Terrace Airport Pit Aggregate Resource Assessment Technical Summary Provincial Pit Number 5235

Ministry of Transportation and Infrastructure 213, 1011-4th Avenue, Prince George, BC, V2L 3H9

McElhanney Consulting Services Ltd. www.mcelhanney.com

Emily Davidson PEng, Geotechnical Engineer 250 847 4040 | edavidson@mcelhanney.com

December 10, 2014

MCSL File: 2331-20100-0 Task 2001

ITACHI

Table of Contents

1	Introduction	1
2	Location and Legal Land Description	1
3	2012 Assessment	
4	Material Gradations	2
5	Material Durability	5
6	Material Suitability	6
7	Volume Estimates	7
8	Pit Development Notes	7
9	Closure	

List of Tables

Table 1.	Laboratory Gradations for Terrace Airport Pit	3
Table 2.	Summary of Gradations Including Oversize Material	4
Table 3.	Durability Test Results	5
Table 4.	Material Suitability	6
Table 5.	Volume Estimates	7

DRAWINGS

Figure 1: Locations Plan Figure 2: Pit Plan Figure 3: Pit Development Plan

SELECT TEST PIT PHOTOGRAPHS

APPENDIX A

Test Pit Summary Logs MoTI Unified Soils Classification Legend Sieve Analysis Reports Charts 1 – 6 Physical Property Test Results

G:\1.0_JOBS\2331_20000 - Materials Testing and Geotechnical\20100-0_MoT Aggregate Resource Studies 2012-2013\Task 2001 - Airport Pit\08 Geotech & Mat'\1.1 Reports\Final Report\2331-20100 Task 2001 Airport Pit 10 EDc 2014 Final.docx

1 INTRODUCTION

McElhanney Consulting Services Ltd. (MCSL) is pleased to submit this technical summary report of the aggregate resource assessment conducted at Terrace Airport Pit for Ministry of Transportation and Infrastructure (MoTI). The purpose of the assessment was to complete two days of test pitting at the site and assess the potential aggregate resource volume, quality and suitability.

2 LOCATION AND LEGAL LAND DESCRIPTION

Pit Name: Terrace Airport Pit

Provincial Pit Number: #5235

Location: The assessed portion of Terrace Airport Pit is located on the west side of Highway 37, approximately 9 km south of Terrace, BC (Figure 1).

Legal Land Description: The site is currently a Section 16 Map Reserve (LF#6405917) held by the British Columbia Ministry of Transportation and Infrastructure. The legal description of the map reserve is "Those parts of District Lot 4003, Block A of District Lot 1741 and Block A of District Lot 423, Range 5, Coast District, containing 12.576 Hectares, more or less." The layout boundary is shown in the Pit Plan (Figure 2).

3 2012 ASSESSMENT

A test pitting program was conducted by MCSL on December 3 and 4, 2012. The site was covered with a 0.5 m layer of snow and had thick vegetative cover in some places. Twelve test pits (TP12-01, 02, 04, and 06 to 12) were excavated to depths ranging between 4.5 m and 5.8 m with a Hitachi EX200LC. Two additional test pits were excavated in the existing pit face (TP12-03 and 05). The excavator was provided by Ron King Trucking of Terrace, BC. The test pits were logged and sampled by MCSL. The test pit locations are shown on the Pit Plan (Figure 2). A Test Pit Log Summary is attached in Appendix A. Soils were described according to the MoTI Unified Soil Classification (USC) Legend attached in Appendix A.

A list of samples collected were sent to MoTI and samples were selected for further laboratory testing based on discussions between MoTI and MCSL. The following laboratory tests were performed:

- Wash Sieve Analysis (ASTM C136 and C117) on 12 samples
- Sand Equivalent Value (ASTM D2419) on 3 samples
- Micro Deval on Coarse Aggregates (ASTM D6928-03) on 3 samples

 Relative Density and Absorption of Coarse and Fine Aggregate (ASTM C127 and C128) on 3 samples

Laboratory reports for the individual samples are attached in Appendix A and summarized in the Test Pit Log Summary. Note that sieve analyses were conducted on material passing the 75 mm screen only. Portion and size of oversize material was visually estimated in the field and are listed in the test pit log summary.

Test pit locations and prominent features such as natural embankments, slope breaks, depressions and/or draws, roads and other manmade features were mapped using a Global Positioning System (GPS) unit (Model Trimble GeoXH). The GPS data was differentially post-processed by MCSL. A list of the processed test pit UTM coordinates are provided on the Figure 2 drawing. Figure 2 also shows the test pit locations and prominent features.

Photographs were taken at each test pit location. Select photographs are shown in the attached Photo Plate.

For the purpose of this project, granular material was defined as any soil with less than 15% fines (particles with a diameter < 0.075 mm) by mass. If granular material was encountered, the test pit was advanced to the full reach of the excavator unless significant sloughing prevented advancement of the test pit.

Based on the results of the 2012 assessment, two granular areas were defined and have been shown on the Pit Development Plan (Figure 3). Area B is the existing pit floor of Terrace Airport Pit that has been previously mined. Area A is the remaining area outside of Area B to within five meters of the pit boundary.

4 MATERIAL GRADATIONS

MCSL conducted a washed sieve analysis on each of the test pit samples collected in the field, with the exception of TP-02. Sieve analysis reports for each sample are located in Appendix A. Material gradation curves not including oversize are shown on Chart 1 (Appendix A). Material gradation curves including the oversize percentage estimated in the field are shown on Chart 2 (Appendix A).

Table 1 shows the gradation test results as a percentage by weight of the fines (silts and clays), sand and gravel components. The USC for each of the laboratory tested samples from Terrace Airport Pit are also listed.

	Depth	(m)			Grave	I (%)	
Test Pit ID	From	То	Fines (%)	Sand (%)	Fine (4.75-25mm)	Coarse (25-75mm)	USC
TP12-01	0.8	4.5	4.1	40.8	30.5	24.6	GP
TP12-03	0.5	8.5	3.7	36.4	34.2	25.7	GW
TP12-04	0.0	5.0	6.1	30.6	37.6	25.7	GW-GM
TP12-05	0.6	7.5	4.6	32.0	38.2	25.2	GW
TP12-06	0.7	5.4	3.7	29.5	36.1	30.7	GW
TP12-07	1.0	5.8	4.4	37.8	36.9	20.9	GP
TP12-08	0.8	5.2	4.3	32.9	33.9	28.9	GP
TP12-09	1.3	5.0	2.5	34.3	36.4	26.8	GP
TP12-10	0.7	5.6	1.6	27.9	50.8	19.7	GW
TP12-11	1.1	5.1	2.0	32.1	39.6	26.3	GW
TP12-12	0.9	5.3	3.5	20.3	43.7	32.5	GW
TP12-14	TP12-14 0.9 5.0		4.3	36.9	36.9	21.9	GW
Ave	rage		3.7	32.6	37.9	25.7	

Table 1. Laboratory Gradations for Terrace Airport Pit

A summary of the gradations corrected to include the estimated oversize are provided in Table 2.

			Grave	el (%)	Estimated (%	Мах	
Test Pit	Fines (%)	Sand (%)	Fine (4.75- 25mm)	Coarse (25- 75mm)	Small Boulders (75- 300mm)	Large Boulders (>300 mm)	Diameter (mm)
TP12-01	3.7	36.7	27.5	22.1	10	-	300
TP12-03	3.5	34.6	32.5	24.4	5	-	300
TP12-04	5.5	27.5	33.8	23.1	10	-	300
TP12-05	4.2	29.4	35.1	23.2	8	-	300
TP12-06	3.3	26.0	31.8	27.0	10	2	400
TP12-07	4.0	34.8	33.9	19.2	6	2	400
TP12-08	3.8	29.0	29.8	25.4	8	4	400
TP12-09	2.2	30.5	32.4	23.9	8	3	400
TP12-10	1.5	25.4	46.2	17.9	7	2	400
TP12-11	1.9	30.5	37.6	25.0	5	-	300
TP12-12	3.2	18.5	39.8	29.6	6	3	400
TP12-14	4.1	35.4	35.4	21.0	4	-	300
Average	3.4	29.9	34.7	23.5	7.3	1.3	-

Table 2. Summary of Gradations Including Oversize Material

5 MATERIAL DURABILITY

Table 3 shows the results of the durability tests as well as the specifications as required in the Standard Specifications for Highway Construction.

Table 3. Durability Test Results

			Area A			Area B								
	TP12-06, Sample 6	TP12-07, Sample 7	TP12-09, Sample 9	TP12-11, Sample 11	TP12-14, Sample 14	TP12-04, Sample 4								
Micro-Deval, % (Coarse)		5.03	6.32			6.36								
Sand Equivalent		47.0	74.2			27.8								
Absorption % (Coarse/Fine)	1.07 / 2.44			1.18/3.48	1.15/2.73									
Bulk Relative Density (Coarse/Fine)	2.64 / 2.56		2.64 / 2.54											
		BC MoTI Specifications												
Micro Deval	≤25 for ≤20 for	granular selec surfacing and Class 2 pavem Class 1 pavem	base course ag nent asphalt mi	ggregates x aggregates	e end fill aggre	gates								
Sand Equivalen	t I		•	surfacing aggr urse aggregate	•									
Absorption	≤ 1% fo	r coarse pavin r coarse grade for fine graded	d aggregate se											
Relative Density		or all aggregate	-	tion for aggrega										

Note: Values in *italics* do not meet some of the BC MoTI Specification for aggregate products.

6 MATERIAL SUITABILITY

Based on the 2012 assessment results, the material in Terrace Airport Pit is likely to be suitable for the following purposes:

Table 4. Material Suitability

	Pit Run	Crush	Comments
Area A	Bridge End Fill (BEF) Select Granular Subbase (SGSB)	Base Course and Asphalt Paving Products	Screening of oversize required for pit run products
Area B	Bridge End Fill (BEF) Select Granular Subbase (SGSB)	High Fines Surfacing Aggregate	Fines content 6.1% & Sand Equivalent 27.8 in TP12-04. Screening of oversize required for pit run products

The samples tested from the Terrace Airport Pit meet the MoTI durability specifications for BEF and SGSB. However, one of the four sand equivalent tests measured below the minimum requirement of 40 required for base course aggregates and asphalt mix aggregates. Results below 40 indicate a possible presence of plastic fines and further testing may be warranted. The source of the sample that did not meet the minimum sand equivalent requirement was from TP12-04 located on the pit floor (Area B) indicating material in this area may not be suitable for use in fine asphalt mix and base course aggregates. The fines content in TP12-04 also reported at 6.1%, which is above the MoTI specified range of 0-5% for BEF and SGSB. However this material is suitable to produce HFSA. It is possible that this area of the pit floor has been infiltrated with fines from previous mining activities and thus further exploration of Area B and testing may be warranted if asphalt aggregate and base course materials are required. The absorption for coarse aggregates tested below the maximum requirement for coarse paving aggregates and fine aggregate seals, but did not meet the specification for coarse graded aggregate seal.

The average relative density of the coarse aggregate is 2.64. The average relative density of the fine aggregate is 2.53.

Note that crushing of oversize materials may improve the durability characteristics of the crushed products (sand equivalent result may increase in TP12-04). Also, oversize should be crushed to maximize the use of the potential aggregate volume within the reserve.

7 VOLUME ESTIMATES

The volume estimates in Table 5 are based on the measured depths encountered during the subsurface test pit assessment. The potential volumes of granular material were calculated by averaging the total thickness of granular materials encountered in the test pits and multiplying by the estimated surface area. All of the test pits terminated in gravel and therefore the gravel volumes could be higher than what was calculated. No water table was encountered during the test pitting activities. However it should be noted that the water table could vary considerably during other times of the year (for example during freshet) and should be considered during the development of Terrace Airport Pit.

The total developable area of Terrace Airport Pit is approximately 11.7 hectares. The pit floor (Area B) has an area of approximately 2.1 ha, and has been previously mined as an aggregate source. The remaining 9.6 ha portion (Area A) outside of the pit floor has not been previously mined. A significant portion of the southwest corner of Area A has been recently deforested however; a significant portion will require timber harvesting (Figure 2).

Table 5.Volume Estimates

		Overburden	GW
Area A	Average Layer Thickness (m)	1.0	4.7
(9.6 Ha)	Volume (m ³)	92,000	450,000
Area B	Average Layer Thickness (m)	0	5.0
(2.1 Ha)	Volume (m ³)	0	104,000

There are three existing stockpiles of granular material located within Area B (Figure 2). The stockpiles appear to be screened 25mm minus granular material. The combined volume of material in the three stockpiles is visually estimated to be in the range of 1,000 to 1,500 cubic meters.

8

PIT DEVELOPMENT NOTES

• All pit development must be carried out in accordance with the Health, Safety, and Reclamation Code for Mines in British Columbia, BC Ministry of Energy and Mines (2008, or later edition), the Standard Specifications for Highway Construction, BC Ministry of Transportation and Infrastructure (2009, or later edition) and the Aggregate Operators Best Management Practices Handbook for BC.

- Although groundwater was not encountered in the 2012 assessment, note that the water table could vary considerably during other times of the year and therefore considerably less volume of aggregate may be available if the water table levels rise (for example during freshet). Water management may be required during pit development.
- The pit is accessed from Hwy 37 and is considered suitable. Overburden should be removed and placed along the inside of the reserve boundaries as shown in Figure 3.
- Significant portions of Terrace Airport Pit will require logging, clearing and grubbing before any gravel extraction can occur. Trees appear to be second growth but of young to medium age and may be merchantable. Further investigation should be undertaken before making any monetary estimates of timber value. Overburden stockpile areas will also require removal. Along Hwy 37, a 5 m treed buffer must be maintained at all times.
- The average thickness of the overburden is 1.0 m, however ranges in thickness from 0.5 m to 2.3 m and will require stripping and placing in the desginated stockpile areas as shown in Figure 3. Note the soil is organic rich on the surface and becomes a mixture of sand and silt at depth, however there are significant root layers throughout and is therefore logged as overburden (OB).
- All trees, vegetation and overburden are to be removed within 2 m of the top of the pit face.
- Topsoil, overburden and aggregate cannot be removed within 5 m of the reserve boundary.
- Extraction of aggregates in Area A of Terrace Airport Pit may begin at the existing pit faces, and work towards the outer allowable development limits as shown in Figure 3. Extraction of aggregates in Area B may begin following exhaustion of resources in Area A. Note that Area B may extend below Area A and further test pit exploration is recommended once Area A has been mined.
- In Terrace Airport Pit, the oversize rock content in the granular areas is estimated to be on average about 8%. Therefore, crushing of the oversize is required to maximize the use of the resource.
- No dumping of debris or petroleum products will be permitted and the site must be left in a clean and safe condition.
- At the completion of the pit development overations, but prior to the depletion of the pit, the sides of the pit faces, waste piles and overburden stockpiles must be trimmed to a 1.5H :1V slope. Active pit faces must be reshaped with native granular materials.
- Upon depletion of the pit, all disturbed areas must be reclaimed. The minimum reclamation procedure should include re-sloping of the pit-faces and waste piles to a 2H:1V slope, contouring the area for appropriate drainage, spreading of the overburden followed by the topsoil and seeding.

9 CLOSURE

McElhanney Consulting Services Ltd. has prepared this document in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practicing under similar conditions in the jurisdiction in which

the services are provided, subject to the time limits and physical constraints applicable to this document. No warranty, express or implied, is made.

This document, including all text, data, tables, plans, figures, drawings and other documents contained herein, has been prepared by MCSL for the sole benefit of Ministry of Transportation and Infrastructure. It represents MCSL's professional judgment based on the knowledge and information available at the time of completion. MCSL is not responsible for any unauthorized use or modification of this document. All third parties relying on this document do so at their own risk.

The factual data, interpretations, suggestions, recommendations and opinions expressed in this document pertain to the specific project, site conditions, design objective, development and purpose described to MCSL by Ministry of Transportation and Infrastructure and are not applicable to any other project or site location. In order to properly understand the factual data, interpretations, suggestions, recommendations and opinions expressed in this document, reference must be made to the entire document.

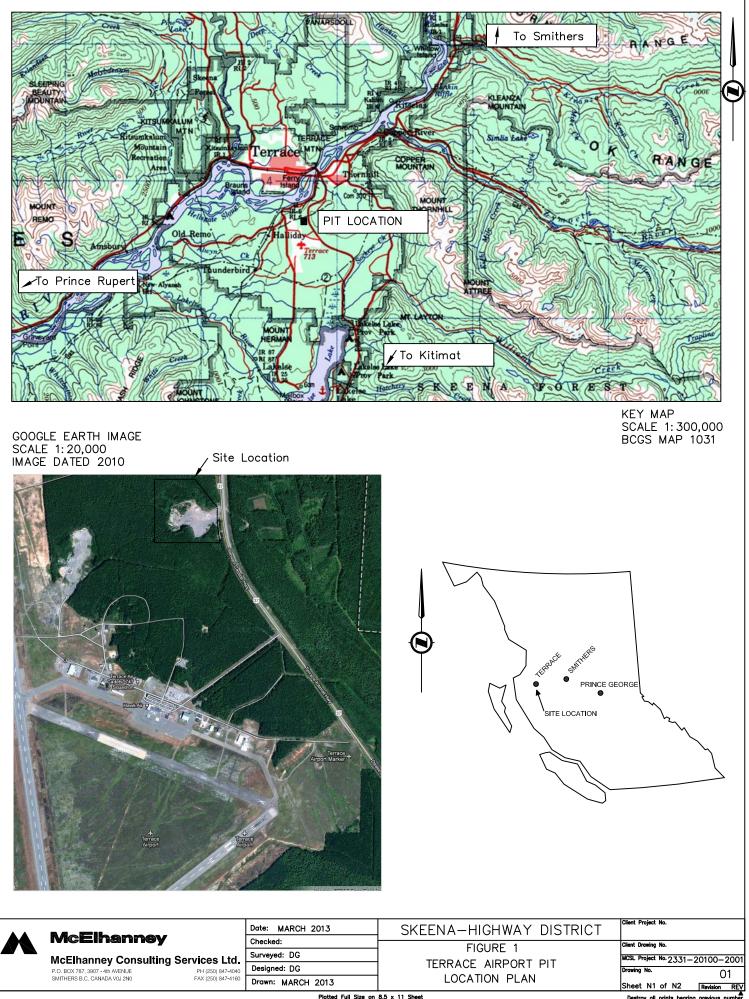
This document, including all text, data, tables, plans, figures, drawings and other documents contained herein, as well as all electronic media prepared by MCSL are considered its professional work product and shall remain the copyright property of MCSL. MoTI may make copies of the document in such quantities as are reasonably necessary for those parties conducting business specifically related to the subject of this document or in support of or in response to regulatory inquiries and proceedings. Electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore no party can rely solely on the electronic media versions of this document.

Please do not hesitate to contact the undersigned should you have any questions or comments.

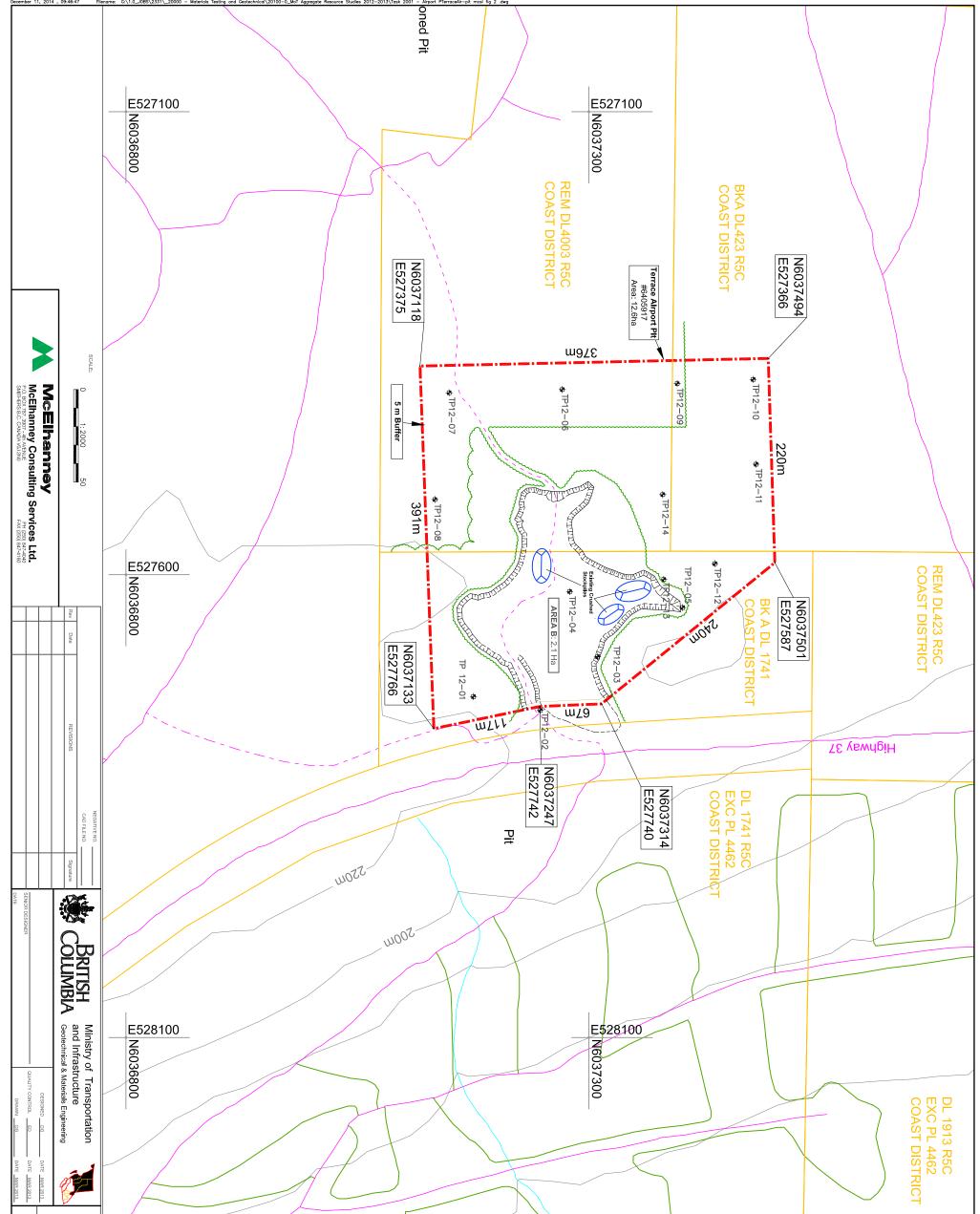
Respectfully submitted

DEC 11.201

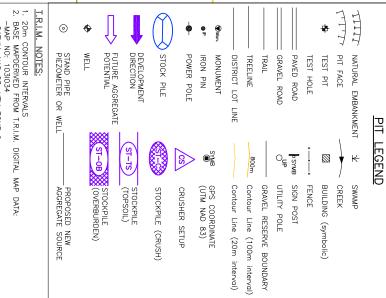
Emily Davidson, PEng Branch Manager/Geotechnical Engineer Smithers, BC

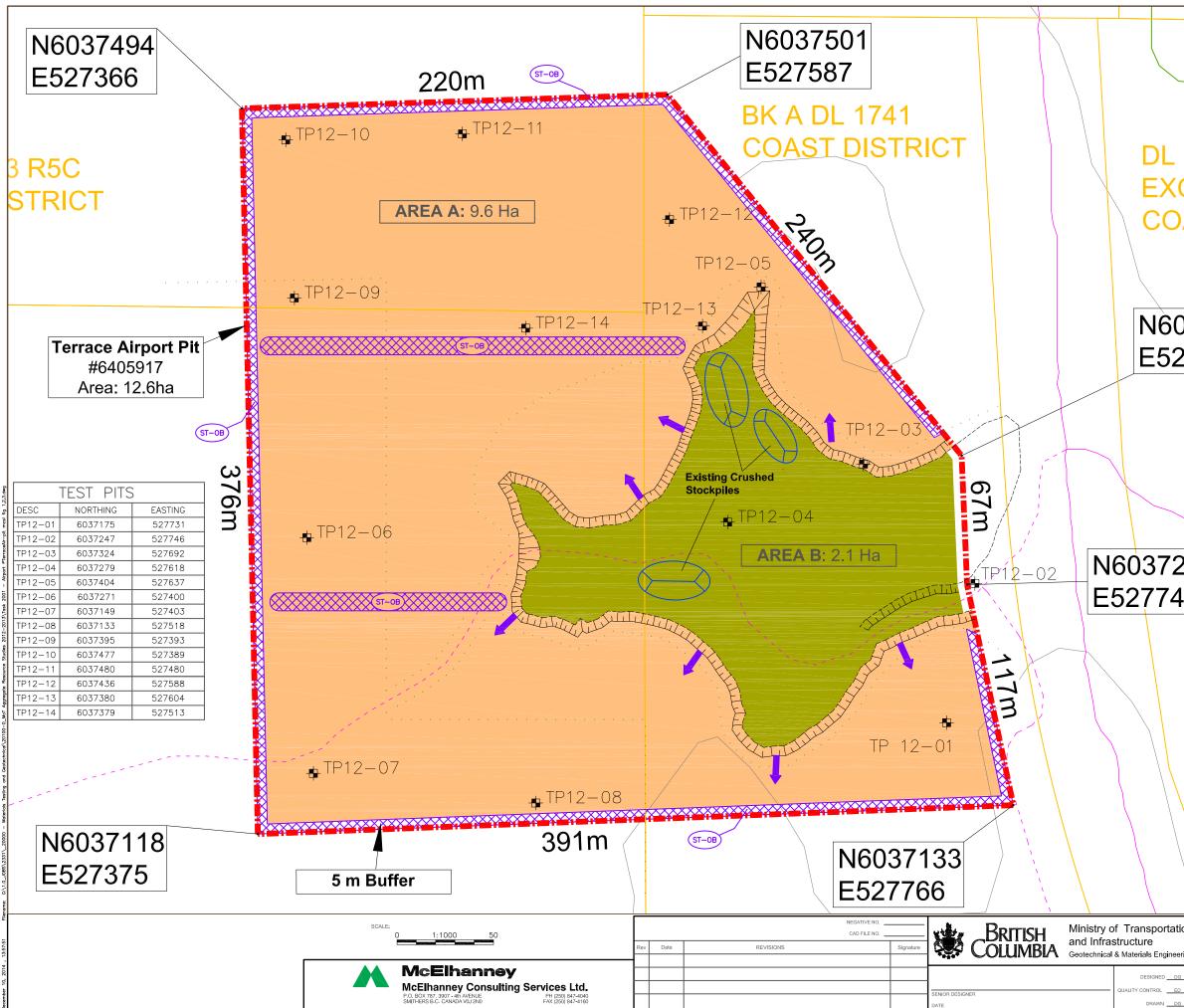

Reviewed By:

Shiloh Carlson, PEng Geotechnical Engineer Prince George, BC



DRAWINGS





Destroy all prints bearing pre ous nu

ion SKEENA - HIGHWAY DISTRICT TERRACE AIRPORT PIT FIGURE 2 PIT PLAN	US/3/9 SZ/213	6037436 6037380 6037370	6037480	TP12-09 6037395 527393 TP12-10 6037477 527389	6037133	TP12-07 6037149 527403	6037404	6037279	6037324	6037247	TP12-01 6037175 527731	DESC NORTHING EASTING	TFST PITS			LEGAL NOTE 1. DRING CONTOUR INTERVAL 1. DISTRICTUTOUR INTERVAL 1. DISTRICTUTO LINES ARE DERIVED FROM DIGITAL CROWN CADASTRAL REFERENCE MAPPING SUPPLIED BY CROWN LAND REGISTRY, VICTORIA	2. BASE MADDERIVED FROM T.R.I.M. DIGITAL MAP DATA:
--	---------------	-------------------------------	---------	--	---------	------------------------	---------	---------	---------	---------	------------------------	-----------------------	-----------	--	--	--	--

	<u>PIT LEGEND</u>
	TIIIT NATURAL EMBANKMENT 🐇 SWAMP
	Γ' 1' ℓ' PIT FACE CREEK
	TEST HOLE X-X-X FENCE
/	PAVED ROAD
	= = = = GRAVEL ROAD O ^{UP} UTILITY POLE
	TREELINE 800m Contour Line (100m interval)
. 1741 R50	DISTRICT LOT LINE Contour Line (20m interval)
C PL 446	
CIL 440	● P IRON PIN (UTM NAD 83) -●- POWER POLE
DAST DIS	CRUSHER SETUP
	STOCK PILE STOCKPILE (CRUSH)
	DEVELOPMENT DIRECTION ST-TS (TOPSOIL)
	W WELL
037314	
	SIAND FIFE PIEZOMETER OR WELL AGGREGATE SOURCE
27740	NOTES: - TEST PITS SURVEYED WITH A SINGLE FREQUENCY TRIMBLE GEOXH,
	AND POST PROCESSED. PRECISION IS FUNCTION OF SATELITIES DISTRIBUTION AND DISTANCE TO THE POSTPROCESSING BASE.
	 PLAN FEATURES PARTLY SURVEYED WITH GPS AND ALSO TAKEN
	FROM AVAILABLE DIGITAL MAPS.
	TEST PIT DETAIL: TP09-01
, ,	TP07-## → TEST PIT NUMBER
	3.8m GP → DENOTES THICKNESS OF PRIMARY GRANULAR MATERIAL 2% Cobbles → VISUAL FIELD ESTIMATE OF OVERSIZE ONSITE MATERIAL
	NOTE:
	 TEST PIT SUMMARY LOGS SHOULD BE READ IN CONJUNCTION WITH MAP FOR DEPTH OF OVERBURDEN OR OTHER OVERLYING SOILS.
747	PIT DEVELOPMENT NOTES:
247	 PIT DEVELOPMENT MUST BE CARRIED OUT IN ACCORDANCE WITH THE HEALTH, SAFETY, AND RECLAMATION CODE FOR MINES IN BC, THE
12	CURRENT STANDARDS SPECIFICATIONS FOR HIGHWAY CONSTRUCTION, AND THE AGGREGATE OPERATORS BEST MANAGEMENT PRACTICES
۲Z	HANDBOOK FOR BC. 2. THE DEVELOPMENT AREA WILL NEED TO BE STRIPPED OF OVER-
	2. THE DEVELOPMENT AREA WILL NEED DE SITUFFED OF OVER- BURDEN. EXISTING BOULDER STOCKPILES AND OTHER STOCKPILES WOULD NEED TO BE MOVED PRIOR TO MINING THOSE AREAS.
Pit	3. DEVELOP AREA A AND USE AREA B FOR CRUSHER SETUP AND
	MATERIAL STOCKPILES AS REQUIRED. 4. DEVELOP AREA B AFTER AREA A HAS BEEN EXHAUSTED.
	 Develop area & After area a has been exhausted. PIT EXCAVATION MUST NOT TAKE PLACE TO WITHIN A MINIMUM
	DISTANCE OF 2m FROM THE EDGE OF CLEARED & STRIPPED AREAS.
	 WHEN THE CONTRACTOR DISCONTINUES OPERATIONS IN THE PIT, ALL WORKING PIT FACES AND STOCKPILES MUST BE TRIMMED TO 1.5H
	TO 1V SLOPE. WORKING PIT FACES MUST BE RESHAPED WITH NATIVE GRANULAR MATERIALS. ALL OTHER PERMANENT SLOPES MUST BE
	RE-SLOPED TO NO STEEPER THAN 2H TO 1V. 7. NO DUMPING OF DEBRIS PETROLEUM PRODUCTS IS PERMITTED. THE
	PIT MUST BE LEFT IN A CLEAN SAFE CONDITION.
tion	SKEENA - HIGHWAY DISTRICT
ering	TERRACE AIRPORT PIT
eering	FIGURE 3 PIT DEVELOPMENT PLAN
DG DATE MAR 2013	
ED DATE MAR 2013	FILE No. PROJECT No. REG. DRAWING No.

SELECT TEST PIT PHOTOGRAPHS

Terrace Airport Pit Aggregate Resource Assessment Technical Summary, Pit Number 5235

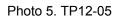


Photo 1. TP12-01.

Photo 2. TP12-10.

Photo 4. TP12-09

Terrace Airport Pit Select Test Pit Photographs

DATE PREPARED: MAR 2013

SCALE: NTS

PREPARED BY: DG

PROJECT No: 2331-20100-0 Task 2001

Photo 3. TP12-04

Photo 6. TP12-12

PHOTO PLATE Select Test Pit Photographs

TAKEN: December 2012

APPENDIX A – TEST PIT SUMMARY LOGS SOILS CLASSIFICATION LEGEND SIEVE ANALYSIS REPORTS MATERIAL GRADATION CHARTS PHYSICAL PROPERTY TEST RESULTS

		Gary Maltin				Comments	Peat, roots, rootlets. Silty tr sand (fine)		el at bottom was wet				Peat, roots, rootlets. Silty tr sand (fine)	TP +3.5m on bank above	Some sluffing of TP walls.	Peat, roots, rootlets. Silty tr sand (fine)	TP + 2.5 on bank above	Peat, roots, rootlets. Silty tr sand (fine)	Some sluffing of TP walls 1.0-5.0m	Peat roots rootlets Sitty tr sand (fine)			Peat, roots, rootlets. Silty tr sand (fine)		roots, rootlets. Silty tr sand (fine)			Peat, roots, rootlets. Silty tr sand (fine)			Peat, roots, rootlets. Slity tr sand (tine)			Peat roots rootlets Sitty tr sand (fine)	וטטוס, וטטווטוט. טווגץ גי טעווע ווויטן	
	.200					RoitgrosdA Senit % \ 921602 %	Peat,		Gravel				Peat,	+ TP	Some	Peat,	+ TP +	Peat,	1.07 / 2.44 Som	Peat			Peat,		Peat, I			Peat,			real,		1.18/3.48	Peat		
- - -	HITACHI EX 200	LOGGED BY:				Bulk Relative Dens 8 coarse / % tines													2.64 / 2.56														2.64 / 2.50			
		.0GGE	LTS			%coarse / % fines																														
			RESU	┝		Degrade	F			T	$ \uparrow $	╡	╡	╡		+	F		\square		\uparrow	\uparrow	╞┤		\uparrow			+		\uparrow	\dagger	╡	╡	\dagger	\uparrow	
		December 3 and 4, 2012	LABORATORY TEST RESULTS			Micro-Deval % coarse/ % fines								1	6.4	1					6	0.0					6.3			T	T	T		T	1	\square
		and 4	ΑΤΟΚΥ			finaleviup3 bres									31.3						47.0	<u>.</u>					74.2			+	-					\square
		oer 3	ABOR		ίĒΓ	(%) ww 57 - 22		24.6						25.7	25.7		25.2		30.7		0 00			28.9			26.8		19.7		+		26.3		1	32.5
		scemt	C		GRAVEL	(%) ww 52 >		30.5 2						34.2 2	37.6		38.2 2		36.1 3		36.0			33.9			36.4 2		50.8		╈		39.6	+	+	43.7 3
		ď			(%	%) mm		40.8						36.4	30.6		32.0		29.5		37 g			32.9			34.3		27.9 (Ť	_	32.1		1	20.3
ARY	оR:				(%)) mm čT0.0 > zeniT		4.1					-	3.7	6.1		4.6		3.7		4.4			4.3			2.5		1.6		+	-	2.0			3.5
TEST PIT SUMMARY	EXCAVATOR:	DATE:				Soil Classification		GP						GW	GW-GM		GW		GW		a U	Б		GP			GP		GW	_			GW			ВŴ
ST PI						(C,M,F) size (F,M,C)		Σ	Σ	Σ	Σ			Σ	C		U		ပ		Ċ	כ		ပ		ш	ပ		υ		L	г	Σ		ш	с
Ξ						(m) əldsT rətsW		•						•			•							•		•			•			•	•			•
				Ŀ.		(mm) əzi S x sM		300	300	150	300			300	300		300		400		400	400		400		75	400		400		11	<i>۹</i> /	300		75	400
			TION	LIONA	VERSIZE	(%) mm 00 E <		•		•	•			•	,		•		2		¢	v		4			3		2		1		•	\square		ю
			IFICA.	ADDITIONAL	OVE	120-300 mm (%)		5	ъ С	0	5			2	5		2		5		¢	0		4			3		2				2			e
		(IDENT			(%) ww 051 - 27		5	5	2	2			т	5		9		5		٣	o		4			5		5	_	_		e	\perp	\bot	e
-	2331-20100-0 Lask 2001	Airport Pit Test Pits (Terrace)	FIELD VISUAL IDENTIFICATION		((%) mm ՇT> Iອvຣາອ		50	60	25	55			60	68		20		20		65	3		75		10	70		20		L	ç	65		5	75
H	-0 1 8	t Pits	FIELC		(9	%) mm		45	38	20	42			38	30		27		27		33	70		23		30	27		28		Ļ	G Z	32		25	23
	1-20100	t Pit Tes			(%)) mm		5	2	5	ю			2	2		e		з		٣	o		2		60	з		2		1	0	m		70	2
	233	Airpor				Soil Classification	OB	ВW	ΜĐ	ВW	GW		OB	GW	GW	OB	ВW	OB	GW	BC	n N U	5	OB	МÖ	OB	ΗW	GW	OB	GW	Ċ	OB M	ΗM	В	BC	MH	GW
				((w) S	САҮЕВ ТНІСКИЕЗ	0.8	3.7	1.5	1.3	2.1		0.5	8.0	5.0	0.5	6.9	0.7	4.7	0	4 N	0 0	0.8	4.4	0.6	0.7	3.7	0.7	4.9	1	0.7	0.4	4.0	0.5	0.4	4.4
			DEPTH (m)			οŢ	0.8	4.50	1.5	2.8	4.9		0.5	8.5	5.0	0.5	7.5	0.7	5.4	0	0. Z	0.0	0.8	5.2	0.6	1.3	5	0.7	5.6	1	0.7	1.1	5.1	0.5	0.9	5.3
			DE			From	0.0	0.8	0.0	1.5	2.8		0.0	0.5	0.0	0.0	0.6	0.0	0.7	0.0	10	2.	0.0	0.8	0.0	0.6	1.3	0.0	0.7	((0.0	0.7	1.1	0.0	0.5	0.9
				_	1	ЗАМРLЕ ИUMBER		-	2	2	2			в	4		5		9		7	-		8			6		10		4	11A	11			12
	PROJECT #:	DESCRIPTION:			5	TEST PIT NUMBER	TP12-01	TP12-01	TP12-02	TP12-02	TP12-02		TP12-03	TP12-03	TP12-04	TP12-05	TP12-05	TP12-06	TP12-06	TP12-07	TD12-07	10-21 11	TP12-08	TP12-08	TP12-09	TP12-09	TP12-09	TP12-10	TP12-10		TD12-11 TD12-11	11-2141	TP12-11	TP12-12	TP12-12	TP12-12

McElhanney

													TE	ST P	IT SUM	MAR	(
PROJECT #:					2331	1-20100	0-0 Ta	sk 2001							EXCAVA	TOR:								Hitachi E	x 200			
DESCRIPTION:					Airport	: Pit Te	st Pits	(Terrace)						DATE:	DATE: December 3 and 4, 2012 LOGGED BY:										Gary Maltin		
	DEPTH (m) FIELD VISUAL IDENTIFICATION																	LABO	RATO	RY TEST	r RES	ULTS						
TEST PIT NUMBER							Soil Classification	Fines < 0.075 mm (%)	Sand < 4.75 mm (%)	GR GR (%) um (%)	25 - 75 mm (%)	Sand Equivalent	Micro-Deval % coarse/ % fines	Degrade	MgSO ₄ %coarse / % fines	Bulk Relative Density % coarse / % fines	Absorption % coarse / % fines	Comments										
TP12-13		0.0	2.3	2.3	GM	20	30	50	5			150	-	M												Appeared to be previous stripping/fill		
TP12-13	13	2.3	5.3	3.0	GW	5	35	60	2	2	-	300	-	М												2.3 - 5.3 native		
TP12-14		0.0	0.9	0.9	OB																					Peat, roots, rootlets. Silty tr sand (fine)		
TP12-14	14	0.9	5.0	4.1	GW	3	32	65	2	2	-	300	-	М	GW	4.3	36.9	36.9	21.9			<u> </u>		2.64 / 2.54	1.15 / 2.73	Gravel appeared more grey/brown		

Note: Soil classifications are based on Ministry of Transportation and Infrastructure Unified Soil Classification System

MA	TERI	ALS (CLASSIFICATION LEGEND
	JOR SIONS	SYMBOL	SOIL TYPE
	LS 1	GW	WELL GRADED GRAVELS OR GRAVEL—SAND MIXTURES, < 5% FINES
SOILS	- AND Y SOILS	GP	POORLY-GRADED GRAVELS OR GRAVEL-SAND MIXTURES, < 5% FINES
	GRAVEL GRAVELLY	GM*	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES
GRAINED	GR/G	GC*	CLAYEY GRAVELS, GRAVEL—SAND—CLAY MIXTURES
GRA		SW	WELL-GRADED SANDS OR GRAVELLY SANDS, < 5% FINES
SE	AND SOILS	SP	POORLY-GRADED SANDS OR GRAVELLY SANDS, < 5% FINES
COARSE	SAND SANDY	SM*	SILTY SANDS SAND-SILT MIXTURES
	ίς μ	SC*	CLAYEY SANDS SAND–CLAY MIXTURES
(0)	AND L <50	ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
GRAINED SOILS	SILTS AI CLAYS WL	CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
LED	CL	OL	ORGANIC SILTS AND ORGANIC SILT-CLAYS OF LOW PLASTICITY
GRAIN	AND L >50	ΜН	INORGANIC SILTS, MICACEOUS OR DIATOM- ACEOUS FINE SANDY OR SILTY SOILS, PLASTIC SILTS
FINE	SILTS A AYS wL	СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
	CLAY	ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
	ANIC	Pt	PEAT AND OTHER HIGHLY ORGANIC SOILS
TOP	SOIL	TS	TOPSOIL WITH ROOTS, ETC.
	BLES	SB	ROCK FRAGMENTS AND COBBLES, PARTICLE SIZE 75mm TO 300mm
	RGE _DERS	LB	BOULDERS, PARTICLE SIZE OVER 300mm
BED	ROCK	BR	BEDROCK
*GM1; GM2; GM3;	GC1; SI GC2; SI GC3; SI	M1; SC1; M2; SC2; M3; SC3;	12% PASSING .075 SIEVE, USE DUAL SYMBOL 12 - 20% 20 - 30% 30 - 40% 40 - 50%
			REV. 90-04-26
			MINISTRY OF TRANSPORTATION & HIGHWAYS Geotechnical & Materials Engineering
			UNIFIED SOIL CLASSIFICATION LEGEND

Drawn: LU Date: JULY'97 Scale: File No.: ACAD File: ACADSTDS

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

3907 4th Avenue Smithers, BC V0J 2N0

PROJECT NO. SMI-20100-1 то CLIENT Ministry of Transportation Ministry of Transportation C.C. #213 - 1011 4th Avenue Prince George, BC V2L 3H9 PROJECT 2012-13 MOTI Aggregate Resource Studies Various Airport Pit - Task 2001 CONTRACTOR McElhanney SIEVE TEST NO. 8 DATE RECEIVED 2012. Dec. 07 DATE TESTED 2013. Feb. 26 DATE SAMPLED 2012. Dec. 03 SUPPLIER G.Maltin SAMPLED BY TP12-01 SA-01, 0.8 - 4.5 mS.Connell SOURCE TESTED BY TEST METHOD WASHED **SPECIFICATION** MATERIAL TYPE PitRun 2" 1%" 4* %" 3/9" 3/4" 844 λĐ #16 #30 #50 #100 M200 100 U. 1111 90 - 10 90 20 SHORT PASSed 70 BRCENT RETAINED 30 60 40 60 60 40 60 30 70 20 90 10 90 n 100 영 37.5 mn 8 12.5 mn 9 5 2.36 80 ö ð 1.18 ð 9 H B III Ĩ mm Π Ľ Ę Ę Ę Ę B 3 **GRAVEL SIZES** PERCENT GRADATION SAND SIZES AND FINES PERCENT GRADATION PASSING LIMITS PASSING LIMITS 3 " 75 100.0 mm No. 4 4.75 mm 44.9 2" 92.0 50 2.36 mm mm No. 8 34.3 1 1/2" 37.5 mm 83.5 No. 16 1.18 mm 22.1 1" 25 75.4 No. 30 13.2 mm 600 µm 68.9 3/4" 19 No. 50 7.3 mm 300 µm 1/2" 60.4 12.5 mm 5.1 No. 100 150 µm 3/8" 9.5 mm 55.9 No. 200 75 µm 4.1 COMMENTS Material 75 mm and larger not included in laboratory analysis.

Page 1 of 1

2013. Feb. 26 McElhanney Consulting Services Ltd.

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request.

PER. Dimon P.

Connel

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

3907 4th Avenue Smithers, BC V0J 2N0

PROJECT NO. SMI-20100-1 CLIENT Ministry of Transportation то Ministry of Transportation C.C. #213 - 1011 4th Avenue Prince George, BC V2L 3H9 PROJECT 2012-13 MOTI Aggregate Resource Studies Various Airport Pit - Task 2001 CONTRACTOR McElhanney DATE RECEIVED 2012.Dec.07 DATE TESTED 2013.Feb.25 DATE SAMPLED 2012.Dec.03 SIEVE TEST NO. 10 G. Maltin SAMPLED BY SUPPLIER D. Gerein TP12-03 SA-03, 0.5 - 8.5 m SOURCE TESTED BY TEST METHOD WASHED SPECIFICATION MATERIAL TYPE Pit Run %" 1" **M**16 MGO #50 #100 H200 2" 1%" 3/4" 3/B" AB 84 3 U 100 111 10 90 20 80 PERCENT PASSING *ロアクロメー カロンショロ 30 70 40 60 60 60 80 40 30 70 20 80 90 10 100 a 37.5 mn 8 9.5 mm 8 80 Ы **4**.76 2.36 **1**5 ർ 12.5 8 F 30 ШШ B H Ī ł F Ħ Ę Ę Ę PERCENT GRADATION SAND SIZES AND FINES PERCENT GRADATION **GRAVEL SIZES** PASSING PASSING LIMITS LIMITS 3 " 75 4.75 mm 40.1 100.0 No. 4 mm 2 " 50 89.5 No. 8 2.36 mm 27.0 mm 82.1 1.18 mm 17.8 1 1/2" 37.5 mm No. 16 1" 25 74.3 No: 30 600 µm 12.5 mm 68.3 6.7 3/4" 19 No. 50 300 µm mm 4.5 58.2 1/2" 12.5 mm 100 150 µm No. 3.7 52.7 75 µm 9.5 mm No. 200 3/8" COMMENTS Materials 75 mm and larger not included in laboratory analysis.

2013. Feb. 27 McElhanney Consulting Services Ltd.

Page 1 of 1

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request.

PER. Xmon

McElhanney Consulting Services Ltd. 3907 4th Avenue

Smithers, BC V0J 2N0

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

PROJECT NO. SMI-20100-1 CLIENT Ministry of Transportation то Ministry of Transportation C.C. #213 - 1011 4th Avenue Prince George, BC V2L 3H9 PROJECT 2012-13 MOTI Aggregate Resource Studies Various Airport Pit - Task 2001 CONTRACTOR McElhanney SIEVE TEST NO. 7 DATE RECEIVED 2012.Dec.07 DATE TESTED 2013.Feb.26 DATE SAMPLED 2012.Dec.03 G. Maltin SUPPLIER SAMPLED BY TP12-04 SA-04, 0 - 5.0 m SOURCE S. Connell TESTED BY TEST METHOD WASHED SPECIFICATION MATERIAL TYPE Pit Run 1%" 1" 3/4" %" 3/8" #4 #16 NG0 #50 M100 #200 100 ð 90 10 80 20 PERCENT PASSING 70 30 ERCENT RETAINED 80 40 50 80 40 80 30 70 20 80 10 (00) ð - 100 37.5 mm 9.5 mm 엄 5 3 N 2.36 1.18 3 12.5 8 g ğ m Ē Ħ T Ę Ť Ę ţ ПП В Ę Ę **GRAVEL SIZES** PERCENT GRADATION SAND SIZES AND FINES PERCENT GRADATION PASSING LIMITS PASSING LIMITS 3 " 75 mm 100.0 No. 4 4.75 mm 36.7 2 " 50 95.5 mm No. 8 2.36 mm 27.7 $1 \ 1/2"$ 37.5 mm 85.3 No. 16 1.18 mm 19.2 1" 25 74.3 mm No. 30 600 µm 13.4 66.6 3/4" 19 9.0 mm No. 50 300 µm 1/2" 56.0 12.5 mm 150 µm 7.1 No. 100 3/8" 9.5 mm 50.0 No. 200 6.1 75 µm COMMENTS Material 75 mm and larger not included in laboratory analysis.

Page 1 of 1 2013.Feb.26 McElhanney Consulting Services Ltd.

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request.

PER. Junen

3907 4th Avenue Smithers, BC V0J 2N0

то

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

CLIENT Ministry of Transportation

PROJECT NO. SMI-20100-1

Ministry of Transportation C.C. #213 - 1011 4th Avenue Prince George, BC V2L 3H9 PROJECT 2012-13 MOTI Aggregate Resource Studies Various Airport Pit - Task 2001 CONTRACTOR McElhanney DATE RECEIVED 2012. Dec. 07 DATE TESTED 2013. Feb. 27 DATE SAMPLED 2012. Dec. 03 SIEVE TEST NO. 11 S. Connell SUPPLIER SAMPLED BY TP12-05 SA-05, 0.6 - 7.5 m D. Gerein SOURCE TESTED BY TEST METHOD WASHED SPECIFICATION MATERIAL TYPE Pit Run 1%" 1" 3/4" %" 3/8" **H4** AĐ #16 **M**30 #50 *N*100 M200 100 Ø 90 10 80 20 **FRCENT PASSING** YERCENT RETAINED 70 30 80 40 60 60 40 60 30 70 20 80 10 90 đ 100 영 37.5 mr 95 胡 8 4.75 2.36 80 ö ß เรื่อ 1.18 ġ H F H m Ē mm Ī Ē Ē Ę Ŋ 릨 Π **GRAVEL SIZES** PERCENT GRADATION SAND SIZES AND FINES PERCENT GRADATION PASSING LIMITS PASSING LIMITS 3 " 75 100.0 No. 4 4.75 mm 36.6 mm 2" 50 mm 90.1 No. 8 2.36 mm 27.9 $1 \ 1/2"$ 37.5 mm 84.3 No. 16 1.18 mm 20.9 1 " 25 mm 74.8 No. 30 600 µm 15.2 3/4" 68.2 9.3 19 No. 50 300 µm mm 12.5 mm 56.1 6.1 1/2" No. 100 150 µm 50.6 No. 200 75 µm 4.6 3/8" 9.5 mm COMMENTS Materials 75 mm and larger not included in laboratory analysis. Page 1 of 1 PER. Ocmor 2013.Feb.27 McElhanney Consulting Services Ltd.

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request.

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

3907 4th Avenue Smithers, BC V0J 2N0

PROJECT NO. SMI-20100-1 CLIENT Ministry of Transportation то Ministry of Transportation C.C. #213 - 1011 4th Avenue Prince George, BC V2L 3н9 PROJECT 2012-13 MOTI Aggregate Resource Studies Various Airport Pit - Task 2001 CONTRACTOR McElhanney DATE RECEIVED 2012. Dec. 07 DATE TESTED 2013. Feb. 20 DATE SAMPLED 2012. Dec. 03 SIEVE TEST NO. 1 G. Maltin SUPPLIER SAMPLED BY TP12-06, SA-06, 0.7 - 5.4 m S. Connell SOURCE **TESTED BY** TEST METHOD WASHED **SPECIFICATION** MATERIAL TYPE Pit Run 1" 3/4" 1%" %" 3/8" #4 #16 #30 M50 #100 M200 100 Ð 111 90 10 80 20 PERCENT PASSING **PERCENT RETAINED** 70 30 60 40 50 60 40 60 30 70 20 80 10 90 a - 100 đ 영 9.5 1.18 37.5 mn Ы 4.75 2,36 8 g ෂ 12.5 ŝ mm B E 3 Ę E ţ F 3 Ę 3 Ę 3 **GRAVEL SIZES** PERCENT GRADATION SAND SIZES AND FINES PERCENT GRADATION PASSING LIMITS PASSING LIMITS 3 " 75 100.0 No. 4 4.75 mm 33.2 mm 2 " 50 mm 90.0 No. 8 2.36 mm 24.71 1/2" 37.5 mm 79.5 No. 16 1.18 mm 16.4 69.3 1 " 25 mm No. 30 600 µm 10.2 3/4" 60.9 5.8 19 mm No: 50 300 µm 12.5 mm 49.6 4.5 1/2" No. 100 150 µm 44.1 3.7 3/8" 9.5 mm No. 200 75 um COMMENTS Material 75 mm and larger not included in laboratory analysis.

Page 1 of 1 2013.Feb.20 McElhanney Consulting Services Ltd.

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request.

PER. Xmor

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

PER. Simon D. Conner

3907 4th Avenue Smithers, BC V0J 2N0

PROJECT NO. SMI-20100-1 CLIENT Ministry of Transportation то Ministry of Transportation C.C. #213 - 1011 4th Avenue Prince George, BC V2L 3н9 PROJECT 2012-13 MOTI Aggregate Resource Studies Various Airport Pit - Task 2001 CONTRACTOR McElhanney SIEVE TEST NO. 3 DATE RECEIVED 2012.Dec.07 DATE TESTED 2013.Feb.21 DATE SAMPLED 2012.Dec.03 G. Maltin SUPPLIER SAMPLED BY TP12-07, SA-07, 1.0 - 5.8 m D. Gerein SOURCE TESTED BY TEST METHOD WASHED SPECIFICATION MATERIAL TYPE Pit Run 1%" 1" 3/4" %" 3/8" **H4** #16 AK30 **M**50 #100 M200 ÁЮ 100 Ü -90 10 80 20 PERCENT PASSING **ERCENT RETAINED** 70 30 60 40 60 50 40 60 30 70 20 80 10 - 90 Ü - 100 37.5 mm å 벙 8 9 8 ß 12.5 4.75 2.36 1.18 g ð m E H Ш ł H Ę Ŧ Ξ Ē 3 3 Ę **GRAVEL SIZES** PERCENT GRADATION SAND SIZES AND FINES PERCENT GRADATION PASSING LIMITS PASSING LIMITS 3 " 75 100.0 4.75 mm 42.2 mm No. 4 2 " 50 mm 96.4 No. 8 2.36 mm 32.6 22.3 $1 \ 1/2"$ 37.5 mm 90.0 No. 16 1.18 mm 1" 25 mm 79.1 No: 30 600 µm 13.5 3/4" 71.6 19 No: 50 300 µm 7.3 mm 60.7 1/2" 12.5 mm 5.3 No. 100 150 um 54.3 3/8" 9.5 mm No. 200 75 um 4.4 COMMENTS Materials 75 mm and larger are not included in laboratory analysis.

2013. Feb. 21 McElhanney Consulting Services Ltd.

Page 1 of 1

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request.

3907 4th Avenue Smithers, BC V0J 2N0 SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

PROJECT NO. SMI-20100-1 то CLIENT Ministry of Transportation Ministry of Transportation C.C. #213 - 1011 4th Avenue Prince George, BC V2L 3H9 PROJECT 2012-13 MOTI Aggregate Resource Studies Various Airport Pit - Task 2001 CONTRACTOR McElhanney SIEVE TEST NO. 9 DATE RECEIVED 2012.Dec.07 DATE TESTED 2013.Feb.26 DATE SAMPLED 2012.Dec.03 SUPPLIER G. Maltin SAMPLED BY TP12-08 SA-08, 0.8 - 5.2 m SOURCE TESTED BY S. Connell SPECIFICATION TEST METHOD WASHED MATERIAL TYPE Pit Run 1%" 4" 3/4" %" 3/8" **#16 £**30 #50 #100 M200 100 ð 40 10 90 20 PERCENT PASSING 70 90 80 40 90 ġÛ 40 ŴŰ 30 70 20 -10 鎆 Ø 100 37.5 1 영 9.5 mm 4.75 a Ы ŵ 12.5 2.36 400 µm 3 300 μm ð . ಹ 3 đ Ĩ BB F Ē Ę 릴 Ę 3 릨 **GRAVEL SIZES** PERCENT GRADATION SAND SIZES AND FINES PERCENT GRADATION PASSING LIMITS PASSING LIMITS 3 " 75 100.0 No. 4 mm 4.75 mm 37.2 2" 50 mm 93.4 No. 8 2.36 mm 29.7 $1 \ 1/2"$ 37.5 mm 83.7 No. 16 1.18 mm 21.7 1" 71.1 25 mm No. 30 600 µm 14.6 3/4" 19 63.5 mm No. 50 300 µm 8.6 53.2 1/2" 12.5 mm No. 100 150 um 5.8 3/8" 9.5 mm 47.9 No. 200 75 µm 4.3 COMMENTS Material 75 mm and larger not included in laboratory analysis.

2013.Feb.26 McElhanney Consulting Services Ltd.

Page 1 of 1

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request.

PER Simon

3907 4th Avenue Smithers, BC V0J 2N0 SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

PROJECT NO. SMI-20100-1 CLIENT Ministry of Transportation то Ministry of Transportation C.C. #213 - 1011 4th Avenue Prince George, BC V2L 3н9 PROJECT 2012-13 MOTI Aggregate Resource Studies Various Airport Pit - Task 2001 CONTRACTOR McElhanney DATE RECEIVED 2012. Dec. 07 DATE TESTED 2013. Feb. 19 DATE SAMPLED 2012. Dec. 03 SIEVE TEST NO. 2 G.Maltin SUPPLIER SAMPLED BY TP12-09, SA-09, 1.2 - 5.0 m S.Connell SOURCE TESTED BY TEST METHOD WASHED SPECIFICATION MATERIAL TYPE Pit Run **M**30 #50 1" 3/4" %" 3/8" M4. #16 #100 #200 1% AB 2" 100 Ü 111 90 10 80 20 PERCENT PASSING PERCENT RETAINED 70 30 40 60 50 50 60 40 70 30 80 20 10 - 90 a - 100 3 8 37.5 mn N 9 4.75 2.36 1.18 8 g 10 12.5 ទី 33 H Ę 3 3 ШШ g F Ę Ę ПП Ę Ē SAND SIZES AND FINES PERCENT **GRAVEL SIZES** PERCENT GRADATION GRADATION PASSING LIMITS PASSING LIMITS 3 " 75 4.75 mm 100.0 No. 4 36.8 mm 2" 30.1 94.4No. 8 2.36 mm 50 mm 1 1/2" 85.4 No. 16 24.0 37.5 mm 1.18 mm 1 " 25 73.2 No: 30 15.6 600 µm mm 5.1 3/4" 64.6 No. 50 300 µm 19 mm 12.5 mm 53.1 3.2 1/2" No. 100 150 um 47.4 No. 200 75 µm 2.5 9.5 mm 3/8" COMMENTS

Material 75 mm and larger not included in laboratory analysis.

Page 1 of 1

2013. Feb. 21 McElhanney Consulting Services Ltd.

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request.

PER. Simon

3907 4th Avenue Smithers, BC V0J 2N0 SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

PROJECT NO. SMI-20100-1 то CLIENT Ministry of Transportation Ministry of Transportation C.C. #213 - 1011 4th Avenue Prince George, BC V2L 3н9 PROJECT 2012-13 MOTI Aggregate Resource Studies Various Airport Pit - Task 2001 CONTRACTOR McElhanney SIEVE TEST NO. 5 DATE RECEIVED 2012.Dec.07 DATE TESTED 2013.Feb.22 DATE SAMPLED 2012.Dec.03 SUPPLIER G Maltin SAMPLED BY TP 12-10, SA-10, 0.7-5.6m SOURCE D Gerein TESTED BY **SPECIFICATION** TEST METHOD WASHED MATERIAL TYPE Pit Run 2" 1%" 4* 3/4" %" 3/8' #16 #30 #50 W100 #200 100 U 1111 90 = 10 111 80 20 **TERCENT PASSING** 70 BRCENT 30 60 40 50 60 RETAILED 40 60 30 70 20 -90 10 90 n 100 37.5 mn d 엄 ŝ 4.75 8 300 Jun ā 12.5 mr 2.36 1.18 8 150 µm d ШЩ H B F E E Ĭ Ę Ę 릨 **GRAVEL SIZES** PERCENT GRADATION SAND SIZES AND FINES PERCENT GRADATION PASSING LIMITS PASSING LIMITS 3 " 75 100.0 mm No. 44.75 mm 29.5 2 " 50 96.2 mm No 8 2.36 mm 18.8 1 1/2" 37.5 mm 89.0 No. 16 1.18 mm 12.2 1 .00 25 80.3 mm No. 30 7.9 600 um 3/4" 70.2 19 mm No. 50 3.5 300 µm 1/2" 54.9 12.5 mm No. 100 150 µm 2.1 3/8" 46.2 9.5 mm 75 µm No: 200 1.6 COMMENTS

Material 75mm and larger not included in laboratory analysis.

Page 1 of 1

2013.Feb.25 McElhanney Consulting Services Ltd.

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request.

PER 26mmon

SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

3907 4th Avenue Smithers, BC V0J 2N0

PROJECT NO. SMI-20100-1 то CLIENT Ministry of Transportation Ministry of Transportation C.C. #213 - 1011 4th Avenue Prince George, BC V2L 3H9 PROJECT 2012-13 MOTI Aggregate Resource Studies Various Airport Pit - Task 2001 CONTRACTOR McElhanney DATE RECEIVED 2012. Dec. 07 DATE TESTED 2013. Feb. 21 DATE SAMPLED 2012. Dec. 03 SIEVE TEST NO. 4 SUPPLIER G. Maltin SAMPLED BY TP12-11, SA-11, 1.1 - 5.1 m SOURCE S. Connell TESTED BY SPECIFICATION TEST METHOD WASHED MATERIAL TYPE Pit Run 1%" 1" 3/4" %" 3/8" Hd AR #16 M90 M50 M100 M200 100 Ð 90 10 80 20 PERCENT PASSING 70 **'ERCENT RETAINED** 30 60 40 50 50 40 60 30 70 20 60 10 - 90 n - 100 5 37.5 mm 엉 9.5 mm N 4.75 2.36 1.18 ធ 12.5 8 8 ð 10 B B З H Ę Ę Ē F Ē 3 3 3 **GRAVEL SIZES** PERCENT GRADATION SAND SIZES AND FINES PERCENT GRADATION PASSING LIMITS PASSING LIMITS 3 " 75 100.0 mm No. 4 4.75 mm 34.1 2" 50 94.8 mm No. 8 2.36 mm 26.0 1 1/2" 37.5 mm 84.6 1.18 mm No. 16 18.6 1" 25 73.7 mm No. 30 600 µm 11.3 3/4" 64.5 19 mm No. 50 4.8 300 um 1/2" 52.9 12.5 mm No. 100 150 µm 2.7 46.5 3/8" 9.5 mm 2.0 No. 200 75 µm

COMMENTS

Material 75 mm and larger not included in laboratory analysis.

Page 1 of 1

2013.Feb.21 McElhanney Consulting Services Ltd.

PER Stmon D. Con

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request.

3907 4th Avenue Smithers, BC V0J 2N0 SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

PROJECT NO. SMI-20100-1 CLIENT Ministry of Transportation то Ministry of Transportation C.C. #213 - 1011 4th Avenue Prince George, BC V2L 3H9 PROJECT 2012-13 MoTI Aggregate Resource Studies Various Airport Pit - Task 2001 CONTRACTOR McElhanney DATE RECEIVED 2012. Dec. 07 DATE TESTED 2013. Feb. 27 DATE SAMPLED 2012. Dec. 03 SIEVE TEST NO. 12 G. Maltin SUPPLIER SAMPLED BY S. Connell TP12-12 SA-12, 0.9 - 5.3 m TESTED BY SOURCE TEST METHOD WASHED SPECIFICATION MATERIAL TYPE Pit Run #50 #100 #200 1%" 1" 3/4" %" 3/8" #4 #16 #30 2" Ø 100 - 10 90 20 80 PERCENT PASSING 70 30 40 ŐŨ 60 60 60 40 30 70 20 -90 10 90 - 100 Ø 37.5 mm 3 엄 ю Ю 1.18 g g 형 Ы 4.75 2.36 ġ 12.5 μ H 3 BB E Ш Ę F Ŧ Ę Ŋ ₫ 릨 PERCENT GRADATION **GRAVEL SIZES** PERCENT GRADATION SAND SIZES AND FINES PASSING LIMITS PASSING LIMITS 3 " 75 100.0 No 4 4.75 mm 23.8 mm 14.5 No. 8 2.36 mm 2 " 50 90.3 mm 80.9 No. 16 1.18 mm 8.7 1 1/2" 37.5 mm 6.1 1" 25 67.5 No. 30 600 µm mm 58.9 No. 50 300 µm 4.6 3/4" 19 mm 150 µm 4.0 1/2" 12.5 mm 44.5 No. 100 3.5 37.8 No. 200 3/8" 9.5 mm 75 µm COMMENTS

Materials 75 mm and larger not included in laboratory analysis.

2013.Feb.27 McElhanney Consulting Services Ltd.

Page 1 of 1

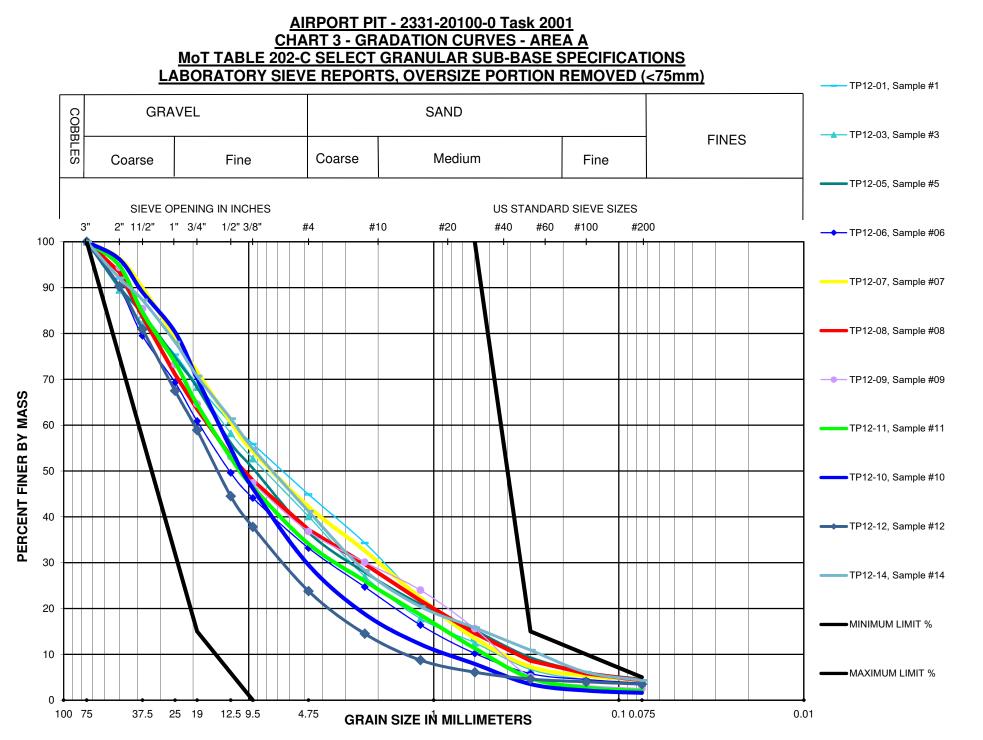
Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request.

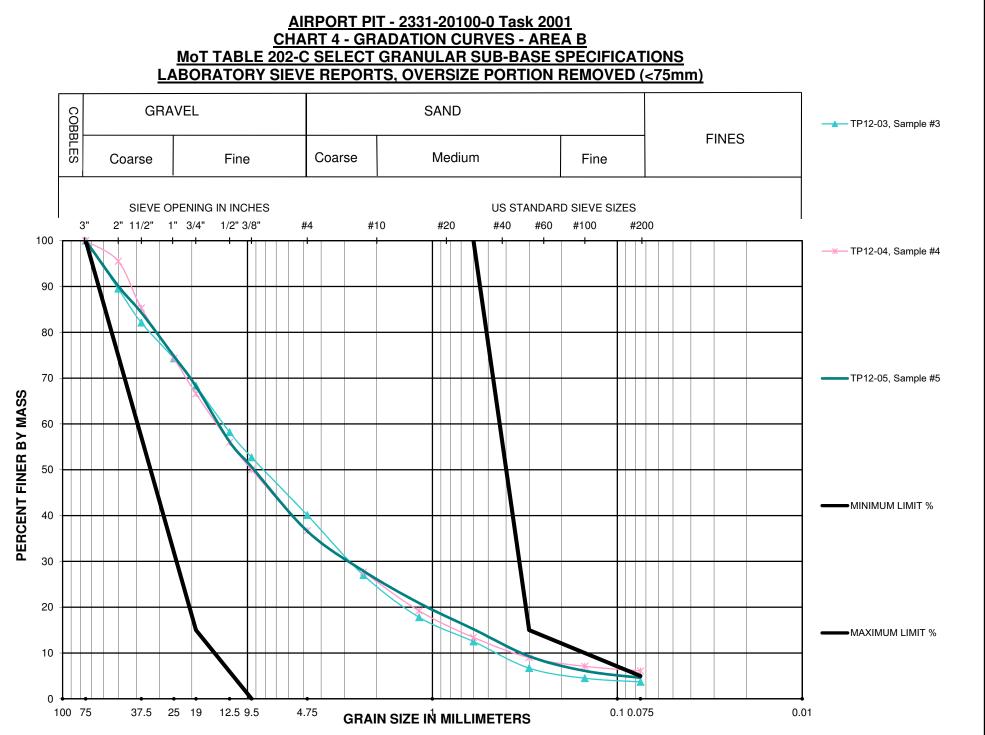
PER. - Cmor

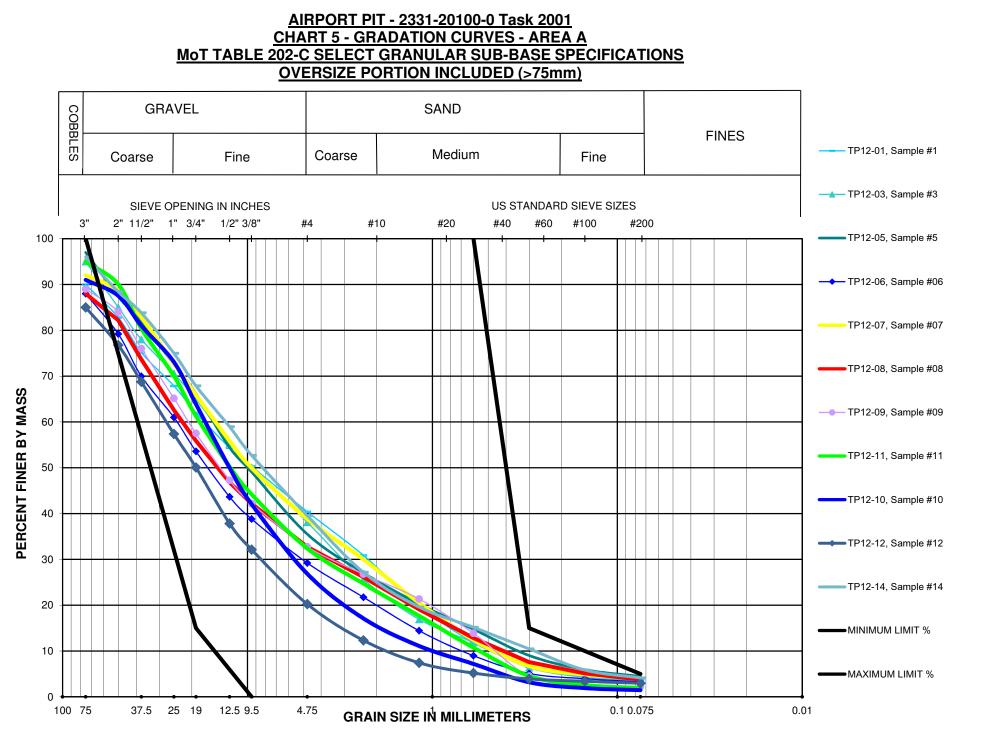
SIEVE ANALYSIS REPORT 8 16 30 50 SERIES

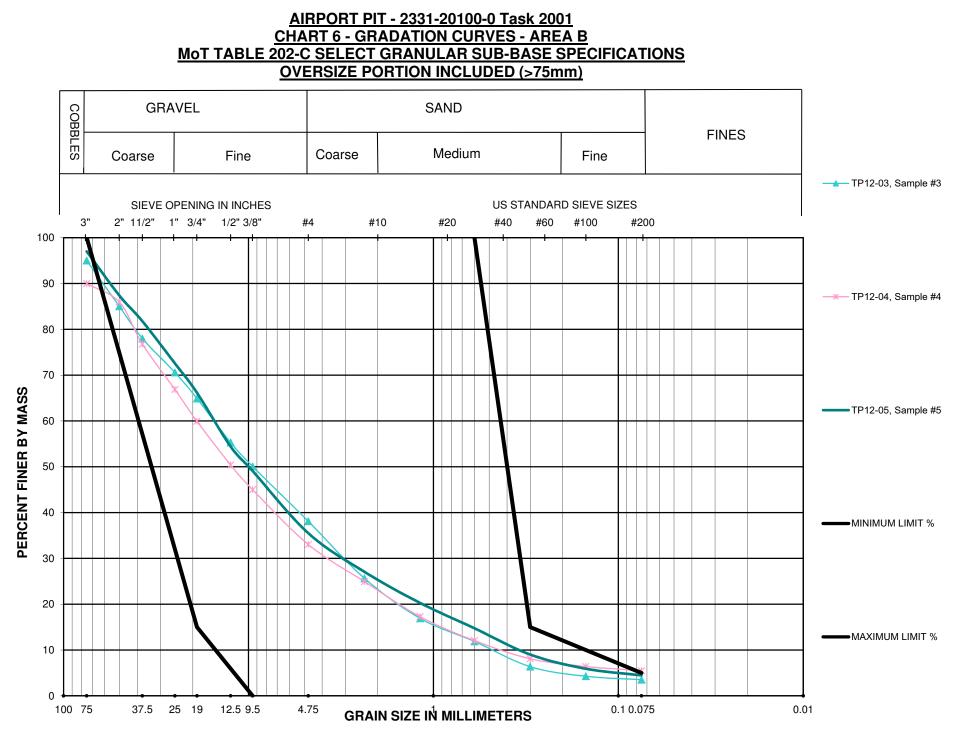
3907 4th Avenue Smithers, BC V0J 2N0

PROJECT NO. SMI-20100-1 то CLIENT Ministry of Transportation Ministry of Transportation C.C. #213 - 1011 4th Avenue Prince George, BC V2L 3H9 PROJECT 2012-13 MOTI Aggregate Resource Studies Various Airport Pit - Task 2001 CONTRACTOR MCElhanney DATE RECEIVED 2012. Dec. 07 DATE TESTED 2013. Feb. 25 DATE SAMPLED 2012. Dec. 03 SIEVE TEST NO. 6 SUPPLIER G. Maltin SAMPLED BY TP12-14 SA-14, 0.9 - 5.0 m SOURCE D. Gerein TESTED BY SPECIFICATION TEST METHOD WASHED MATERIAL TYPE Pit Run 1" 1%" 3/4" 82 3/8" MA 1R #16 M90 #50 *W*100 #200 100 Ø 90 10 80 20 **PERCENT PASSING** 70 30 60 40 60 50 RETANED 40 60 30 70 20 80 10 00 a - 100 영 37.5 mn 9.5 mm 2 17 2.36 ធិ 12.5 8 g ġ 늆 mm 3 M 3 Ī ħ Ę Ę F 3 E 3 **GRAVEL SIZES** PERCENT SAND SIZES AND FINES GRADATION PERCENT GRADATION PASSING LIMITS PASSING LIMITS 3 " 75 100.0 mm 4.75 mm No. 4 41.2 2 " 50 92.1 mm No. 8 2.36 mm 28.3 1 1/2" 37.5 mm 87.3 No. 16 1.18 mm 20.4 1 " 25 78.1 mm No. 30 15.8 600 µm 3/4" 19 70.7 mm No. 50 10.9 300 um 1/2" 12.5 mm 61.4 No. 100 150 µm 6.1 3/8" 9.5 mm 54.9 No. 200 4.3 75 µm COMMENTS Material 75 mm and larger not included in sieve analysis.

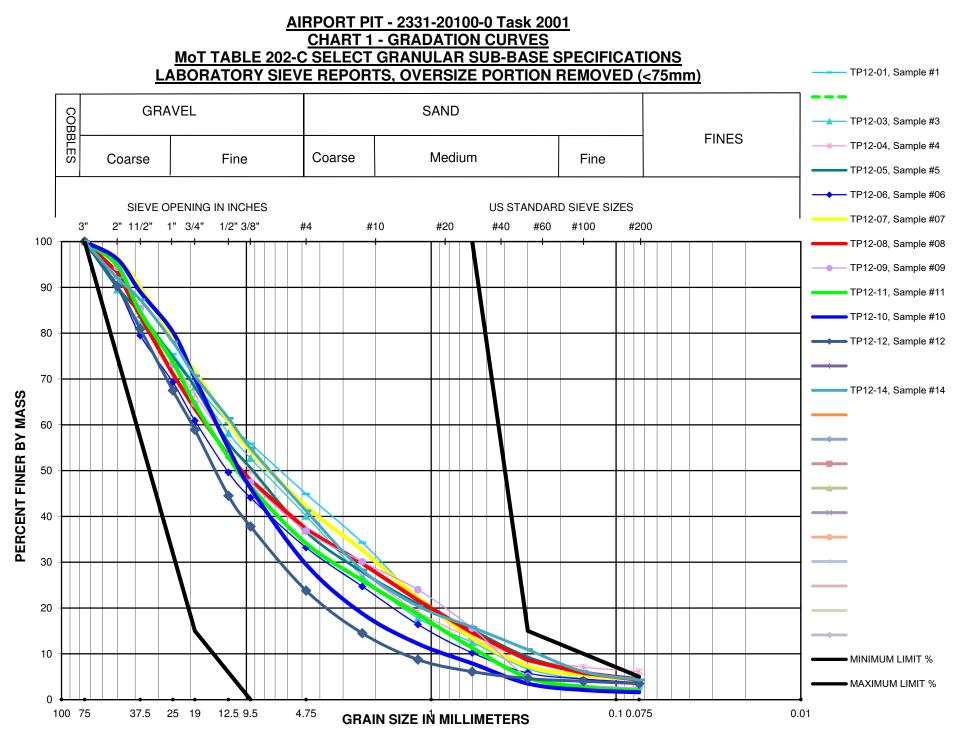

Page 1 of 1


2013.Feb.25 McElhanney Consulting Services Ltd.


Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of test results is provided only on written request.


PER. Somon

Conne



MICRO-DEVAL

Project #:	2331-20100-0 Task 2001	Client:	MoTI
Pit:	Airport Pit	Date Sampled:	December 3, 2012
Product:	Pit Run	Date Rec'd:	December 7, 2012
Т.Р.	12-4 Sample #: 4	Date Tested:	February 26-27, 2013
Tech:	S. Connell		

Passing		Retained	•	"A" Gradii	ng (3/4"-)	"B" Gradi	ng (1/2"-)	"C" Gradi	ng (3/8"-)
mm	Inches	mm	Inches	Required	Actual	Required	Actual	Required	Actual
19.0	3/4	16.0	5/8	375 g	374.4	N. U.S. C.	die die die		1997 - S
16.0	5/8	12.5	1.2	375 g	376.2				
12.5	1/2	9.5	3/8	750 g	750.9	750 g			
9.5	3/8	6.7	0.265			375 g	0.0	750 g	0.0
6.7	0.265	4.75	# 4		in the	375 g	0.0	750 g	0.0
					1501.5		0.0		0.0

Max Size Aggregate Used

19mm

Intital Sample Weight (A) Final Sample Weight (C) Pan Weight (B)

1501.5 1406.0 0.0

Percent Loss

6.36%

MICRO-DEVAL

Project #:	2331-20100-0 Task 2001	Client:	MoTI
Pit:	Airport Pit	Date Sampled:	December 3, 2012
Product:	Pit Run	Date Rec'd:	December 7, 2012
T.P.	12-7 Sample #: 7	Date Tested:	February 21, 2013
Tech:	D. Gerein		

Passing		Retained		"A" Gradii	ng (3/4"-)	"B" Gradi	ng (1/2"-)	C" Gradir	ng (3/8"-)
mm	Inches	mm	Inches	Required	Actual	Required	Actual	Required	Actual
19.0	3/4	16.0	5/8	375 g	375.6				
16.0	5/8	12.5	1.2	375 g	375.8		1.1.4.5		
12.5	1/2	9.5	3/8	750 g	748.7	750 g			
9.5	3/8	6.7	0.265	And the second	SI NY L	375 g	0.0	750 g	0.0
6.7	0.265	4.75	#4		1 N	375 g	0.0	750 g	0.0
				Total	1500.1		0.0		0.0

Max Size Aggregate Used

19mm

Intital Sample Weight (A) Final Sample Weight (C) Pan Weight (B)

1500.1	
1424.6	
0.0	

Percent Loss

5.03%

MICRO-DEVAL

Project #:	2331-20100-0 Task 2001	Client:	MoTI
Pit:	Airport Pit	Date Sampled:	December 3, 2012
Product:	Pit Run	Date Rec'd:	December 7, 2012
Т.Р.	12-09 Sample #: 9	Date Tested:	February 21, 2013
Tech:	S. Connell		

Passing		Retained		"A" Gradi	ng (3/4"-)	"B" Gradi	ng (1/2"-)	"C" Gradir	ng (3/8"-)
mm	Inches	mm	Inches	Required	Actual	Required	Actual	Required	Actual
19.0	3/4	16.0	5/8	375 g	374.8			10 miles	1000
16.0	5/8	12.5	1.2	375 g	377.3	t de la compositione	and a state	- Sec. 2554.	
12.5	1/2	9.5	3/8	750 g	749.6	750 g		100 100 100	UT KA IÉ.
9.5	3/8	6.7	0.265	line and the second	10.11	375 g	0.0	750 g	0.0
6.7	0.265	4.75	#4			375 g	0.0	750 g	0.0
				Total	1501.7		0.0	ĺ	0.0

Max Size Aggregate Used

19mm

1501.7

1406.8

0.0

Intital Sample Weight (A) Final Sample Weight (C) Pan Weight (B)

Percent Loss

6.32%

Project No.	2331-20100-0 Task 200	L	Client:	MoTI
Pit:	Airport Pit		Date Sampled:	December 3, 2012
Product:	Pit Run		Date Rec'd:	December 7, 2012
Т.Р.	12-4 Sample #:	4	Date Tested:	March 4, 2013

SAND EQUIVALENT TEST A.S.T.M. D-2419

Trial #	1	2	3	4	Average
Clay Height (mm):	221.0	246.4	228.6	238.8	
Sediment Period:	20 min.	20 min.	20 min.	20 min.	
Sand Height (mm):	73.7	73.7	73.7	71.1	
Sand Equivalent (SE):	33.3	29.9	32.2	29.8	31.3

Calculations:

Sand Equivalent (SE) = (Sand Height / Clay Height) x 100

INTERPRETATION OF RESULTS Sand Equivalent (SE) 50 40 30 20 Absence of Possible Plastic Plastic Plastic Fines Plastic Fines

REMARKS

Project No.	2331-20100	-0 Task 2001	
Pit:	Airport Pit		
Product:	Pit Run		
T.P.	12-07	Sample #:	7

Client:	MoTI
Date Sampled	December 3, 2012
Date Rec'd:	December 7, 2012
Date Tested:	February 28, 2013

SAND EQUIVALENT TEST A.S.T.M. D-2419

Trial #	1	2	3	4	Average
Clay Height (mm):	175.3	180.3	162.6	205.7	
Sediment Period:	20 min.	20 min.	20 min.	20 min.	
Sand Height (mm):	88.9	83.8	81.3	83.8	
Sand Equivalent (SE):	50.7	46.5	50.0	40.7	47.0

Calculations:

Sand Equivalent (SE) = (Sand Height / Clay Height) x 100

INTERPRETATION OF F	RESULTS			
Sand Equivalent (SE)	50	40	30	20
	Absence of Plastic Fines		Possible Plastic Material	Plastic Material

REMARKS

Project No.	2331-20100-0 Task	2001	Client:	Моті	
Pit:	Airport Pit		Date Sampled:	December 3, 2012	
Product:	Pit Run		Date Rec'd:	December 7, 2012	
T.P.	TP12-9 Sampl	e#:9	Date Tested:	February 25, 2013	

SAND EQUIVALENT TEST A.S.T.M. D-2419

Trial #	1	2	3	4	Averag
Clay Height (mm):	116.8	109.2	124.5	119.4	
Sediment Period:	20 min.	20 min.	20 min.	20 min.	
Sand Height (mm):	88.9	86.4	86.4	86.4	
Sand Equivalent (SE):	76.1	79.1	69.4	72.3	74.2

Calculations:

Sand Equivalent (SE) = (Sand Height / Clay Height) x 100

INTERPRETATION OF F	RESULTS			
Sand Equivalent (SE)	50	40	30	20
	Absence of Plastic Fines		Possible Plastic Material	Plastic Material

REMARKS

	*****		 *******
*************************************		•••••••	

Project No.	2331-20100-0 Task 2001	Client:	MoTI
Pit:	Airport Pit	Date Sampled:	December 3, 2012
Product:	Pit Run	Date Rec'd:	December 7, 2012
T.P.	12-06 Sample #: 6	Date Tested:	February 21, 2013

BULK RELATIVE DENSITY OF AGGREGATE

COARSE AGGREGATE

BULK RELATIVE DENSITY	2.643
PERCENT WATER ABSORPTION	1.07

FINE AGGREGATE

BULK RELATIVE DENSITY	2.562
PERCENT WATER ABSORPTION	2.44

Project No.	2331-20100-0 Task 2001	Client:	MoTI
Pit:	Airport Pit	Date Sampled:	December 3, 2013
Product:	Pit Run	Date Rec'd:	December 7, 2013
T.P.	12-11 Sample #: 11	Date Tested:	February 26, 2013

BULK RELATIVE DENSITY OF AGGREGATE

COARSE AGGREGATE

BULK RELATIVE DENSITY	2.637
PERCENT WATER ABSORPTION	1.18

FINE AGGREGATE

BULK RELATIVE DENSITY	2.495
PERCENT WATER ABSORPTION	3.48

Project No.	2331-20100-0 Task 2001	Client:	MoTI
Pit:	Airport Pit	Date Sampled:	December 3, 2012
Product:	Pit Run	Date Rec'd:	December 7, 2012
T.P.	12-14 Sample #:14	Date Tested:	February 26, 2013

BULK RELATIVE DENSITY OF AGGREGATE

COARSE AGGREGATE

BULK RELATIVE DENSITY	2.644
PERCENT WATER ABSORPTION	1.15

FINE AGGREGATE

BULK RELATIVE DENSITY	2.535
PERCENT WATER ABSORPTION	2.73