratio of weighted means (with 95% sampling error shown as % of the ratio)								
	Stratum		Age (years)	Height (m)	Basal area (m²/ha)	Trees/ha	Lorey height (m)	Volume net dwb (m³/ha)	SI (m)			
YSM (I	mmature)	50	1.175 (±15.4%)	1.270 (±10.7%)	4.017 (±35.9%)	0.869 (±41.4%)	1.107 (±12.8%)	7.995 (±74.1%)	1.108 (±7.5%)			
Volum	e Audit (Mature)											
	Balsam	19	0.902 (±14.1%)	0.943 (±12.0%)	1.517 (±26.2%)	1.884 (±20.2%)	1.042 (±15.3%)	1.695 (±37.8%)	0.994 (±23.6%)			
	Pine	17	0.923 (±12.3%)	0.962 (±8.0%)	0.644 (±30.5%)	1.297 (±34.4%)	0.980 (±13.0%)	1.018 (±43.5%)	1.030 (±19.2%)			
	Spruce	10	0.871 (±22.1%)	0.896 (±17.9%)	0.822 (±32.7%)	1.130 (±34.0%)	0.949 (±13.2%)	0.874 (±35.9%)	1.142 (±24.6%)			
	Other	3	0.881 (±25.1%)	1.134 (±6.3%)	0.803 (±41.3%)	0.707 (±13.0%)	1.205 (±19.7%)	1.272 (±54.7%)	1.300 (±8.2%)			
	Subtotal	49	0.901 (±8.4%)	0.950 (±6.4%)	1.012 (±17.2%)	1.466 (±18.9%)	1.008 (±8.0%)	1.268 (±23.7%)	1.054 (±13.3%)			

10. APPENDIX E: HEIGHT AND AGE MATCHING

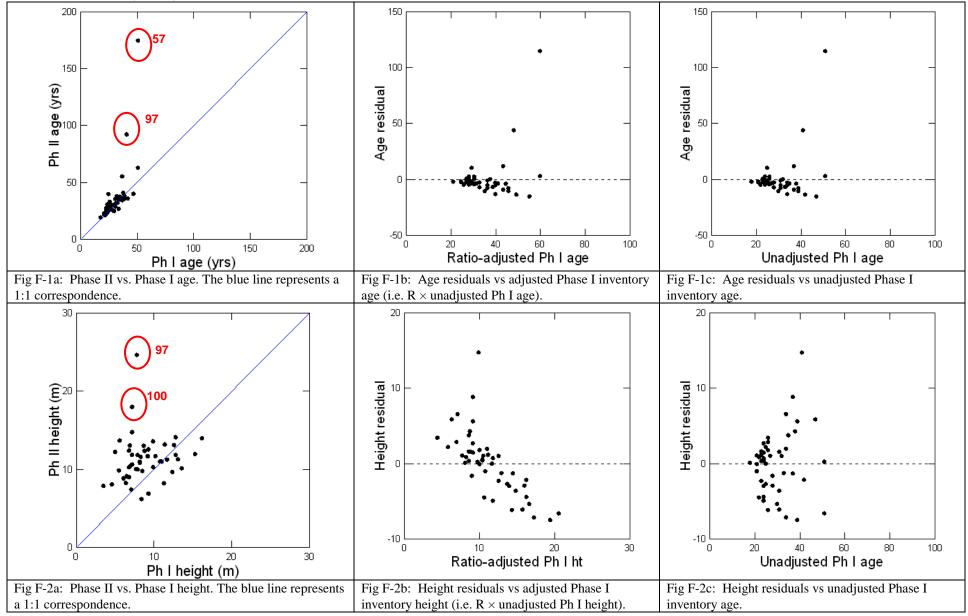
The current standard for Phase II ground age and height is based on the average of the T, L, X and O trees. The matching typology is as follows:

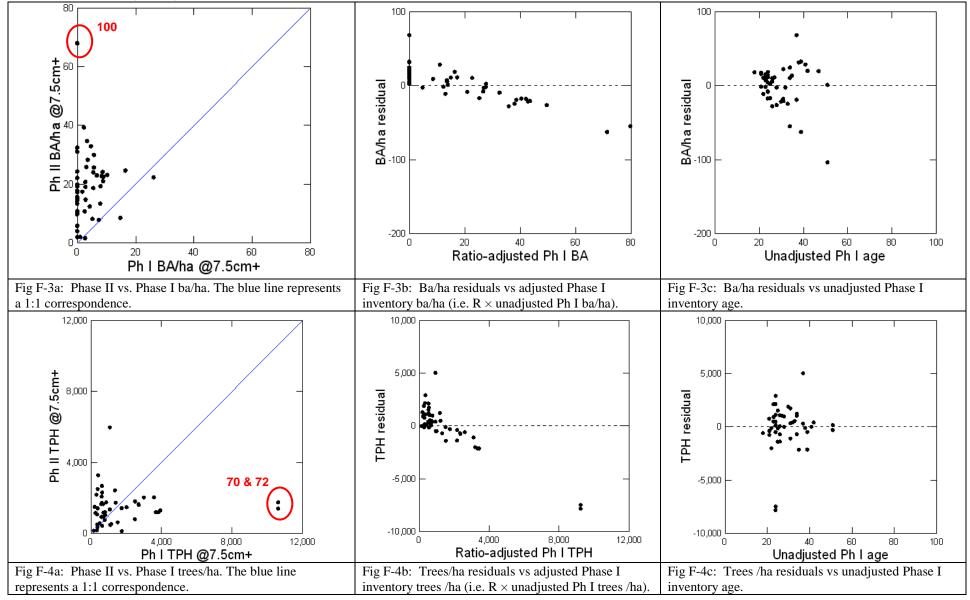
- Case 1: Phase I leading species matches the Phase II leading species at the Sp0 level
- Case 2: Phase I second species matches the Phase II leading species at the Sp0 level
- Case 3: Phase I leading species matches the Phase II leading species on a conifer-to-conifer (or deciduous-to deciduous) basis
- Case 4: Phase I second species matches the Phase II leading species on a conifer-to-conifer (or deciduous-to deciduous) basis
- Case 5: No match

Of the 100 samples used in the analysis, 70% indicated a match between the Phase I inventory leading species and the Phase II ground leading species at 4cm+ dbh utilization. A further 3 samples were matched based on the inventory secondary species. Note that there were 12 samples where the inventory secondary species matched the ground leading species but where no Phase I height or age data were available for the secondary species (these cases are denoted by 3* in the table below). It was possible, however, to match these samples on a conifer-to-conifer or deciduous-to-deciduous basis. Thirteen additional samples were also matched on the same (i.e. Case 3) basis. Two samples could not be matched and were therefore excluded from the development of the age and height comparison ratios. Both of these samples (#78 and #92) were in the YSM stratum.

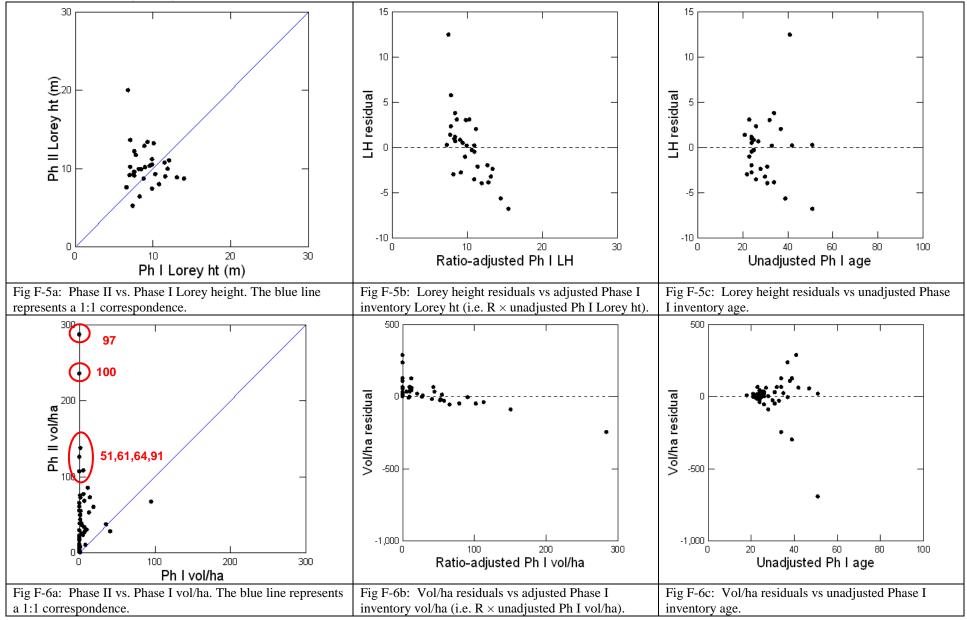
SAMPLE	Phase II (ground) lead spp @ 4cm+dbh	Ph II lead species age (aget_tlxo)	Ph II lead species hei ght (ht_tlxo)	Number of age trees (n_ag_tlxo)	Number of height trees (n_ht_tlxo)	Ph I inventory lead SP01	Ph I inventory second SP02	Case for match	Ph I age for match (depending on case; msg if case 5)	Ph I ht for match (depending on case; msg if case 5)
0001	BL	202.19	14.66	5	5	BL	PA	1	201	13.5
0002	BL	279.67	19.58	5	5	В	S	1	240	19.6
0003	BL	208.19	23.98	5	5	BL		1	181	15.8
0004	BL	247.04	19.88	5	5	BL	HM	1	201	13.5
0005	BL	69.3	12.02	5	5	BL		1	71	10
0006	BL	275.1	23.28	5	5	BL		1	271	15.1
0007	BL	196.78	19.1	5	5	В	S	1	241	25.1
0008	HM	133.7	18.44	5	5	В		3	270	25.8
0009	BL	172.5	16.34	5	5	В		1	190	19.6
0010	BL	182.25	10.55	4	4	BL	PL	1	81	21.1
0011	В	178.65	27.53	3	3	В		1	340	25.4
0012	S	156.4	23.4	1	1	В	S	3	201	20.5
0013	BL	204.17	18.5	3	3	BL	SW	1	242	27.7
0014	BL	185.68	30.3	5	5	BL	PL	1	221	29

Table E-1: Phase I and II heights and ages for ratio comparison

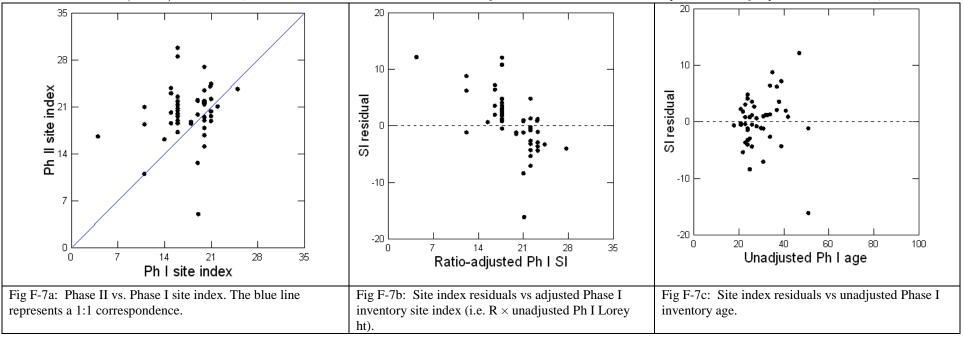

SAMPLE	Phase II (ground) lead spp @ 4cm+dbh	Ph II lead species age (aget_tlxo)	Ph II lead species hei ght (ht_tlxo)	Number of age trees (n_ag_tlxo)	Number of height trees (n_ht_tlxo)	Ph I inventory lead SP01	Ph I inventory second SP02	Case for match	Ph I age for match (depending on case; msg if case 5)	Ph I ht for match (depending on case; msg if case 5)
0015	BL	185.3	21.6	5	5	В	S	1	271	30.6
0016	BL	191.1	22.82	5	5	В	S	1	201	25.3
0017	BL	231.92	24.76	5	5	В	S	1	178	25.3
0018	BL	160.3	18.8	5	5	S	BL	1	200	25.3
0019	BL	171.21	30.62	5	5	В	S	1	221	31.8
0020	SX	62.83	18.3	3	3	PL	SW	2	61	17.7
0021	AT	84.6	23.72	5	5	PL	AT	3*	121	22.5
0022	PLI	41.83	10.3	3	3	PL	SX	1	57	11.2
0023	S	129.1	23.18	5	5	PL	S	3*	121	22.5
0024	PLI	66.5	17.68	5	5	PL		1	66	18.9
0025	PL	76.7	18.96	5	5	PL		1	86	21.9
0026	AT	57	20.42	5	5	PL	AT	3*	88	21.1
0027	PL	83.5	19.35	5	6	PL		1	80	19
0028	S	76.3	24	5	5	PL		3	80	23.2
0029	BL	294.39	16.5	5	5	PL		3	221	26.4
0030	SX	191.1	17.68	5	5	PL	SX	2	198	24.1
0031	BL	141.52	26.36	5	5	PL	BL	3*	201	24.5
0032	PLI	117.1	31.14	5	5	PL		1	155	24.9
0033	PL	116.1	24.48	5	5	PL	S	1	115	22.6
0034	BL	179.7	25.6	5	5	PL	S	3	161	25.8
0035	BL	162	19.1	4	4	PL		3	221	24.4
0036	S	126.75	25.1	4	4	PL	S	3*	138	26.4
0037	S	150.7	23.96	5	5	SB	SW	1	116	14.2
0038	S	221.3	12.82	5	5	SB	SW	1	185	15.5
0039	SB	158.3	17.36	5	5	SB	SW	1	135	17.1
0040	PLI	20.5	8.4	1	1	SW	BL	3	242	28.4
0041	BL	155.2	25.7	6	5	S	PL	3	121	27.3
0042	S	114.1	29.44	5	5	S	PL	1	163	28
0043	SX	134.33	16.38	6	5	SW	BL	1	142	26.8
0044	BL	140.52	29.8	5	5	S	В	3*	205	34.2
0045	BL	113.71	24.7	5	5	S	PL	3	141	30.5
0046	PLI	27.25	12.65	4	4	S		3	130	26.8
0047	SX	194.5	31.22	5	5	SX	PL	1	273	29.7
0048	AT	69.59	20.84	5	5	AT	S	1	71	17.5
0049	AT	58.37	20.62	5	5	AT	PL	1	90	19.6
0050	SX	104.31	29.08	5	5	AT	S	3*	105	25.2
0051	PL	37.5	13.53	4	4	PL		1	32	9.9
0052	PL	30.5	10.8	4	4	PL	BL	1	24	8.2
0053	PL	34	13.13	4	4	PL		1	37	11.4

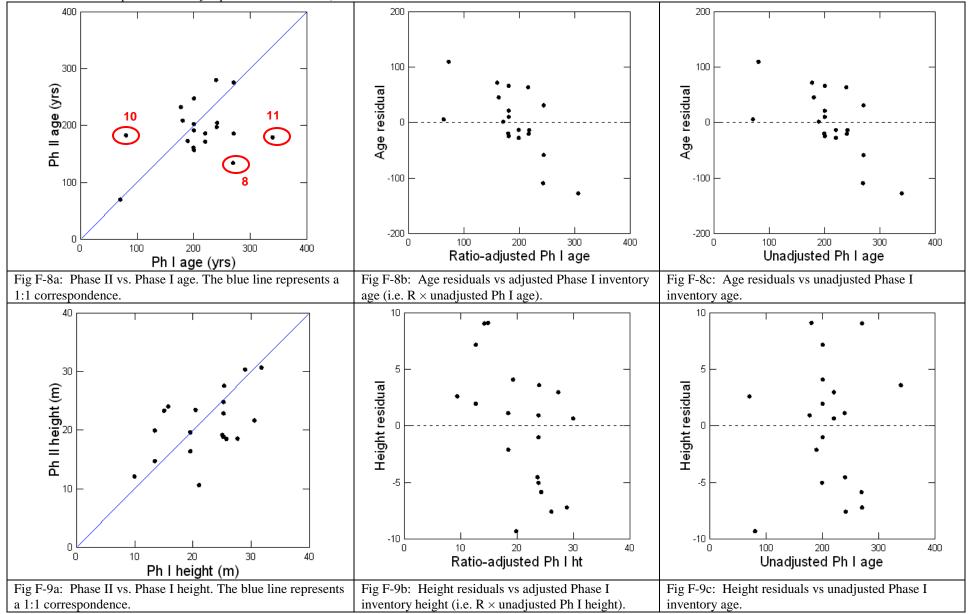

SAMPLE	Phase II (ground) lead spp @ 4cm+dbh	Ph II lead species age (aget_tlxo)	Ph II lead species hei ght (ht_tlxo)	Number of age trees (n_ag_tlxo)	Number of height trees (n_ht_tlxo)	Ph I inventory lead SP01	Ph I inventory second SP02	Case for match	Ph I age for match (depending on case; msg if case 5)	Ph I ht for match (depending on case; msg if case 5)
0054	PL	35.17	9.6	3	3	PL		1	31	12.4
0055	PL	30.3	10.9	5	5	PL	BL	1	24	8.2
0056	BL	62.57	9.98	4	4	В	Н	1	51	7.7
0057	BL	174.5	13.93	3	3	BL	S	1	51	16.2
0058	PL	26.75	10.23	4	4	PL	S	1	23	9.9
0059	SX	31	10.4	4	4	S	BL	1	31	7
0060	SX	27.5	6.83	4	4	PL	S	3*	24	9.3
0061	SX	40.5	13	4	4	S	PL	1	38	6.9
0062	PL	35.1	11.9	5	5	PL	S	1	39	15.3
0063	PL	25.5	8.94	5	5	PL	S	1	23	6.8
0064	SX	37.7	14.7	5	5	S	PL	1	39	7.2
0065	SX	31	8.15	2	2	PL	S	3*	26	11.3
0066	PLI	28.5	11.2	4	4	PL	AT	1	31	11.7
0067	AT	20.75	9.08	4	4	PL	AT	3*	22	6.5
0068	PLI	25.5	7.35	2	2	PL	SX	1	28	7.1
0069	PLI	25.5	11.63	3	3	PLI	SX	1	25	9.2
0070	PL	23.5	10.55	4	4	PL		1	24	7.2
0071	PLI	26.75	11.78	4	4	PL		1	26	7.9
0072	PL	25	11.8	4	4	PL		1	24	7.2
0073	PLI	24.25	10.2	4	4	PL	AT	1	23	6.8
0074	PL	21.17	6.13	3	3	PL	S	1	22	8.4
0075	PLI	39.7	12.18	5	5	PL		1	47	5
0076	PLI	24.5	11.23	4	4	PLI	ACT	1	30	13.1
0077	PLI	22.5	8.78	5	5	PL	S	1	21	6.1
0078	ACT	32.17	21.43	3	3	PL	S	5		
0079	PL	27.25	12.3	4	4	PL	AT	1	23	8.8
0080	PLI	29.9	13.04	5	5	AT	PL	3*	28	12.6
0081	PLI	28	11.53	4	4	PL	S	1	27	8.3
0082	S	37.25	12.35	4	4	PL	BL	3 3*	35	6.8
0083	BL	32.75	7.83	4	4	S	BL		26	3.5
0084	PL PLI	26.5	10.08	4 5	4 5	PL	BL S	1 1	34	13.6
0085		31.7	11.64	5		PL S		1	33	10.2 5.6
0086	SX S	36.75 35.5	13.63 14.06	4 5	4 5		BL		34	
0087 0088	S PLI	35.5 21.75	9.73	4	4	SX SX	BL PLI	1 2	42 21	12.8 8.5
0088	PLI S	21.75	9.73	4	4	PL	AT	2	21	9.3
0089	PLI	27.75	10.95	4	4	PL PL	AT		24	9.5
0090	SX	34.5	10.93	3	3	PL S	AT	1	34	8.7
0091	AT	23	16.23	4	4	PL	AI	5		
0092	A1	23	10.23	4	4	ΓL		J	٠	

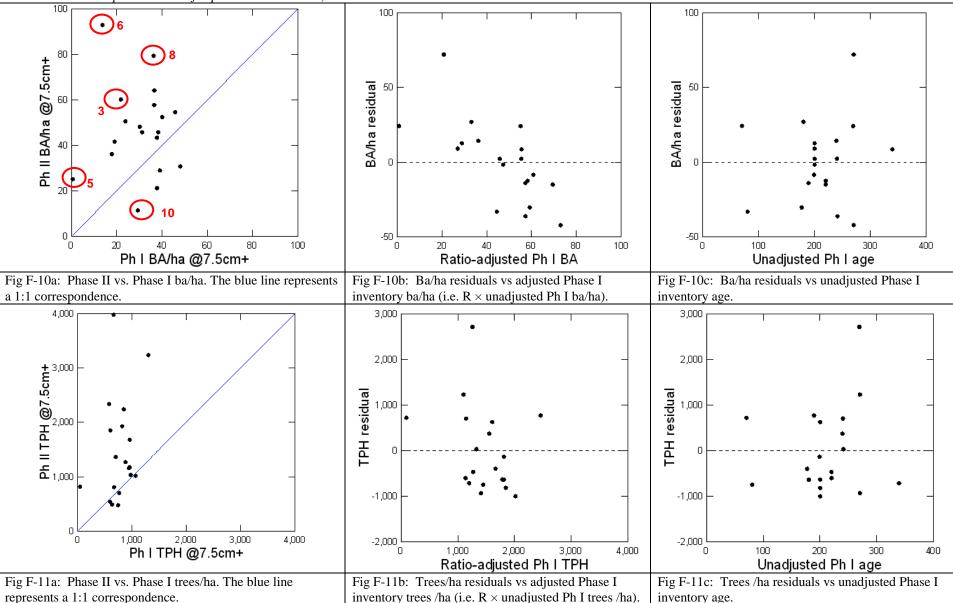
SAMPLE	Phase II (ground) lead spp @ 4cm+dbh	Ph II lead species age (aget_tlxo)	Ph II lead species hei ght (ht_tlxo)	Number of age trees (n_ag_tlxo)	Number of height trees (n_ht_tlxo)	Ph I inventory lead SP01	Ph I inventory second SP02	Case for match	Ph I age for match (depending on case; msg if case 5)	Ph I ht for match (depending on case; msg if case 5)
0093	S	39.5	8	2	2	S	BL	1	25	4.6
0094	PL	23.25	11.78	4	4	PLI	ACT	1	24	12.8
0095	PL	22.1	9.92	5	5	PLI	SX	1	21	7.9
0096	S	25.9	9.8	5	5	S		1	26	5.5
0097	BL	91.91	24.6	4	4	S		3	41	7.8
0098	PLI	27.3	10.96	5	5	PL		1	25	10.8
0099	PLI	18.75	8.2	4	4	PLI	BL	1	18	6.4
0100	PL	55	17.93	4	4	PL	S	1	37	7.2


11. APPENDIX F: SCATTERPLOTS AND RESIDUALS FOR RATIO ANALYSIS

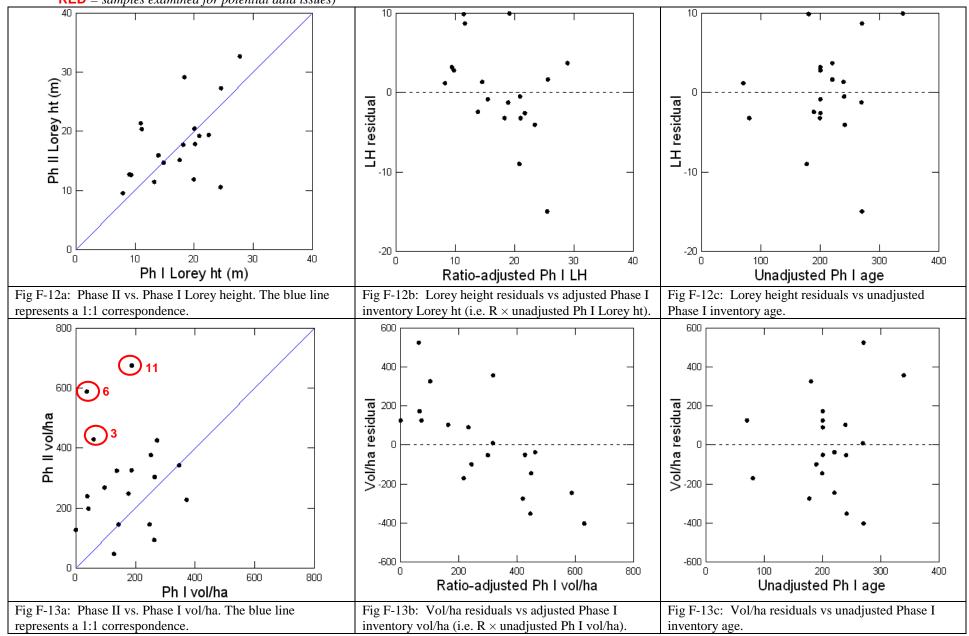
Immature (YSM) stratum (Note: RESIDUAL = Phase II value – ratio-adjusted Phase I value. **RED** = samples examined for potential data issues)

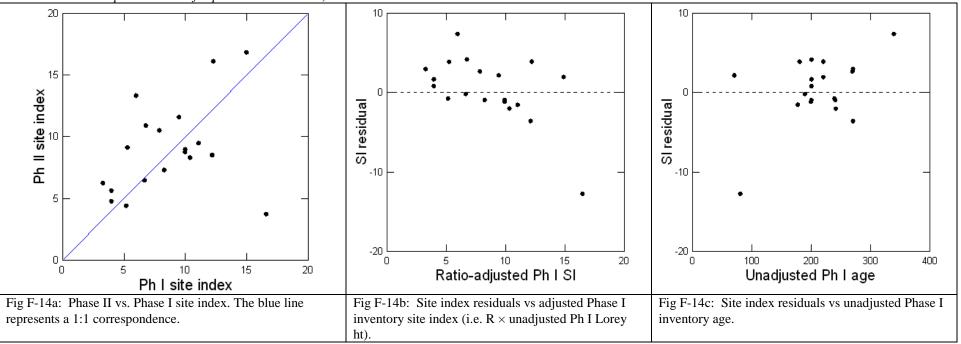


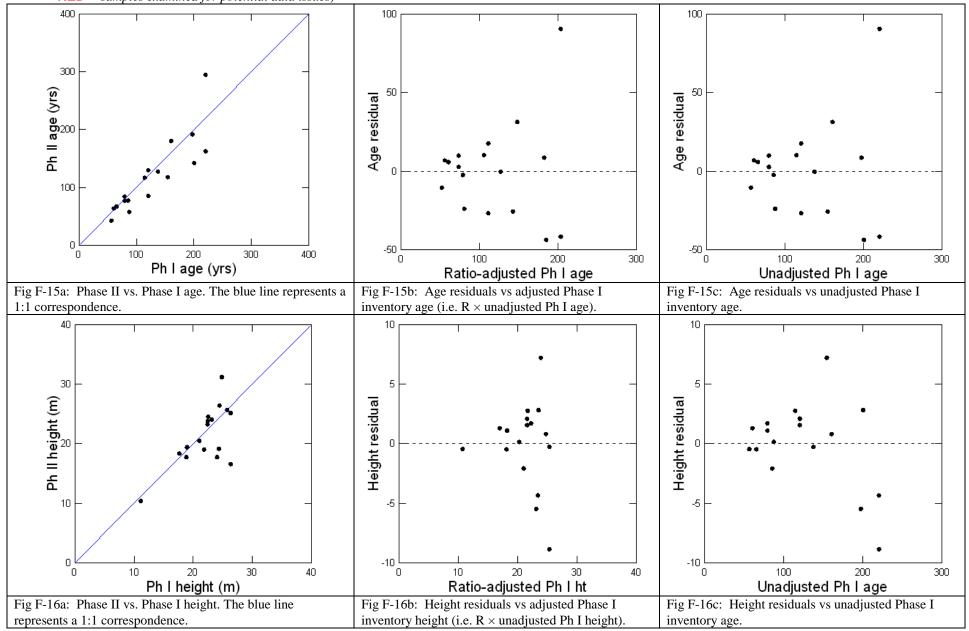

Immature (YSM) stratum (Note: RESIDUAL = Phase II value – ratio-adjusted Phase I value. **RED** = samples examined for potential data issues)

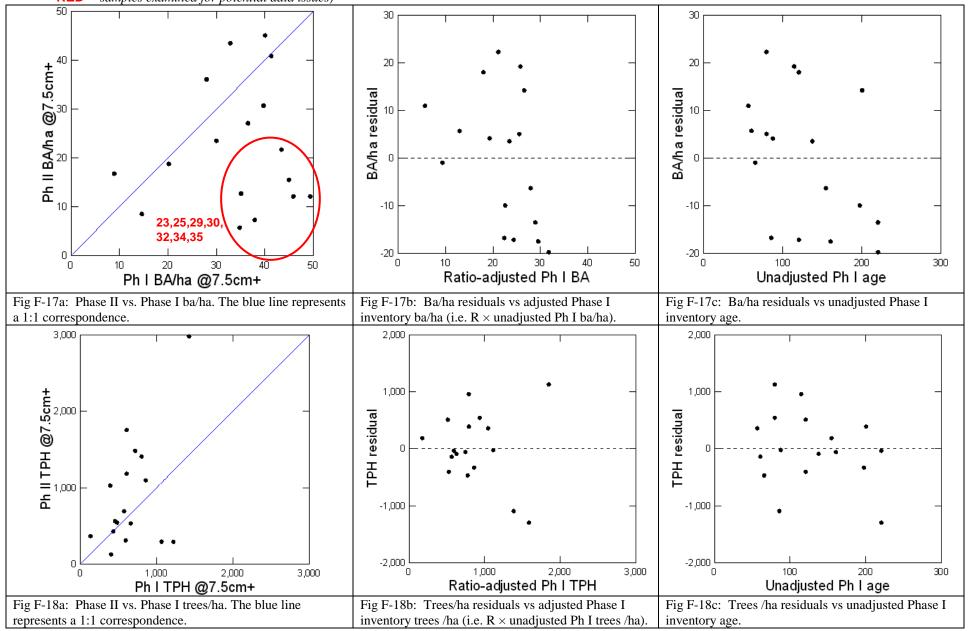


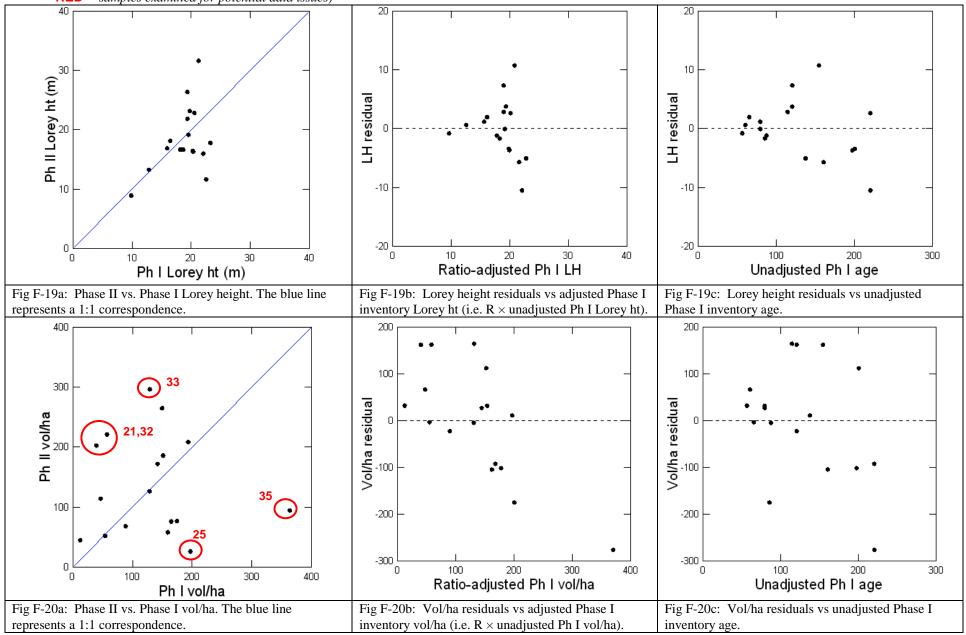
Immature (YSM) stratum (Note: RESIDUAL = Phase II value – ratio-adjusted Phase I value. **RED** *= samples examined for potential data issues)*

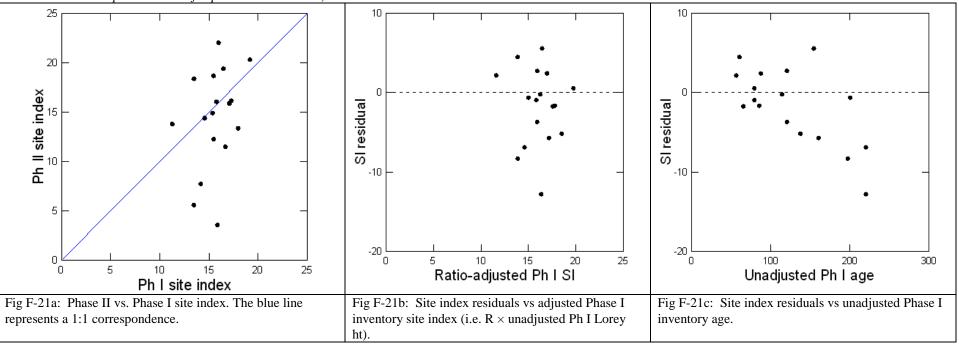


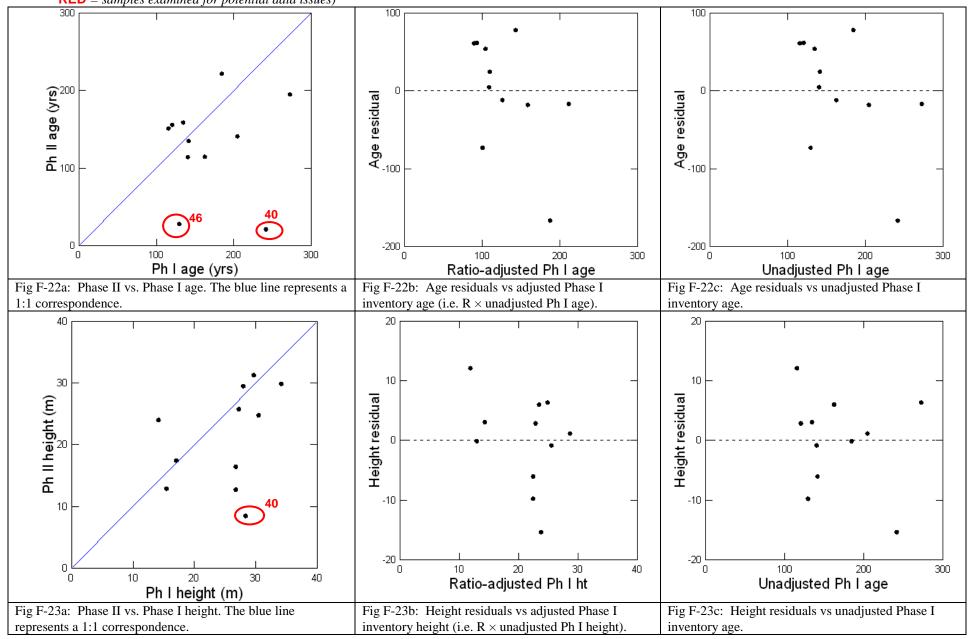

Immature (YSM) stratum (Note: RESIDUAL = Phase II value – ratio-adjusted Phase I value. **RED** = samples examined for potential data issues)

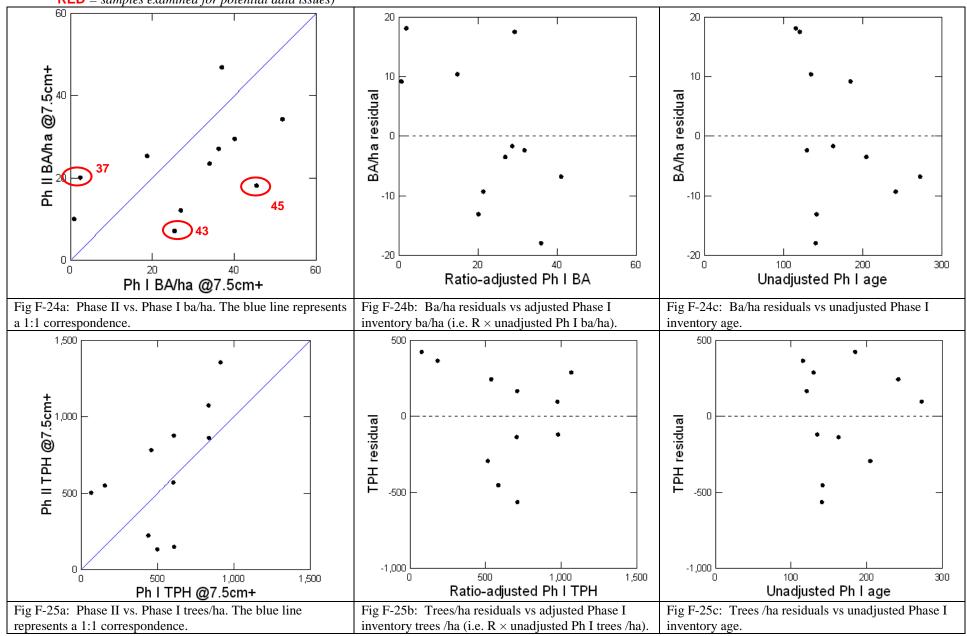


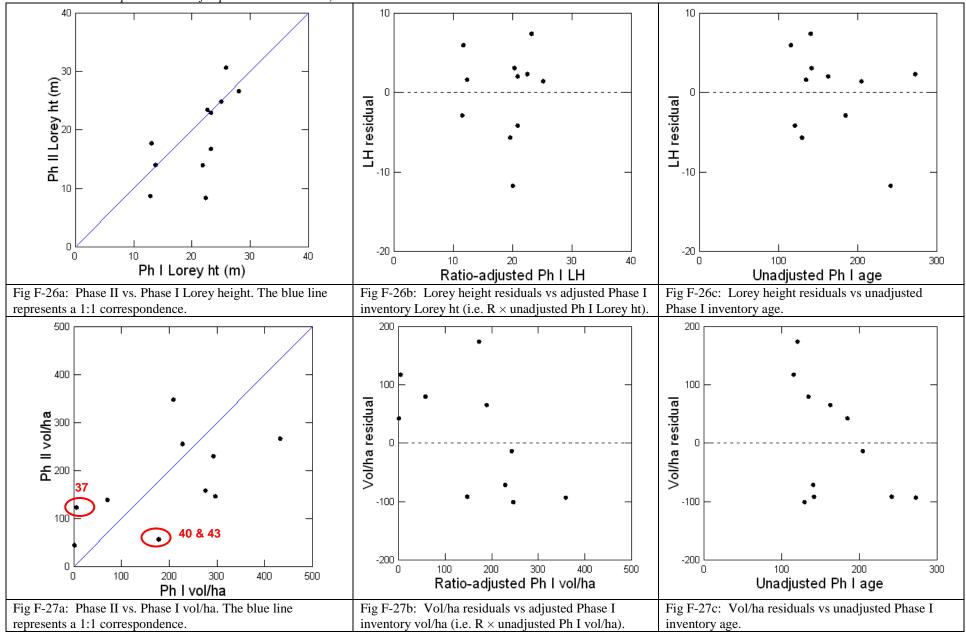


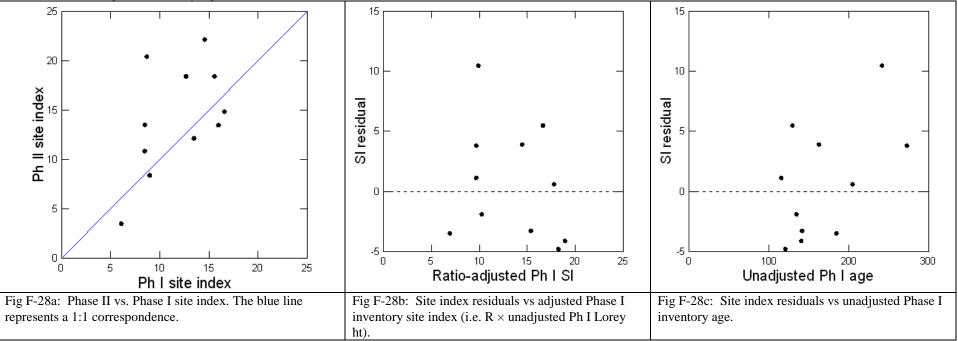

March 2013

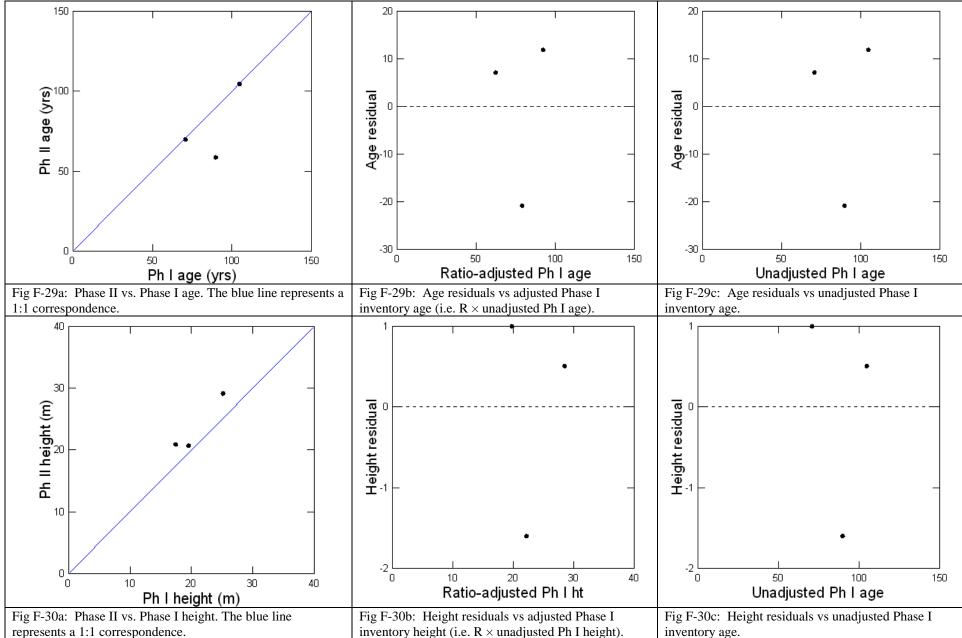


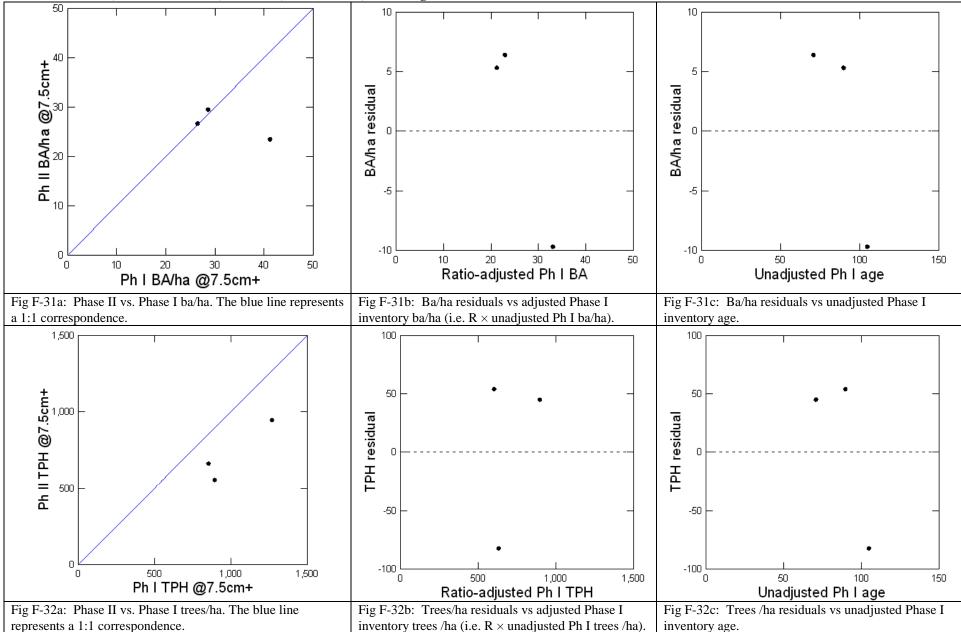


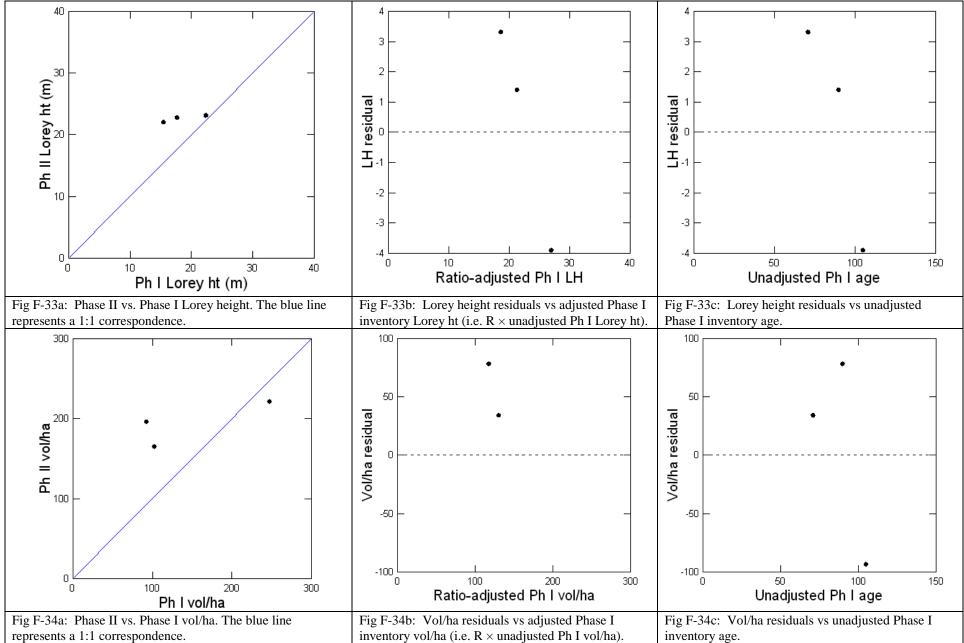


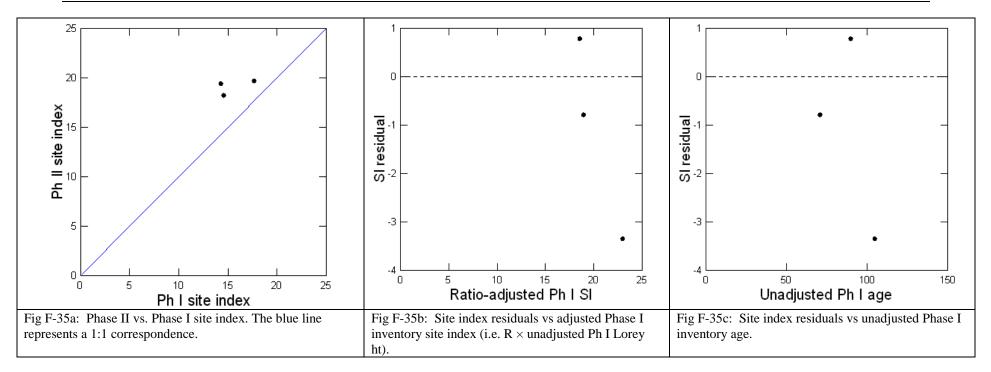


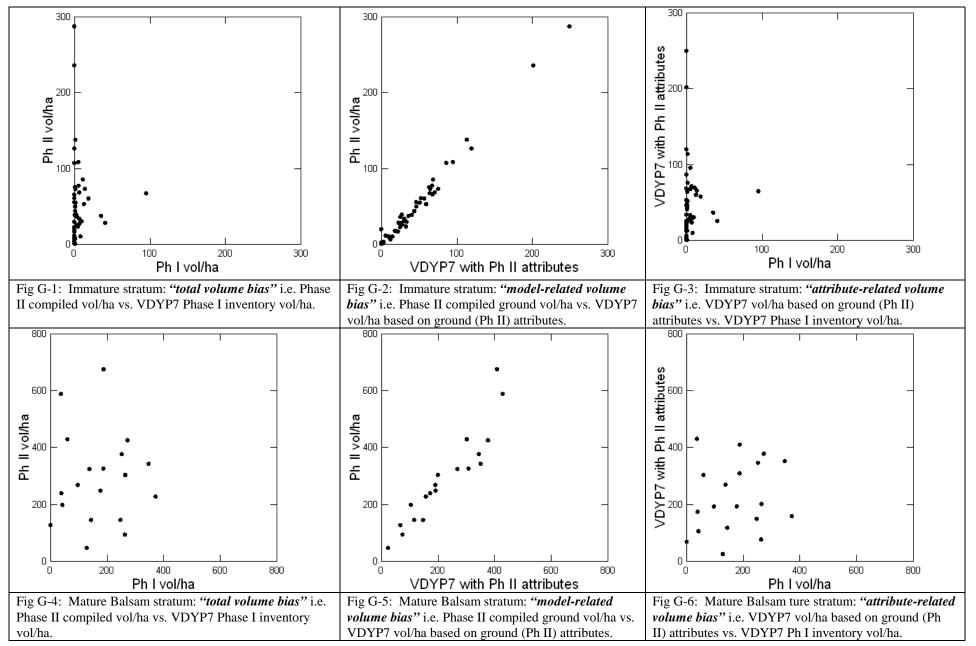


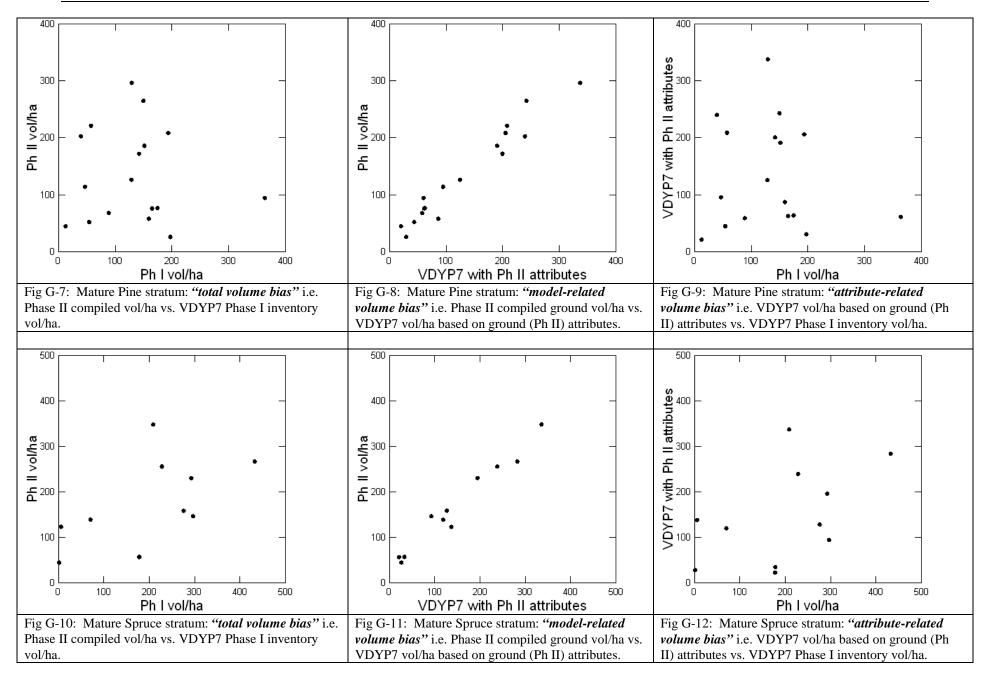


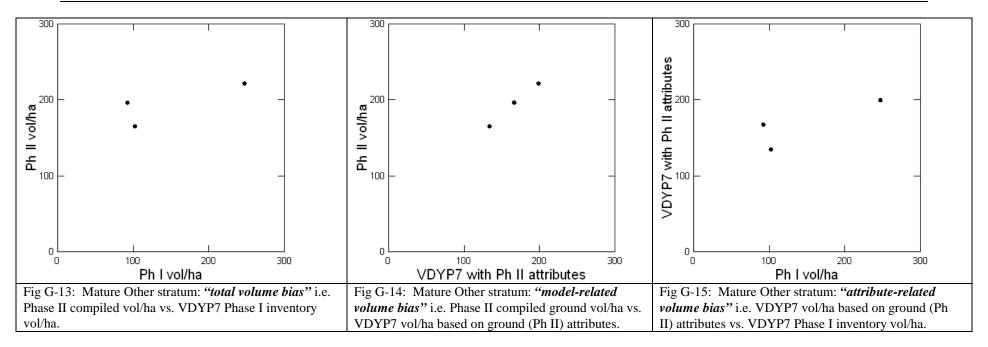



Jahraus Consulting Inc.


Mature (Volume Audit) Other (deciduous) leading stratum (Note: RESIDUAL = Phase II value – ratio-adjusted Phase I value)




Mature (Volume Audit) Other (deciduous) leading stratum (Note: RESIDUAL = Phase II value – ratio-adjusted Phase I value)



Mature (Volume Audit) Other (deciduous) leading stratum (Note: RESIDUAL = Phase II value – ratio-adjusted Phase I value)

13. APPENDIX H: SAMPLE SELECTION DOCUMENTS

