Passive House for Campus

David Claus, P.Eng, D.Phil

Director of Facilities Management and Capital Planning

Outline

- Context
- Project History
- Areas of Success
- Barriers Overcome
- Lessons Learned
- Heating with plug loads
- Life Cycle Costing

A History of Innovation

UNBC UNIVERSITY OF NORTHERN BRITISH COLUMBIA

UNBC CO_{2e} Reductions

Masters of Engineering in Integrated Wood Design

Passive House

- 1991 Wolfgang Feist, Austrian physicist
- Insulation
- Air tightness
- Heat Recovery Ventilation
- Proper windows
- Thermal bridges

Energy Step Code: Part 3 Buildings

What does the Energy Step Code Measure?

By the numbers

- 1,042 m²
- Single story, with a mezzanine
- High head lab with overhead crane
- Three offices
- Seminar room for 30 people
- Wood conditioning room
- Dust extraction
- Passive House

Areas of Success

- Completed on time and budget (SIF project, no extension)
- Tight envelope
- "Textbook" detailing
- Certified by the International Passive House Institute
- It works, minimal call backs

Tight Envelope

Standard: <0.6 ACH

Tested: 0.075 ACH

Barriers Overcome

- Timeline design build
- Passive what? fully committed from the start
- Inexperience relationships based on trust, and dialogue
- Lack of internal floors
- Dust extraction
- Roof warranty
- Wall insulation

Lessons Learned

- Need unwavering commitment:
 - Owner Passive House certification isn't negotiable
 - Designer willing to explore all options
 - Builder attention to detail, procurement
- Prefabrication in its infancy in BC
- Internal Heat Gain matters
 - Building heated by computers and people

Heating with Plug Loads

2.5 kW one office10 kW peak overall

Life Cycle Costing

- Construction decisions have a huge impact on operational realities
- Building lifespan
- Determine metric(s) of interest
 - Dollars
 - Greenhouse gasses
- Modelling is the first step (Energy Step Code)
- How to incorporate results into capital decisions?

LCA Impact Indicator Categories

- Global Warming Potential (CO₂e)
- Acidification Potential (SO₂e)
- HH Particulate (PM_{2.5}e)
- Eutrophication Potential (Ne)
- Ozone Depletion Potential (CFC 11e)
- Smog Potential (O₃e)
- Total Primary Energy (MJ)
 - Non Renewable Energy (MJ)
 - Fossil Fuel Consumption (MJ)

Material by: Stephanie Wall and Guido Wimmers

LCA Results

- 70% GWP reduction when designed to PH Standard
- For PH buildings material selection of increasing importance:
 - Code building material
 ~10% GWP
 - PH building material
 ~38% GWP
- Designing with wood rather than steel reduced embodied energy by 22%

Material by: Stephanie Wall and Guido Wimmers

UNBC Building Energy Consumption

WIRL LCA Results: Embodied Energy vs. Building Operation

Questions?

