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SUBJECT: The Use of Indicator Variables in Non-linear Regression

Indicator variables1 are one of the chief concepts behind statistical techniques such as simple linear
regression and analysis of variance (ANOVA).  However, their implementation often goes unnoticed because
most statistical packages create them automatically "behind the scenes".  Indicator variables are used to
identify the different levels of class variables such as treatments or blocks.  This allows the proposed
statistical model to recognize the different groups.  This pamphlet will discuss how to use indicator variables
in more elaborate models such as nonlinear curve fitting.

To begin with, let us consider an example of simple linear regression where a straight line is fitted
through observed yi 's and xi 's.  The statistical model is

iii xy εβα ++= 00

where, 0α  is an unknown parameter2 representing the intercept,
0β  is an unknown parameter representing  the slope, and

as usual,  i n= 1 2, , ,�   and the errors ( )2,0~ σε Ni .

A measure of model fit (or lack-of-fit, depending on your politics) is provided by the residual sum of
squares (also called sum of squared deviations or sum of squared errors), denoted here as SSE.  It is calculated
by adding the squared difference between the observed and fitted values obtained from the model over all
observations.  For this example, it is simply
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Now suppose that a more complicated model is proposed where a treatment is expected to change the
slope when compared to a control.  This results in a model with one intercept 0α  and two different slope
parameters 0β  and 1β .  Such a model requires adding a single3 indicator variable d1  to the data, whose
purpose is to distinguish data from the treatment from those in the control group.  For example, d1  could be
assigned a value of one for data from the treatment and 0 for data from the control.  The statistical model
would now look something like

iiiii xdxy εββα +++= 1100  .

After fitting such a model, the sum of squared errors SSE could again be calculated to measure model
fit:

                                                
1 These are sometimes referred to as dummy variables, and are usually confined to a few integer values such as 1, 0, or -1. For further discussion, the
reader is referred to chapter 6 of Bergerud (1996), chapter 10 of Neter et.al. (1990) or pp.33-38 of Lesperance (1995).
2 Parameters are the unknown quantities that make up the model, such as 

0
α , 

0
β , etc. and are estimated using observed data.

3 If a classification factor has b levels, then b-1 indicator variables are needed.
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If this model was more appropriate than the simple regression, its SSE would be significantly smaller
(i. e.  the observed data would deviate less from the fitted model).  Testing whether the change in slope
between the two groups, which is represented by 1β , is statistically different from zero is equivalent to testing
if the fit of the more complicated model has improved enough to justify the extra parameter 1β .

Methods such as this can be applied to almost any model, including non-linear regression and even
generalized linear models.  For models that assume independent and identically distributed normal errors, an
exact formal procedure is always available.  It is called the extra sums of squares principle (Draper and Smith
1981, Wetherhill 1981, Bergerud 1991).  The idea is that the improved model fit caused by fitting a
complicated model (after trying a simpler model) can be measured by the reduction in SSE (scaled by the
additional number of parameters needed for the complicated model).  This scaled value, when compared to
the best measure of background variation (usually the MSE from the more complicated model), has an F
distribution.  In other words,

csc n

c

c

sc

cs

F

n
SSE

SSESSE

ννν

ν

νν
−−

−

−
−

,~

where, sSSE  is the residual sum of squares for the simpler model,
cSSE  is the residual sum of squares for the more complicated model (the one with more parameters),

sν  and cν  are the number of unknown parameters in each of the two models, and
n is the number of observations.

The following example will discuss how the above method can be used for non-linear regression.
Consider an experiment where data has been collected on hardwood seedlings to measure the effect of light
on radial growth.  For each seedling, a section of the stem is removed and the width of the most recent growth
ring is measured along with the complete stem radius and a measure of light availability.  The experimenter
believes that a Michaelis Menton4 curve is appropriate to model this particular data.  Figure 1 shows the
general shape of this curve.  Notice that it is characterized by a steep increase in growth as light level
increases, which quickly levels off.  The form of this model is
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where, ir  is radial growth rate (width of most recent growth ring per stem radius)
il  is light level.

0α  is an unknown parameter representing the asymptotic (maximum) relative growth.
0β  is an unknown parameter representing  the slope at zero light.

As usual,  ni ,,2,1 �=   and the errors ( )2,0~ σε Ni .

                                                
4 The motivation for this model is given in Pacala et. al. (1994)
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Seedlings were collected from three different biogeoclimatic subzones and the researcher is most
interested in knowing whether the different subzones affect the asymptotic radial growth rate α of the
seedlings.  To answer this question, the first step will be to create two indicator variables to discriminate
between the three different subzones.  For example, the first indicator variable d1  could be 1 for all data in the
first subzone and 0 otherwise, while the second indicator variable d2  could be 1 for all data in the second
subzone but 0 otherwise.  Using this parameterization the new, more complicated model is
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Let us examine the above equation more carefully.  Notice that this is actually three separate curves,
with different asymptotic relative growths and a common 0β  .  Data from the first subzone are fitted by
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Data from the second subzone are fitted by

( )
( ) i

i

i
i

i

iii
i

l

l

l

lllr ε

β
αα
ααε

β
ααα

ααα +
++

+=+
+++

++=

0

20

20

0

210

210

)1()0(
)1()0(  ,

and data from the third subzone are fitted by
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In other words, 1α  and 2α  represent the difference between asymptotic relative growth for the first and
second subzones respectively, when compared to the third subzone.

After adding the two indicator variables into the raw dataset, the next step is to fit the two different
models: a complicated model that includes the indicator variables, and the simpler model without them.  The
SAS program to perform this task using proc NLIN is in the Appendix (note that the derivative statements in
this program can be omitted if the DUD method is specified).  Recall that the objective is to test the null
hypothesis:

H0 : 021 == αα    or   H0 :  the asymptote is the same for the three different subzones.

The edited SAS results are given below.
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Non-Linear Least Squares Summary Statistics

Model 1 (No indicator variables)
Source DF Sum of Squares Mean Square
Regression 2 1. 0143723744 0. 5071861872
Residual 28 0. 0339809292 0. 0012136046
Uncorrected Total 30 1. 0483533035

Parameter Estimate Std. Error
A0 0. 2137887362 0. 01287405908
B0 0. 0591584834 0. 03101092395

Model 2 (Two indicator variables)
Source DF Sum of Squares Mean Square
Regression 4 1. 0392379476 0. 2598094869
Residual 26 0. 0091153559 0. 0003505906
Uncorrected Total 30 1. 0483533035

Parameter Estimate Std. Error
A0 0. 1707111115 0. 00788637335
A1 0. 0873390258 0. 01108455410
A2 0. 0350858098 0. 01032020544
B0 0. 0683310452 0. 02039468305

Figure 1.  Graph of radial growth (r) against light level (l) from three different subzones.
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A graph of the fitted models is given in Figure 1.  To formally test the null hypothesis, we will use the
extra sums of squares principle.  Extracting the relevant information from the SAS output and doing the
calculations, we see that
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This gives p ≤ 0. 0001 so we reject the null hypothesis and conclude that the asymptotic relative
growth is different for the three subzones.

Interested readers should note that the significance of indicator variables in practically any model,
including generalized linear models such as logistic regression, can invariably be tested using the
approximate likelihood ratio test5 (Kalbfleisch, 1985).  This test is more general than the extra sums of
squares principle since it does not require that the model has independent normal errors, but it is only valid for
large sample sizes.

Contact:
Peter Ott, Research Branch, B.C. Ministry of Forests, Victoria, B.C.  V8W 9C2.  387-7982.
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 Under the null hypothesis that the simpler model is correct, this test claims that for large sample sizes, the distribution of twice the difference
between the maximum value of the log-likelihood for the more complicated model and the maximum value of the simpler log-likelihood, is
approximately distributed as a Chi-square variable having degrees of freedom equal to the difference in the number of unknown parameters. This test
will be available under most conditions, but of course deriving an explicit log-likelihood function requires an in-depth understanding of mathematical
statistics.
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Appendix:

data fake;
input group l r d1 d2;
* group=subzone, l=light-level, r=radial-growth, d1&d2=indicator-vars;
cards;

1 0 0.03260295 1 0
1 10 0.21016232 1 0
1 20 0.20013950 1 0
1 30 0.23010207 1 0
1 40 0.23623511 1 0
1 50 0.25552097 1 0
1 60 0.22553702 1 0
1 70 0.25496982 1 0
1 80 0.21782379 1 0
1 90 0.26674286 1 0
2 0 0.01722150 0 1
2 10 0.16693288 0 1
2 20 0.16963460 0 1
2 30 0.19683460 0 1
2 40 0.16607336 0 1
2 50 0.20516229 0 1
2 60 0.21686777 0 1
2 70 0.17975210 0 1
2 80 0.20268201 0 1
2 90 0.19793763 0 1
3 0 0.01786722 0 0
3 10 0.10198515 0 0
3 20 0.14471916 0 0
3 30 0.16844120 0 0
3 40 0.15750866 0 0
3 50 0.19213788 0 0
3 60 0.15011088 0 0
3 70 0.17530425 0 0
3 80 0.17945065 0 0
3 90 0.14953142 0 0

;

proc nlin data=fake;
title 'Fit of the Simpler Model';
parameters a0=0.25 b0=0.1;
model r=a0*l/(a0/b0+l);
der. a0=(l**2)/((a0/b0+l)**2);
der. b0=(l*a0**2)/(((a0/b0+l)**2)*(b0**2));
output out=new1 p=pred1; run;

proc nlin data=fake;
title 'Fit of the More Complicated Model';
parameters a0=0.35 a1=-0.20 a2=-0.10 b0=0.1;
model r=(a0*l+a1*l*d1+a2*l*d2)/((a0+a1*d1+a2*d2)/b0+l);
der. a0=(l**2)/(((a0+a1*d1+a2*d2)/b0+l)**2);
der. a1=(d1*(l**2))/(((a0+a1*d1+a2*d2)/b0+l)**2);
der. a2=(d2*(l**2))/(((a0+a1*d1+a2*d2)/b0+l)**2);
der. b0=((a0*l+a1*l*d1+a2*l*d2)*(a0+a1*d1+a2*d2))/((b0**2)

*((a0+a1*d1+a2*d2)/b0l)**2);
output out=new2 p=pred2; run;

quit;


