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A general description of hypothesis testing and power analysis

This pamphlet will describe the concepts of hypothesis testing and power analysis. When

conducting a statistical test there are two hypotheses under consideration. The first is the null

hypothesis, Ho, which is the simple hypothesis of no difference between treatments or of no

response to the variable(s) of interest. The second is the alternate hypothesis, Ha (or H1), which

describes a difference or effect of the treatment or variable(s) of interest. This second hypothesis is

usually vaguely worded for example, that the means are different or the slope of a line is not zero.

These alternate hypotheses need to be more precisely worded before a power analysis can be

conducted.

If Ho is rejected by a statistical test there are two possibilities:

1) ttthhheee dddeeeccciiisssiiiooonnn iiisss iiinnncccooorrrrrreeecccttt. The frequency of making this mistake is known as the Type I error

rate and is usually denoted by α. It is the probability of rejecting Ho when it is, in fact, true.

2) ttthhheee dddeeeccciiisssiiiooonnn iiisss cccooorrrrrreeecccttt. The frequency of making this correct decision is known as the power

of the test and is denoted by 1 - β. The probability of rejecting Ho when it should not be

rejected is known as the Type II error rate and is denoted by β.

The general conceptual procedure required for hypothesis testing is:

H1) DDDeeessscccrrriiibbbeee ttthhheee nnnuuullllll hhhyyypppooottthhheeesssiiisss,,, HHHooo,,, aaannnddd rrreeellleeevvvaaannnttt ssstttaaatttiiissstttiiicccaaalll ppprrrooopppeeerrrtttiiieeesss ooofff ttthhheee dddaaatttaaa... For example,

in a simple completely randomized design with four treatments, we might hypothesize that

the four treatment means are the same, namely, Ho: µ1=µ2=µ3=µ4. The relevant statistical

properties of the data might be that the the responses measured for each experimental unit

(e.u.) were independent of each other (by virtue of the random assignment of treatments to

e.u.'s), and follow a normal distribution with the same variance, σ2.

H2) AAAssssssuuummmiiinnnggg ttthhhaaattt ttthhheee nnnuuullllll hhhyyypppooottthhheeesssiiisss iiisss tttrrruuueee,,, dddeeettteeerrrmmmiiinnneee aaa uuussseeefffuuulll ttteeesssttt ssstttaaatttiiissstttiiiccc aaannnddd iiitttsss dddiiissstttrrriiibbbuuutttiiiooonnn...

While this may be quite difficult mathematically, a thought experiment can help us

understand the basic process. Suppose that Ho is true and we ran our experiment 100,000

times. For each experiment the test statistic is calculated and the frequency of values

obtained is plotted in a frequency curve. This frequency curve would be the distribution of

the test statistic, and could be used to determine a range of unlikely values for the test

statistic if Ho were, in fact, true. For the example ANOVA, the ratio of the Mean Square
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Distribution of F-values if Null Hypothesis is True
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Between to the Mean Square Within has an F-distribution which can be described

mathematically and is tabled in many texts. This ratio is:

sample size * variance of the means Mean Square BetweenF = sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss = sssssssssssssssssssssssssssssssssssssssssssssssssss †average variance of data for each mean Mean Square Within

A picture of its distribution is shown below after step H3. If the distribution of the test

statistic cannot be described mathematically, it may be possible to determine it empirically

by simulating it with the help of computers.

H3) DDDeeettteeerrrmmmiiinnneee aaa dddeeeccciiisssiiiooonnn rrruuullleee bbbaaassseeeddd ooonnn ttthhheee ttteeesssttt ssstttaaatttiiissstttiiiccc'''sss dddiiissstttrrriiibbbuuutttiiiooonnn... A typical decision rule is

to reject Ho if the observed test statistic falls within some specific range of values (called the

critical range). This range is usually determined such that observed values as great or greater

than a critical value would be expected to occur less than 100*α% of the time given a true

Ho. Typically, α is set at 0.05 or 5%. For the ANOVA example, if the sample size is ten for

each mean, then the df for the F-distribution are 3, 36 and its distribution is shown in the

graph below. The critical range is described by the F-value, FC, which divides the area

under the curve into 5% on the right and 95% on the left (for α = 0.05). For the example,

this occurs at FC = 2.87 and is indicated by the vertical line on the graph below. We might

state the decision rule as "Ho will be rejected when the observed F-value is in the critical

range of Fobs > FC = 2.87".

H4) CCCaaalllcccuuulllaaattteee ttthhheee ttteeesssttt ssstttaaatttiiissstttiiiccc fffooorrr yyyooouuurrr dddaaatttaaa aaannnddd mmmaaakkkeee aaa dddeeeccciiisssiiiooonnn bbbaaassseeeddd ooonnn ttthhheee dddeeeccciiisssiiiooonnn rrruuullleee

dddeeettteeerrrmmmiiinnneeeddd iiinnn ttthhheee ppprrreeevvviiiooouuusss sssttteeeppp... Another approach is to calculate the p-value associated with

† See Biometrics Information pamphlets #22 and #25 for more discussion of this ratio.
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Distribution of F-values if Alternate Hypothesis is True
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the observed test statistic. For the F-distribution this means calculating the area to the right

of the observed F-value. For the ANOVA example, if the observed F-value is 3.81 then

1.8% of the area is to the right of this value and the observed probability is 0.018. According

to the decision rule, Ho is rejected.

The above procedure is used to control the Type I Error rate (α). The Type II Error rate (β) is also

important and should be controlled or assessed, especially if Ho is not rejected (see Peterman). The

following conceptual steps are required for a power calculation. The first two steps repeat those

above except that Ha is now assumed.

P1) DDDeeessscccrrriiibbbeee ttthhheee aaalllttteeerrrnnnaaattteee hhhyyypppooottthhheeesssiiisss,,, HHHaaa,,, aaannnddd rrreeellleeevvvaaannnttt ssstttaaatttiiissstttiiicccaaalll ppprrrooopppeeerrrtttiiieeesss ooofff ttthhheee dddaaatttaaa... For the

example of a simple completely randomized design with four treatments, we might

hypothesize that the four treatment means had the following values, namely, Ha: µ1=10,

µ2=15, µ3=20, µ4=25. The statistical properties of the data remain the same as in step H1.

P2) AAAssssssuuummmiiinnnggg ttthhhaaattt ttthhheee aaalllttteeerrrnnnaaattteee hhhyyypppooottthhheeesssiiisss iiisss tttrrruuueee,,, dddeeettteeerrrmmmiiinnneee ttthhheee nnneeewww dddiiissstttrrriiibbbuuutttiiiooonnn ooofff ttthhheee ttteeesssttt

ssstttaaatttiiissstttiiiccc... The thought experiment can again help us understand the basic process. Suppose

that Ha is true and we reran our experiment 100,000 times. For each experiment the test

statistic is calculated and the frequency of values obtained is plotted in a frequency curve.

The same test statistic would be used but its distribution would now be different. For the

example ANOVA, this new (non-central) F-distribution would be (note the change in scale):
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P3) UUUsssiiinnnggg ttthhheee dddeeeccciiisssiiiooonnn rrruuullleee fffrrrooommm sssttteeeppp HHH333,,, dddeeettteeerrrmmmiiinnneee hhhooowww ooofffttteeennn ttthhheee ttteeesssttt ssstttaaatttiiissstttiiiccc wwwooouuulllddd oooccccccuuurrr iiinnn

ttthhheee cccrrriiitttiiicccaaalll rrraaannngggeee... TTThhhiiisss wwwiiillllll bbbeee ttthhheee pppooowwweeerrr 111---βββ,,, aaannnddd iiisss ttthhheee ppprrrooobbbaaabbbiiillliiitttyyy ooofff rrreeejjjeeeccctttiiinnnggg HHHooo wwwhhheeennn HHHaaa

iiisss,,, iiinnn fffaaacccttt,,, tttrrruuueee... For the example ANOVA, this value is 1-β = 0.81 and is shown by the

shaded area in the graph above (this example is taken from the Power Analysis Workbook

and the technical details involved in calculating this power can be found there).

P4) MMMaaakkkeee aaa dddeeeccciiisssiiiooonnn aaabbbooouuuttt ttthhheee eeexxxpppeeerrriiimmmeeennntttaaalll rrreeesssuuullltttsss bbbaaassseeeddd ooonnn bbbooottthhh ααα aaannnddd βββ...

Power analysis requires the following four basic ingredients:

1) the Type I Error rate, α, or the observed p-value;

2) the Type II Error rate, β, which may be preset as is α or which may be observed as is

the p-value above;

3) an estimate of the variability of the data;

and 4) a specific alternate hypothesis or a range of means if maximum and minimum means can

be described.

Once these basic ingredients are understood, power analysis can be looked at in several different

ways. For instance, it may be possible to generate a plot of power versus a range of alternate

hypotheses after an experiment has been conducted and Ho has not been rejected. This plot (or the

corresponding table of values) can then be used to determine what sort of differences the

experiment cccooouuulllddd have detected. If these differences are larger than the practical differences of

concern then it would be unwise to accept Ho. On the other hand, if they are quite a bit smaller,

then it might be quite reasonable to act on the assumption that Ho is true. IIInnn gggeeennneeerrraaalll,,, iiittt iiisss nnnooottt

jjjuuussstttiiifffiiiaaabbbllleee tttooo aaacccccceeepppttt HHHooo iiifff aaa pppooowwweeerrr cccaaalllcccuuulllaaatttiiiooonnn tttooo dddeeettteeerrrmmmiiinnneee βββ ooorrr 111---βββ hhhaaasss nnnooottt bbbeeeeeennn dddooonnneee... See

Peterman's paper for an excellent discussion of this point.
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