

REPORT

Highway 95 - Kicking Horse River Bridges

Final Preliminary Geotechnical Report

Submitted to:

Associated Engineering (BC) Ltd.

#500 - 2889 East 12th Avenue Vancouver, BC V5M 4T5

Submitted by:

Golder Associates Ltd.

Suite 200 - 2920 Virtual Way, Vancouver, British Columbia, V5M 0C4, Canada

+1 604 296 4200

20139391-006-R-Rev0

1 October 2020

Distribution List

- 1 e-Copy: Associated Engineering (BC) Ltd.
- 1 e-Copy: BC Ministry of Transportation and Infrastructure

Table of Contents

1.0	INTR	ODUCTION	1
2.0	PRO	IECT INFORMATION	1
3.0	GEO	FECHNICAL SCOPE OF WORK	2
4.0	GENE	ERAL SITE DESCRIPTION	2
	4.1	Existing Highway and Land Use	2
	4.2	Geological Setting	3
	4.3	Site Seismicity	3
	4.4	Climate Setting	3
5.0	REVI	EW OF BACKGROUND INFORMATION	4
6.0	PREL	IMINARY GEOTECHNICAL INVESTIGATION	4
	6.1	Data Presentation	4
	6.2	Drilling Investigation Program	5
	6.2.1	Air-Rotary Drilling	6
	6.2.2	HQ3 Soil Coring	6
	6.2.3	In-Situ Testing and Sampling Using Standard Penetration Tests (SPTs)	6
	6.2.4	Borehole Closure	7
	6.3	Laboratory Testing Program	7
	6.3.1	Soils Index Testing	7
	6.3.2	Soils Specialized Testing	8
7.0	INTE	RPRETED SUBSURFACE CONDITIONS	8
	7.1	Topsoil and Asphalt	8
	7.2	Fill	9
	7.3	Fluvial/Alluvial Deposits	9
	7.4	Groundwater Conditions	10
8.0	KEY	GEOTECHNICAL ISSUES AND CONSTRAINTS	10
9.0	PREL	IMINARY GEOTECHNICAL CONSIDERATIONS	11

	9.1	Natural Hazards11
	9.2	Seismic Design11
	9.2.1	Simplified Liquefaction Assessment12
	9.3	Subgrade Preparation and Site Grading12
	9.3.1	Site Stripping12
	9.3.2	Permanent Embankment Fill Construction12
	9.3.3	Material Re-Use13
	9.4	Retaining Walls14
	9.4.1	Mechanically Stabilized Earth14
	9.4.2	Cast in Place Walls14
	9.5	Bridge Foundations
	9.5.1	Lateral Pile Resistance16
	9.6	Trenchless Watermain Crossing16
	9.6.1	Watermain Requirements and Trenchless Installation Feasibility16
	9.6.2	General Description of Horizontal Directional Drilling17
	9.6.3	Preliminary Bore Size and Drill Path Alignment18
	9.6.4	Ground Condition Mitigation19
	9.7	Pavement Structure Design Considerations
10.0	CLOS	URE

TABLES

Table 1: Canadian Climate Normals Data (1981 - 2010)	3
Table 2: Summary of Borehole Information	5
Table 3: Slope Analysis Material Properties - Embankment Fill Slopes	13

FIGURES

Figure 1: Site Plan

APPENDICES

APPENDIX A Summary Logs

APPENDIX B Laboratory Testing

APPENDIX C Seismic Hazard Calculation (NBCC 2015)

APPENDIX D Axial Pile Capacity Plots

APPENDIX E Slope Stability Assessment

APPENDIX F Nearby Water Well Records

APPENDIX G 100% Preliminary Design Reference Drawings

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) was retained by Associated Engineering (BC) Ltd. (AE) to provide geotechnical services for the Highway 95 – Kicking Horse River Bridges Project (the Project) located in Golden, BC. Golder's geotechnical services were required to support the advancement of the conceptual design for the Project throughout the preliminary design phase.

This report documents Golder's preliminary geotechnical assessment of the Project based on site reconnaissance, available information and a preliminary geotechnical investigation. The results of the information reviewed and obtained, along with our preliminary engineering assessment, are provided in this report. The geotechnical interpretation and engineering comments and recommendations presented herein are based on the highway and bridge design information available at the time of preparing this report and are considered subject to revision upon completion of further geotechnical investigation and analyses.

The scope of this preliminary geotechnical assessment report is limited to the geotechnical assessment and reporting services only, consistent with terms outlined in the contract with AE dated 21 May 2020 and does not include any investigation, testing or assessment of soil and/or groundwater contamination at the site, nor inclusion of bio-environmental, hydrotechnical or archaeological services. It is understood that these services are to be provided by others, where required.

This report should be read in conjunction with the *"Limitations and Use of This Report"* which is presented following the text of this report. The reader's attention is specifically drawn to this information as it is essential for the proper use and interpretation of this report.

2.0 PROJECT INFORMATION

The proposed Highway 95 – Kicking Horse River Bridges Project configuration at the time of preparing this report is illustrated in Figure 1. Based on our understanding of the Project design at the time of preparing this report (100% Preliminary Design submission), the main improvements are to include:

- Re-alignment of the Highway 95 approaches and bridge crossing over the Kicking Horse River to the east of the existing highway alignment extending from approximately 500 m north to approximately 200 m south of the river.
- Replacement of the existing bridge structure at Kicking Horse River with a new two-lane bridge (east of the existing bridge) and addition of a new one or two-lane bridge structure to Goulds Island from the south bank (approximately on the existing bridge alignment).
- Various intersection improvements to connect Highway 95 with the local road network, including a major roundabout at 6th St N.
- Replacement of the existing water main crossing beneath Kicking Horse River to outside of proposed Highway 95 and bridge crossing alignment.
- Replacement of the existing overhead BC Hydro powerline crossing to outside of the proposed Highway 95 and bridge crossing alignment
- Various other drainage, parking, walkway and dike alterations/improvements.

3.0 GEOTECHNICAL SCOPE OF WORK

Golder was retained by AE to provide geotechnical services for the Project under AE's existing MoTI consulting services contract 872CS1603. The scope of Golder's geotechnical services, as approved/directed by AE and MoTI generally includes the following:

- Prepare and carry out a preliminary geotechnical investigation program at the site to support the Preliminary Design phase.
- Provide geotechnical engineering support services to the highway, civil and structural design teams including preparation of a Preliminary Geotechnical Report.
- Attendance at risk review/register meeting during Preliminary Design phase.

This preliminary geotechnical assessment report is provided to support the preliminary design phase of the Project and presents a summary of the recent geotechnical investigation activities carried out at the Project site along with preliminary geotechnical recommendations to aid in the development of the project preliminary design being prepared by AE.

4.0 GENERAL SITE DESCRIPTION

4.1 Existing Highway and Land Use

The Project location is in the Kootenay region, as shown in Figure 1. The specific Project site includes the Landmark Kilometre Index (LKI) Segment 2161 between approximately km 103.03 and km 104.08. For reference purposes, Highway 95 is assumed to be aligned in a north-south direction with the north direction in the east lane and south direction in the west lane. Highway 95 through this segment has one northbound and one southbound lane, with two short bridge structures crossing over the Kicking Horse River. Near the bridge crossings, there are existing intersections and exit/entrance lanes at 9th Ave. N., Goulds Island, Park Drive and 11th Ave. S. (from north to south).

The Project site generally follows along the southern side of the CP Rail Right of Way and Highway 1 Right of Way at the exit of the Kicking Horse River valley and entrance to the Columbia River basin. The valley bottom is relatively flat in topography, with gentle undulations and one prominent river feature, the Kicking Horse River. Moderately steep to steep mountain slopes exist to the north of the Project site associated with the Van Horne Range, to the north-west with the moderately steep to steep Dogtooth Range and to the south-east of the Project site associated with the Beaverfoot Range. The bedrock associated with the adjacent mountain ranges dips steeply into the valley bottom and is covered by significant thickness of recent and glacial outwash fluvial and alluvial deposits at the Project site.

Highway 95 is developed over the fluvial and alluvial deposits that extend across the entire Project site. At the Kicking Horse River approaches, the highway is developed over a slightly elevated dike feature comprising generally coarse granular material. Areas in and around the Kicking Horse River have been historically subjected to various phases of development and, as a result, extensive zones of import fill material are anticipated within the Project footprint.

The Project site is located within an urban setting with mostly commercial and industrial land-use adjacent to Highway 95. CP Rail maintains an active track system and maintenance facility north of the river and the current Highway 95 alignment.

4.2 Geological Setting

Existing surficial geological mapping by the Geological Survey of Canada (GSC) for the area of the site is limited and not recent. GSC Map 1497A indicates surficial sediments throughout and adjacent to the Project site composed of "till, alluvium, colluvium, gravel, sand and silt where bedrock is extensively concealed" of the Pleistocene and recent periods. The presence of these deposits was verified during our preliminary geotechnical investigation work conducted in the area. At the Project site, bedrock is not anticipated within 150 m of the ground surface based on review of records obtained at nearby water well installations.

In general, it is anticipated that the natural surficial geology consists of recent fluvial/alluvial, coarse-grained materials deposited by the Kicking Horse River overlying older fluvial/alluvial, finer-grained sediments from the Columbia River basin.

4.3 Site Seismicity

Golder obtained site-specific seismic hazard results from the Natural Resources Canada (NRC) website (http://earthquakescanada.nrcan.gc.ca/hazard-alea/interpolat/index-eng.php) for the Project site located at 51.298N, 116.963W. A summary of the NRC calculation results is detailed in Appendix C.

The NRC results indicated, as based on the 2015 National Building Code of Canada (NBCC), that the five percent damped peak firm-ground acceleration (PGA) having a 2 percent chance of exceedance during a design life of 50 years (equivalent to having a return period of 1-in-2,475 years), is 0.12 g. Based on preliminary assessment, the highway alignment is anticipated to be considered as Site Class C with non-liquefiable soils in the upper 30 m. The site classification assessment and seismic analysis is detailed further in Section 9.2 below.

4.4 Climate Setting

Selected Canadian Climate Normal data obtained from the Environment Canada webpage (http://climate.weatheroffice.ec.gc.ca/climate_normals/index_e.html) for the nearest station to the Project site is tabulated in Table 1 below.

Statio	on	Location	Elevation	Days with Minimum Temperature Below 0°C	Days with Maximum Temperature Below 0°C	Degree-Days Below 0°C
Golden A	virport	51°17'57.000"N 116°58'56.000"W	784.9 m	183.5	70.6	778.4

Table 1: Canadian Climate Normals Data (1981 - 2010)

For the above values, the corresponding frost penetration depth as determined by recommendations presented in the Canadian Foundation Engineering Manual (4th Edition) is about 2.0 m for bare road and gravel surfaces and about 1.2 m in snow-covered areas.

5.0 REVIEW OF BACKGROUND INFORMATION

The following information on the site and subsurface conditions was available to Golder for use in our geotechnical engineering analysis and design:

- Kicking Horse River Bridges, Hwy 95, Golden, BC, Geotechnical Condition Assessment Memo, WSP Canada Inc, dated14 April 2014
- Highway 95 Kicking Horse Bridges 9th Street S to 6th Street North, Golden Planning and Preliminary Engineering, Associated Engineering BC, dated February 2017
- Value Analysis Review of Highway 95 Kicking Horse Bridges for The Ministry of Transportation and Infrastructure, Value Management Inc, dated 19 March 2017
- Golden Dike Improvements, Structural Design Drawings, Reid Jones Christofferson Ltd., dated 23 April 2020
- Geotechnical Engineering Investigation Report, Proposed Dike Improvements, Golden, BC, WSP Canada Inc., dated 5 January 2017
- Borehole Logs, McIntosh Lalani Engineering Ltd, dated 20 June 2009
- Kicking Horse River Ice Jam Study, Town of Golden, British Columbia, Matrix Solutions Inc., April 2018
- GSC Map 1497A, Geology, Golden (West Half), Geological Survey of Canada, dated 1979
- Groundwater Wells and Aquifers Registry, https://apps.nrs.gov.bc.ca/gwells/, Government of British Columbia, Well Tag Numbers: 108705, 48403, 16956, 14523, and 14555 (the available records are included in Appendix F)

6.0 PRELIMINARY GEOTECHNICAL INVESTIGATION

As discussed previously, a preliminary geotechnical investigation program was carried out for the Project, targeting areas at/near proposed structure foundations and to provide subsurface information coverage across the site. The geotechnical investigation program was conducted in July 2020 and included four deep drilled boreholes.

6.1 Data Presentation

Field identification and classification of the subsurface soil encountered during the geotechnical investigation was classified in general conformance with the BC Ministry of Transportation and Infrastructure (MoTI) "*Geotechnical and Materials Engineering Standards for Bridge Foundation Investigations [Rev 90-04-26]*". Soil descriptions generally followed MoTI's modified Unified Soils Classification System (USCS). Other pertinent details such as color, moisture and in-situ conditions were recorded to supplement the classification.

The results of the geotechnical investigation are provided on draft Summary Logs in Appendix A and detailed laboratory test results in Appendix B.

6.2 Drilling Investigation Program

A total of four boreholes were conducted between 1 and 18 July 2020. Air-rotary drilling and triple-tube diamond coring drilling methodologies were employed. A list of the boreholes and pertinent details, such as coordinates, depths and dates are provided in Table 2 below. The approximate locations of the boreholes are shown on Figure 1 attached.

Borehole ID	Coordinat NAD83 Zo		Approximate Elevation	Termination Depth	Drilling Methodology	Drilling Dates
	Northing	Easting	(geodetic datum)	(mbgs)²	weinouology	
BH20-01	5683104	502493	789	45.1	Air-Rotary/HQ3	14 - 17 July 2020
BH20-02	5682959	502569	789	51.4	Air-Rotary/HQ3	01 - 05 July 2020
BH20-03	5683012	502498	790	49.4	Air-Rotary/HQ3	06 - 10 July 2020
BH20-04	5682959	502532	790	28.5	Air-Rotary/HQ3	11 - 13 July 2020

Table 2: Summary of Borehole Information

1 - coordinates were taken in the field using a hand-held GPS and are approximate only

2 - mbgs refers to metres below ground surface

For this investigation, each individual borehole was provided with a unique identification number for the hole. All holes were drilled using boring methods and are identified with the prefix 'BH' followed by '20' for the year they were drilled (2020). The final two numbers are the unique identification number for the borehole put down.

During this investigation, in-situ testing was carried out within the boreholes and included:

- Split-spoon sampling and standard penetration testing (SPT)
- Grab samples from air-rotary drill cuttings
- HQ3 diamond core recovered soils

Detailed drilling and sampling methodologies are provided in the following sections and results are summarized on the Summary Logs in Appendix A.

Laboratory testing on soils included classification and index testing (such as moisture content, gradation testing, hydrometers and Atterberg limits) and specialized testing (such as sulphate, chloride and corrosivity testing). The testing program is detailed further in Section 6.3 and available results are provided in Appendix B.

6.2.1 Air-Rotary Drilling

An air-rotary (commonly known as ODEX) drill rig equipped with top-drive rotary capabilities was utilized for rotary drilling through overburden on this Project. The Fraste Multi-Drill XL track-mounted rig employed for this drilling was owned and operated by Geotech Drilling Services (Geotech) of Prince George, BC.

Air-rotary drilling employs a down hole percussion hammer that advances an outer casing and cutting shoe (approximately 133 mm diameter) that is rotated and driven into the ground in approximately 1.5 m increments, with the drill cuttings flushed out of the hole using compressed air. Following each drill run, the cutting bit was retrieved, and a split-spoon sampler was lowered down hole to the target depth and a standard penetration test (SPT) was conducted. The air-rotary system provides a fully cased borehole length as casing is advanced behind the cutting shoe.

Air-rotary drilling was employed during this investigation due to its ability to break apart and advance through coarse-grained soils, cobbles and boulders; however, due to the very granular nature of the ground encountered, the cutting shoes were wearing down quickly and the casing advanced behind the cutting shoe became very tight due to friction. Where this occurred, HQ3 soil coring was employed to advance the borehole to termination depth as is described in detail in the following section.

6.2.2 HQ3 Soil Coring

Triple-tube HQ3 diamond drilling was conducted in boreholes where advancement by air-rotary drilling was not productive due to the granular nature of the ground. HQ3 diamond drilling utilizes an 89 mm outer diameter core barrel with an inner core barrel that retrieves a 61 mm diameter core. Generally, HQ3 is utilized in bedrock drilling and when utilized in soil, the core recovery is significantly reduced due to the potential for the soil to fall out of the core barrel or be washed away during drilling.

The casing and core barrel were drilled down using force and high-speed rotation while simultaneously injecting fluid (typically water or light slurry) through the tip of the core barrel to lubricate and cool the cutting bit as well as stabilize the sidewalls of the borehole. The drilling system utilizes an overshot device that is dropped on a wireline through the casing and directly couples onto the outer core barrel assembly, allowing for fast retrieval of the core assembly after each run, typically advanced in 1.5 m increments. Following recovery of the core assembly, a split-spoon sampler is lowered down hole to the target depth and a standard penetration test (SPT) is conducted.

6.2.3 In-Situ Testing and Sampling Using Standard Penetration Tests (SPTs)

Standard Penetration Tests (SPTs) were conducted at selected depths within the overburden soil encountered in the boreholes. SPTs were conducted in general conformance with ASTM D1586 however, the drilling methodologies employed on this Project to advance the boreholes through the coarse-grained material do not directly correlate to ASTM D1586 which specifies the need for a water or mud-balanced borehole to account for pressure balance and prevent heave of basal material.

SPTs utilize a 51 mm diameter open drive split-spoon sampler of 600 mm length that is driven into the ground at a select depth. The sampler is driven using an automatic trip hammer weighing 63.5 kg and dropped from a height of 760 mm. The process allows for measurement of penetration resistance values (or blow counts) per 150 mm advancement and for obtaining disturbed soil samples for visual identification and sampling. The amount of soil sample recovered per SPT varied depending on the penetration depth of the sampler and the in-situ matrix of the soils. Pertinent details of the SPTs conducted are recorded on the Summary Logs in Appendix A.

Where the split-spoon sampler penetrated the full 600 mm, the number of blows required to drive the sampler from 152 mm to 457 mm penetration is reported as the SPT 'N' value. Where the split-spoon sampler reached refusal at less than 600 mm penetration, the total number of blows required to reach refusal is typically inferred as greater than 50 per 150 mm, or very dense/hard soil.

It is noted that the blow counts presented on the Summary Logs in Appendix A are not corrected for energy efficiency, overburden pressure, borehole dimensions, or other factors and are considered raw data. Further, it should be noted that in certain soil strata where gravels, cobbles or larger particles are encountered, the blow counts obtained may not be representative of the soil matrix. In addition, the vibrations created during the airrotary process may have disturbed the ground in advance of the drilling bit. As such, a combination of engineering judgement and laboratory testing is required during interpretation of the results.

All split-spoon samples collected during the field investigation were sealed in plastic sample bags, labelled and retained for further review and laboratory testing. All soil samples were transported to and stored in Golder's Kelowna warehouse/laboratory. Samples not used for further laboratory testing will be retained until completion of the geotechnical investigation program and ownership will be passed to BC MoTI.

6.2.4 Borehole Closure

All boreholes were backfilled with a combination of bentonite-grout mixture, bentonite chips, cuttings and surfacing gravels/asphalt. All borehole backfilling and closure was conducted in general conformance with the BC Groundwater Protection Regulations. No standpipe piezometer or instrumentation was installed during this investigation program.

Boreholes were grouted and allowed to set for 4 hours. Grout mixes generally followed the industry standard Mikkelsen mix ratio of approximately 2 water : 1 cement : 0.33 bentonite (by weight). Heavier mixes (increased bentonite or with added polymer) were utilized where slurry return loss occurred during drilling or where grout was observed to be seeping into the ground formation. Bentonite chips were used to top up the borehole where grout settled during the setting period. A surficial layer of sand, gravel and/or cold patch asphalt was applied above the grout/bentonite seal as required, based on borehole location and surrounding ground surface conditions.

6.3 Laboratory Testing Program

Laboratory testing was carried out on selected samples of overburden soil collected from the boreholes to verify soil classification and assess the geotechnical properties of the subsurface materials encountered. The laboratory testing program and results are summarized in the following sections and detailed results are provided in Appendix B.

6.3.1 Soils Index Testing

Laboratory soils index testing was undertaken on selected soil samples obtained from the split-spoon samples and grab samples. Testing was conducted at Golder's Kelowna laboratory in general conformance with American Society for Testing Materials (ASTM) standards as follows:

- ASTM D2216 Standard Test Method for Determination of Water (Moisture) Content of Soil and Rock by Mass
- ASTM D6913 Standard Test Method for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis
- ASTM D422 Standard Test Method for Particle-Size Analysis of Soils

Sample preparation was carried out in general conformance with ASTM D421 Standard Practice for Dry Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants. It is important to recognize that the drilling and sampling methods in the field limit the maximum particle size that can be recovered from the boreholes, typically to a maximum of 51 mm. As such, the laboratory gradation test results shown may not incorporate larger particle sizes that were present within the in-situ soils and may not be representative of coarse gravel, cobble or boulder content.

The results of the laboratory index testing are presented in Appendix B.

6.3.2 Soils Specialized Testing

Specialized testing was undertaken on select samples obtained from the boreholes to determine select chemical properties of the subsurface soils related to GUL concrete and corrosivity to steel. Testing of the materials was conducted in general conformance with the following standard testing methods by a third-party laboratory CARO Analytical Services of Kelowna, BC as detailed below.

- ASTM C1218 Standard Test Method for Water-Soluble Chloride in Mortar and Concrete
- CSA A23.2-3B Determination of Total or Water-Soluble Sulphate Content of Soil
- AASHTO T289 Standard Method of Test for Determining pH of Soil for Use in Corrosion Testing
- AASHTO T288 Standard Method of Test for Determining Minimum Laboratory Soil Resistivity
- SM 4500-S2-D Standard Method of Test for Sulfide by Methylene Blue
- ASTM G200 Standard Test Method for Measurement of Oxidation-Reduction Potential (ORP) of Soil

The results of the specialized chemical testing are presented in Appendix B.

7.0 INTERPRETED SUBSURFACE CONDITIONS

Based on review of the available geological information for the area, the available preliminary field investigation information and our visual observations made during site reconnaissance, a summary of the inferred subsurface conditions within and directly adjacent to the Project site are presented in the following sections. It is noted that the subsurface conditions may differ and vary between the boreholes put down at the site and laterally beyond the extent of the area investigated.

7.1 Topsoil and Asphalt

Topsoil comprising a mixture of generally silt and sand with organics was observed in the undeveloped land at BH20-02 and BH20-04. The topsoil was observed to have a thickness of 0.15 m to 0.20 m and can be expected to be encountered in areas of the Project site that are currently landscaped or undeveloped.

Within the two boreholes conducted on paved road/parking lot, BH20-01 and BH20-03, the asphalt was observed to have a thickness of 0.15 m. Asphalt of varying thickness is expected to be encountered in areas of the Project site that are currently developed for roadway and/or parking use.

7.2 Fill

Localized fill materials, comprising generally granular material, were encountered along the existing and proposed highway and bridge alignments. Due to the proximity of the boreholes to the Kicking Horse River, it is anticipated that the fills encountered were placed to raise grade of adjacent lands above river level.

The fills encountered were generally coarse grained in nature comprising sand, gravel and cobbles with trace amounts of silt. However, historical information indicates that the fill materials could contain deleterious materials including metal (wrecked cars and trucks) and wood (stumps and logs).

The fill materials encountered were generally dense to very dense in nature, based on observed resistance to penetration and SPT blow counts; however, caution should be taken when interpreting the SPT blow counts due to the large particle size of the materials which may affect these results. One low (very loose relative density) blow count was observed; however, this value was attributed to disturbance during the drilling processes.

7.3 Fluvial/Alluvial Deposits

Beneath the surficial topsoil and fill materials, overburden materials consisting of Pleistocene and recent deposits were encountered. The thickness of the overburden above bedrock was not determined during the preliminary geotechnical investigation; however, the overburden was observed to extend beyond the 50 m borehole termination depth, possibly extending below 150 m depth based on nearby water well records. The thickness of these deposits in the Project area is not anticipated to vary significantly.

Within the upper recent post-glacial fluvial/alluvial deposits, the soil composition generally comprised sand, gravel, cobbles and boulders with trace to some silt. Generally below 35 m depth, the soil composition generally comprised sand and silt mixtures with trace to some gravel that appeared to be deposited in a lower energy environment, likely by the Columbia River system. These deposits were encountered in each of the boreholes put down on the north and south side of Kicking Horse River. These fluvial/alluvial deposits were generally observed to be dense to very dense based on SPT blow counts and observed resistance to penetration; however, caution should be taken when interpreting the SPT blow counts due to the large particle size of the materials which could effect the results. All boreholes were terminated within these deposits.

Based on the results of the sulphate chemical testing conducted on samples obtained from these deposits the exposure class is low (below S-3 according to Clause 4.1.1.6 of CSA A23.1-14).

The results of preliminary corrosivity testing indicate a potentially aggressive soil chemical environment to steel (such as pipe piles and ground anchors/nails). The results of the chemical testing indicated a low soil resistivity of 1304 ohm-cm, where corrosive environments are generally categorized as less than 2000 ohm-cm. It is noted, however, that resistivity is sensitive to the degree of compaction, moisture and temperature and laboratory tests may not be directly indicative of the in-situ conditions. The reported pH and sulfides content are not within aggressive limits for soil-steel environments. It is recommended that a detailed assessment of the corrosivity of the in-situ soils, including field measurements, be carried out during future geotechnical investigation(s) to verify these preliminary results and to determine the level of corrosion protection required on steel elements.

7.4 Groundwater Conditions

Standpipe piezometers were not installed within the boreholes. Groundwater levels were measured during advancement of the boreholes and ranged between 3.9 m and 5.6 m below the ground surface. Due to the nature of the drilling, these groundwater level measurements may not represent stabilized groundwater levels.

Groundwater is expected to be primarily contained within the surficial fills and fluvial/alluvial deposits. Although not encountered during our preliminary geotechnical investigation, possible artesian conditions could exist where these coarse-grained deposits are confined within or below a relatively less permeable deposit (such as finegrained or till deposit); however, these conditions are expected to be encountered at considerable depth, based on nearby water well records, and will likely not affect the Project.

The Kicking Horse River is expected to strongly influence the groundwater levels within the Project site and groundwater levels will fluctuate with varying precipitation, season and water flow within the adjacent water course, particularly during periods of heavy rain and snowmelt.

8.0 KEY GEOTECHNICAL ISSUES AND CONSTRAINTS

From our experience in the local area with other MoTI highway improvement projects of similar scope, we consider the following as the key geotechnical issues and constraints that may impact design and construction of the proposed highway improvement components.

- The Project site is expected to be underlain by generally coarse-grained fills and natural deposits extending below 150 m below existing ground surface. Key structural elements such as bridge abutments/piers and some retaining walls will need to be supported on piles which are embedded into these coarse-grained deposits at depth. Advancement of piles through such granular material containing cobbles and/or boulders may present significant difficulty during construction and risk of damaging piles. Additionally, a higher fines-content layer was observed from about 35 m and piles that reach into or terminate directly above this layer may experience reduced axial resistance.
- In order to accommodate the required grade changes for the new roads, road widening and bridge structure approaches within the limited Right-of-Way, retaining wall construction will likely be required. It is understood that three retaining walls are proposed for the Project with one up to about 5 m in vertical height. In general, the natural soil deposits are considered suitable for support of retaining wall structures however, the actual foundation subgrade preparation and foundation design will be dependant upon the overall performance requirements for the structure, ground conditions and external environment. Design/construction of retaining walls on existing fills may require special consideration for site preparation and foundation support, such as localized sub-excavation and backfilling/compaction. Piled foundations may also be required where retaining walls are constructed in areas of potential scour (i.e. directly adjacent to the Kicking Horse River). Retaining walls may need to be constructed using different methodologies subject to available Right-of-Way limits.
- The proximity of Kicking Horse River to the Project structures and the climate setting of the site indicate a significant risk of ice jam and scour. The forces applied by ice jam and reduction in embankment and/or pile capacity due to scour can be significant if not assessed and designed for appropriately. A detailed assessment of such considerations will play a vital role in the overall design of the retaining walls, bridge abutments and piers.

The existing watermain that crosses beneath the Kicking Horse River is located directly beneath the new proposed bridge alignment. This watermain will require relocation to the east (upstream) of the existing location and due to environmental constraints, the watermain relocation will likely need to be installed using trenchless technology. Selection of the most suitable trenchless methodology for the relocation will be highly dependent upon the watermain profile, tie-in requirements and conditions along the new alignment. Detailed investigation will be required along the new watermain alignment to accurately assess the geotechnical conditions and methodology selection process.

9.0 PRELIMINARY GEOTECHNICAL CONSIDERATIONS

9.1 Natural Hazards

Golder did not carry out a natural hazard review as part of this assignment as it was understood that a natural hazard assessment for the project was carried out by WSP Canada Inc. (WSP) in previous geotechnical studies for the Project. In WSP's study, natural hazards such as slope instability, debris flood/flow and avalanche were reviewed and it was determined that they do not pose a risk to the Project. Given the relatively flat topography at the site, and distance to the steeper canyon terrain upstream, Golder is in general agreement with this conclusion.

Apart from the impacts associated with the natural hydrological and geomorphological processes in the Kicking Horse River, mitigation to address other natural hazards is not considered warranted.

9.2 Seismic Design

Golder obtained site-specific seismic hazard parameters for the 2015 NBCC from National Resources Canada (NRC) as described in Section 4.3. The results of the calculations are presented in Appendix C.

In accordance with the CAN/CSA S6.14 the following seismic parameters apply to the Project site:

- Site Classification: C non-liquefiable soils based on preliminary simplified liquefaction assessment (detailed in Section 9.2.1)
- Seismic Performance Category: 1 (major-route and other bridges)
- Major Route Structure, Extensive Damage for 2% exceedance in 50 years (1 in 2,475 year return period event)

The seismic site classification was determined by evaluating the SPT N_{60} values obtained from the geotechnical investigation to Table 4.1.8.4-A of the 2015 NBCC; which dictates the site class for ranges of N_{60} values in the upper 30 m of soil. The raw SPT N values obtained from the geotechnical investigation were corrected to standard N_{60} values using an inferred automatic trip hammer efficiency of 85 percent. The average N_{60} value in the upper 30 m of soil across the four boreholes conducted is 56, indicating a Site Class C. It should be noted that where SPT refusal was encountered (typically no movement for 25 blows or greater than 50 blows per 75 mm) the raw SPT N value was taken as a maximum of 50 blows per 300 mm.

In accordance with CAN/CSA S6/14, a liquefaction assessment is required for the structures considered for this Project to determine the risk of liquefaction and subsequent seismic performance. A preliminary one-dimensional liquefaction assessment was carried out and is detailed further in Section 9.2.1.

9.2.1 Simplified Liquefaction Assessment

Golder conducted a simplified liquefaction assessment following methodology presented by Seed and Idriss (1971) and Boulanger and Idriss (2014) utilizing the SPT data obtained from the preliminary geotechnical investigation which were corrected for drop hammer efficiency and overburden pressure. Following the methods presented, a cyclic stress ratio profile for the Project site was developed using the results of the NRC calculations and a cyclic resistance ratio profile was developed for each of the four boreholes using data obtained during the geotechnical investigation. The cyclic resistance ratio and cyclic stress ratio profile comparisons, along with the calculated Factor of Safety against liquefaction, for the four boreholes put down are presented in Appendix C.

The risk of liquefaction is determined by a comparison of the resistance ratio to stress ratio and for each of the four boreholes assessed, the resistance ratio exceeds the stress ratio for the 1-in-2,475 year seismic event over the entire depth of all boreholes, indicating no risk of liquefaction in these materials. Based on the results of the seismic site classification and the preliminary simplified liquefaction assessment, a detailed liquefaction assessment was not undertaken.

9.3 Subgrade Preparation and Site Grading

9.3.1 Site Stripping

Topsoil, organic, deleterious and/or loose fill materials are considered not suitable for direct subgrade support or re-use as embankment/road fill and should be stripped/sub-excavated from the entire footprint of the proposed fill, structure foundation and pavement areas. It is recommended that stripping/sub-excavation of these materials be carried down to underlying, undisturbed, competent mineral soil and/or mineral fill deposits and that the prepared subgrade should be adequately sloped/shaped to prevent ponding of surface and/or groundwater.

Based on the information obtained from the boreholes put down at the site as part of the preliminary geotechnical investigation, the stripping depth extends to about 0.15 m to 0.20 m in the unpaved/ungravelled areas of site. It should be noted that the stripping depths could locally exceed those indicated above, particularly in poorly drained, lower-lying areas. The actual stripping depths/quantities will require further confirmation during future, more detailed, geotechnical investigation activities.

9.3.2 Permanent Embankment Fill Construction

Embankment construction will be required for the new/widened bridge approaches. The embankment subgrade preparation should be carried out as outlined in Section 9.3.1 above. The prepared subgrade should be inspected by the geotechnical Engineer-of-Record, or designated representative, prior to placing highway embankment fills.

Following the subgrade preparation, the proposed highway fills may be constructed consistent with SS 201.37 of the BC MoTI 2012 Standard Specifications for Highway Construction (Standard Specifications), except where Bridge End Fill zones are required which should be constructed consistent with SS 202.23.

In general, it is recommended that fill slopes for embankments be developed no steeper than 2 Horizontal to 1 Vertical (2H:1V). Consideration may be given to developing fill slopes as steep as 1.5H:1V; however, specialized embankment treatment, such as internal reinforcement or construction using coarse angular rock fill or concrete facing will likely be required to achieve the necessary embankment performance requirements identified in MoTI's Supplement to CSA S6-14. Performance criteria are based on the degree of understanding and

consequence factor, which we have assumed to be a typical degree of understanding and typical consequence factor which require a minimum static Factor of Safety of 1.54 and a minimum seismic Factor of Safety of 1.10. Embankments that cannot meet the performance requirements will require special acceptance by MoTI. The required static Factor of Safety may be reduced from 1.54 to 1.43 during detailed design if sufficient geotechnical investigation is conducted to satisfy the requirements to increase the degree of understanding from typical to high.

In light of the above, Golder has carried out slope stability analyses for some general highway widening and embankment raising scenarios, targeting the area along the Highway 95 alignment adjacent to Kicking Horse River where fill heights are greatest, assuming use of Type D fills at 2H:1V slopes. The analysis was carried out using the commercially available slope stability software GeoStudio 2020 by GeoSlope International Ltd. and available local test hole information using the following assumed soil parameters.

Material	Soil Model	Friction (Phi) Angle	Cohesion	Unit Weight
Pavement Structure	Mohr-Coulomb	36 o	0 kPa	20 kN/m3
Type D Fill	Mohr-Coulomb	34 o	0 kPa	19 kN/m3
Existing Fill	Mohr-Coulomb	36 o	0 kPa	19 kN/m3

Table 3: Slope Analysis Material Properties - Embankment Fill Slopes

The results of the analysis are presented in Appendix E. The seismic analysis was carried out assuming a peak ground horizontal acceleration of 0.08 g (approximately equivalent to two-thirds of the design seismic event as outlined in CHBDC S6-14 and the BC MoTI Supplement).

Based on the results of the analyses, the minimum observed static Factor of Safety was 1.57 and seismic Factor of Safety was 1.31 for slopes constructed at 2H:1V using Type D fill at the Kicking Horse River north abutment location where the fills are highest. An additional assessment was carried out at the Kicking Horse River south abutment location and the factors of safety were significantly higher due to the lower fill height at this location.

It is understood that newly placed embankments will generally range up to 5 m in height. A preliminary settlement analysis was carried out using the commercially available software Settle3 v5.006 by RocScience Inc. and available local test hole information. Based on the analysis it is estimated that the potential settlement of embankment fill up to 5 m in height and compression of underlying subgrade soils could be up to 25 mm, generally attributed to elastic settlement. It is anticipated that the majority of settlement due to compression of the underlying subgrade soils will occur during construction; however, settlement due to compression of the embankment fills could continue for an extended period following construction.

9.3.3 Material Re-Use

It is understood that excavations for highway grading will be generally limited in the flatter areas to accommodate pavement construction. The excavated materials originating from the site are expected to be generally either organic (topsoil as described above) or granular in nature. The organic soils are considered unacceptable for material re-use as fills and should be stripped as recommended in Section 9.3.1 and generally wasted or re-used in landscaped areas. Consideration can be given to re-using the granular fills and natural deposits provided they meet the requirements of SS 201.37 and they are free or any soil contamination. We recommend that the estimated available Type D quantities be reduced by approximately 20% to accommodate material wastage due to removal of large size particles, organics, deleterious, and over-wetted material.

It is understood that no other Type D excavation will originate from the site and the Project will likely need to import borrow materials in order to meet material needs. All import borrow materials should meet or exceed Borrow material specifications as per SS 201.44.

9.4 Retaining Walls

At the time of preparing this report, it was understood that up to three retaining wall structures would be required to accommodate the proposed site grading within the geometrical constraints within the Project site. The anticipated retaining walls include:

- Retaining Wall 1 South side Park Drive lane and west of Highway 95 along the north and east boundaries of the existing laundry mat commercial property.
- Retaining Wall 2 Goulds Island access road.
- Retaining Wall 3 North of Kicking Horse River along the west side of the pedestrian walkway.

The anticipated type of retaining wall at each location was unknown at the time of preparing this report. Based on our preliminary assessment, several options for retaining wall construction are considered feasible and are discussed in the following sections.

9.4.1 Mechanically Stabilized Earth

Material stabilized earth (MSE) walls are considered feasible for highway embankment support through the Project site where right-of-way/property limits allows for adequate excavation upslope of the wall(s). Site preparation requirements beneath the walls will likely be similar to that provided in Section 9.3; however, some additional localized excavation and compaction may be required to adequately prepare the subgrade. For current preliminary design purposes, it should be assumed that over-excavation and replacement with structural fill (Bridge End Fill) may be required beneath MSE walls to a depth of approximately 0.6 m beneath the MSE wall facing and reinforced zone. For MSE walls with no external loading applied (except standard traffic loading), it may be assumed that a reinforcement length to height of wall (measured from wall subgrade to paved surface) ratio of 0.7:1 will be necessary. We recommend that consideration be given to providing a sub-drain at the base of the MSE walls to prevent accumulation of water pressure behind the wall. The backfill upslope of the wall should consist of clean, free-draining Bridge End Fill that is hydraulically connected to the sub-drain.

9.4.2 Cast in Place Walls

Where CIP walls are utilized, the following geotechnical recommendations may be used for preliminary design purposes, subject to varying wall configurations:

- Up to 5 m in vertical height and assumes a minimum 3.5 m wide cantilever footing
- Ultimate Bearing Resistance Ru = 500 kPa
- Ultimate Geotechnical Resistance Factor $\varphi_{gu} = 0.5$ (typical degree of understanding)

It is recommended to bury the base of the CIP walls by at least 1.2 m to provide frost protection and adequate bearing/lateral support.

For retaining walls constructed in areas that can be undermined due to scour, pile support will be required. In particular, retaining walls constructed along the Goulds Island access road should be pile supported to provide continued vertical support in scour environments and to provide sufficient lateral resistance due to ice loading. Steel pipe piles, as discussed below, can be considered to support such retaining walls but it may be more economical to support such retaining walls on concrete or steel H piles depending on the loading demands and sub-surface conditions at the actual foundation locations. It is understood that the Town of Golden's current dike upgrading project is utilizing drilled concrete piles to support retaining walls that are constructed on the water side of the dike crest. It is recommended that the concrete pile installations for that project be reviewed in detail to determine the suitability of such piles for the Highway 95 Project.

9.5 Bridge Foundations

The new bridge foundations are anticipated to consist of deep piles extending into the very dense granular deposits that underlie the site. Based on the preliminary geotechnical investigation results, the piles would not likely extend beyond the depth of the coarse granular fluvial/alluvial deposits that overlie the finer-grained sediments (which were observed at about 35 m depth); however, this would ultimately depend on the required pile resistance and performance requirements.

Golder has carried out a preliminary assessment of axial pile resistance under static conditions using the geotechnical borehole information obtained near the north pier and south pier locations of the main bridge span. The assessment was carried out for 610 mm diameter steel pipe piles with an assumed wall thickness of 19 mm. Further, we have assumed that these piles will conform to ASTM A252 Grade 3 steel and will be driven open-ended with a flush outside driving shoe conforming to APF O-14001 or approval equivalent. The axial pile resistance with depth was calculated using the standard geotechnical software package APile (v.2019.9.5) from Ensoft. The soil parameters used in the analysis assumed a unit weight between 18 kN/m3 and 20 kN/m3, depending on the soil classification, and an internal angle of friction between 34 and 38 depending on the recorded N-Values that were corrected for overburden pressure and drop hammer energy (N_{1,60}). It is noted that the N_{1,60}-Values used in the analysis were limited to no greater than 50 blows/0.3m.

The calculated unfactored axial resistances under static conditions for both compression resistance and tension resistance are presented in Appendix D.

Based on the geotechnical resistance factors identified in the Canadian Highway Bridge Design Code (CHBDC) S6-14 and the BC MoTI Supplement to the CHBDC S6-14, for a typical degree of understanding (based on preliminary borehole investigation data) and a typical consequence factor, it is recommended that a geotechnical resistance factor of 0.4 be applied to the above calculated axial compressive resistance and a geotechnical resistance factor of 0.3 be applied to the above calculated axial tension resistance. It may be possible to increase the geotechnical resistance factor with more detailed geotechnical investigation or if field verification of the ultimate axial resistance achieved can be demonstrated by dynamic loading testing using a Pile Driving Analyzer (PDA) during construction; however, the higher geotechnical resistance factors cannot be used during design without further investigation or if a test piling program as per BC Supplement to the CHBDC S6-14.

Due to the presence of cobbles and possible boulders within the near-surface fills and fluvial/alluvial deposits, the steel pipe piles may encounter harder driving and/or refusal prior to reaching their target depth. As such, it is recommended that provision for cleaning the soils inside the piles and clearing any obstructions (including wood, steel cobbles and boulders) to facilitate advancement of the piles to the target depth without damaging the piles. In some cases, pile driving with PDA monitoring can be considered to confirm pile driving activities do not overstress the pile.

9.5.1 Lateral Pile Resistance

The minimum pile installation depth may be dictated by the lateral pile demands and estimated scour depth at the pile locations, which were not known at the time of preparing this report. The soil response for laterally loaded piles can be modeled using non-linear 'p-y' curves; however, such analysis will need to be carried out during future phases of design.

9.6 Trenchless Watermain Crossing

9.6.1 Watermain Requirements and Trenchless Installation Feasibility

A component of the project scope involves replacing an existing watermain crossing of the Kicking Horse River which is currently located within the footprint of the new proposed bridge alignment. Consideration is being given to watermain relocation to the east (upstream) of the existing location using trenchless installation methods, involving a new 350 mm diameter high density polyethylene (HDPE) pipe with a trenchless installation plan length of approximately 160 m.

Results of the preliminary geotechnical investigation indicate the Project site is expected to be underlain by generally coarse-grained fills and extensive natural post-glacial fluvial/alluvial deposits extending 150 m or possibly greater below existing ground surface. Groundwater levels measured during advancement of the boreholes ranged between 3.9 m and 5.6 m below ground surface. These groundwater level measurements at the boreholes may not represent stabilized conditions and the Kicking Horse River is expected to strongly influence groundwater levels within the Project site, resulting in fluctuations with varying precipitation, season and water flow within the water course, particularly during periods of heavy rain and snowmelt. For the purposes of conducting a geotechnical feasibility assessment of watermain installation using trenchless methods, it has been assumed the river crossing will entail construction within non-cohesive granular soils (predominantly sands and gravels with less than 20 percent fines content, containing cobbles and possibly boulders) below the groundwater table.

Selection of the most suitable trenchless methodology for the relocation will be highly dependent upon the watermain profile, tie-in requirements and conditions along the proposed new alignment. Detailed investigation will be required along the new watermain alignment to accurately assess the geotechnical conditions, finalize methodology selection and inform the detailed design process.

From a geotechnical perspective, trenchless methods typically employed for small diameter installations of limited bore length that involve drilling or tunnelling without use of positive drill fluid/slurry pressure support at the cutting face are not considered appropriate for this project application due to the prevalence of relatively clean, granular soils below water table. Trenchless installation methods in this category include auger boring, pilot tube boring, pipe ramming and conventional tunnelling.

Although various forms of micro tunnelling (the cutting face is supported using slurry pressure) are considered technically feasible, the risk of encountering cobbles and boulders of sufficient size to obstruct machine progress is considered high and would warrant a design that includes a tunnel drive incorporating a relatively large diameter (likely 1.5 m diameter or greater) casing pipe within which the HDPE watermain is installed. This two-pass installation method is not uncommon but contributes significantly to cost and complexity for small diameter utility installation applications as compared to methods employing a single pass installation. Micro tunnelling would also involve shaft construction at the watermain tie-in locations on both sides of the river channel. Based on the available ground surface information and inferred river bottom profile, shaft depths would likely need to be in the range of 10 to 12 m depth extending well below the groundwater table. Shaft construction would require significant excavation support, resulting in increased costs and schedule as compared to methods where surface excavations can be avoided or limited in depth and extent.

Horizontal directional drilling (HDD) is a well-established trenchless method, commonly utilized to install utilities crossing beneath water bodies. The 350 mm diameter HDPE watermain and approximate 160 m installation length are well within the capabilities of the technology and the watermain could be installed in a single pass (without requiring a casing pipe over the full length of the bore) using a relatively compact drill rig and drill fluid management system. Minor regrading is necessary for drill rig setup and drill fluid containment, but shafts are not required. Temporary excavations are generally limited to relatively shallow (less than 4 m depth) open cut trenches necessary to complete the tie-in connections. Drilling within coarse granular soils containing cobbles and possibly boulders can be challenging and problematic for HDD, but mitigation measures have been developed to reduce this ground condition risk.

At this preliminary stage, HDD is considered the most suited trenchless technique for the proposed watermain relocation as it employs use of fluid to support the cutting face/bore and can accommodate installation in a single pass without need for significant excavation and ground support to complete the tie-ins. A general description of the HDD method, preliminary design recommendations for bore size and drill path alignment, and commentary on ground condition risk mitigation are provided below.

9.6.2 General Description of Horizontal Directional Drilling

Horizontal Directional Drilling (HDD) involves boring a small diameter pilot hole from the "drill entry" by a steerable, fluid-jet assisted, mechanical cutting tool, and pulling back from the "drill exit" the utility pipe through the pilot borehole. The pilot borehole is reamed to a diameter large enough to make the pulling back of the utility pipe possible. The reamed hole is typically about 1.5 times the diameter of the utility pipe but for stable soils with straight alignment, installation with about 1.2 times the bored diameter is possible. The hole is stabilized by circulation of a large volume of viscous fluid, generally a bentonite slurry. The drill cuttings are also removed from the hole by circulation of the slurry. To avoid build up of friction along the line of the utility pipe, and to minimize "standby" time of the drilling equipment, the pullback operation is carried out continuously, if possible. A large works area for pipe laying and the capacity to handle large volumes of fluid which may require controlled disposal can be major constraints of large diameter pipe installations by directional drilling.

The drill entry to target level elevation (invert of the pipe crossing profile) is made by the drill line initially inclined at an angle of about 15 degrees (ranging from 10 to 20 degrees) to the horizontal. Once the drill string reaches the target level, drilling to a specified grade commences. The exit is generally between 12 to 15 degrees to the horizontal.

A disadvantage of HDD is that the method can run into serious difficulties while boring through gravelly, cobbly, and bouldery soils. These coarse materials are difficult to be held in suspension and transported to the slurry pit at the entry/exit end. Inside the drilled hole, they can act as obstructions and reaming of the hole or pipe pullback can be problematic. Significant success in boring and in installation of pipes through gravelly soils has been achieved recently with sophisticated mud management; however, HDD through such materials is not without risk and must be appropriately considered during design and carried out by highly skilled contractors only. Maintaining hole stability and avoiding inadvertent return of drilling fluid due to hydraulic fracturing of the overburden soil are also difficult to control during drilling of loose non-cohesive soils and require a high level of mud management and driller skill.

9.6.3 Preliminary Bore Size and Drill Path Alignment

Considering the planned installation of a 350 mm diameter HDPE product pipe in granular soils, the required diameter of the HDD bore is expected to be between 560 and 610 mm (22 and 24 inches). To achieve this bore size, it is anticipated the drilling operation will consist of a pilot bore and one or possibly two reaming passes.

Based on a review of the proposed crossing site and anticipated ground conditions, the following provides a summary of recommendations that should be considered when developing the preliminary HDD drill path alignment for the project.

- The drill entry and exit angles (legs of the U-shaped crossing) should be steeply inclined to rapidly gain ground cover depth but should not exceed 20 degrees to the horizontal.
- Although the bend radius of HDPE pipe is quite tight, the drill steel and the ability to steer the pilot bore to form a tight radius of curvature is a limiting factor. For preliminary design purposes, it is recommended that the vertical radius of curvature of the drill path not be less than 120 m. Compound curves in the drill path (i.e. vertical and horizontal curves combined over the same section of drill path) should be avoided. If this cannot be achieved, the horizontal radius should be more gradual than the vertical radius, greater than 200 m is recommended for preliminary design.
- The middle tangent section of the drill path should be at least 40 m in length to allow for some steering correction of the pilot hole during approach to drill exit target location.
- The required depth of cover beneath the riverbed will need to be finalized at detailed design stage by completing a hydrofracture analysis once a detailed geotechnical investigation and bathymetric survey have been completed. Based on the soils information from the preliminary drilling program indicating a relatively thick sequence of generally coarse granular deposits, we recommend the preliminary design drill path consider a minimum depth of cover of 9 m (approximately 15 times the HDD bore diameter) below the riverbed.
- A 10 m horizontal separation from existing waterline should be maintained for the HDD bore segment. Consideration may be given to skewing the plan alignment of the trenchless crossing at an angle to the existing line rather than running parallel to the existing watermain across the river.

The HDD alignment developed by AE for the 90 percent preliminary design submission package is considered to meet the geometrical recommendations outlined above, although some adjustments may be necessary pending the results of the detailed geotechnical site investigation, bathymetric survey, hydrofracture analysis and detailed design of the tie-ins to the existing main.

9.6.4 Ground Condition Mitigation

It is very likely the sand and gravel surficial deposits (anticipated to contain cobbles and possibly boulders) will require use of a section of steel surface casing at drill entry to maintain fluid circulation and hole stability in the unsaturated zone and to avoid inadvertent drill fluid returns to ground surface (frac-out) in the coarse granular soils. The steel surface casing is installed before pilot hole drilling is started, normally by using an air hammer to drive it in open ended but with a casing shoe. The casing can be inclined at 15 to 20 degrees but cannot be curved. The casing diameter must be large enough to allow the pilot bore and reaming passes to be completed inside the casing. For this project application, it should be assumed that a steel surface casing of 660 to 760 mm (26 to 30 inch) diameter will need to be installed at drill entry to an elevation of approximately 780 m. Casing may not be required at drill exit but care will need to be taken to control drill fluid pressure and pumping rates during final stages of pilot bore. Casing requirements will need to be re-assessed following completion of the detailed geotechnical investigation and hydrofracture analysis. The wall thickness of the casing should be selected such that if the casing is installed by driving, it does not fail/ buckle and the casing can be driven along the specified drill path. The problem of grade control and failure during driving can also be managed by using telescoping casing. The responsibility for structural design of the casing including its size is best left to the contractor, because the design is dependent on its method of installation.

The maintenance of hole stability and minimizing the potential of inadvertent drill fluid returns are also of significant concern for a hole drilled through non-cohesive wet soils under water table, but these risks can often be mitigated using sophisticated mud management methods carried out by highly skilled HDD contractors.

At the banks of the river, the proposed watermain will traverse beneath flood protection dikes. Casing and/or HDD borehole grouting requirements will need to be determined during detailed design for the portion of the new watermain installed beneath the dikes.

9.7 Pavement Structure Design Considerations

At the time of preparing this report, the traffic loading was not known, nor were the subgrade conditions confirmed along the various road elements. However, for preliminary design purposes, the following pavement structures may be assumed:

Highway 95 (T01-15 - Type A Pavement Structure):

- 150 mm thickness Hot Mix Asphalt (HMA)
- 300 mm thickness Well Graded Base (WGB); and
- 300 mm thickness Select Granular Sub-base (SGSB).

Local Roads (Town of Golden Standard for Collector and Industrial Roads):

- 100 mm thickness HMA
- 75 mm thickness WGB; and
- 400 mm thickness SGSB.

It is understood that the Town of Golden utilizes a minimum pavement structure for their local collector roads consisting of 100 mm thickness of HMA, 75 mm of WGB and 300 mm thickness of SGSB. It is our opinion that the 75 mm WGB thickness is insufficient, particularly for heavier truck loading. We suggest that consideration be given to increasing the WGB thickness to 300 mm, particularly if the estimated ESALs on the local roads exceeds 100,000 (consistent with T01-15); however, this will be dependent on where the transition between where BC MoTI standards and municipal standards are applied.

In general, the overall existing condition of the pavement through this segment appeared to be in fair to good condition. It is likely that the existing pavement will require re-surfacing as minimum where it is retained; however, based on our site observations, full-depth reconstruction will not likely be required.

10.0 CLOSURE

The comments and recommendations presented in this report are considered applicable to the proposed highway design as presented in the September 2020, 100% preliminary design drawings provided by AE (referenced in Appendix G). Any alteration during future design phases, changes to the Project scope, highway/road alignments or site grading will be subject to further geotechnical evaluation, analyses and recommendations.

We trust that the information presented in this geotechnical design report is sufficient for your current requirements. Please do not hesitate to contact us should you have any questions or concerns.

Golder Associates Ltd.

Mand.

James Brunswick, PEng Geotechnical Engineer

JB/PB/syd

Pierce Bakker, PEng Associate, Senior Geotechnical Engineer

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/123097/project files/6 deliverables/issued to client_for wp/20139391-006-r-rev0/20139391-006-r-rev0-prelimgeotech-01oct_20.docx

Important Information and Limitations of this Report

This Report is been based on the instructions given to Golder by its Client and communications between Client and Golder. The "**Authorized Users**" and each "**Authorized User**" bidding on or undertaking the work shall rely on their own investigations as well as any interpretation by their own qualified geotechnical engineer of the data contained within the Report, taking specific note of this paragraph and the issues identified elsewhere in this Report. The Authorized Users should review the level of investigation and reporting provided and make their own assessment and interpretation on the sufficiency of this work for their specific purpose(s) and supplement the work where they deem appropriate to achieve the level of information to their independent satisfaction.

Golder has prepared this Report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practicing in British Columbia subject to the time limits and physical constraints applicable. No other warranty, expressed or implied is made.

The subsurface materials as characterized at specific sample locations within the boreholes and at testing locations provided within the Report can be relied upon to be accurate to the normal industry standard and to the limitations of the investigation at the location and reference shall be made to the specific subsurface data available in the Report. Golder assumes no responsibility and no liability to the Authorized Users for any *interpretations* of the data contained of the Report or the consequences thereof including but not limited to proposed construction techniques, cost, schedule, safety, and equipment capabilities.

Classification and identification of geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines as outlined in the Report. Classification and identification of the type and condition of these materials or units involves judgment. Boundaries between different soil, rock, or geologic types or units are typically transitional rather than abrupt. Golder does not warrant or guarantee the exactness of the subsurface material descriptions or the boundary between different materials that is interpreted between sample locations.

Soil and groundwater conditions shown in the Report are the observed conditions at the time and location of their determination or measurement. Soil and groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. Fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. The Report includes only the geotechnical aspects of the subsurface conditions and no chemical information related to the native soil deposits. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference in the Report and have not been investigated or addressed in the Report. The condition of the soil, rock, and groundwater may be significantly altered by construction activities on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying, or freezing and the soil may require protection from these changes during construction.

The Authorized Users acknowledge and accept that electronic media are susceptible to unauthorized modification, deterioration, and incompatibility and therefore the Authorized Users, or any third parties, cannot rely upon the electronic media versions of the Report. It is the sole responsibility of all Authorized Users to review, verify and determine the accuracy, integrity, quality, completeness and/or suitability of electronic media versions of the Report and Golder expressly disclaims any responsibility or liability for any deviations, alterations, modifications or other changes in or to the electronic media versions of the Report. In the event of any discrepancy, Golder 's final copy of the Report shall prevail.

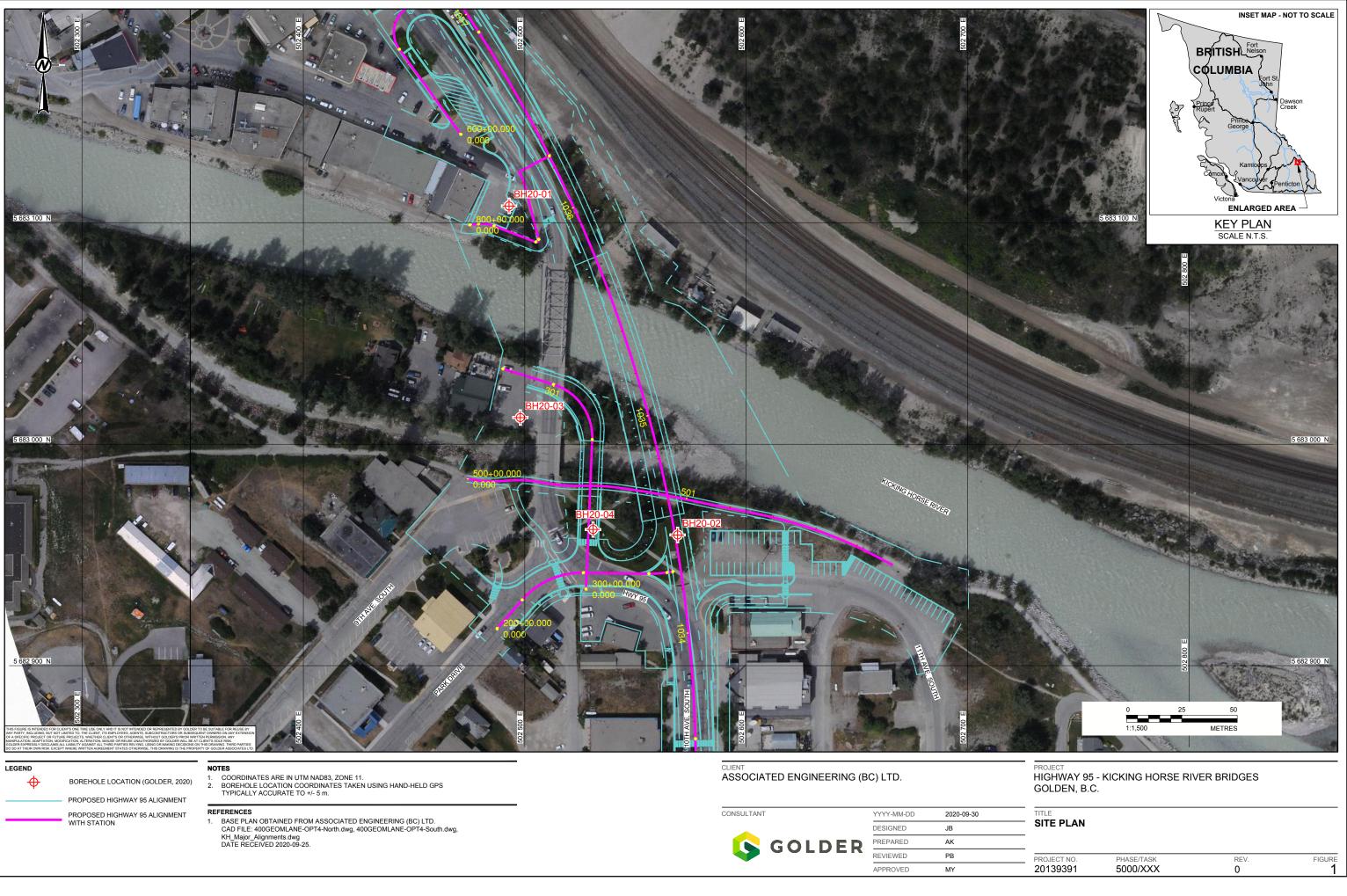
Golder authorizes only the Authorized Users to make copies of the Report, but only in such quantities as are reasonably necessary for the use of the Report by those parties for the Purpose. The Authorized Users may not give, lend, sell, or otherwise make available the Report or any portion thereof to any other party without the express written permission of Golder.

Use of the Report or any portions thereof shall be considered acceptance of and agreement to these conditions and limitations of use included herein.

Golder makes no representation or warranty whatsoever as to the sufficiency of Golder's scope of work for the purposes of the Authorized Users.

The information provided in the Report applies only to the subject site as it existed at the time of Golder's site investigations. Should the site use or conditions change, the information in the Report may no longer apply.

The Report is intended to be used in its entirety and no excerpts may be taken to be representative of the findings in the assessments.


This reliance is not assignable and does not confer any right or benefit upon any other third party other than those indicated herein.

Golder will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.

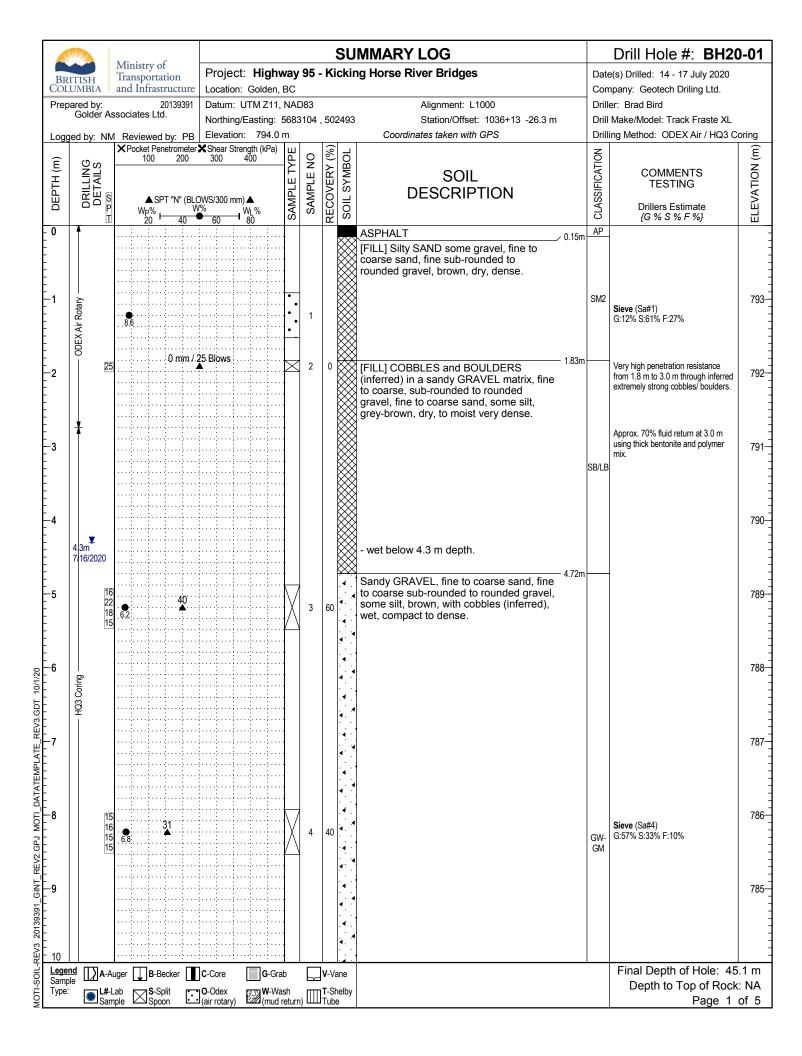
During construction, Golder should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of Golder's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in Golder's report. Adequate field review, observation and testing during construction are necessary for Golder to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, Golder's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

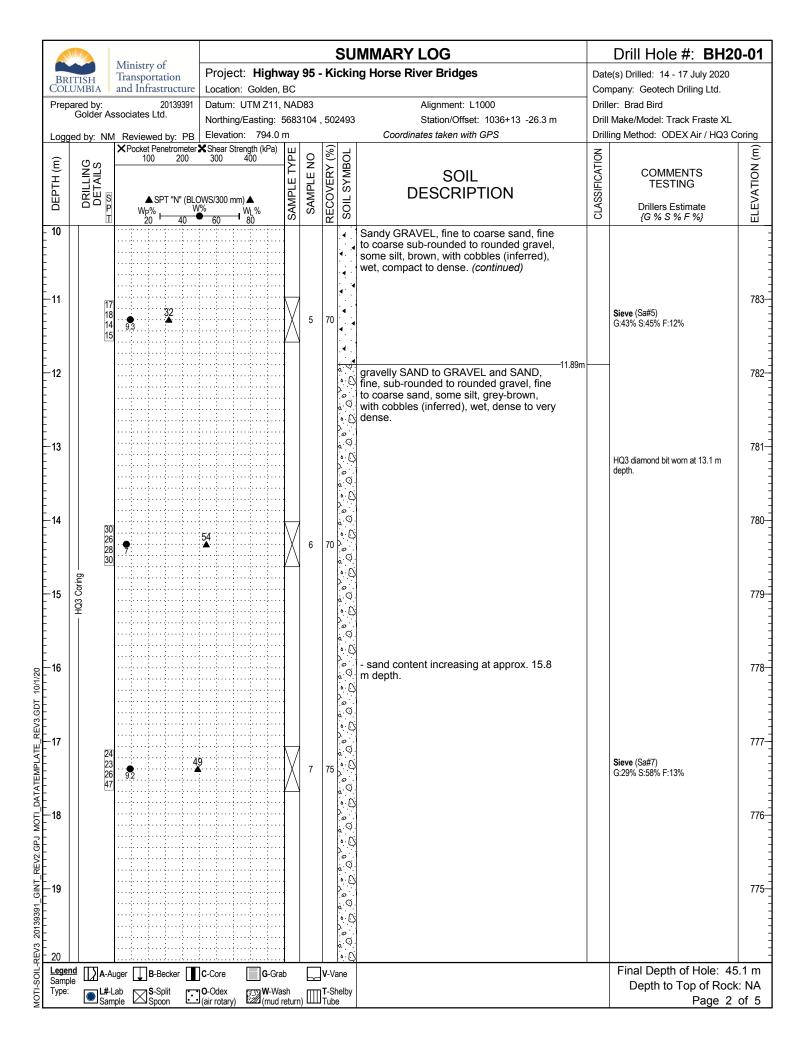
Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that Golder be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that Golder be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.

Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. Golder takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.

CONSULTANT	YYYY-MM-DD	2020-09-30
	DESIGNED	JB
GOLDER	PREPARED	AK
	REVIEWED	РВ
	APPROVED	MY

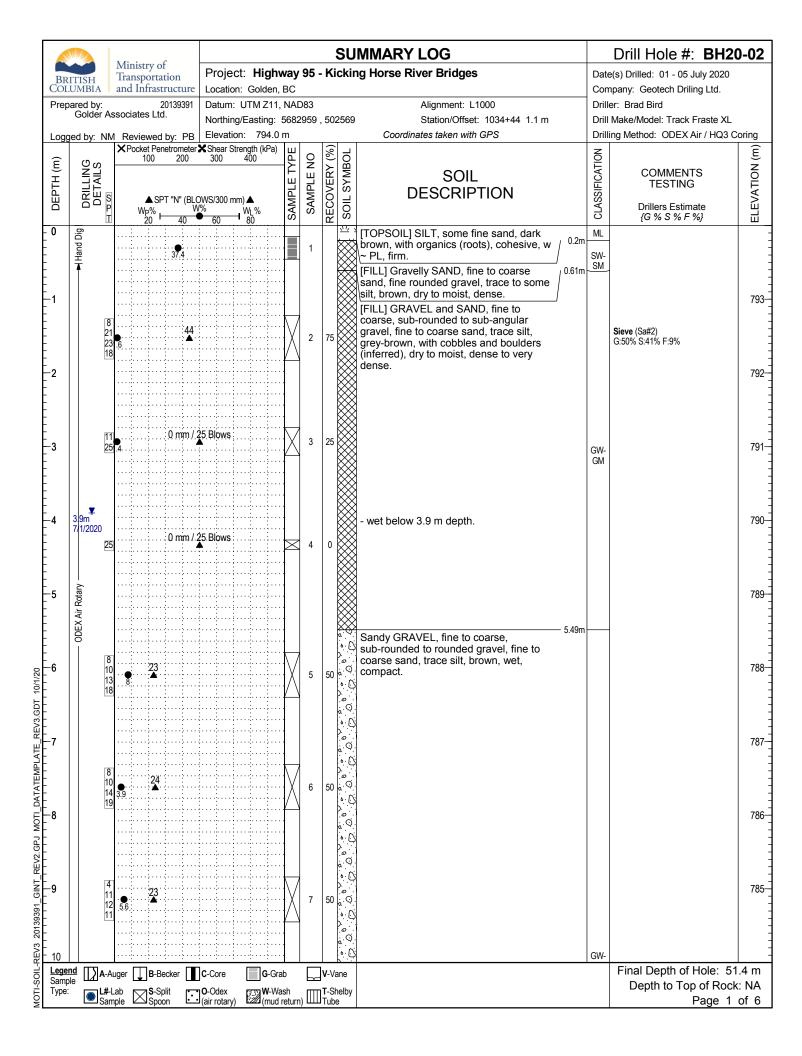
APPENDIX A

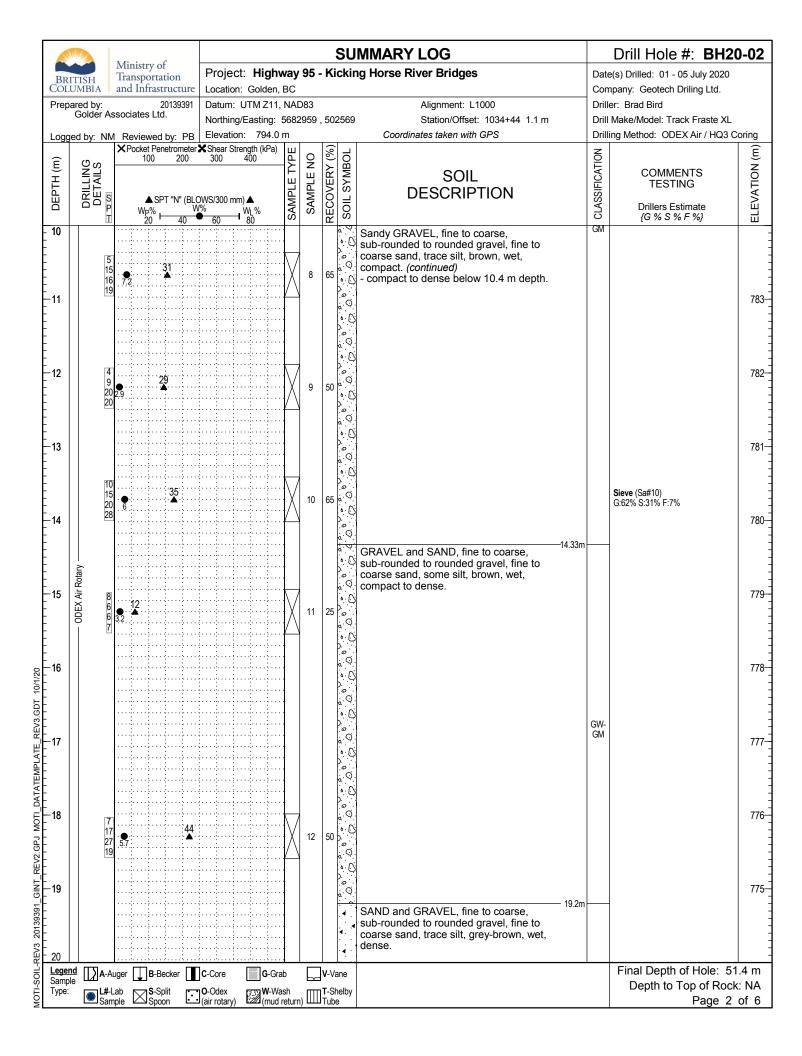

Summary Logs

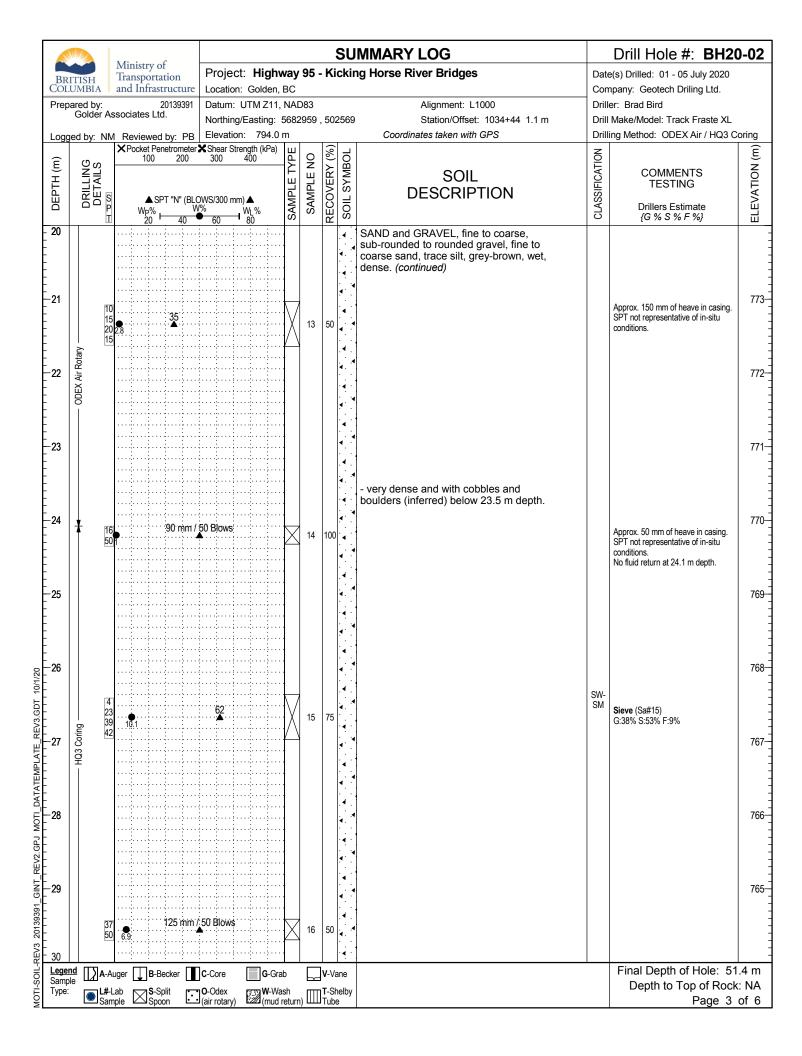

MATERIALS CLASSIFICATION LEGEND (AGGREGATES & SOILS)

MAJOR DI	VISIONS	SYMBOL	SOIL TYPE					
	ELLY	GW	WELL GRADED GRAVELS OR GRAVEL-SAND MIXTURES, < 5% FINES					
) GRAV LS	GP	POORLY GRADED GRAVELS OR GRAVEL-SAND MIXTURES, < 5% FINES					
SOIL	IOS IOS GW WELL GRADED GRAVEL GP POORLY GRADED GRAVEL GP POORLY GRADED GRAVEL GM* SILTY GRAVELS, GRAVELS, GRAVEN GC* CLAYEY GRAVELS, GRAVEN GC* CLAYEY GRAVELS, GRAVEN GC* CLAYEY GRAVELS, GRAVEN SP POORLY GRADED SAND SP SP SP POORLY GRADED SAND SP POORLY GRADED SAND SP SP SP POORLY GRADED SAND SP CLAYEY SANDS, SAND SP CLAYEY SILTS WITH SL SPT INORGANIC CLAYS OF HE	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES						
AINED	GRAVE	GC*	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES					
SE GR	č	SW	WELL GRADED SANDS OR GRAVELLY SANDS, < 5% FINES					
COAR	D SANE LS	SP	POORLY GRADED SANDS OR GRAVELLY SANDS, < 5% FINES					
	ND ANI SOI	SM*	SILTY SANDS, SAND-SILT MIXTURES					
	SAN	SC*	CLAYEY SANDS, SAND-CLAY MIXTURES					
			INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY					
JILS	AND C v_ < 50	CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS					
LED SC	SILTS	OL	ORGANIC SILTS AND ORGANIC SILT-CLAYS OF LOW PLASTICITY					
GRAIN	2		INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS, PLAS SILTS					
EINE	AND C v_ > 50	СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS					
	SILTS	ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS					
ORGANIC	SOILS	PT	PEAT AND OTHER HIGHLY ORGANIC SOILS					
TOPS	OIL	TS	TOPSOIL WITH ROOTS, ETC.					
COBB	LES	SB	ROCK FRAGMENTS AND COBBLES, PARTICLE SIZE 75 mm TO 300 mm					
LARGE BO	ULDERS	LB	BOULDERS, PARTICLE SIZE OVER 300 mm					
BEDROCK BR		BR	BEDROCK					
FOR SOILS HA' *GM1; GC1; SM *GM2; GC2; SM *GM3; GC3; SM *GM4; GC4; SM	1; SC1; 12 - 2 2; SC2; 20 - 3 3; SC3; 30 - 4	20% 30% 40%	- 75 SIEVE, USE DUAL SYMBOL - PASSING 0.075 mm SIEVE					

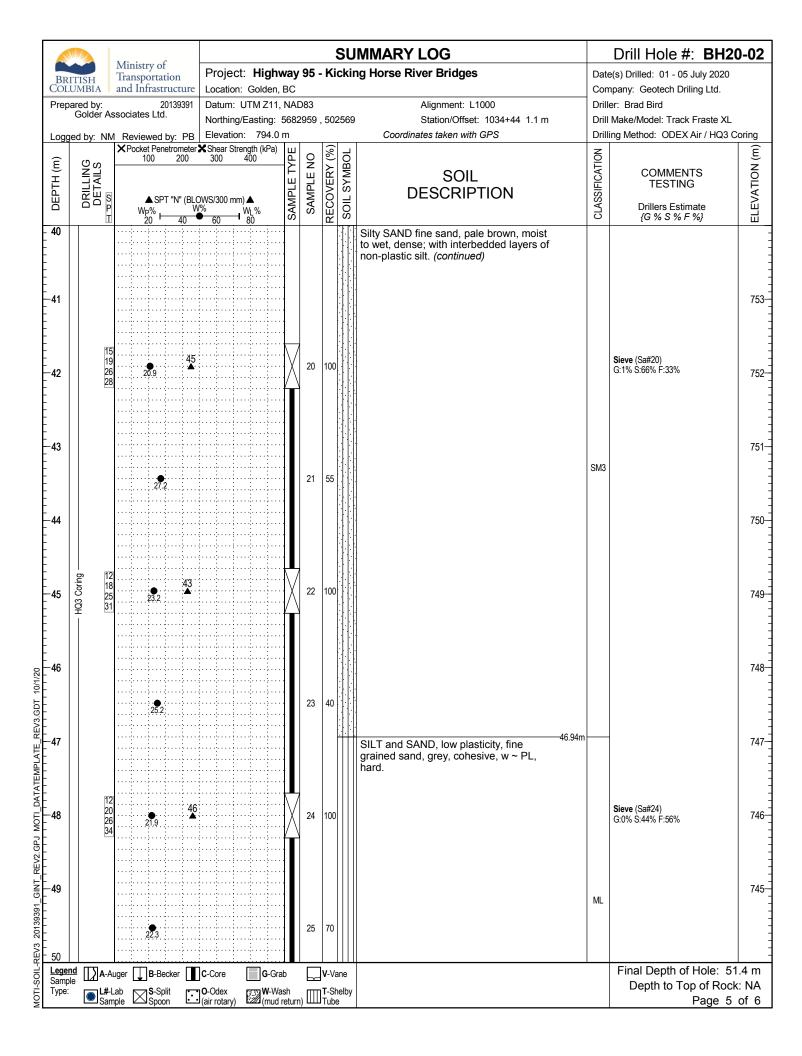
ADAPTED FROM: BC MINISTRY OF TRANSPORTATION AND HIGHWAYS "GEOTECHNICAL AND MATERIALS ENGINEERING STANDARDS FOR BRIDGE FOUNDATION INVESTIGATIONS", JANUARY 1991, SHEET REV. 90-04-26.

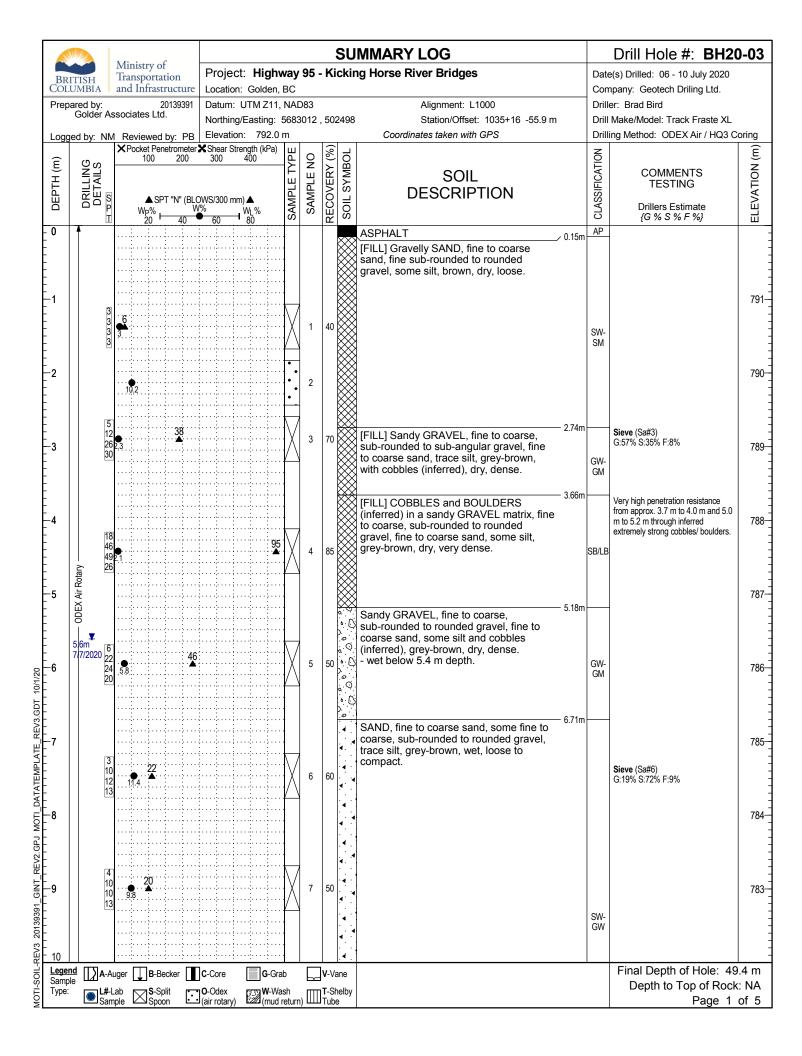


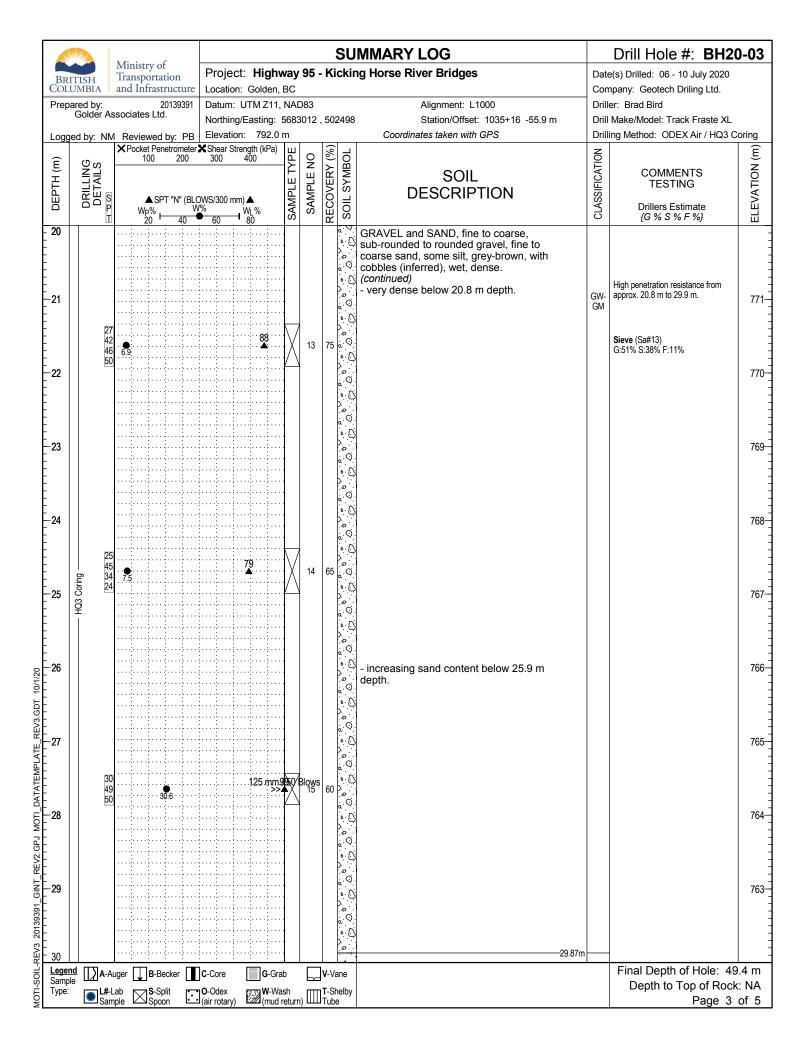


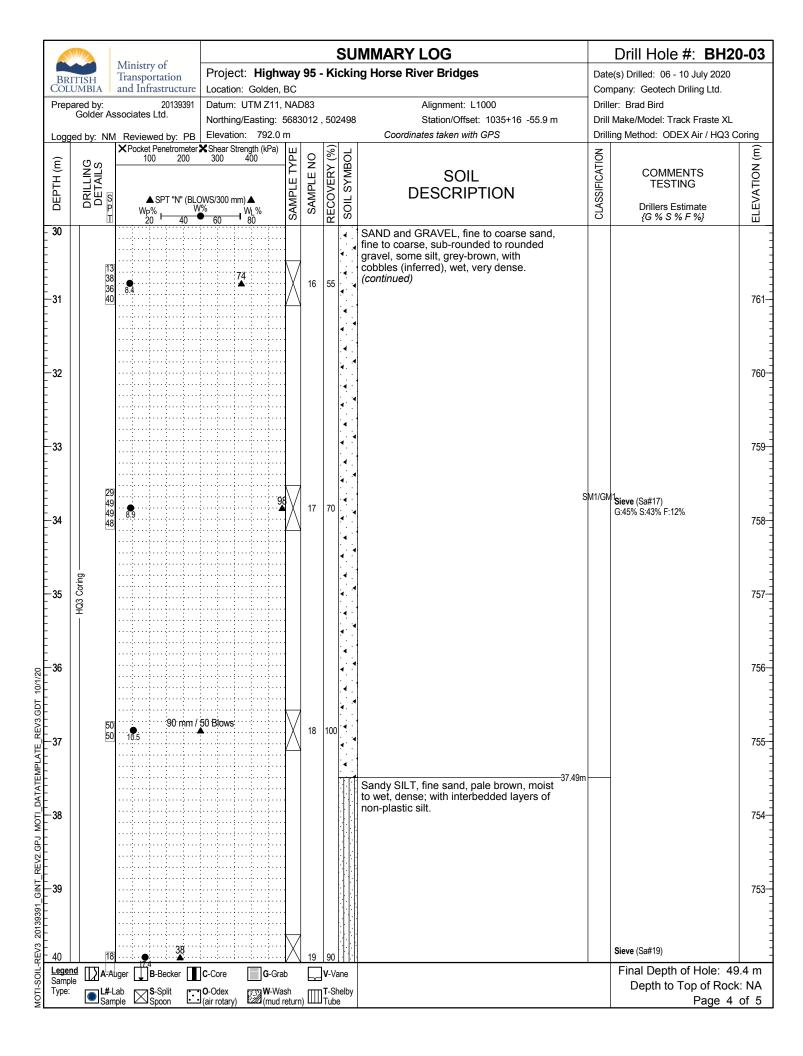

		Miniator - C				S	SU	MMARY LOG		Drill Hole #: BH2	0-0
BR	ITISH	Ministry of Transportation		-	95	- Kic	kin	g Horse River Bridges		e(s) Drilled: 14 - 17 July 2020	
	UMBIA	and Infrastructure	-						_	npany: Geotech Driling Ltd.	
-rep	ared by: Golder A	20139391 ssociates Ltd.	Datum: UTM Z11 Northing/Easting:			502/	493	Alignment: L1000 Station/Offset: 1036+13 -26.3 m		er: Brad Bird Make/Model: Track Fraste XL	
_000	ed by: N	M Reviewed by: PE				, 502-		Coordinates taken with GPS		ing Method: ODEX Air / HQ3 (Corir
		×Pocket Penetromete	er X Shear Strength (kPa) 300 400	TYPE	0	(%)	Р		NO		
Ľ I				_⊢	SAMPLE NO	Ϋ́	SYMBOL	SOIL	CLASSIFICATION	COMMENTS	
DEPTH (m)		SPT "N" (B	LOWS/300 mm) ▲	IPLE	MPL	OVE	L S	DESCRIPTION	SSIFI	TESTING	
ă	DRILLING DETAILS	W _P % 20 40	₩% ₩ ¹ 60 ₩ ¹ 80	SAMPLE	SA	RECOVERY (%)	SOIL		CLA	Drillers Estimate {G % S % F %}	
20					/	ó.	<u>بې ،</u>	gravelly SAND to GRAVEL and SAND, fine, sub-rounded to rounded gravel, fine			
	69 30 29 20	6 9 5.9	65	Цχ	8	75	0.0	to coarse sand, some silt, grey-brown,			
	20	6		://		o.	. O. 6 ()	with cobbles (inferred), wet, dense to very dense. <i>(continued)</i>			
21				:).	<i>.</i> 0				
						0.	6 Q				
						P.	<i>.</i> 0				
						0.	<u>ه</u> ۵				
22						, i . i	<i>.</i> 0				
				•			• 0				
							0	- gravel and cobble content increasing at			
						Ь.	٥Ö	approx. 22.6 m depth.		HQ3 diamond bit worn at 22.8 m	
23	a.	1		·	,					depth.	
	4		93	:IV	9	75 .	• ()		GW- GM/SW	4	
	49 44 48	# 7.4 8		: M		0.			SM		
24						b.	ە () 1				
				.]		0.	0				
						Ь.	ە () ھ				
	Coring –			•••		0.	0				
25	HQ3 Coi					6.	ن ہ ہ				
	포 						.0. . N				
				.]			0				
26						i.	.0 0 0				
-0					,	Þ. .					
	3	8	51	\mathbb{N}	10	ة. 70 ⁶	• 0			Sieve (Sa#10)	
	20 20 20	3 9 <u>7</u> 9 5				1 D	<i>.</i> 0			G:49% S:41% F:10%	
27						0.0	• 0				
							0 .0				
				•••			• C				
			· · · · · · · · · · · · · · · · · · ·	•••			0				
28			· · · · · · · · · · · · · · · · · · ·				• ()				
				:		0.	0				
						e	<u>ن</u> ہ				
29						0.	.0.				
		195 mm	1/50 Blows	· · .			ني ه ا				
	34 5(91		ĽΖ	11	- I-					
						Ь.	0				
30 _eger	<u>1d</u> []]A-/	Auger [] B -Becker []	C-Core G-Gr							Final Depth of Hole: 45	5.1
<u>eger</u> Samp Type:						V-Van				Depth to Top of Rocl	k: N
ype.	Sar	Lab Spoon	O-Odex (air rotary)	uon I return	~ IIII]T-She Tube	, nu k			Page 3	

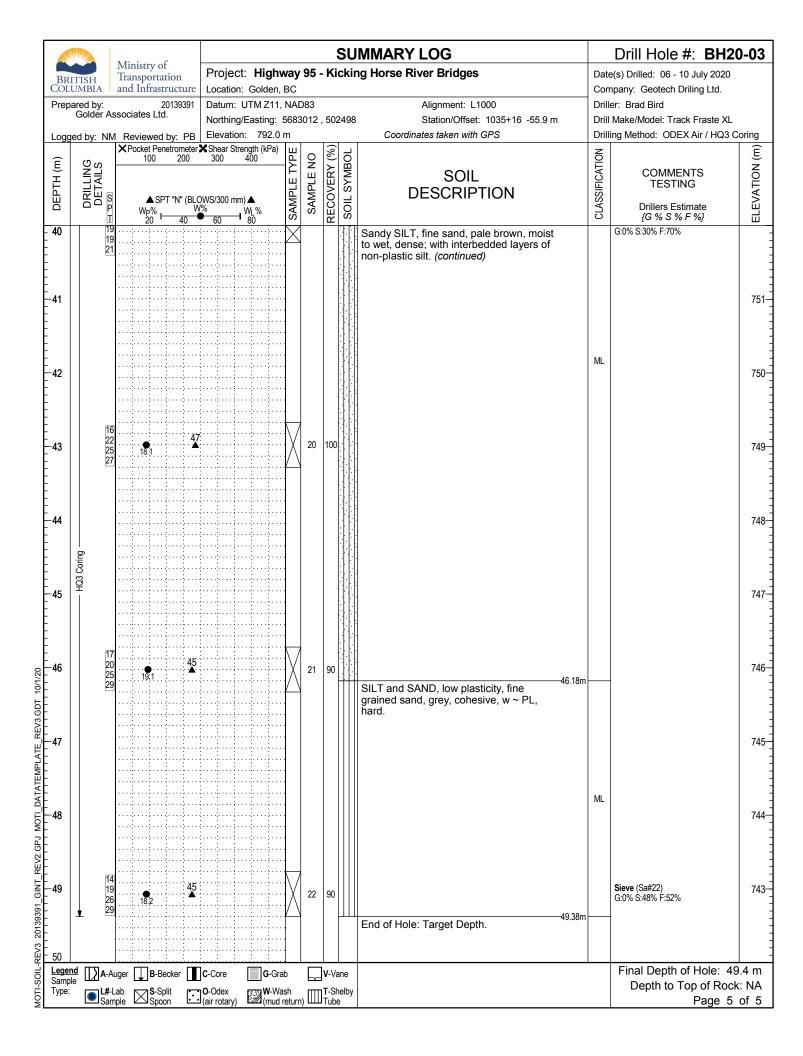
-	Milles	,	dinietary - f								รเ	MMARY LOG		Drill Hole #: BH20	0-01
	TISH	1	Ministry of Fransportatio		-		-	-	95	- Ki	icki	ng Horse River Bridges		e(s) Drilled: 14 - 17 July 2020	
	UMBIA ared by:		ind Infrastrue	cture 39391	Location Datum			·	281			Alignment: L1000	-	mpany: Geotech Driling Ltd. ler: Brad Bird	
ricpo			ociates Ltd.	55551	Northi					, 50	249			Make/Model: Track Fraste XL	
Logg	ed by: N		Reviewed by		Elevat					_		Coordinates taken with GPS	Dril	ling Method: ODEX Air / HQ3 C	oring
<u> </u>	(D		Pocket Penetro 100	ometer 200	Shear S 300	Strengt 40	th (kPa) 0	TYPE	0	RECOVERY (%)	Ъ		NO		ELEVATION (m)
DEPTH (m)								_ ⊢	SAMPLE NO	RY	SYMBOL	SOIL	CLASSIFICATION	COMMENTS	NO
-	RILI 1	S			10/5/300 1	mm) 🔺		IPLE	MPI	OVE	L S	DESCRIPTION	SSIFI	TESTING	AT
ä	DRILLING	P T	▲ SPT "I W _P % 20	40 W	% 60	-1 ^{WL} 80	%	SAMPLE	SA	2EC	SOIL		CLA	Drillers Estimate {G % S % F %}	L L
30				40	00		, 				o	gravelly SAND to GRAVEL and SAND,			
).).	fine, sub-rounded to rounded gravel, fine to coarse sand, some silt, grey-brown,			
											0. (with cobbles (inferred), wet, dense to very			
24		•).). .0				70
31		•									6. C				70
							•••••).).				
			•••••••••••••••••••••••••••••••••••••••				· · · · · · · · · · · · · · · · · · ·				0. C				
32		······································	· · · · · · · · · · · · · · · · · · ·		 	 				0				70	
							•••••				o. (
		49 50	100	umn'/	50 Blow	\$			12	50	0				
							· · · · · · · · · · · · · · · · · · ·				0. (
33							· · · · · · · · · · · · · · · · · · ·				0.0				76
											0. (
							· · · · · · · · · · · · · · · · · · ·				2.0				
		•	•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·		 	· · · · ; · ·				0. (
34				••••••).				7
				•••••••			•••••				0. (
		•	•••••••••••••••••••••••••••••••••••••••	••••••			•••••				0				
	ring -	•					• • • • • • • • •					34.75 gravelly SAND, fine sand, some fine to	m	-	
35	HQ3 Coring						• • • • • • •					coarse sub-rounded to rounded gravel, some silt, pale brown, with cobbles			7
	1	י ייס					· · · · · · · · · · · · · · · · · · ·					(inferred), wet, compact to dense, with			
		22 24 24 50	••••••	48			· · · · ; · ·	ΞV	13	55		interbedded very dense layers of sandy gravel of lower strength and iron staining			
~		24 50		•••••••			· · · · . · · · · · · · · ·					(inferred).			-
36			···	•••••••			•••••								7
			••••••••••••	· · · · · · · · · · · · · · · · · · ·			•••••								
		•					• • • • • • • • •								
37															7
							· · · · · · · · · · · · · · · · · · ·								
							; ;								
38		ŀ													7
							• • • • • • • • • •						SM1		
		20 47	······································	••••••			87		1					Sieve (Sa#14)	
		47 40 27	14.4				·· Å :··		14	70				Sieve (Sa#14) G:27% S:54% F:19%	
39		21						·	Y I						7
							· · · · · · · · · · · · · · · · · · ·								
		.					· · · · ; · ·								
40															
Legen Sampl		-Auç	jer [] B -Becke	er 🔳	C-Core	<u> </u>	G-G	rab	<u> </u>] v -v	ane			Final Depth of Hole: 45	
Sampl Type:					0 -Odex (air rotary	L IZ	W -W			∃]T-S]Tub				Depth to Top of Rock	
	۳S	amp	e 🖂 Spoon	Ŀ	(air rotary	y) 🗳	zza (mud	d retur	n) Ш	⊔Tub	e			Page 4	of

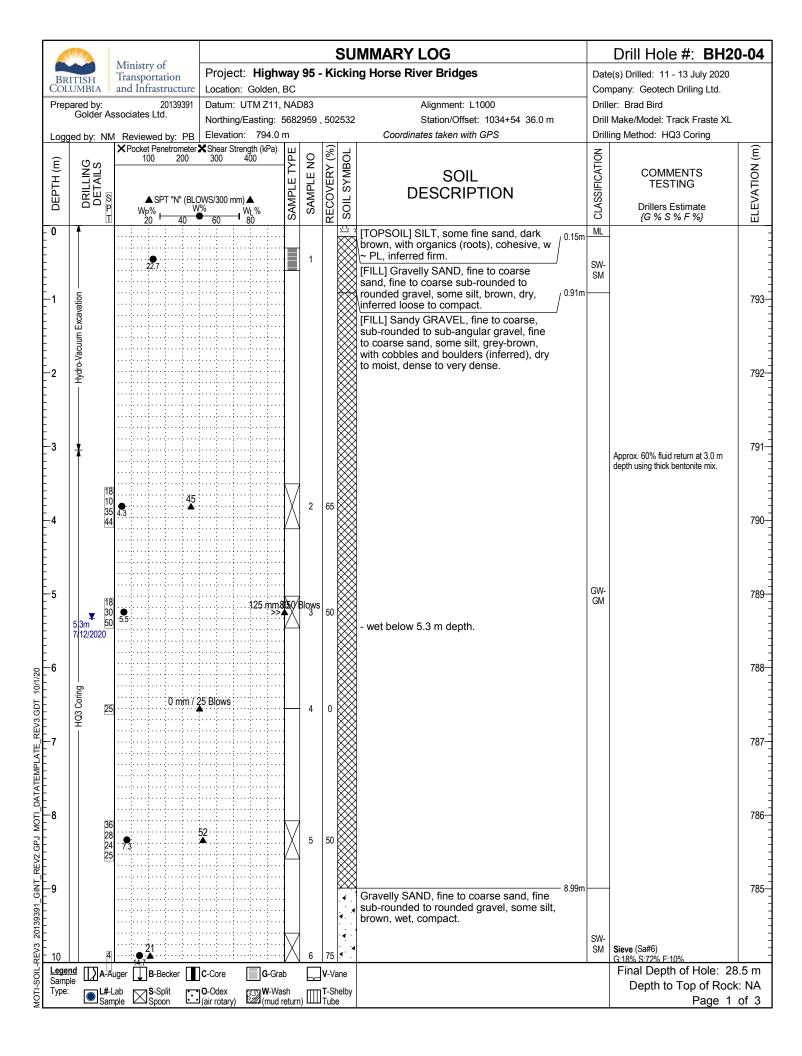

		Minister				S	SU	MMARY LOG		Drill Hole #: BH20	0 -0 1
BR	ITISH	Ministry of Transportation	Project: Highw	vay	95 ·	Kic	ckiı	ng Horse River Bridges	1	e(s) Drilled: 14 - 17 July 2020	
	UMBIA	and Infrastructure	Location: Golden,		200			All	4	npany: Geotech Driling Ltd.	
rep	ared by: Golder As	20139391 sociates Ltd.	Datum: UTM Z11, Northing/Easting: {			502	493	Alignment: L1000 Station/Offset: 1036+13 -26.3 m		er: Brad Bird Make/Model: Track Fraste XL	
.ogg	ed by: NM	Reviewed by: PB	Elevation: 794.0		-	,		Coordinates taken with GPS		ing Method: ODEX Air / HQ3 C	oring
H (m)	LING	X Pocket Penetrometer 100 200	Shear Strength (kPa) 300 400	Е ТҮРЕ	SAMPLE NO	ERY (%)	SYMBOL	SOIL	CLASSIFICATION	COMMENTS TESTING	EI EVATION (m)
DEPTH (m)	DRILLING DETAILS H T SI	▲ SPT "N" (BLC Wp% ₩ 20 40	0WS/300 mm) ▲ [™] WL_% ● 80	SAMPLE	SAMPI	RECOVERY (%)	SOIL SY	DESCRIPTION	CLASSIF	Drillers Estimate {G % S % F %}	
40		75 mm /		· · · ·				gravelly SAND, fine sand, some fine to coarse sub-rounded to rounded gravel, some silt, pale brown, with cobbles (inferred), wet, compact to dense, with interbedded very dense layers of sandy gravel of lower strength and iron staining (inferred). (continued)			7
42	HQ3 Corring00_02	8.5			15	100		SAND and SILT, fine sand, pale brown, moist to wet, dense; with interbedded layers of non-plastic silt.			7
43	Н	28.1			16	25			SM4		7
44	13 14	_ 34			17	100				Sieve (Sa#17)	-
45	13 14 20 ⊻ 27	23.6			17			End of Hole: Target Depth. 45.11m		G:0% S:46% F:44%	7
46				- - - -							1
47				-							7
48											7
49				-							
50										Final Depth of Hole: 45	. 1 .
Legei Samp	<u>nd</u> ∐ A-A le					V-Va				Depth to Top of Rock	
Type:	San	.ab ⊠S-Split ⊡	O-Odex (air rotary)	sh	, IIII	T-She	elby			Page 5	

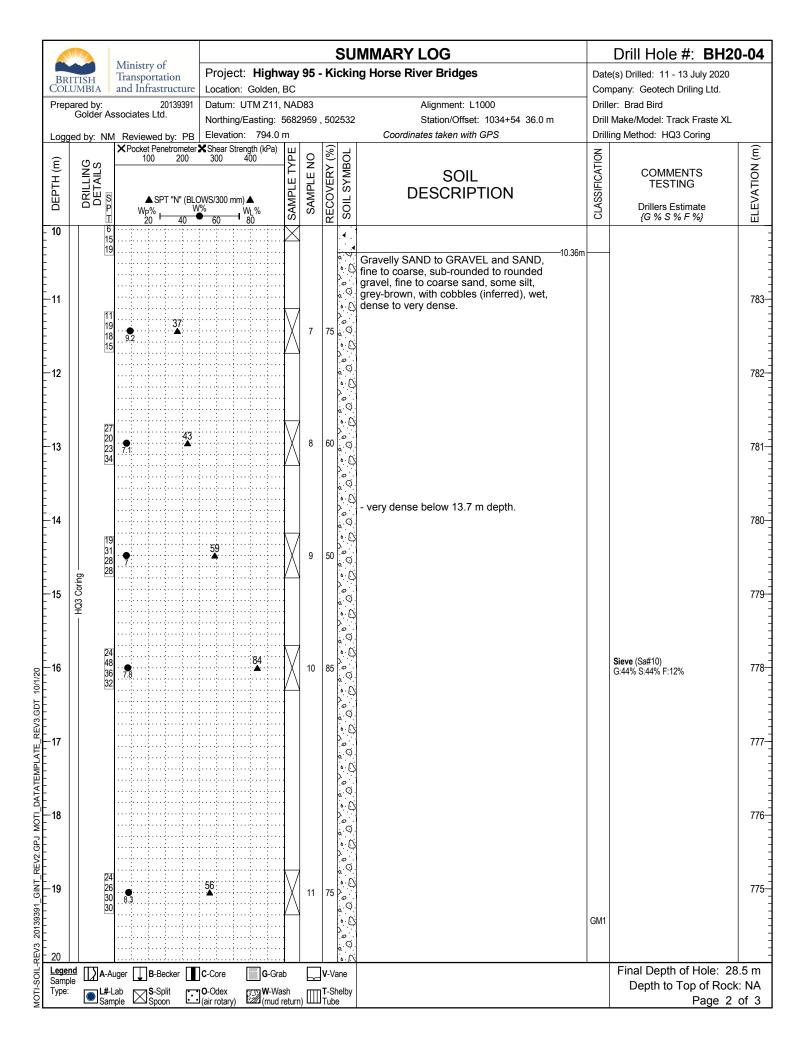



- MI	MIR.									ç	SU	MMARY LOG		Drill Hole #: BH20	0-02
	TISH	Tra	inistry of ansportat	ion	-		-	-	95 -	Kie	ckir	ng Horse River Bridges	1	e(s) Drilled: 01 - 05 July 2020	
	JMBIA ared by:	an	d Infrastr	ucture 0139391		on: Gol 1: UTM			182			Alignment: L1000	-	npany: Geotech Driling Ltd. er: Brad Bird	
repa	Golder	Assoc	ziates Ltd.			ng/East				. 502	2569	Station/Offset: 1034+44 1.1 m		Make/Model: Track Fraste XL	
.ogge	ed by: N	IM R	eviewed I	by: PB	Elevat	ion: 7	94.0 r			,		Coordinates taken with GPS	Drill	ing Method: ODEX Air / HQ3 C	oring
UEPIH (m)	DRILLING		Wp% .	Etrometer 200 F "N" (BLO W	300 WS/300 r	400 mm) ▲		SAMPLE TYPE	SAMPLE NO	RECOVERY (%)	SOIL SYMBOL	SOIL DESCRIPTION	CLASSIFICATION	COMMENTS TESTING Drillers Estimate	
30		I 	20 -	40	60	-1 ^{₩L%}	·····	S		R	_ري ∙	SAND and GRAVEL, fine to coarse,		{G % S % F %}	
31 32 33						74			17	65		sub-rounded to rounded gravel, fine to coarse sand, trace silt, grey-brown, wet, dense. <i>(continued)</i>			7
·34 ·35		· · · · · · · ·										Silty gravelly SAND, fine sand, some fine to coarse sub-rounded to rounded gravel, pale brown, with cobbles (inferred), wet, compact to dense; with interbedded layers of very dense gravelly sand.		Approx. 60% fluid return at 33.5 m depth.	7
36		27 22 17 16 	16.9	39	· · · · · · · · · · · · · · · · · · ·				18	65			SM2	Sieve (Sa#18) G:24% S:49% F:27%	-
37		· · · · · · · · · · · · ·													
38 39		15 44 33	4				93		19	65					7
40 Legen Sample Type:		-Auger #-Lab	B-Ber Spool		C-Core O-Odex (air rotary		G -Gral W -Was (mud r			V-Va T-Sh		39.62m		Final Depth of Hole: 51 Depth to Top of Rock Page 4	c N




		\ <i>t</i>	-i (sι	IMMARY LOG		Drill Hole #: BH2	20-0
	ITISH	Tra	nistry of nsportatio	on		-		-	-	95	- Ki	cki	ng Horse River Bridges		Date(s) Drilled: 01 - 05 July 2020	_
	ared by:	and	l Infrastru	39391	<u> </u>		: Gold			כסר			Alignment: L1000		Company: Geotech Driling Ltd. Driller: Brad Bird	
Fiep	Golder A	ssoc	iates Ltd.	29291			/Easti				, 502	2569			Drill Make/Model: Track Fraste XL	
Logg	ed by: NN	/ R	eviewed by	/: PB			n: 79	•			,		Coordinates taken with GPS		Drilling Method: ODEX Air / HQ3	
()	(5		ocket Penetr 100	rometer 200	×She 30	ear Str 10	ength (l 400	kPa)	TYPE	0	(%)	OL		R	NO N	
DEPTH (m)	DRILLING DETAILS			200					ľΣ	SAMPLE NO	R	SYMBOL	SOIL	L V C		
PTI		1					-) •		PLE	ЧРГ	OVE	ا کر	DESCRIPTION			
DE			▲ SPT " ^W P [%] ⊢	` W	%		WL%		SAMPLE	SAI	RECOVERY (%)	SOIL			Drillers Estimate {G % S % F %}	li
50			20	40	60	<u></u>	80				œ		SILT and SAND, low plasticity, fine			+ '
								·					grained sand, grey, cohesive, w ~ PL, hard. (continued)			
	HQ3 Coring		(* * * * *) * * * * (* * (* * * *) * * * * (* *					· · · · · · · · · · · · · · · · · · ·								
	တို 14	 I				•••••	•••	· · · · · ·	7							
-51	위 14 25 27 37		23.3		52 ▲	•••••	•••	· · · · ·	X	26	100					
	37							· • · · · ·	μ				5	1.36m		
							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	1				End of Hole: Target Depth.			
			:				· · ·									
52									1							
					() ()	· · · · ; ·	· · · · · · · · · · · · · · · · · · ·	 	1							
						•••••										
- 2									-							
-53			· · · · · · · · · · · · · · · · · · ·		· · · · · ·	· · · · · · · · · · · · · · · · · · ·	••••••	· · · · · ·	1							
						•••••	•••	· · · · ·								
									-							
-54						· · · · • • • •	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·								
.04						• • • • •			1							
									-							
			(· · · ·) · · · (· · (· · · ·) · · · (· ·	· · · · · · · · · · · · · · · · · · ·		· · · ·	· · · · · · · · · · · · · · · · · · ·	· • · · · · · • · · · ·	1							
-55			· · · · · · · · · · · · · · · · · · ·			· · · ·		· · · · ·								
55							· · · · · ·	· · · · ·	-							
			· · · · · · · · · · · · · · · · · · ·				•••••••••	•••••	1							
			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		1							
-56																
						• • • • • •		· · · · · ·	1							
					 			· • · · · · · • · · · ·	1							
						•••••			-							
-57			·····		· · · · ·	• • • • • •		•]							
			·····		 	· · · ·		· · · · · ·	1							
									-							
-58			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· • · · · ·	1							
								· · · · ·								
					(· · · ·) (· · · ·)	· · · ·	· · · · · · · · · · · · · · · · · · ·	· • · · · · · • · · · ·	1							
-59																
									1							
			· · · · · · · · · · · · · · · · · · ·						1							
~									1							
60 Leger	nd [[[]] • •							G -Gra	<u>1</u>						Final Depth of Hole: 5	1.4
Leger Samp	≣ Ш⊿I A -A		B-Beck] V -Va				Depth to Top of Roc	
Type:	San	∟au nple	Spoon	\Box	0 -Od (air ro	otary)		w-vva (mud	າວາ returr	n) [[[]	Tube	еюу Э			Page 6	




	MILLE	Ι,	<i>C</i>						SU	MMARY LOG		Drill Hole #: BH2	0-0
	ITISH	Τ	Ainistry of Transportation	-	-	-	95	- K	ickir	ng Horse River Bridges		e(s) Drilled: 06 - 10 July 2020	_
	UMBIA	a	nd Infrastructure	Location:							4	npany: Geotech Driling Ltd.	
Prep	ared by: Golder	Ass	20139391 ociates Ltd.	Datum: U Northing/				50	2/08	Alignment: L1000 Station/Offset: 1035+16 -55.9 m		ler: Brad Bird I Make/Model: Track Fraste XL	
Load	aed by: N	М	Reviewed by: PB	Elevation	-		5012	, 00	2400	Coordinates taken with GPS		ling Method: ODEX Air / HQ3 C	Coring
	_	>	Pocket Penetrometer 100 200	Shear Stre 300	ength (kPa) 400	Ш	0	(%)	Ы		N		Ű.
E T	ILS ING		100 200	500	400	TYPE	Ĭ Ш	RY	SYMBOL	SOIL	CATIC	COMMENTS	EI EVATION (m)
DEPTH (m)	DRILLING DETAILS					РГЕ	SAMPLE NO	NE NE	∑	DESCRIPTION	SIFIC	TESTING	T A
D	50	o P T	▲ SPT "N" (BLC W _P % W 20 40		l) ▲ WL%	SAMPLE	SA	RECOVERY (%)	SOIL		CLASSIFICATION	Drillers Estimate {G % S % F %}	
10		I ·	20 40	60	80	:		œ		SAND, fine to coarse sand, some fine to		{0 /0 3 /01 /0j	
		2	a.							coarse, sub-rounded to rounded gravel, trace silt, grey-brown, wet, loose to			
		1 8	13.6			X	8	50	 	compact. (continued)			
	ODEX Air Rotary	14				\square							
11	EXA		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·								7
	0					1							
10		8 16	33			\mathbb{N}	1					Approx. 70% fluid return at 11.9 m	_
12		16 17 16	23.9			1Å	9	70	0.0	GRAVEL and SAND, fine to coarse, 12.04m		depth using thick bentonite mix.	7
						f				sub-rounded to rounded gravel, fine to coarse sand, some silt, grey-brown, with			
						1			. () 	cobbles (inferred), wet, dense.			
13						1			0				-
-		· .	······································	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	:			, O				'
		·				:			0.0				
	Г	6				\vdash			0 0				
14		16 16 19 17	35			1	10	30					-
		17 17	8.1						0 0				
										1			
]							
15		·	······································			:							
	F	18	· · · · · · · · · · · · · · · · · · ·				/						
		16 14 16	30 8.2			X	11	40					
	HQ3 Coring	16	•••••••••••••••••••••••••••••••••••••••	•••••		1/ \			0. 0. 0.				
16	HQ3 (·	······································						0.00				
	Ī					1			0. 0. 0.				
		.				-			0				
17						1			و. () اه ()	;			
17		·	······································			1			0	1			
		ŀ	·····						ه. ب اه ()				
		.				-			0	1			
18		.	•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·		1			ہ ب ن	, , ,			
		·							0				
		12 17	36			\mathbb{N}	10		0	, , ,			
		12 17 19 23	9.2				12	55	0	1			
19						ť			ہ ب 0	i i			
		ŀ				1			0.0	1			
			· · · · · · · · · · · · · · · · · · ·]			ه. ب اه ()				
		·	······································		· · · · · · · · · · · · · · · · · · ·	1				1			
20 _ege	_ nd [[\]▲	<u>.</u> مربح		<u></u> I c com					ρ			Final Depth of Hole: 49).4
Lege Samp Type:				C -Core	G-Gra] v -v] v -s				Depth to Top of Rock	<: N
· , hG.	∎L# Sa	ample	e ⊠ <mark>S</mark> poon ⊡	O -Odex (air rotary)	W-Wa (mud)	returr	ŋШ	Tub	e De			Page 2	

						SU	MMARY LOG		Drill Hole #: BH20	0-04
BR	ITISH	Ministry of Transportation		-	5 -	Kicki	ng Horse River Bridges	1	e(s) Drilled: 11 - 13 July 2020	
	UMBIA pared by: Golder As	and Infrastructure 20139391 ssociates Ltd.	Location: Golden, E Datum: UTM Z11, N Northing/Easting: 5	NAD8		502532	Alignment: L1000 Station/Offset: 1034+54 36.0 m	Drill	npany: Geotech Driling Ltd. Ier: Brad Bird I Make/Model: Track Fraste XL	
Logo	ed by: NM	Reviewed by: PB	Elevation: 794.0 n	n			Coordinates taken with GPS	-	ling Method: HQ3 Coring	
DEPTH (m)	DRILLING DETAILS H T SI	× Pocket Penetrometer 100 200 ▲ SPT "N" (BL Wp% V 20 40 40	300 400	SAMPLE TYPE	SAMPLE NO	RECOVERY (%) SOIL SYMBOL	SOIL DESCRIPTION	CLASSIFICATION	COMMENTS TESTING Drillers Estimate {G % S % F %}	FI EVATION (m)
-21							Gravelly SAND to GRAVEL and SAND, fine to coarse, sub-rounded to rounded gravel, fine to coarse sand, some silt, grey-brown, with cobbles (inferred), wet, dense to very dense. <i>(continued)</i>			7
-22	22 25 33 23	••••••••••••••••••••••••••••••••••••••	5 <u>8</u>	, 	12	65				7
-23										7
24										7
25	24 33 36 34	10.3	69		13	80			Sieve (Sa#13) G:28% S:56% F:16%	
26										
27	_									7
28	49 46 34 ⊻ 29	78	80		14	75	End of Hole: Target Depth.		-	7
29 30										7
Lege Samp	nd A-A		C-Core G-Grab	-		/ -Vane			Final Depth of Hole: 28 Depth to Top of Rock	
Type:	San	ab Spoon 🖸	O-Odex (air rotary)	sh eturn\ [mj	r -Shelby Fube			Page 3	

APPENDIX B

Laboratory Testing

Golden, BC

Project Number: Project Location: 20139391 (3000/3300)

Test Request # Client:

K20-057 Associated Engineering

Project Name: Highway 95 - Kicking Horse River Bridges

		Sar	nple					
Sample Location	Ref	Top (m)	Base (m)	Туре	Soil Description	Water Content %	Method	Remarks
BH20-02	1	0.15	0.46	GS		37.4	ASTM D2216 Method B	
BH20-04	1	0.30	0.61	GS		22.7	ASTM D2216 Method B	
BH20-01	1	0.91	1.52	GS		8.6	ASTM D2216 Method B	
BH20-03	1	1.07	1.68	SS		3	ASTM D2216 Method B	
BH20-02	2	1.22	1.83	SS		1.6	ASTM D2216 Method B	
BH20-03	2	1.83	2.44	GS		10.2	ASTM D2216 Method B	
BH20-01	2	1.83	1.98	SS			ASTM D2216 Method B	No Sample
BH20-03	3	2.59	3.20	SS		2.3	ASTM D2216 Method B	
BH20-02	3	2.74	3.42	SS		1.4	ASTM D2216 Method B	
BH20-04	2	3.51	4.11	SS		4.3	ASTM D2216 Method B	
BH20-03	4	4.11	4.72	SS		2.1	ASTM D2216 Method B	
BH20-02	4	4.27	4.40	SS			ASTM D2216 Method B	No Sample
BH20-01	3	4.88	5.49	SS		6.2	ASTM D2216 Method B	
BH20-04	3	5.03	5.46	SS		5.5	ASTM D2216 Method B	
BH20-03	5	5.64	6.25	SS		5.8	ASTM D2216 Method B	
BH20-02	5	5.79	6.40	SS		8	ASTM D2216 Method B	
BH20-04	4	6.55	6.55	SS			ASTM D2216 Method B	No Sample
BH20-03	6	7.16	7.77	SS		11.4	ASTM D2216 Method B	
BH20-02	6	7.32	7.92	SS		3.9	ASTM D2216 Method B	
BH20-01	4	7.92	8.53	SS		6.8	ASTM D2216 Method B	

Notes:

Tested by: ACianci Checked by: ACianci Date:

7/28/2020 8/11/2020

Disclaimer:

JStotz

The test data given herein pertain to the sample provided only. This report constitutes a testing service only.

Date:

Date:

Golder Associates

590 McKay Avenue, Suite 300 Kelowna, British Columbia, Canada, V1Y 5A8

Reviewed by:

[+1] (250) 860 8424

Rev23-28052020

Golden, BC

Project Number: Project Location: 20139391 (3000/3300)

Test Request # Client:

K20-057 Associated Engineering

Project Name: Highway 95 - Kicking Horse River Bridges

		Sar	nple					
Sample Location	Ref	Top (m)	Base (m)	Туре	Soil Description	Water Content %	Method	Remarks
BH20-04	5	8.08	8.60	SS		7.3	ASTM D2216 Method B	
BH20-03	7	8.69	9.30	SS		9.8	ASTM D2216 Method B	
BH20-02	7	8.84	9.45	SS		5.6	ASTM D2216 Method B	
BH20-04	6	9.60	10.21	SS		14.7	ASTM D2216 Method B	
BH20-03	8	10.21	10.82	SS		13.6	ASTM D2216 Method B	
BH20-02	8	10.36	10.97	SS		7.2	ASTM D2216 Method B	
BH20-01	5	10.97	11.58	SS		9.3	ASTM D2216 Method B	
BH20-04	7	11.13	11.73	SS		9.2	ASTM D2216 Method B	
BH20-03	9	11.73	12.34	SS		23.9	ASTM D2216 Method B	
BH20-02	9	11.89	12.50	SS		2.9	ASTM D2216 Method B	
BH20-04	8	12.65	13.26	SS		7.1	ASTM D2216 Method B	
BH20-02	10	13.41	14.02	SS		6	ASTM D2216 Method B	
BH20-03	10	13.72	14.33	SS		8.1	ASTM D2216 Method B	
BH20-01	6	14.02	14.63	SS		7	ASTM D2216 Method B	
BH20-04	9	14.17	14.78	SS		7	ASTM D2216 Method B	
BH20-02	11	14.94	15.54	SS		3.2	ASTM D2216 Method B	
BH20-03	11	15.24	15.85	SS		8.2	ASTM D2216 Method B	
BH20-04	10	15.70	16.31	SS		7.8	ASTM D2216 Method B	
BH20-01	7	17.07	17.68	SS		9.2	ASTM D2216 Method B	
BH20-02	12	17.98	18.59	SS		5.7	ASTM D2216 Method B	

Notes:

Tested by: Checked by: Date:

7/28/2020

Disclaimer:

JStotz

The test data given herein pertain to the sample provided only. This report constitutes a testing service only.

Date:

ACianci ACianci

Date: 8/11/2020

Reviewed by: **Golder Associates**

590 McKay Avenue, Suite 300 Kelowna, British Columbia, Canada, V1Y 5A8

[+1] (250) 860 8424

Rev23-28052020

Test Request # Client:

K20-057 Associated Engineering

Project Name: Highway 95 - Kicking Horse River Bridges Project Number: Project Location: 20139391 (3000/3300) Golden, BC

		Sar	nple					
Sample Location	Ref	Top (m)	Base (m)	Туре	Soil Description	Water Content %	Method	Remarks
BH20-03	12	18.29	18.90	SS		9.2	ASTM D2216 Method B	
BH20-04	11	18.75	19.35	SS		8.3	ASTM D2216 Method B	
BH20-01	8	20.12	20.73	SS		5.9	ASTM D2216 Method B	
BH20-02	13	21.03	21.64	SS		2.8	ASTM D2216 Method B	
BH20-03	13	21.34	21.92	SS		6.9	ASTM D2216 Method B	
BH20-04	12	21.79	22.40	SS		7	ASTM D2216 Method B	
BH20-01	9	23.16	23.77	SS		7.4	ASTM D2216 Method B	
BH20-02	14	24.08	24.32	SS		1	ASTM D2216 Method B	
BH20-03	14	24.38	24.99	SS		7.5	ASTM D2216 Method B	
BH20-04	13	24.84	25.45	SS		10.3	ASTM D2216 Method B	
BH20-01	10	26.21	26.82	SS		9.9	ASTM D2216 Method B	
BH20-02	15	26.37	26.97	SS		10.1	ASTM D2216 Method B	
BH20-03	15	27.43	27.86	SS		30.6	ASTM D2216 Method B	
BH20-04	14	27.89	28.50	SS		7.8	ASTM D2216 Method B	
BH20-01	11	29.26	29.54	SS		9.1	ASTM D2216 Method B	
BH20-02	16	29.41	29.69	SS		6.9	ASTM D2216 Method B	
BH20-03	16	30.48	31.09	SS		8.4	ASTM D2216 Method B	
BH20-01	12	32.31	32.56	SS		8.4	ASTM D2216 Method B	
BH20-02	17	32.46	33.07	SS		9.3	ASTM D2216 Method B	
BH20-03	17	33.53	34.14	SS		8.9	ASTM D2216 Method B	

Notes:

Tested by: ACianci Checked by:

Date: Date:

7/28/2020

Disclaimer:

JStotz

The test data given herein pertain to the sample provided only. This report constitutes a testing service only.

Date:

ACianci

8/11/2020

Reviewed by: **Golder Associates**

590 McKay Avenue, Suite 300 Kelowna, British Columbia, Canada, V1Y 5A8

[+1] (250) 860 8424

Test Request # Client:

K20-057 Associated Engineering

Project Name: Highway 95 - Kicking Horse River Bridges Project Number: Project Location:

20139391 (3000/3300) Golden, BC

		Sar	nple					
Sample Location	Ref	Top (m)	Base (m)	Туре	Soil Description	Water Content %	Method	Remarks
BH20-01	13	35.36	35.95	SS		18.1	ASTM D2216 Method B	
BH20-02	18	35.51	36.12	SS		16.9	ASTM D2216 Method B	
BH20-03	18	36.58	37.12	SS		10.5	ASTM D2216 Method B	
BH20-01	14	38.40	39.01	SS		14.4	ASTM D2216 Method B	
BH20-02	19	38.56	39.17	SS		9.4	ASTM D2216 Method B	
BH20-03	19	39.62	40.23	SS		17.4	ASTM D2216 Method B	
BH20-01	15	41.45	41.68	SS		8.5	ASTM D2216 Method B	
BH20-02	20	41.61	42.21	SS		20.9	ASTM D2216 Method B	
BH20-01	16	41.68	44.50	сс		28.1	ASTM D2216 Method B	
BH20-02	21	42.21	44.65	сс		27.2	ASTM D2216 Method B	
BH20-03	20	42.67	43.28	SS		18.1	ASTM D2216 Method B	
BH20-01	17	44.50	45.11	SS		23.6	ASTM D2216 Method B	
BH20-02	22	44.65	45.26	SS		23.2	ASTM D2216 Method B	
BH20-02	23	45.26	47.70	сс		25.2	ASTM D2216 Method B	
BH20-03	21	45.72	46.33	SS		19.1	ASTM D2216 Method B	
BH20-02	24	47.70	48.31	SS		21.9	ASTM D2216 Method B	
BH20-02	25	48.31	50.75	сс		22.3	ASTM D2216 Method B	
BH20-03	22	48.77	49.38	SS		18.2	ASTM D2216 Method B	
BH20-02	26	50.74	51.36	SS		23.3	ASTM D2216 Method B	

Notes:

Disclaimer:

JStotz

The test data given herein pertain to the sample provided only. This report constitutes a testing service only.

Date:

Tested by: ACianci Checked by: ACianci Date: 7/28/2020 Date: 8/11/2020

Reviewed by: **Golder Associates**

590 McKay Avenue, Suite 300 Kelowna, British Columbia, Canada, V1Y 5A8

[+1] (250) 860 8424

S GOL																D6913 lethod B
est Request # client: roject Name: ource: oil Description:		ciated Eng	gineering licking Horse R	iver Bridge		ab Sample I	ID:	KELO20	2007230		Project Numb Project Locati Sample Sourc Sample No.: Type: Depth (m):	on:		9391 (3000/ en, BC)-01 0.91	3300) -	1.52
becimen Reference becimen Description	NA NA				Spe	cimen Dept	th	NA			Date of Test		7/30/	2020		
													Sieve		Hydro Sedime	
% Passing			12	1	61				27			Sieve No.	Particle Size mm	% Passing	Particle Size mm	% Passin
BOULDER CO	OBBLE	GF	RAVEL		SAN	2			FINES (Sil	It Clav)		1/2"	12.5	100.0		
	OBBEE	Coarse	Fine	Coarse	Medium	Fir	ne			., 0.0,7		3/8"	9.5	98.3		
100												#4	4.75	87.7		
												#10	2	72.5		
90			N									#20 #40	0.85 0.425	57.3 47.6		
												#40 #60	0.425	47.6		
80												#00	0.25	34.2		
70												#140	0.105	31.0		
					\mathbf{N}							#200	0.075	27.2		
60 50 40																
" 50 ·						N										
40																
30																
												<u> </u>			D60	0.99
20															D30	0.10
10															D10	
															Cu	
0			<u> </u>												Cc	
1000 tes:	100		10 ─ ── Siev	e Parl	1 icle Size (r	nm)	0.1 —*	- Hydrom	0.0 eter	1	0.001 Disclaime	.				
											The test dat		pertain to the conly.	sample provid	led only. This	report
ested by: ACianci	i	Date:	7/30/2020	Chec	ked by:	ACianci	Golder J	Date: Associates	8/11/202	20	Reviewed by:	JStotz		Date:	8/11/2020	
				590 McK	ay Avenue			na, British)) 860 842	Columbia, (1	Canada,	V1Y 5A8			Rev5	6-14062020	

Client: Associated Engineering Project Location: Golden, BC Project Name: Highway 95 - Kicking Horse River Bridges Sample Source: BH20-01 Source: Sample No.: 4 Soil Description: Type: SS Specimen Reference NA Specimen Depth NA Specimen Description NA Date of Test 7/30/2020 Specimen Description NA Sieve Hydron Specimen Description Sieve Particle Project Location: Golden, BC % Passing 57 33 10 Sieve Particle Particle	GOL est Request #	K20-057			Lat	o Sample ID:	KELO20	2007233	Project Numbe	or.	2013	9391 (3000/		D6913 lethod B
periodic Description Na	Client: Project Name: Source:	Associated I		River Bridge		o Gumpio ID.	KELO20	2007233	Project Location Sample Source Sample No.: Type:	on:	Golde BH2 4	en, BC 0-01	-	8.53
% Passing 57 33 10 BOULDER COBBLE CRAVEL SAND Fine					Spec	imen Depth	NA		Date of Test		7/30/	/2020		
BOULDER COBBLE GRAVEL SAND Fine Fine Fine Size mm % Passing Size mm 000000000000000000000000000000000000											Sieve		-	
BOULDER COBBLE Coarse Fine Fine <td>% Passing</td> <td></td> <td>57</td> <td></td> <td>33</td> <td></td> <td></td> <td>10</td> <td></td> <td></td> <td></td> <td>% Passing</td> <td></td> <td>% Passing</td>	% Passing		57		33			10				% Passing		% Passing
Coarse Fine Coarse Medium Pine 10 0<		BBLE	GRAVEL		SAND	_		FINES (Silt Clav)		1 1/2"	37.5			
100 1			e Fine	Coarse	Medium	Fine								
90 12.3 00.0 90 12.3 00.0 90 12.3 00.0 90 12.3 00.0 90 12.3 00.0 90 12.3 00.0 90 12.3 00.0 90 12.3 00.0 90 12.3 00.0 90 12.3 00.0 90 12.3 00.0 90 12.3 00.0 90 12.3 00.0 90 11.1 11.1 12.3 11.1 12.3 12.4 12.4 12.4 12.5 12.5 12.5 12.6 12.5 14.2 14.0 0.10.5 11.7 14.10 0.10.5 10.7 14.10 10.0 10.7 14.10 10.0 10.7 14.10 10.0 10.7 14.10 10.0 10.0 14.10 10.0 10.0 14.10 10.0 10.0 <td>100</td> <td></td> <td> </td>	100													
90 0														ļ
80 0	90		\mathbf{Y}											
0 0			Λ											
70 40 0.425 18.5 40 0.25 14.2 #100 0.15 11.7 #140 0.005 10.7 #200 0.075 9.6 0 0 0 0.01 0.01 0 0 0 0.01 0.01 0 0 0.01 0.01 0.01 0 0 0.01 0.01 0.01 0 0 0.1 0.01 0.01 0 0 0.1 0.01 0.01 0 0 0.1 0.01 0.01 0 0 0.1 0.01 0.01 0 0 0.1 0.01 0.01 0 0 0.01 0.01 0.01 0 0 0.01 0.01 0.01 0 0 0.01 0.01 0.01 0 0 0.01 0.01 0.01 0 0 0.01 0.01 0.01 0 0 <td< td=""><td>80</td><td></td><td>\</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td></td<>	80		\											
60 0.25 14.2 #100 0.15 11.7 #140 0.105 10.7 #200 0.075 9.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <	70													
e 30 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4														
e 30 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 60		\											
e 30 40 50 40 40 40 40 40 40 40 40 40 4														
e 30 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	<u>50</u>		N											<u> </u>
e 30 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4											0.070	0.0		<u> </u>
30 4	e 40													
20 0 </td <td></td> <td> </td>														
20 10 10 10 10 10 10 10 10 10 1													D60	10.10
10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	20													1.75
10 - 10 - 10 - 10 - 1 - 10 - 1 - 10 - 1 - 1														0.08
$\begin{array}{c cccc} 0 & & & & & & & & & & & & & & & & & & $	10						┭┼ ₩				1			120.00
100 10 1 0.1 0.01 0.001 → Sieve Particle Size (mm) → Hydrometer Disclaimer: The test data given herein pertain to the sample provided only. This rest	0												Сс	4.00
Sieve Particle Size (mm)		100	10		1) 1	0.01	0.001					<u>.</u>
The test data given herein pertain to the sample provided only. This re	1000	100		ve Part	•				0.001					
	otes:								The test dat	a given hereir	•	sample provid	led only. This	report
ested by: ACianci Date: 7/30/2020 Checked by: ACianci Date: 8/11/2020 Reviewed by: JStotz Date: 8/11/2020 Golder Associates	ested by: ACianci	Date:	7/30/2020	Chec	ked by:					-	,.	Date:	8/11/2020	

est Request # lient: roject Name: purce: pil Description:		057 ciated Engine way 95 - Kick	-	River Bridg		Lab Sar	nple ID:	KELC	2020072	34		Project Numb Project Locati Sample Sourc Sample No.: Type: Depth (m):	on:		9391 (3000/ en, BC D-01 10.97	3300)	11.58
pecimen Reference	NA NA				Sp	pecimer	Depth	NA				Date of Test		7/30/	/2020		
														Sieve		Hydro Sedime	
% Passing		43	3		4	45				12			Sieve	Particle	% Passing	Particle	<u>%</u>
		GRA	/=1		<u> </u>								No.	Size mm	-	Size mm	Passin
BOULDER CO	OBBLE -	Coarse	Fine	Coarse		ND	Fine	_	FIN	ES (Silt,	Clay)		1 1/2" 1"	37.5 25	100.0 97.0		
		Coarse	FILLE	Coarse	Medium	n	1 IIIC						3/4"	19	91.0		
100													1/2"	12.5	81.4		
													3/8"	9.5	75.2		
90													#4	4.75	57.4		
80													#10	2	41.1		
			N										#20	0.85	30.6		
70			-N										#40	0.425	23.7		
													#60	0.25	18.2		
≦ 60													#100	0.15	14.8		
60 60 60 50 40													#140	0.105	13.4		
50													#200	0.075	12.0		
x 40																	
¢																	
30																	
														1	1	D60	5.26
20																D30	0.80
																D10	
10																Cu	1
0																Cc	
1000 Dotes:	100		10 ————————————————————————————————————	ve Pa	1 rticle Size	(mm)		.1 x Hydr	ometer	0.01		0.001 Disclaime	.r-				
<i>л</i>												The test dat			sample provic	led only. This	report
ested by: ACianci		Date:	7/30/2020	Che	cked by:	ACi	anci	Date:	8/*	1/2020		Reviewed by:	JStotz		Date:	8/11/2020	

st Request #	DER K20-057			Lab	Sample ID:	KELO	202007236		Project Numbe	r.	2013	9391 (3000/		lethod B
ent: oject Name: urce: il Description:	Associated Engi Highway 95 - Kio	-	iver Bridge			NEE0	202007200		Project Locatio Sample Source Sample No.: Type: Depth (m):	n:		en, BC	·	17.68
ecimen Reference ecimen Description	NA NA			Specir	nen Depth	NA			Date of Test		8/5/2	020		
											Sieve		Hydro Sedime	meter entation
% Passing		29	1	58			13			Sieve No.	Particle Size mm	% Passing	Particle Size mm	% Passin
BOULDER CO	OBBLE GR/	AVEL		SAND			FINES (Silt, Clay)		1"	25	100.0		
BOOLDEIN	Coarse	Fine	Coarse	Medium	Fine		1 11 12 0 (ont, oldy)		3/4"	19	97.8		
100										1/2"	12.5	90.7		
100		\checkmark								3/8"	9.5	86.0		
90										#4	4.75	71.4		
										#10	2	58.1		
80		N								#20	0.85	45.8		
										#40	0.425	34.4		
, 70										#60	0.25	23.5		
60 50 40										#100	0.15	17.0		
										#140	0.105	15.0		
° 50				\mathbf{i}						#200	0.075	13.2		
40				-										Ļ
30					\mathbf{N}								_	
20													D60	2.26
20													D30	0.34
10						*							D10	
													Cu	<u> </u>
0		<u> </u>											Cc	
1000	100	10 —— Siev	e Par	1 ticle Size (mn		.1 ≭ − Hydr		.01	0.001					
otes:									Disclaimer The test data constitutes a	given herein		sample provid	led only. This	report
sted by: ACianci	Date:	8/5/2020	Chec	cked by:	ACianci Golde	Date: Associa		020	Reviewed by:	-	, -	Date:	8/11/2020	

GO GO	LDER								ASTM	D6913 lethod B
Test Request # Client: Project Name: Source: Soil Description:	K20-057 Associated Engineer Highway 95 - Kicking		Lab Sample ID: Jes	KELO202007239	Project Number Project Locatior Sample Source Sample No.: Type: Depth (m):	า:	Golde BH20 10 SS	9391 (3000/3 en, BC 0-01 26.21		26.82
Specimen Reference Specimen Description	NA NA		Specimen Depth	NA	Date of Test		7/30/	2020		
							Sieve		Hydro Sedime	
% Passing	49		41	10		Sieve No.	Particle Size mm	% Passing	Particle Size mm	% Passing
BOULDER	COBBLE GRAVEL	- Fine Coarse	SAND Medium Fine	FINES (Silt, Clay)		1" 3/4" 1/2"	25 19 12.5	100.0 94.9 81.4		
100 90 80 70 80 70 60 50 80 40 80 70 80 70 80 70 80 70 80 80 70 80 80 70 80 70 80 70 80 80 70 80 80 70 80 80 70 80 80 80 70 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80						3/8" #4 #10 #20 #40 #60 #100 #140 #200	9.5 4.75 2 0.85 0.425 0.25 0.15 0.105 0.075	73.0 51.2 34.4 24.2 18.6 14.7 12.0 11.0 9.8	D60 D30	6.28 1.38
10				► x					D10 Cu Cc	0.08 79.00 4.00
0 1000	100	10 → Sieve Pa	1 0 article Size (mm)	.1 0.01 * Hydrometer	0.001		I	<u> </u>		
Notes:					Disclaimer : The test data constitutes a t	given herein		sample provid	led only. This	report
Tested by: ACiar	nci Date: 7/3	30/2020 Che	e cked by: ACianci Golder	Date: 8/11/2020	Reviewed by:	JStotz		Date:	8/11/2020	
		590 Mo		wna, British Columbia, Canada, 50) 860 8424	V1Y 5A8			Rev5	6-14062020	

est Request # lient: roject Name: burce: bil Description:	ent: Associated Engineering oject Name: Highway 95 - Kicking Horse Rive urce: Il Description:				Sample ID:	KELO2020	072313	Project Nu Project Lo Sample So Sample No Type:	cation: ource: o.:			3300)	ethod B
becimen Reference	NA			Spaai	men Depth	NA		Depth (m) Date of Te		7/20	38.40	-	39.01
becimen Description	NA			Speci	men Depin	INA		Date of Te	551	1/23	2020		
										Sieve		Hydro Sedime	
% Passing		27		54			19		Sieve No.	Particle Size mm	% Passing	Particle Size mm	% Passin
BOULDER CO	BBLE	GRAVEL		SAND			FINES (Silt, Clay)	1"	25	100.0	0.0456	15
	(Coarse Fin	e Coa	irse Medium	Fine			,	3/4"	19	96.1	0.0325	14
100									1/2"	12.5	84.1	0.0208	11
									3/8"	9.5	81.8	0.0148	10
90									#4	4.75	72.8	0.0121	10
		\ \							#10	2	66.0	0.0087	8
80			\mathbb{N}						#20	0.85	60.4	0.0062	6
70									#40	0.425	50.2	0.0044	5
3 70									#60	0.25	34.3	0.0031	4
60									#100	0.15	24.6	0.0025	3
									#140	0.105	21.5		
[°] 50					∖				#200	0.075	19.2		
					\mathbf{N}								
60					$+\lambda$								
30												D60	0.83
20												D80	0.83
												D30	0.20
10							***					Cu	60.00
							***	*-**				Cc	4.00
0	100		0			4	0.01						
1000 tes:	100		0 — Sieve	Particle Size (mr		.1 * - Hydromet	0.01 er		imer: t data given her	sin pertain to the	sample provid	led only. This	report
									ites a testing se	vice only.			
sted by: ACianci	D	Date: 7/29/2	2020	Checked by:	ACianci	Date:	8/11/2020	Reviewed b	y: JStotz		Date:	8/11/2020	

GOLDER	

ASTM D6913 and ASTM D422

					1/0		_												_								_				0040	0004 (0000)		lethod B
st Requ	est	t #			K2										La	ab S	amp	ble I	D:		KEL	.020	2007	2316					Numbe			9391 (3000/	3300)	
ient: oject Na		. .					ated E ay 95 -				Div	or Drie	daoo															-	Locatio		Gold BH2	en, BC		
oject Na ource:	me	3.			пıg	jr ivva	ay 95 -	- NICI	ang r	lorse	RIV		uges															sample Sample	Source):	ын <u>и</u> 17	0-01		
																												ype:	NU		SS			
oil Descri	ipti	ion:																										Depth (i	m):		00	44.50	-	45.11
pecimen	Re	efere	ence		NA										Spe	cime	en D	ept	h		NA							Date of			8/7/2			-
pecimen	De	escri	ptio	n	NA	L																												
																															Sieve		Hydro	
																																1		entation
% Pa	ass	sing													55									45					_	Sieve No.	Particle Size mm	% Passing	Particle Size mm	% Passin
BOUL		D			BBLE			GRA	VEL						SAN	C									Silt, C	lovi				#10	2	100.0	0.0442	31
DOOL		.IX			DDLL		Coarse		Fi	ne		Coarse	е	Mec	lium			Fin	ie				1.11	120 (ont, c	лау)			_	#20	0.85	99.9	0.0318	28
100															_															#40	0.425	99.3	0.0207	21
100													Ī				$\overline{\}$													#60	0.25	94.0	0.0149	18
90 -										_			_					\										_	_	#100	0.15	73.5	0.0122	17
																														#140	0.105	58.3	0.0088	14
80 -			+	_						_	+		_				_	_\	.	+							_	_	_	#200	0.075	44.1	0.0063	10
																			V														0.0045	7
, 70 🕂												+ +-	_					+	\uparrow								-		-				0.0032	5
60 -																																	0.0026	4
																				۲														
"50 –										_	+		_				_			A								_	_					
j l																																		<u> </u>
60 - 60 - 60 - 60 - 60 - 60 - 60 - 60 -		++-	+-+								┼╂	+	_		++++	++		-			X	_							-					
30 -																				T		~											D60	0.11
20 -																							$\mathbf{\lambda}$						_				D80	0.11
-																								***									D30	0.04
10 🕂		+	+					$\left - \right $			┼╢		_		$\left \right \left \right $	+	_	_		+					H N	*	_	_	-		+		Cu	<u> </u>
																											**	:					Cc	
0 – 100	0				100					10				1).1					.01				. 001				00	
100	0				100	J				⊷ Si	ieve	F	Partic			nm)					– Hy	drom	neter	0	.01			Ľ	.001					
otes:																												Dise	laimer					
																															pertain to the	sample provid	led only. This	report
																														testing servi			,	•
ested by:	-		ACi	anci		ſ	Date:		8/7/2	2020		CI	heck	ed h	v:	AC	Cian	ci			Date	e:	8/	11/2)20		Re	viewec	bv:	JStotz		Date:	8/11/2020	
										•		51							iolde			iates		.,								· •		
												590 N				-																		

[+1] (250) 860 8424

st Request #	DEF K20-057	K		Lab	Sample ID:	KELO	2020072318		Project Numb	oer:	2013	9391 (3000/		D6913 lethod B
ent: oject Name: ource: il Description:	Associated	I Engineering 5 - Kicking Horse F	River Bridg		Gample ID.	KEEO2		1	Project Num Project Locat Sample Sour Sample No.: Type: Depth (m):	ion:		en, BC		1.83
ecimen Reference ecimen Description	NA NA			Speci	men Depth	NA			Date of Test		8/5/2	2020		
											Sieve		Hydro	
% Passing		50	-	41			9			Sieve No.	Particle Size mm	% Passing	Sedime Particle Size mm	Passin
BOULDER CO		GRAVEL		SAND				Silt, Clay)		1 1/2"	37.5	100.0		
BOOLDEIN	Coar	se Fine	Coarse	Medium	Fine		TINES	Siit, Ciay)		1"	25	97.1		
100 -		•								3/4"	19	84.8		
		$\overline{}$								1/2"	12.5	73.9		
90			_							3/8"	9.5	66.6		
										#4	4.75	49.7		
80		\								#10	2	34.0		
										#20	0.85	22.0		
70		\								#40	0.425	15.4		
60										#60	0.25	12.5		
										#100	0.15	10.6		
² 50			N							#140	0.105	9.9		
60 50 40										#200	0.075	9.0		
40							_							
2				\sim										
30				\mathbf{i}									Dee	
20											┨────		D60	7.25
20													D30	1.50
10							_						D10 Cu	0.11 66.00
													-	
0								<u> </u>					Сс	3.00
1000 otes:	100	10 ————————————————————————————————————	eve Pa	1 rticle Size (mr		0.1 ★── Hydro		.01	0.001 Disclaim	er:				
												sample provid	led only. This	report
									constitutes	a testing servi	ce only.			
sted by: ACianci	Date	: 8/5/2020	Che	cked by:	ACianci	Date:	8/11/2	020	Reviewed by:	JStotz		Date:	8/11/2020	
					Golde	r Associate	es							

est Request # lient: roject Name: ource: oil Description:	K20-057 Associated Engineering Highway 95 - Kicking Horse Ri	Lab Sample ID:	KELO2020072326	Project Number: Project Location: Sample Source: Sample No.: Type: Depth (m):		9391 (3000/3 en, BC D-02 13.41	3300)	14.02
pecimen Reference pecimen Description	NA	Specimen Depth	NA	Date of Test	8/5/2	020		
					Sieve		Hydro Sedime	
% Passing	62	31	7		Sieve Particle No. Size mm	% Passing	Particle Size mm	% Passin
BOULDER CO	BBLE GRAVEL Coarse Fine	SAND Coarse Medium Fine	FINES (Silt, Clay)		1/2" 37.5 1" 25 3/4" 19	100.0 91.7 81.8		
90					1/2" 12.5 3/8" 9.5 #4 4.75	65.6 54.8 37.8		
80					#10 2 #20 0.85 #40 0.425	25.5 19.8 15.9		
60				#	#60 0.25 \$100 0.15 \$140 0.105	12.0 9.1 8.1		
SEE 60					#200 0.075	7.1		
30							D60	10.80
10			•				D30 D10 Cu	2.74 0.18 62.00
0 1000	100 10 		.1 0.01 × Hydrometer	0.001			Cc	4.00
otes:				Disclaimer: The test data giver constitutes a testin	n herein pertain to the na service only.	sample provid	ed only. This	report
ested by: ACianci	Date: 8/5/2020	Checked by: ACianci	Date: 8/11/2020	Reviewed by: JSto		Date:	8/11/2020	

GOL	Р Е K20-05				1	.ab Sam		KELO	202007233	1	Pro	ject Numł	oor:	2013	9391 (3000/		D6913 lethod B
bit Request # roject Name: purce: pil Description:	Associa	ated Engineeri ay 95 - Kicking	-	iver Bridg		au San	טו פועו.	KELU2	02007233	I	Pro Sar Sar Typ	ject Locat nple Sour nple No.:	tion:		en, BC		26.97
becimen Reference	NA				Sp	ecimen	Depth	NA			Dat	e of Test		8/5/2	020		
pecimen Description	NA																
														Sieve		Hydro Sedime	
% Passing		38			53	3				9			Sieve No.	Particle Size mm	% Passing	Particle Size mm	% Passin
BOULDER CO	BBLE	GRAVEL			SAN	ND .			FINES	(Silt, Clay	<i>/</i>)		1 1/2"	37.5	100.0		
		Coarse F	ine	Coarse	Medium		Fine			(- , ,	/		1"	25	95.5		
100													3/4"	19	94.2		
													1/2" 3/8"	12.5 9.5	85.0 79.3		
90		\rightarrow											3/8 #4	4.75	61.9		
80													#10	2	45.7		
00													#20	0.85	31.8		
70			$- \lambda$										#40	0.425	21.3		
60													#60	0.25	14.8		
60				\mathbf{N}									#100	0.15	11.1		
2 50													#140	0.105	10.0		
													#200	0.075	9.0		
40					\mathbf{n}												
30																	<u> </u>
30						\setminus										D60	4.29
20																D30	0.76
																D10	
10								•*								Cu	
0																Сс	
1000	100	_	10 ← Siev	/e Pa	1 rticle Size ((mm)		.1 * H ydro		0.01		0.001					
otes:						,						Disclaim	er:				
												The test da	ata given hereir a testing servi		sample provid	led only. This	report
ested by: ACianci	D	Date: 8/5/	2020	Che	cked by:	ACia		Date: r Associate	8/11/	2020			JStotz		Date:	8/11/2020	

SOI GOI	LDER				PARTICL		ASTM	
Test Request # Client: Project Name: Source: Soil Description:	K20-057 Associated Engineering Highway 95 - Kicking Horse River B	Lab Sample ID: ridges	KELO2020072334	Project Number: Project Location: Sample Source: Sample No.: Type: Depth (m):		9391 (3000/ en, BC 0-02 35.51		36.12
Specimen Reference Specimen Description	NA	Specimen Depth	NA	Date of Test	8/5/2			
					Sieve		Hydro Sedime	
% Passing	24	49	27		Sieve Particle No. Size mm	% Passing	Particle Size mm	% Passing
	COBBLE GRAVEL Coarse Fine Coar	SAND rse Medium Fine	FINES (Silt, Clay)		1 1/2" 37.5 1" 25 3/4" 19	100.0 87.5 83.5		
90					1/2"12.53/8"9.5#44.75	82.0 78.6 76.0		
80					#10 2 #20 0.85 #40 0.425	74.3 73.1 70.4		
				#	#600.25#1000.15	63.3 44.1		
See 60					#140 0.105 #200 0.075	33.1 26.6		
30			X				D60	0.23
20							D30 D10	0.09
0							Cu Cc	
1000	100 10 → Sieve	10.1Particle Size (mm)*	0.01 — Hydrometer	0.001				
lotes:				Disclaimer: The test data give constitutes a testin	en herein pertain to the ng service only.	sample provid	ed only. This	report
Tested by: ACian	ci Date: 8/5/2020 (Checked by: ACianci Golder A	Date: 8/11/2020 Associates	Reviewed by: JSto		Date:	8/11/2020	
	590	McKay Avenue, Suite 300 Kelow		/1Y 5A8		Rev5	6-14062020	

est Request # lient: roject Name: ource: oil Description:	ent: Associated Engineering oject Name: Highway 95 - Kicking Horse River urce:			iver Bridge		Sample ID:	KELO202	20072336	Project Numbe Project Locatio Sample Source Sample No.: Type: Depth (m):	n:		9391 (3000/ en, BC)-02 41.61	3300)	lethod B 42.21
pecimen Reference pecimen Descriptio					Specin	nen Depth	NA		Date of Test		7/29/	2020		
											Sieve		Hydro Sedime	
% Passing			2		65			33		Sieve	Particle	% Passing	Particle	%
		G	RAVEL	Т	SAND					No. 3/4"	Size mm 19	100.0	Size mm 0.0454	Passin 23
BOULDER	COBBLE	Coarse	Fine	Coarse	Medium	Fine	_	FINES (Silt, Clay)		1/2"	12.5	98.8	0.0434	23
		oouloo	1		Modium					3/8"	9.5	98.8	0.0206	19
100										#4	4.75	98.8	0.0148	16
90						<				#10	2	98.0	0.0121	15
30										#20	0.85	96.9	0.0087	12
80										#40	0.425	92.5	0.0062	9
										#60	0.25	78.3	0.0045	7
70						\vdash				#100	0.15	53.6	0.0032	5
										#140	0.105	41.5	0.0026	4
≥ 60										#200	0.075	33.4		
60						<u> </u>								
						$ \rangle$								
u 40						<u> </u>								
<u></u>							N							
30													Dee	0.47
20												 	D60	0.17
20								***					D30 D10	0.06
10								***					Cu	0.01 24.00
									∽ * *				Cu	3.00
0 1000	100		10 ——Siev	/e Par	1 rticle Size (mm		.1 x H ydrom	0.01 eter	0.001					0.00
otes:									Disclaimer	:				
									The test data	given herein	pertain to the	sample provid	ded only. This	report
									constitutes a	testing servic	ce only.			
ested by: AC	ianci	Date:	7/29/2020	Cho	cked by: A	Cianci	Date:	8/11/2020	Reviewed by:	IStotz		Date:	8/11/2020	

GC) L D	ER

ASTM D6913 and ASTM D422

umber: ocation: ource: o.: : est Sieve No. #10	Gold BH2 24 SS 7/29 Sieve Particle	39391 (3000 len, BC 20-02 47.70 9/2020		48.31
ource: o.: : est Sieve No. #10	BH2 24 SS 7/29 Sieve Particle	20-02 47.70	_	48.31
o.: : est Sieve No. #10	24 SS 7/29 Sieve Particle	47.70	_	48.31
: est Sieve No. #10	SS 7/29 Sieve Particle		_	48.31
Sieve No. #10	7/29 Sieve Particle		_	48.31
Sieve No. #10	Sieve Particle		_	40.31
Sieve No. #10	Sieve Particle	9/2020	I Unite	
No. #10	Particle		Liberter	
No. #10	Particle		L la color d	
No. #10				ometer entation
	Size mm	% Passing	Particle Size mm	% Passing
	2	100.0	0.0430	40
#20	0.85	100.0	0.0309	36
#40	0.425	99.8	0.0199	31
#60	0.25	96.7	0.0142	28
#100			0.0117	25
#140			0.0084	20
#200	0.075	56.3		17
				13
				10
	_	_	0.0025	8
				<u> </u>
			D60	0.08
			D30	0.02
			D10	
			Cc	
01				
aimer:				
t data given hereir		e sample provi	ded only. This	report
-	ice only.	Date:	8/11/2020	
ຄ	#60 #100 #140 #200 	#60 0.25 #100 0.15 #140 0.105 #200 0.075	#60 0.25 96.7 #100 0.15 82.5 #140 0.105 70.4 #200 0.075 56.3	#60 0.25 96.7 0.0142 #100 0.15 82.5 0.0117 #140 0.105 70.4 0.0084 #200 0.075 56.3 0.0061 0.0031 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.001 0.0025 0.001 0.0025 0.001 aimer: st data given herein pertain to the sample provided only. This uses a testing service only.

[+1] (250) 860 8424

est Request # ient: roject Name: purce: bil Description:	K20-057 Associated Engineering Highway 95 - Kicking Horse Ri	Lab Sample ID: ver Bridges	KELO2020072345	Project Number: Project Location: Sample Source: Sample No.: Type: Depth (m):	Gold	39391 (3000/3 en, BC 0-03 2.59	3300) -	3.20
becimen Reference	NA NA	Specimen Depth	NA	Date of Test	8/6/2	2020		
					Sieve		Sedime	meter
% Passing	57	35	8		Sieve Particle No. Size mm	% Passing	Particle Size mm	% Passin
BOULDER CC	BBLE GRAVEL Coarse Fine	SAND Coarse Medium Fine	FINES (Silt, Clay)		1 1/2" 37.5 1" 25	100.0 90.0		
100					3/4" 19	82.2		
					1/2" 12.5	67.8		
90					3/8" 9.5 #4 4.75	58.7 42.6		
					#4 4.75 #10 2	42.6 30.5		
80						22.6		
70					#20 0.85 #40 0.425	16.8		
					#40 0.425 #60 0.25	10.8		
60					#100 0.25 #100 0.15	9.9		
					#140 0.105	9.9 8.8		
2 50 					#140 0.105 #200 0.075	0.0 7.7		
					#200 0.075	1.1		
40						_		
						-		<u> </u>
30							D60	9.88
20							D30	1.89
							D10	0.15
10							Cu	65.0
							Сс	2.00
0 1000	100 10	1 C	0.01	0.001				
1000	Siev		Hydrometer	0.001				
otes:				Disclaimer: The test data give constitutes a testi	en herein pertain to the	e sample provid	led only. This	report
sted by: ACianci	Date: 8/6/2020	Checked by: ACianci	Date: 8/11/2020	Reviewed by: JSi		Date:	8/11/2020	

-					Lab Sample ID:			KELO2020072348				Project Sampl	Number Locatior	า:	20139391 (3000 Golden, BC BH20-03			D6913 lethod B
ource: oil Description:								Type:	Sample No.: Type: Depth (m):		6 SS 7.16		-	7.77				
Specimen Reference NA Specimen Description NA				Sp	ecimen	Depth	NA				Date o	f Test		8/6/2	020			
													[Sieve		Hydro Sedime	
% Passing			19		7:	72			9					Sieve	Particle Size mm	% Passing	Particle	% Passing
		GR	RAVEL		SAN	חו							-	No. 3/4"	19	100.0	Size mm	Passing
BOULDER CO	OBBLE	Coarse	Fine	Coarse	Medium		Fine	_	F	INES (Si	lt, Clay)		ŀ	1/2"	12.5	96.6		
I		000.00			modium								-	3/8"	9.5	94.5		
100														#4	4.75	81.3		
90														#10	2	61.9		
														#20	0.85	42.8		
80				\mathbb{N}									-	#40	0.425	25.2		
70														#60	0.25	15.2		
70														#100 #140	0.15 0.105	11.1 10.1		
60													_	#200	0.105	8.9		
														11200	0.070	0.0		
° 50													-1					
40					N													
30						\setminus							- [
20																	D60	1.84
20																	D30	0.51
10								┝╈┼					_				D10 Cu	0.10
																	Cc	1.00
0	100		10		1			.1		0.0	1		! L 0.001					
otes:	100		Sie	ve Pa	article Size	(mm)		 Hyd	rometer		·	Dis	claimer					
														given herein testing servio		sample provid	ied only. This	report
ested by: ACianci		Date:	8/6/2020	Che	ecked by:	ACia	anci	Date	÷ ۶	8/11/202	20	Reviewe		JStotz		Date:	8/11/2020	
Auditor		Date.	0,0,2020		inca by.	100		r Associa		" i i/202		110 110 100	- ~y.			Duto.	5/11/2020	

est Request #	DER K20-057	Lab Sample ID: KELO2020072355 Project Number							r:	2013	9391 (3000/		lethod B	
ient: oject Name: purce: bil Description:	Associated Engineering Highway 95 - Kicking Horse River Bridges					ni lo	2020012000		Project Locatio Sample Source Sample No.: Type: Depth (m):	n:	Golden, BC BH20-03 13 SS 21.34			21.92
ecimen Reference	NA			Specir	nen Depth	NA			Date of Test		8/6/2	020		
ecimen Description	NA													
											Sieve		Hydro Sedime	
% Passing 51				38			11			Sieve No.	Particle Size mm	% Passing	Particle Size mm	% Passin
		GRAVEL		SAND						1 1/2"	37.5	100.0		
BOULDER CO	OBBLE Coarse	Fine	Coarse	Medium	Fine		FINES (S	silt, Clay)		1"	25	95.7		
100										3/4"	19	90.7		
100										1/2"	12.5	75.4		
90										3/8"	9.5	69.3		
										#4	4.75	49.1		
80		· · · \ · · · · · ·								#10	2	33.0		
		│								#20	0.85	24.2		
70		X								#40	0.425	19.6		
										#60	0.25	16.3		
60										#100	0.15	13.5		
2 50										#140	0.105	12.5		
										#200	0.075	10.8		
30				\searrow									D60	6.90
20													D30	1.49
													D10	
10						*							Cu	
0													Cc	
1000	100	10 —— Sie	-	1		.1 × Hydro	0.	01	0.001					-
			ve Pa	rticle Size (mn	n) —	- Tiyun	Jinetei							
otes:									Disclaimer The test data constitutes a	given herein		sample provid	led only. This	report
sted by: ACianci	Date:	8/6/2020	Che	cked by:	ACianci Golder	Date: Associat	8/11/20	20	Reviewed by:	JStotz		Date:	8/11/2020	

GOLDER Test Request # K20-057 Lab Sample ID: KELO2020072359									59		Project Numb	er:	2013	9391 (3000/		lethod B
ient: roject Name: purce: pil Description:	Associated Engineering ame: Highway 95 - Kicking Horse River Bridges				an oump	NEEC	KELO2020072359			Project Locati Sample Source Sample No.: Type: Depth (m):	on:	Golden, BC BH20-03 17 SS 33.53			34.14	
ecimen Reference	NA			Spe	cimen De	epth	NA				Date of Test		8/6/2	020		
															Lhudna	
													Sieve		Hydrometer Sedimentation	
% Passing 45				43					12			Sieve No.	Particle Size mm	% Passing	Particle Size mm	% Passin
BOULDER CO	OBBLE GRA	VEL		SAN				FINE	S (Silt, Cla	iv)		1 1/2"	37.5	100.0		
	Coarse	Fine	Coarse	Medium		Fine				.,		1"	25	94.4		┝──
100												3/4" 1/2"	19 12.5	89.3 80.8		
												3/8"	9.5	72.5		<u> </u>
90												#4	4.75	55.2		
80												#10	2	39.1		
		N										#20	0.85	27.5		
70						_				++-		#40	0.425	20.6		
00												#60	0.25	16.8		
60												#100	0.15	14.4		
² 50			\mathbb{N}									#140	0.105	13.6		
60 50 40												#200	0.075	12.2		
40																
30																
50															D60	5.76
20															D30	1.02
						`	- *								D10	
10															Cu	
0															Cc	
1000	100	10 —— Siev	ve Pa	1 rticle Size (r	nm)	0.	.1 ≭── Hydr	ometer	0.01		0.001					
otes:											Disclaime					
												a given herein a testing servio		sample provid	led only. This	report
sted by: ACianci	Date:	8/6/2020	Che	cked by:	ACiand	;i	Date:	8/11	/2020	F	Reviewed by:	-		Date:	8/11/2020	
÷				-			Associa				-					

)LD											D6913 ar	Μ	D422 ethod B
Test Request # K20-057 Client: Associated Engineering Project Name: Highway 95 - Kicking Horse River Bridg Source: Soil Description:				o Sample ID:	KELO20	20072361	Project Numbe Project Locatio Sample Source Sample No.: Type: Depth (m):	n:		39391 (3000/ en, BC D-03 39.62		40.23		
becimen Reference becimen Descriptio					Spec	imen Depth	NA		Date of Test		7/29/	/2020		
											Sieve		Hydro Sedime	
% Passing		0			70			30		Sieve No.	Particle Size mm	% Passing	Particle Size mm	% Passin
BOULDER	COBBLE	G	RAVEL		SAND			FINES (Silt, Clay)		3/8"	9.5	100.0	0.0458	21
BOOLDER	COBBLE	Coarse	Fine	Coarse	Medium	Fine		FINES (SIII, Clay)		#4	4.75	99.7	0.0326	19
100										#10	2	99.0	0.0207	18
100										#20	0.85	96.5	0.0148	15
90										#40	0.425	89.5	0.0122	13
						$ \lambda $				#60	0.25	70.2	0.0087	11
80										#100	0.15	46.4	0.0062	9
										#140	0.105	36.5	0.0044	7
70						∖				#200	0.075	29.6	0.0032	4
													0.0026	3
§ 60														
60														
						\								
<u>40</u>														
۹														
30													D aa	
20													D60	0.20
20								∽∗_					D30	0.08
10								**					D10	0.01
								*	₩ *				Cu	27.0
0	1				<u> </u> , ,								Сс	4.00
1000 otes:	100		10 —— Sie	ve Pa	1 rticle Size (m	m)	.1 × Hydron	0.01 neter		given herein		sample provid	ed only. This	report
		D (7/00/0000	~		10 ¹	Def	0/44/0000	constitutes a	U U	e oniy.	Data	044/0000	
ested by: AC	ianci	Date:	7/29/2020	Che	cked by:	ACianci	Date:	8/11/2020	Reviewed by:	JStotz		Date:	8/11/2020	
						Golder	Associate	s I Columbia, Canada						

GOLDER

PARTICLE SIZE DISTRIBUTION

ASTM D6913 and ASTM D422

est Request # ient: roject Name:		ociated En	igineering Kicking Horse R	iver Bridg		Sample ID:	KELO202	0072364	Project Numbe Project Locatio Sample Source	n:	Golde BH20	9391 (3000/ en, BC)-03	3300)	
ource:									Sample No.:		22			
oil Description:									Type: Depth (m):		SS	48.77	-	49.38
becimen Reference	NA				Specim	ien Depth	NA		Date of Test		7/29/	2020		
becimen Descriptior	n NA													
											Sieve			ometer entation
% Passing					47		-	53		Sieve No.	Particle Size mm	% Passing	Particle Size mm	% Passir
BOULDER	COBBLE	G	RAVEL		SAND			FINES (Silt, Clay)		#10	2	100.0	0.0433	38
	0000000	Coarse	Fine	Coarse	Medium	Fine		· · · · · · · · · · · · · · · · · · ·		#20	0.85	99.8	0.0312	32
100					•					#40	0.425	99.3	0.0201	28
100										#60	0.25	92.4	0.0144	24
90						` \				#100	0.15	76.4	0.0119	20
										#140	0.105	64.3	0.0085	18
80										#200	0.075	52.3	0.0061	13
70													0.0044	10
													0.0031	6 6
⁸ 60 −−−−−													0.0025	0
δ.							N							
60														
30								×					D60	0.09
20								* ↓					D30	0.02
													D10	<u> </u>
10													Cu	
0													Сс	1
1000	100		10 ————————————————————————————————————	'e Pa	1 article Size (mm) -	.1 × Hydrome	0.01 ter	0.001		-	-		
tes:									Disclaimer					
										given herein	•	sample provid	led only. This	report
ested by: ACi	anci	Date:	7/29/2020	Ch	ecked by: A	Cianci	Date:	8/11/2020	Reviewed by:	JStotz		Date:	8/11/2020	

590 McKay Avenue, Suite 300 Kelowna, British Columbia, Canada, V1Y 5A8

[+1] (250) 860 8424

est Request # lient: roject Name: ource: oil Description:	K20-057 Associated Engineering Highway 95 - Kicking Horse R	Lab Sample ID: ver Bridges	KELO2020072370	Project Number: Project Location: Sample Source: Sample No.: Type: Depth (m):		9391 (3000/3 en, BC D-04 9.60		10.21
pecimen Reference pecimen Description	NA NA	Specimen Depth	NA	Date of Test	8/6/2	020		
					Sieve		-	ometer entation
% Passing	18	72	10		Sieve Particle No. Size mm	% Passing	Particle Size mm	% Passing
	BBLE GRAVEL Coarse Fine	SAND Coarse Medium Fine	FINES (Silt, Clay)		1" 25 3/4" 19 1/2" 12.5	100.0 97.5 90.9		
100 90 80 70 60 50 40 30 20 10 0					3/8" 9.5 #4 4.75 #10 2 #20 0.85 #40 0.425 #60 0.25 #100 0.15 #140 0.105 #200 0.075	88.6 82.4 76.0 64.8 46.1 24.3 13.9 12.2 10.2	D60 D30 D10 Cu Cc	0.71
1000 otes:	100 <u>10</u> → Siev	e Particle Size (mm)	.1 0.01 × Hydrometer	0.001 Disclaimer: The test data give	en herein pertain to the	sample provide	ed only. This	report
ested by: ACianci	Date: 8/6/2020	Checked by: ACianci	Date: 8/11/2020	constitutes a test		Date:	8/11/2020	

PARTICI E SIZE DISTRIBUTION

st Request # ent: oject Name: urce: il Description:	Associated Engineering Highway 95 - Kicking Horse River Bridges						ted Engineering Project L y 95 - Kicking Horse River Bridges Sample S Sample N Type:		: Golden, BC				16.31
ecimen Reference ecimen Description	NA NA		Specimen Depth	NA		Date of Test		8/6/2	020				
						[Sieve		Hydro Sedime	ntation		
% Passing	44		44		12		Sieve No.	Particle Size mm	% Passing	Particle Size mm	% Passin		
	GRAVEL		SAND				1 1/2"	37.5	100.0	0120 11111	1 40011		
BOULDER CC	DBBLE Coarse Fine	Coarse Medi		FIՒ	IES (Silt, Clay)	-	1"	25	91.9				
· · · ·			•	•			3/4"	19	91.9				
100							1/2"	12.5	80.2				
90	<u> </u>						3/8"	9.5	74.1				
							#4	4.75	55.6				
80	_						#10	2	40.6				
							#20	0.85	29.5				
70							#40	0.425	23.3				
<u> </u>		N					#60	0.25	19.8				
60		N					#100	0.15	16.2				
² 50							#140	0.105	14.2				
60 50 40							#200	0.075	11.8				
40													
2													
30										DCO	5.00		
20										D60	5.60		
										D30 D10	0.88		
10				*					╂────┤	Cu			
										Cc			
0 1000	100 10	1		1	0.01					•••			
1000			0. ze (mm)	. I x – Hydrometer	0.01	0.001							
tes:						Disclaimer: The test data g constitutes a te			sample provid	ed only. This	report		
sted by: ACianci	Date: 8/6/2020	Checked b	y: ACianci	Date: 8/	11/2020		IStotz		Date:	8/11/2020			

PARTICLE SIZE DISTRIBUTION

urce:	K20-057 Associated Engineering Highway 95 - Kicking Horse River Bridges			b Sample ID:	KELO20	20072377		Project Numbe Project Locatio Sample Sourc	on:		9391 (3000/ en, BC 0-04	3300)	lethod B		
I Description:									Sample No.: Type: Depth (m):		13 SS	24.84	-	25.45	
ecimen Reference ecimen Description	NA NA				Spe	cimen Depth	NA			Date of Test		8/6/2	020		
												Sieve		Hydro Sedime	
% Passing		28			57			16			Sieve	Particle	% Passing	Particle	%
		GRAVE	=1	1	SANI	<u></u>					No. 1 1/2"	Size mm 37.5	100.0	Size mm	Passing
BOULDER CO	DBBLE	Coarse	Fine	Coarse	Medium	Fine		FINES (Silt	Clay)		1"	25	98.0		<u> </u>
		oouloo	1	1	moulum						3/4"	19	93.4		
100											1/2"	12.5	90.4		
90			<u> </u>								3/8"	9.5	85.6		
											#4	4.75	72.2		
80			$- \lambda$								#10	2	58.4		
											#20	0.85	47.8		
70				\mathbb{N}							#40	0.425	38.1		
60											#60	0.25	26.7		ļ
											#100	0.15	19.5		
50					\mathbf{N}						#140	0.105	17.8		
60 50 40											#200	0.075	15.7		
40															
30															┣───
30														D60	2.21
20														D30	0.29
							1*							D10	0.20
10														Cu	1
0														Сс	
1000	100		10		1	().1	0.01		0.001					
			Siev	/e Par	ticle Size (n		+			0.001					
tes:													sample provic	led only. This	report
sted by: ACianci		Date: 8/	/6/2020	Cheo	cked by:	ACianci	Date:	8/11/2020				-	Date:	8/11/2020	

CERTIFICATE OF ANALYSIS

REPORTED TO	Golder Associates Ltd. (Kelowna) 590 McKay Avenue, Suite 300 Kelowna, BC V1Y 5A8		
ATTENTION	Jason Stotz	WORK ORDER	0072495
PO NUMBER PROJECT PROJECT INFO	20139391/3000/3300 20139391/3000/3300 Hwy 95 - Kicking Horse River Bridges	RECEIVED / TEMP REPORTED COC NUMBER	2020-07-24 15:27 / 25°C 2020-08-26 14:23 B47846

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO/IEC 17025:2017 for specific tests listed in the scope of accreditation approved by CALA.

Big Picture Sidekicks

You know that the sample you collected after snowshoeing to site, digging 5 meters, and racing to get it on a plane so you can submit it to the lab for time sensitive results needed to make important and expensive decisions (whew) is VERY important. We know that too. It's simple. We figure the more you

We've Got Chemistry

enjoy working with our fun and engaged team members; the more likely you are to give us continued opportunities to support you.

32

Ahead of the Curve

Through research, regulation knowledge, and instrumentation, we are your analytical centre the for technical knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

If you have any questions or concerns, please contact me at acrump@caro.ca

Authorized By:

Alana Crump Team Lead, Client Service

1-888-311-8846 | www.caro.ca

#110 4011 Viking Way Richmond, BC V6V 2K9 | #102 3677 Highway 97N Kelowna, BC V1X 5C3 | 17225 109 Avenue Edmonton, AB T5S 1H7

TEST RESULTS

REPORTED TO PROJECT	Golder Associate 20139391/3000/	es Ltd. (Kelowna) 3300		WORK ORDER REPORTED	0072495 2020-08-2	6 14:23
Analyte		Result	RL	Units	Analyzed	Qualifie
BH20-01 SA1 3'-5	5' (0072495-01) M	atrix: Soil Sampled: 2020-07-24				
General Parameter	'S					
Sulfate, Water-So	luble	< 0.050	0.050	%	2020-07-30	
Chloride, Water-S	oluble	0.015	0.002	%	2020-08-05	
BH20-01 SA3 16'	-18' (0072495-02)	Matrix: Soil Sampled: 2020-07-24				
General Parameter	'S					
Sulfate, Water-So	luble	< 0.050	0.050	%	2020-07-30	
Chloride, Water-S	oluble	0.002	0.002	%	2020-08-05	
Sulfate, Water-So Chloride, Water-S		< 0.050 0.004	0.050 0.002		2020-07-30 2020-08-05	
BH20-02 SA5 19'	-21' (0072495-04)	Matrix: Soil Sampled: 2020-07-24				
General Parameter	s					
	luble	< 0.050	0.050	%	2020-07-30	
Sulfate, Water-So	lubic					
Chloride, Water-So		< 0.002	0.002	%	2020-08-05	
Chloride, Water-S	oluble	< 0.002 atrix: Soil Sampled: 2020-07-24		%	2020-08-05	
Chloride, Water-S BH20-04 SA1 1'-2	oluble '' (0072495-05) M			%	2020-08-05	
Chloride, Water-S BH20-04 SA1 1'-2	oluble !' (0072495-05) M s				2020-08-05	
Chloride, Water-S 3H20-04 SA1 1'-2 General Parameter	oluble '' (0072495-05) M ' s luble	atrix: Soil Sampled: 2020-07-24	0.002	%		
Chloride, Water-S BH20-04 SA1 1'-2 General Parameter Sulfate, Water-So	oluble '' (0072495-05) M ' s luble	atrix: Soil Sampled: 2020-07-24 < 0.050	0.002	%	2020-08-25	
Chloride, Water-S BH20-04 SA1 1'-2 General Parameter Sulfate, Water-So Chloride, Water-S Sulfide, Total	oluble '' (0072495-05) M ' s luble	<pre>atrix: Soil Sampled: 2020-07-24 < 0.050 < 0.002 < 0.50</pre>	0.002	%	2020-08-25 2020-08-23	

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TO	Golder Associates Ltd. (Kelowna)
PROJECT	20139391/3000/3300

 WORK ORDER
 0072495

 REPORTED
 2020-08-26 14:23

Analysis Description	Method Ref.	Technique Accredite	d Location
Chloride, Water Soluble in Soil	ASTM C1218-97	Hot Water Extraction / Hot Water Extraction	Richmond
Sulfate, Water-Soluble in Soil	CSA A23.2-3B / CSA A23.2-2B	Extraction (HCI) / Gravimetry (Barium Sulfate Precipitation)	Richmond
Sulfide, Total in Soil	SM 4500-S2 D* (2017)	Colorimetry (Methylene Blue)	Sublet

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Glossary of Terms:

-	
RL	Reporting Limit (default)
%	Percent
<	Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors
mg/kg dry	Milligrams per kilogram (dry weight basis)
ASTM	ASTM International Test Methods
CSA	Canadian Standards Association Chemical Test Methods
SM	Standard Methods for the Examination of Water and Wastewater, American Public Health Association

General Comments:

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued unless otherwise agreed to in writing.

Please note any regulatory guidelines applied to this report are added as a convenience to the client, at their request, to help provide some initial context to analytical results obtained. Although CARO makes every effort to ensure accuracy of the associated regulatory guideline(s) applied, the guidelines applied cannot be assumed to be correct due to a variety of factors and as such CARO Analytical Services assumes no liability or responsibility for the use of those guidelines to make any decisions. The original source of the regulation should be verified and a review of the guideline (s) should be validated as correct in order to make any decisions arising from the comparison of the analytical data obtained to the relevant regulatory guideline for one's particular circumstances. Further, CARO Analytical Services assumes no liability or responsibility for any loss attributed from the use of these guidelines in any way.

APPENDIX 2: QUALITY CONTROL RESULTS

REPORTED TO	Golder Associates Ltd. (Kelowna)	WORK ORDER	0072495
PROJECT	20139391/3000/3300	REPORTED	2020-08-26 14:23

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): A blank sample that undergoes sample processing identical to that carried out for the test samples. Method blank results are used to assess contamination from the laboratory environment and reagents.
- **Duplicate (Dup)**: An additional or second portion of a randomly selected sample in the analytical run carried through the entire analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples, also referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliquot of sample is fortified with with a known concentration of target analytes and carried through the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- **Reference Material (SRM)**: A homogenous material of similar matrix to the samples, certified for the parameter(s) listed. Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
General Parameters, Batch B0G2575									
Blank (B0G2575-BLK1)			Prepared	: 2020-07-29), Analyze	d: 2020-0	07-30		
Sulfate, Water-Soluble	< 0.050	0.050 %							
Duplicate (B0G2575-DUP1)	Sou	rce: 0072495-02	Prepared	: 2020-07-29), Analyze	d: 2020-0	07-30		
Sulfate, Water-Soluble	< 0.050	0.050 %		< 0.050				19	
Matrix Spike (B0G2575-MS1)	Sou	rce: 0072495-04	Prepared	: 2020-07-29), Analyze	d: 2020-0	07-30		
Sulfate, Water-Soluble	0.624	0.050 %	0.667	< 0.050	94	63-117			
General Parameters, Batch B0H0149									
Blank (B0H0149-BLK1)			Prepared	: 2020-08-04	1, Analyze	d: 2020-0	08-05		
Chloride, Water-Soluble	< 0.002	0.002 %							
Duplicate (B0H0149-DUP1)	Sou	ırce: 0072495-01	Prepared	: 2020-08-04	1, Analyze	d: 2020-0	08-05		
Chloride, Water-Soluble	0.018	0.002 %		0.015			18		
General Parameters, Batch B0H1638									
Blank (B0H1638-BLK1)			Prepared	: 2020-08-20), Analyze	d: 2020-0	08-23		
Chloride, Water-Soluble	< 0.002	0.002 %							
Duplicate (B0H1638-DUP1)	Sou	irce: 0072495-05	Prepared	: 2020-08-20), Analyze	d: 2020-0	08-23		
Chloride, Water-Soluble	0.003	0.002 %		< 0.002					
General Parameters,Batch B0H1937									
Blank (B0H1937-BLK1)			Prepared	: 2020-08-23	3, Analyze	d: 2020-0	08-25		
Sulfate, Water-Soluble	< 0.050	0.050 %							

wsp

WSP CANADA INC.

100-20339 96 Avenue Langley, BC V1M 0E4 T: 604.533.2992

Client:CAROProject:Laboratory TestingWO#:0072495

File No.:201-03094-00Task:11

Sampled By: Client Tested By: ARP Date Sampled: 2020-07-24 Date Tested: 2020-08-22

BH20-04 SA1 1'-2' (0072495-05) | Matrix: Soil | Sampled: 2020-07-24

Sample ID	ASSHTO T288 Resistivity (ohm-cm)	ASSHTO T289 pH	ASTM G200 Redox (mV)	ASTM D2216 Moisture Content (%)	Soil Description
0072495-05	1304	7.5	230	23.5	brown silty sand & gravel

Sample tested in as received condition.

WSP Canada Inc.

Per:

Anton Parsons, AScT.

APPENDIX C

Seismic Hazard Calculation (NBCC 2015)

2015 National Building Code Seismic Hazard Calculation

INFORMATION: Eastern Canada English (613) 995-5548 français (613) 995-0600 Facsimile (613) 992-8836 Western Canada English (250) 363-6500 Facsimile (250) 363-6565

Site: 51.298N 116.963W

User File Reference: Highway 95 - Kicking Horse River Bridges 2020-07-22 18:11 UT

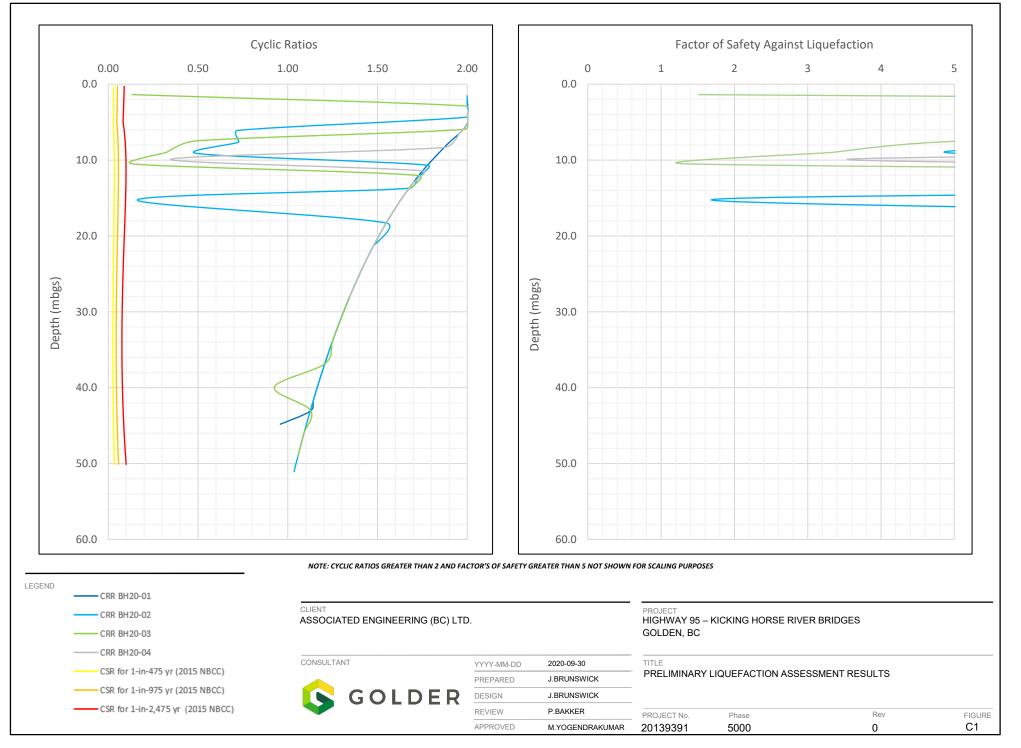
Requested by: Golder Associates Ltd.

Probability of exceedance per annum	0.000404	0.001	0.0021	0.01
Probability of exceedance in 50 years	2 %	5 %	10 %	40 %
Sa (0.05)	0.150	0.085	0.050	0.012
Sa (0.1)	0.226	0.128	0.075	0.018
Sa (0.2)	0.263	0.153	0.093	0.025
Sa (0.3)	0.234	0.140	0.087	0.025
Sa (0.5)	0.174	0.103	0.064	0.020
Sa (1.0)	0.094	0.057	0.037	0.013
Sa (2.0)	0.046	0.029	0.020	0.007
Sa (5.0)	0.018	0.011	0.007	0.002
Sa (10.0)	0.006	0.004	0.003	0.001
PGA (g)	0.120	0.069	0.041	0.010
PGV (m/s)	0.098	0.060	0.039	0.013

Notes: Spectral (Sa(T), where T is the period in seconds) and peak ground acceleration (PGA) values are given in units of g (9.81 m/s²). Peak ground velocity is given in m/s. Values are for "firm ground" (NBCC2015 Site Class C, average shear wave velocity 450 m/s). NBCC2015 and CSAS6-14 values are highlighted in yellow. Three additional periods are provided - their use is discussed in the NBCC2015 Commentary. Only 2 significant figures are to be used. These values have been interpolated from a 10-km-spaced grid of points. Depending on the gradient of the nearby points, values at this location calculated directly from the hazard program may vary. More than 95 percent of interpolated values are within 2 percent of the directly calculated values.

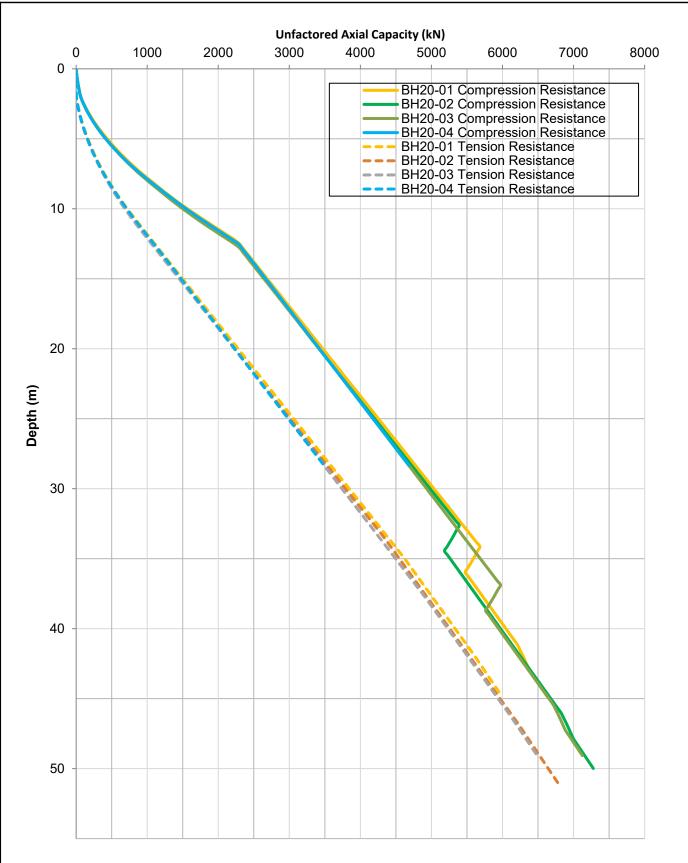
References

National Building Code of Canada 2015 NRCC no. 56190; Appendix C: Table C-3, Seismic Design Data for Selected Locations in Canada


Structural Commentaries (User's Guide - NBC 2015: Part 4 of Division B) Commentary J: Design for Seismic Effects

Geological Survey of Canada Open File 7893 Fifth Generation Seismic Hazard Model for Canada: Grid values of mean hazard to be used with the 2015 National Building Code of Canada

See the websites www.EarthquakesCanada.ca and www.nationalcodes.ca for more information



APPENDIX D

Axial Pile Capacity Plots

CLIENT

ASSOCIATED ENGINEERING (BC) LTD.

CONSULTANT

S GOLDER

YYYY-MM-DD 2020-09-30 PREPARED J.BRUNSWICK DESIGN J.BRUNSWICK REVIEW P.BAKKER APPROVED M.YOGENDRAKUMAR

PROJECT

PROJECT No

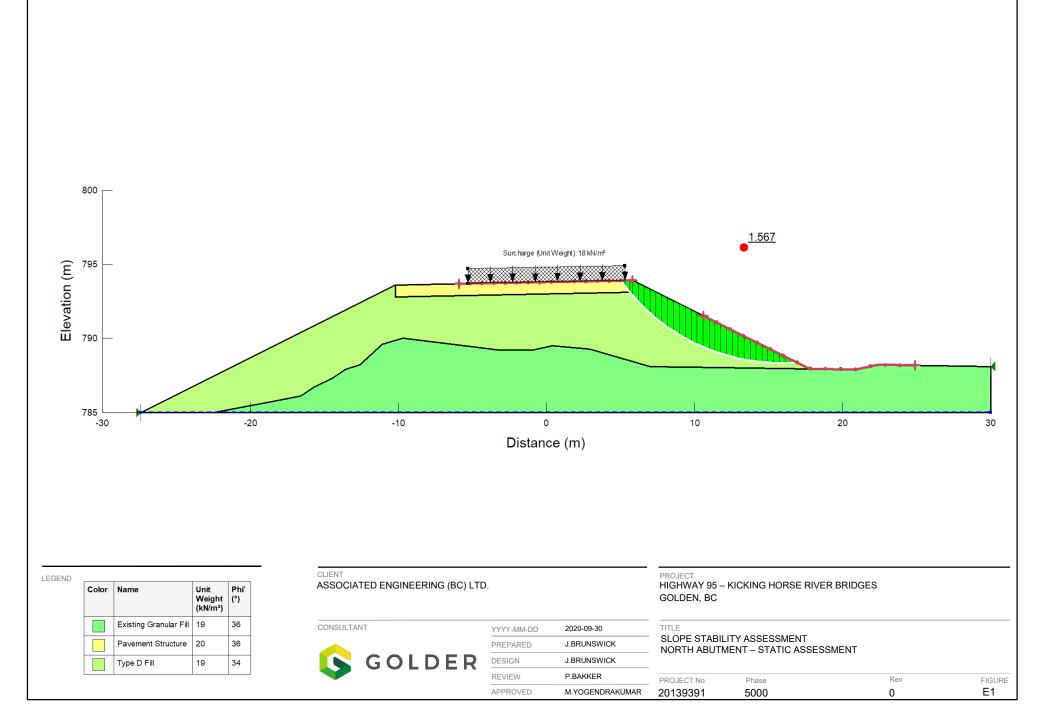
20139391

HIGHWAY 95 – KICKING HORSE RIVER BRIDGES GOLDEN, BC

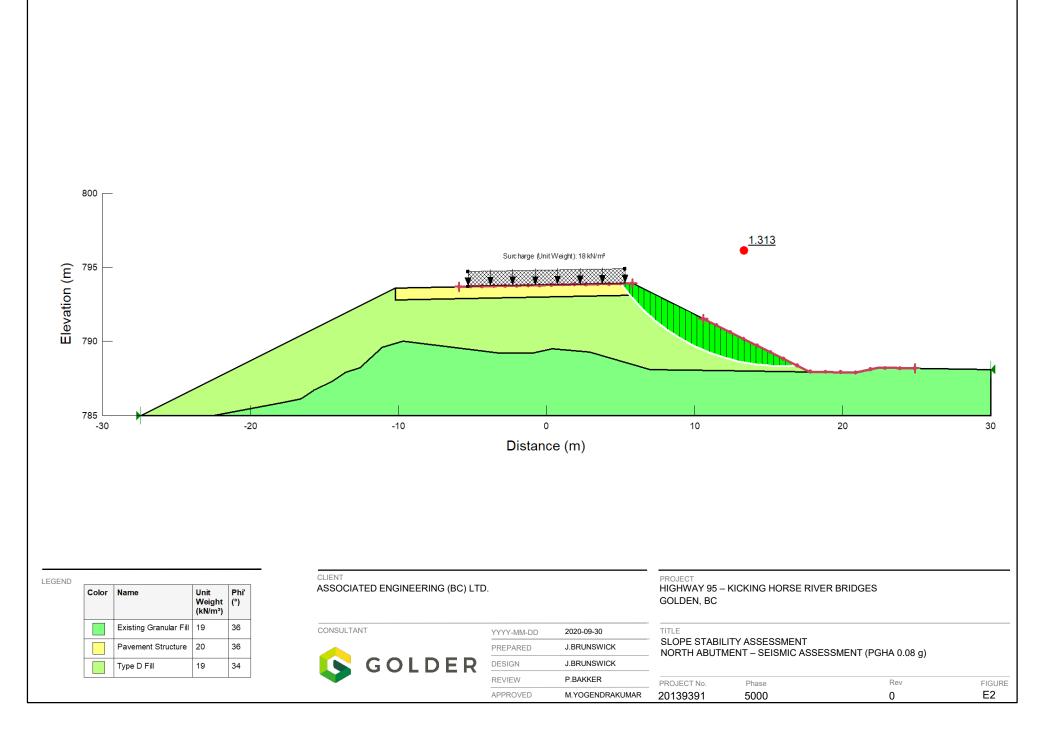
PHASE

5000

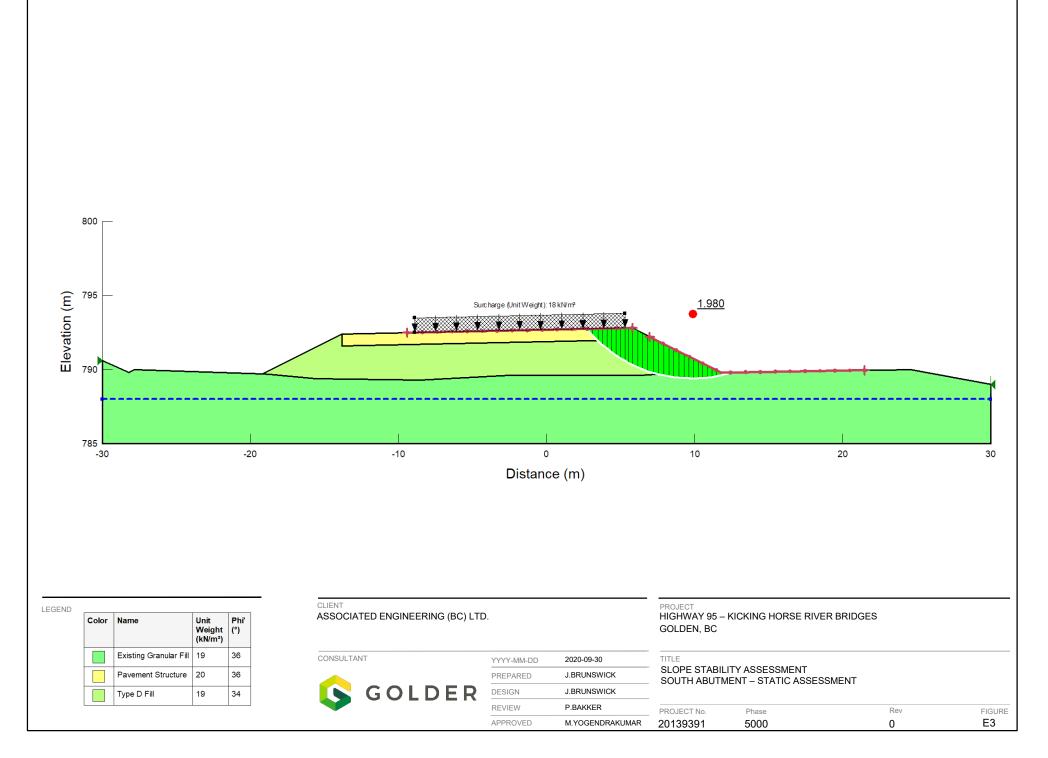
TITLE STEEL PIPE PILE 610 MM x 19 MM UNFACTORED AXIAL CAPACITY

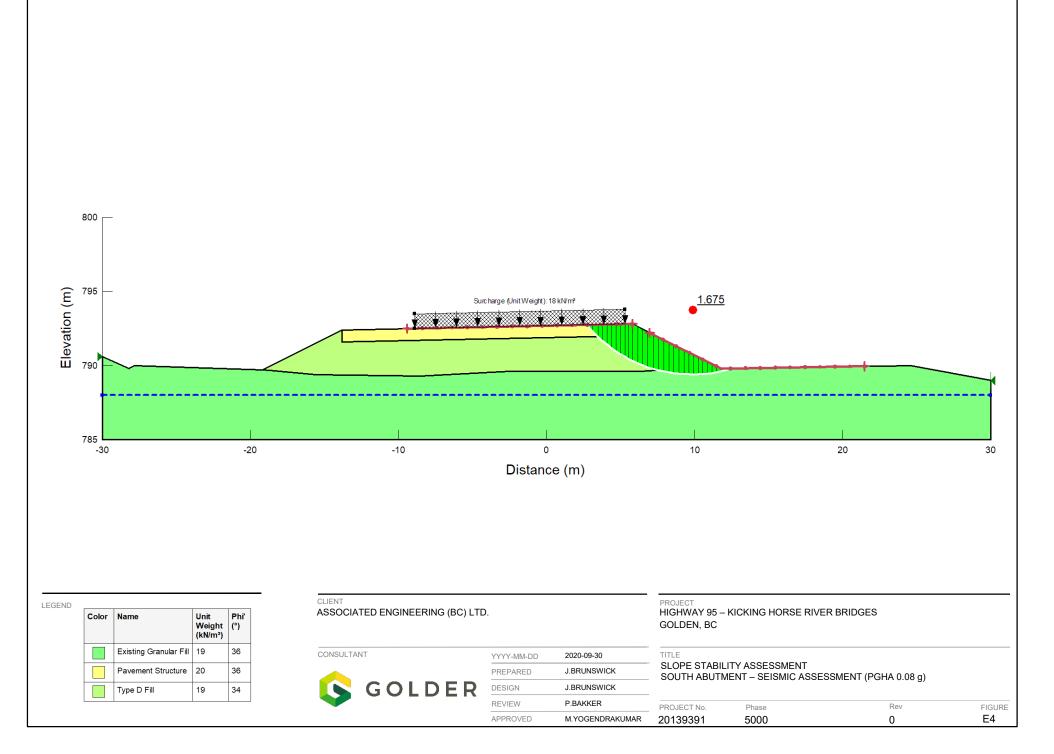

Rev	
0	

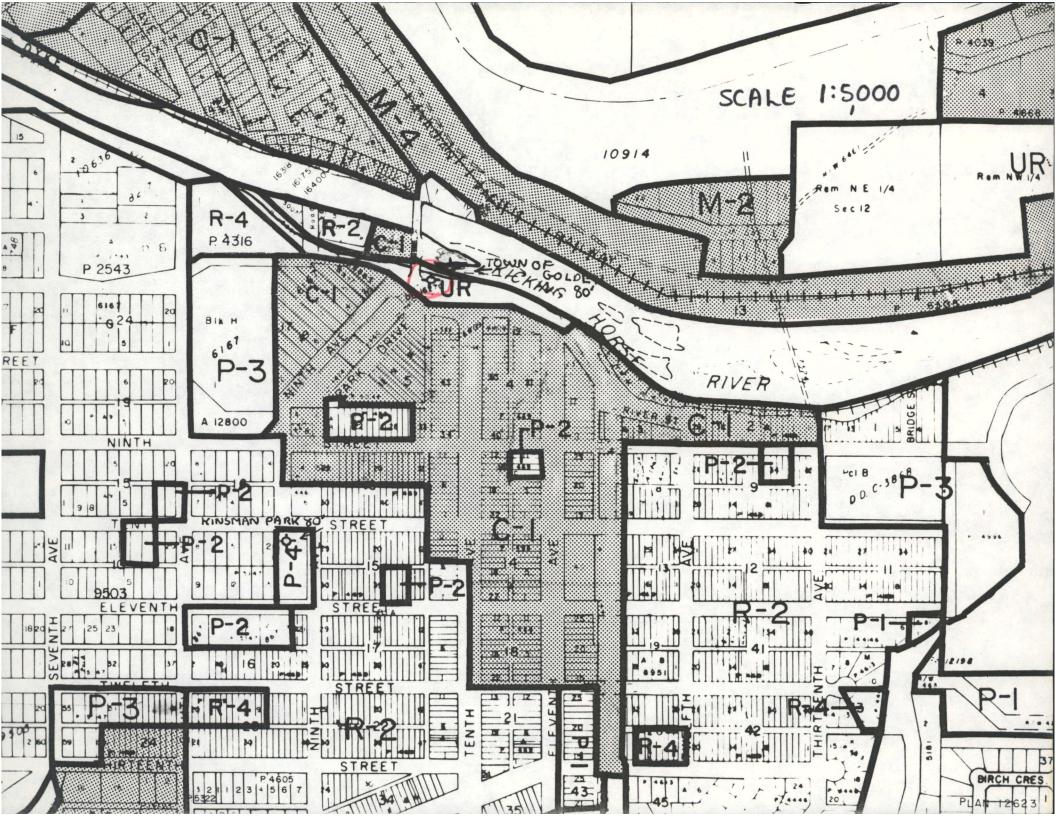
FIGURE


APPENDIX E

Slope Stability Assessment



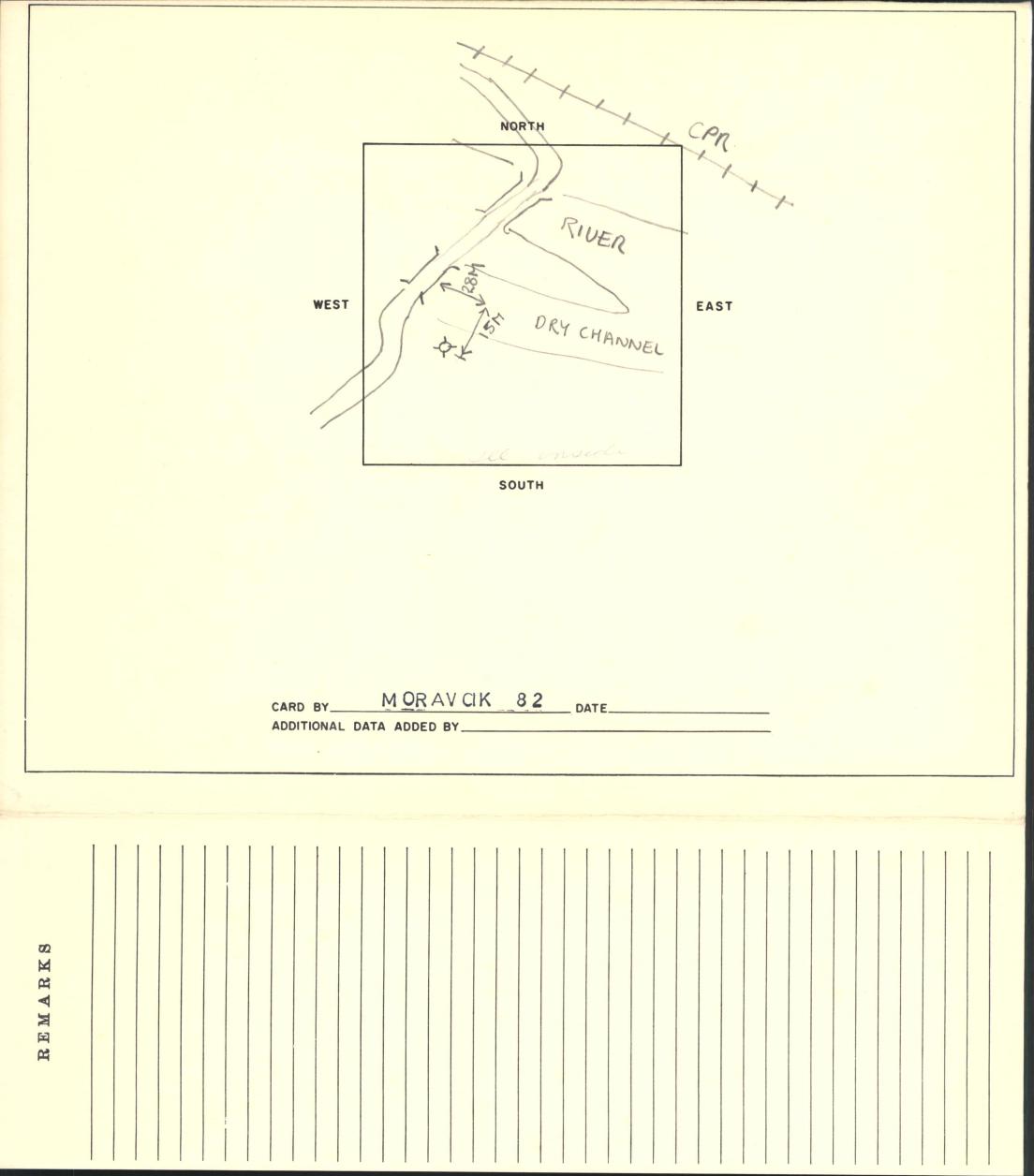




APPENDIX F

Nearby Water Well Records

	C	BRITISH I OLUMBIA WAT	BC Enviro E R	ñmen w E	Water Management Branen, erednawater occion
	1	821026334 502837E 56	830		ELEV LING Well NG M Date 19 Well G GORDEN ASSOCIATES 04-1324-068
Legal Des	ame cript	ion & Address Statio	n	Ave	. ; Golden B.C.
Descriptiv	e Lo	cation			
I. TYPE OF WO	ORK	1 X New Well 2 □ Rec 3 □ Deepened 4 □ Abc		ed	9. CASING: 1 Steel 2 Galvanized 3 Wood Materials 4 Plastic 5 Concrete
2. WORK METH			☐ Jette C □reve		Hole Units
3. WATE		1 □ Domestic 2 2 Municipal 3 SE4 □ Comm. & Ind. □ Other	Irriga	noite	from O ft
		G ADDITIVES none			Thickness 2.30 ins
5. MEAS	UR	EMENTS from 1 Aground level 2		5	Weight 17 Pitless unitft 1 above 2 below ground level
FROM	TO ft	casing height above ground level 6. WELL LOG DESCRIPTION		SWL	1 Welded 2 Cemented 3 Threaded 1 New 2 Used
02		Clay Sand Grave	1,		Shoe(s): 1 carbide button
		Sand Grand Uti	ter		Open hole, from to ft Diameter ins
1021	37	Sand Granel was	fer		Grout : IO. SCREEN : 1 🗌 Nominal (Telescope) 2 🗌 Pipe Size
1373		Silt Sand Gravel			Type 1 Continuous Slot 2 Perforated 3 Louvre
					Material 1 🗋 Stainless Steel 2 🗆 Plastic 👘 Other
					Set fromtoft below ground level
					RISER, SCREEN & BLANKS units Length ft
	-+	unable to dvill any			Diam. 1 D ins Slot Size
		farther due to m.	ateria	1	from ft
		Lydraulising up Easing.	the		to ft
					Fittings, topbottom Gravel Pack
	-	Thompson Dvilling	10		II. DEVELOPED BY: 1 Surging 2 Jetting 3 Air
		lasing with his			4 Bailing 5 Pumping Other
		try + advance the casing with his Cable tool			I2. TEST 1 Pump 2 Bail 3 Air Date H
					Waler Level ft after test of hrs
					DRAWDOWN in ft COVERY in ft mins WL mins WL mins WL mins WL
			· · · · · · · · · · · · · · · · · · ·		
					13. RECOMMENDED PUMP TYPE RECOMMENDED PUMP SETTING RECOMMENDED PUMPING RATE
					I4. WATER TYPE: 1 [fresh 2 [salty 3]clear 4 [cloudy
					colour
7. CONSU	JLTA	NT			15. WATER ANALYSIS: 1 Hordness mg/L
					2 Iron mg/L 4 pH Field Date
8. WELL	LO	CATION SKETCH		SITE	
			16. FII	NAL W	ELL_COMPLETION DATA
			Wel	Depth	397 ft Well Yield US gpm
		,	Sto	tic Water	r Levelft ArtesianUS gpm Pressureft ft
			Wel	II Head (Completion Welded plate
			(18 1		
			17. DRI PLEAS	ILLER	Signature
			IO. COI Add	Iress	TOR, OWEN'S DRILLING LTD
					BOX 730 CRANBROOK, B.C. V1C 4J5
		The Provoca of F	Sciusti Columbia -		r, BCGWA Ares no;


Province of British Columbia Ministry o			
Legal Description & Address		beside town theatre	2
Descriptive Location Beside the K		across town from other town wel	1
Owners Name & Address TOWN OF GO	JLD	EN B.C. WELL #2	· · ·
N T S MAP	EV	WELL NO.	
I. TYPE 1 12 New Well 2 Recondition	ned	9. CASING: 1 12 Steel 2 Galvanized 3 Wa	bod
OF WORK 3 Deepened 4 Abandoned 2. WORK 1 Cable tool 2 Bored 3 Jett		Materials 4 Plastic 5 Concrete 6 Other	units
METHOD 4 Rotary a mud b air c rev 5 Other	<u></u>	Diameter 12	ins Ins
3. WATER WELL USE 1 Domestic 2 Municipal 3 Irrig 4 Commercial & Industrial 5 Other	ation	from Ø to Ø Thickness	ft ft ins
4. DRILLING ADDITIVES			lb/ft
5. MEASUREMENTS from 1 ground level 2 top of	casing	Pitless unitft 1 above 2 below ground lev	
FROM TO 6. WELL LOG DESCRIPTION	SWL	12 Welded 2 Cemented 3 Threaded 4 2 New 5 Perforations:	Used
18 28 Boulders and roubs		Shoe (s):	
0 18 Dry Gravel 18 28 Boulders and rocks 28 80 Water bearing gravel		Open hole, from to ft Diameter Grout :	ins
		IO. SCREEN: 1 WNominal 2 Pipe Size	
		Type 1 1 Continuous Slot 2 Perforated 3 1 Lo	ouvre
		4 Other Material 1 🗹 Stainless Steel 2 🗆 Plastic 3 🗆 Other	
		Set from 59 to 80 ft below ground level	
		SCREEN & BLANKS	units
	14.31	Length 20	ft
		Diam. I D 1.3 Slot Size 1.20	ins ins
		from 59	ft
		to 80 Fittings, top k pasks bottom Bail	ft
		Gravel Pack Borrow Borrow	
		II. DEVELOPED BY: 1 Surging 2 Jetting 3 4 Bailing 5 Pumping 6 Other] Air
		I2. TEST 1 Pump 2 Bail Date 811 6 Rate 350 USgpm Temp °C SWL before test 1 53 ft after test of 48 hrs mins	
	A States	TIME in mins & DRAWDOWN in ft TIME in mins & RECOVER	Y in ft
		mins WL mins WL mins WL mins	WL
		10 15'	
		13. RECOMMENDED PUMP TYPE RECOMMENDED PUMP SETTING RECOMMENDED PUMP	A
		14. WATER TYPE: 1 Presh 2 salty 3 Pclear 4	
		I5. WATER ANALYSIS: 1 Hardness	mg/l
7. CONSULTANT			_mg/l
8. WELL LOCATION SKETCH		4 DpH	Statistics of the
	SITE	Lab Date	DY
16		WELL COMPLETION DATA	
		pth <u>80</u> ft Water Flowing U	Sgpm
		Water Levelft Pressure Head led	TT
		ead Completion Copped	1 and
		00	
	1		
17	PLEASE P	ER THOMAS SURNAME CARL	
31	. CONT	RACTOR, Address	
	T	HOMAS WELL DRILLING	
		BOXHGHLUMBY B.C.	
	Memt	per, BCWWDA Dyes Ono ;	
The Province of Brillsh Column		ponsibility for the contents or accuracy of this record.	

82N. 026. 3.3.4 WT-No: 48403	OBSER	EVATIO	N WELL NO. 308
Well # 6 WATER WELL RECORD			Z WELL NO.
DEPT. OF ENVIRONMENT, WATER RESOURCES SERVICE, WATER INVESTIGATIONS BRANCH VICTORIA,	BRITISH	COLUM	BIA
LEGAL DESCRIPTION: LOT SEC TP. 27 R. 22 DEL 5 LAND DISTRICT_KOOTENAY	PL	AN	
DESCRIPTIVE LOCATION Beside river beside town theatre across town from other town well LICENC	ENO	DATE	
OWNER'S NAME TOWN OF GOLDEN ADDRESS	L NO	- DATE -	Z 27 X 17 Y / NO. /5
DRILLER'S NAME ADDRESS DAT	E COMPL	ETED	7/6/81 NAT. TOPO. SHEET NO18
DEPTH_80' ELEVATION DESTIMATED CASING DIAM. 12" LENGTH_80'			
METHOD OF CONSTRUCTION <u>CALLE TOAL</u> CASING DIAM <u>LENGTH</u> LENGTH <u>SIDT</u> , <u>SIDT</u>	DATE	27/61	PRODUCTION TEST SUMMARY
SCREEN LOCATION 591-80' SCREEN SIZE LENGTH TYPE SIS	TEST BY		PTEST DURATION OF TEST 48 hours
SANITARY SEAL YES D NO D SCREEN D SIZE LENGTH TYPE PERFORATED CASING D LENGTH PERFORATIONS FROM TO	RATE	350 g	COMPLETION OF TEST 531
GRAVEL PACK D LENGTHDIAMDIAMSIZE GRAVEL, ETC	AVAILAB	LE DRAW	DOWNSPECIFIC CAPACITY
DISTANCE TO WATER DESTIMATED WATER LEVEL	TRANSM	ISSIVITY	STORAGE COEFF.
FROM ARTESIAN PRESSURE DATE OF WATER LEVEL MEASUREMENT WATER USE WATER USE	RECOMM	ENDED P	UMPING RATE 350 gpm
DATE OF WATER LEVEL MEASUREMENT WATER USE Inturing of the second se	RECOMM	IENDED	PUMP SETTING 60'
CHEMISTRY	FROM	то	DESCRIPTION
TEST BY DATE	0	18	dry gravel
TOTAL DISSOLVED SOLIDSmg/1 TEMPERATURE °C pH SILICA (SIO2) mg/1	18	00	U U
Umhos/cm CONDUCTANCEAT 25°C TOTAL IRON (Fe)mg/I TOTAL HARDNESS (CoCO3)mg/I		28	boulders and rocks
TOTAL ALKALINITY (CaCO3)mg/I PHEN. ALKALINITY (Ca CO3)mg/I MANGANESE(Mn)mg/I	28	80	water bearing gravee
COLOUR ODOUR TURBIDITY	NOU	1985	
		. 100	TOWN WATER ENGINEER
ANIONS mg/l epm <u>CATIONS</u> mg/l epm			ALSO SEE BACK OF CARD
CARBONATE (CO3) CALCIUM (Ca)			
BICARBONATE (HCO ₃) MAGNESIUM (Mg)			
SULPHATE (SO4) SODIUM (Na) CHLORIDE (CI) POTASSIUM (K)			
NO2 + NO3 (NITROGEN) IRON (DISSOLVED)			
• TKN. (NITROGEN)			
PHOSPHORUS (P)			
NO2 = NITRITE NO3 = NITRATE			
	ne-		
CHEMISTRY FIELD TESTS			
TEST BY DATE EQUIPMENT USED			
CONTENTS OF FOLDER			
PUMP TEST DATA CHEMICAL ANALYSIS			
SIEVE ANALYSIS GEOPHYSICAL LOGS REPORT			
OTHER_Established as an observation well Oct 20, 1989 Refer to file 0183613-B-308 sources of INFORMATION direly			
SOURCES OF INFORMATION_CHILLY			

.

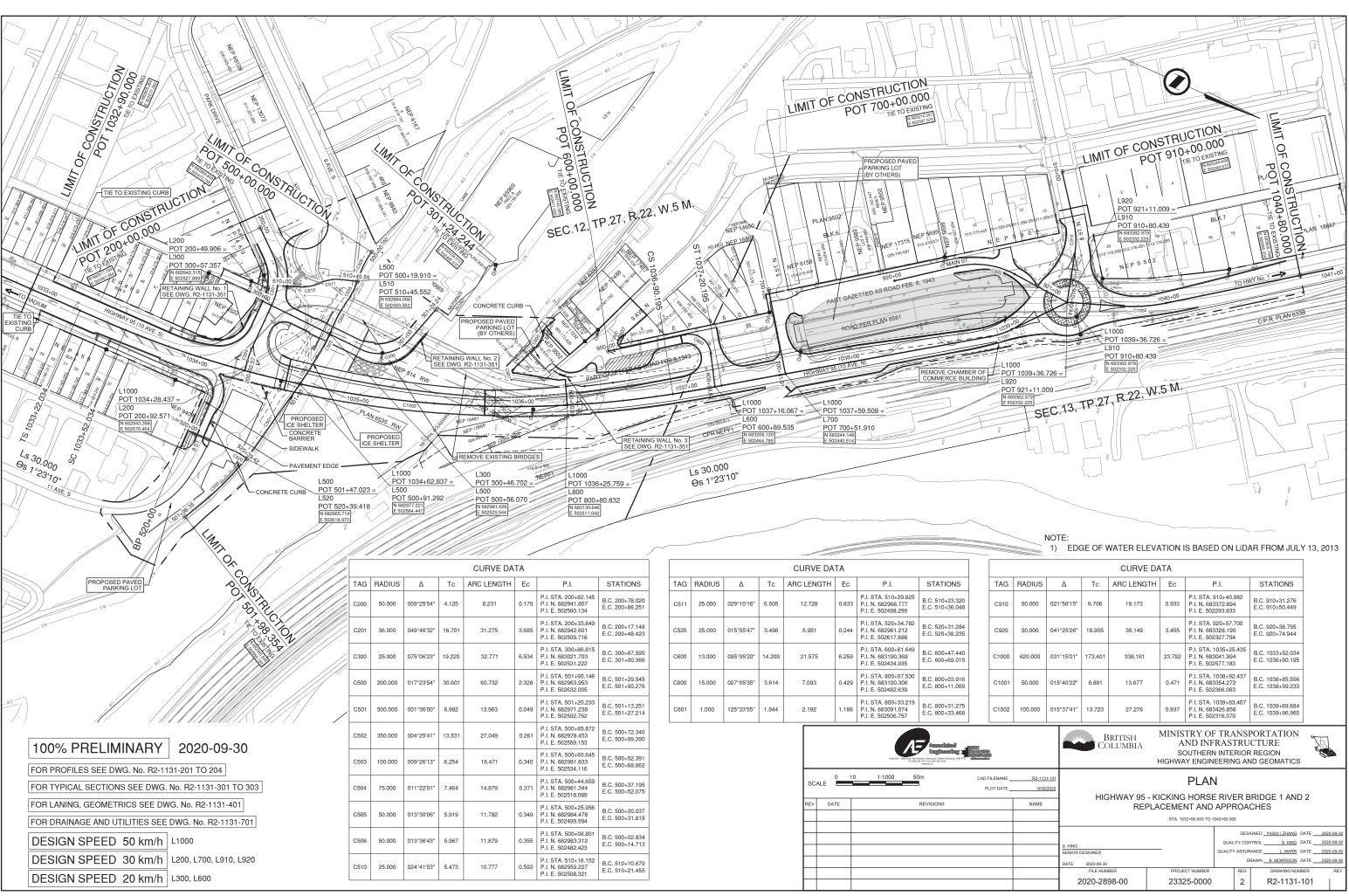
1

		0 4					Y Y O O			VO		Voo			
	П		7	4 2 1 7 4	2 1 6 5			1 2 1 7	4 2	1 NE	SE SW NW	4 2 1	7	4 2 1	
•		5	20	N ODG	2 2 1 (MI					11	QUARTER	TENS		UNITS	
N N	n l	C)d	N. 020.	D. D.4	VICION WATER INV	RANGE	SEC	TION			LAN	DDIST	RICT	
4	,	#6	44	m 16956 GRO	UND - WATER DI	VISION, WATER INV	ESTIGATIONS BRANC	H, DEPT. OF LANDS,	FORESTS, o	and WATE	R RESOURCES, V	ICTORIA, B.C.	11	with	-
-	L UN				NDI STE LEGAL DESCRI	ATION		6	TAST	R007	ENAY D	157.		1	
	AL						SCOTT) ADDR	ECC /OTH AI	JE.E. +	9 TH	ST. S. Go	LDEN		6-	•
	10				0									DUG	
	N					*							/	1	
	X			DEPTH 100	ELEVATION OF COLLAR	CASING DIA	м	LENGTH	TYPE					DRIVEN	•
• • •													H	DRILLED	
-											(D) () ()	1 - 1	— 00		
				LOCATION OF SCRE	EN		DEVELOPED	DESCRIBE			Bar	lan	2	JETTED	
OANAL	YSIS			PERFORATED CASIN		100047	TION OF PERFORAT	IONS						BORED	
		0 - 25													
HARD	/			GRAVEL PACK	LENGTH C	SIAMSI	ZE GRAVEL, ETC.								
							PC	WER					_	25 — 50	•
•ні вн	IRON		ΣL	CARACITY		OTHER DATA								50 - 100	
нісн	SULPHU	JR	A											100 - 200	
SALT	~		2 0	COSTS WELL	PUMP	Pl	JMP HOUSE, ETC.						_	100 200	
OME				MAINTENANCE									200 - 40	0	
O ALKA	LINE		N	DISTANCE TO WATE	R 40'	ESTIMATED		CLUCTUATION.						>400	
SALI	NE			FROM TOP OF CASH	NG	J MEASURED ELI								OBSERVAT	
	UTTO			HIGH WATER	MONTHL	OW WATER N	IONTHC	BSERVATION DAT	A D FILE	No		100 11111		76.0	
OPOLL	UIED								JAILS P	107111	D01 374		166 W	ABANDON	ED
	EQUATE				ESTIMAT	ED A	1 1							DEVELOPE	zD
	Name BALLINA RANCE BECHNIN LUND DIETRIC # 64WDN 16956 GROUND WATER DIVISION, WATER MINESTIGATIONS BRANCH, DEF. OF UNADE, FORMULT, WORKER, USAL BUDGE, WORKER, DEF. MALE DIVISION, WATER MINESTIGATIONS BRANCH, DEF. OF UNADE, FORMULT, WORKER, USAL BUDGE, WORKER, DEF. MALE DIVISION, WATER MINESTIGATIONS BRANCH, DEF. OF UNADE, FORMULT, WATER MINESTIGATIONS BRANCH, DEF. OF UNADE, ST. K. GLUCK MALE DIVISION, WATER MINESTIGATIONS BRANCH, DEF. OF UNADE, FORMULT, WORKER, DEF. MALE DIVISION, WATER MINESTIGATIONS BRANCH, DEF. OF UNADE, FORMULT, WORKER, ST. S., GLUCK DELOCATION DIVISION, WATER MINESTIGATIONS BRANCH, DEF. OF UNADE, FORMULT, WORKER, ST. S., GLUCK DIVISION, WATER MINESTIGATIONS BRANCH, DEF. OF UNADE, FORMULT, WORKER, ST. S., GLUCK DIVISION, WATER MINESTIGATIONS BRANCH, DEF. OF UNADE, FORMULT, WORKER, ST. S., GLUCK DIVISION, WATER MINESTIGATIONS BRANCH, DEF. OF UNADE, FORMULT, WORKER, DEF. DIVISION, WATER MINESTIGATION DIVISION, WATER MINESTIGATIONS BRANCH, DEF. TYPE DIVISION, WATER MINESTIGATIONS BRANCH, DEF. TYPE DIVISION, WATER MINESTIGATION DIVISION, WATER MINESTIGATIONS DIVISION, WATER MINESTIGATIONS DIVISION, WATER MINESTIGATIONS DIVISION, WATER MINESTIGATION DIVISION, WATER MINE						SCREEN								
-					DONLLIN										
•	Bank Date Description Duration Tend Duration RANGE BECNION WATER DIVISION, WATER INVESTIGATIONS BRANCH, DEPL OF LANDS, FORESTS, ond WATER REQUECY, VICANA, BAND DIETE Control of Softe OF Control of Softe OF Manage Control of Co					PERF. CAS	SING								
•										-	R	A.		GRAVEL E	ENV.
# 64 VID 16956 COUND - WATER DIVISION, WATE INVESTIGATIONS BRANCH, DEFT. OF LANDS, FORETS, ond WATER RESOLUCY. VICTORIA, EXAMPLE 100 CONTACT AND PROVIDED TO THE PLANT AND PLAN															
-										-	9TH ST	U SIII		PUMP	
				LICENSE NO	DATE	ICENSE	AMOUNT			WELL -		AL	_	FLOWING	
	PING TES	т		LIGENSE NO.	DATE I		AMOON				OTH ST. 5			NON-FLOW	
-	3		-	DATE APPLICATION	<u></u>	USE			1000 (a.f.			1014	W		
•••-	. 10		ö.					SH	1.18				i r	WATER TA	ABLE
• 10 ³ -	- 10 ⁴		S							LOCATION	SKETCH-INDICA	TE NORTH		PART CON	FINED
10⁴	- 10 ⁵		CIT								ATER USE	7 M	AT	OF DA	ROCK
	6		APA												
10" -	- 10		Ü	CTCHC FAILBRENT		1.65						Z L Z		S	SPRING
NUMBER NOTO NUMBER SUCCESS <															
•		STINU				1			AVE	MES.	PCK OCK	NIGA DUST	OD	R NO	
	1 3	4 5	4	7 4 2 1	7 4 5 1	7 4 2 1	7 4 2 1	7 4 5 1	SA	DOI	GA STC COC	INC	60	PO	
		• •							••	• •			•		

		4 2 1 7 4 2 1 2 7 4 2 1 7 4 1 1 7 4 1 1 7 4 1 1 7 4 1 1 7 4 1		4 2 1 UNITS
		ADDTENAN DISTRICT (FAST)	1	•
• NAP		OWNER'S NAME IMPERIAL BANK & COMMERCE ADDRESS GOLDEN BC.		10 .
		DRILLER'S NAME 6.1.6. ADDRESS DATE OF AUG. 6 COMPLETION 1955		DUG
WIL WR		DEPTH 51 ELEVATION 086 CASING DIAMLENGTHTYPE	M	DRIVEN
• 7 •		METHOD OF DIGGING CRILLED SCREEN Z SIZE LENGTH TYPE	ETHO	DRILLED
•		SIZE	.D	JETTED
ANALYSIS	7	PERFORATED CASING LENGTHOPENINGSDEVELOPED DESCRIBE		BORED
SOFT				0 - 25
HARD		GRAVEL PACK 🔲 LENGTH DIAMSIZE GRAVEL, ETC		25 - 50
HIGH IRON		PUMP TYPEPOWER	0	
HIGH SULPHUR		CAPACITYOTHER DATA	EPT	50 - 100
0	5	COSTS WELL PUMP PUMP HOUSE, ETC	I	100 — 200
SALTY		MAINTENANCE		200 — 400
• ALKALINE		DISTANCE TO WATER 9'6" ESTIMATED ELEVATION FLUCTUATION	L	>400
SALINE		HIGH WATERMONTHLOW WATERMONTHOBSERVATION DATA D FILE No	1	OBSERVATION
POLLUTED				ABANDONED
QUALITY		WATER USE		DEVELOPED
•	_	MAX. RATE WITHDRAWAL D MEASURED		SCREEN
		TEMPERATURE PUMPS SAND		PERF. CASING
		CLOGS SCREEN TYPE DEPOSIT AQUIFER DATA SAND + GRAVEL		GRAVEL ENV.
	٦			
DRY HOLE			-	PUMP
QUANTITY			TY	FLOWING
PUMPING TEST		LICENSE NO DATE LICENSE AMOUNT RICKING AMOUNTRICKING AMOUNTRICKING AMOUNTRI	PEV	ARTESIAN
• 0 - 10 ³		SHT.18 MSER.	VELL	WATER TABLE
$010^3 - 10^4$	5	9TH AVE EAST BETWEEN STH. AND 6TH ST. NORTH LOCATION SKETCH-INDICATE NORTH	1	PART CONFINED
•10 ⁴ - 10 ⁵		A MATER USE CHARCTER OF CHARCTER OF	ATA	
10 ⁵ - 10 ⁶		un and a second s		
> 10 ⁶	-	VISTEMS EQUIPMENT LIMITED. VICTORIA-CANADA O 1065 SYSTEMSORT		
STINU	Я	О П С О Темя Units темя О П С О С О С О П С О С О О О О П С О С О О О П С О С О О П С О О О О П С О О О О	1	H H
4 5 1		GAN WAT IN DI IN D		POO POO
)		-	

Г			LOG			ANALYSIS	
F	FROM	то	DESCRIPTION	NAME	SAMPLE NoDATE		PPM
F						Total Hardness	-
F	0	5'	212.1		LAB	Carbonate Hard	
	5'	5	CLAY GRAVEL + BOULDERS		COLIFORM ORGANISMS	Magnesium Hard	
+	9	18			TOTAL BACTERIA		
H	18	22	SAND + GRAVEL		ODOUR	Fe SO ₂	
		38	HARO PAN			Ca	
ŀ	22	51	GRAVEL SANO + GRAVEL (WB)		TASTE	Mg	
1	38	31	SANO + GRIVEL (WS)				
-						Na	
					PUMPING TEST SUMMARY	K HCO3	
		-				CO ₃	
-					TEST BY		
-					DATE FILE No	CI SO ₄	
					SPECIFIC CAPACITY PERMIABILITY	NO ₃	
					STORAGE COEFF POROSITY		
						B	
-					REMARKS	E	
' -					- YIELO 600 I.G.P.M.		
) -							
• +						Total Dis-solids	
						Total Alkalinity	
						Suspended Solids	
' -					OTHER_DATA	Ph	
					SIZE ANALYSIS. ETC		
-							
							Passar 1
-							
-							
1							
					0.1	,	
					CARD BY DATE	nch. 1969	8
					SOURCES INFORMATION GS.C.		
1							
, L							

•	1 7 4 2 1 7 4 2 1 7 4 2 1 1 NE SE SW NW 4 2 1 7 4										
A LATCH SWITT	14523 WATER RIGHTS BRANCH, DEPT. OF LANDS AND FORESTS, VICTORIA, B.C. (227-X17-Y1) WEast.										
NICIPA											
B2N. 0.26. 3.3.4 MERIDIAN reas UNIVE TANGE BECTION COLAD DEFINE WATER BIGHTS BRANCH, DET. OF LANDS AND FORESTS, VICTORIA, B.C. CATTER LAND DEFINE WATER BIGHTS BRANCH, DET. OF LANDS AND FORESTS, VICTORIA, B.C. CATTER CATTER CATTER OWNER'S NAME P.B.R.DECEDD # 2 Well ADDRESS Golden B.C. OWNER'S NAME P.B.R.DECEDD # 2 Well ADDRESS GOLden B.C. OWNER'S NAME P.B.R.DECEDD # 2 Well ADDRESS GOLden B.C. OWNER'S NAME P.B.R.DECEDD # 2 Well ADDRESS GOLden B.C. OWNER'S NAME P.B.R.DECEDD # 2 Well ADDRESS GOLden B.C. OWNER'S NAME P.B.R.DECEDD # 2 Well ADDRESS GOLden B.C. METHOD OF DIGGING DFILLER'S NAME GOLDEN GOLDEN GOLDEN METHOD OF DIGGING DFILLER'S NAME GOLDEN GOLDEN GOLDEN MERIDIAN Saite GRAVEL DEVELOPED DESCREE GOLDEN MAILING GOLDEN OFFINION OFFINION PUMP PUMP MERIDIANCE PUMP PUMP PUMP HOUSE FLUCTUATION FLUCTUATION MAILING MAILING MAILING MAILING <t< td=""></t<>											
	SIZE										
BUN. O.Z											
-	GRAVEL PACK [] LENGTH DIAM SIZE GRAVEL, ETC 0 - 25										
•											
SQN. O.26. 3. 3. 4/4 MERIDIAN THE OWN TANGE Section WATE RIGHTS BRANCH, DEFL. OF LANDS AND FORESS, VICTORIA, B.C. WATER RIGHTS BRANCH, DEFL. OF LAND DEST. COUNTER: IN AND DEST. COUNTER: IN AND DEST. OWNER'S NAME P. BEADFORD # 2 Well ADDRESS Golden B.C. COUNTER: IN AND DEST. OWNER'S NAME P. BEADFORD # 2 Well ADDRESS Golden B.C. CONNER'S NAME OWNER'S NAME P. BEADFORD # 2 Well ADDRESS Golden B.C. CONNER'S NAME OWNER'S NAME DE BEADFORD # 2 Well ADDRESS Golden B.C. CONNER'S NAME OWNER'S NAME DE BEADFORD # 2 Well ADDRESS Golden B.C. CONNER'S NAME OWNER'S NAME DE BEADFORD # 2 Well ADDRESS Golden B.C. CONNER'S NAME OWNER'S NAME DE BEADFORD # 2 Well ADDRESS Golden B.C. CONNER'S NAME OWNER'S NAME DET HOUSE CONNER'S NAME CONNER'S NAME CONNER'S NAME OWNER'S NAME DENTITY OWNER'S NAME STEE CONNER'S NAME CONNER'S NAME OWNER'S NAME DENTITY											
ATE											
-	DISTANCE TO WATER ESTIMATED ELEVATION FLUCTUATION										
POLLUTED	ABANDONED										
	MAX. RATE WITHDRAWAL MEASURED Capacity 100 IGPM										
	TEMPERATURE PUMPS SAND PERF. CASING										
•											
	IOTH ST.S. PUMP										
QUANTITY	The NON-FLOW										
\bullet 0 - 10 ³											
• $10^3 - 10^4$	WELL IS CAPPED NOW AND IS ON CITY WATER.										
0.0 - 10 OV U											
> 106											


		LOG			ANALYSIS	
FROM	то	DESCRIPTION	NAME	SAMPLE NO DATE		PPN
-				LABTotal	l Hardness	
				COLIFORM ORGANISMS	oonate Hard	
0	2	Topsoil		Mag	nesium Hard	
				TOTAL BACTERIA Fe		
2	8	Yellow clay	A 1	COLOUR ODOUR SO2	2	
				TASTE Co		
8	11	Sand and gravel w/boulders		Mg		
				Na		
11	18	Hardpan		ĸ		
				PUMPING TEST SUMMARY)3	
18	32	Sand and gravel W/B		TEST BY CO3		
				SPECIFIC CAPACITY PERMIABILITY		
				NO ₃	3	
				STORAGE COEFF POROSITY B		
				REMARKS E		
				Total	l Dis-solids	
					Alkalinity	
					ended Solids	
				OTHER DATA		
				SIZE ANALYSIS. ETC.		
				CARD BY DMA DATE 8/	/62	
				sources INFORMATION Henning		

0

••••••••

APPENDIX G

100% Preliminary Design Reference Drawings

golder.com