TROUT LAKE CREEK BRIDGE NO. 10505, HICK'S LAKE ROAD – FISHERIES ACT REQUEST FOR REVIEW SUPPORTING INFORMATION

September 2023

Prepared for.

Fisheries and Oceans Canada

Vancouver, British Columbia

Hatfield Consultants LLP

#200 - 850 Harbourside Drive North Vancouver, British Columbia, Canada V7P 0A3 Tel: 1.604.926.3261 • Fax: 1.604.926.5389 www.hatfieldgroup.com

TROUT LAKE CREEK BRIDGE NO. 10505, HICK'S LAKE ROAD – FISHERIES ACT REQUEST FOR REVIEW SUPPORTING INFORMATION

Prepared for:

FISHERIES AND OCEANS CANADA

FISH AND FISH HABITAT PROTECTION PROGRAM 200-401 BURRARD STREET VANCOUVER, BC

Prepared by:

HATFIELD CONSULTANTS LLP

#200 - 850 HARBOURSIDE DRIVE NORTH VANCOUVER, BC CANADA V7P 0A3

TEL: 1.604.926.3261 • WWW.HATFIELDGROUP.COM

SEPTEMBER 2023

MOTI10866 VERSION 1.0

TABLE OF CONTENTS

LIST	OF TA	ABLES		ii
LIST	OF FI	GURES	S	ii
			DICES	
			IST	
			CORD	
		-141 116		
1.0	PRO	JECT (OVERVIEW	1
	1.1	PROJE	ECT LOCATION	1
	1.2		OSED PROJECT WORKS	
	1.3	PROJE	ECT SCHEDULE	6
2.0	EXIS	TING C	CONDITIONS	7
	2.1		AND FISH HABITAT	
3.0	ASS	ESSME	ENT OF IMPACTS	12
	3.1	DESIG	iN	12
	3.2	CONS	TRUCTION	15
		3.2.1	In-Water Activities	16
		3.2.2	Land-Based Activities	16
4.0	IMP/	CT MI	TIGATION STRATEGIES	17
	4.1	DESIG	iN	17
	4.2	CONS	TRUCTION	24
		4.2.1	Least Risk Windows	25
5.0	ASS	ESSME	ENT OF RESIDUAL IMPACTS	26
6.0	CLO	SURE.		30
7.0	DEE	EDENIC	*E6	24

i

LIST OF TABLES

	Project coordinates for Site DF4.	2
Table 2	Documented fish species in Trout Lake Creek (Hatfield 2018).	7
Table 3	Trout Lake Creek fish habitat transects from downstream to upstream (March 2022).	. 10
Table 4	Pathways of effects associated with Project WUA.	. 15
Table 5	Trout Lake Creek Bridge, fish habitat restoration options analysis.	. 21
Table 6	Underwater pile driving noise thresholds typically referenced in regulatory approvals	. 25
Table 7	Habitat balance associated with the Project works, undertakings, and activities	. 26
Table 8	Description of potential pathways of effects and proposed mitigation measures	. 28
	LIST OF FIGURES	
Figure 1	LIST OF FIGURES Project location map	3
Figure 1 Figure 2		
-	Project location map	4
Figure 2	Project location map Photographs of site DF4 after emergency works (March 30, 2022)	4 8
Figure 2 Figure 3	Project location map Photographs of site DF4 after emergency works (March 30, 2022)	4 8 . 11

LIST OF APPENDICES

Appendix A1 AE Design Drawings

Appendix A2 Landscape Plan

DISTRIBUTION LIST

The following individuals/firms have received this document:

Name	Firm	Hardcopies	Email	FTP
Fish and Fish Habitat Protection Program	DFO	-	✓	-
Krista Englund	MOTI	-	✓	-
Sivagar Sivabalan	McElhanney	-	✓	-
Leigh Holt	WSP Canada Inc.	-	✓	-

AMENDMENT RECORD

This report has been issued and amended as follows:

Issue	Description	Date	Approved by	
1	Draft version	20230917	Garth Taylor Project Director	Tim Poulton Project Manager
1	First Version of the Trout Lake Creek Bridge No.10505 RFR Application	20230929		Dim Paulton
				Tim Poulton Project Manager

1.0 PROJECT OVERVIEW

The BC Ministry of Transportation and Infrastructure (MOTI) intends to upgrade the Hick's Lake Road crossing of Trout Lake Creek currently comprised of four temporary culverts with a clear span bridge (the Trout Lake Creek Bridge No. 10505, Hick's Lake Road Project, hereafter referred to as the Project). Damage to the Hick's Lake Road crossing of Trout Lake Creek (referred to as site DF4) occurred as a result of flooding associated with the November 2021 "atmospheric river" flood event. Site DF4 is located at the southern extent of Hick's Lake Road (just north of the intersection with Rockwell Drive) where the MOTI right-of-way bisects Sasquatch Provincial Park at the southeast extent of Harrison Lake near Harrison Hot Springs (Figure 1).

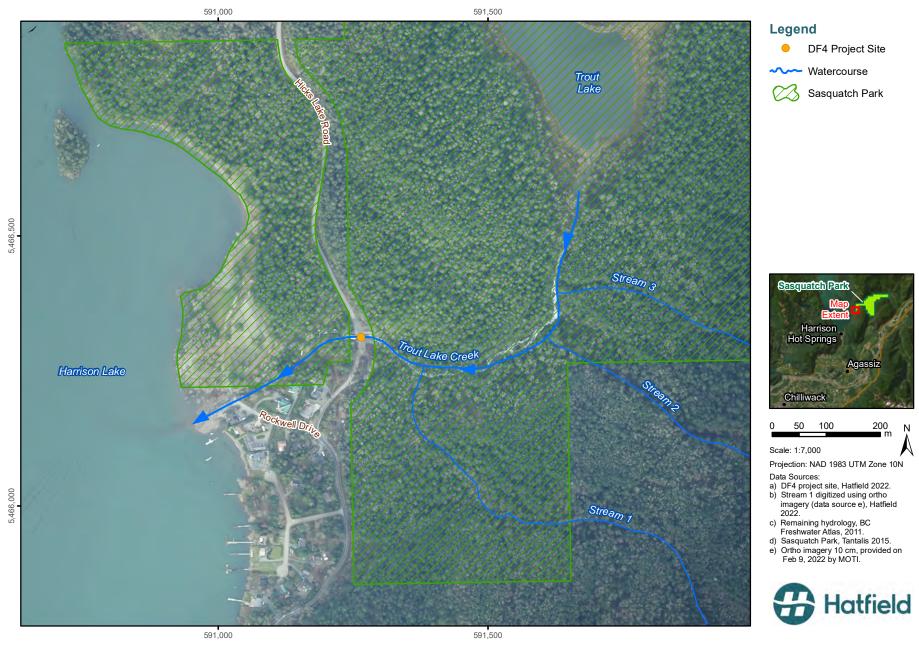
Emergency repair works associated with the November 2021 flood event were conducted at site DF4 pursuant to *Water Sustainability Act* (WSA) Section 91 Order 268448 and consultation with Fisheries and Oceans Canada (DFO), and included the installation of four temporary culverts and associated riprap scour protection to replace a temporary clear-span bridge. The temporary clear-span bridge was installed following the washout of the previous permanent structure (i.e., a perched CSP culvert) following a previous flood in January 2020. MOTI has developed a permanent (long-term) solution following an options analysis (AE 2022) which includes the replacement of the four temporary culverts with a clear-span bridge.

The Fisheries Act requires that Project works, undertakings or activities (WUA) avoid causing:

- the death of fish by means other than fishing; and
- the harmful alteration, disruption or destruction of fish habitat (HADD) unless authorized by the Minister of Fisheries and Oceans Canada.

Trout Lake Creek is fish-bearing and drains into Harrison Lake. Hatfield Consultants (Hatfield) has evaluated the proposed Project to confirm if all Measures to Protect Fish and Fish Habitat (DFO 2019a) can be implemented. Accordingly, Hatfield has prepared this supporting information document on behalf of MOTI in accordance with the application information requirements of a Request for Review pursuant to the *Fisheries Act.* Hatfield has also submitted an application for a Change Approval pursuant to the *Water Sustainability Act* on September 13, 2023 (tracking No. 100426429).

An MOTI Indigenous Relations Advisor has been assigned to this Project and MOTI initiated engagement with Indigenous communities on March 4, 2022. MOTI can provide records of consultation upon request.


1.1 PROJECT LOCATION

Site DF4 is located on Hick's Lake Road approximately 200 m north of the intersection with Rockwell Drive where Hick's Lake Road crosses Trout Lake Creek (Figure 1). The Project coordinates and legal description of site DF4 are summarized in Table 1. Project WUA will occur within Trout Lake Creek and the surrounding riparian environment. The majority of works will occur within the MOTI right of way; however, the upstream and downstream extents of the Project footprint fall within Sasquatch Provincial Park. In consultation with BC Parks MOTI has submitted a Park Use Permit application for these works (Permit No. 111791).

Table 1 Project coordinates for Site DF4.

Site Name	MOTI Project No.	Legal Description	Latitude	Longitude
Rockwell Drive DF4	14048-0000	Crown Pin: 35740021 Part Legal Subdivision 5 and 3 SW ¼ Sec.32, TP4, R28, W6M New Westminster District	49°20'33.65"N	121°44'37.18"W

Figure 1 Project Location Map.

1.2 PROPOSED PROJECT WORKS

Damage to the Trout Lake Creek crossing of Hick's Lake Road occurred as a result of flooding associated with the November 2021 "atmospheric river" flood event. Emergency repair works associated with the 2021 flood were conducted at site DF4 and MOTI subsequently retained Associated Engineering (AE) to conduct an options analysis (AE 2022) to support the design of a new permanent crossing.

The November 2021 flood event was the most recent of multiple washouts at site DF4 (AE 2022). The 2021 flood resulted in channel embankment erosion and caused Trout Lake Creek to top its banks and wash out a temporary railcar bridge (installed following a previous flood event in 2020). Emergency works included the removal of flood debris and the washed-out bridge, the installation of four 1500 mm diameter High-Density Polyethylene (HDPE) culverts, and the installation of associated riprap erosion protection (AE 2022 and Figure 2). The options analysis (AE 2022) included four (4) potential permanent design solutions:

- Option 1: Maintain existing 4 HDPE culverts;
- Option 2: Install a new Corrugated Steel Pipe (CSP) arch culvert with upstream debris mitigation;
- Option 3: Install a new bridge with upstream debris mitigation; and
- Option 4: Install a new bridge sized to convey debris floods.

Significant works on BC Parks land would be required to install upstream debris mitigation, and maintaining the existing culverts would likely result in another flood and washout due to their limited hydraulic capacity and inability to pass debris. Given the hydraulic capacity and the ability to convey the design debris flood, Design Option 4 (i.e., a new clear-span bridge) was selected as the preferred option.

Figure 2 Photographs of site DF4 after emergency works (March 30, 2022).



Photo 1 Trout Lake Creek looking upstream to Hick's Lake Road.

Trout Lake Creek looking downstream to Hick's Lake Road.

The new bridge will have a 19 m span and will be 9.6 m wide. Key components of the bridge design include:

- 100 mm asphalt overlay with protection board and waterproofing;
- 8 x 800 mm deep precast prestressed concrete box stringers;
- Standard bridge parapets with steel bicycle railings;
- Semi-integral reinforced concrete abutments with parallel wing walls; and
- Four reinforced concrete piles with permanent steel casing at each abutment with a diameter of 610 mm (AE 2022).

The hydraulic opening of the bridge will be adequate to convey the design flow of 40.4 m³/s. This is equivalent to a 100-year, peak instantaneous, climate change-adjusted flow with a 10% bulking factor (AE 2023). The 200-year maximum daily flow is 40.1 m³/s. Once the temporary culverts are removed a new section of Trout Lake Creek will be constructed within the footprint of the new bridge. The newly constructed channel will be lined with riprap scour protection, and a portion of the channel banks will include buried riprap in the event of a berm failure that is currently located upstream of site DF4 along the left bank of Trout Lake Creek on BC Parks land. Several fish habitat enhancement features (refer to Section 4.1) will be installed upstream and downstream of the new bridge including riparian plantings within the riparian areas disturbed during construction. Detailed design drawings are included in Appendix A1.

A temporary clear-span detour bridge to facilitate traffic during construction will be installed sometime between November 2023 and April 2024 prior to the construction of the new bridge in the summer of 2024. The temporary detour bridge is being installed early to expedite works during the 2024 least-risk window for fish, and to maintain traffic should another flood event and subsequent washout occur during the fall 2023/winter 2024 rainy season. The temporary detour bridge will also be able to convey the 200-year maximum daily flow and will be installed per the conditions and measures to protect fish and fish habitat described in the clear span bridge code of practice (DFO 2022). MOTI will submit a Notification to the regional DFO office a minimum of 10 working days before starting work. Accordingly, the temporary detour bridge is not part of the WUA discussed in this request for review.

Construction means and methods will ultimately be determined by the successful contractor awarded the Project per MOTI Standard Specifications (MOTI 2020a); however, it is estimated that construction will proceed in the following sequence:

- Mobilization and site preparation including installation of sediment and erosion control measures, fish salvages, and stream diversion/isolation if the stream is not naturally dry (approximately 7 days);
- 2. Tree clearing and grubbing within the Project footprint (approximately 5 days);
- 3. Substructure (pilling, abutments, wingwalls, etc.) construction (approximately 20 days);
- 4. Removal of existing culverts and construction of the new channel within the footprint of the bridge (approximately 7 days);

- 5. Installation of riprap scour protection and bridge superstructure (girder installation, parapet, bicycle railing, etc.) construction (approximately 25 days);
- 6. Installation of fish habitat enhancement features (3 days);
- 7. Demobilization (approximately 5 days); and
- 8. Riparian restoration seeding/planting in fall 2024 (approximately 7 days).

Please refer to Sections 3.0 and 4.0 for a list of all Project WUA, duration of works, potential impacts, and mitigation measures.

1.3 PROJECT SCHEDULE

The Project is expected to take six months to complete (May through October 2024). Instream works will occur during the regional least-risk work window for fish (August 1 to September 15; MOE 2006); however, instream work may proceed outside of this period if the creek is naturally dry.

2.0 EXISTING CONDITIONS

Hatfield conducted a detailed desktop and field study for site DF4 in 2022 which is presented in the Environmental Overview Assessment (EOA) developed to support the options analysis (Hatfield 2023). The following sections provide a synopsis of those studies.

2.1 FISH AND FISH HABITAT

A summary of fish species documented to occur in Trout Lake Creek during previous desktop and field surveys (Hatfield 2023) is presented in Table 2. Trout Lake Creek is used by both spring and fall spawning salmonids. Spawning chum salmon (*Oncorhynchus keta*) were previously observed by Hatfield during a survey in November 2017 (Hatfield 2018), between the mouth of the Creek and Hick's Lake Road. Coastal cutthroat trout (*Oncorhynchus clarkii clarkii*) and rainbow trout (*Oncorhynchus mykiss*) were captured during the 2017 survey upstream and downstream of Hick's Lake Road, respectively. Hick's Lake Road presents a barrier to upstream migration, therefore it is assumed that cutthroat trout captured upstream of the road are either moving downstream from Trout Lake or represent a small isolated population.

The Species at Risk Public Registry and DFO aquatic species at risk maps were also reviewed to identify potential aquatic species at risk and/or critical habitat within the Project area. There are no federally listed aquatic species at risk or critical habitat documented to occur in Trout Lake Creek.

Table 2 Documented fish species in Trout Lake Creek (Hatfield 2018).

Common Name	Scientific Name	¹ Capture Location	Common Name	Scientific Name	Capture Location
Chum salmon	Oncorhynchus keta	Downstream	Pink salmon	Oncorhynchus gorbuscha	Unknown
Coho salmon	Oncorhynchus kisutch	Downstream	Rainbow trout	Oncorhynchus mykiss	Downstream
Coastal cutthroat trout	Oncorhynchus clarkii clarkii	Upstream	Sculpin	Cottus sp.	Downstream
Kokanee	Oncorhynchus nerka	Unknown	Sockeye salmon	Oncorhynchus nerka	Unknown
Longnose dace	Rhinichtys cataractae	Upstream	Stickleback	Gasterosteus sp.	Unknown

¹Capture location in relation to Hick's Lake Road. Unknown location indicates species identified during the desktop review but not observed during field surveys.

Hatfield previously conducted fish habitat baseline studies at site DF4 in 2017 and 2018 (Hatfield 2017 and Hatfield 2018); however, these studies have been updated due to extensive erosion and bedload movement which occurred during the 2020 and 2021 floods.

Trout Lake Creek originates in Trout Lake, about 670 m upstream of site DF4 (Westrek, 2020), and the creek receives streamflow from Hick's Lake and other unnamed watercourses upstream of Trout Lake and within the watershed. Site DF4 is located approximately 300 m upstream of Harrison Lake and is surrounded by Sasquatch Provincial Park, and several private lots located on the fan west of Hick's Lake Road (Westrek 2020). The reaches of Trout Lake Creek conveyed over the fan are ephemeral, drying out

and/or flowing subsurface during the late summer/early fall (i.e., August/September) as observed during the recent debris removal works at Green Point Bridge; the crossing of Trout Lake Creek at Rockwell Drive downstream of Hick's Lake Road. Trout Lake Creek upstream of Hick's Lake Road appears to flow year-round. Water temperature, pH, dissolved oxygen, and conductivity within a pool upstream of Hick's Lake Road were 8.7°C, 6.36, 11.86 mg/L, and 39.2 us/cm, respectively, during the March 30, 2022, field assessment.

A substantial amount of bedload and road fill material was deposited downstream of site DF4 during the 2020 and 2021 flood events (Hatfield 2023), resulting in morphological changes to Trout Lake Creek (e.g., raising the streambed profile, infilling of pools, accumulation of wood debris, and changes in substrate composition). Emergency works to remove accumulated debris upstream and downstream of the Green Point Bridge located further downstream at Rockwell Drive were conducted during the 2022 least-risk fisheries window to reinstate the freeboard under the bridge (Hatfield 2022 and Figure 3). The previous floods and associated emergency works have also resulted in changes to Trout Lake Creek upstream of site DF4. The approximate 100 m reach upstream of Hick's Lake Road previously characterized by rifflerun-pool morphology has shifted to primarily cascade-pool morphology and a considerable amount of riparian vegetation has been replaced with riprap erosion protection (Figure 3).

Fish habitat within Trout Lake Creek upstream of Hick's Lake Road has been heavily disturbed by the floods and provides limited opportunity for salmonid rearing or spawning given the change in channel morphology and substrate composition, infilling of pools, and displacement of riparian vegetation with riprap scour protection; however, this habitat is likely suitable for longnose dace (*Rhinichtys cataractae*) and sculpin (*Cottus* sp.) previously captured further upstream in 2017 (Hatfield 2017). Chum salmon (*Oncorhynchus keta*) were observed spawning within Trout Lake Creek during previous surveys in November 2017 downstream of Hick's Lake Road; however, much of the suitable gravel spawning substrate has been displaced downstream to the lower reaches of Trout Lake Creek at Harrison Lake. Similar to the previously perched culvert at site DF4 (Figure 3), the current crossing structure is a barrier to fish passage. A summary of fish habitat measurements from the 2022 habitat transects (Figure 4) is provided in Table 3.

Figure 3 2018 to 2022 photographic comparison of site DF4.

Photo 3 Trout Lake Creek upstream of Hick's Lake Road. (upstream view; March 26, 2018).

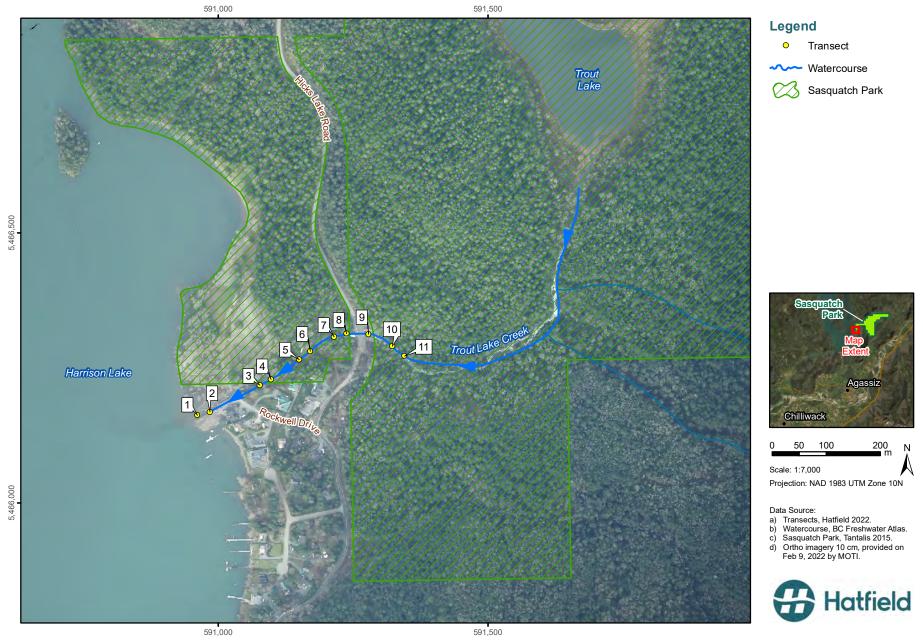
Photo 4 Trout Lake Creek upstream of Hick's Lake Road. (upstream view; March 30, 2022).

Figure 3 (Cont'd.)

Photo 5 Trout Lake Creek downstream of Hick's Lake Road. (upstream view; March 26, 2018).

Photo 6 Trout Lake Creek downstream of Hick's Lake Road. (upstream view; March 30, 2022).

Table 3 Trout Lake Creek fish habitat transects from downstream to upstream (March 2022).


Transect	Gradient	Channel	Wetted	Su	bstrate	Depth (d	cm) Across C	hannel	Velocit	y (m/s) Across	Channel
ID	(%)	Width (m)	Width (m)	Dominant	Subdominant	25%	50%	75%	25%	50%	75%
1	2.0	20.7	6.3	Cb	Gr	19	28	28	0.3	0.6	1.0
2	2.5	5.5	3.9	Cb	Gr	36	47	35	0.6	0.7	0.2
3	3.5	13.2	6.7	Cb	Bd	35	36	21	0.9	0.8	0.4
4	2.0	18.8	8.5	Cb	Gr	25	38	20	0.8	0.5	0.6
5	3.0	22.6	8.5	Cb	Bd	39	22	28	1.1	0.1	0.9
6	4.0	25.0	5.2	Cb	Gr	56	56	36	0.2	0.9	0.3
7	3.0	28.5	7.5	Cb	Bd	24	44	13	0.1	0.5	0.1
18	3.5	10.8	8.8	Cb	Bd	16	29	23	0.9	1.2	1.0
29	8.0	28.3	7.3	Cb	Bd	32	22	16	0.3	0.2	1.5
10	4.5	10.4	6.8	Cb	Gr	39	62	26	0.1	0.2	0.3
11	8.0	9.3	7.7	Bd	Gr	25	56	39	0.2	0.7	0.4

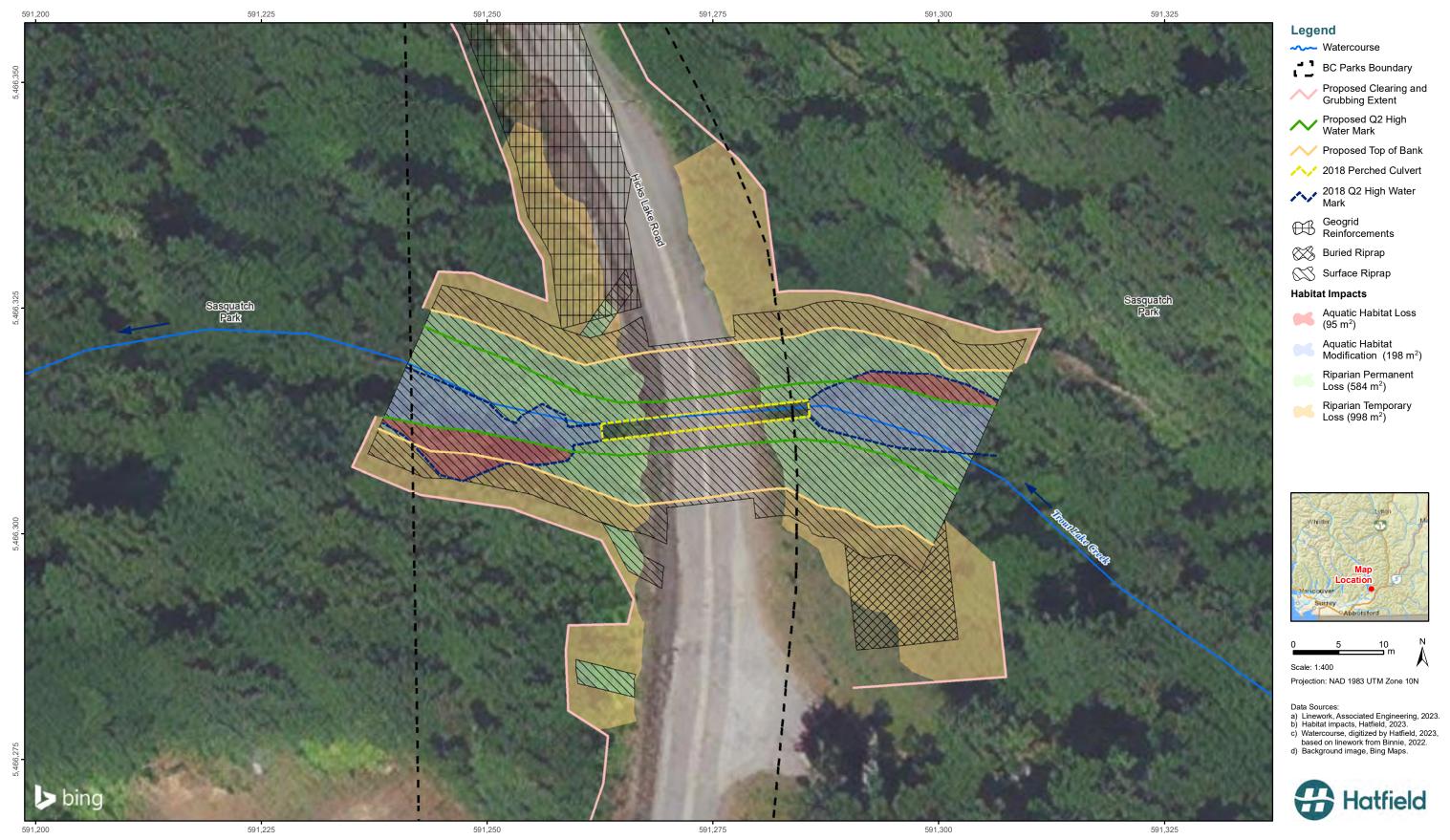
GR= Gravel; Cb = Cobble; Bd = Boulder

¹ Within the Project footprint and immediately downstream of Hick's Lake Road.

² Within the Project footprint and immediately upstream of Hick's Lake Road.

Figure 4 Location of Habitat Transects along Trout Lake Creek (March 30, 2022).

3.0 ASSESSMENT OF IMPACTS


3.1 DESIGN

Based on the options analysis report (AE 2022), Design Option 4 is the preferred long-term design option for site DF4 and is comprised of a new clear-span bridge to convey the design debris flood. Design Option 4 has the largest hydraulic opening of the design options and is the least susceptible to debris blockage. A temporary detour bridge will be required during construction; however, as previously discussed the temporary detour bridge is not part of the WUA associated with this request for review.

The assessment of impacts considers the pre-2020 flood event as the baseline condition for Trout Lake Creek. Using the pre-2020 flood event captures impacts that have occurred as a result of emergency works associated with both the 2020 and 2021 flood events as well as impacts expected to occur from the new clear-span bridge.

It is expected that replacing the culverts with a bridge of current design standards that considers climate change and debris flood events will reduce erosion to Hick's Lake Road and Trout Lake Creek whereby subsequent flooding and damage of downstream environments, infrastructure, and property is reduced. Furthermore, the daylighting of Trout Lake Creek through the removal of the culverts will provide a net gain of aquatic habitat and improve fish passage during moderate flow conditions (refer to Section 4.1). Despite this overall net benefit, there are impacts associated with the previous emergency works, and not all Measures to Protect Fish and Fish Habitat (DFO 2019a) can be implemented for the proposed Project. Expected impacts to the aquatic and riparian environments of Trout Lake Creek associated with the Project are presented in Figure 5.

Figure 5 Assessment of impacts for the Trout Lake Creek Culvert Replacement Project.

3.2 CONSTRUCTION

The following Project WUA and associated potential effects as identified by the pathways of effects (DFO 2018) are anticipated with Design Option 4 (Table 4).

Table 4 Pathways of effects associated with Project WUA.

Project WUA	Description of Project Activity	Potential Effects (DFO 2018)		
Land-based Ad	ctivities			
Vegetation Clearing	Clearing of vegetation within areas requiring riprap armouring	Changes in water temperature, habitat structure and cover, sediment concentrations, nutrient concentrations, food supply, and contaminant concentrations		
Excavation	Installation of buried riprap	Changes in base flow, water temperature, and sediment concentrations		
Grading	Realignment and contouring of channel banks for riprap placement	Changes in habitat structure and cover, and sediment concentrations		
Use of Industrial Equipment	Use of industrial equipment (e.g., excavator) to install riprap scour protection	Potential mortality of fish/eggs/ova from equipment; changes in sediment concentrations, and contaminant concentrations		
Riparian Planting	Planting native plant species within disturbed riparian areas	Changes in water temperature, habitat structure and cover, sediment concentrations, nutrient concentrations, food supply, and contaminant concentrations		
In-water Activi	ties			
Placement of Material or Structures in Water	Placement of riprap below the high watermark	Changes in food supply, habitat structure and cover, sediment concentrations, and nutrient concentrations		
Excavation	Removal of old culverts and channel daylighting	Changes in habitat structure and cover, and sediment concentrations		
Use of Industrial Equipment	Placement of riprap and habitat enhancement features below the high watermark	Potential mortality of fish/eggs/ova from equipment; changes in sediment concentrations, and contaminant concentrations		
Structure Removal Removal of culverts		Changes in sediment concentrations, food supply, habitat structure and cover, and contaminant concentrations		

3.2.1 In-Water Activities

Potential temporary adverse impacts to the aquatic environment during in-water activities are primarily related to water quality, including but not limited to:

- Erosion of exposed soils and resultant sediment release; and
- Use of heavy machinery and potential accidental release of hydrocarbons.

Potential direct adverse impacts to fish include but are not limited to:

- Mortality from direct contact with industrial equipment/instream structures or dewatering activities;
 and
- Temporary changes in habitat structure and base flow during channel grading and the installation of riprap scour protection.

3.2.2 Land-Based Activities

Potential temporary adverse impacts to the aquatic environment during land-based activities are primarily related to changes in habitat quality and structure, including but not limited to:

- Increase in water temperature and decrease in cover and food/nutrient supply as a result of riparian vegetation clearing;
- Increase in sediment concentrations as a result of exposed upland soils and channel banks; and
- Underwater noise generated during abutment pile installation.

Riparian Vegetation

Riparian vegetation within the Project footprint is limited due to the previous flood events and subsequent emergency works. Based on the arborist report (McElhanney 2023), a total of 38 trees will be removed as a result of the Project of which 22 will be removed from the MOTI right-of-way, and 16 will be removed from Sasquotch Provincial Park. The majority of trees to be removed are comprised of Douglas-fir (*Pseudotsuga menziesii*) and bigleaf maple (*Acer macrophyllum*). The estimated age of the stand ranges from newly regenerated to 60 years (McElhanney 2023).

Underwater Noise

Concrete piles with steel casings will be installed on land and in the dry as part of the abutment construction; however, it is uncertain whether the contractor will use boring technology or down-hole pile driving. Concrete piles installed on land via boring will not generate sound levels capable of impacting fish (MPDCA 2003); however, it is unclear what levels of underwater noise could be generated from down-hole pile driving.

4.0 IMPACT MITIGATION STRATEGIES

4.1 DESIGN

Generally, the footprint of the new bridge and associated riprap will be minimized to the extent feasible while maintaining current design standards. The new larger bridge span and removal of existing culverts will reduce channel constriction by maintaining the approximate upstream and downstream channel dimensions within the bridge footprint. As previously discussed, the new bridge will result in a net gain of aquatic habitat (Figure 6) and reduce erosion to Hick's Lake Road and Trout Lake Creek whereby subsequent flooding and damage to downstream environments, infrastructure, and property is reduced from current and pre-flood conditions.

Fish Passage

Given the previous permanent crossing and current temporary crossing present a barrier to fish passage, the opportunity to improve fish passage through the new crossing has been extensively reviewed and discussed with the Project team during the options analysis. Based on the previous baseline studies conducted in 2017 and 2018 (Hatfield 2017 and Hatfield 2018), which documented suitable fish habitat in the form of potential rearing and spawning areas within an approximate 100 m reach upstream of Hick's Lake Road, it was originally determined that designing for fish passage was warranted; however, due to shifting baseline conditions as a result of the 2020 and 2021 flood events and associated emergency works, the previously identified suitable habitat has been downgraded to marginal habitat (refer to Section 2.1). Given the marginal habitat for fish upstream of Hick's Lake Road and engineering challenges associated with steep channel gradients and the large size of riprap required to construct a fishway (e.g., step-pools), we are no longer recommending this design mitigation strategy.

The Project team developed a fish habitat restoration options analysis to identify the most suitable fish habitat restoration option for the Project. Four restoration options were considered including:

- Option 1: Provide fish passage under the new bridge via the construction of a fishway (e.g., steppools) to improve fish passage across a range of flows;
- Option 2: Restore a side channel downstream of the bridge to provide fish-rearing opportunities and refuge during future flood events;
- Option 3: The installation of mainstem channel habitat features upstream and downstream of the new bridge to provide instream complexity for cover and high-flow refuge. This option may also provide fish passage during moderate flow conditions; and
- Option 4: Provide no fish habitat restoration, given DF4 was already a fish barrier during baseline conditions and impacts to the creek occurred as a result of natural flood events.

The options analysis summarizing all considerations associated with each restoration option is presented in Table 5. Restoration Option 3 was selected as the most suitable restoration approach given the change in fish habitat values upstream of the bridge, property, maintenance, and constructability constraints associated with Restoration Option 1 and Option 2. Restoration Option 3 would provide appropriate mitigation for the Project and contribute to the restoration of fish habitat disturbed as a result of multiple flood events.

This page has been intentionally left blank for printing purposes.

Figure 6 Aquatic habitat gains associated with the Trout Lake Creek Culvert Replacement Project.

Table 5 Trout Lake Creek Bridge, fish habitat restoration options analysis.

Option	Objective	Benefits to Fish Productivity	Fish Habitat Limitations	Engineering Considerations	Constructability	Property	Maintenance	Permitting and Risks
Option 1: Fish Passage under the new bridge	Remove fish barrier that has been observed since monitoring commenced in 2017 (perched culvert), and subsequent flood events in 2020 (temporary bridge and steeply sloped riprap) and 2021 (4 HDPE culverts and steeply sloped riprap at outlets).	 Provide access to approximately 100 m of fish habitat characterized by spawning, rearing and overwintering habitat prior to the 2020 and 2021 flood events. Benefits to anadromous fish currently limited to the downstream reach (e.g., coho and chum salmon), and resident fish (e.g., cutthroat trout) upstream of Rockwell Drive that would be able to access the lower reach and Harrison Lake and return upstream. 	 Previous high-value habitat upstream of bridge has been downgraded to marginal as a result of flood impacts and emergency repair works. Riffles and pools have been replaced by cascades limiting available spawning, rearing and overwintering habitat. Upstream fish passage is likely not possible during summer low-flow and winter/spring high-flow events which naturally occur in this system; however, fish passage would be further constrained by engineering challenges during low and high-flow conditions (see engineering considerations). 	 Challenging to maintain surface flow during low-flow conditions due to large riprap voids; grouted riprap will likely not withstand future debris flow. Steep gradient requiring step-pool fishway. Step-pools will infill during future debris flow. 	 Installation of step-pools will require AQP oversight to ensure fish passage. Stream isolation is required if grouted riprap is used. Likely requires machinery working below the top of bank. 	All works in MOTI ROW.	Clearing of sediment and debris from step-pools likely required.	 WSA Change Approval (5 months). FA Letter of Advice (2 months). Contingency measures may be required if fish passage fails, and may require additional permitting.
Option 2: Downstream side channel restoration	 Reconnect an abandoned side channel to Trout Lake Creek that has become isolated due to previous debris flow. Debris berm will remain in place to provide flood protection, and flows will be reconnected via a buried intake pipe through the debris berm. 	 High-flow refuge, protection from future debris flow, overwintering, and summer rearing (all limiting habitat features in Trout Lake Creek) Provide access to approximately 100 m of abandoned fish habitat 	 Potential fish stranding during low-flow conditions. Environmental flow needs for both the side channel and mainstem may not be achievable. 	 Side channel intake structure design will need to consider debris maintenance. Grade control feature (i.e., weir) may be required across main channel to ensure proper hydraulic function of side channel intake. 	 Can be constructed in isolation of flows easily with the exception of the intake structure which would be constructed last (i.e., works in the side channel would be conducted before commissioning flows) Access is available, but may require the removal of a few trees (can be used as LWD in the side channel) 	Majority of works on BC Parks Land (Sasquatch Provincial Park).	Maintenance of the intake structure will be required. TBD if this be the responsibility of BC Parks or MOTI staff.	 WSA Change Approval (5 months) and Water Licence (1 year, can be staged to allow works to proceed). May require FA Authorization (5 months). Will require a letter of Authorization from BC Parks. Benefit of having intake works under Licence is that future maintenance or repairs on structure will not require individual / future WSA approval. May not meet DFAA funding criteria.
Option 3: Mainstem channel habitat features upstream and downstream of the bridge	 Install rock spurs, boulder clusters, and LWD. 	 Provide instream complexity for cover and high-flow refuge. 	 Instream habitat features within the mainstem channel have a high potential of being displaced/damaged during a future debris flow. 	 Conventional designs available Sizing and anchoring habitat features to withstand future debris flow Change in flood stage, and potential to trap/accumulate debris on habitat features 	 Anchoring of LWD, boulder clusters, spurs etc. may require bank and channel excavation and stream isolation 	All works in MOTI ROW	 Debris and sediment removal following flood events 	 WSA Change Approval (5 months). FA Letter of Advice (2 months). Contingency measures may be required if habitat features fail during future debris flow, and may require additional permitting.
Option 4: No fish habitat restoration	 Restoration not required, the majority of impacts to fish habitat and fish passage naturally occurred and are likely to occur again based on stream channel dynamics 	■ N/A	 Natural recovery of flood-impacted fish habitat may take a long time or never occur. 	 Crossing designed to meet hydrotechnical requirements 	■ N/A	• N/A	- N/A	 WSA Change Approval (5 months). FA Letter of Advice (2 months). Permits may not be issued without restoration measures

Restoration Option 3 (Installation of Mainstem Habitat Features)

A number of design features have been incorporated into the Project to enhance fish habitat functions including:

- 1. Siting the new bridge within the footprint of the existing crossing to minimize negative impacts to fish and wildlife habitat:
- 2. Daylighting approximately 276 m² of aquatic habitat (Figure 6) through the removal of the existing culverts which currently present a barrier to fish passage and grading the channel to an approximate slope of 8.6%;
- Top-dressing riprap scour protection up to the high watermark (i.e., 2-year return flow) with native substrates (i.e., cobble/gravel/fines) salvaged during construction to fill riprap voids (and promote surface flow) and provide a natural channel appearance more suitable for benthic invertebrate production and fish habitat;
- Installation of boulder clusters and large woody debris to provide habitat complexity, cover, and velocity hides for fish during high-flow events and provide fish passage during moderate-flow events; and
- 5. Minimizing clear and grub limits to the greatest extent possible, especially in areas adjacent to and within BC Parks land. A tree survey has been conducted to optimize clear and grub limits whereby significant trees are avoided if possible. Planting of native trees, shrubs, and forb species suited to site conditions will occur within riparian areas disturbed during construction and previous flood events.

Instream fish habitat enhancement features are presented in AE Drawing Nos 10505-114 and 10505-118 (Appendix A1).

Riparian Planting Plan

Approximately 1,676 m² of plantings will be installed within disturbed riparian areas (Appendix A2). Plants will be of guaranteed nursery stock and installed at one plant per square metre density (BC MoE 2008) or as specified per the landscape plan (Appendix A2). Large woody debris salvaged during construction will be placed throughout the planting areas.

4.2 CONSTRUCTION

The successful Contractor(s) will be required to submit a detailed Construction Environmental Management Plan (CEMP) with work procedures prior to commencing construction. The CEMP shall be prepared in compliance with MOTI's Standard Specifications for Highway Construction (MOTI 2020a) Section 165 Protection of the Environment (SS 165) and align with the Requirements and Best Management Practices for Making Changes in and About a Stream in British Columbia (Gov. BC 2022b), and the Measures to Protect Fish and Fish Habitat (DFO 2019a). The CEMP will be submitted to MOTI for review and approval prior to the start of works. Special provisions (SPs) contained in the Project tender package will identify any expectations that differ from MOTI SS 165 and will also include conditions of any environmental approvals. SPs may also refer to mitigation measures outlined in this, or any other environmental assessment reports prepared for the Project that form part of regulatory application submissions. Mitigation measures and BMPs detailed in the CEMP will include but not be limited to the following management plans:

- Fish and fish habitat protection plan (including fish salvages where required);
- Spill prevention (including concrete leachate) and emergency response plan;
- Erosion and sediment control plan;
- Vegetation management plan (including management of invasive and noxious weeds);
- Wildlife protection plan; and
- Waste management plan.

Underwater Noise

To install the reinforced concrete piles with steel casings, we understand the contractor will have the option to either drill (i.e., bore) the piles or drive the piles with a down-hole hammer. A Pile Driving Procedure underwater noise management plan will be developed if the contractor chooses to use a downhole hammer with appropriate underwater noise monitoring equipment (e.g., hydrophone) and mitigations if required (e.g., bubble curtain). The contractor's Appropriately Qualified Professional (AQP) will be required to include the following mitigation measures in the underwater noise management plan:

- The environmental monitor will be on-site during all down-hole pile driving activities to monitor for fish observations and hydroacoustic monitoring at the limits of the fish exclusion zone;
- Commence pile driving with a soft start where the impact energy is gradually increased over a 10-minute period;
- Ensure at the boundary of the fish exclusion zone, Peak and cumulative Sound Exposure Levels do not exceed the thresholds summarized in Table 6 (Popper et al. 2006); and
- If monitoring indicates sound levels exceed the thresholds the work must be halted. The work will only resume after additional measures (e.g., bubble curtain) have been implemented to reduce sound levels below the thresholds (Table 6).

Table 6 Underwater pile driving noise thresholds typically referenced in regulatory approvals.

Monitoring Endpoint	Pile Driving Noise Criteria
Peak Sound Pressure Levels (SPL _{peak})	206 dB re 1 μpa
Cumulative Sound Exposure Levels (SEL)	186 dB re 1 μpa²-sec

4.2.1 Least Risk Windows

Fish

Instream works will be conducted during the regional least risk work window of August 1 to September 15 to protect against potential effects on trout and salmon species (BC MOE 2006). It should be noted that the least risk window for fish does not apply if the watercourse is naturally dry. Instream works outside the least risk window may be permitted with a compelling rationale and appropriate mitigation measures. The contractor's EM must submit a site-specific mitigation plan to the Ministry Representative for review and approval prior to working outside of the window. The mitigation plan must outline the rationale for working outside of the least risk work window, associated risks, and site-specific mitigation measures. The plan and subsequent effectiveness of the plan will be included in the post-construction monitoring report for the Project.

Birds

Mitigation during construction should include work restrictions during the breeding bird window of March 15 to August 30 for this region (ECCC 2018). Bird nesting surveys, as per MOTI protocol, and measures to protect active nests are required for vegetation removal and disturbance activities during the active nesting period (MOTI 2020b). Pre-clearing bird nesting surveys by an Appropriately Qualified Professional (AQP as defined in MOTI SS 165) will be required to ensure compliance with the federal *Migratory Birds Convention Act*, which prohibits the removal or destruction of birds or bird habitat during the breeding season. Surveys should be conducted so that no-disturbance buffers can be established around active nest sites. Raptor nests were not observed during the field assessments; regardless, raptor nest surveys should be completed immediately prior to construction to ensure conditions have not changed.

5.0 ASSESSMENT OF RESIDUAL IMPACTS

Potential adverse residual impacts (i.e., impacts that may reasonably occur after all mitigation is considered) in the context of the death of fish or HADD are not expected to occur given the short duration of the WUA, the magnitude of temporary and permanent impacts (Table 7), ecosystem values sustained within the Project footprint, and proposed design and construction mitigation measures (Table 8). Overall, there will be a net gain of aquatic (655 m²) and riparian (94 m²) habitats realized by the Project which includes the enhancement of 474 m² of fish habitat features (i.e., boulder clusters and large woody debris), daylighting 276 m² of Trout Lake Creek via the removal of the culverts, and revegetation of approximately 1,676 m² of riparian habitat. Fish passage through Hick's Lake Road will also be improved from current and historical conditions. A habitat budget summary is provided in Table 7.

Table 7 Habitat balance associated with the Project works, undertakings, and activities.

Ushitet		Area m²										
Habitat Type	Habitat Enhancement	Temporary Loss	Permanent Loss	Permanent Gain	Riparian Revegetation	Net Gain/Loss						
Aquatic	474	-	95	276	-	+655						
Riparian	-	998	584	-	1,676	+94						

In accordance with the Fish and Fish Habitat Protection Policy Statement (DFO 2019b), DFO interprets HADD as any temporary or permanent change to fish habitat that directly or indirectly impairs the habitat's capacity to support one or more life processes of fish.

Hatfield has evaluated the proposed Project to confirm if all Measures to Protect Fish and Fish Habitat (DFO 2019a) can be implemented. Our review concluded that all measures as described in DFO (2019a) can be followed except for:

- Avoid placing fill or other temporary or permanent structures below the high watermark;
- Disturbing or removing materials from the banks, shoreline, or waterbody bed;
- Maintaining an undisturbed vegetated buffer zone between areas on land and the high watermark;
 and
- Avoiding tree removal in the riparian area.

Although there will be temporary and permanent changes to fish habitat associated with the Project, the temporary changes as a result of Project WUA are short in duration (i.e., instream works for 1.5 months and within the least risk work window) and low in magnitude (i.e., instream footprint of approximately 500 m²). Conventional BMPs are considered acceptable and practical to mitigate potential short-term construction-related impacts (Table 8) which will be detailed in the Project CEMP. Further, the permanent changes to fish habitat associated with the Project will provide a net gain in fish habitat (Table 7) and improve habitat quality including:

- Improved fish passage during moderate flows as a result of removing the perched culverts, reducing the channel slope, and installation of boulder clusters;
- Improved fish cover and resting areas during high flows as a result of the habitat enhancement features (i.e., boulder clusters and large woody debris);
- Resiliency to future flood events given the sizing of the new clear-span bridge to convey design flood and debris flows;
- Resiliency to future scour during flood events given the sour protection design features; and
- Improved long-term riparian function (e.g., allochthonous carbon input, shade, and LWD input) given the benefits of the Project landscape plan (Appendix A2).

Hatfield is confident that our assessment aligns with DFO's risk-based approach to the application of the fish and fish habitat protection provisions when considering the sensitivity of the fish and fish habitat in question.

Table 8 Description of potential pathways of effects and proposed mitigation measures.

MILLA D	Area of	Duration	Potential	Path	way of Effect		D 1889 4		
WUA Description	Impact (m²)	(Days)	Land-Based Activities	In-Water Activities			Proposed Mitigation		
Mobilization and site preparation	-	7	GradingUne of industrial equipment	•	NA (works above high watermark)	:	Install sediment and erosion control measures. Conduct work as quickly as possible and during favourable weather conditions. Environmental monitoring including turbidity monitoring. Ensure a fully stocked spill kit is available on site.		
Clearing and grubbing of riparian vegetation	1,582	5	Vegetation clearingGradingUse of industrial equipment	•	NA (works above high watermark)		Install sediment and erosion control measures. Environmental monitoring including turbidity monitoring. Conduct salvage for Pacific water shrew and install exclusion fencing if required following a habitat assessment. Conduct a breeding bird survey and install no work buffers if required. Ensure a fully stocked spill kit is available on site. Environmental monitoring including turbidity monitoring.		
Removal of existing culverts and construction of new channel	877	7	ExcavationGradingUse of industrial equipment	:	Structure removal Excavation Grading Use of industrial equipment	:	Install sediment and erosion control measures. Complete works when the channel is naturally dry and/or within the least risk fisheries window. ¹Isolate work area from flows following a fish salvage if required. Environmental monitoring including turbidity monitoring.		
Substructure construction	255	20	ExcavationGradingUse of industrial equipment	•	NA (works above high watermark)	:	Install sediment and erosion control measures. Complete work when the channel is naturally dry and/or within the least risk fisheries window. ¹Isolate the work area from flow following a fish salvage if required. Have a co₂ bubbler and concrete leachate management plan on site. Environmental monitoring including pH, turbidity, and noise monitoring (with hydrophone). Have a bubble curtain on site if required.		

Table 8 (Contd.)

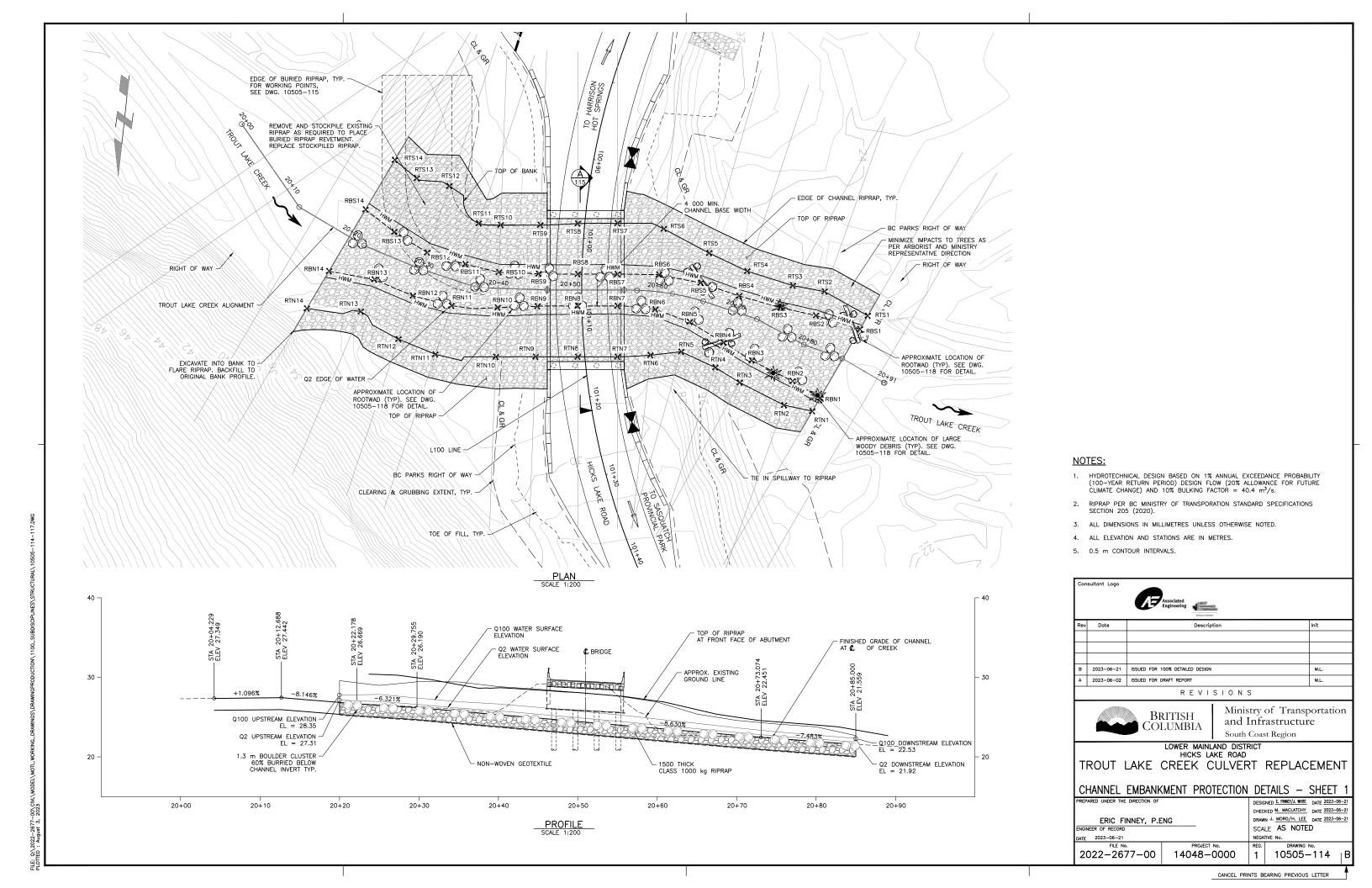
WUA Description	Area of Impact (m²)	Duration (Days)	Potential Pathway of Effect			
			Land-Based Activities		In-Water Activities	Proposed Mitigation
Installation of riprap scour protection and bridge superstructure	877	25	ExcavationGradingUse of industrial equipment	:	Placement of material or structures in water Excavation Grading Use of industrial equipment	 Install sediment and erosion control measures. Complete works when the channel is naturally dry and/or within the least risk fisheries window. ¹Isolate work area from flows following a fish salvage if required. Conduct work as quickly as possible and during favourabl weather conditions. Ensure a fully stocked spill kit is available on site. Environmental monitoring including turbidity monitoring.
Installation of fish habitat enhancement features	474	3	ExcavationGradingUse of industrial equipment	:	Placement of material or structures in water Excavation Grading Use of industrial equipment	 Install sediment and erosion control measures. Complete works when the channel is naturally dry and/or within the least risk fisheries window. ¹Isolate work area from flows following a fish salvage if required. Ensure a fully stocked spill kit is available on site. Environmental monitoring including turbidity monitoring.
Demobilization	-	5	GradingUse of industrial equipment	•	NA (works above high watermark)	 Install sediment and erosion control measures. Conduct work as quickly as possible and during favourabl weather conditions. Ensure a fully stocked spill kit is available on site. Environmental monitoring including turbidity monitoring.
Riparian restoration seeding/planting in the fall.	1,676	7	 Riparian planting 	•	NA (works above high watermark)	 Install sediment and erosion control measures.

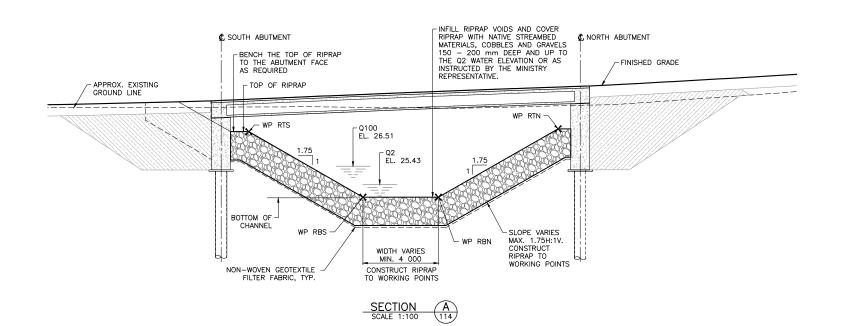
¹Conducted in accordance with the interim code of practice: Temporary cofferdams and diversion channels, and Interim code of practice: End-of-pipe fish protection screens for small water intakes in freshwater.

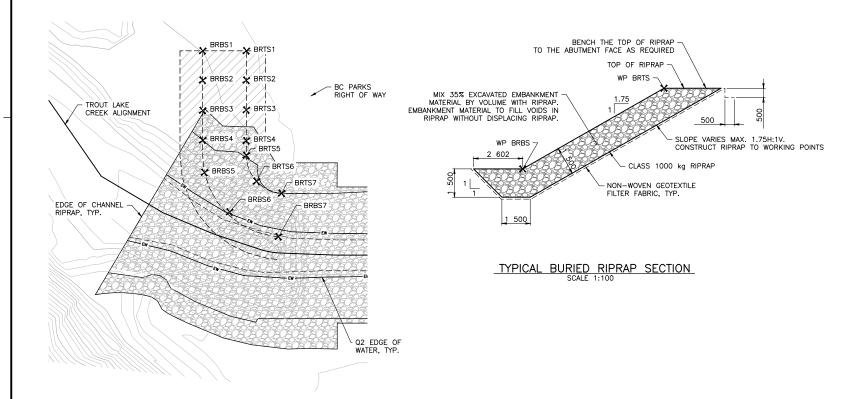
6.0 CLOSURE

The Project includes the removal of existing culverts, installation of a clear span bridge, instream channel erosion protection, and fish habitat enhancement features at the Hick's Lake Road crossing of Trout Lake Creek. So long as the mitigation measures outlined in this application are followed it is our opinion that residual adverse impacts (i.e., the death of fish or HADD) will not occur as a result of this Project.

7.0 REFERENCES


- [AE] Associated Engineering. 2022. Technical memorandum: Trout Lake Creek Culvert Replacement, Draft Options Analysis and Conceptual Design Report. August 19, 2022.
- AE. 2023. Trout Lake Creek Bridge Final Hydrotechnical and Drainage Report. Prepared for: MOTI. August 2023.
- BC Marine and Pile Driving Contractors Association [MPDCA]. 2023. Best Management Practices for Pile Driving and Related Operations. https://projects.eao.gov.bc.ca/api/document/5887e34fad20ac134d916367/fetch
- [BC MOE] British Columbia Ministry of Environment. 2006. Guidelines for Reduced Risk Instream Work Windows Ministry of Environment, Lower Mainland Region (March 2006). [cited 2022.06.06]. Available from: https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/working-around-water/work_windows_low_main.pdf
- BC MOE. 2008. Riparian Restoration Guidelines. March 2008. https://www.env.gov.bc.ca/lower-mainland/electronic documents/RiparianRestorationGuidelines.doc
- [DFO] Fisheries and Oceans Canada. 2019a. Measures to Protect Fish and Fish Habitat. Accessed March 12, 2020. http://www.dfo-mpo.gc.ca/pnw-ppe/measures-mesures-eng.html
- DFO. 2019b. Fish and Fish Habitat Protection Policy Statement. Accessed March 10, 2020. http://www.dfo-mpo.gc.ca/pnw-ppe/policy-politique-eng.pdf
- [ECCC] Environment and Climate Change Canada. [Internet]. 2018. General Nesting Periods of Migratory Birds. [cited 2022.06.06]. Available from: https://www.canada.ca/en/environment-climate-change/services/avoiding-harm-migratory-birds/general-nesting-periods.html#_04.
- Government of British Columbia. 2022a. A user's Guide for Changes In and About a Stream in British Columbia. Version 2022.01. Government of British Columbia.
- Government of British Columbia. 2022b. Requirements and Best Management Practices for Making Changes In and About a Stream in British Columbia. Appendix: Scope-specific Best Management Practices for Changes in and About a Stream under the WSA. A companion document to A user's Guide for Changes In and About a Stream in British Columbia.
- [Hatfield] Hatfield Consultants. 2017. Trout Lake Creek Culvert Assessment Environmental Summary Report. Prepared for MOTI. November 28, 2017.
- Hatfield. 2018. Trout Lake Creek Winter Fish Assessment. Prepared for MOTI. July 4, 2018.
- Hatfield. 2021. Field Assessment Notes, Assessment of Rockwell Drive Erosion sites. December 14, 2021.
- Hatfield. 2023. Rockwell Drive Recovery Project (DF4) Environmental Overview Assessment. Prepared for MOTI. January 2023.


- Hatfield. 2022. Trout Lake Creek Green Point Bridge | Crowhurst (DF4) Environmental Monitoring Report WSA Section 91 Order (Ref: 271110). Prepared for MOTI. November 2022.
- McElhanney. 2023. Timber Evaluation and Tree Risk Assessment: Rockwell Drive Flood Recovery Project DF#4/Agassiz, Harrison Hot Spring, B.C. Prepared for: MOTI. August 8, 2023.
- [MOTI] British Columbia Ministry of Transportation and Infrastructure. [Internet]. 2020a. Standard Specifications for Highway Construction. British Columbia Construction and Maintenance Branch. Volume 1. November 1. [cited 2022.06.06]. Available from: https://www2.gov.bc.ca/gov/content/transportation/transportation-infrastructure/engineering-standards-guidelines/standard-specifications-for-highway-construction.
- [MOTI] British Columbia Ministry of Transportation and Infrastructure. 2020b. Protection of the Environment Breeding Bird Nest Survey Protocol. September 10, 2020.
- Popper AN, Carlson TJ, Hawkins AD, Southall BL, Gentry RL. 2006. Interim Criteria for Injury of Fish Exposed to Pile Driving Operations. Report to the Fisheries Hydroacoustic Working Group, California Department of Transportation, USA. doi:10.1557/S0883769400039142.
- Westrek Geotechnical Services Ltd. 2020. Preliminary Hydrogeomorphic Assessment of Trout Lake Creek Crossing North of Harrison Hot Springs, BC. October 13, 2020.



Appendix A1

AE Design Drawings

NUMBER	DESCRIPTION	NORTHING	EASTING	ELEVATION
1	RBN1	466322.711	591232.912	21.559
2	RBN2	466321.007	591236.577	21.933
3	RBN3	466319.004	591241.971	22.307
4	RBN4	466317.178	591245.761	22.717
5	RBN5	466315.045	591250.287	23.148
6	RBN6	466313.965	591254.761	23.580
7	RBN7	466314.053	591259.538	24.011
8	RBN8	466314.608	591264.507	24.443
9	RBN9	466315.214	591269.546	24.874
10	RBN10	466315.947	591274.505	25.306
11	RBN11	466316.343	591280.310	25.737
12	RBN12	466315.644	591285.273	26.169
13	RBN13	466314.149	591290.324	26.491
14	RBN14	466313.746	591296.114	26.846
15	RTN1	466324.492	591233.698	22.671
16	RTN2	466324.137	591237.316	23.771
17	RTN3	466321.930	591243.173	24.115
18	RTN4	466321.930	591245.173	24.113
19	RTN5	466320.381	591250.927	25.374
		-		26.892
20	RTN6	466319.762	591254.726	
21	RTN7	466320.413	591258.827	27.669
22	RTN8	466320.968	591263.796	28.100
23	RTN9	466321.556	591269.071	28.509
24	RTN10	466322.112	591274.043	28.838
25	RTN11	466322.651	591281.653	29.423
26	RTN12	466321.266	591286.470	29.454
27	RTN13	466318.343	591291.559	28.989
28	RTN14	466318.714	591298.366	29.581
29	RBS1	466313.560	591228.871	21.559
30	RBS2	466312.487	591234.565	21.933
31	RBS3	466311.981	591239.085	22.307
32	RBS4	466311.102	591244.475	22.717
33	RBS5	466310.005	591249.448	23.148
34	RBS6	466309.563	591254.788	23.580
35	RBS7	466310.077	591259.982	24.011
36	RBS8	466310.633	591264.951	24.443
37	RBS9	466311.137	591269.857	24.874
38	RBS10	466311.500	591274.838	25.306
39	RBS11	466310.956	591279.163	25.737
40	RBS12	466310.043	591284.081	26.169
41	RBS13	466307.915	591288.489	26.491
42	RBS14	466305.521	591292.410	26.846
43	RTS1	466311.779	591228.085	22.671
44	RTS2	466309.356	591233.826	23.771
45	RTS3	466309.055	591237.882	24.115
46	RTS4	466307.898	591243.797	24.588
47	RTS5	466306.163	591248.808	25.374
48	RTS6	466303.766	591254.823	26.892
49	RTS7	466303.717	591260.693	27.669
50	RTS8	466304.305	591265.658	28.081
51	RTS9	466305.020	591270.315	28.380
52	RTS10	466305.575	591275.282	28.701
53	RTS11	466305.675	591278.039	28.636
54	RTS12	466301.417	591282.245	29.715
55	RTS13	466300.896	591286.423	30.269
56	RTS14	466298.922	591289.439	30.407

		WORKING POINT T	ABLE	
NUMBER	DESCRIPTION	NORTHING	EASTING	ELEVATION
57	BRTS1	466287.545	591283.490	28.636
58	BRTS2	466291.403	591283.059	28.636
59	BRTS3	466295.320	591282.610	28.636
60	BRTS4	466299.354	591282.170	28.636
61	BRTS5	466301.290	591281.954	28.636
62	BRTS6	466304.542	591280.226	28.636
63	BRTS7	466305.739	591276.743	28.636
64	BRBS1	466288.186	591289.226	25.400
65	BRBS2	466292.044	591288.795	25.400
66	BRBS3	466296.020	591288.350	25.400
67	BRBS4	466299.921	591287.914	25.400
68	BRBS5	466304.140	591287.204	25.400
69	BRBS6	466308.963	591283.324	25.400
70	BRBS7	466311.497	591276.529	25.400

R	IPRAP QUANTITIES
CLASS	APPROXIMATE ESTIMATED QUANTITIES (m³)
1000 kg	2961

Rev	Date	Description	Init
В	2023-06-21	ISSUED FOR 100% DETAILED DESIGN	M.L.
Α	2023-06-02	ISSUED FOR DRAFT REPORT	M.L.

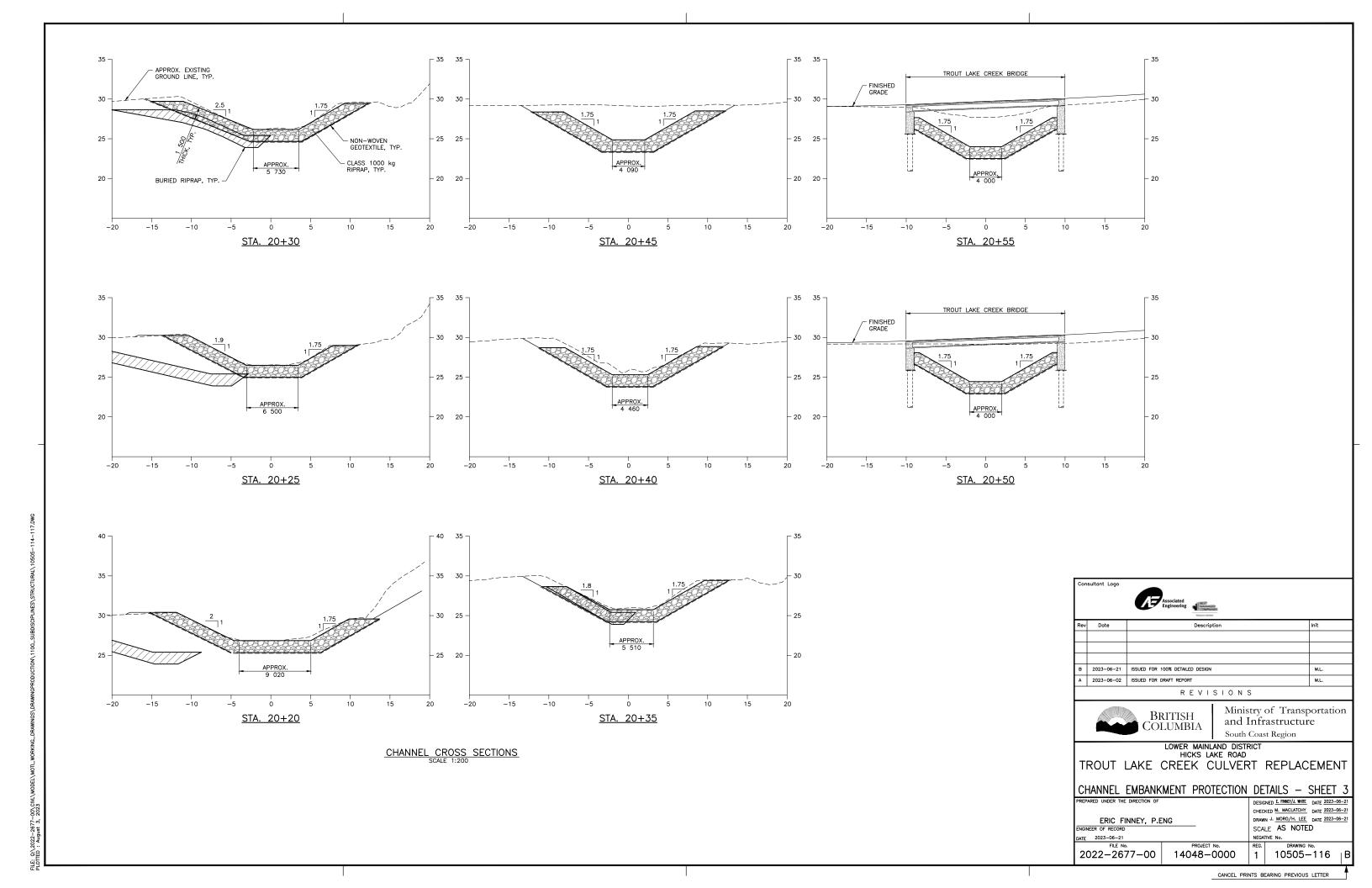
REVISIONS

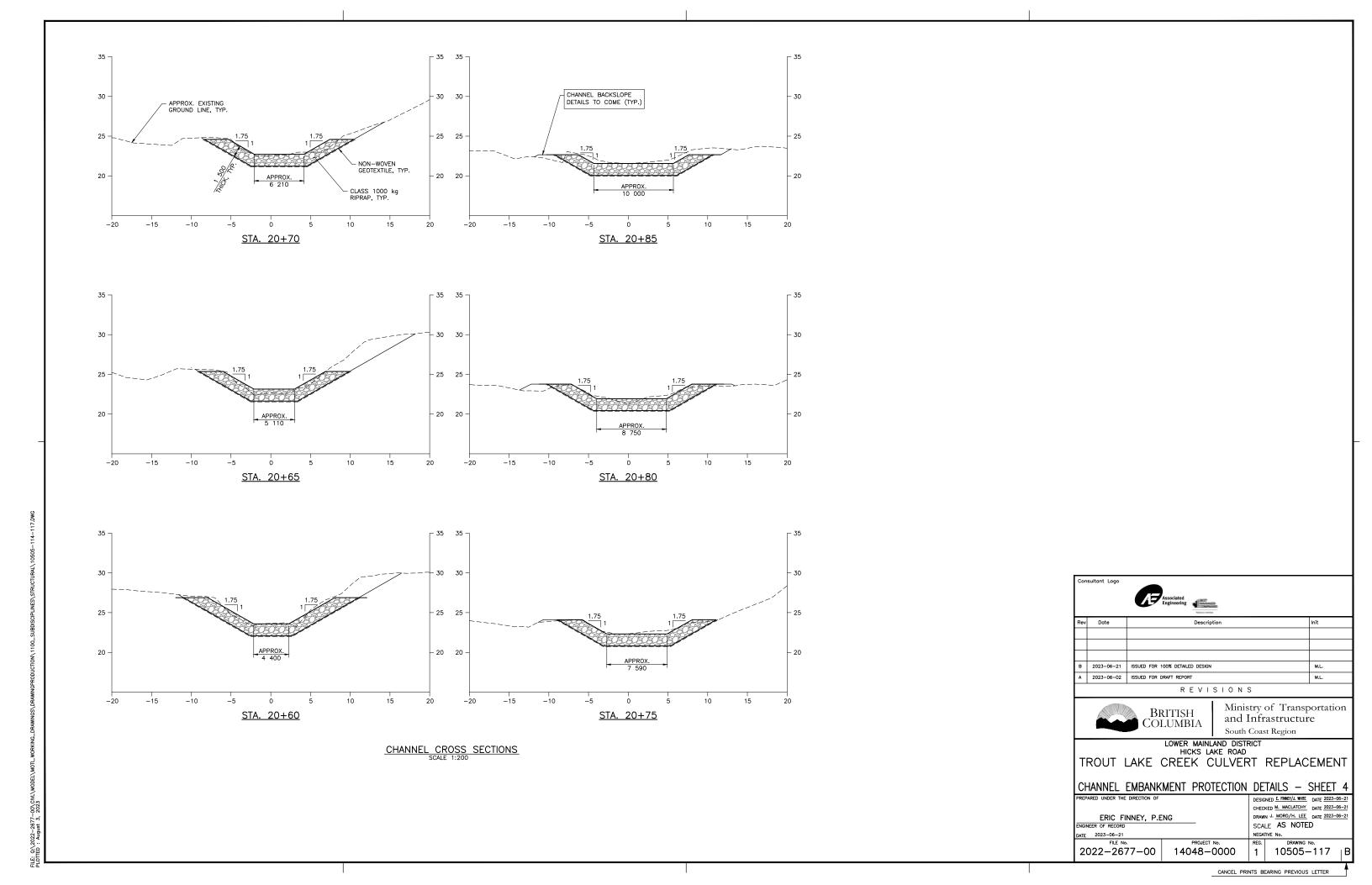
Ministry of Transportation and Infrastructure South Coast Region

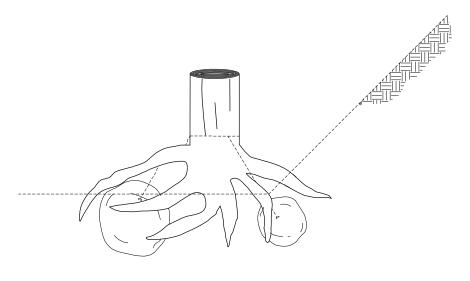
LOWER MAINLAND DISTRICT HICKS LAKE ROAD TROUT LAKE CREEK CULVERT REPLACEMENT

CHANNEL EMBANKMENT PROTECTION DETAILS — SHEET 2

ERIC FINNEY, P.ENG ENGINEER OF RECORD DATE 2023-06-21


DESIGNED E. FINNEY/J. WHITE DATE 2023-06-21 CHECKED M. MACLATCHY DATE 2023-06-21 DRAWN J. MORO/H. LEE DATE 2023-06-21 SCALE AS NOTED


PROJECT No. 2022-2677-00 14048-0000


CANCEL PRINTS BEARING PREVIOUS LETTER

WORKING POINTS BURIED RIPRAP PLAN
SCALE 1:250

10505-115

DETAIL

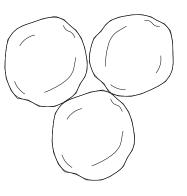
ROOT WAD

LARGE WOODY DEBRIS NOTES

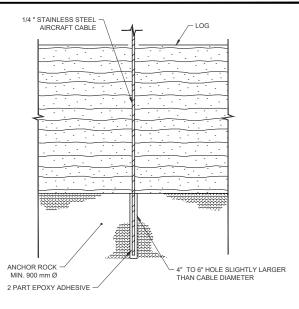
- LARGE WOODY DEBRIS SHALL BE COMPRISED OF MINIMUM 300 mm DIAMETER CEDAR OR DOUGLAS-FIR LOG WITH BARK LEFT LARGELY INTACT.
- 2. LOGS SHALL BE MINIMUM 6 m IN LENGTH.
- 3. ANGLE WOOD DOWNSTREAM AND ANCHOR ONE END TO CHANNEL BED AND THE OTHER TO CHANNEL BANK (SEE ANCHORING DETAIL), LOGS SHALL NOT EXTEND MORE THAN 1/3 OF THE CHANNEL WIDTH.
- 4. FOR STRUCTURES CONSISTING OF MORE THAN ONE PIECE OF LARGE WOODY DEBRIS, LOGS WILL BE CABLED TOGETHER PRIOR TO ANCHORING USING MINIMUM 1/4" DIAMETER STAINLESS STEEL AIRCRAFT CABLE.
- 5. ANCHOR TOP AND BOTTOM OF EACH LOG.

ROOT WAD NOTES

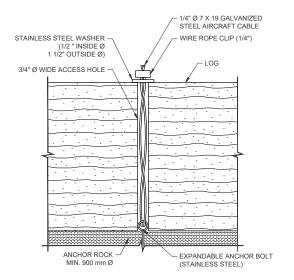
- 1. ROOT WADS SHALL BE COMPRISED OF WESTERN RED CEDAR OR DOUGLAS FIR.
- 2. ROOT WADS SHALL HAVE A MINIMUM ROOT MASS DIAMETER OF 0.3 m, WITH THE TRUNK CENTERED ON THE ROOT MASS
- 3. 20-30% OF THE ROOT MASS SHALL BE BURIED IN THE CHANNEL.
- 4. ANCHOR ROOT WAD USING MINIMUM 1/4" STAINLESS STEEL AIRCRAFT CABLE WRAPPED AROUND TREE TRUNK. ANCHOR ONE END OF CABLE TO SHORE AND OTHER END TO STREAM BOTTOM, ACCORDING TO ANCHORING DETAIL.
- 5. ROOT WAD SHALL NOT EXTEND GREATER THAN 1/3 THE WIDTH OF THE STREAM CHANNEL.


ANCHORING NOTES

- 1. ANCHOR LOGS WITH MINIMUM 1/4" STAINLESS STEEL AIRCRAFT CABLE.
- 2. RUN CABLE THROUGH AXIS OF LOGS INTO TWO 900 mm TO 1200 mm BOULDERS, SECURING CABLE TO BOULDERS VIA ROCK DRILLING, ENSURE THE HOLE FACES PERPENDICULAR TO THE SHEAR STRESS OF THE LOAD.
- 3. DRILL HOLES MINIMUM 4" TO 6" DEEP INTO BOULDERS AND SECURE CABLE IN HOLES USING EITHER:

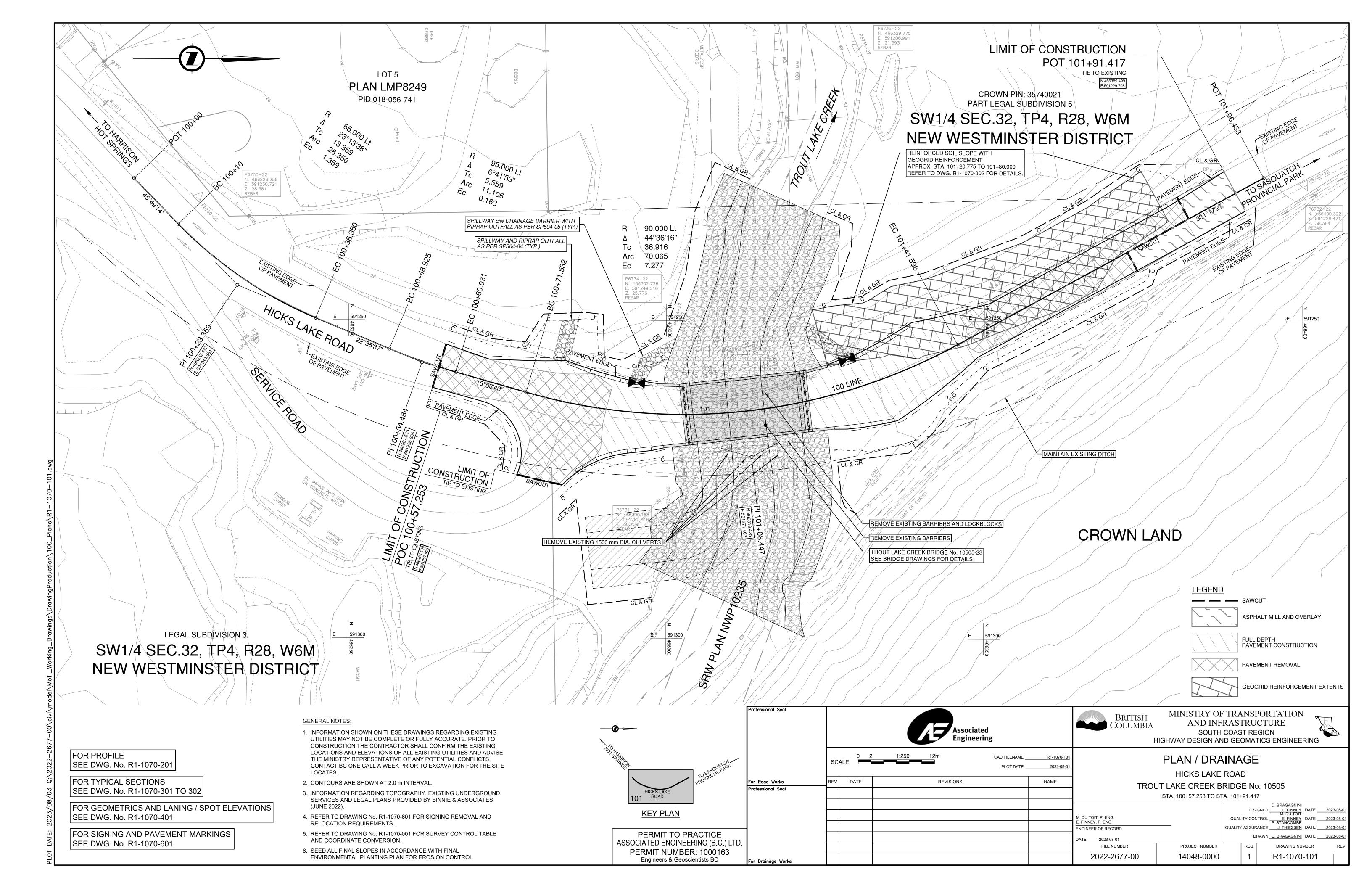

 A. 2 PART EPOXY ADHESIVE IN HOLES DRILLED SLIGHTLY LARGER THAN CABLE DIAMETER (HOLES TO BE CLEANED
 - A. 2 PART EPOXY ADHESIVE IN HOLES DRILLED SCIGHTLY LARGER THAN CABLE DIAMETER (HOLES TO BE CLEANED IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS); OR
 - B. AN EXPANDABLE ANCHOR BOLT (STAINLESS STEEL) INSERTED AT THE BOTTOM OF A ½" HOLE. RUN CABLE THROUGH EYE OF BOLT, TWIST TOGETHER, AND SECURE AT SURFACE OF ROCK FACE USING STAINLESS WASHER (1/2" INSIDE DIAMETER AND 1 1/2" OUTSIDE DIAMETER) AND 1/4" WIRE ROPE CLIP.
- 4. FOR ALL ANCHORS, CABLE LENGTH (SLACK) SHOULD BE MINIMIZED TO THE EXTENT POSSIBLE TO PREVENT MOVEMENT OF LOGS AND ROOT WADS.

BOULDER CLUSTER NOTES


- 1. BOULDER CLUSTERS TO BE COMPRISED OF MINIMUM 1.3 m DIAMETER RIPRAP.
- 2. 60% OF THE BOULDER PROFILE SHALL BE BURIED IN THE CHANNEL.

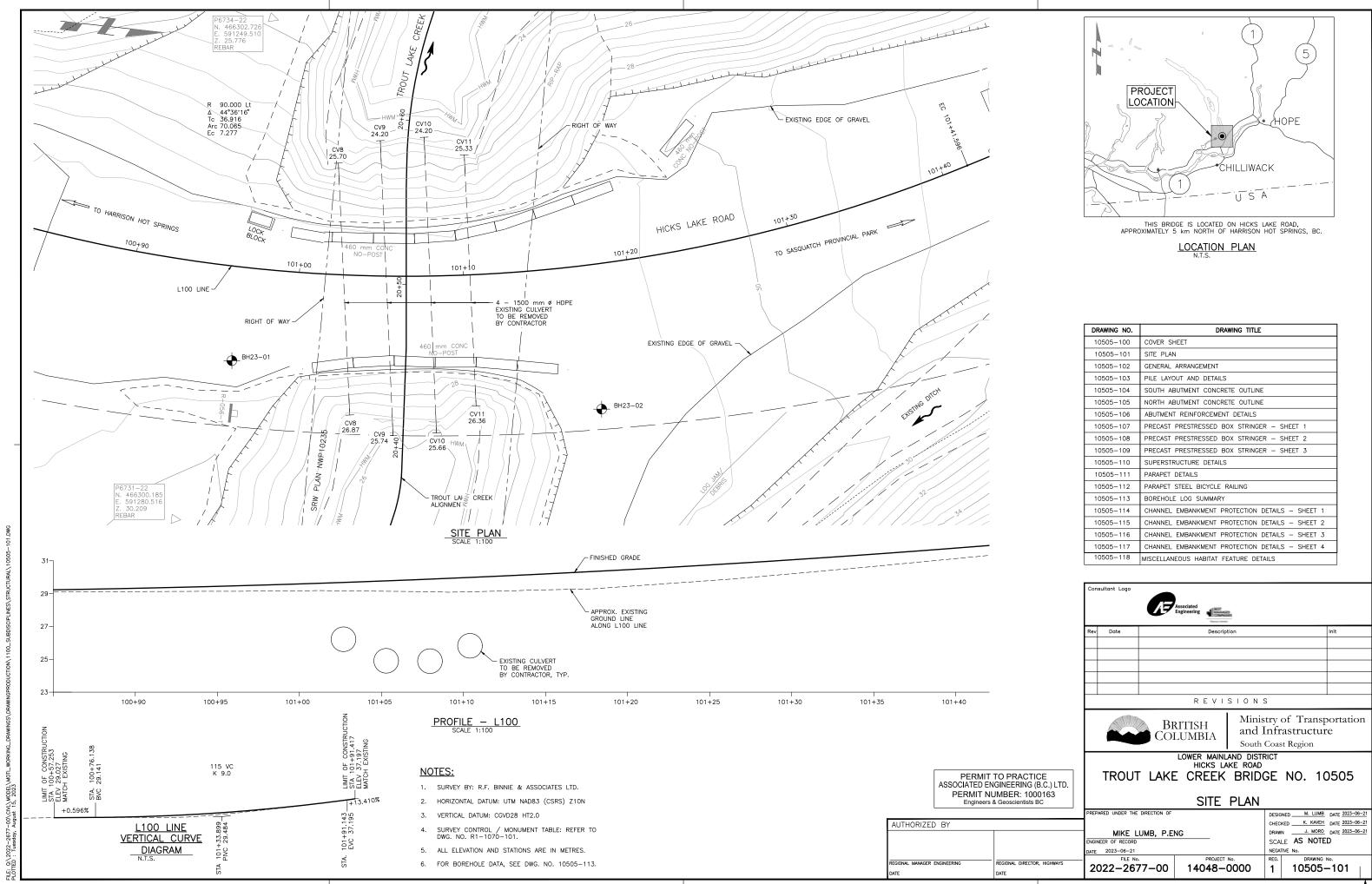
DETAIL N.T.S.
BOULDER CLUSTER

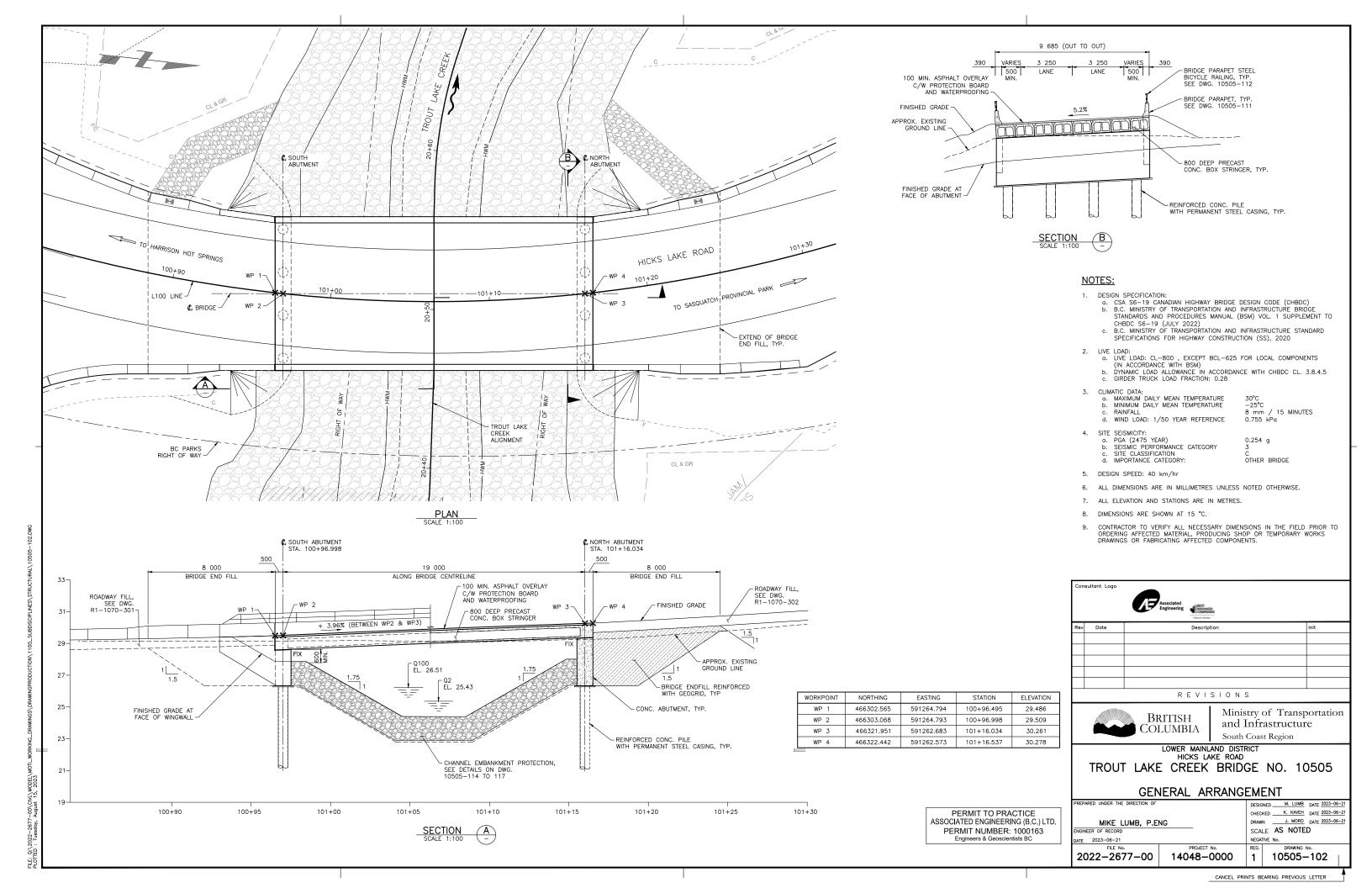
ANCHOR DETAIL OPTION A

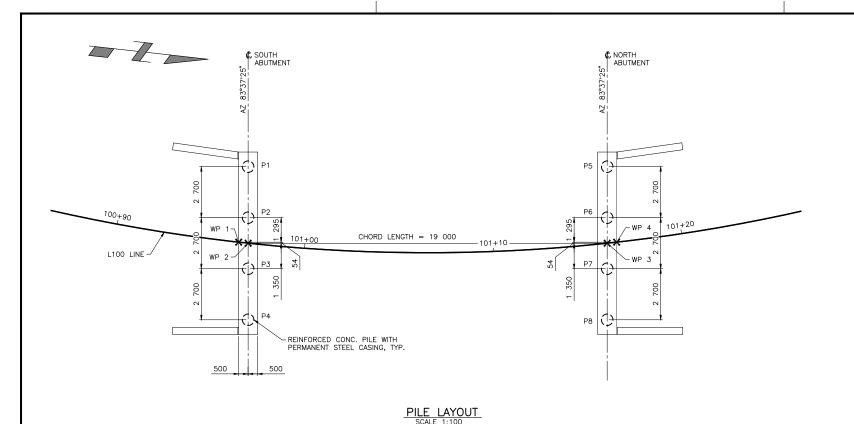

ANCHOR DETAIL OPTION B N.T.S.

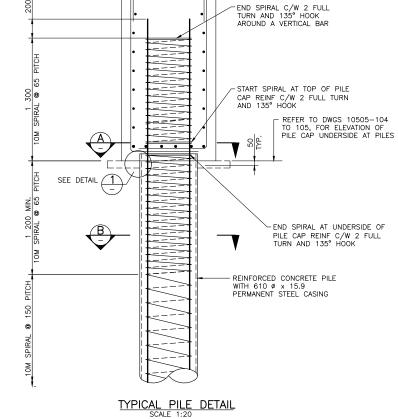
BRITISH
COLUMBIA

And Infrastructure
South Coast Region


LOWER MAINLAND DISTRICT
HICKS LAKE ROAD
TROUT LAKE CREEK CULVERT REPLACEMENT



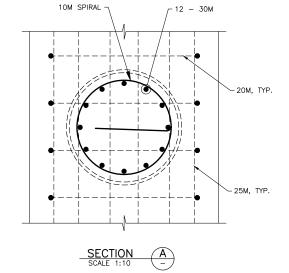



Ministry of Transportation and Infrastructure
Bridge Project
No. 14048-0000

TROUT LAKE CREEK BRIDGE NO. 10505
HICKS LAKE ROAD

	FILE	NSTALLATION TA	DLL (III)	
PILE NUMBER	CUT-OFF ELEVATION	ANTICIPATED DESIGN LENGTH	ANTICIPATED PILETIP ELEV	MAX. PILE TII ELEV.
P1	26.202	19.5	6.8	6.8
P2	26.343	19.6	6.8	6.8
P3	26.483	19.7	6.8	6.8
P4	26.623	19.9	6.8	6.8
P5	26.204	11.7	14.6	14.6
P6	26.345	11.8	14.6	14.6
P7	26.485	11.9	14.6	14.6
P8	26.626	12.1	14.6	14.6

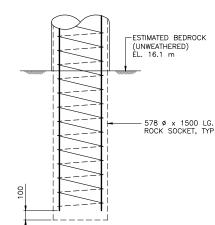
PI	LE DESIGN LOAD	OS (kN)	
	AXIAL COMPRESSION	TRANSVERSE SHEAR	LONGITUDINAL SHEAR
SLS	1100	0	60
ULS	1600	45	135
ULS 5 (TRANSVERSE)	1360	310	60
ULS 5 (LONGITUDINAL)	960	100	130

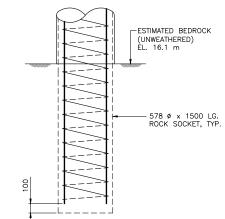

ABUT. PILE CAP-REINFORCED CONC. -PILE WITH PERMANENT STEEL CASING

✓ TACK WELD

RING INSIDE C/W BEVELLED EDGES

TYPICAL PILE SPLICE DETAIL


SCALE 1:2.5



- 10M SPIRAL OVERLAP ONE AND ONE—HALF TURNS MIN. AT SPLICE LOCATIONS, WITH 400 EXTENSION EACH END BEND INTO CORE

REINFORCED CONCRETE

PILE WITH 610 Ø x 15.9 PERMANENT STEEL CASING

NORTH ABUTMENT PILE TIP DETAIL
SCALE 1:20

PERMIT NUMBER: 1000163 Engineers & Geoscientists BC

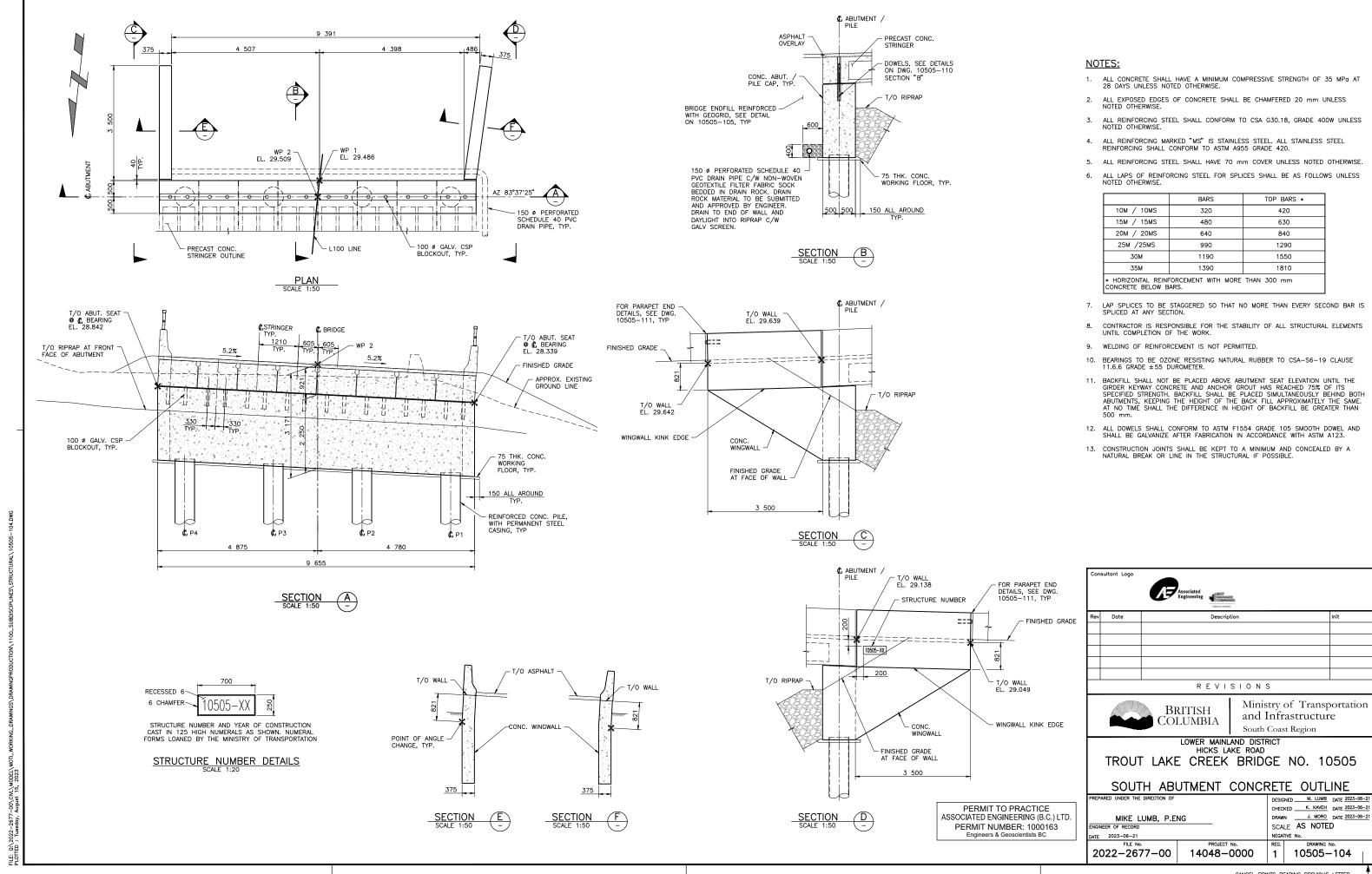
ANTICIPATED PILE TIP ELEVATION EL. 6.8 m
--

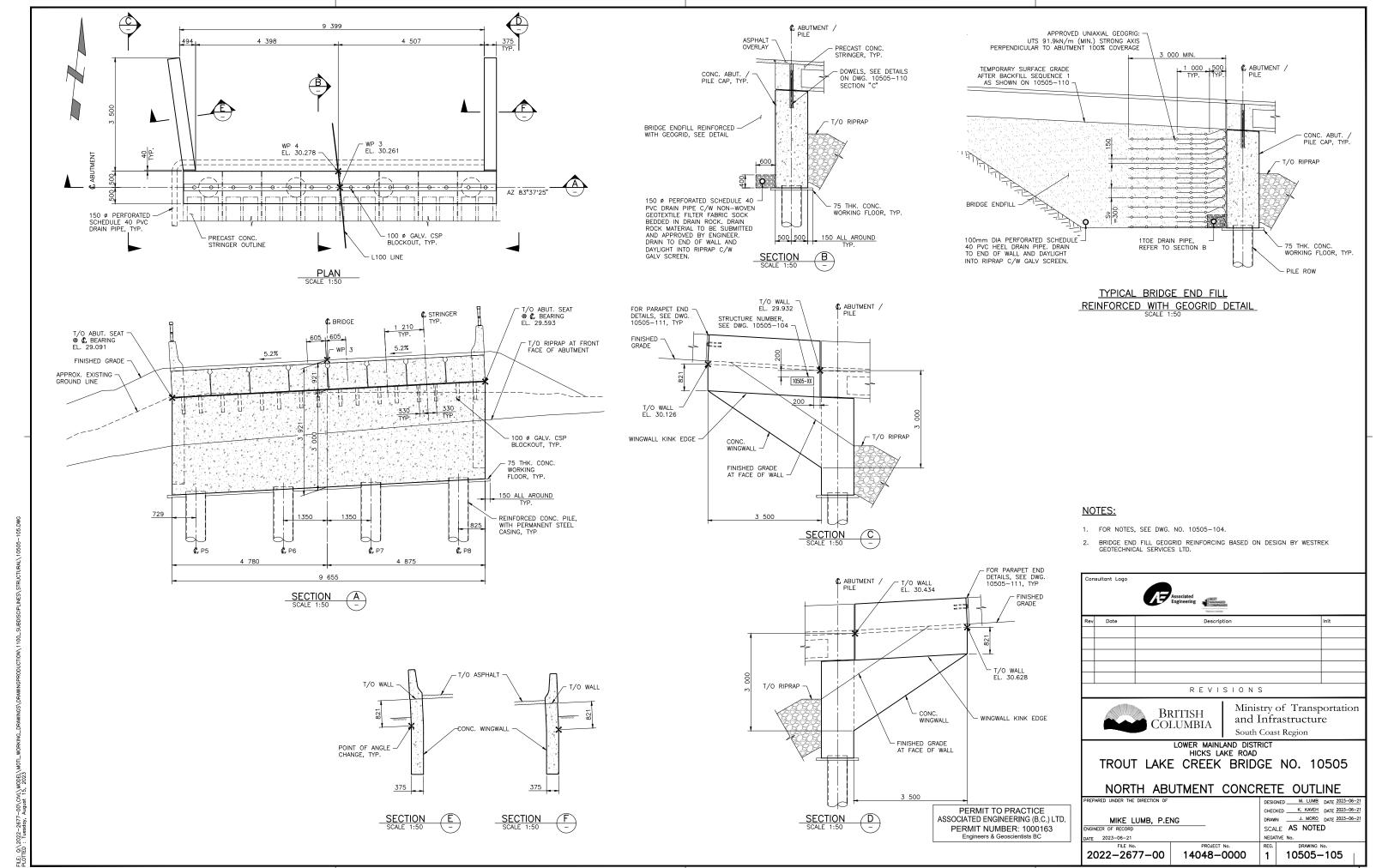
SOUTH ABUTMENT PILE TIP DETAIL

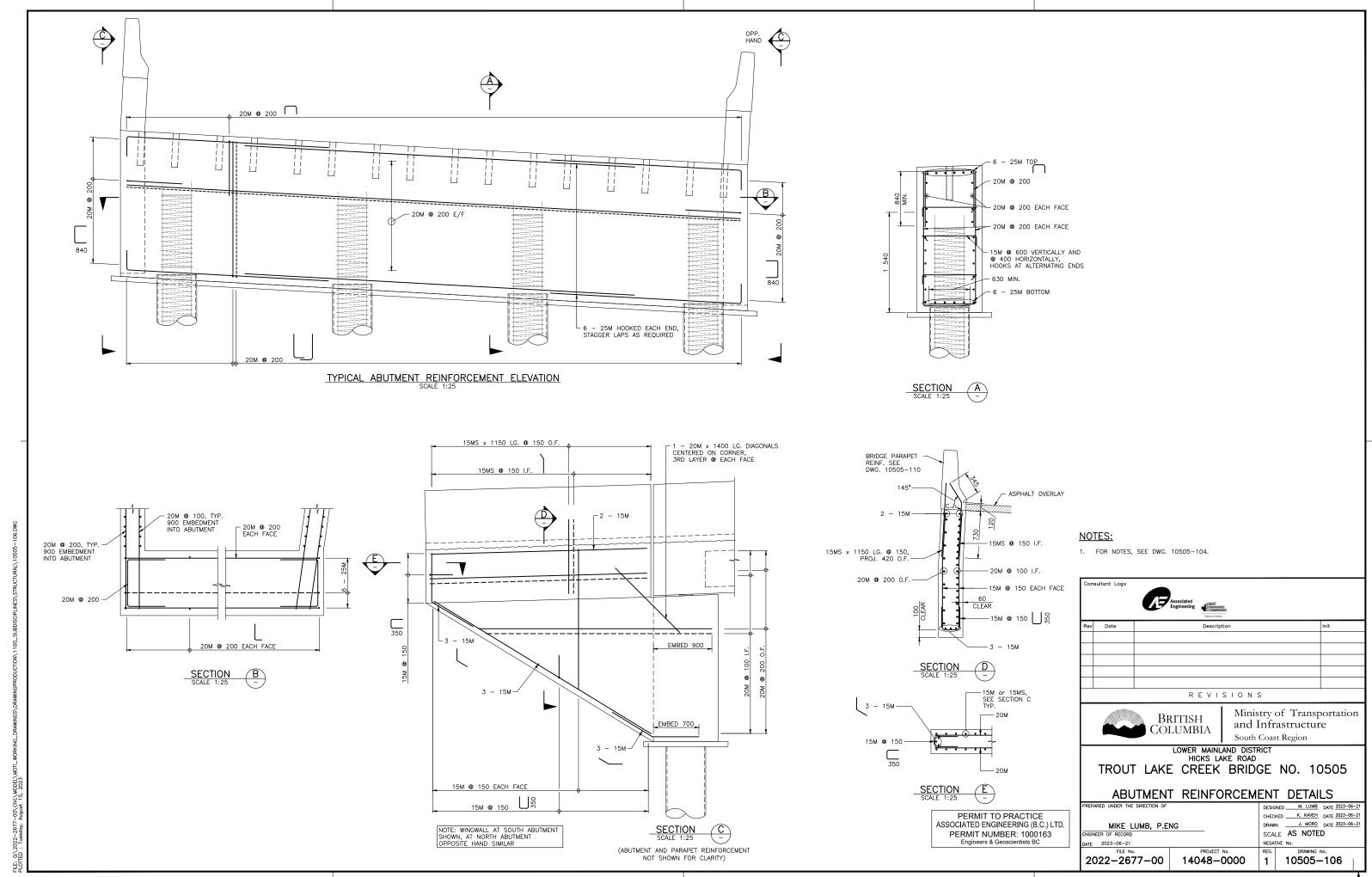
PERMIT TO PRACTICE ASSOCIATED ENGINEERING (B.C.) LTD.

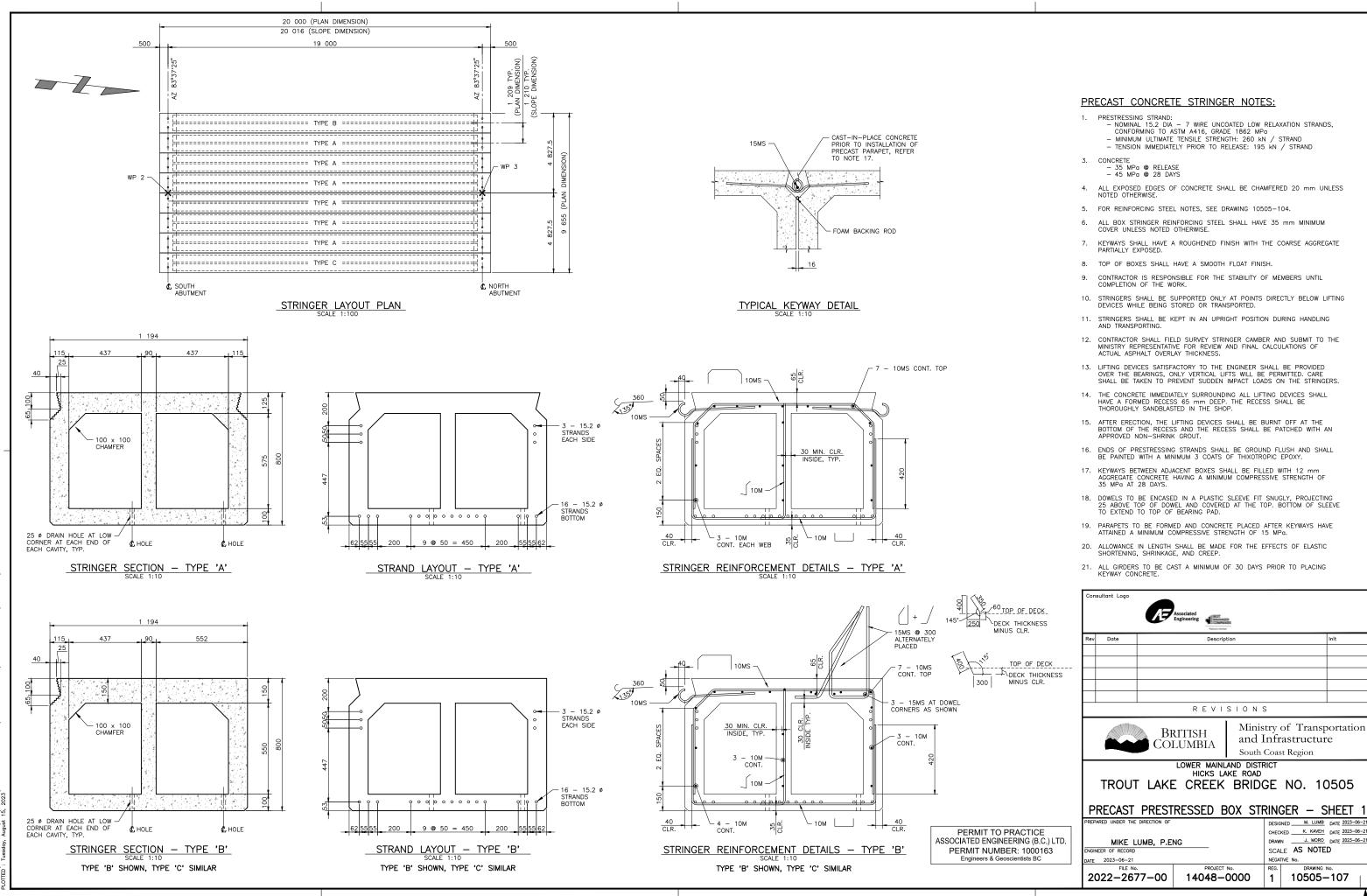
NOTES:

- 1. FOR CONCRETE AND REINFORCING NOTES, SEE DWG. 10505-104.
- 2. ALL STEEL PIPE SHALL CONFORM TO ASTM A252 GRADE 3.
- ALL PILES SHALL BE INSTALLED TO ELEVATIONS SHOWN OR TO SUCH ELEVATIONS AS MAY BE ORDERED BY THE MINISTRY REPRESENTATIVE.
- 4. MISCELLANEOUS STEELWORK SHALL CONFORM TO CSA G40.21 GRADE 300W.
- SPLICING OF PILE LONGITUDINAL REINFORCEMENT IS NOT PERMITTED WITHIN 3000 OF UNDERSIDE OF CONCRETE CAP. PILE LONGITUDINAL LAP SPLICE LENGTH SHALL BE 1550 MIN.
- THE ANNULUS BETWEEN THE SURROUNDING SOIL AND THE CASING SHALL BE FILLED WITH SELF CONSOLIDATING CONCRETE WITH 10 mm AGGREGATE AND COMPRESSION STRENGTH OF NOT LESS THAN 20 MPa AT 28 DAYS.

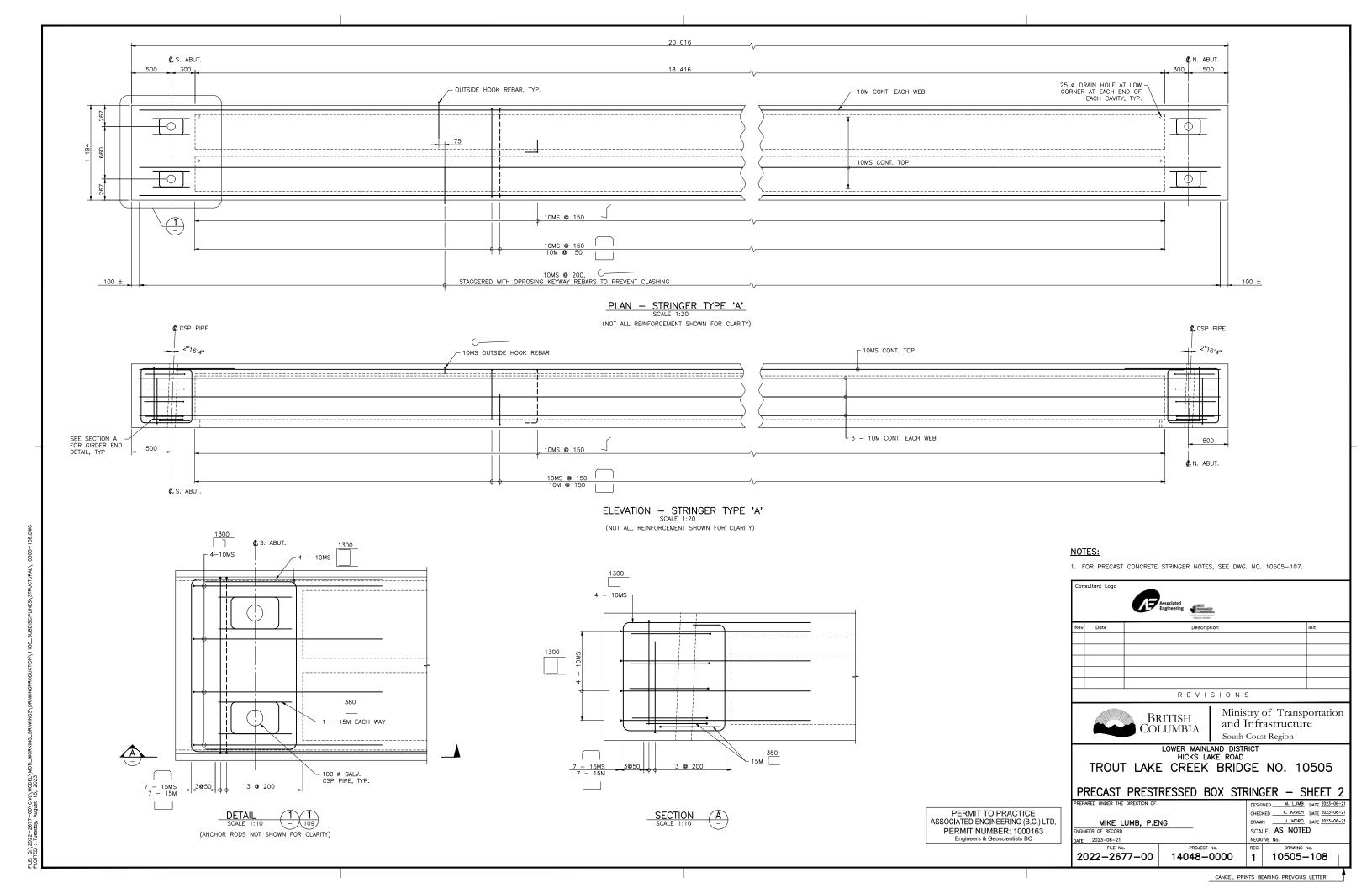


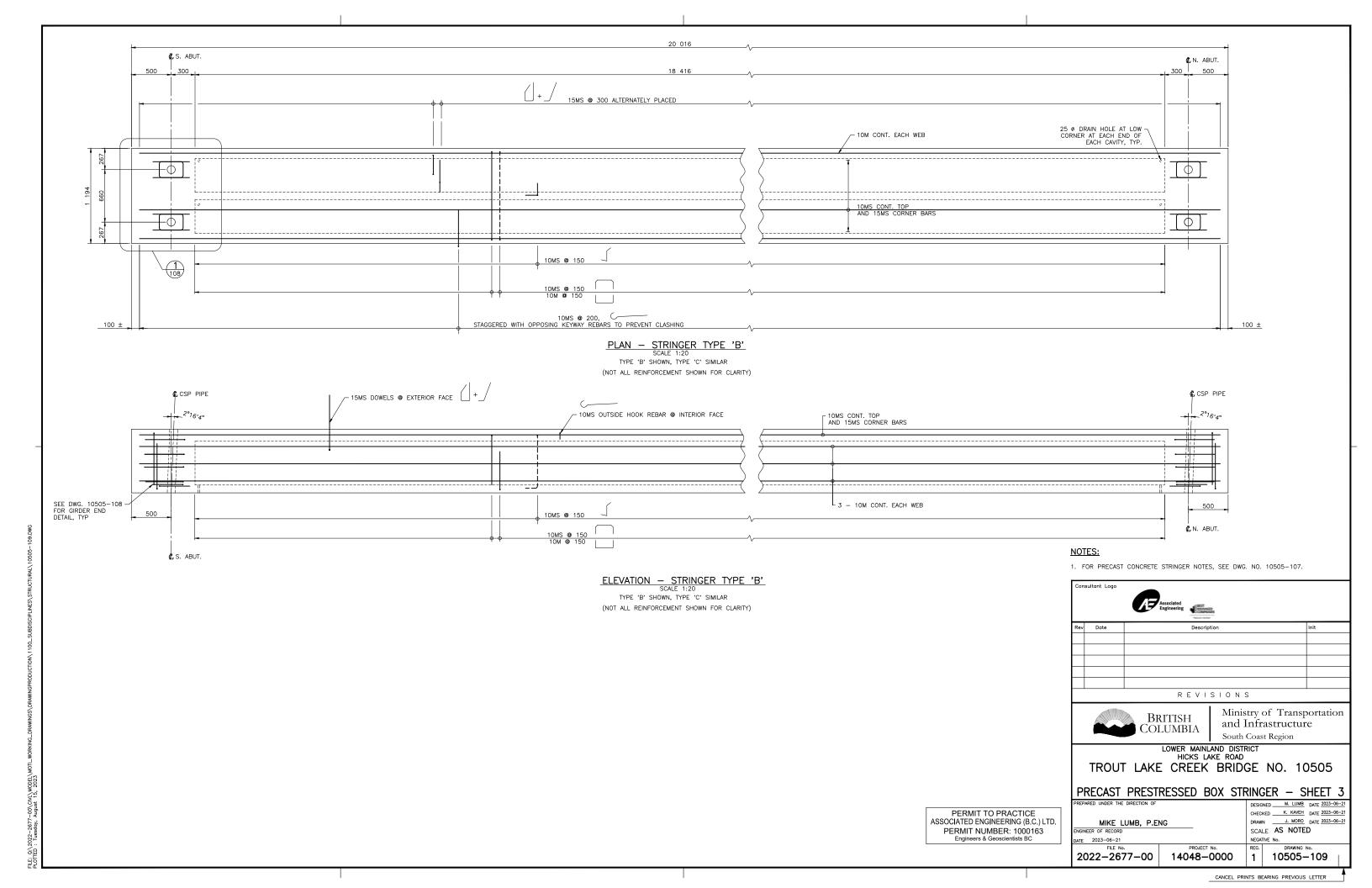

BRITISH and Infrastructure COLUMBIA South Coast Region

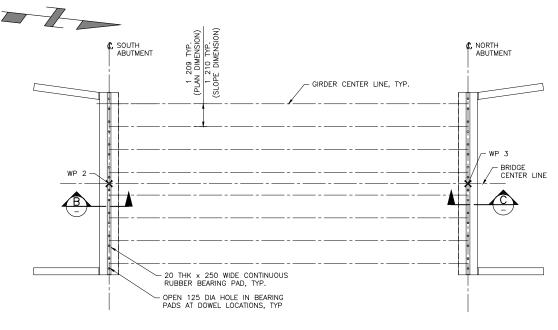

LOWER MAINLAND DISTRICT HICKS LAKE ROAD TROUT LAKE CREEK BRIDGE NO. 10505

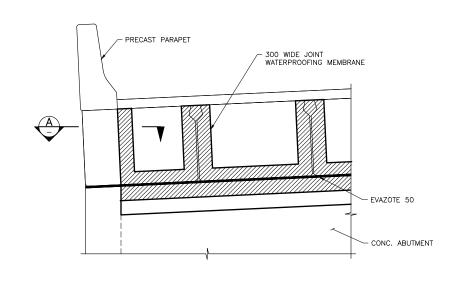

PILE LAYOUT AND DETAILS

DESIGNED M. LUMB DATE 2023-06-2 CHECKED K. KAVEH DATE 2023-06-21 DRAWN ______J. MORO ____DATE _2023-06-21 MIKE LUMB, P.ENG SCALE AS NOTED NGINEER OF RECORD ATE 2023-06-21 NEGATIVE No. 2022-2677-00 14048-0000 10505-103

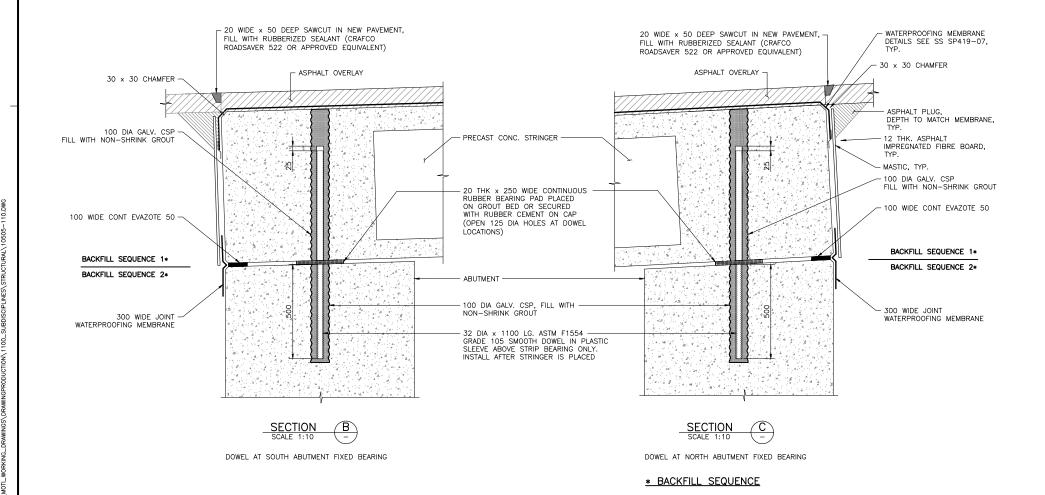



SCALE AS NOTED


NEGATIVE No.

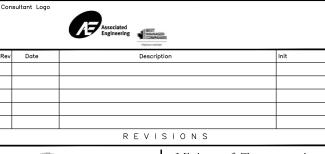

CHECKED K. KAVEH DATE 2023-06-21 DRAWN ______J. MORO _____DATE _2023-06-21

10505-107


TYPICAL VIEW AT BACK OF ABUTMENT

1. BACKFILL TO TOP OF NEW ABUTMENT / PILE CAP PRIOR TO GIRDER INSTALLATION.

BACKFILLING SHALL BE COMPLETED TO TOP OF GIRDER AFTER DOWELS ARE INSTALLED, AND GROUT HAS REACHED 75% DESIGN STRENGTH MINIMUM.


CONC. ABUTMENT WINGWALL 300 WIDE WATERPROOFING - PRECAST CONC. STRINGER - EVAZOTE SIKAFLEX 1A SEALING COMPOUND OR APPROVED EQUIVALENT

BEARING PAD LAYOUT
SCALE 1:100

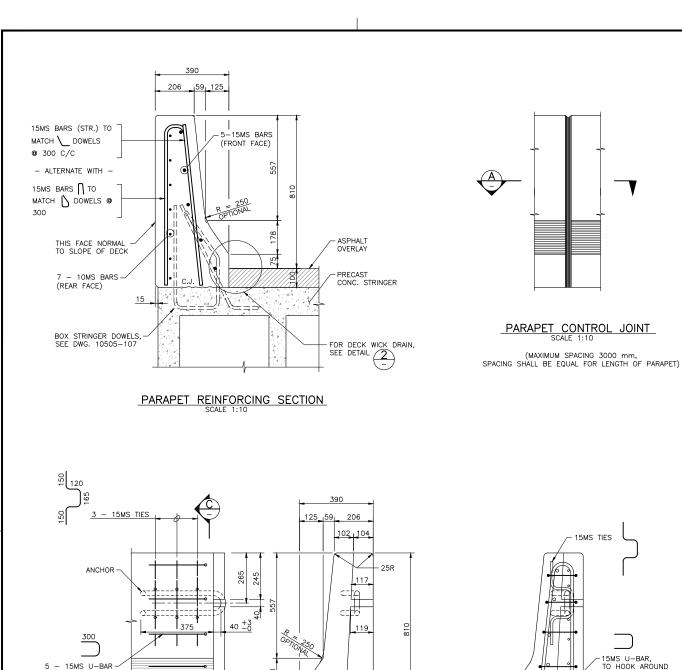
NOTES:

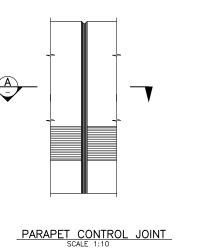
- 1. FOR ABUTMENT NOTES, SEE DWG. 10505-104
- GROUT TO BE SHRINKAGE—COMPENSATING CEMENTITIOUS GROUT, 40 MPa MINIMUM COMPRESSIVE STRENGTH AT 28 DAYS.
- JOINT WATERPROOFING MEMBRANE SHALL BE A 300 mm WIDE PREFABRICATED MEMBRANE DETAILING STRIP. THE MEMBRANE SHALL BE A SELF-ADHERING INTERNALLY REINFORCED SHEET OF RUBBERIZED ASPHALT AND SHALL BE 1.50mm THICK AND INSTALLED IN ACCORDANCE WITH SS419.

Ministry of Transportation and Infrastructure

South Coast Region LOWER MAINLAND DISTRICT

HICKS LAKE ROAD TROUT LAKE CREEK BRIDGE NO. 10505

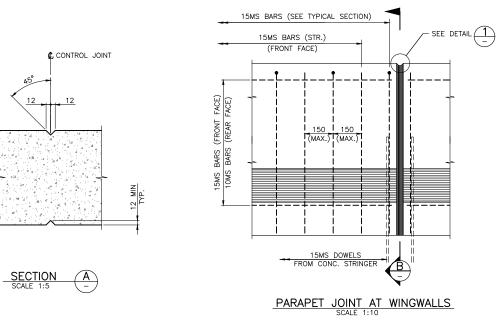

SUPERSTRUCTURE DETAILS

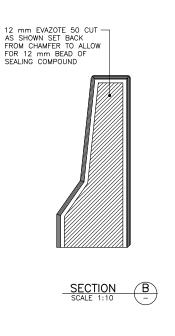

MIKE LUMB, P.ENG NGINEER OF RECORD

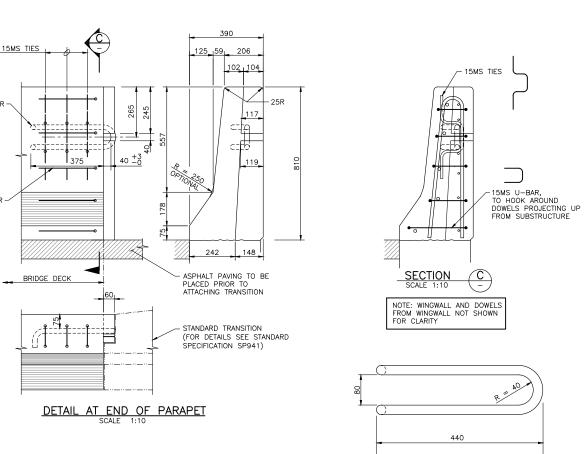
DESIGNED M. LUMB DATE 2023-06-21 CHECKED K. KAVEH DATE 2023-06-21 SCALE AS NOTED

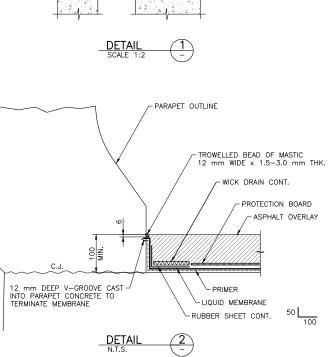
TE 2023-06-21 NEGATIVE No. 2022-2677-00 14048-0000 10505-110

PERMIT TO PRACTICE ASSOCIATED ENGINEERING (B.C.) LTD. PERMIT NUMBER: 1000163 Engineers & Geoscientists BC

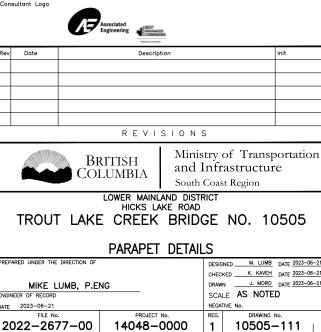



DETAIL OF ANCHOR

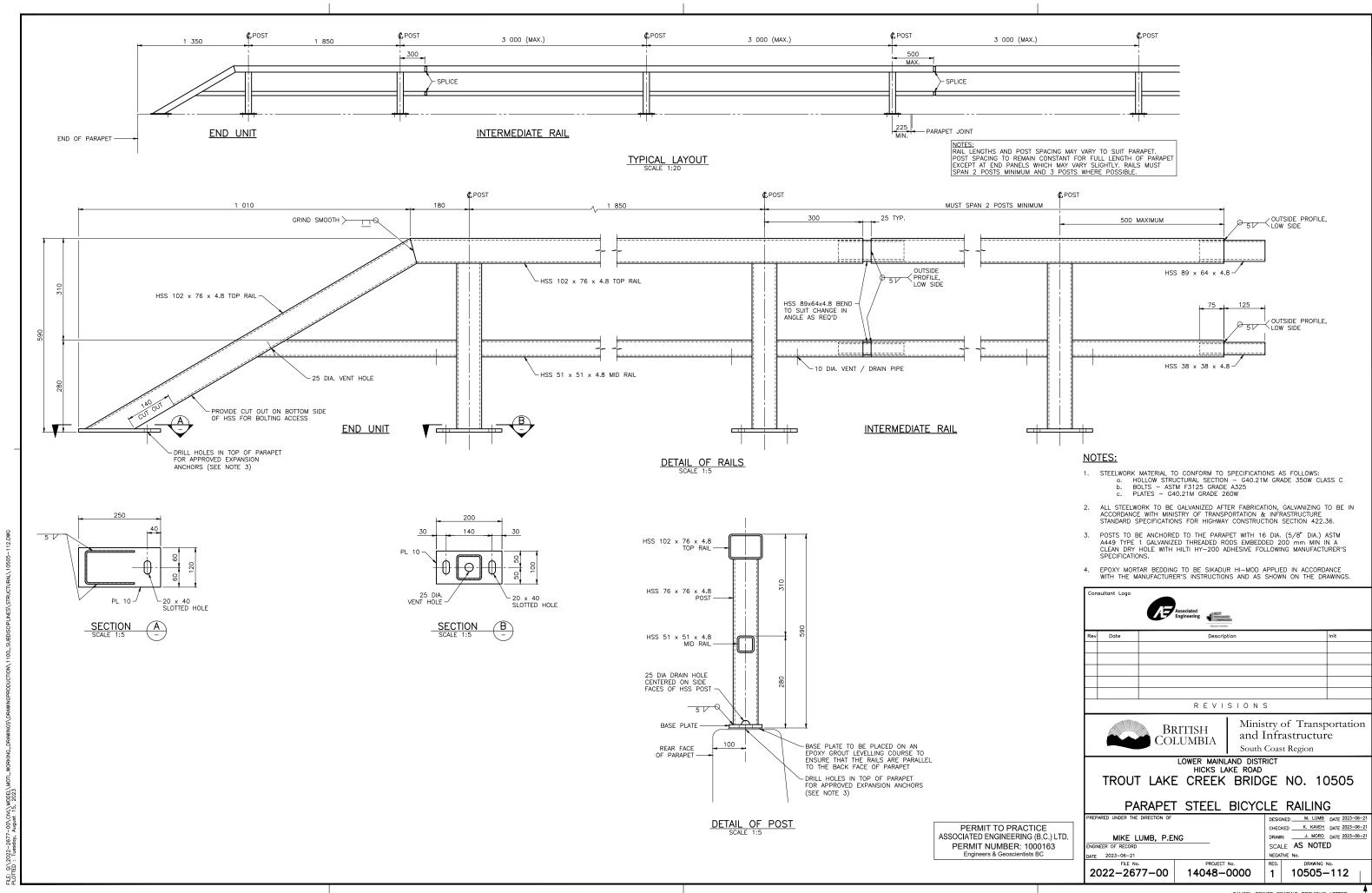

MASS = 4.1 kg EACH


SCALE 1:5

- SIKAFLEX 1A SEALING COMPOUND OR APPROVED EQUIVALENT

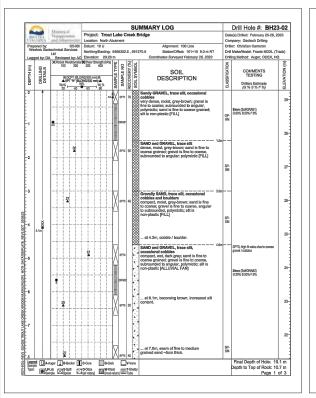

40

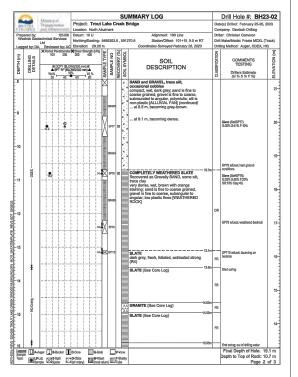
Consultant Logo

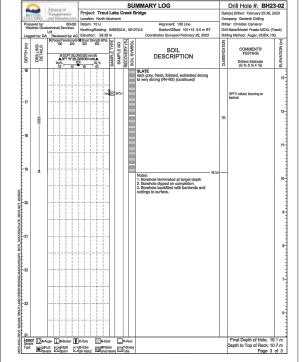

NOTES:

- PARAPET CONCRETE SHALL HAVE A COMPRESSIVE STRENGTH OF 35 MPa AT 28 DAYS.
- 2. CONCRETE SURFACES SHALL BE GIVEN A CLASS 3 FINISH.
- 3. EXPOSED EDGES TO BE CHAMFERED 20 mm EXCEPT AS NOTED.
- REINFORCING STEEL TO HAVE 50 mm MIN. COVER EXCEPT AS NOTED.
- 5. ALL REINFORCING STEEL DESIGNATED 'MS' IS STAINLESS STEEL
- 6. LAP LENGTH FOR SPLICES SHALL BE AS FOLLOWS: 10MS BARS 610 mm 15MS BARS 860 mm SPLICES TO BE STAGGERED.

- NO PART OF THE PARAPET CONCRETE ABOVE THE CONSTRUCTION JOINT SHALL BE PLACED UNTIL ALL SECTIONS OF THE DECK SLAB AND DECK JOINT COMPONENTS HAVE BEEN PLACED.
- 8. PARAPETS TO BE CAST IN FIXED FORMS.
- 9. STEEL FOR ANCHORS TO CONFORM TO CSA-G40.21M GRADE 300W.
- ANCHORS TO BE GALVANIZED AFTER FABRICATION. GALVANIZING TO BE IN ACCORDANCE WITH ASTM A153.
- 11. WICK DRAIN NILEX MD—7407 FULL LENGTH OF DECK: INSTALL WHEN MEMBRANE IS TACKY.




PERMIT TO PRACTICE ASSOCIATED ENGINEERING (B.C.) LTD. PERMIT NUMBER: 1000163 Engineers & Geoscientists BC

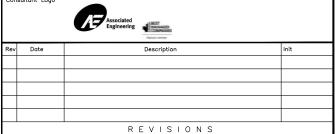


1	7	Atmongse			SU	IMMARY LOG		Drill Hole #: BH23	3-01
Ite	mat.	Theoperation and infrastructure	Project: Trout Lal Location: South Abuth		oek E	Bridge		e(a) Drilled: February 23-25, 20	023
		023-008 Mechnical Services		HERTIE		Alignment: 100 Line		npany: Geolech Drilling ler: Christian Cameron	
			Northing/Easting: 5468	325.3	, 591			Make/Model: Fraste MDXL (Tr	
Logi	ged by: D.	 Reviewed by: AC 	Elevation: 29.15 m	-	ы.	Coordinates Surveyed February 26, 2023		ing Method: Auger, Mud Roter	
DEPTH (m)	DRILLING DETAILS	₩DCPT (BLO	## Shear Strength (JPIs) UI A A A A A A A A A	SAMPLE NO	SOIL SYMBOL	SOIL DESCRIPTION	CLASSIFICATION	COMMENTS TESTING Drillers Estimate (G % S % F %)	ELEVATION (m)
8			TTTT	T	4.	GRAVEL and SAND, some slit,		, ,	21
9			***	SAMES 8917 (occasional coordinacting my with compa- very dense, which is fine to contra, angular, polymicirc, etil is low plastic [TiLL] polymicirc, etil is low plastic [TiLL]	gин	SPT7 ratural; Bally on coarse gravel or cobbles	20
								Order notes softer drilling conditions from 10.3m to 10.7m	19
-11			**	SPTS 6		Gravelly SAND, some silt, occasional cobbles very dense, wet, brown; sand is fine to course grained; gravel is fine to course, subrounded to angular, polymictic; silt is non-elestic TILL!		SPT8 refusel; herd ground conditions Driller noise hard drilling below	18
12	XIII			SAMES			SM1	11.Sm	17
			<u> </u>	arra 5		GRAVEL and SAND, some slit, trace clay very dense, wet, brown; gravel is fine to course, subrounded to angular, polymicitic, sand is fine to course grained; fines are low lasts (TILL)			
13									16
14		*	: : i i M	971b 6		at 13.7m, increase in fines content.		Bieve (Sal9SPT10) Gx89% S3855 F14% S8t12% Clay2%	15-
15								SPT11 subset hard ground	14
16				SP711 S			GW1	conditions	
Lege Samp Type	# DA	Auger B-Becker II	G-Core GG-Grab G-Odex peggW-Wash Gel retary) Eath (mud return		Vana Shelby			Final Depth of Hole: 19 Depth to Top of Rock: Page 2	N/A

6	2	Misseylor	D-1-1-1-1-1		_			IMMARY LOG	-	Drill Hole #: BH2	_
	JANIA.	Transportation and telepropers	Project: Trout Location: South A Deturn: 10 U			ree	ek i	Alignment: 100 Line	Co	is(s) Drilled: February 23-25, 2 mpany: Geotech Drilling ler: Christian Cameron	1023
	strek Goo ed by: D/	technical Services Ltd Reviewed by: AC	Northing/Easting: Elevation: 29.15		325.	3,	591		Drl	I Make/Model: Fraste MDXL (T ling Method: Auger, Mud Rota	
DEPTH (m)	DRILLING	XPoolat Panetrometo 100 200	WS/300 F800 (6Pu) WS/300 mm) W DWS/300 mm) A W/3 / 60	SAMPLE TYPE	SAMPLE NO	RECOVERY (%)	SOIL SYMBOL	SOIL DESCRIPTION	CLASSIFICATION	COMMENTS TESTING Drillers Estimate (9 % S % F %)	(m) NOLLAYS IS
-17 -18 -20 -21	- 1980 - ¥			Δ.	PPTIS	60		GBAPICE, and SAPID, some all, trace or way done, we thorough a first to covere, extraordist to engular, controlled		Base (Guld'T13) Set 19 Cap 19 Set 19	1
Lege Samp Type		luger B-Becker III	<u> </u>						_	Final Depth of Hole: 19 Depth to Top of Rock Page 3	: N/A

6		Misseylor	Desi	t- ·	Towns 6	-b- C			CORE LOG	_		Drill Hole #:		
170	11200	Transportation and telephococcu			Trout I lorth Ab	_ake C	reek	Bn	ige			Date(s) Drilled: February Drilling Company: Geotor		
		623-008 stechnical Services		m: 10		all morr.	_	_	Alignment: 100 Line	_	_	Driller: Christian Camero		
		Lid				406302.	6,59	1270	5 Station/Offset: 101+15 9.0			Drill Make/Model: Fraste		
Logs	ed by: D	A Reviewed by: At		dion:	29.28 n				Coordinates Surveyed February 26,	202	3	Drilling Method: Auger, C	DEX, HQ	
DEPTH (m)	DRILLING DETAILS	RECOVERY %	CORE RUN NO	QUALITY	SPACING INTACT ROCK STRENGTH	WEATHERING	UCS (MPa)	ROCK SYMBOL	ROCK MASS DESCRIPTION	CLASSIFICATION	# OF JOINTS	STRUCTURAL DISCONTINUITY DESCRIPTION	NSTALLATION	
13.6	1	20 40 60 80	1 F	etr :	9 84.01	F		2	SLATE dark gray, fine-grained, foliated, calcite infill, fresh, estimated strong to very strong	0			_	
	Coring			7	5			E 53	14.85m		14.6	i;FO; PL; SM; Dips A 45 2;JN; IR; SM; Dips A 10		1
-15	ğ		2 Pi	- 1-	2 RS	F			white / grey, phaneritic, frests,95m estimated very strong SLATE		14.7	IS;CON; PL; RO; Dips A 45 3;JN; PL; RD; Infill CI; Dips A 12;CON; IR; RO; Infill CI; Dips		١,
	1			_	2				carcite infit, fresh, estimated strong to very strong 15.55m CORE LOSS		15.1	;JN; IR; RO; Dips A 10		
-18	Ī													1
-17	- 00EX													1
18														١.
19	±								Notes: 1. Borehole terminated at target depth.					
20									Borehole dipped on completion. Borehole backfilled with bentonite and cuttings to surface.					
-21														
21.6		Rock S	trength tremely	(MPa)	, R	3 Modic	ım Str	ong	25-50 Weathering		_	Final Depth of H		
No. o	ontinuity of fracture	solm R1 Ve	tramely ry Weak rak 5-2	1-5	R	4 Stran 5 Vary 3 6 Extre	Strans	100	-250 F Fresh HW Hig	ampl	stoly al Soll	Depth to Top of R	ock: 10. age 1 c	

PERMIT TO PRACTICE ASSOCIATED ENGINEERING (B.C.) LTD. PERMIT NUMBER: 1000163 Engineers & Geoscientists BC


MATERIALS OF ASSISTEDATION LECEND

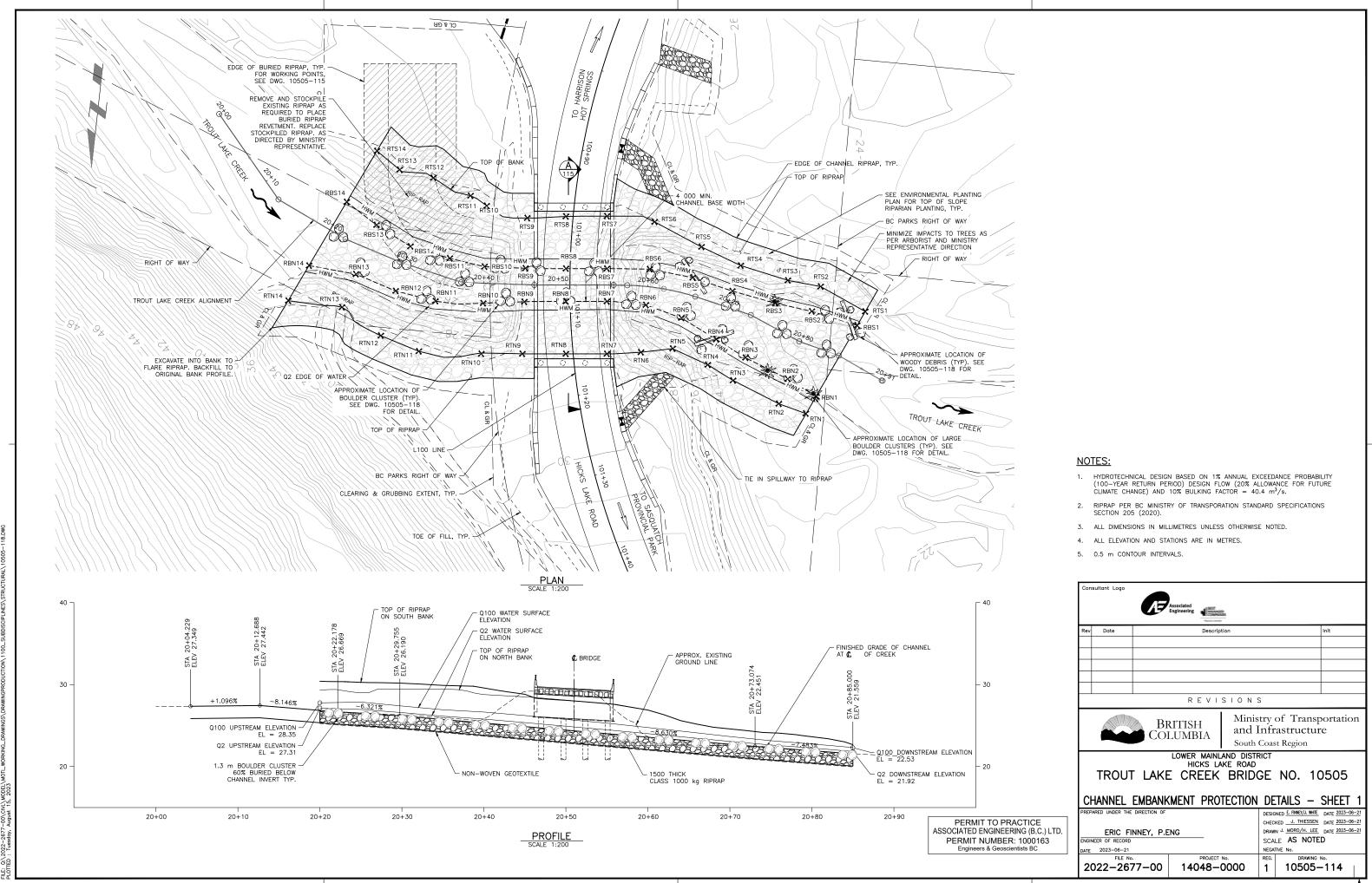
	M	ATERIALS	CLASSIFICATION LEGEND
MA. DIVIS		SYMBOL	SOIL TYPE
	SI	GW	WELL GRADED GRAVELS OR GRAVEL—SAND MIXTURES, < 5% FINES
COARSE GRAINED SOILS	L AND Y SOILS	GP	POORLY-GRADED GRAVELS OR GRAVEL-SAND MIXTURES, < 5% FINES
S	GRAVEL GRAVELLY	GM*	SILTY GRAVELS, GRAVEL—SAND—SILT MIXTURES
AINE	S. S.	GC*	CLAYEY GRAVELS, GRAVEL—SAND—CLAY MIXTURES
GR.	v	SW	WELL-GRADED SANDS OR GRAVELLY SANDS, < 5% FINES
SSE	AND	SP	POORLY-GRADED SANDS OR GRAVELLY SANDS, < 5% FINES
OAF	SAND	SM*	SILTY SANDS SAND-SILT MIXTURES
	S	SC*	CLAYEY SANDS SAND-CLAY MIXTURES
(0	AND VI <50	ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
GRAINED SOILS	SILTS AI CLAYS WI	CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
밀	ರ	OL	ORGANIC SILTS AND ORGANIC SILT-CLAYS OF LOW PLASTICITY
	AND VI >50	МН	INORGANIC SILTS, MICACEOUS OR DIATOM— ACEOUS FINE SANDY OR SILTY SOILS, PLASTIC SILTS
J N I	SILTS A CLAYS WI	СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
L L	S	ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
	ANIC ILS	Pt	PEAT AND OTHER HIGHLY ORGANIC SOILS
TOP	SOIL	TS	TOPSOIL WITH ROOTS, ETC.
СОВ	BLES	SB	ROCK FRAGMENTS AND COBBLES, PARTICLE SIZE 75mm TO 300mm
BOUL	DERS.	LB	BOULDERS, PARTICLE SIZE OVER 300mm
	ROCK	BR	BEDROCK
*GM1; GM2; GM3;	GC1; SI GC2; SI GC3; SI	M1; SC1; M2; SC2;	12% PASSING .075 SIEVE, USE DUAL SYMBOL 12 - 20% 20 - 30% 30 - 40% 40 - 50% 128 PASSING .075mm SIEVE

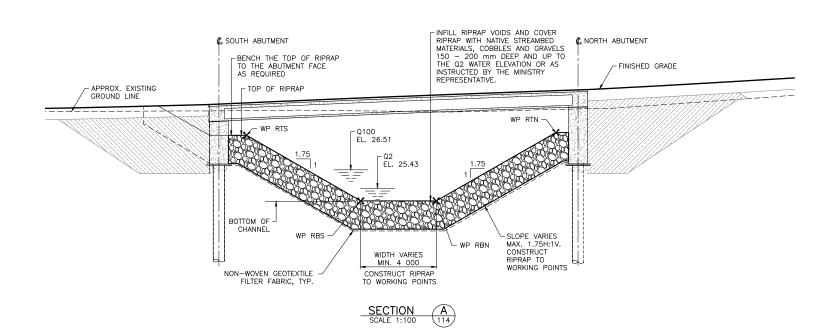
REV. 90-04-26

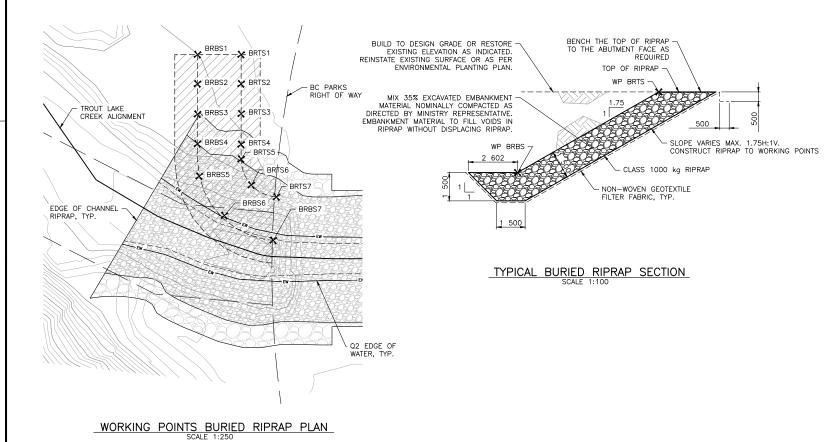
NOTES:

- 1. FOR TEST LOCATIONS, SEE DWG. NO. 10505-101.
- 2. ALL GEOTECHNICAL INFORMATION PROVIDED FOR THIS PROJECT HAS BEEN COMPILED FOR BRITISH COLUMBIA MINISTRY OF TRANSPORTATION AND INFRASTRUCTURE FOR DESIGN PURPOSES ONLY. INFORMATION WAS COMPILED FROM TROUT LAKE CREEK BRIDGE GEOTECHNICAL ASSESSMENT, JUNE 20 2023 BY WESTREK GEOTECHNICAL SERVICES LTD. ADDITIONAL INFORMATION IS AVAILABLE IN THE REPORT AND SHOULD BE EXAMINED AND SUPPLEMENTED AS REQUIRED. ALL DISCLAIMERS IN THIS REPORT ARE APPLICABLE AND IN CASE OF DISCREPANCY, THE GEOTECHNICAL REPORT GOVERNS.

BRITISH


Ministry of Transportation and Infrastructure COLUMBIA


South Coast Region


LOWER MAINLAND DISTRICT HICKS LAKE ROAD TROUT LAKE CREEK BRIDGE NO. 10505

BOREHOLE LOG SUMMARY

DESIGNED D. ALPHONSO DATE 2023-06-21 CHECKED A. CHIEM DATE 2023-06-21 WYATT PARK, P. ENG SCALE AS NOTED NGINEER OF RECORD ATE 2023-06-21 NEGATIVE No. 2022-2677-00 14048-0000 10505-113

1 2 3 4 5 6 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	RBN1 RBN2 RBN3 RBN4 RBN5 RBN6 RBN7 RBN8 RBN9 RBN10 RBN11 RBN12 RBN13 RBN14 RTN1 RTN2 RTN3 RTN4 RTN5 RTN6 RTN7 RTN6	466322.707 466321.002 466319.000 466317.174 466315.041 466313.961 466314.048 466314.604 466315.210 466315.210 466315.240 466315.640 466315.640 466314.145 466314.145 466324.955 466324.133 466321.926 466320.377 466318.883 466319.758	591232.907 591236.573 591241.967 591245.757 591250.283 591254.757 591259.534 591264.503 591269.542 591274.501 591280.306 591285.269 591290.320 591296.114 591233.902 591237.312 591243.169 591246.435	21.565 21.933 22.331 22.717 23.146 23.579 24.011 24.442 25.306 25.737 26.169 26.490 26.846 22.671 23.768 24.115
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	RBN3 RBN4 RBN5 RBN6 RBN7 RBN8 RBN9 RBN10 RBN11 RBN12 RBN13 RBN14 RTN1 RTN12 RTN1 RTN2 RTN3 RTN4 RTN5 RTN6 RTN6	466319.000 466317.174 466315.041 466313.961 466314.048 466314.604 466315.210 466315.943 466316.339 466315.640 466314.145 466314.145 466324.955 466324.133 466321.926 466320.377 466318.883	591241.967 591245.757 591250.283 591254.757 591259.534 591264.503 591269.542 591274.501 591280.306 591285.269 591290.320 591296.114 591233.902 591237.312 591243.169 591246.435	22.331 22.717 23.146 23.579 24.011 24.442 24.874 25.306 25.737 26.169 26.490 26.846 22.671 23.768 24.115
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	RBN4 RBN5 RBN6 RBN7 RBN8 RBN9 RBN10 RBN11 RBN12 RBN13 RBN14 RTN1 RTN1 RTN2 RTN3 RTN4 RTN5 RTN6 RTN6	466317.174 466315.041 466313.961 466314.048 466314.604 466315.210 466315.943 466316.339 466315.640 466314.145 466314.145 466324.955 466324.133 466321.926 466320.377 466318.883	591245.757 591250.283 591254.757 591259.534 591264.503 591269.542 591274.501 591280.306 591285.269 591290.320 591296.114 591233.902 591237.312 591243.169 591246.435	22.717 23.146 23.579 24.011 24.442 24.874 25.306 25.737 26.169 26.490 26.846 22.671 23.768 24.115
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	RBN5 RBN6 RBN7 RBN8 RBN9 RBN10 RBN11 RBN12 RBN13 RBN14 RTN1 RTN2 RTN3 RTN4 RTN5 RTN6 RTN6	466315.041 466313.961 466314.048 466314.604 466315.210 466315.943 466315.640 466314.145 466313.746 466324.133 466321.926 466320.377 466318.883	591250.283 591254.757 591259.534 591264.503 591269.542 591274.501 591280.306 591285.269 591290.320 591296.114 591233.902 591237.312 591243.169 591246.435	23.146 23.579 24.011 24.442 24.874 25.306 25.737 26.169 26.490 26.846 22.671 23.768 24.115
6 7 8 9 10 11 11 12 13 14 15 16 17 18 19 20 21 22	RBN6 RBN7 RBN8 RBN9 RBN10 RBN11 RBN12 RBN13 RBN14 RTN1 RTN2 RTN3 RTN4 RTN5 RTN6 RTN6	466313.961 466314.048 466314.604 466315.210 466315.943 466315.640 466314.145 466313.746 466324.955 466324.133 466321.926 466320.377 466318.883	591254.757 591259.534 591264.503 591269.542 591274.501 591280.306 591285.269 591290.320 591296.114 591233.902 591237.312 591243.169 591246.435	23.579 24.011 24.442 24.874 25.306 25.737 26.169 26.490 26.846 22.671 23.768 24.115
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	RBN7 RBN8 RBN9 RBN10 RBN11 RBN12 RBN13 RBN14 RTN1 RTN2 RTN3 RTN4 RTN5 RTN6 RTN6	466314.048 466314.604 466315.210 466315.943 466315.640 466314.145 466313.746 466324.955 466324.133 466321.926 466320.377 466318.883	591259.534 591264.503 591269.542 591274.501 591280.306 591285.269 591290.320 591296.114 591233.902 591237.312 591243.169 591246.435	24.011 24.442 24.874 25.306 25.737 26.169 26.490 26.846 22.671 23.768 24.115
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	RBN8 RBN9 RBN10 RBN11 RBN12 RBN13 RBN14 RTN1 RTN2 RTN3 RTN4 RTN5 RTN6 RTN7	466314.604 466315.210 466315.943 466315.640 466315.640 466314.145 466313.746 466324.955 466324.133 466321.926 466320.377 466318.883	591264.503 591269.542 591274.501 591280.306 591285.269 591290.320 591296.114 591233.902 591237.312 591243.169 591246.435	24.442 24.874 25.306 25.737 26.169 26.490 26.846 22.671 23.768 24.115
9 10 11 12 13 14 15 16 17 18 19 20 21	RBN9 RBN10 RBN11 RBN12 RBN13 RBN14 RTN1 RTN2 RTN3 RTN4 RTN5 RTN6 RTN7	466315.210 466315.943 466316.339 466315.640 466314.145 466313.746 466324.955 466324.133 466321.926 466320.377 466318.883	591269.542 591274.501 591280.306 591285.269 591290.320 591296.114 591233.902 591237.312 591243.169 591246.435	24.874 25.306 25.737 26.169 26.490 26.846 22.671 23.768 24.115
10 11 12 13 14 15 16 17 18 19 20 21 22	RBN10 RBN11 RBN12 RBN13 RBN14 RTN1 RTN2 RTN3 RTN4 RTN5 RTN6 RTN7	466315.943 466316.339 466315.640 466314.145 466313.746 466324.955 466324.133 466321.926 466320.377 466318.883	591274.501 591280.306 591285.269 591290.320 591296.114 591233.902 591237.312 591243.169 591246.435	25.306 25.737 26.169 26.490 26.846 22.671 23.768 24.115
11 12 13 14 15 16 17 18 19 20 21 22	RBN11 RBN12 RBN13 RBN14 RTN1 RTN2 RTN3 RTN4 RTN5 RTN6 RTN7	466316.339 466315.640 466314.145 466313.746 466324.955 466324.133 466321.926 466320.377 466318.883	591274.501 591280.306 591285.269 591290.320 591296.114 591233.902 591237.312 591243.169 591246.435	25.306 25.737 26.169 26.490 26.846 22.671 23.768 24.115
11 12 13 14 15 16 17 18 19 20 21 22	RBN11 RBN12 RBN13 RBN14 RTN1 RTN2 RTN3 RTN4 RTN5 RTN6 RTN7	466315.640 466314.145 466313.746 466324.955 466324.133 466321.926 466320.377 466318.883	591280.306 591285.269 591290.320 591296.114 591233.902 591237.312 591243.169 591246.435	25.737 26.169 26.490 26.846 22.671 23.768 24.115
12 13 14 15 16 17 18 19 20 21 22	RBN12 RBN13 RBN14 RTN1 RTN2 RTN3 RTN4 RTN5 RTN6 RTN7	466315.640 466314.145 466313.746 466324.955 466324.133 466321.926 466320.377 466318.883	591285.269 591290.320 591296.114 591233.902 591237.312 591243.169 591246.435	26.490 26.846 22.671 23.768 24.115
13 14 15 16 17 18 19 20 21 22	RBN13 RBN14 RTN1 RTN2 RTN3 RTN4 RTN5 RTN6 RTN7	466314.145 466313.746 466324.955 466324.133 466321.926 466320.377 466318.883	591290.320 591296.114 591233.902 591237.312 591243.169 591246.435	26.490 26.846 22.671 23.768 24.115
14 15 16 17 18 19 20 21 22	RBN14 RTN1 RTN2 RTN3 RTN4 RTN5 RTN6 RTN7	466313.746 466324.955 466324.133 466321.926 466320.377 466318.883	591296.114 591233.902 591237.312 591243.169 591246.435	26.846 22.671 23.768 24.115
15 16 17 18 19 20 21 22	RTN1 RTN2 RTN3 RTN4 RTN5 RTN6 RTN7	466324.955 466324.133 466321.926 466320.377 466318.883	591233.902 591237.312 591243.169 591246.435	22.671 23.768 24.115
16 17 18 19 20 21 22	RTN2 RTN3 RTN4 RTN5 RTN6 RTN7	466324.133 466321.926 466320.377 466318.883	591237.312 591243.169 591246.435	23.768 24.115
17 18 19 20 21 22	RTN3 RTN4 RTN5 RTN6 RTN7	466321.926 466320.377 466318.883	591243.169 591246.435	24.115
18 19 20 21 22	RTN4 RTN5 RTN6 RTN7	466320.377 466318.883	591246.435	
19 20 21 22	RTN5 RTN6 RTN7	466318.883		21 504
20 21 22	RTN6 RTN7		1 501250 027	24.584
21 22	RTN7	400319./58	591250.923	25.315
22		400700 :00	591254.722	26.889
	KIN8	466320.409	591258.823	27.666
23		466320.964	591263.792	28.098
	RTN9	466321.552	591269.067	28.500
24	RTN10	466322.108	591274.039	28.782
25	RTN11	466322.647	591281.649	29.420
26	RTN12	466321.262	591286.466	29.451
27	RTN13	466318.343	591291.559	28.989
28	RTN14	466318.284	591298.157	29.311
29	RBS1	466313.560	591228.871	21.559
30	RBS2	466312.483	591234.561	21.936
31	RBS3	466311.977	591239.081	22.307
32	RBS4	466311.098	591244.471	22.719
33	RBS5	466310.001	591249.444	23.193
34	RBS6	466309.559	591254.784	23.582
35	RBS7	466310.073	591259.978	24.013
36	RBS8	466310.629	591264.947	24.445
37	RBS9	466311.133	591269.853	24.877
38	RBS10	466311.496	591274.834	25.308
39	RBS11	466310.952	591279.159	25.740
40	RBS12	466310.039	591284.077	26.171
41	RBS13	466307.911	591288.485	26.493
42	RBS14	466305.521	591292.410	26.846
43	RTS1	466311.775	591228.080	22.671
44	RTS2	466309.352	591233.822	23.771
45	RTS3	466309.051	591237.878	24.102
46	RTS4	466307.894	591243.793	24.588
47	RTS5	466306.159	591248.804	25.384
48	RTS6	466303.762	591254.819	26.891
49	RTS7	466303.713	591260.689	27.668
50	RTS8	466304.301	591265.654	28.081
51	RTS9	466305.160	591270.311	28.812
52	RTS10	466304.089	591275.393	29.580
53	RTS11	466303.080	591277.487	29.580
54	RTS12	466301.413	591282.241	30.170
55	RTS13	466300.892	591286.419	30.269
56	RTS14	466298.921	591289.438	30.407

57 BRTS1 466287.545 591283.490 28. 58 BRTS2 466291.403 591283.059 28. 59 BRTS3 466295.320 591282.610 28. 60 BRTS4 466299.354 591282.170 28. 61 BRTS5 466301.290 591281.954 28. 62 BRTS6 466304.542 591280.226 28. 63 BRTS7 466305.739 591276.743 28. 64 BRBS1 466288.186 591289.226 25. 65 BRBS2 466292.044 591288.795 25. 66 BRBS3 466296.020 591288.350 25. 67 BRBS4 466299.921 591287.914 25. 68 BRBS5 466304.140 591287.204 25. 69 BRBS6 466308.963 591283.324 25.			WORKING POINT	TABLE	
58 BRTS2 466291.403 591283.059 28. 59 BRTS3 466295.320 591282.610 28. 60 BRTS4 466299.354 591282.170 28. 61 BRTS5 466301.290 591281.954 28. 62 BRTS6 466304.542 591280.226 28. 63 BRTS7 466305.739 591276.743 28. 64 BRBS1 466288.186 591289.226 25. 65 BRBS2 466292.044 591288.795 25. 66 BRBS3 466296.020 591288.350 25. 67 BRBS4 466299.921 591287.204 25. 68 BRBS5 466304.140 591287.204 25. 69 BRBS6 466308.963 591283.324 25. 70 BRBS7 466311.497 591276.529 25. RIPRAP QUANTITIES APPROXIMATE ESTIMATED	NUMBER	DESCRIPTION	N NORTHING	EASTING	ELEVATION
59 BRTS3 466295.320 591282.610 28. 60 BRTS4 466299.354 591282.170 28. 61 BRTS5 466301.290 591281.954 28. 62 BRTS6 466304.542 591280.226 28. 63 BRTS7 466305.739 591276.743 28. 64 BRBS1 466288.186 591289.226 25. 65 BRBS2 466292.044 591288.795 25. 66 BRBS3 466299.020 591288.350 25. 67 BRBS4 466299.921 591287.204 25. 68 BRBS5 466304.140 591287.204 25. 69 BRBS6 466308.963 591283.324 25. 70 BRBS7 466311.497 591276.529 25. RIPRAP QUANTITIES APPROXIMATE ESTIMATED	57	BRTS1	466287.545	591283.490	28.636
60 BRTS4 466299.354 591282.170 28. 61 BRTS5 466301.290 591281.954 28. 62 BRTS6 466304.542 591280.226 28. 63 BRTS7 466305.739 591276.743 28. 64 BRBS1 466288.186 591289.226 25. 65 BRBS2 466292.044 591288.795 25. 66 BRBS3 466296.020 591288.350 25. 67 BRBS4 466299.921 591287.914 25. 68 BRBS5 466304.140 591287.204 25. 69 BRBS6 466308.963 591283.324 25. 70 BRBS7 466311.497 591276.529 25.	58	BRTS2	466291.403	591283.059	28.636
61 BRTS5 466301.290 591281.954 28. 62 BRTS6 466304.542 591280.226 28. 63 BRTS7 466305.739 591276.743 28. 64 BRBS1 466288.186 591289.226 25. 65 BRBS2 466292.044 591288.795 25. 66 BRBS3 466296.020 591288.350 25. 67 BRBS4 466299.921 591287.914 25. 68 BRBS5 466304.140 591287.204 25. 69 BRBS6 466308.963 591283.324 25. 70 BRBS7 466311.497 591276.529 25.	59	BRTS3	466295.320	591282.610	28.636
62 BRTS6 466304.542 591280.226 28. 63 BRTS7 466305.739 591276.743 28. 64 BRBS1 466288.186 591289.226 25. 65 BRBS2 466292.044 591288.795 25. 66 BRBS3 466296.020 591288.350 25. 67 BRBS4 466299.921 591287.914 25. 68 BRBS5 466304.140 591287.204 25. 69 BRBS6 466308.963 591283.324 25. 70 BRBS7 466311.497 591276.529 25.	60	BRTS4	466299.354	591282.170	28.636
63 BRTS7 466305.739 591276.743 28. 64 BRBS1 466288.186 591289.226 25. 65 BRBS2 466292.044 591288.795 25. 66 BRBS3 466296.020 591288.350 25. 67 BRBS4 466299.921 591287.914 25. 68 BRBS5 466304.140 591287.204 25. 69 BRBS6 466308.963 591283.324 25. 70 BRBS7 466311.497 591276.529 25. RIPRAP QUANTITIES APPROXIMATE ESTIMATED	61	BRTS5	466301.290	591281.954	28.636
64 BRBS1 466288.186 591289.226 25. 65 BRBS2 466292.044 591288.795 25. 66 BRBS3 466296.020 591288.350 25. 67 BRBS4 466299.921 591287.914 25. 68 BRBS5 466304.140 591287.204 25. 69 BRBS6 466308.963 591283.324 25. 70 BRBS7 466311.497 591276.529 25. RIPRAP QUANTITIES APPROXIMATE ESTIMATED	62	BRTS6	466304.542	591280.226	28.63
65 BRBS2 466292.044 591288.795 25. 66 BRBS3 466296.020 591288.350 25. 67 BRBS4 466299.921 591287.914 25. 68 BRBS5 466304.140 591287.204 25. 69 BRBS6 466308.963 591283.324 25. 70 BRBS7 466311.497 591276.529 25. RIPRAP QUANTITIES APPROXIMATE ESTIMATED	63	BRTS7	466305.739	591276.743	28.636
66 BRBS3 466296.020 591288.350 25. 67 BRBS4 466299.921 591287.914 25. 68 BRBS5 466304.140 591287.204 25. 69 BRBS6 466308.963 591283.324 25. 70 BRBS7 466311.497 591276.529 25. RIPRAP QUANTITIES APPROXIMATE ESTIMATED	64	BRBS1	466288.186	591289.226	25.400
67 BRBS4 466299.921 591287.914 25. 68 BRBS5 466304.140 591287.204 25. 69 BRBS6 466308.963 591283.324 25. 70 BRBS7 466311.497 591276.529 25. RIPRAP QUANTITIES APPROXIMATE ESTIMATED	65	BRBS2	466292.044	591288.795	25.400
68 BRBS5 466304.140 591287.204 25. 69 BRBS6 466308.963 591283.324 25. 70 BRBS7 466311.497 591276.529 25. RIPRAP QUANTITIES APPROXIMATE ESTIMATED	66	BRBS3	466296.020	591288.350	25.400
69 BRBS6 466308.963 591283.324 25. 70 BRBS7 466311.497 591276.529 25. RIPRAP QUANTITIES APPROXIMATE ESTIMATED	67	BRBS4	466299.921	591287.914	25.400
70 BRBS7 466311.497 591276.529 25. RIPRAP QUANTITIES APPROXIMATE ESTIMATED	68	BRBS5	466304.140	591287.204	25.400
RIPRAP QUANTITIES APPROXIMATE ESTIMATED	69	BRBS6	466308.963	591283.324	25.400
APPROXIMATE ESTIMATED	70	BRBS7	466311.497	591276.529	25.40
	CLASS	Δ	PPROXIMATE ESTIMATED		
1000 kg 3359	1000 k	g	3359		

REVISIONS

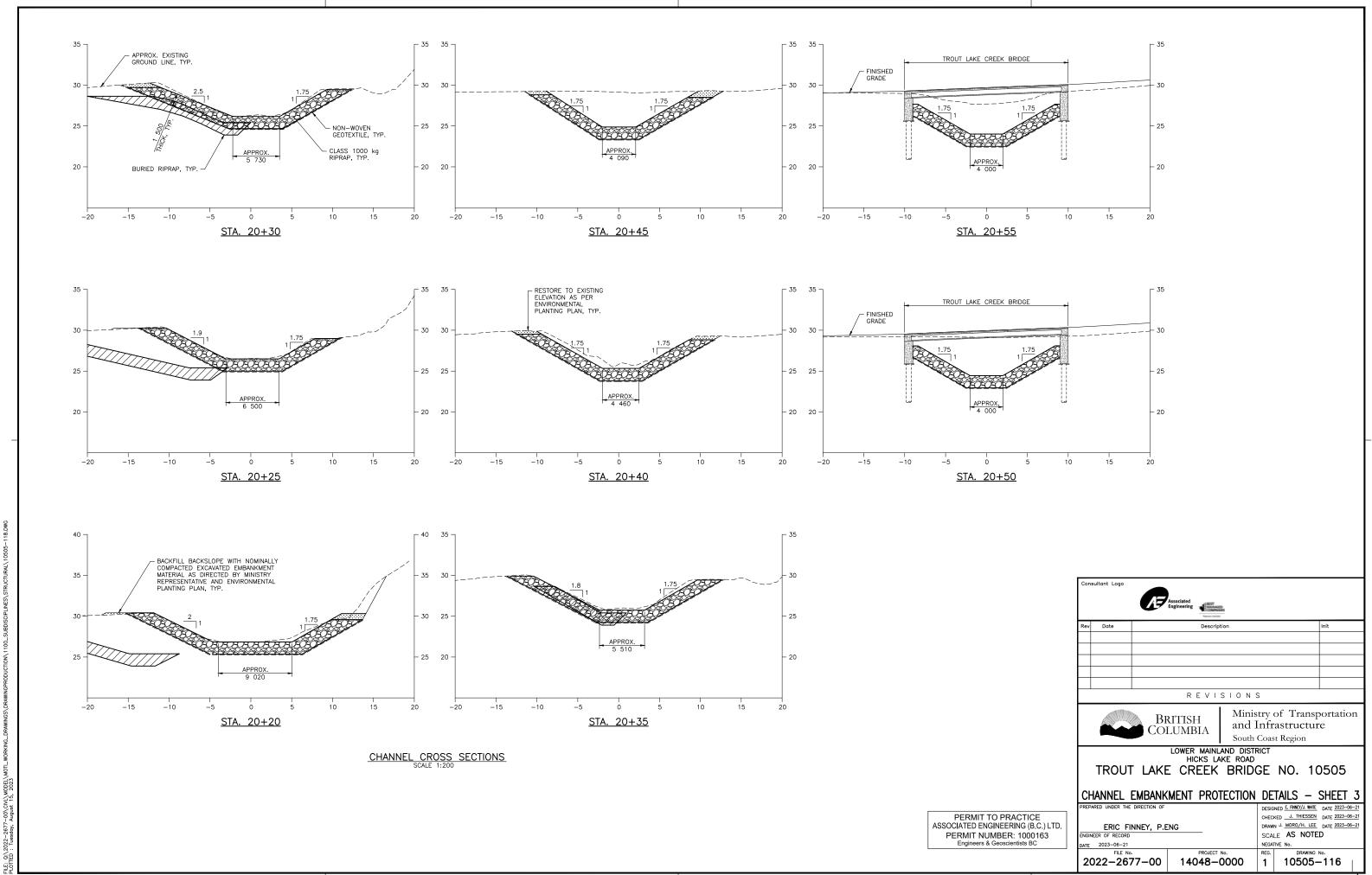
Ministry of Transportation and Infrastructure

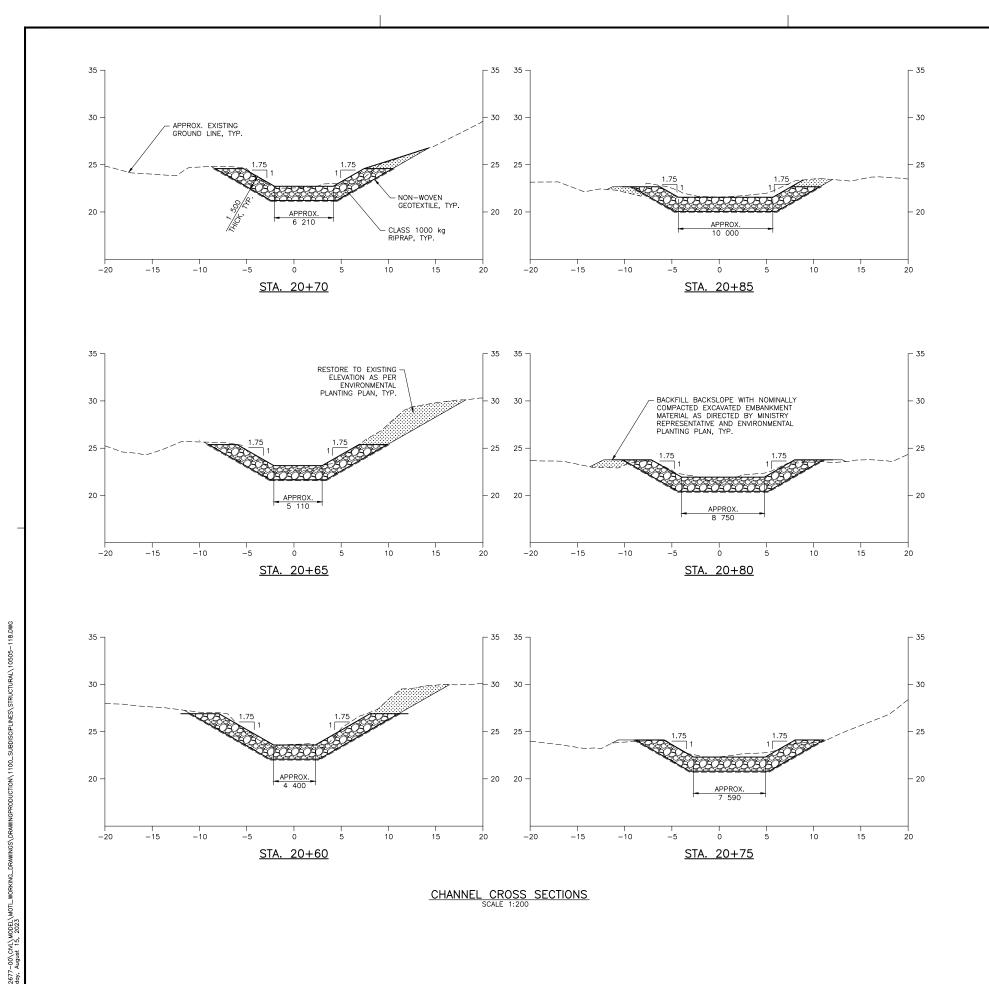
South Coast Region

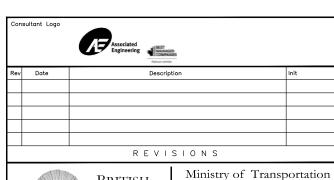
LOWER MAINLAND DISTRICT HICKS LAKE ROAD TROUT LAKE CREEK BRIDGE NO. 10505

CHANNEL EMBANKMENT PROTECTION DETAILS - SHEET 2

2022-2677-00


ERIC FINNEY, P.ENG NGINEER OF RECORD TE 2023-06-21


DRAWN J. MORO/H. LEE DATE 2023-06-21 SCALE AS NOTED NEGATIVE No. 14048-0000 10505-115


DESIGNED E. FINNEY/J. WHITE DATE 2023-06-21

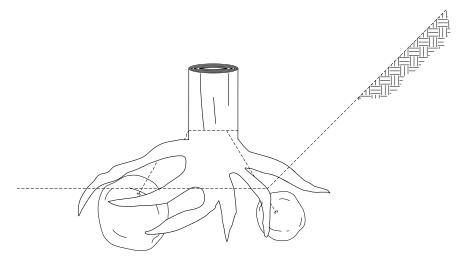
CHECKED J. THIESSEN DATE 2023-06-21

PERMIT TO PRACTICE ASSOCIATED ENGINEERING (B.C.) LTD. PERMIT NUMBER: 1000163 Engineers & Geoscientists BC

2022-2677-00

and Infrastructure

South Coast Region


LOWER MAINLAND DISTRICT
HICKS LAKE ROAD
TROUT LAKE CREEK BRIDGE NO. 10505

CHANNEL EMBANKMENT PROTECTION DETAILS - SHEET 4

PERMIT TO PRACTICE
ASSOCIATED ENGINEERING (B.C.) LTD.
PERMIT NUMBER: 1000163
Engineers & Geoscientists BC

DESIGNED E. FINNEY/J. WHITE DATE 2023-06-21 CHECKED J. THIESSEN DATE 2023-06-21
DRAWN J. MORO/H. LEE DATE 2023-06-21
SCALE AS NOTED ERIC FINNEY, P.ENG NGINEER OF RECORD ATE 2023-06-21 NEGATIVE No. PROJECT No. 14048-0000

10505-117

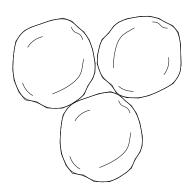
DETAIL

ROOT WAD

LARGE WOODY DEBRIS NOTES

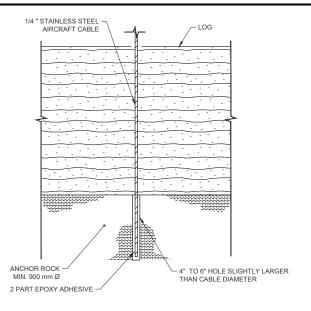
- LARGE WOODY DEBRIS SHALL BE COMPRISED OF MINIMUM 300 mm DIAMETER CEDAR OR DOUGLAS-FIR LOG WITH BARK LEFT LARGELY INTACT.
- 2. LOGS SHALL BE MINIMUM 6 m IN LENGTH.
- ANGLE WOOD DOWNSTREAM AND ANCHOR ONE END TO CHANNEL BED AND THE OTHER TO CHANNEL BANK (SEE ANCHORING DETAIL). LOGS SHALL NOT EXTEND MORE THAN 1/3 OF THE CHANNEL WIDTH.
- 4. FOR STRUCTURES CONSISTING OF MORE THAN ONE PIECE OF LARGE WOODY DEBRIS, LOGS WILL BE CABLED TOGETHER PRIOR TO ANCHORING USING MINIMUM 1/4" DIAMETER STAINLESS STEEL AIRCRAFT CABLE.
- 5. ANCHOR TOP AND BOTTOM OF EACH LOG.

ROOT WAD NOTES


- 1. ROOT WADS SHALL BE COMPRISED OF WESTERN RED CEDAR OR DOUGLAS FIR.
- ROOT WADS SHALL HAVE A MINIMUM ROOT MASS DIAMETER OF 0.3 m, WITH THE TRUNK CENTERED ON THE ROOT MASS.
- 3. 20-30% OF THE ROOT MASS SHALL BE BURIED IN THE CHANNEL
- 4. ANCHOR ROOT WAD USING MINIMUM 1/4" STAINLESS STEEL AIRCRAFT CABLE WRAPPED AROUND TREE TRUNK. ANCHOR ONE END OF CABLE TO SHORE AND OTHER END TO STREAM BOTTOM, ACCORDING TO ANCHORING DETAIL.
- 5. ROOT WAD SHALL NOT EXTEND GREATER THAN 1/3 THE WIDTH OF THE STREAM CHANNEL.

ANCHORING NOTES

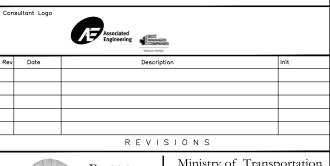
- 1. ANCHOR LOGS WITH MINIMUM 1/4" STAINLESS STEEL AIRCRAFT CABLE.
- 2. RUN CABLE THROUGH AXIS OF LOGS INTO TWO 900 mm TO 1200 mm BOULDERS, SECURING CABLE TO BOULDERS VIA ROCK DRILLING. ENSURE THE HOLE FACES PERPENDICULAR TO THE SHEAR STRESS OF THE LOAD.
- DRILL HOLES MINIMUM 4" TO 6" DEEP INTO BOULDERS AND SECURE CABLE IN HOLES USING EITHER:
 A. 2 PART EPOXY ADHESIVE IN HOLES DRILLED SLIGHTLY LARGER THAN CABLE DIAMETER (HOLES TO BE CLEANED IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS); OR
 - B. AN EXPANDABLE ANCHOR BOLT (STAINLESS STEEL) INSERTED AT THE BOTTOM OF A ¾" HOLE. RUN CABLE THROUGH EYE OF BOLT, TWIST TOGETHER, AND SECURE AT SURFACE OF ROCK FACE USING STAINLESS WASHER (1/2" INSIDE DIAMETER AND 1 1/2" OUTSIDE DIAMETER) AND 1/4" WIRE ROPE CLIP.
- 4. FOR ALL ANCHORS, CABLE LENGTH (SLACK) SHOULD BE MINIMIZED TO THE EXTENT POSSIBLE TO PREVENT MOVEMENT OF LOGS AND ROOT WADS


BOULDER CLUSTER NOTES

- 1. BOULDER CLUSTERS TO BE COMPRISED OF MINIMUM 1.3 m DIAMETER RIPRAP
- 2. 60% OF THE BOULDER PROFILE SHALL BE BURIED IN THE CHANNEL.

DETAIL N.T.S
BOULDER CLUSTER

PERMIT TO PRACTICE ASSOCIATED ENGINEERING (B.C.) LTD. PERMIT NUMBER: 1000163



ANCHOR DETAIL OPTION A

ANCHOR DETAIL OPTION B

N.T.S.

BRITISH COLUMBIA Ministry of Transportation and Infrastructure South Coast Region

LOWER MAINLAND DISTRICT
HICKS LAKE ROAD
TROUT LAKE CREEK BRIDGE NO. 10505

MISCELLANEOUS HABITAT FEATURE DETAILS

PREPARED UNDER THE DIRECTION OF

BESIGNED E FINNEY, MITTE

CHECKED __ITHESSEN DATE 2023-06-21

CHECKED __ITHESSEN DATE 2023-06-21

DRAWN J. MORO/H. LEE DATE 2023-06-21

SCALE AS NOTED

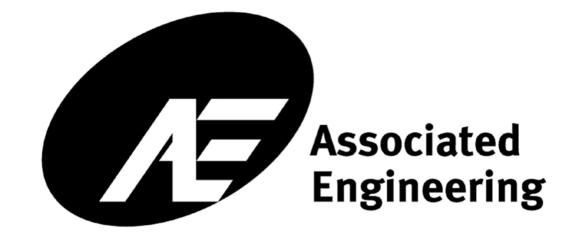
ENGINEER OF RECORD

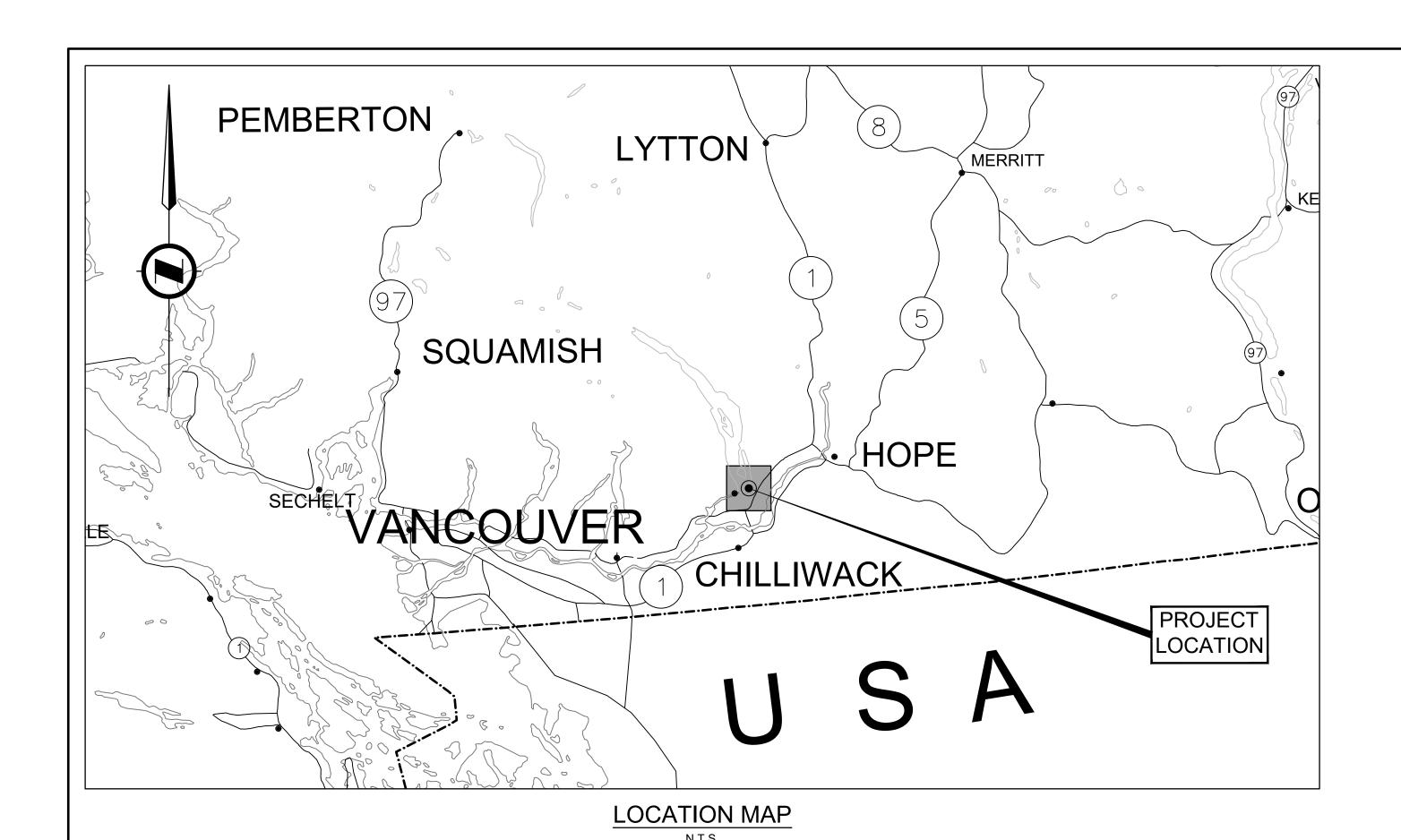
DATE 2023-06-21

FILE No. PROJECT No.

2022-2677-00 14048-0000

1 10505-118


NEGATIVE No.



BRITISH COLUMBIA Ministry of Transportation and Infrastructure

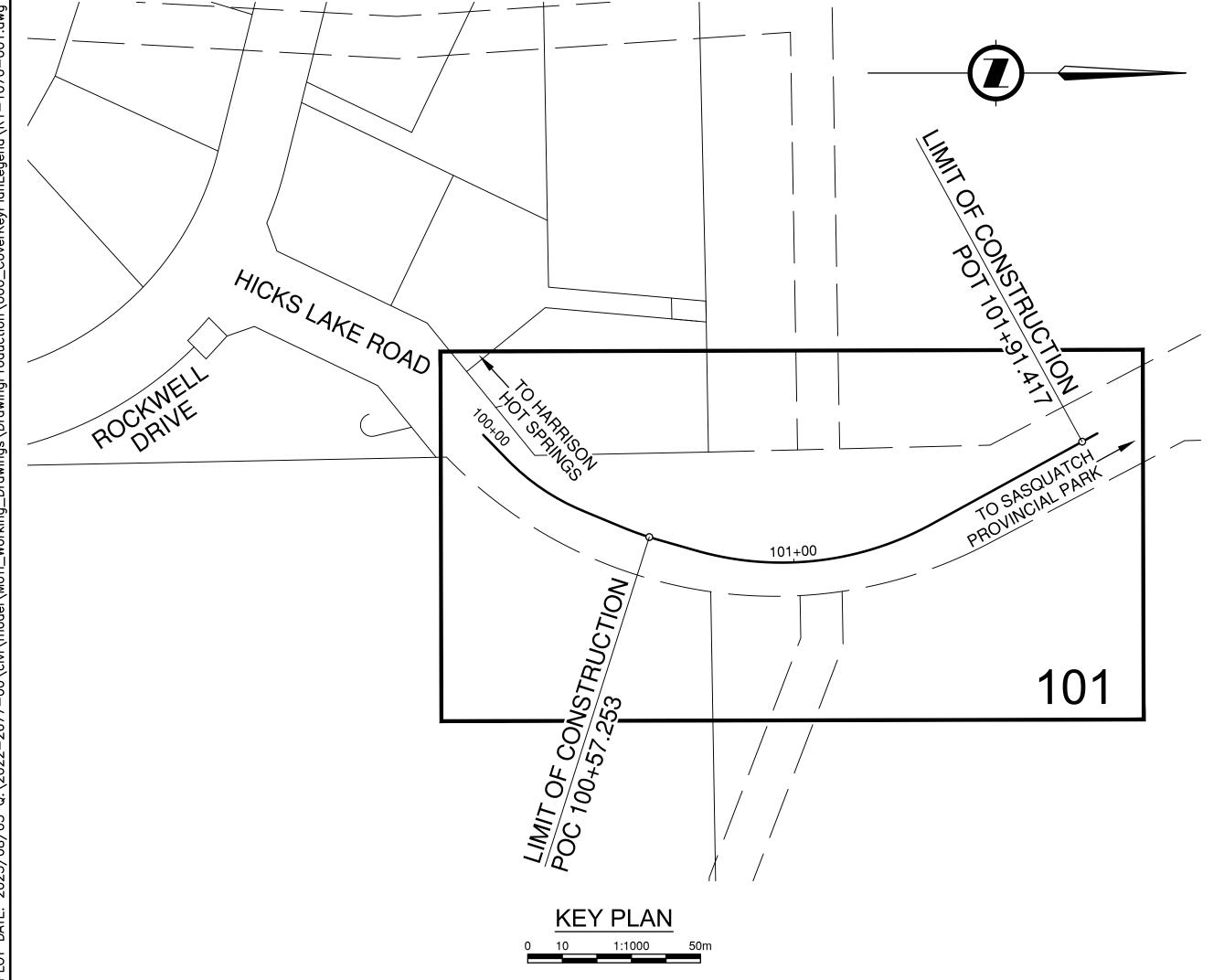
PROJECT NO. 14048-0000

HICKS LAKE ROAD TROUT LAKE CREEK BRIDGE No. 10505

Ministry of Transportation and Infrastructure

PROJECT No. 14048-0000

HICKS LAKE ROAD


TROUT LAKE CREEK BRIDGE No. 10505

STA. POC 100+57.253 - STA. POT 101+91.417 0.134 km

GRADING, PAVING & BRIDGE CONTRACT

DRAWING INDEX

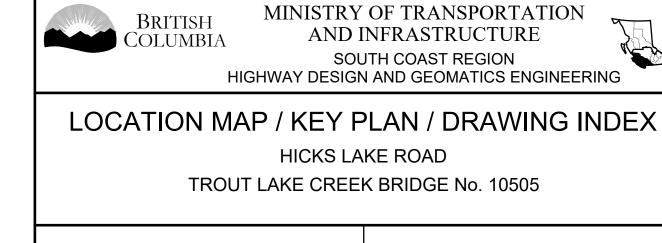
R1-1070-601

Horizontal Dat	um: UTM NAD8	33 (CSRS) Z10N		Vertical Da	tum: CGVD28 H	Τ2_0					
Point ID	Lo	cal Orthomet		ic Height	UT	UTM		C.S.F.	Class	Туре	
Pollitio	Northing	Easting	CGG2013a	HT2_0	Northing	Easting	Ellipsoidal Height	С.З.Г.	Class	Турс	
GCZ47-21	-	-	-	14.621	5458088.163	588549.861	-2.918	0.999697	CORRIDOR	9" SPIKE	
G897019-22	-	-	-	14.396 5459420.545		588655.547	-3.104	0.999697	PROJECT	GCM75398	
P6710-22	464119.556	590686.159	-	16.421	5464120.002	590686.251	-0.869	0.999701	PROJECT	REBAR	
P6711-22	464264.563	590707.230	-	23.229	5464264.968	590707.316	5.939	-	PROJECT	REBAR	
P6712-22	464285.406	590601.150	-	10.326	5464285.805	590601.267	-6.964	0.999702	PROJECT	REBAR	
P6713-22	464433.453	590730.374	-	14.399	5464433.809	590730.454	-2.891	-	PROJECT	REBAR	
P6714-22	464610.608	590699.980	-	13.029	5464610.913	590700.069	-4.249	0.999702	PROJECT	REBAR	
P6715-22	464742.588	590663.848	-	12.407	5464742.855	590663.947	-4.869	0.999702	PROJECT	REBAR	
P6716-22	464787.086	590704.708	-	18.820	5464787.341	590704.795	1.544	-	PROJECT	REBAR	
P6717-22	464861.090	590674.279	-	27.376	5464861.324	590674.374	10.100	-	PROJECT	REBAR	
P6718-22	465674.192	591007.581	-	36.493	5465674.192	591007.581	19.235	0.999699	PROJECT	REBAR	
P6719-22	465708.004	591078.936	-	28.686	5465707.995	591078.915	11.428	-	PROJECT	REBAR	
P6720-22	465792.685	591115.754	-	26.853	5465792.651	591115.723	9.601	0.999700	PROJECT	REBAR	
P6721-22	465830.136	591187.755	-	26.738	5465830.091	591187.703	9.486	-	PROJECT	REBAR	
P6722-22	465927.538	591242.052	-	31.012	5465927.465	591241.984	13.760	-	PROJECT REBAR		
P6723-22	466026.688	591222.256	-	35.302	5466026.587	591222.195	18.050	-	PROJECT	REBAR	
P6724-22	466104.042	591216.613		- 33.207 5466		33.207	5466103.919	591216.553	15.955	-	PROJECT
P6725-22	466147.062	591172.786	-	26.801	5466146.926	591172.739	9.562	0.999701 PROJECT		REBAR	
P6726-22	466166.260	591073.539	-	16.756	5466166.118	591073.520	-0.483	-	PROJECT	REBAR	
P6727-22	466196.283	591028.916	-	13.637	5466196.133	591028.910	-3.602	-	PROJECT	REBAR	
P6728-22	466283.532	591020.439	-	13.014	5466283.357	591020.436	-4.233	-	PROJECT	REBAR	
P6729-22	466185.794	590959.371	-	10.670	5466185.648	590959.385	-6.577	0.999703	PROJECT	REBAR	
P6730-22	466226.255	591230.721	-	28.381	5466226.096	591230.657	11.134		PROJECT	REBAR	
P6731-22	466300.185	591280.516	-	30.209	5466300.005	591280.438	12.979	0.999700	PROJECT	REBAR	
P6732-22	466400.322	591228.471	-	38.364	5466400.113	591228.407	21.135	-	PROJECT	REBAR	
P6733-22	464909.548	590682.006	-	30.243	5464909.767	590682.099	12.972	0.999699	PROJECT	REBAR	
P6734-22	466302.726	591249.510	-	25.776	5466302.545	591249.441	8.505	-	PROJECT	REBAR	
P6735-22	466329.775	591206.991	-	21.593	5466329.587	591206.934	4.322	-	PROJECT	REBAR	
P6736-22	466280.400	591098.732	-	17.721	5466280.226	591098.706	0.450	-	PROJECT	REBAR	

* The CGG2013a Geoid uses the CGVD2013 vertical datum and the HT2_0 Geoid uses the CGVD28 vertical datum

* "name"static brass cap monuments-year. "G" static tag #-year. "K" multi epoch rtk, "P"closed total station traverse

* Corridor control can be derived from robust network adjustments using sources such as Mascot, active, and/or PPP for valid absolute accuracies.


* Project control originates from a corridor point and closes to a network confined within the specific project to provide survey grade relative accuracies.

Origin: CZ47 derived from TRSI Static Network from CHWK

R1-1070-000 **COVER SHEET** R1-1070-001 LOCATION MAP / KEY PLAN / DRAWING INDEX R1-1070-002 **LEGEND** R1-1070-101 PLAN / DRAINAGE R1-1070-201 **PROFILE** R1-1070-301 TO 302 TYPICAL SECTIONS R1-1070-351 R1-1070-401 GEOMETRICS AND LANING / SPOT ELEVATIONS

SIGNING AND PAVEMENT MARKINGS

PERMIT TO PRACTICE ASSOCIATED ENGINEERING (B.C.) LTD. PERMIT NUMBER: 1000163
Engineers & Geoscientists BC

DIRECTOR, ENGINEERING EXECUTIVE DIRECTOR, SOUTH COAST REGION PROJECT NUMBER

2022-2677-00

14048-0000

R1-1070-001

LEGEND

EXISTING SYMBOLS

EXISTING LINE TYPES

SIGN BRIDGE STRUCTURE 🗵 📉

SURVEY **DRAINAGE & UTILITIES** SPOT ELEVATION MANHOLE SANITARY/STORM BENCHMARK CLEANOUT MANHOLE REFERENCE POINT POWER MANHOLE **DETAIL HUB** SANITARY SEWER MANHOLE OIP STANDARD IRON PIN STORM SEWER MANHOLE CONCRETE POST MONUMENT MH Tel TELEPHONE MANHOLE CONTROL MONUMENT Ø MH Unk UNKNOWN MANHOLE MON ROCK POST MONUMENT VAULT MANHOLE STANDARD BRASS CAP **™**MON MONUMENT WATER MANHOLE MH/CB Drywell LEAD PLUG MH/CB DRYWELL TEST HOLE CB LAWN TEST PIT CATCH BASIN **WOODEN POST** CATCH BASIN MANHOLE ALUMINUM POST ASPHALT SPILLWAY ANGLE IRON POST DRAINAGE GRATE WT WITNESS POST CULVERT ____ CI **CULVERT INLET** DOMINION IRON POST ___ co NON-STD. ROUND IRON POST CULVERT OUTLET **CULVERT KINK** NON-STD. SQUARE IRON POST \triangle MC RIPRAP MONITOR POINT UNDERGROUND **AERIAL UTILITIES** OBP BREATHER VENT PIPE POWER GUY POLE $_{\mathsf{O}}\mathsf{FC}$ FILLER CAP TELEPHONE GUY POLE □ FP FUEL / GAS PUMP POWER / TELEPHONE **GUY POLE** \bigcirc FT **FUEL TANK** DEADMAN _ST SEPTIC TANK ANCHOR GUY WIRE ⊚ UM UNDERGROUND MARKER HIGH TENSION POLE -0-IRRIGATION JUNCTION BOX -HT-HIGH TENSION TOWER IRRIGATION SPRINKLER HEAD POWER POLE -UNDERGROUND TRANSFORMER □XF TELEPHONE POLE -0-POWER / TELEPHONE POLE **ELECTRICAL** POWER POLE WITH □ JB TRANSFORMER JUNCTION BOX O^{UP} POWER / TELEPHONE WITH UTILITY POLE TRANSFORMER ELECTRICAL OUTLET \rightleftharpoons _ PED PEDESTAL (TELUS) OLS LAMP STANDARD TELEPHONE BOOTH KIOSK TRAFFIC SIGNAL **DETAIL** TRAFFIC COUNTER TRAFFIC SIGNAL CONTROL BOX • GP **GATE POST GUARD POST METERS** FLAG POLE **DELINEATOR POST** VALVE \otimes^{\vee} MAILBOX □ MB \otimes^{SV} SERVICE VALVE DECORATIVE TREE \otimes^{GV} GAS VALVE TREE \otimes^{WV} WATER VALVE WELL \otimes^{WM} WATER METER COMMERCIAL SIGN \otimes^{FH} FIRE HYDRANT SWAMP STANDPIPE WATER BLOWOFF POST MOUNTED \otimes AIR AIR RELEASE VALVE DELINEATOR (YELLOW) POST MOUNTED **ROAD SIGNS** DELINEATOR (WHITE) ONE-POST SIGN TOP MOUNTED **BI-DIRECTIONAL** 0 0 TWO-POST SIGN REFLECTOR **BREAKAWAY STEEL** TOP OR SIDE MOUNTED MONO-DIRECTIONAL STD. DAVIT POLE - TYPE 3 ____ YELLOW REFLECTOR STD. COMBINATION TOP OR SIDE MOUNTED POLE - TYPE 1 MONO-DIRECTIONAL **HEAVY DUTY DAVIT** WHITE REFLECTOR ____ POLE - TYPE 6 RAISED PAVEMENT MARKERS H.D. COMBINATION (WHITE AND YELLOW) POLE - TYPE 7 HEAVY POLE - TYPE H ___ H. COMBINATION $\longrightarrow \bigcirc$ POLE - TYPE H

	ADE FEATURES	
CONCRETE ROAD BARRIER		
BROKEN WHITE LINE		
SOLID WHITE LINE		
SOLID YELLOW LINE		
DOUBLE YELLOW LINE		
CENTRELINE		
ROAD SHOULDER		
PAVEMENT EDGE		
ASPHALT CURB		
GRAVEL ROAD		
SIDEWALK		
FENCE	X	X
GARDEN, LAWNS, VEGETATION		
HEDGE, BUSH LINE & TREE LINE		······································
RETAINING WALL		
CN TRACK BED		
ТО	POGRAPHY	
BOTTOM OF BANK		
TOP OF BANK		
	UNDARIES	
EASEMENT		
GAZETTE BOUNDARY		
PARCEL BOUNDARY		
QUARTER SECTION LINE		
SECTION LINE & DISTRICT LOT BOUNDARY		
SECTION LINE & DISTRICT LOT BOUNDARY RIGHT OF WAY BOUNDARY	DROLOGY	
SECTION LINE & DISTRICT LOT BOUNDARY RIGHT OF WAY BOUNDARY		EW
SECTION LINE & DISTRICT LOT BOUNDARY RIGHT OF WAY BOUNDARY		EW —
SECTION LINE & DISTRICT LOT BOUNDARY RIGHT OF WAY BOUNDARY HY EDGE OF WATER		EW —
SECTION LINE & DISTRICT LOT BOUNDARY RIGHT OF WAY BOUNDARY HY EDGE OF WATER DITCH CENTER / DRAINAGE	EW	EW —
SECTION LINE & DISTRICT LOT BOUNDARY RIGHT OF WAY BOUNDARY HY EDGE OF WATER DITCH CENTER / DRAINAGE EDGE OF DITCH	EW	
SECTION LINE & DISTRICT LOT BOUNDARY RIGHT OF WAY BOUNDARY HY EDGE OF WATER DITCH CENTER / DRAINAGE EDGE OF DITCH CENTER OF CREEK	EW	
SECTION LINE & DISTRICT LOT BOUNDARY RIGHT OF WAY BOUNDARY HY EDGE OF WATER DITCH CENTER / DRAINAGE EDGE OF DITCH CENTER OF CREEK STORM SEWER, MANHOLE & FLOW ARROW	JTILITIES	MH_s
SECTION LINE & DISTRICT LOT BOUNDARY RIGHT OF WAY BOUNDARY HY EDGE OF WATER DITCH CENTER / DRAINAGE EDGE OF DITCH CENTER OF CREEK STORM SEWER, MANHOLE & FLOW ARROW	JTILITIES	
SECTION LINE & DISTRICT LOT BOUNDARY RIGHT OF WAY BOUNDARY HY EDGE OF WATER DITCH CENTER / DRAINAGE EDGE OF DITCH CENTER OF CREEK STORM SEWER, MANHOLE & FLOW ARROW	JTILITIES	MH_s
SECTION LINE & DISTRICT LOT BOUNDARY RIGHT OF WAY BOUNDARY HY EDGE OF WATER DITCH CENTER / DRAINAGE EDGE OF DITCH CENTER OF CREEK STORM SEWER, MANHOLE & FLOW ARROW SANITARY SEWER, MANHOLE & FLOW ARROW	JTILITIES	MH Storm S
SECTION LINE & DISTRICT LOT BOUNDARY RIGHT OF WAY BOUNDARY HY EDGE OF WATER DITCH CENTER / DRAINAGE EDGE OF DITCH CENTER OF CREEK STORM SEWER, MANHOLE & FLOW ARROW UNDERGROUND DRAIN PIPE	S SAN SAN	MH_Storm S
SECTION LINE & DISTRICT LOT BOUNDARY RIGHT OF WAY BOUNDARY HY EDGE OF WATER DITCH CENTER / DRAINAGE EDGE OF DITCH CENTER OF CREEK STORM SEWER, MANHOLE & FLOW ARROW UNDERGROUND DRAIN PIPE WATER MAIN	JTILITIES SAN W	MH Storm S San San UE UE
SECTION LINE & DISTRICT LOT BOUNDARY RIGHT OF WAY BOUNDARY HY EDGE OF WATER DITCH CENTER / DRAINAGE EDGE OF DITCH CENTER OF CREEK STORM SEWER, MANHOLE & FLOW ARROW UNDERGROUND DRAIN PIPE WATER MAIN UNDERGROUND ELECTRICAL	JTILITIES SAN W UE	MH_Storm S MH SAN ———————————————————————————————————
SECTION LINE & DISTRICT LOT BOUNDARY RIGHT OF WAY BOUNDARY HY EDGE OF WATER DITCH CENTER / DRAINAGE EDGE OF DITCH CENTER OF CREEK STORM SEWER, MANHOLE & FLOW ARROW UNDERGROUND DRAIN PIPE WATER MAIN UNDERGROUND ELECTRICAL GAS MAIN	JTILITIES SAN UE UE G	MH Storm S MH SAN UE UG UG
SECTION LINE & DISTRICT LOT BOUNDARY RIGHT OF WAY BOUNDARY HY EDGE OF WATER DITCH CENTER / DRAINAGE EDGE OF DITCH CENTER OF CREEK STORM SEWER, MANHOLE & FLOW ARROW SANITARY SEWER, MANHOLE & FLOW ARROW UNDERGROUND DRAIN PIPE WATER MAIN UNDERGROUND ELECTRICAL GAS MAIN UNDERGROUND MISCELLANEOUS	S SAN SAN UE G G UG UG	MH Storm S MH San SAN W UE G UG UT

PROPOSED SYMBOLS

AERIAL UTILITIE	S	DRAINAGE & UTILITI	ES
POWER GUY POLE	•-	MANHOLE	
TELEPHONE GUY POLE	0-	SANITARY/STORM	MH Clean
POWER / TELEPHONE	-	CLEANOUT MANHOLE	
GUY POLE	-	POWER MANHOLE	MH Power
DEADMAN	O-)	SANITARY SEWER MANHOLE	MH San
ANCHOR GUY WIRE	←	STORM SEWER MANHOLE	MH Storm
HIGH TENSION POLE	- O - -[HT]-	TELEPHONE MANHOLE	MH Tel
HIGH TENSION TOWER POWER POLE	- <u>-</u> -	UNKNOWN MANHOLE	MH Unk
TELEPHONE POLE	- O -	VAULT MANHOLE	MH Vault
POWER / TELEPHONE POLE		WATER MANHOLE	MH Water
POWER POLE WITH		MH/CB DRYWELL	MH/CB Drywell
TRANSFORMER		VERTICAL SEEPAGE PIT	VSP
POWER / TELEPHONE WITH TRANSFORMER		CATCH BASIN (SINGLE)	VOI
PEDESTAL (TELUS)	ped	CATCH BASIN (TWIN)	
TELEPHONE BOOTH	T	LAWN BASIN	
		RIPRAP SPILLWAY C/W	
DETAIL		DRAINAGE BARRIER CLEANOUT	\mathbf{O}_{co}
GATE POST	• GP	STORM WATER	U
GUARD POST	OPost	TREATMENT DEVICE	
FLAG POLE	O ^{FP}	CULVERT INLET / OUTLET	\rightarrow
DELINEATOR POST	_ DP	C/W RIPRAP	·
MAILBOX	_o MB	CULVERT HEADWALL C/W TRASH RACK	
POST MOUNTED DELINEATOR (YELLOW)	•	RIPRAP	
POST MOUNTED DELINEATOR (WHITE)	□ -	UNDERGROUND	
TOP MOUNTED		BREATHER VENT PIPE	OBP
BI-DIRECTIONAL REFLECTOR	◆	FILLER CAP	OFC
TOP OR SIDE MOUNTED		FUEL / GAS PUMP	_ FP
MONO-DIRECTIONAL YELLOW REFLECTOR	>	FUEL TANK	_FT
TOP OR SIDE MOUNTED		SEPTIC TANK	_ST
MONO-DIRECTIONAL	\triangleright	UNDERGROUND MARKER	⊚UM _□ IJ
WHITE REFLECTOR		IRRIGATION JUNCTION BOX IRRIGATION SPRINKLER HEAD	OIS
RAISED PAVEMENT MARKERS (WHITE AND YELLOW)		UNDERGROUND TRANSFORMER	□ ^{XF}
ROAD SIGNS		ELECTRICAL	
ONE-POST SIGN	þ	JUNCTION BOX	_ JB
TWO-POST SIGN	00	UTILITY POLE	O^UP
BREAKAWAY STEEL	<u> </u>	ELECTRICAL OUTLET	=
STD. DAVIT POLE - TYPE 3	<u> </u>	LAMP STANDARD	
STD. COMBINATION POLE - TYPE 1		KIOSK	K
HEAVY DUTY DAVIT	A	TRAFFIC SIGNAL	\triangleright
POLE - TYPE 6	<u></u> -≪	TRAFFIC COUNTER	0 N
H.D. COMBINATION POLE - TYPE 7	<u>_</u>	TRAFFIC SIGNAL CONTROL BOX	₽
HEAVY POLE - TYPE H	─ ◆	METERS	
H. COMBINATION POLE - TYPE H	\Longrightarrow	VALVE	\otimes^{V}
CANTILEVER STRUCTURE —	— −⊠	SERVICE VALVE	\otimes^{SV}
SIGN BRIDGE STRUCTURE	<u> </u>	GAS VALVE	\otimes^{GV}
		WATER VALVE	\otimes^{WV}
		WATER METER	\otimes^{WM}
		FIRE HYDRANT	⊗FH
		STANDPIPE WATER BLOWOFF	⊗ ^{SD}

PROPOSED LINE TYPES

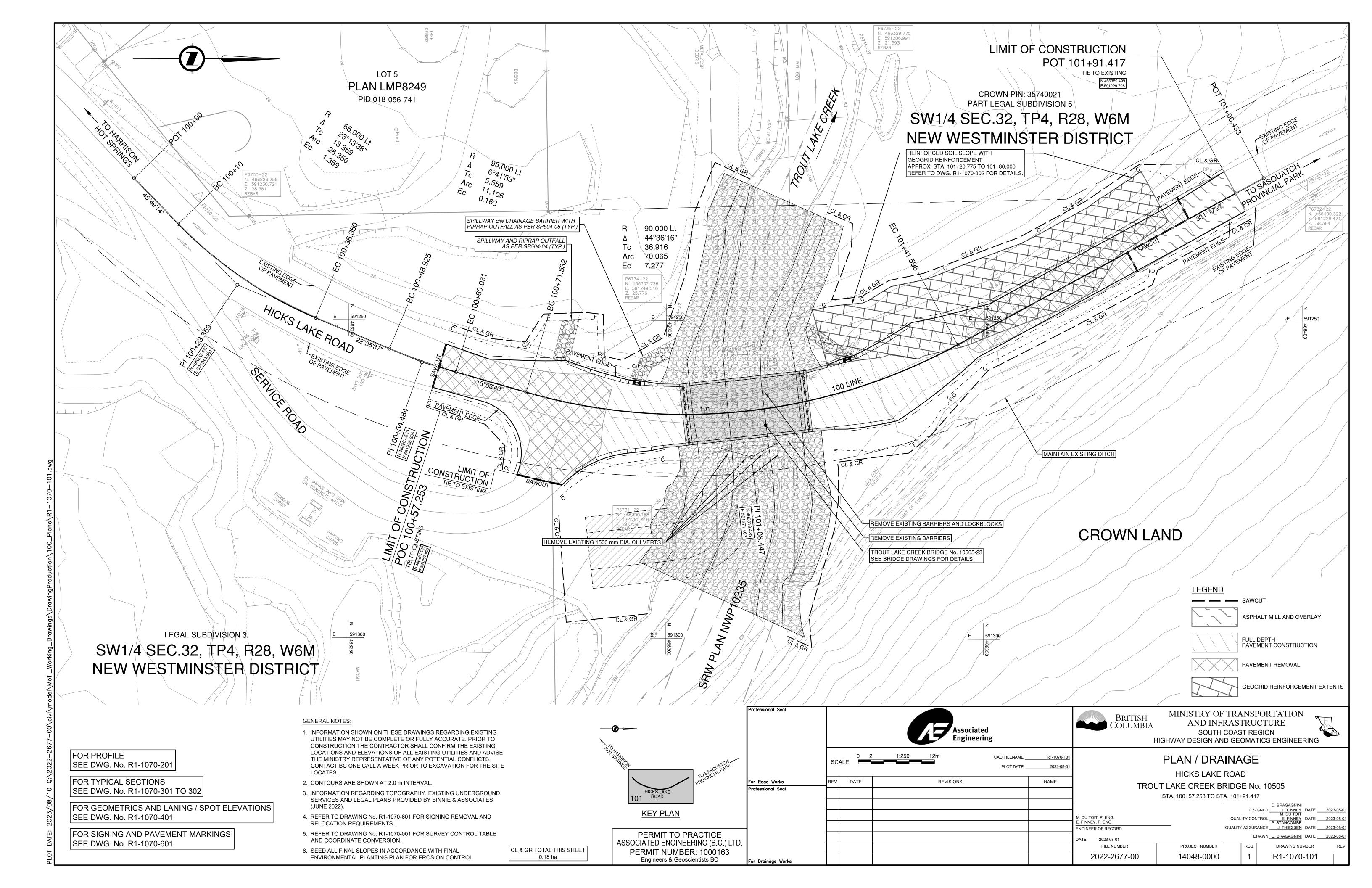
FEATURES

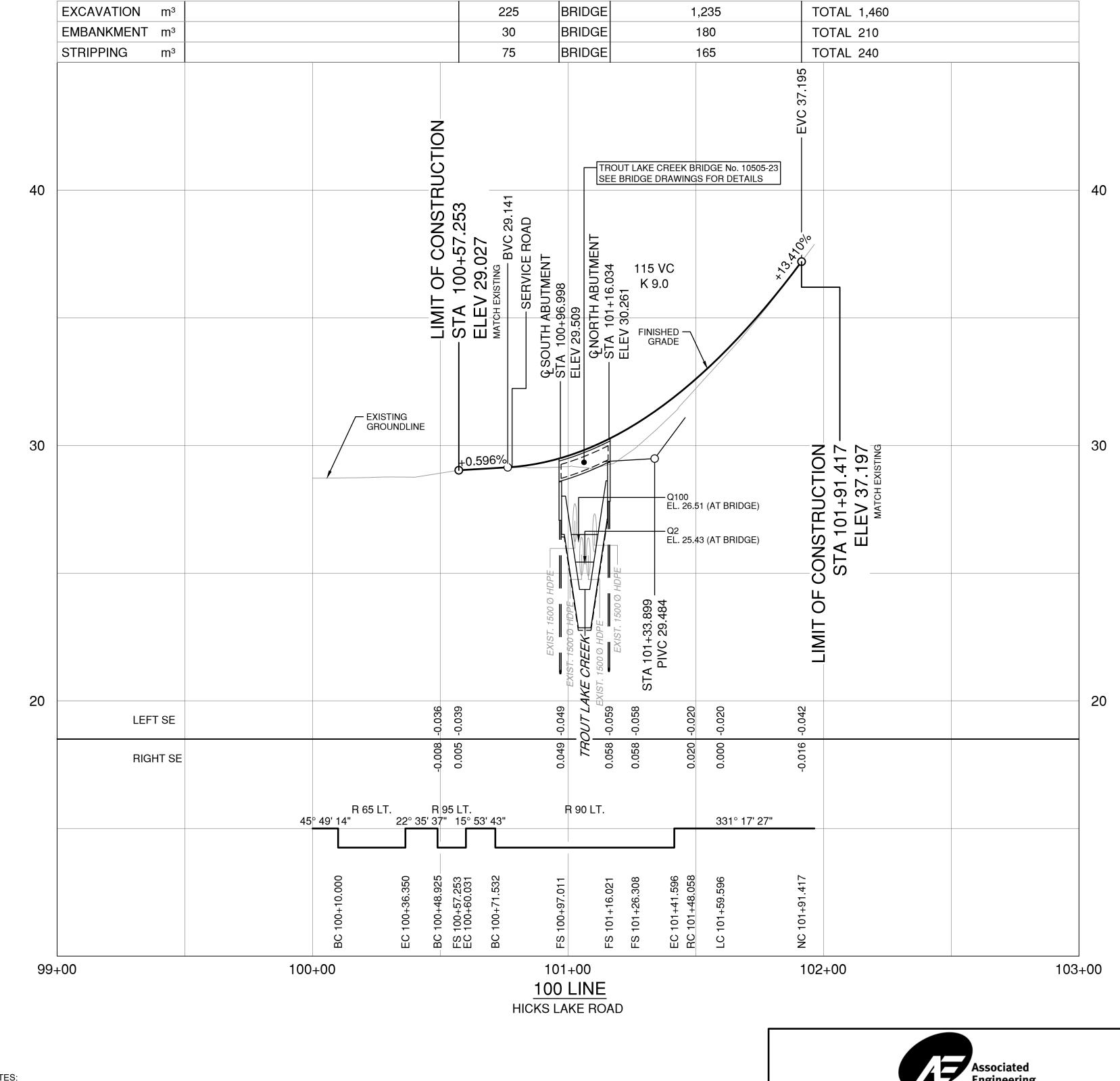
ROAD CENTRELINE	10+100 l 100 LINE
PAVEMENT EDGE	
GRAVEL SHOULDER	
ASPHALT CURB	
CURB AND GUTTER	
CONCRETE ROADSIDE BARRIER	
RETAINING WALL	
SOLID WHITE LINE	
SOLID YELLOW LINE	
BROKEN WHITE LINE	
DECELERATION OR ACCELERATION LANE	
CUT / FILL LINE	CFF
SAWCUT LINE	SAWCUT
CLEARING & GRUBBING	CL & GR CL & GR
BERM	
SOUNDWALL	
HABITAT / PEDESTRIAN / CYCLE FENCE	x
FENCE REMOVAL	X
LIMIT OF OVERBURDEN REMOVAL	
RAILING	
ι	UTILITIES
DITCH	
EDGE OF DITCH	
CULVERT	-
SUBDRAIN	SGD SGD
SWALE	·
BIOSWALE	·
FILTER STRIP	
STORM SEWER, MANHOLE & FLOW ARROW	S=7 MII
SANITARY SEWER, MANHOLE & FLOW ARROW	SAN SAN
WATER MAIN	w
GAS MAIN	
UTILITY ABANDONED	
R.C	DUNDARIES
DC	DUNDANIES
RIGHT OF WAY BOUNDARY	

		Associated Engineering		
SCA	ALE N.T.S.	CAD FILENAME _ PLOT DATE _		
REV	DATE	REVISIONS	NAME	
				M BU TOUT B ENG
				M. DU TOIT, P. ENG
				ENGINEER OF REC

AIR RELEASE VALVE

Darriou	MINISTRY OF TRANSPORTATION
BRITISH OLUMBIA	AND INFRASTRUCTURE
OLUMBIA	SOUTH COAST REGION


HIGHWAY DESIGN AND GEOMATICS ENGINEERING



HICKS LAKE ROAD TROUT LAKE CREEK BRIDGE No. 10505

					DESIGNI	ED <u>D. BRAGAGNINI</u> DATE	2023-08-01
				OHALI.			
		M. DU TOIT, P. ENG.				OL <u>M. DU TOIT</u> DATE	
DEDINT TO DD 4 OTIOE		ENGINEER OF RECORD		QUALITY	ASSURAN	CE P. STANCOMBE DATE	2023-08-01
PERMIT TO PRACTICE		DATE 2023-08-01			DRAV	VN <u>D. BRAGAGNINI</u> DATE	2023-08-01
ASSOCIATED ENGINEERING (B.C.) LTD.		FILE NUMBER	PROJECT NUMBER	T	REG	DRAWING NUMBER	REV
PERMIT NUMBER: 1000163		2022 2677 00	14040 0000			D4 4070 000	
Engineers & Geoscientists BC		2022-2677-00	14048-0000		1	R1-1070-002	

LICENSE TO CONSTRUCT

DESIGN SPEED 100 LINE 40 km/h

FOR PLAN / DRAINAGE SEE DWG. No. R1-1070-101

FOR TYPICAL SECTIONS SEE DWG. No. R1-1070-301 TO 302

FOR GEOMETRICS AND LANING / SPOT ELEVATIONS SEE DWG. No. R1-1070-401

FOR SIGNING AND PAVEMENT MARKINGS SEE DWG. No. R1-1070-601

NOTES:

- 1. ELEVATIONS SHOWN ARE FINISHED GRADE.
- 2. MAXIMUM SUPERELEVATION IS 6.0%.
- 3. REFER TO STRUCTURAL DRAWING SERIES 10505 -100 FOR TROUT LAKE CREEK BRIDGE No. 10505-23

						Assoc	ciated neering		BRITISH COLUMBIA	- 110
		SCA	ALE 0	10	H 1:1000 V 1:100	50m 5m	CAD FILENAME PLOT DATE	R1-1070-201 2023-08-01		
Į.	Professional Seal	REV	DATE			REVISIONS		NAME	TROL	-ر
PERMIT TO PRACTICE									M. DU TOIT, P. ENG. ENGINEER OF RECORD DATE 2023-08-01	
ASSOCIATED ENGINEERING (B.C.) LTD. PERMIT NUMBER: 1000163 Engineers & Geoscientists BC									FILE NUMBER 2022-2677-00	

SOUTH COAST REGION HIGHWAY DESIGN AND GEOMATICS ENGINEERING

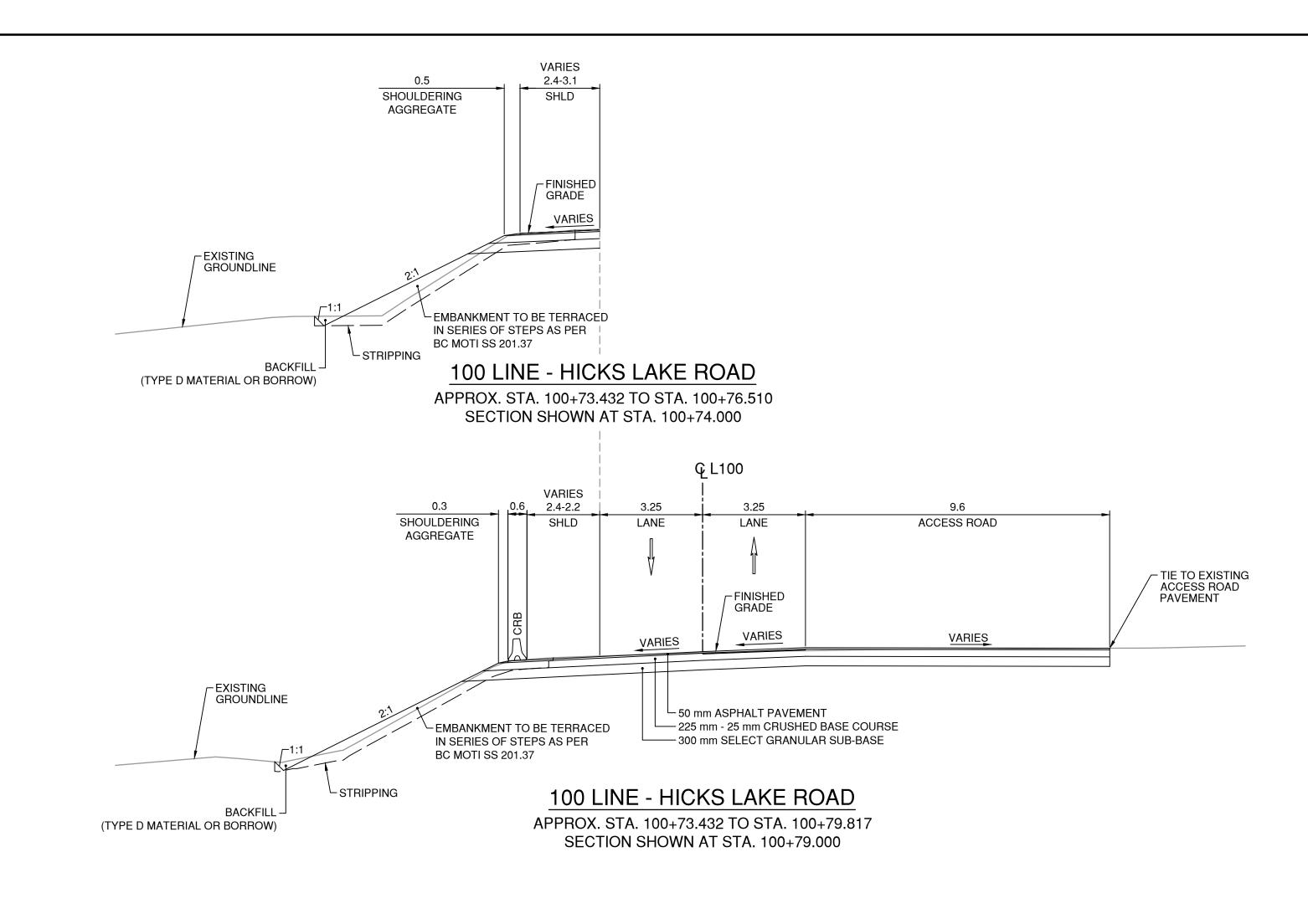
PROFILE

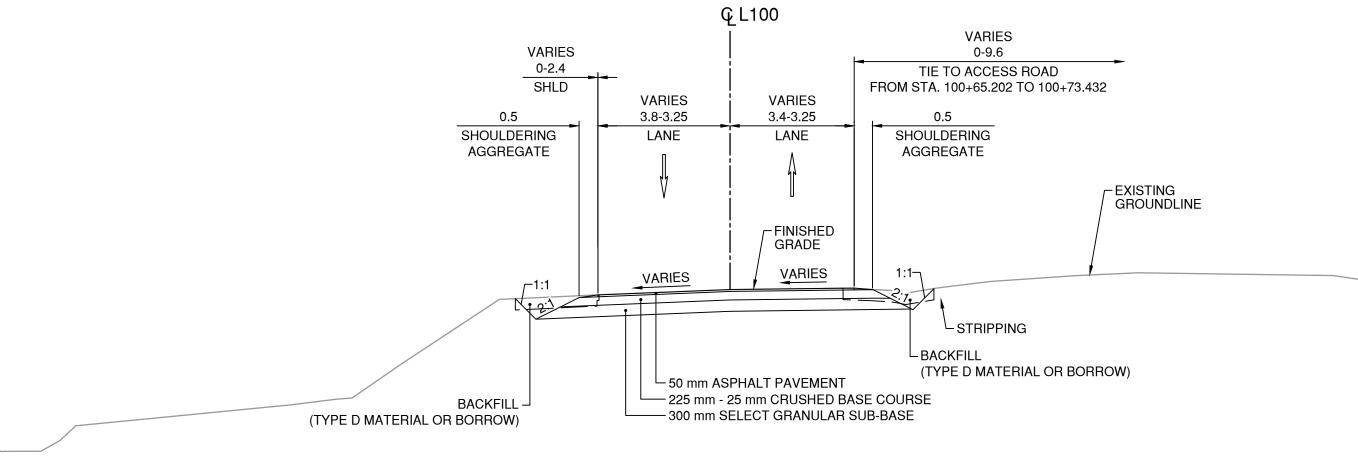
MINISTRY OF TRANSPORTATION

AND INFRASTRUCTURE

HICKS LAKE ROAD

TROUT LAKE CREEK BRIDGE No. 10505

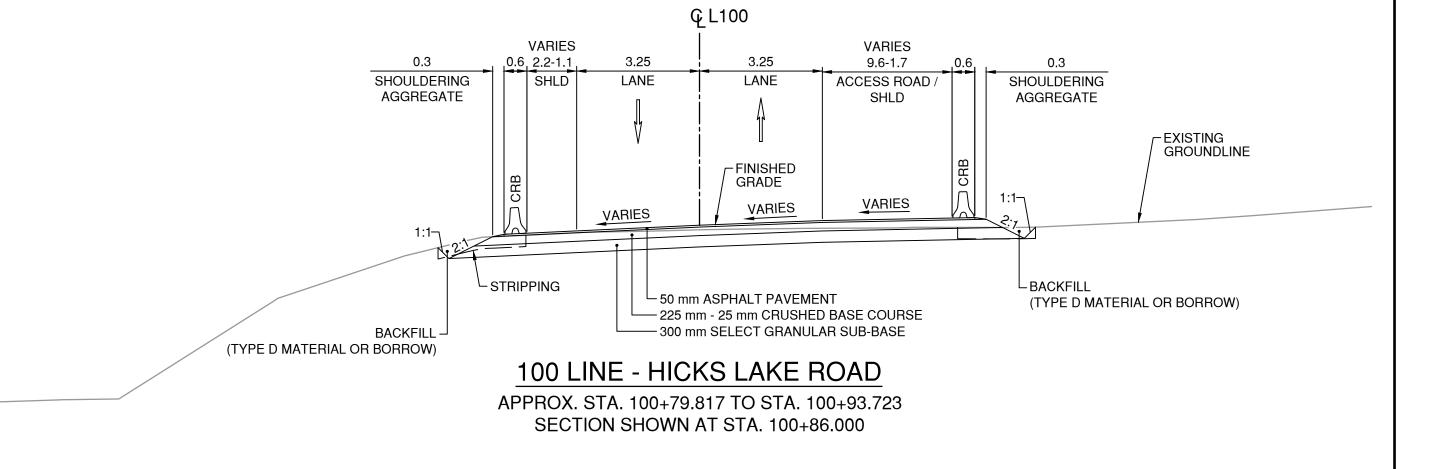

PROJECT NUMBER


14048-0000

STA. 100+57.253 TO STA. 101+91.417

DESIGNED D. BRAGAGNINI DATE 2023-08-01 QUALITY CONTROL M. DU TOIT DATE 2023-08-01 QUALITY ASSURANCE P. STANCOMBE DATE 2023-08-01

DRAWN D. BRAGAGNINI DATE 2023-08-01 DRAWING NUMBER R1-1070-201

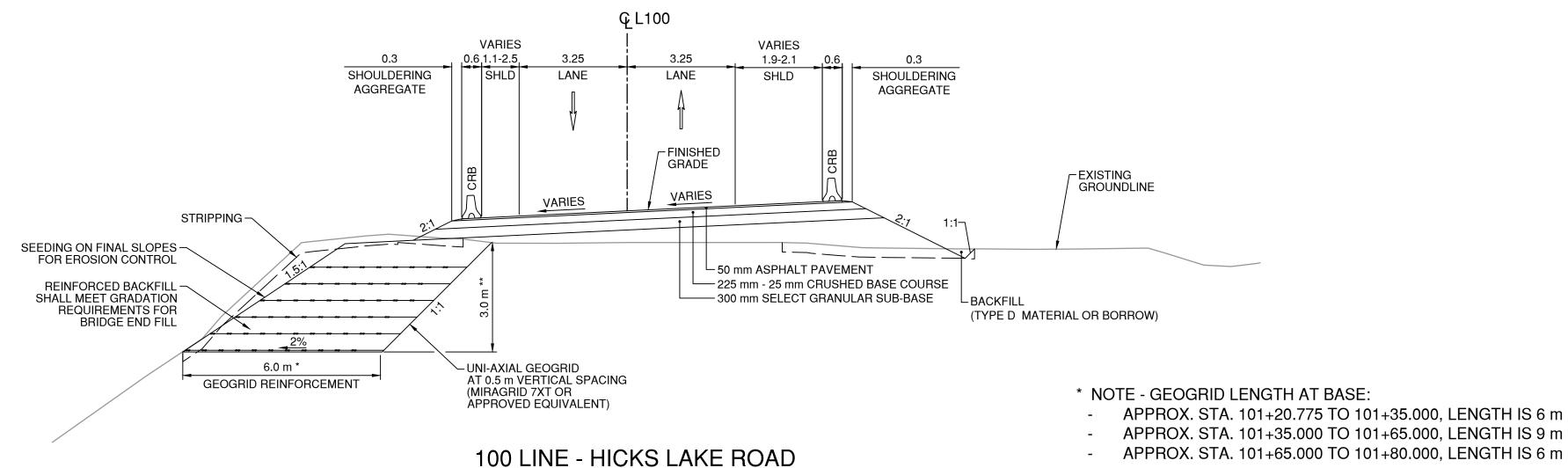


100 LINE - HICKS LAKE ROAD

APPROX. STA. 100+57.253 TO STA. 100+73.432 SECTION SHOWN AT STA. 100+63.000

MINISTRY OF TRANSPORTATION BRITISH COLUMBIA AND INFRASTRUCTURE Associated Engineering SOUTH COAST REGION HIGHWAY DESIGN AND GEOMATICS ENGINEERING 0 1 1:100 5r SCALE TYPICAL SECTIONS CAD FILENAME R1-1070-30 HICKS LAKE ROAD DATE REVISIONS NAME TROUT LAKE CREEK BRIDGE No. 10505 DESIGNED D. BRAGAGNINI DATE 2023-08-01 QUALITY CONTROL M. DU TOIT DATE 2023-08-0 M. DU TOIT, P. ENG. QUALITY ASSURANCE P. STANCOMBE DATE 2023-08-01 ENGINEER OF RECORD DRAWN D. BRAGAGNINI DATE 2023-08-01 FILE NUMBER PROJECT NUMBER DRAWING NUMBER

2022-2677-00


14048-0000

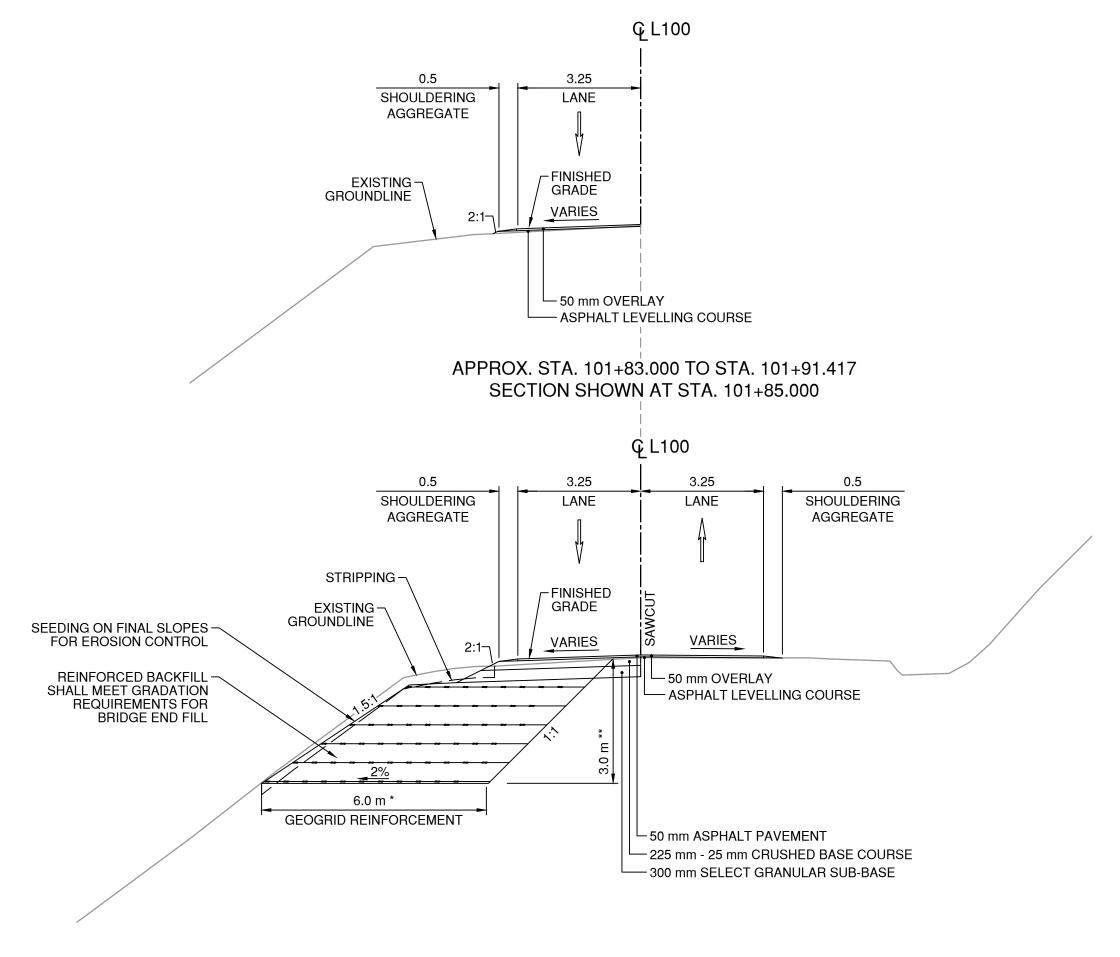
R1-1070-301

)3 Q:\2022—2677—00\civI\modeI\MoTI_Working_Drawings\DrawingProduction\300_TypicalSections\R1—1070—

100 LINE - HICKS LAKE ROAD

APPROX. STA. 101+35.000 TO STA. 101+72.000 SECTION SHOWN AT STA. 101+62.000

APPROX. STA. 101+20.775 TO STA. 101+35.000 SECTION SHOWN AT STA. 101+25.000


* NOTE - GEOGRID LENGTH AT BASE:

APPROX. STA. 101+20.775 TO 101+35.000, LENGTH IS 6 m

APPROX. STA. 101+65.000 TO 101+80.000, LENGTH IS 6 m

** NOTE - REINFORCED SOIL SLOPE HEIGHT TO BE CONSISTENT 3 m.

for geotechnical

100 LINE - HICKS LAKE ROAD APPROX. STA. 101+72.000 TO STA. 101+91.417 SECTION SHOWN AT STA. 101+77.000

ENGINEER OF RECORD

FILE NUMBER

2022-2677-00

GENERAL NOTE:

1. ALL DIMENSIONS SHOWN IN METRES UNLESS OTHERWISE NOTED.

PERMIT TO PRACTICE

ASSOCIATED ENGINEERING (B.C.) LTD.

PERMIT NUMBER: 1000163

Engineers & Geoscientists BC

COLUMBIA Associated Engineering westrek geotechnical services ltd. CAD FILENAME R1-1070-302 PLOT DATE 2023-08-0 DATE REVISIONS NAME for road works M. DU TOIT, P. ENG. ANDY CHIEM, P. ENG.

MINISTRY OF TRANSPORTATION British AND INFRASTRUCTURE

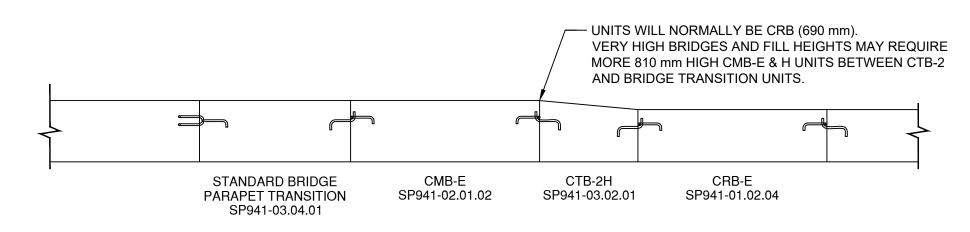
SOUTH COAST REGION HIGHWAY DESIGN AND GEOMATICS ENGINEERING

TYPICAL SECTIONS

HICKS LAKE ROAD

TROUT LAKE CREEK BRIDGE No. 10505

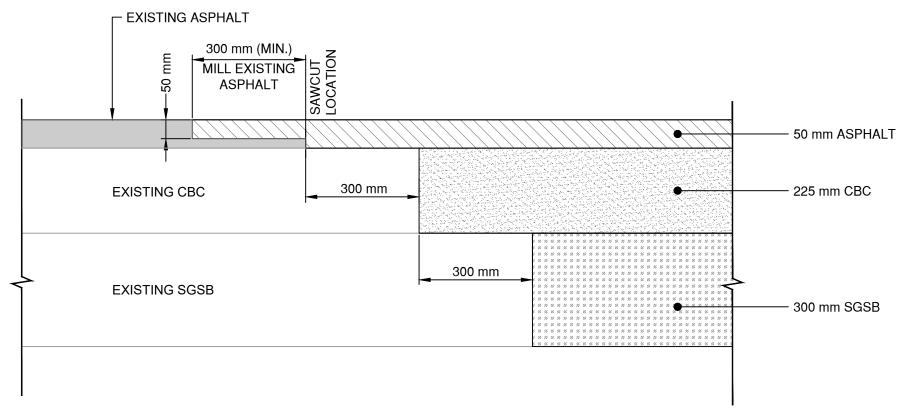
D. BRAGAGNINI DESIGNED A. CHIEM DATE 2023-08-01 QUALITY CONTROL M. DU TOIT DATE 2023-08-01 QUALITY ASSURANCE P. STANCOMBE DATE 2023-08-01


DRAWN D. BRAGAGNINI DATE 2023-08-0 PROJECT NUMBER DRAWING NUMBER R1-1070-302 14048-0000

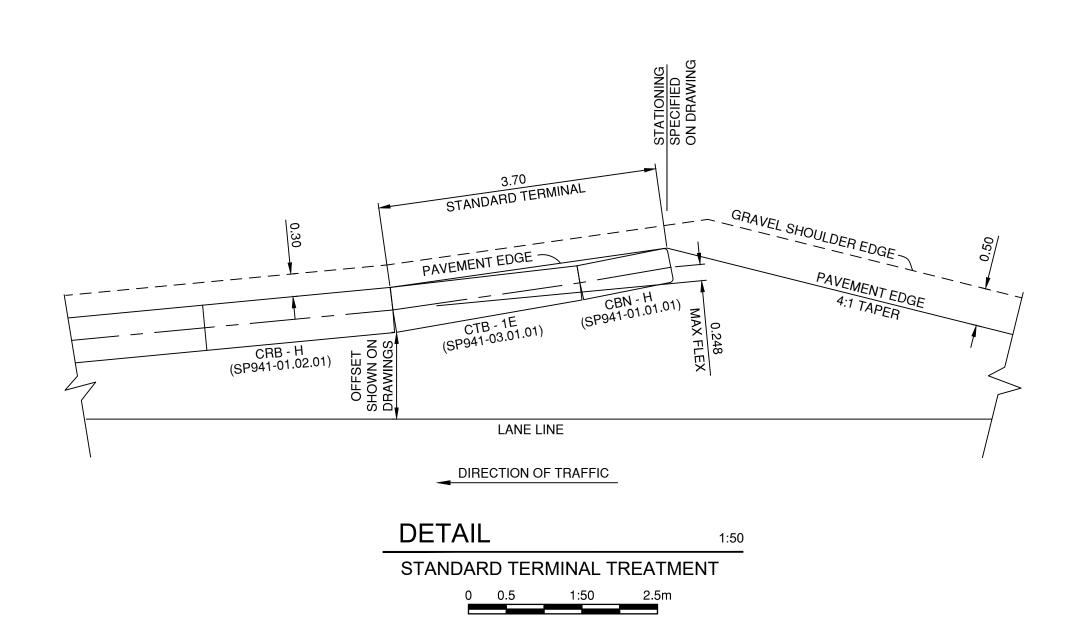
FOR PLAN / DRAINAGE SEE DWG. No. R1-1070-101

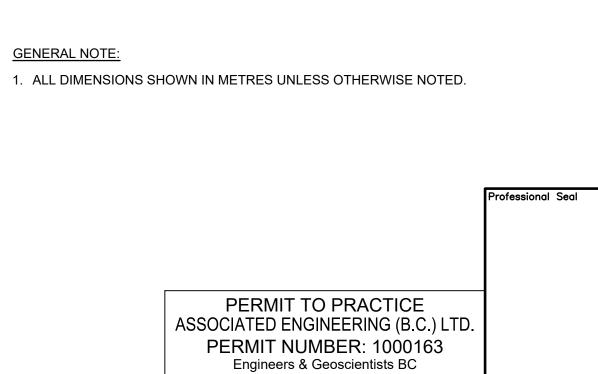
FOR PROFILE SEE DWG. No. R1-1070-201

FOR GEOMETRICS AND LANING / SPOT ELEVATIONS SEE DWG. No. R1-1070-401


FOR SIGNING AND PAVEMENT MARKINGS SEE DWG. No. R1-1070-601

BARRIER TRANSITION FROM CONCRETE BRIDGE PARAPET TO CRB


SIDE VIEW



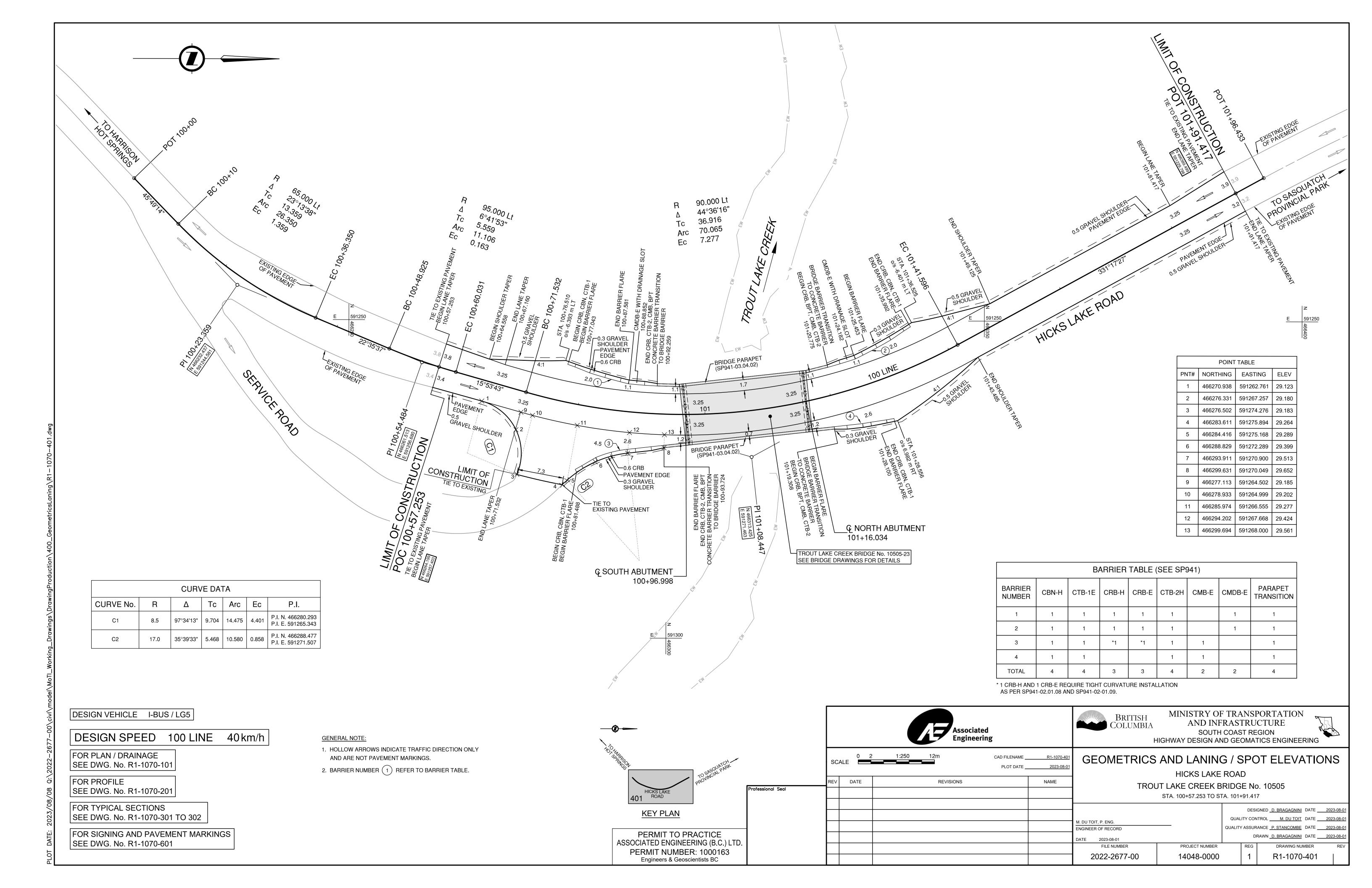
LONGITUDINAL AND TRANSVERSE PAVEMENT JOINT DETAIL

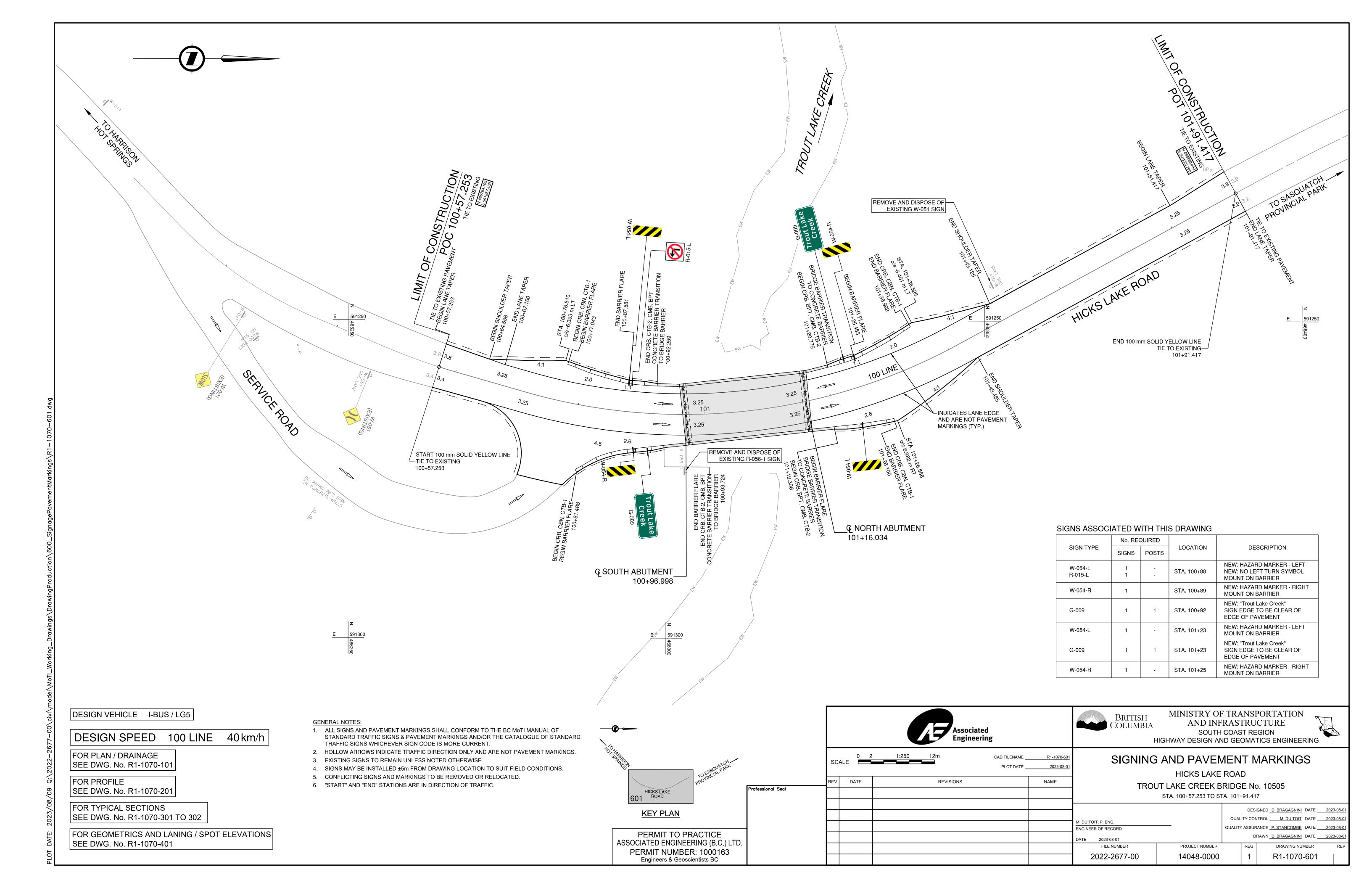
0 0.1 1:10 0.5m

MINISTRY OF TRANSPORTATION BRITISH COLUMBIA Associated Engineering AND INFRASTRUCTURE SOUTH COAST REGION
HIGHWAY DESIGN AND GEOMATICS ENGINEERING MISCELLANEOUS DETAILS - ROADWORKS CAD FILENAME R1-1070-351 SCALE AS SHOWN PLOT DATE 2023-08-01 HICKS LAKE ROAD REV DATE NAME REVISIONS TROUT LAKE CREEK BRIDGE No. 10505 DESIGNED D. BRAGAGNINI DATE 2023-08-01 QUALITY CONTROL M. DU TOIT DATE 2023-08-01 M. DU TOIT, P. ENG. QUALITY ASSURANCE P. STANCOMBE DATE 2023-08-01 ENGINEER OF RECORD DRAWN D. BRAGAGNINI DATE 2023-08-01

FILE NUMBER

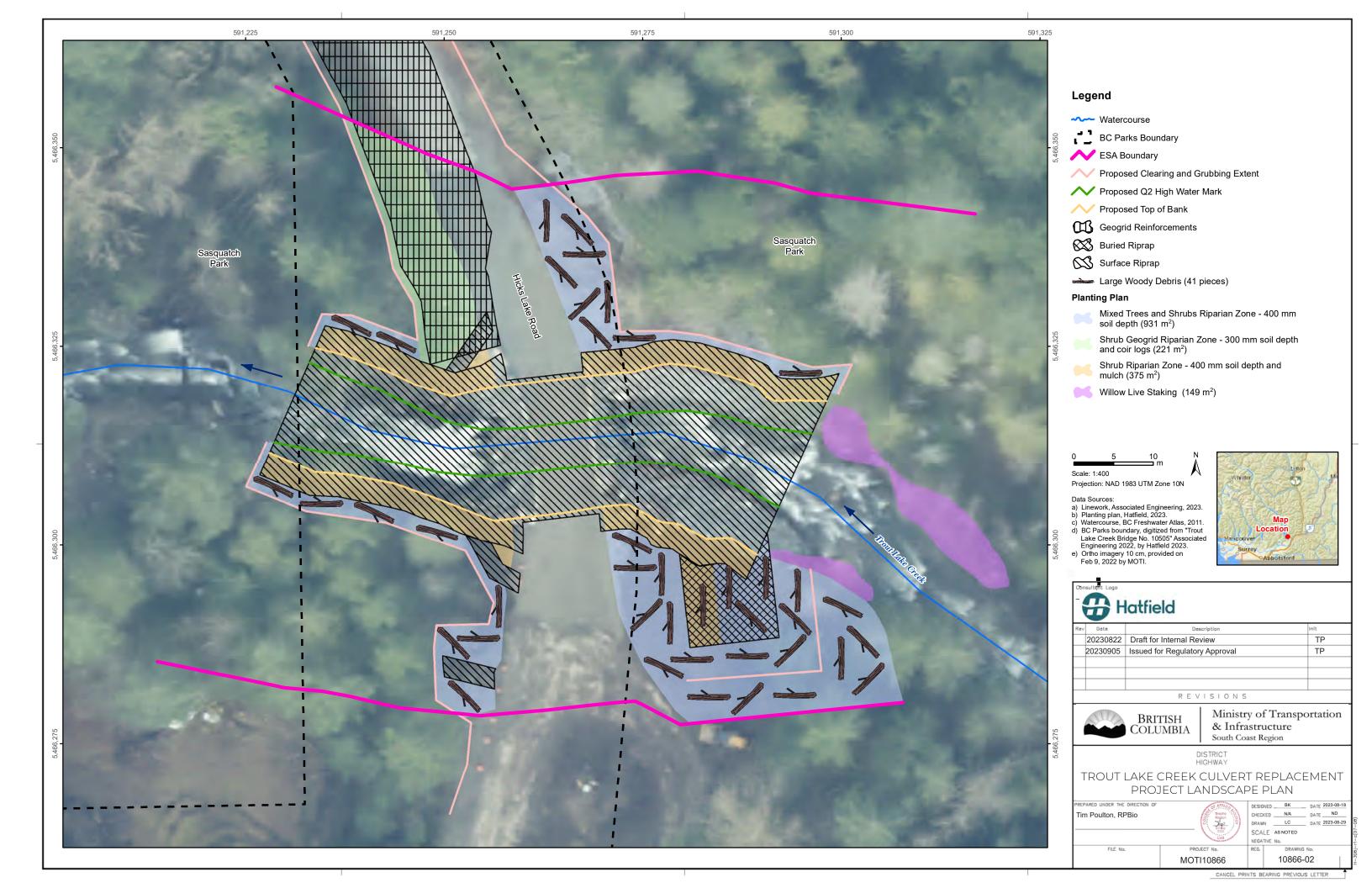
2022-2677-00


PROJECT NUMBER


14048-0000

DRAWING NUMBER

R1-1070-351


PLOT DATE: 2023/08/11 Q:\2022—2677—00\civI\model\MoTI_Working_Drawings\DrawingProduction\350_Detai

Appendix A2

Landscape Plan

Plant species and specifications for the Trout Lake Creek landscape plan.

Populus balsamifera ssp. trichocarpa Alnus rubra Acer macrophuyllum Cornus stolonifera Vaccinium parvifolium Physocarpus capitatus Salix lucida Symphoricarpos albus Mahonia nervosa Polystichum munitum Urtica dioica Shrub riparian zone (400 mm soil dep Cornus stolonifera	10 15 10 10 10 10 10 10 5 5	14 21 14 71 71 71 71 35 35 71	No. 5 pot No. 5 pot No. 5 pot No. 2 pot No. 1 pot	1 plant per 5 m 1 plant per 5 m 1 plant per 5 m 1 plant per m ²
Alnus rubra Acer macrophuyllum Cornus stolonifera Vaccinium parvifolium Physocarpus capitatus Salix lucida Symphoricarpos albus Mahonia nervosa Polystichum munitum Urtica dioica Shrub riparian zone (400 mm soil dep	15 10 10 10 10 10 10 5 5	21 14 71 71 71 71 71 35 35	No. 5 pot No. 5 pot No. 2 pot No. 1 pot	1 plant per 5 m 1 plant per 5 m 1 plant per m²
Acer macrophuyllum Cornus stolonifera Vaccinium parvifolium Physocarpus capitatus Salix lucida Symphoricarpos albus Mahonia nervosa Polystichum munitum Urtica dioica Shrub riparian zone (400 mm soil dep	10 10 10 10 10 10 10 5 5	14 71 71 71 71 71 71 35 35	No. 5 pot No. 2 pot	1 plant per 5 m 1 plant per m ²
Cornus stolonifera Vaccinium parvifolium Physocarpus capitatus Salix lucida Symphoricarpos albus Mahonia nervosa Polystichum munitum Urtica dioica Shrub riparian zone (400 mm soil dep	10 10 10 10 10 10 5 5	71 71 71 71 71 71 35 35	No. 2 pot No. 1 pot	1 plant per m ²
Vaccinium parvifolium Physocarpus capitatus Salix lucida Symphoricarpos albus Mahonia nervosa Polystichum munitum Urtica dioica Shrub riparian zone (400 mm soil dep	10 10 10 10 5 5 5	71 71 71 71 35 35	No. 2 pot No. 1 pot	1 plant per m ²
Physocarpus capitatus Salix lucida Symphoricarpos albus Mahonia nervosa Polystichum munitum Urtica dioica Shrub riparian zone (400 mm soil dep	10 10 10 5 5	71 71 71 35 35	No. 2 pot No. 1 pot	1 plant per m ²
Salix lucida Symphoricarpos albus Mahonia nervosa Polystichum munitum Urtica dioica Shrub riparian zone (400 mm soil dep	10 10 5 5	71 71 35 35	No. 2 pot No. 2 pot No. 2 pot No. 1 pot	1 plant per m ² 1 plant per m ² 1 plant per m ²
Symphoricarpos albus Mahonia nervosa Polystichum munitum Urtica dioica Shrub riparian zone (400 mm soil dep	10 5 5 5	71 35 35	No. 2 pot No. 2 pot No. 1 pot	1 plant per m ² 1 plant per m ²
Mahonia nervosa Polystichum munitum Urtica dioica Shrub riparian zone (400 mm soil dep Cornus stolonifera	5 5 5	35 35	No. 2 pot No. 1 pot	1 plant per m ²
Polystichum munitum Urtica dioica Shrub riparian zone (400 mm soil dep Cornus stolonifera	5 5	35	No. 1 pot	
Urtica dioica Shrub riparian zone (400 mm soil dep Cornus stolonifera	5		•	1 plant per m ²
Shrub riparian zone (400 mm soil dep Cornus stolonifera		71	NI. d. d.	
Cornus stolonifera	th and mulch)		No. 1 pot	2 plants per m
)		
., ., ., ., ., ., ., ., ., ., ., ., ., .	20	76	No. 2 pot	1 plant per m²
Vaccinium parvifolium	15	57	No. 2 pot	1 plant per m²
Physocarpus capitatus	20	76	No. 2 pot	1 plant per m²
Salix lucida	15	57	No. 2 pot	1 plant per m²
Symphoricarpos albus	10	38	No. 2 pot	1 plant per m²
Mahonia nervosa	10	38	No. 2 pot	1 plant per m²
Polystichum munitum	5	19	No. 1 pot	1 plant per m²
Urtica dioica	5	19	No. 1 pot	1 plant per m²
ub geogrid riparian zone (300 mm soil c	depth and coir	logs)		
Rubus parviflorus	15	27	No. 2 pot	1 plant per m²
Cornus stolonifera	10	18	No. 2 pot	1 plant per m²
Vaccinium parvifolium	15	27	No. 2 pot	1 plant per m²
Physocarpus capitatus	15	27	No. 2 pot	1 plant per m²
Salix lucida	15	27	No. 2 pot	1 plant per m²
Symphoricarpos albus	10	18	No. 2 pot	1 plant per m ²
Rosa gymnocarpa	10	18	No. 2 pot	1 plant per m ²
Polystichum munitum	5	9	No. 1 pot	1 plant per m ²
Blechnum spicant	5	9	No. 1 pot	1 plant per m ²
	Rubus parviflorus Cornus stolonifera Vaccinium parvifolium Physocarpus capitatus Salix lucida Symphoricarpos albus Rosa gymnocarpa Polystichum munitum	Rubus parviflorus 15 Cornus stolonifera 10 Vaccinium parvifolium 15 Physocarpus capitatus 15 Salix lucida 15 Symphoricarpos albus 10 Rosa gymnocarpa 10 Polystichum munitum 5 Blechnum spicant 55	Rubus parviflorus 15 27 Cornus stolonifera 10 18 Vaccinium parvifolium 15 27 Physocarpus capitatus 15 27 Salix lucida 15 27 Symphoricarpos albus 10 18 Rosa gymnocarpa 10 18 Polystichum munitum 5 9 Blechnum spicant 5 9	ub geogrid riparian zone (300 mm soil depth and coir logs) Rubus parviflorus 15 27 No. 2 pot Cornus stolonifera 10 18 No. 2 pot Vaccinium parvifolium 15 27 No. 2 pot Physocarpus capitatus 15 27 No. 2 pot Salix lucida 15 27 No. 2 pot Symphoricarpos albus 10 18 No. 2 pot Rosa gymnocarpa 10 18 No. 2 pot Polystichum munitum 5 9 No. 1 pot Blechnum spicant 5 9 No. 1 pot

¹ Plant in clusters around bigleaf maple. ² Plant along the lower slope.

Salix sitchensis

Growing medium specifications (MOTI SS 751-A)

Sitka Willow

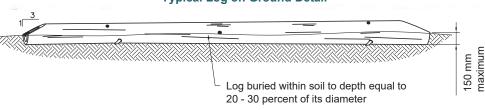
Stakes

Particle size/pH/Drainage	Criteria
Gravel 2 - 40 mm	4 10% of dry weight 4 10% of dry weight 5 10% of dry weight 6 10% of dry weight 6 10% of dry weight 7 10% of dry weight 7 10% of dry weight 7 10% of dry weight 8 10% of dry weight 9 10% of dry weight 1 10%
Sand 0.05 – 2 mm	30 – 70% of dry weight
Silt and clay combined	Max of 60% of dry weight
Organic content	2 – 10% of dry weight
Hydraulic conductivity	2 cm/hour
рН	6.0 – 7.0

General Landscape Specifications

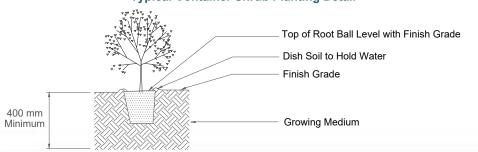
- Planting is to occur in the fall (following the last drought period in September to October) or spring (April to May). Willow live stakes to be installed during the dormant season per typical detail.
- All works associated with site preparation of planting areas are to be conducted per the BC Landscape Standards.
- Plants in containers shall have a well-established root system, reaching the sides of the container to maintain a firm ball when removed from the container, but shall not be root bound.
- The landscape contractor shall provide maintenance including, watering, removal of invasive species, and replacement of dead stock for one year after planting.
- After planting, all exposed soils are to be stabilized using Riparian Area Seed Mix per MOTI SS 757 applied at 75 kg/ha.
- Growing medium shall meet the table specifications per MOTI SS 751.
- It is recommended that growing medium be tested by an accredited soil testing laboratory to verify that the material meets specifications (see table).
- Growing medium will be applied to planting areas with a minimum thickness of 400 mm with the exception of the shrub geogrid riparian zone which shall have a minimum thickness of 300 mm. Growing medium shall be free of subsoil, wood (including woody plant parts), toxic materials, stones over 30 mm, foreign objects, propagules of plant species designated as noxious under the BC Weed Control Act and Regulation, and other invasive or undesirable plant species.
- Mulch shall be applied to the shrub riparian zone after watering to an even depth of 50 mm per MOTI SS 754 to assist with water retention over the riprap subgrade.
- Coir logs to be installed along the steeper slope (1.5:1) shrub geogrid riparian planting zone to help stabilize growing medium and reduce surface erosion (see typical detail).

Typical Coir or Straw Roll Detail


Notes:

- Install coir or straw rolls perpendicular to the expected flow direction (parallel to the slope contour).
- Dig small trenches across the slope on contour. The trench should be deep enough to contain the bottom-half of the roll.
- Commence the installation from the bottom of the slope and work uphill.
- Lay in trenches, fitting them snugly against the soil so no caps exist between the roll and the rear wall of the trench
- Make pilot holes through the center of the fiber rolls using a straight metal rod (i.e., rebar) and then insert the wooden stakes or Sitka willow live stakes. Ensure the stakes do not interfere with geogrid below the growing medium.
- 6. When rolls are placed end-to-end the ends of each roll shall overlap by at least 300 mm.

Typical Log on Ground Detail


Live Stakes 2 stakes per m²

100

LWD pieces will have a minimum diameter of 30 cm and range in length from 4-6 m.

Typical Container Shrub Planting Detail

Live Staking Detail (N.T.S.) 2 TO 5 BUDS SCARS SHALL BE ABOVE THE GROUND BE REMOVED 0-75mm DIAMETER 0.5m MINIMUM TRIM BRANCHES CLOSE PLANT STAKE 80% IN THE GROUND MAKE ANGLED CUT AT BUTT-END PLANT BUTT-END NOTES: I. HARVEST AND PLANT STAKES DURING THE DORMANT SEASON 2. USE HEALTHY, STRAIGHT AND LIVE WOOD AT LEAST 1 YEAR OLD. 3 MAKE CLEAN CUTS AND DO NOT DAMAGE STAKES OR SPLIT ENDS DURING INSTALLATION, USE A PILOT BAR IN FIRM SOILS. 4. INSTALL STAKES AT A DENSITY OF 1.2 STAKES PER SQUARE METRE.

Hatfield 20230822 Draft for Internal Review TP 20230905 Issued for Regulatory Approval TP REVISIONS Ministry of Transportation **BRITISH** & Infrastructure COLUMBIA South Coast Region HIGHWAY TROUT LAKE CREEK CULVERT REPLACEMENT PROJECT LANDSCAPE PLAN DATE 2023-08-18 CHEDICI) N/A DATE Tim Poulton, RPBio (MA NAME AND LC DATE 2023-08-28 SEALE AS NOTED BUTCH OF RECORD NEGATIVE NO.

MOTI10866

10866-02