Sieve Analysis of Fine and Coarse Aggregates

ASTM C136 and C117

Client: Project:	Ministry of Tra Florence Pit	ansportation and Infrastructure	Project No.: Phase No.:	CA0007505.5261 800
Sample No.:		TP24-01, SA 1, 0.5 - 3.5m	Report No.:	1
Sample Source	e:	Florence Pit	Date Sampled:	January 8, 2024
Sample Locat	ion:	Florence Pit	Sampled By:	MoTI
Material Desc	ription:	Sand and Gravel	Date Tested:	January 12, 2024
Material Spec	ification:	BCMOTI, WGB, 50 MM	Tested By:	K. Gonzales

Siev Size	/e Pas	ssing %	Mat Specif	erial ication	100	6" 4" 3'	" 2"	1" 	3/8"	#4	#10	#20	#40 #60#100) #200		
(mn	n)		Lower	Upper	90											
150	0 10	0.0						$\mathbf{\lambda}$								
12	5 10	0.0			80			\rightarrow								
100	0 10	0.0														
75	i 10	0.0			70											
50) 9'	7.2	100	100					₹							
37.	59	1.1	80	100	ing 00				N	1						
25.	0 8	5.4			sse 50					V.						
19.	0 7	8.5	50	100	н К											
12.	5 6	5.1			40											
9.5	5 5	8.2	35	75												
4.7	5 4	8.3	25	55	30					•	•	÷X++				
2.3	6 4	3.2	20	40	20						••••	N	•			
1.1	8 3	2.8	15	30	20											
0.60	00 1	9.1			10							<u> </u>				
0.30	00 1	1.2	5	15									••••	·		
0.15	50 7	7.9			0							<u> </u>		•••		
0.07	75 6	S.1	0	5		100.00)		10.00		1	.00	(0.10		0.01
					-					Sie	eve Size (mm)				
Г	% Grav	/el:	51.7													
	% San	ıd:	42.2													
	% Silt/C	lay:	6.1										0			
_		1		•					Review	ved b	ру:	0	Liby V Liv			
The Voice O	N Independent Caradian Laborati faboratoires indépendants canad	orien. Berre											LIIY A. HU,	P.EN	y.	

Notice: The test data given herein pertain to the sample provided. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

Sieve Analysis of Fine and Coarse Aggregates

ASTM C136 and C117

Client: Project:	Ministry Of Tr Florence Pit	ansportation and Infrastructure	Project No.: Phase No.:	CA0007505.5261 800
Sample No.:		TP24-02, SA 1, 0.0 - 3.0m	Report No.:	2
Sample Sourc	e:	Florence Pit	Date Sampled:	January 8, 2024
Sample Locat	ion:	Florence Pit	Sampled By:	MoTI
Material Desc	ription:	Sand and Gravel	Date Tested:	January 12, 2024
Material Speci	ification:	BCMOTI, WGB, 50 MM	Tested By:	K. Gonzales

Sieve Size	e Passing	Mat Specif	erial fication	100	6" 4" 3" 2"	1"	3/8"	#4	#10	#20	#40 #60#100 #200
(mm)	Lower	Upper	90	<u> </u>						
150	100.0					1					
125	100.0			80		\backslash					
100	100.0										
75	100.0			70		•					
50	95.1	100	100	60							
37.5	86.4	80	100	ing 00							
25.0	69.1			sse 50		1					
19.0	56.6	50	100	8			\				
12.5	32.6			40							
9.5	22.4	35	75								
4.75	5 15.9	25	55	30							
2.36	5 13.5	20	40	20			X	.	•		••••
1.18	10.2	15	30	20					· · · · .	•	
0.60	0 6.6			10							
0.30	0 3.9	5	15								
0.150	0 2.7			0							
0.07	5 2.0	0	5		100.00		10.00			1.00	0.10 0.0
				-				Sie	ve Size	(mm)	1
Г	% Gravel:	84.1									
	% Sand:	13.9									
	% Silt/Clay:	2.0									0
	Cil		•			F	Review	ved b	y:	6	Lily X. Hu, P. Eng.
The Voice Of In La voix des lab	sdependent Caradian Laboratories sozatoires Indépendants canadiens										

Notice: The test data given herein pertain to the sample provided. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

Sieve Analysis of Fine and Coarse Aggregates

ASTM C136 and C117

Client: Project:	Ministry of Tra Florence Pit	ansportation and Infrastructure	Project No.: Phase No.:	CA0007505.5261 800
Sample No.: Sample Sourc Sample Locat	e: ion:	TP24-03, SA 1, 0.0 - 3.5m Florence Pit Florence Pit	Report No.: Date Sampled: Sampled By:	3 January 8, 2024 MoTI
Material Spec	ification:	BCMOTI, WGB, 50 MM	Tested By:	K. Gonzales

Siev Size	e Passing	Mat Specif	erial fication	100	6" Г^{ФФ}	4" 3'	" 2"	1' ++	"	3/8"	#4	. #	±10	#20	#	40	#60# 	100	#20	00			٦
(mm	i) ⁷⁰	Lower	Upper	90																			
150) 100.0								N														
125	5 100.0			80						×.												 	
100) 100.0									N													
75	100.0			70							N												
50	97.3	100	100								N												
37.5	5 95.5	80	100	ing 60) j	N										
25.0	91.1			sse 50							•		Λ.								ļ	 	
19.0) 87.9	50	100	8								N.	$ \rangle$										
12.5	5 81.2			40								ļ. `.	•	╲╢					++			 	
9.5	77.2	35	75											N									
4.75	5 66.8	25	55	30							٠.		•	·		-							
2.36	6 58.6	20	40	20							•	•••			\mathbf{N}								
1.18	3 42.8	15	30	20									••••										
0.60	0 25.9			10													~~~				ļ	 	
0.30	0 14.9	5	15													•	••••		•				
0.15	0 9.3			0		Щ	<u> </u>		_							-		····.			Щ.	 ļ	
0.07	6.7	0	5		10	0.00	J			10.00)			1.00				0.	10			().01
				_							s	ieve	Size	(mm))								
Г	% Gravel:	33.2]																				
	% Sand:	60.0																					
	% Silt/Clay:	6.7												-	/	_	0						
_									Re	eviev	ved	by:		L			'n	Y	2				_
L															Li	ily)	х. Н	lu, I	P. E	Ξn	g.		

Notice: The test data given herein pertain to the sample provided. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

Sieve Analysis of Fine and Coarse Aggregates

ASTM C136 and C117

Client: Project:	Ministry of Tra Florence Pit	ansportation and Infrastructure	Project No.: Phase No.:	CA0007505.5261 800
Sample No.:		TP24-04, SA 2, 1.0 - 3.5m	Report No.:	4
Sample Source Sample Locat	;e: ion:	Florence Pit	Sampled By:	January 8, 2024 MoTI
Material Desc	ription:	Sand and Gravel	Date Tested:	January 12, 2024
Material Spec	ification:	BCMOTI, WGB, 50 MM	Tested By:	K. Gonzales

Sie\ Siz	/e Passing	g Ma Speci	terial fication	100	6" 4" 3" 2"	1" 	3/8" _+	#4	#10	#20	#40 #60#100	#200	
(mn	n) ⁷⁰	Lower	Upper	90	\								
15	0 100.0					<							
12	5 100.0			80		\mathbf{A}							
10	0 100.0												
75	5 100.0			70									
50	94.9	100	100				\ i						
37.	5 87.2	80	100	ing 60									
25.	0 77.6			sse 50			N						
19.	0 69.9	50	100	8				N					
12.	5 60.3			40				\parallel					
9.5	5 55.6	35	75						٦				
4.7	5 45.0	25	55	30				•.					
2.3	6 36.0	20	40	20					•		•		
1.1	8 25.1	15	30	20					· · · .	. IN			
0.60	00 12.8			10				+					
0.30	00 6.7	5	15								· · · · · · · · · · · · · · · · · · ·		
0.15	50 4.6			0			40.00			1 00		· .	
0.07	75 3.9	0	5		100.00		10.00			1.00	U	.10	0.01
								Sie	/e Size	(mm)			
	% Gravel:	55.0]										
	% Sand:	41.1											
	% Silt/Clay:	3.9	J							~	2		
_						F	leview	ed b	y:	0	Liz	2	
C	.Cil										Lily X. Hu,	P. Eng.	

Notice: The test data given herein pertain to the sample provided. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

Sieve Analysis of Fine and Coarse Aggregates

ASTM C136 and C117

Client: Project:	Ministry of Tra Florence Pit	ansportation and Infrastructure	Project No.: Phase No.:	CA0007505.5261 800
Sample No.: Sample Sourc Sample Locat Material Desc Material Spec	ce: ion: ription: ification:	TP24-04, SA 3, 3.5-5.0m Florence Pit Florence Pit Sand and Gravel BCMOTI, WGB, 50 MM	Report No.: Date Sampled: Sampled By: Date Tested: Tested By:	5 January 8, 2024 MoTI January 17, 2024 K. Gonzales

Sieve Size	Passing	Mat Specif	erial fication	100	6" 4" 3" 2"	1" ++-	3/8"	#4	#10	#20	#40 #60#100 #	200	
(mm) /0	Lower	Upper	90	Ň								
150	100.0												
125	100.0			80		<u></u>						+++++	
100	100.0					• •							
75	98.2			70									
50	94.0	100	100				$\langle \parallel \parallel$						
37.5	87.6	80	100	6 0									
25.0	76.4			sse 50									
19.0	66.5	50	100	а К			N						
12.5	54.4			40				\mathbb{N}	<u>}</u>			++-+	
9.5	48.6	35	75										
4.75	37.5	25	55	30					۲	•			
2.36	30.7	20	40	20				· · · ·			•		
1.18	20.9	15	30	20					· · · · .				
0.60	0 12.7			10									
0.30	0 7.6	5	15									•	
0.150	0 5.3			0								•	
0.07	5 4.3	0	5		100.00		10.00			1.00	0.1	0	0.01
				-				Siev	ve Size	(mm)			
	% Gravel:	62.5]										
	% Sand:	33.2											
	% Silt/Clay:	4.3								1	0		
_						F	Review	ved by	/:	0	Lig	_	
C	Cil										Lily X. Hu, P.	Eng.	

Notice: The test data given herein pertain to the sample provided. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

Sieve Analysis of Fine and Coarse Aggregates

ASTM C136 and C117

Client:	Ministry of Tra	ansportation and Infrastructure	Project No.:	CA0007505.5261
Project:	Florence Pit		Phase No.:	800
Sample No.: Sample Source Sample Locatie Material Descr Material Specie	e: on: iption: fication:	TP24-05, SA 1, 0-2.7m Florence Pit Florence Pit Sand and Gravel BCMOTI, WGB, 50 MM	Report No.: Date Sampled: Sampled By: Date Tested: Tested By:	6 January 8, 2024 MoTI January 18, 2024 K. Gonzales

Siev Siz	ve e Pa	issing %	Mat Specif	erial ication	100	6" 4"	3"	2"	1 	"	: 	3/8" 	#	4	#	10	#2	20	#4() #6	50# ⁻	100	#2	:00	1		
(mr	n)	70	Lower	Upper	90		ļ .'	M					_													 	
15	0 1	00.0						Ņ			À																
12	5 1	00.0			80		+		Y																	 	
10	0 1	00.0								1																	
75	5 1	00.0			70							Ŀ.												+			
50) 8	39.5	100	100	60					. `																	
37.	.5 8	34.5	80	100	ing 00						k		i														
25.	.0 7	76.2			sse 50		-				````															 	
19.	.0 6	58.1	50	100	8					•	V.	Ν															
12.	.5 5	56.5			40		┢						A	r.	<u>.</u>									++		 	
9.5	5 5	50.9	35	75								١.															
4.7	5 3	38.2	25	55	30								•				.										
2.3	6 3	31.4	20	40	20												N										
1.1	8 2	23.9	15	30	20										•	••••		N		•							
0.60	00 1	15.4			10		+										-	••.	\mathbb{N}			••••				 	
0.30	00	9.3	5	15															1	••••••		•	+				
0.1	50	6.6			0		<u>₩</u>		_	_	10			_		ļ,		 		_	-	0	10	++		 —]
0.07	75	5.5	0	5		100.0	50				10	.00					1.00	,				0	. 10				0.01
													5	Siev	ve S	ize	(mr	n)									
	% Gra	vel:	61.8																								
	% Sa	nd:	32.6																								
	% Silt/0	Clay:	5.5															1	_	4	?						
										R	Rev	iew	/ec	d b	y:			0	\angle	~	in	7	2	_	•	 	
C	.Cil	*																	Lily	Х.	Н	u, I	Ρ.	Er	ng.		

Notice: The test data given herein pertain to the sample provided. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

Sieve Analysis of Fine and Coarse Aggregates

ASTM C136 and C117

Project: Florence Pit Phase No.:	
Sample No.:TP24-07, SA 1, 0.0-2.4mReport No.:Sample Source:Florence PitDate Sampled:Sample Location:Florence PitSampled By:Material Description:Sand and GravelDate Tested:Material Specification:BCMOTI, WGB, 50 MMTested By:	7 January 8, 2024 MoTI January 15, 2024 K. Gonzales

Sie Siz	ve Passing	g Ma Speci	terial fication	100	6" 4" 3"	2"	1" 	3/8"	#4	#10	#20	#40 #60	#100 	#200	о 		
(mr	n) ⁷	Lower	Upper	90													
15	0 100.0																
12	5 100.0			80			•	<u> </u>							┝┼┝		
10	0 100.0																
75	5 100.0			70													
50) 97.9	100	100														
37.	.5 91.3	80	100	ing 00				X									
25.	.0 81.9			sse 50											ļ.ļ.		
19.	.0 73.4	50	100	8													
12.	.5 62.1			40						No.					+++		
9.	5 57.0	35	75								x						
4.7	75 46.3	25	55	30					•						+++		
2.3	6 39.9	20	40	20						••••		N					
1.1	8 32.7	15	30	20						· · · · .		<u>.</u>					
0.6	00 23.4			10									••••••				
0.3	00 10.3	5	15									· · ·		<u>.</u>			
0.1	50 4.3			0									•••••	H. T.	∔∔∔	—	
0.0	75 2.9	0	5		100.00			10.00			1.00		0.	10			0.01
									Sie	ve Size	(mm)						
Г	% Gravel:	53.7															
	% Sand:	43.4															
	% Silt/Clay:	2.9										1	,				
-			-				I	Review	ved b	oy:	0	Zi	y	L	-		
The Moice I												Lily X. I	Hu, F	Р. Е	ng.		

Notice: The test data given herein pertain to the sample provided. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

Sieve Analysis of Fine and Coarse Aggregates

ASTM C136 and C117

Client:	Ministry Of Tr	ansportation and Infrastructure	Project No.:	CA0007505.5261
Project:	Florence Pit		Phase No.:	800
Sample No.: Sample Source Sample Locate Material Desc Material Spec	ce: tion: tription: tification:	TP24-08, SA 1, 0.4-2.7m Florence Pit Florence Pit Sand and Gravel BCMOTI, WGB, 50 MM	Report No.: Date Sampled: Sampled By: Date Tested: Tested By:	8 January 8, 2024 MoTI January 15, 2024 K. Gonzales

Siev Siz	ve Passing e %	g Mat Speci	terial fication	100	6" 4" 3" 2"	1" 	3/8"	#4	#10	#20	#40 #60#100 #200	
(mr	n)	Lower	Upper	90	L		<u> </u>					
15	0 100.0											
12	5 100.0			80								
10	0 100.0											
75	5 100.0			70								
50) 93.3	100	100	60								
37.	.5 85.4	80	100	ing 00				1	٦			
25.	.0 80.0			sse 50								
19.	.0 75.5	50	100	ж					· / /	۲.		
12.	.5 72.3			40						$\left\{ + \right\}$		
9.5	5 69.9	35	75							N		
4.7	64.1	25	55	30				•		•.]		
2.3	6 58.7	20	40	20				•••	••••	ľ	•••	
1.1	8 45.7	15	30	20					1	.		
0.60	00 14.7			10								
0.30	00 4.1	5	15								· · · · ·	
0.1	50 2.8			0					<u> </u>			
0.07	75 2.3	0	5	J	100.00		10.00		ļ	1.00	0.10	0.01
								Sie	ve Size ((mm)		
Г	% Gravel:	35.9										
	% Sand:	61.8										
	% Silt/Clay:	2.3								1	0	
	ิ ⊂ ่เ⊮		_			I	Review	ved b	y:	L	Lilv X Hu P Fr	
The Voice 6 La voix de	Of Independent Canadian Laboratorian a laboratorirei indépendants canadiens											·9·

Notice: The test data given herein pertain to the sample provided. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

Sieve Analysis of Fine and Coarse Aggregates

ASTM C136 and C117

Client: Project:	Ministry of Tra Florence Pit	ansportation and Infrastructure	Project No.: Phase No.:	CA0007505.5261 800
Sample No.:		TP24-08, SA 2, 2.7-5.0m	Report No.:	9
Sample Source	ce:	Florence Pit	Date Sampled:	January 8, 2024
Sample Locat	ion:	Florence Pit	Sampled By:	MoTI
Material Desc	ription:	Sand and Gravel	Date Tested:	January 15, 2024
Material Spec	ification:	BCMOTI, WGB, 50 MM	Tested By:	K. Gonzales

Siev Siz	e Passing	Mat Speci	terial fication	100	6" 4" 3" 2"	1" 	3/8"	#4	#10	#20	#40 #60#100 #200
(mn	n) ⁷⁰	Lower	Upper	90							
150	0 100.0					•					
12	5 100.0			80		λ					
100	0 100.0										
75	100.0			70		-					
50	95.6	100	100								
37.	5 85.6	80	100	ing 00				1			
25.	0 72.8			se 50							
19.	0 65.2	50	100	8			V. N				
12.	5 55.2			40							
9.5	5 49.7	35	75							.	
4.7	5 38.2	25	55	30				•.	٦		
2.3	6 29.0	20	40	20				•			.
1.1	8 18.6	15	30	20					- ⁻ - • •		
0.60	9.6			10						[i]\	
0.30	00 5.5	5	15								
0.15	50 4.4			0						4 00	
0.07	75 3.9	0	5	J	100.00		10.00			1.00	0.10 0.0
								Sie	ve Size	(mm)	
Γ	% Gravel:	61.8]								
	% Sand:	34.4									
	% Silt/Clay:	3.9	J							1	<u>_</u>
_						F	Review	ved b	y:	6	Lizz
	.LIĽ										Lily X. Hu, P. Eng.

Notice: The test data given herein pertain to the sample provided. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

Sieve Analysis of Fine and Coarse Aggregates

ASTM C136 and C117

Client:	Ministry of Tra	ansportation and Infrastructure	Project No.:	CA0007505.5261
Project:	Florence Pit		Phase No.:	800
Sample No.:	:e:	TP24-09, SA 1, 0.1-0.4m	Report No.:	10
Sample Source		Florence Pit	Date Sampled:	January 8, 2024
Sample Locat	ion:	Florence Pit	Sampled By:	MoTI
Material Desc	ription:	Sand and Gravel	Date Tested:	January 19, 2024
Material Spec	ification:	BCMOTI, WGB, 50 MM	Tested By:	K. Gonzales

Sie Siz	ve ze	Passing	Mat Specif	erial fication	100	6" 4" 3" 2"	1" 	3/8"	#4	#10	#20	#40 #60#100 #200
(mr	n)	70	Lower	Upper	90							
15	0	100.0					\					
12	:5	100.0			80				++++			
10	0	100.0										
75	5	100.0			70			X !				
50	C	91.1	100	100				N				
37.	.5	85.9	80	100	ing 00				Ň			
25.	.0	78.5			se 50							
19.	.0	75.1	50	100	8							
12.	.5	68.6			40				++++	- <u> </u>		
9.	5	65.2	35	75						`.`)		
4.7	75	56.8	25	55	30				•		÷X+	
2.3	36	49.9	20	40	20					•		
1.1	8	33.5	15	30	20					1.		
0.6	00	19.1			10							
0.3	00	11.5	5	15								
0.1	50	7.7			0			40.00				
0.0	75	5.5	0	5		100.00		10.00			1.00	0.10 0.0
									Sie	ve Size	(mm)	
Г	%	Gravel:	43.2]								
	%	Sand:	51.2									
	% \$	Silt/Clay:	5.5								1	<u>_</u>
							F	Review	ved b	oy:	0	Liz
C	C	i 🛃										Lily X. Hu, P. Eng.

Notice: The test data given herein pertain to the sample provided. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

Sieve Analysis of Fine and Coarse Aggregates

ASTM C136 and C117

Client:	Ministry of Tra	ansportation and Infrastructure	Project No.:	CA0007505.5261
Project:	Florence Pit		Phase No.:	800
Sample No.: Sample Sourc Sample Locat Material Desc Material Spec	ce: ion: ription: ification:	TP24-10, SA 2, 3.0-5.4m Florence Pit Florence Pit Sand and Gravel BCMOTI, WGB, 50 MM	Report No.: Date Sampled: Sampled By: Date Tested: Tested By:	11 January 8, 2024 MoTI January 19, 2024 K. Gonzales

Sie Siz	ve ze Pa	assing %	Mat Specif	erial fication	100	^{6"}	4" 3'	' 2"	-	3/8 _+_+_	3"	#4		#10	#	20	#4	40 i	#60 _+-)#1(+)0 # 	‡20	0		
(mr	m)	/0	Lower	Upper	90				۹.		ļ.												<u> </u>		
15	i0 1	00.0							V																
12	25 1	00.0			80						+					┼┼┼				-			++-		
10	0 1	00.0																							
7	5 1	00.0			70					┦						╈							+		
50	0 1	00.0	100	100						X															
37	.5 9	97.4	80	100	ing 00						N	1				ΠŤ									
25	.0 9	91.4			sse 50						1	۱, V													
19	.0 8	84.1	50	100	ж К																				
12	.5	71.6			40				 		+		X			₩							┿		
9.	5	64.3	35	75										Ŋ.											
4.7	75 4	47.4	25	55	30						t	•.			Ľ.								+		
2.3	36 3	38.0	20	40	20							••	•••			<u> </u>									
1.1	18 2	26.9	15	30	20									1.	••••	N			•.						
0.6	00	13.8			10											1	\mathbb{N}			ŀ,	•				
0.3	00	7.0	5	15															••••	-	_	•			
0.1	50	5.1			0		<u> </u>	<u> </u>	 _		<u> </u>			_		<u> </u>		-				 	++-		
0.0	75	4.3	0	5		10	0.00	J		10.0	0				1.0	00					0.1	0			0.0
												Si	eve	Size	e (m	ım)									
ſ	% Gra	avel:	52.6]																					
	% Sa	nd:	43.0																						
	% Silt/	Clay:	4.3													1	_	1	1	2					
									R	evie	ewe	ed	by:			6	\times		r	y	~	-	-		
C	.Cil	*															Lil	ly)	X.	Hu	, P	. E	nç	J.	

Notice: The test data given herein pertain to the sample provided. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

Sieve Analysis of Fine and Coarse Aggregates

ASTM C136 and C117

Client:	Ministry of Tra	ansportation and Infrastructure	Project No.:	CA0007505.5261
Project:	Florence Pit		Phase No.:	800
Sample No.: Sample Sourc Sample Locat Material Desc Material Spec	ce: ion: ription: ification:	TP24-11, SA 1, 0.0-3.8m Florence Pit Florence Pit Sand and Gravel BCMOTI, WGB, 50 MM	Report No.: Date Sampled: Sampled By: Date Tested: Tested By:	12 January 8, 2024 MoTI January 16, 2024 K. Gonzales
Material Desc	ription:	Sand and Gravel	Date Tested:	January 16, 2024
Material Spec	ification:	BCMOTI, WGB, 50 MM	Tested By:	K. Gonzales

Siev Size	Passing	Mat Specif	erial fication	100	6" 4" 3" 2"	1" 	3/8"	#4	#10	#20	#40 #60#100 #200
(mm	n) ⁷⁰	Lower	Upper	90	N.						
150) 100.0					\					
125	5 100.0			80		- \					
100	0 100.0					$\langle \rangle$					
75	100.0			70							
50	92.3	100	100				` \				
37.5	5 86.9	80	100	ing 00			N	1			
25.0	0 79.9			sse 50							
19.0	0 70.7	50	100	8							
12.	5 62.5			40					Ň.		
9.5	57.8	35	75						Ĭ,	.	
4.7	5 47.1	25	55	30				•.		``.	
2.36	6 39.1	20	40	20				•••	•	N.	•
1.18	8 27.6	15	30	20					· · · ·	• N	
0.60	0 12.0			10						;	
0.30	0 4.7	5	15								
0.15	60 3.0			0			10.00			1 00	
0.07	2.4	0	5		100.00		10.00			1.00	0.10 0.01
								Sie	/e Size	e (mm)	
	% Gravel:	52.9]								
	% Sand:	44.8									
	% Silt/Clay:	2.4								~	I.
_						F	Review	ed b	y:	6	Lizz
C	Cil										Lily X. Hu, P. Eng.

Notice: The test data given herein pertain to the sample provided. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

Sieve Analysis of Fine and Coarse Aggregates

ASTM C136 and C117

Project: Florence Pit Phase No	.: 800
Sample No.:TP24-11, SA 2, 3.8-5.2mReport NoSample Source:Florence PitDate Sam	p.: 13 pled: January 8, 2024
Sample Location: Florence Pit Sampled	By: MoTI
Material Description:Sand and GravelDate Test	ed: January 16, 2024
Material Specification:BCMOTI, WGB, 50 MMTested By	K. Gonzales

Siev Siz	ve Passi	ing	Mat Specif	erial ication	100	6" 4"3'	' 2"	1" -+	3/8	' #4	#1	10 #	#20	#40	#60#	100	#20	0		
(mr	n) ⁷⁰		Lower	Upper	90		Ŋ													
15	0 100.	.0						\mathbf{N}												
12	5 100.	.0			80			\mathbf{h}		++								+-+		
10	0 100.	.0						۱ <u>ا</u>												
75	5 100.	.0			70															
50) 95.4	4	100	100																
37.	.5 89.1	1	80	100	ing 00				\	Ĭ.										
25.	.0 79.0	6			sse 50															
19.	.0 70.8	8	50	100	8					\mathbb{N}^{\parallel}										
12.	.5 58.5	5			40													-		
9.9	5 51.9	9	35	75					N.											
4.7	′5 38. ⁻	1	25	55	30															
2.3	6 31.4	4	20	40	20					••	•••			•						
1.1	8 21.	1	15	30	20							· · · · · · · · · · · · · · · · · · ·	N							
0.60	00 11. ⁻	1			10													-		
0.30	5.9)	5	15											×	-	•••			
0.15	50 4.1				0		<u> </u>	_		<u> </u>			ЩЦ 00				10	++		
0.07	75 3.5	5	0	5		100.00)		10.00	J		1.0	00			0.	10			0.01
										Si	eve S	ize (n	nm)							
Γ	% Gravel	:	61.9																	
	% Sand:		34.6																	
	% Silt/Clay	y:	3.5										1	_	2					
_									Revie	wed	by:		0	\angle	ù	Y	L	-		
C	.⊂i⊮													Lily	Х. Н	lu, F	P. E	Ξnę	g.	

Notice: The test data given herein pertain to the sample provided. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

Sieve Analysis of Fine and Coarse Aggregates

ASTM C136 and C117

Client:Ministry ofProject:Florence	f Transportation and Infrastructure Pit	Project No.: Phase No.:	CA0007505.5261 800
Sample No.:	TP24-12, SA 2, 2.7-4.7m	Report No.:	14
Sample Source:	Florence Pit	Date Sampled	: January 8, 2024
Sample Location:	Florence Pit	Sampled By:	MoTI
Material Description:	Sand and Gravel	Date Tested:	January 16, 2024
Material Specification:	BCMOTI, WGB, 50 MM	Tested By:	K. Gonzales

Siev Size	e Passing	Mat Specif	erial fication	100	6"	4" 3	3" 2	2"	1"		3/8	3"	#4	1	#	10	#	20	7	#40 -+	, #6	60# 	100) # -+	20	0 			٦
(mm) /0	Lower	Upper	90				1				ļ														ļ.,		 	
150) 100.0																												
125	5 100.0			80					\mathbb{N}^{-}			ļ		-				+++										 	
100) 100.0																												
75	100.0			70					1		•											-			++-			 	
50	93.7	100	100	<u> </u>						k		•																	
37.5	5 84.3	80	100	ing ₆₀						Ν			•																
25.0) 71.4			sse 50							\		•																
19.0	63.0	50	100	8							N			ŀ															
12.5	5 51.1			40								Y		-	<u>.</u>			+										 	
9.5	44.6	35	75										N			•													
4.75	5 30.7	25	55	30									•.													+		 	
2.36	3 24.3	20	40	20									•	•••) (•										
1.18	3 17.9	15	30	20												•••				•••	•								
0.60	0 12.0			10																		•	••••					 	
0.30	0 7.4	5	15																	•••		+	-	-	•				
0.15	0 5.5			0			<u></u>		_			Щ		-			1 (<u></u>	-		—	-			•	++-	_		
0.07	5 4.6	0	5		П	0.00	0				10.0	0					1.0	0					C	J. I	0				0.01
													S	iev	ve S	Size	(m	ım))										
	% Gravel:	69.3]																										
	% Sand:	26.1																											
	% Silt/Clay:	4.6																-			1	0							
_			-							Re	evie	w	ed	by	y:_			L		2	~	'n	у	7		-			
The Weigr Di																			L	.ily	Χ.	. H	lu,	Ρ.	. E	ng] .		

Notice: The test data given herein pertain to the sample provided. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

Sieve Analysis of Fine and Coarse Aggregates

ASTM C136 and C117

istry of Transportation and Infrastructure rence Pit	Project No.: CA0007505.5261 Phase No.: 800	
TP24-13, SA 1,0.5-3.0m Florence Pit Florence Pit Sand and Gravel ation: BCMOTI, WGB, 50 MM	Report No.:15Date Sampled:January 8, 2024Sampled By:MoTIDate Tested:January 17, 2024Tested By:K. Gonzales	
	TP24-13, SA 1,0.5-3.0m Florence Pit Florence Pit Florence Pit Sand and Gravel BCMOTI, WGB, 50 MM	histry of Transportation and InfrastructureProject No.:CA0007505.5261rence PitPhase No.:800TP24-13, SA 1,0.5-3.0mReport No.:15Florence PitDate Sampled: January 8, 2024Florence PitSampled By:MoTIion:Sand and GravelDate Tested:January 17, 2024ation:BCMOTI, WGB, 50 MMTested By:K. Gonzales

Sieve Size	Passing	Mat Specif	erial ication	100	6" 4" 3"	2"	1" 	3/8"	#4	#10	#20	#40	#60#100	#200)		
(mm)	%	Lower	Upper														
150	100.0			90			٦										
125	100.0			80				◟┊║║									
100	100.0			1													
75	100.0			70												+	
50	97.4	100	100					N									
37.5	96.1	80	100	ອິຍ					<u>vi</u>							+	
25.0	88.3			assi 50					X								
19.0	82.1	50	100	а %					•	· v							
12.5	72.7			40						<u> </u>							
9.5	67.1	35	75								۶						
4.75	52.9	25	55	30					•		• \					+	
2.36	45.7	20	40	20					•••	•		•					
1.18	34.6	15	30	20							•	N i					
0.600	18.7			10		ļ. ļ. ļ.							· · ·				
0.300	6.7	5	15									•••					
0.150	3.5			0										·			
0.075	2.7	0	5		100.00			10.00			1.00		0	.10			0.0
									Sie	ve Size	(mm)						
(% Gravel:	47.1															
	% Sand:	50.2															
%	6 Silt/Clay:	2.7									1		0				
								Review	ved b	ov:	0	Z	iz	2	-		
CC	l₩									·		Lily	X. Hu,	P. E	ng.		

Notice: The test data given herein pertain to the sample provided. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

Sieve Analysis of Fine and Coarse Aggregates

ASTM C136 and C117

Client: Project:	Ministry of Tra Florence Pit	ansportation and Infrastructure	Project No.: Phase No.:	CA0007505.5261 800
Sample No.:		TP24-13, SA 2, 3.0-4.5m	Report No.:	16
Sample Source	e:	Florence Pit	Date Sampled:	January 8, 2024
Sample Locat	ion:	Florence Pit	Sampled By:	MoTI
Material Desc	ription:	Sand and Gravel	Date Tested:	January 17, 2024
Material Spec	ification:	BCMOTI, WGB, 50 MM	Tested By:	K. Gonzales

Siev Size	Passing	Mat Specit	erial fication	100	6" 4" 3" 2"	1" 	3/8"	#4	#10	#20	#40 #60#100 #200
(mm	ו) 🥍	Lower	Upper	90							
150	0 100.0			50							
125	5 100.0			80		\backslash					
100	0 100.0										
75	100.0			70		•					
50	98.1	100	100								
37.	5 84.1	80	100	ing 00							
25.	0 71.1			sse 50							
19.	0 60.8	50	100	н К							
12.	5 50.3			40							
9.5	5 45.2	35	75					$ \mathbb{N} $			
4.7	5 36.0	25	55	30						•••	
2.3	6 27.3	20	40	20							•.
1.18	8 19.2	15	30	20					1.		
0.60	00 11.4			10							
0.30	00 6.4	5	15								
0.15	50 4.5			0			10.00			1 00	
0.07	75 3.8	0	5		100.00		10.00			1.00	0.10 0.0
								Sie	ve Size	(mm)	
	% Gravel:	64.0									
	% Sand:	32.3									
L	% Silt/Clay:	3.8								1	<u>_</u> .
							Review	ved b	y:	6	Lizz
C	CiĽ										Lily X. Hu, P. Eng.

Notice: The test data given herein pertain to the sample provided. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

ASTM D2420

Client:	Ministry of Transportation and Infrastructure	Project No.: CA0007505.5261
Project:	Florence Pit	Phase: 800
Sample ID:	TP24-01, SA 1, 0.5 - 3.5m	Sampled Date: January 8, 2024
Sample Type:	Sand and Gravel	Sampled By: MoTI
Sample Location:	Florence Pit	Tested Date: February 21, 2024
Source:	Florence Pit	Tested By: K. Gonzales

Trial #		1	2	3	Average
Sedimentation Period	(minutes)	20	20	20	
Clay Height	(inch)	8.3	8.5	8.4	
Sand Height	(inch)	3.5	3.7	3.6	
Sand Equivalent	Value	42	44	43	43

Reviewed by:

L. X. Hu, MSc.E., P. Eng.

ASTM D2420

Client: Project:	Ministry of Transportation and Infrastructure Florence Pit	Project No.: CA0007505.5261 Phase: 800
Sample ID:	TP24-04, SA 2, 1.0 - 3.5m	Sampled Date: January 8, 2024
Sample Type:	Sand and Gravel	Sampled By: MoTI
Sample Location:	Florence Pit	Tested Date: January 25, 2024
Source:	Florence Pit	Tested By: K. Gonzales

Trial #		1	2	3	Average
Sedimentation Period	(minutes)	20	20	20	
Clay Height (inch)		8.6	8.4	8.4	
Sand Height	(inch)	3.7	3.7	3.7	
Sand Equivalent	Value	43	44	44	44

Reviewed by:

L. X. Hu, MSc.E., P. Eng.

ASTM D2420

Client: Project:	Ministry of Transportation and Infrastructure Florence Pit	Project No.: CA0007505.5261 Phase: 800
Sample ID:	TP24-08, SA 2, 2.7 - 5.0m	Sampled Date: January 8, 2024
Sample Location: Source:	Florence Pit Florence Pit	Tested By: Morr Tested Date: January 25, 2024 Tested By: K. Gonzales

Trial #		1	2	3	Average
Sedimentation Period	(minutes)	20	20	20	
Clay Height	(inch)	9.2	9.1	9.1	
Sand Height	(inch)	3.7	3.7	3.7	
Sand Equivalent Value		40	41	41	41

Reviewed by:

L. X. Hu, MSc.E., P. Eng.

ASTM D2420

Client:	Ministry of Transportation and Infrastructure	Project No.: CA0007505.5261
Project:	Florence Pit	Phase: 800
Sample ID:	TP24-10, SA 2, 3.0 - 5.4m	Sampled Date: January 8, 2024
Sample Location:	Florence Pit	Tested Date: January 25, 2024
Source:	Florence Pit	Tested By: K. Gonzales

Trial #		1	2	3	Average
Sedimentation Period	(minutes)	20	20	20	
Clay Height	(inch)	8.9	8.8	8.8	
Sand Height	(inch)	3.7	3.8	3.8	
Sand Equivalent Value		42	43	43	43

Reviewed by:

L. X. Hu, MSc.E., P. Eng.

ASTM D6928

Client:	Ministry of Transportation and Infrastructure	Project No.:	CA0007505.5261
Project:	Florence Pit	Phase:	800
Test Aggregate ID:	TP24-01, SA1, 0.5 - 3.5m	Date Tested:	January 18, 2024
Aggregate Type:	Sand and Gravel	Tested By:	D. Singh
Aggregate Source:	Florence Pit	Sampled By:	MoTI

Aggregate Test Results

Grading Used	Clause 8.2
Mass of Sphere, grams	5003.0
Mass of Sample before Abrasion, grams	1501.6
Percent of Loss After Abrasion, %	8.4

Reference Aggregate Validation Results

Date Tested:	January 4, 2024
Abrasion Loss, %	12.6
Acceptable abrasion range , %	11.4 - 14.8

Reviewed by:

L. X. Hu, MSc.E., P. Eng.

<u>Notice</u>: The test data given herein pertain to the sample provided, and may not be applicable to material from other source or production. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

ASTM D6928

Client:	Ministry of Transportation and Infrastructure	Project No.:	CA0007505.5261
Project:	Florence Pit	Phase:	800
Test Aggregate ID:	TP24-04, SA2,1.0 - 3.5m	Date Tested:	January 18, 2024
Test Aggregate ID: Aggregate Type:	TP24-04, SA2,1.0 - 3.5m Sand and Gravel	Date Tested: Tested By:	January 18, 2024 D. Singh

Aggregate Test Results

Grading Used	Clause 8.2
Mass of Sphere, grams	5001.8
Mass of Sample before Abrasion, grams	1500.3
Percent of Loss After Abrasion, %	7.6

Reference Aggregate Validation Results

Date Tested:	January 4, 2024
Abrasion Loss, %	12.6
Acceptable abrasion range , %	11.4 - 14.8

Reviewed by:

L. X. Hu, MSc.E., P. Eng.

<u>Notice</u>: The test data given herein pertain to the sample provided, and may not be applicable to material from other source or production. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

ASTM D6928

Client:	Ministry of Transportation and Infrastructure	Project No.:	CA0007505.5261
Project:	Florence Pit	Phase:	800
Test Aggregate ID:	TP24-08, SA2, 2.7- 5.0m	Date Tested:	January 17, 2024
Test Aggregate ID: Aggregate Type:	TP24-08, SA2, 2.7- 5.0m Sand and Gravel	Date Tested: Tested By:	January 17, 2024 D. Singh

Aggregate Test Results

Grading Used	Clause 8.2
Mass of Sphere, grams	5000.8
Mass of Sample before Abrasion, grams	1502.1
Percent of Loss After Abrasion, %	7.5

Reference Aggregate Validation Results

Date Tested:	January 4, 2024
Abrasion Loss, %	12.6
Acceptable abrasion range , %	11.4 - 14.8

Reviewed by:

L. X. Hu, MSc.E., P. Eng.

<u>Notice</u>: The test data given herein pertain to the sample provided, and may not be applicable to material from other source or production. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

ASTM D6928

Client:	Ministry of Transportation and Infrastructure	Project No.:	CA0007505.5261
Project:	Florence Pit	Phase:	800
Test Aggregate ID:	TP24-10, SA 2, 3.0 - 5.4m	Date Tested:	January 17, 2024
Aggregate Type:	Sand and Gravel	Tested By:	D. Singh
Aggregate Source:	Florence Pit	Sampled By:	MoTI

Aggregate Test Results

Grading Used	Clause 8.2
Mass of Sphere, grams	5003.0
Mass of Sample before Abrasion, grams	1504.7
Percent of Loss After Abrasion, %	6.2

Reference Aggregate Validation Results

Date Tested:	January 4, 2024
Abrasion Loss, %	12.6
Acceptable abrasion range , %	11.4 - 14.8

Reviewed by:

L. X. Hu, MSc.E., P. Eng.

<u>Notice</u>: The test data given herein pertain to the sample provided, and may not be applicable to material from other source or production. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

Relative Density (Specific Gravity) and Absorption of Coarse and Fine Aggregate

ASTM C127/C128

Client:	Ministry of Transportation and Infrastructure	structure Project No.: CA0007505.5261	
Project:	Florence Pit	Phase: 800	
Sample ID:	TP-24-02, SA1, 0.0 - 3.0m	Sampled Date: January 8, 2024	
Sample Type:	Sand and Gravel	Sampled By: MoTI	
Sample Location:	Florence Pit	Tested Date: January 16, 2024	
Source:	Florence Pit	Tested By: J.Amante/D.Singh	

Coarse Aggregate (+4.75mm), ASTM C127

Trail	Relative Density (Specific Gravity)			Absorption %	
Trail	Dry Basis (OD)	SSD Basis (SSD)	Apparent		
1	2.699	2.721	2.760	0.81	
2	2.696	2.718	2.757	0.81	
Average	2.698	2.720	2.759	0.81	

Fine Aggregate (- 4.75mm), ASTM C128

Troil	Relat	ative Density (Specific Gravity)		Absorption %
Trail	Dry Basis (OD)	SSD Basis (SSD)	Apparent	
1	2.647	2.679	2.734	1.20
2	2.647	2.677	2.731	1.16
Average	2.647	2.678	2.732	1.18

Note:

The fine aggregate was laboratory washed prior to the SG test.

Reviewed by:

Lily X. Hu, MSc.E., P. Eng.

<u>Notice</u>: The test data given herein pertain to the sample provided, and may not be applicable to material from other source or production. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

Relative Density (Specific Gravity) and Absorption of Coarse and Fine Aggregate

ASTM C127/C128

Client:	Ministry of Transportation and Infrastructure	Project No.: CA0007505.5261
Project:	Florence Pit	Phase: 800
Sample ID:	TP-24-07, SA, 0.0 - 2.4m	Sampled Date: January 8, 2024
Sample Type:	Sand and Gravel	Sampled By: MoTI
Sample Location:	Florence Pit	Tested Date: January 16, 2024
Source:	Florence Pit	Tested By: J.Amante/D.Singh

Coarse Aggregate (+4.75mm), ASTM C127

Trail	Relat	ive Density (Specific (Gravity)	Absorption, %
Iran	Dry Basis (OD)	SSD Basis (SSD)	Apparent	
1	2.727	2.746	2.782	0.73
2	2.726	2.746	2.781	0.73
Average	2.726	2.746	2.782	0.73

Fine Aggregate (- 4.75mm), ASTM C128

Troil	Relat	ative Density (Specific Gravity)		Absorption %
Trail	Dry Basis (OD)	SSD Basis (SSD)	Apparent	
1	2.639	2.676	2.739	1.37
2	2.638	2.674	2.737	1.37
Average	2.639	2.675	2.738	1.37

Note:

The fine aggregate was laboratory washed prior to the SG test.

Reviewed by:

Lily X. Hu, MSc.E., P. Eng.

Notice: The test data given herein pertain to the sample provided, and may not be applicable to material from other source or production. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

Relative Density (Specific Gravity) and Absorption of Coarse and Fine Aggregate

ASTM C127/C128

Client:	Ministry of Transportation and Infrastructure	structure Project No.: CA0007505.5261	
Project:	Florence Pit	Phase: 800	
Sample ID:	TP-24-11, SA1, 0.0 - 3.8m	Sampled Date: January 8, 2024	
Sample Type:	Sand and Gravel	Sampled By: MoTI	
Sample Location:	Florence Pit	Tested Date: January 16, 2024	
Source:	Florence Pit	Tested By: J.Amante/D.Singh	

Coarse Aggregate (+4.75mm), ASTM C127

Trail	Relat	ive Density (Specific (Gravity)	Absorption, %
ITali	Dry Basis (OD)	SSD Basis (SSD)	Apparent	
1	2.708	2.726	2.759	0.69
2	2.719	2.738	2.770	0.67
Average	2.714	2.732	2.765	0.68

Fine Aggregate (- 4.75mm), ASTM C128

Troil	Relat	Absorption %			
Tan	Dry Basis (OD)	SSD Basis (SSD)	Apparent	Absorption, 76	
1	2.604	2.644	2.713	1.54	
2	2.588	2.628	2.696	1.55	
Average	2.596	2.636	2.705	1.55	

Note:

The fine aggregate was laboratory washed prior to the SG test.

Reviewed by:

Lily X. Hu, MSc.E., P. Eng.

<u>Notice</u>: The test data given herein pertain to the sample provided, and may not be applicable to material from other source or production. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

Relative Density (Specific Gravity) and Absorption of Coarse and Fine Aggregate

ASTM C127/C128

Client:	Ministry of Transportation and Infrastructure	Project No.: CA0007505.5261
Project:	Florence Pit	Phase: 800
Sample ID:	TP-24-13, SA1, 0.5 - 3.0m	Sampled Date: January 8, 2024
Sample Type:	Sand and Gravel	Sampled By: MoTI
Sample Location:	Florence Pit	Tested Date: January 16, 2024
Source:	Florence Pit	Tested By: J.Amante/D.Singh

Coarse Aggregate (+4.75mm), ASTM C127

Trail	Absorption %			
Trail	Dry Basis (OD)	SSD Basis (SSD)	Apparent	
1	2.712	2.733	2.769	0.76
2	2.724	2.742	2.774	0.66
Average	2.718	2.737	2.772	0.71

Fine Aggregate (- 4.75mm), ASTM C128

Troil	Relat	Absorption %				
Tan	Dry Basis (OD)	SSD Basis (SSD)	Apparent			
1	2.597	2.634	2.697	1.44		
2	2.592	2.627	2.688	1.38		
Average	2.594	2.631	2.692	1.41		

Note:

The fine aggregate was laboratory washed prior to the SG test.

Reviewed by:

Lily X. Hu, MSc.E., P. Eng.

<u>Notice</u>: The test data given herein pertain to the sample provided, and may not be applicable to material from other source or production. Reporting of these data constitutes a testing service. Engineering review and interpretation may be provided upon written request.

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS							
Work Order	: VA24A1385	Page	: 1 of 3				
Client	: WSP E&I Canada Limited	Laboratory	: ALS Environmental - Vancouver				
Contact	: David Love	Account Manager	: Selam Worku				
Address	: 110 - 18568 96 Avenue	Address	: 8081 Lougheed Highway				
	Surrey BC Canada V4N 3P9		Burnaby BC Canada V5A 1W9				
Telephone	:	Telephone	: +1 604 253 4188				
Project	: KA21201.600	Date Samples Received	: 24-Jan-2024 09:42				
PO	:	Date Analysis Commenced	: 31-Jan-2024				
C-O-C number	:	Issue Date	: 05-Feb-2024 13:56				
Sampler	:						
Site	:						
Quote number	: BC Standard Pricing						
No. of samples received	: 2						
No. of samples analysed	: 2						

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Alex Drake	Lab Analyst	Inorganics, Edmonton, Alberta
Katarzyna Glinka	Analyst	Inorganics, Calgary, Alberta

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
%	percent

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

Sub-Matrix: Soil Client sample ID			Florence Pit,	Florence Pit,	 			
(Matrix: Soil/Solid)					TP24-02, SA#1,	TP24-11, SA#1,		
					0.0-3.0m	0.0-3.8m		
Client sampling date / time			23-Jan-2024 00:00	23-Jan-2024 00:00	 			
Analyte	CAS Number	Method/Lab	LOR	Unit	VA24A1385-001	VA24A1385-002	 	
					Result	Result	 	
Inorganics								
Chloride, soluble ion content	16887-00-6	E246.CL/EO	0.0025	%	<0.0025	<0.0025	 	
Sulfate, total, ion content	14808-79-8	E246.SO4/CG	0.050	%	<0.050	<0.050	 	
Sulfate, soluble ion content	14808-79-8	E246A.SO4/C	0.05	%	NR	NR	 	
		G						

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page	:	3 of 3
Work Order	:	VA24A1385
Client	:	WSP E&I Canada Limited
Project	:	KA21201.600

ALS Canada Ltd.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	:VA24A1385	Page	: 1 of 5
Client	WSP E&I Canada Limited	Laboratory	: ALS Environmental - Vancouver
Contact	: David Love	Account Manager	: Selam Worku
Address	: 110 - 18568 96 Avenue	Address	: 8081 Lougheed Highway
	Surrey BC Canada V4N 3P9		Burnaby, British Columbia Canada V5A 1W9
Telephone	:	Telephone	: +1 604 253 4188
Project	: KA21201.600	Date Samples Received	: 24-Jan-2024 09:42
PO	:	Issue Date	: 05-Feb-2024 13:55
C-O-C number	:		
Sampler			
Site			
Quote number	BC Standard Pricing		
No. of samples received	:2		
No. of samples analysed	:2		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches) • • No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers occur - please see following pages for full details.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Soil/Solid Evaluation: × = Holding time exceedance ; ✓ = Within Holding Time										
Analyte Group : Analytical Method	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Inorganics : Chloride in soil by boiling water extraction, IC										
LDPE bag										
Florence Pit, TP24-02, SA#1, 0.0-3.0m	E246.CL	23-Jan-2024	02-Feb-2024	180	10	1	02-Feb-2024	28 days	0 days	1
				days	days					
Inorganics : Chloride in soil by boiling water extraction, IC										
LDPE bag										
Florence Pit, TP24-11, SA#1, 0.0-3.8m	E246.CL	23-Jan-2024	02-Feb-2024	180	10	1	02-Feb-2024	28 days	0 days	1
				days	days					
Inorganics : Soluble Sulfate ion in soil by boiling water extraction, IC.										
LDPE bag										
Florence Pit, TP24-02, SA#1, 0.0-3.0m	E246A.SO4	23-Jan-2024	01-Feb-2024	180	9 days	✓	01-Feb-2024	28 days	0 days	✓
				days						
Inorganics : Soluble Sulfate ion in soil by boiling water extraction, IC.										
LDPE bag										
Florence Pit, TP24-11, SA#1, 0.0-3.8m	E246A.SO4	23-Jan-2024	01-Feb-2024	180	9 days	✓	01-Feb-2024	28 days	0 days	✓
				days						
Inorganics : Total Sulfate ion in soil by acidic boiling water extraction, IC										
LDPE bag										
Florence Pit, TP24-02, SA#1, 0.0-3.0m	E246.SO4	23-Jan-2024	31-Jan-2024	180	8 days	✓	31-Jan-2024	28 days	0 days	~
				days						
Inorganics : Total Sulfate ion in soil by acidic boiling water extraction, IC										
LDPE bag										
Florence Pit, TP24-11, SA#1, 0.0-3.8m	E246.SO4	23-Jan-2024	31-Jan-2024	180	8 days	✓	31-Jan-2024	28 days	0 days	✓
				days						

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Itatrix: Soil/Solid Evaluation: × = QC frequency outside specification; ✓ = QC frequency within specificat						thin specification.		
Quality Control Sample Type			Co	ount		Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)								
Chloride in soil by boiling water extraction, IC	E246.CL	1320974	1	10	10.0	5.0	✓	
Soluble Sulfate ion in soil by boiling water extraction, IC.	E246A.SO4	1319764	0	8	0.0	5.0	×	
Total Sulfate ion in soil by acidic boiling water extraction, IC	E246.SO4	1318377	1	10	10.0	5.0	✓	
Laboratory Control Samples (LCS)								
Chloride in soil by boiling water extraction, IC	E246.CL	1320974	1	10	10.0	5.0	✓	
Soluble Sulfate ion in soil by boiling water extraction, IC.	E246A.SO4	1319764	2	8	25.0	10.0	✓	
Total Sulfate ion in soil by acidic boiling water extraction, IC	E246.SO4	1318377	2	10	20.0	10.0	✓	
Method Blanks (MB)								
Chloride in soil by boiling water extraction, IC	E246.CL	1320974	1	10	10.0	5.0	✓	
Soluble Sulfate ion in soil by boiling water extraction, IC.	E246A.SO4	1319764	1	8	12.5	5.0	~	
Total Sulfate ion in soil by acidic boiling water extraction, IC	E246.SO4	1318377	1	10	10.0	5.0	✓	
Matrix Spikes (MS)								
Chloride in soil by boiling water extraction, IC	E246.CL	1320974	1	10	10.0	5.0	✓	

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Chloride in soil by boiling water extraction, IC	E246.CL ALS Environmental - Edmonton	Soil/Solid	CSA-A23.2-4B mod	Hot water soluble chloride is determined in soil by combining a fixed ratio of soil and water, boiling the mixture for a period of time, cooling, filtration, and analysis by ion chromatography.
Total Sulfate ion in soil by acidic boiling water extraction, IC	E246.SO4 ALS Environmental - Calgary	Soil/Solid	CSA-A23.2-3B	The dried solid is mixed with water and acid then heated. After filtration the liquid is ready for analysis by IC with conductivity detector.
Soluble Sulfate ion in soil by boiling water extraction, IC.	E246A.SO4 ALS Environmental - Calgary	Soil/Solid	CSA-A23.2-3B	The dried solid is mixed with water at a specified ratio then heated. After filtration the liquid is ready for analysis by IC with conductivity detector. A result of "NR" indicates that the total sulfate analysis was <0.2% and based on CSA-A23.2-3B no analysis for soluble sulfate is required.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Chloride in soil by boiling water extraction, IC	EP246.CL ALS Environmental - Edmonton	Soil/Solid	CSA-A23.2-3B mod	Hot water soluble chloride is determined in soil by combining a fixed ratio of soil and water, boiling the mixture for a period of time, cooling, then filtration prior to analysis
Soluble ion Sulfate in soil or concrete preparation.	EP246.S ALS Environmental - Calgary	Soil/Solid	CSA-A23.2B	The dried solid is mixed with water then heated. After filtration the liquid is ready for analysis.
Total ion Sulfate in soil or concrete preparation	EP246.T ALS Environmental - Calgary	Soil/Solid	CSA-A23.2B	The dried solid is mixed with water and acid then heated. After filtration the liquid is ready for analysis.

ALS Canada Ltd.

QUALITY CONTROL REPORT Work Order Page : 1 of 4 :VA24A1385 Client :WSP E&I Canada Limited Laboratory : ALS Environmental - Vancouver Account Manager : Selam Worku Contact : David Love Address Address :110 - 18568 96 Avenue :8081 Lougheed Highway Surrey BC Canada V4N 3P9 Burnaby, British Columbia Canada V5A 1W9 Telephone Telephone :+1 604 253 4188 Project :KA21201.600 **Date Samples Received** : 24-Jan-2024 09:42 PO Date Analysis Commenced :31-Jan-2024 :----C-O-C number Issue Date :05-Feb-2024 13:55 Sampler :----Site · ____ Quote number : BC Standard Pricing No. of samples received :2 No. of samples analysed :2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Reference Material (RM) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Alex Drake	Lab Analyst	Edmonton Inorganics, Edmonton, Alberta
Katarzyna Glinka	Analyst	Calgary Inorganics, Calgary, Alberta

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot. CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Soil/Solid						Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier			
Inorganics (QC Lot:	1318377)													
CG2401009-001	Anonymous	Sulfate, total, ion content	14808-79-8	E246.SO4	500	mg/kg	<0.050 %	<500	0	Diff <2x LOR				
Inorganics (QC Lot:	norganics (QC Lot: 1320974)													
CG2401137-002	Anonymous	Chloride, soluble ion content	16887-00-6	E246.CL	25	mg/kg	0.0042 %	50	8	Diff <2x LOR				

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Soil/Solid

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Inorganics (QCLot: 1318377)						
Sulfate, total, ion content	14808-79-8	E246.SO4	500	mg/kg	<500	
Inorganics (QCLot: 1319764)						
Sulfate, soluble ion content	14808-79-8	E246A.SO4	500	mg/kg	NR	
Inorganics (QCLot: 1320974)						
Chloride, soluble ion content	16887-00-6	E246.CL	25	mg/kg	<25	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Soil/Solid	Laboratory Control Sample (LCS) Report								
	Spike	Recovery (%)	Recovery	Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Inorganics (QCLot: 1318377)									
Sulfate, total, ion content	14808-79-8	E246.SO4	500	mg/kg	10000 mg/kg	102	90.0	110	
Inorganics (QCLot: 1320974)									
Chloride, soluble ion content	16887-00-6	E246.CL	25	mg/kg	5000 mg/kg	101	70.0	130	

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Soil/Solid						Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	Limits (%)				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier			
Inorganics (QCLo	ot: 1320974)												
CG2401137-002	Anonymous	Chloride, soluble ion content	16887-00-6	E246.CL	5140 mg/kg	5000 mg/kg	105	60.0	140				

Reference Material (RM) Report

A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

Sub-Matrix:					Reference Material (RM) Report						
					RM Target	Recovery (%)	Recovery L	.imits (%)			
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier		
Inorganics (QCL	ot: 1318377)										
	RM	Sulfate, total, ion content	14808-79-8	E246.SO4	33400 mg/kg	97.3	80.0	120			

Chain of Custody (COC) / Analytical Request Form

Affix ALS barcode label here

COC Number: 15 -

Canada Toll Free: 1 800 668 9878

(lab use only)

Page of

	www.alsglobal.com					· · · · · · · · · · · · · · · · · · ·							, i							
Report To	Contact and compan	iy name below will appear	on the final report		Report Format	/ Distribution		Select Service Level Below - Please confirm all E&P TATs with your AM - surcharges will apply												
Company:	WSP Environment & Inf	frastructure Canada I	Limited	Select Report Fo	ormat: 🔽 PDF		DD (DIGITAL)		Re	gular	[R]	🗾 Star	dard TA	l if rece	ived by	3 pm -	business	days - I	io surcha	irges apply
Contact:	David Love			Quality Control (QC) Report with Re	eport 🔽 YES		V Vaye	4	day (P	4]			ξ	1 Bus	sines	s day [E1]		
Phone:	(250) 808-0483			Compare Resul	ts to Criteria on Report	- provide details below	if box checked	TIDRI1	3	day [P	3]			RGE	Sam	ie Day	, Weel	kend o	r	
	Company address below v	will appear on the final repo	ort	Select Distribution: 🖸 EMAIL 📋 MAIL 🔲 FAX				Buei Buei	2	day (P	2]			W	Sta	tutory	/ holid	ay [E0]	
Street:	#100 - 20339 96 Ave			Email Tor Fax	David A Love@W	SP.com			Date_a	nd <u>Time</u>	Require	ed for all	E&P TA	Ts:				5× 103	7 00 m	un
City/Province:	Langley, British Columbia	a		Email 2	lily.hu@wsp.com			For tes	ts that c	an not be	perform	ed accord	ing to the	service) level se	lected,	you will)	e conta	ctod.	
Postal Code:	V1M 0E4			Email 3	diljot.singh@wsp.c	om							An	alysis	Requ	est				
Invoice To	Same as Report To	🖸 YES 🔲	NO		Invoice Di	stribution			Inc	dicate Fil	tered (F)	, Preserv	edi(P)or	Filtered	and Pre	erved	(F/P) be	low		
	Copy of Invoice with Rep	oort 🔽 YES 🗌	NO	Select Invoice D	istribution: 🔽 Er	MAIL 🛄 MAIL	FAX													
Company:	WSP Environment & Inf	frastructure Canada I	Limited	Email 1 or Fax	David.A.Love@W	SP.com			1								Τ			
Contact:	(250) 808-0483		· · · · · · · · · · · · · · · · · · ·	Email 2]												Ś
	Project in	nformation		Oil	and Gas Require	d Fields (client u	se)]												liner
ALS Account #	/ Quote #:			AFE/Cost Center:		PO#]	1									1		onta
Job #:	KA21201.600			Major/Minor Code:	•	Routing Code:		1	m											ŭ
PO/AFE:				Requisitioner:				3.3B	2-4											er o
LSD:				Location:				T A20	A23											r tr
ALS Lab Wor	rk Order # (lab use only	0		ALS Contact:		Sampler:		e Conten	Content											z
ALS Sample #	Sam	ple Identification a	nd/or Coordinates		Date	Time	0	hate	oride											
(lab use only)	(Th	is description will app	pear on the report)		(dd-mmm-yy)	(bh:mm)	Sample Type	Sulp	CHG											
	Florence Pit, TP24-02, S	A#1, 0.0-3.0m			23-Jan-24		Soil	R	R											1
	Florence Pit TP24-11, S/	A#1, 0.0-3.8m			23-Jan-24	· · · · · · · · · · · · · · · · · · ·	Soil	R	R					+	+	+	+			1
								<u>† </u>						1	1	+	+			
				· · · · · · · · · · · · · · · · · · ·									-+		-+-	+	+			
															<u> </u>		┥──	·		
			_		·			<u> </u>							\rightarrow		\perp			
			Environmer	ital Division				Ì							. [_
			Vancouver									1								
			Work Order	Reference													1			
		·	VA24	A1385									-+		-		+			
	····					+				<u> </u>			-+	+	-+		+			
				見聞き聞け	<u> </u>	<u> </u>	· · ·	ļ								—	+	ļ		
				·) •		ļ		<u> </u>	L		_					<u> </u>	┿			
				及此全副出	i															
Drinking	Water (DW) Samples ¹ (client use)			eport by clic	king on the drop-	town list below				SAMP	PLE CO	NDITIC	N AS	RECE	IVED	(lab u	se onl	y)	
Drinking	Water (DW) Samples (client use)			OC only)			Froze	n	د_			S	IF Obs	se rva tio	ons	Yes		No	
Are samples take	en from a Regulated DW S	ystem?	Telephone: +1 604;	253 4188			(No	ice P	acks	\Box	lce Ci	ubes	D c	ustody	/ seal i	ntact	Yes		No	
								Cooli	ng Initi	ated										
Are samples for	Are samples for human drinking water use?							L	INIT	TAL CO	DLER TE	MPERA	URES *	2		FIN	AL COC	LER TE	MPERA	IURES °C
																<u>(a)</u>	<u> </u>			
	SHIPMENT REL	EASE (client use)			INITIAL SHIPMEN	IT RECEPTION (ab use only)					FIN	AL SH	PMEN	IT REC	CEPTI	ON (la	b use	only)	
Released by: Li	iy Hu	Date: 2024-01-23	Time:	Received by:		Date:		Time:	: 7	Rece	ived by	<i> </i> :	-1	2	Da	ite:	1 -	211		Time:
											,					<u>.4</u>	<u>· ~</u>	<u>~1</u>		17200

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

Client:MOTIProject No.:KA21172.2600Project Name:Florence PitTest Pit Number:Face SampleBag Number:2Depth:0.15-0.3 m

Date Sampled: 20-Sep-22 Sampled By: Harihar Bhandari Tested By: WK Date Tested: 20-Oct-22

Grading	Sample ID	Initial Mass of Sample (g) A	Final Mass of Sample (g) B	Mass Lost (g) A - B	DM (CA) % Loss (A-B)*100/A
16 mm - 9.5 mm	В	1501.6	1354.0	147.6	9.8

Comments:

Refer to BCMoT 2020 Standard Specifications for Highway Construction;

- Section 202, Table 202-B for acceptable values of coarse aggregate for :

- HFSA, 25mm and 50mm base course, IGSB and OGSB is 25 or less

- SGSB and BEF is 30 or less
- 75mm base course is 17 or less

- Section 502, Table 502-B for acceptable value of coarse aggregate for :

-Superpave and Class 1 aggregates is 18 or less

-Class 2 aggregates is 20 or less.

- A petrographic analysis may be required if material fails to meet these specifications.

Reported by: Wenjing Ke Surrey, BC

Reviewed by:

Scott Forsyth, P.Eng. Surrey, BC

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided only on written request.

Sieve Analysis

Client							
Name:	BC Ministry Of Transportation and Infrastructure						
Address:	310 - 1500 Woolridge Street Coquitlam, BC V3K 0B8						
Attention:	Salem Bahamdun						
PO Number:							
Sample Date:	9/20/2022 by Client						
Source:	Florence Pit Bag# 2, Sample B; Depth: 0.15 -0.3m						

Project

Name:	(KA21172-2600) Florence Pit
Address:	Surrey,
Phase: Manager:	2600 Task: Scott Forsyth, P.Eng.
Lab/Ref. #:	L6826-2
Description:	Poorly graded gravel

Type of Specification: No project specification was provided.

Cumulative Particle Distribution

Sieve Analysis:	(ASTM	C117-17/C	136-19)
-----------------	-------	-----------	---------

.....

	200 Wash Proce	Spec	ification	
<u>Coarse</u>	Sieve Size	Passing	<u>Min</u>	<u>Max</u>
Portion:	75mm	100%		
	50mm	92%		
	37.5mm	77%		
	25mm	55%		
	19.0mm	41%		
	12.5mm	17%		
	9.5mm	9%		
	4.75mm	6%		
Fine	Sieve Size	Passing	<u>Min</u>	Max
Portion:	2.36mm	5%		
	1.18mm	4%		
	600µm	3%		
	300µm	2%		
	150µm	2%		
	75µm	1.2%		

Particle Size (bold indicates value was interpolated)											
Over 3" / 76mm	Gra	Gravel Sand Fines			Sand						
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay				
0.0%	0.0% 59.0% 35.0% 1.0% 2.0% 1.8% 1.2%										

Remarks:

Distribution: Surrey, Materials

Reviewed By: Scott Forsyth, P.Eng.

Reporting of these test results constitutes a testing service only. Engineering evaluation of the test results is provided only on written request.

WSP E&I Canada Limited. - #110 - 18568 - 96th Avenue - Surrey, BC - V4N 3P9 Canada. Phone: (604) 219-1674

amec foster wheeler

SIEVE ANALYSIS REPORT

CLIENT: Ministry of Transportation & Infrastructure 310 - 1500 Woolridge St. Coquitlam, BC V3K 0B8

ATTN: Terence Lai

PROJECT: Florence Pit - Lower Mainland District

Lab Number: L5259

Client Contract No: 156CS0824

Project Number: KA21098-1200

Client Project No: 39100-20-Florence Pit

Date: March 24, 2015

Date Sampled: Sampled by MOTI Date Received: 9-Mar-15 Date Tested: 10-Mar-15 Sampled By: MOTI Tested By: Rodrigo Lauricio

TP/TH No.: TP15-1 Bag No.: 553 Material Type: Pit Run Sample No.: 1

Gravel Sizes	Percent	Gradati	on Limits	Sand Sizes And	Percent	Gradation Limits	
(mm)	Passing	Lower	Upper	Fines (mm)	Passing	Lower Upper	
100	100		-	4.75	37	•	
75	100	100	- 100	2.36	29	-	
50	92		-	1.18	19	-	
37.5	81		• n ni i	0.6	10	0 - 100	
25	67		-	0.3	6.0	0 - 15	
19	57	15	- 100	0.15	4.5	•	
12.5	48		•	0.075	3.8	0 - 5	
9.5	44	0	- 100		tituti e Anno anno anno anno anno anno anno anno		

Comments:

Its: Sieve analysis test was conducted in accordance with ASTM C136 and C117 Plotted to Table 202-C SGSB gradation specification

Prepared By: Giti Ghorbanian Senior Materials Technologist Reviewed By:

Daniel St-Pierre, M.Sc., PE, P.Eng. Senior Civil Materials Engineer

Reporting of these test results constitutes a testing services only. Engineering interpretation or evaluation of these test results is provided only on written request. The data presented is for the sole use of the client stipulated above.

SIEVE SIZE (mm)

SIEVE ANALYSIS REPORT

CLIENT: Ministry of Transportation & Infrastructure 310 - 1500 Woolridge St. Coquitlam, BC V3K 0B8

ATTN: Terence Lai

PROJECT: Florence Pit - Lower Mainland District

Lab Number: L5259

Client Contract No.: 156CS0824

Project Number: KA21098-1200

Client Project No.: 39100-20-Florence Pit

Date: March 24, 2015

Date Sampled: Sampled by MOTI Date Received: 9-Mar-15 Date Tested: 10-Mar-15 Sampled By: MOTI Tested By: Rodrigo Lauricio

TP/TH No.: TP15-1 Bag No.: 553 Material Type: Crushed Sample No.: 1

Gravel Sizes	Percent	Gradatio	n Limits
(mm)	Passing	Lower	Upper
100	100	-	
75	100	-	1
50	100	-	
37.5	100	-	
25	99	100 -	100
19	85	80 -	100
12.5	61	-	
9.5	53	50 -	85

Sand Sizes And	Percent	Gradation Limits		Limits
Fines (mm)	Passing	Lower	er Upper	
4.75	41	35	-	70
2.36	31	25	-	50
1.18	20	15	-	35
0.6	12		-	
0.3	7.3	5	-	20
0.15	5.4		-	
0.075	4.5	0	-	5

Comments:

Sieve analysis test was conducted in accordance with ASTM C136 and C117 Plotted to Table 202-C WGB gradation specification

Prepared By: Giti Ghorbanian Senior Materials Technologist **Reviewed By:**

Daniel St-Pierre, M.Sc., PE, P.Eng. Senior Civil Materials Engineer

FRACTURE COUNT FOR COARSE AGGREGATE (BCH 1-13)

CLIENT: Ministry of Transportation & Infrastructure 310 - 1500 Woolridge St. Coquitlam, BC V3K 0B8 Project Number: KA21098-1200 Date: March 24, 2015 Client Contract No.: 156CS0824 Client Project No.: 39100-20-Florence Pit

ATTN: Terence Lai

PROJECT: Florence Pit - Lower Mainland District Sample Source & ID: TP15-1- Bag # 553- SA #1 - Crushed

Lab No.: L5259

Sieve Size	Total No. of	No. of	No. of Non	% Fracture	Total %
	Particles	Fractured	Fractured	per Sieve	Fracture
		Particles	Particles	-	
) (mm)					
50 to 37.5					
37.5 to 25.0	-	-	-	-	
25.0 to 19.0	60	31	29	52	
19.0 to 12.5	169	128	41	76	
12.5 to 9.5	107	75	32	70	
9.5 to 4.75	481	236	245	49	
Totals	817	470	347		58

Comments:

Fracture Particles in Coarse Aggregate tests were conducted in accordance with BCH 1-13 Method A

Prepared By:

Giti Ghorbanian Senior Materials Technologist **Reviewed By:**

Daniel St-Pierre, M.Sc., PE, P.Eng. Senior Civil Materials Engineer

FRACTURE COUNT FOR COARSE AGGREGATE (BCH 1-13)

CLIENT: Ministry of Transportation & Infrastructure 310 - 1500 Woolridge St. Coquitlam, BC V3K 0B8

Project Number: KA21098-1200 Date: March 24, 2015 Client Contract No.: 156CS0824 Client Project No.: 39100-20-Florence Pit

ATTN: Terence Lai

PROJECT: Florence Pit - Lower Mainland District

Sample Source & ID: TP15-1- Bag # 553- SA #1 - Crushed

Lab No.: L5259

Sieve Size	Original	Fractured	Non-	%
	Weight	Particles	Fractured	Fracture
			Particles	
(mm)	(g)	(g)	(g)	
50 to 37.5				
37.5 to 25.0	-	-	-	-
25.0 to 19.0	1011.4	378.8	632.6	37
19.0 to 13.2	784.3	524.9	259.4	67
13.2 to 9.5	349.0	235.8	113.2	68
-	-	-	-	-
Totals	2144.7	1139.5	1005.2	53

Comments:

Fracture Particles in Coarse Aggregate tests were conducted in accordance with BCH 1-13 Method B

Prepared By:

Giti Ghorbanian Senior Materials Technologist **Reviewed By:**

Daniel St-Pierre, M.Sc., PE, P.Eng. Senior Civil Materials Engineer

Test Results for Resistance of Aggregate to Degradation by Abrasion in the Micro-Deval

CLIENT: Ministry of Transportation & Infrastructure 310 - 1500 Woolridge St. Coquitlam, BC V3K 0B8 ATTN: Terence Lai Project Number: KA21098-1200 Date: March 24, 2015 Client Contract No.: 156CS0824 Client Project No.: 39100-20-Florence Pit

PROJECT: Florence Pit- Lower Mainland District

Sample Source & ID: TP15-1 Bag# 553 SA #1 - Crushed Lab No.: L5259

Coarse and Fine Aggregate

Grading	Initial Mass (g)	Final Mass (g)	Loss of Mass (g)	% Loss
	A	В	A - B	(A-B)*100/A
Coarse	1499.5	1334.1	165.4	11.0
Fine	500.2	427.7	72.5	14.5

Comments: -Maximum size of aggregate is 25.0 mm.

-Resistance of materials to Degradation by Abrasion in the Micro-Deval Apparatus was conducted in accordance with ASTM D6928 for Coarse aggregate and ASTM D7428 for Fine aggregate

-Grading for coarse aggregate used for test is: 19-16 mm, 16-12.5 mm, 12.5-9.5 mm

-Drain Brothers- Stony Lake Quarry was used as calibration coarse materials and percent loss is 15.0%. Southerland Sand was used as calibration fine materials and percent loss is 17.7%.

MOTI Standard:

Maximum acceptable value of any base material is 25 or less Maximum acceptable value of any Sub-base material is 30 or less

Prepared By: Giti Ghorbanian Senior Materials Technologist **Reviewed By:**

Daniel St-Pierre, M.Sc., PE, P.Eng. Senior Civil Materials Engineer

SIEVE ANALYSIS REPORT

CLIENT: Ministry of Transportation & Infrastructure 310 - 1500 Woolridge St. Coquitlam, BC V3K 0B8 ATTN: Terence Lai

PROJECT: Florence Pit - Lower Mainland District

GRADATION CHART 8 0.01 5 <u>.</u> 100.0 0 90.0 80.0 PERCENT PASSING (%) 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 100 75 50 37.5 25 19 2.5 1.18 0.3 0.15 4.75 2.36 0.6 0.075

Lab Number: L5260

Date Sampled: Sampled by MOTI Date Received: 9-Mar-15 Date Tested: 9-Mar-15 Sampled By: MOTI Tested By: Rodrigo Lauricio

TP/TH No.: TP15-1 Bag No.: 554 Material Type: Pit Run Sample No.: 2

Gravel Sizes	Percent	Gradation Limits		Limits	Sand Sizes And	Percent	Grad	ation Limits
(mm)	Passing	Lower		Upper	Fines (mm)	Passing	Lower	Upper
100	100	영요즘은	-	1	4.75	52	1025-1025	
75	100	100	-	100	2.36	40		×
50	99		-		1.18	24		<u>-</u> 2010
37.5	95		-	- The Ag	0.6	9.5	0	- 100
25	86		-	1.1	0.3	3.5	0	- 15
19	79	15	-	100	0.15	2.4		-
12.5	69	1.1.2	-		0.075	1.9	0	- 5
9.5	63	0	-	100			신방영환자	

Comments:

ts: Sieve analysis test was conducted in accordance with ASTM C136 and C117 Plotted to Table 202-C SGSB gradation specification

Prepared By: Giti Ghorbanian Senior Materials Technologist **Reviewed By:**

Daniel St-Pierre, M.Sc., PE, P.Eng.

Senior Civil Materials Engineer

Project Number: KA21098-1200 Date: March 17, 2015 Client Contract No: 156CS0824 Client Project No: 39100-20-Florence Pit

9.5 63 0 - 100

Reporting of these test results constitutes a testing services only. Engineering interpretation or evaluation of these test results is provided only on written request. The data presented is for the sole use of the client stipulated above.

SIEVE SIZE (mm)

SIEVE ANALYSIS REPORT

CLIENT: Ministry of Transportation & Infrastructure 310 - 1500 Woolridge St. Coquitlam, BC V3K 0B8

ATTN: Terence Lai

PROJECT: Florence Pit - Lower Mainland District

Project Number: KA21098-1200 Date: March 24, 2015 Client Contract No: 156CS0824 Client Project No: 39100-20-Florence Pit

Lab Number: L5261

Date Sampled: Sampled by MOTI Date Received: 9-Mar-15 Date Tested: 15-Mar-15 Sampled By: MOTI Tested By: Rodrigo Lauricio

TP/TH No.: TP15-2 Bag No.: 555 Material Type: Pit Run Sample No.: 1

Gravel Sizes	Percent	Gradatio	on Limits		Sand Sizes And	Percent	Grada	ation Limits
(mm)	Passing	Lower	Upper		Fines (mm)	Passing	Lower	Upper
100	100				4.75	43		-
75	100	100	- 100		2.36	34		-
50	86		-		1.18	19		-
37.5	78		-		0.6	9.4	0	- 100
25	66		-		0.3	5.8	0	- 15
19	60	15	- 100		0.15	4.6		-
12.5	54		-		0.075	3.8	0	- 5
9.5	51	0	- 100	"				

Comments:

Sieve analysis test was conducted in accordance with ASTM C136 and C117 Plotted to Table 202-C SGSB gradation specification

Prepared By: Giti Ghorbanian Senior Materials Technologist

Reviewed By: _

Daniel St-Pierre, M.Sc., PE, P.Eng. Senior Civil Materials Engineer

SIEVE ANALYSIS REPORT

CLIENT: Ministry of Transportation & Infrastructure 310 - 1500 Woolridge St.

Coquitlam, BC V3K 0B8 ATTN: Terence Lai

PROJECT: Florence Pit - Lower Mainland District

Lab Number: L5261

Client Contract No.: 156CS0824

Project Number: KA21098-1200

Client Project No.: 39100-20-Florence Pit

Date: March 24, 2015

Date Sampled: Sampled by MOTI Date Received: 9-Mar-15 Date Tested: 15-Mar-15 Sampled By: MOTI Tested By: Rodrigo Lauricio

TP/TH No.: TP15-2 Bag No.: 555 Material Type: Crushed Sample No.: 1

Gravel Sizes	Percent	Gradation L	_imits	Si
(mm)	Passing	Lower l	Jpper	
100	100	-		
75	100	-		
50	100	-		
37.5	100	-	-	
25	99	100 -	100	
19	88	80 -	100	
12.5	66	-		
9.5	59	50 -	85	

Sand Sizes And	Percent	Grad	Gradation Lim		
Fines (mm)	Passing	Lower	Lower Upper		
4.75	46	35	-	70	
2.36	35	25	-	50	
1.18	21	15	-	35	
0.6	12		-		
0.3	7.8	5	-	20	
0.15	6.2		-		
0.075	5.1	0	-	5	

Comments: Sieve analysis test was conducted in accordance with ASTM C136 and C117 Plotted to Table 202-C WGB gradation specification

Prepared By: Giti Ghorbanian

Senior Materials Technologist

Reviewed By:

Daniel St-Pierre, M.Sc., PE, P.Eng. Senior Civil Materials Engineer

Reporting of these test results constitutes a testing services only. Engineering interpretation or evaluation of these test results is provided only on written request. The data presented is for the sole use of the client stipulated above.

amec foster wheeler

SIEVE ANALYSIS REPORT

CLIENT: Ministry of Transportation & Infrastructure 310 - 1500 Woolridge St. Coquitlam, BC V3K 0B8

ATTN: Terence Lai

PROJECT: Florence Pit - Lower Mainland District

Lab Number: L5271

Client Contract No: 156CS0824

Project Number: KA21098-1200

Client Project No: 39100-20-Florence Pit

Date: March 24, 2015

Date Sampled: Sampled by MOTI Date Received: 9-Mar-15 Date Tested: 15-Mar-15 Sampled By: MOTI Tested By: Rodrigo Lauricio

TP/TH No.: TP15-13 Bag No.: 569 Material Type: Pit Run Sample No.: 1

Gravel Sizes	Percent	Gradati	ion Limi	s	Sand Sizes And	Percent	Grada	tion Limits
(mm)	Passing	Lower	Upp	r	Fines (mm)	Passing	Lower	Upper
100	100		- 198		4.75	36	관람 소	-
75	100	100	- 100		2.36	28		- 1.141.2
50	91		-		1.18	21		<u> </u>
37.5	81				0.6	13	0	- 100
25	69		-		0.3	6.4	0	- 15
19	60	15	- 100		0.15	4.7		
12.5	51		-		0.075	4.0	0	- 5
9.5	47	0	- 100				12 (11 × 14	

Comments:

Plotted to Table 202-C SGSB gradation specification

Sieve analysis test was conducted in accordance with ASTM C136 and C117

Prepared By: Giti Ghorbanian Senior Materials Technologist **Reviewed By:**

Daniel St-Pierre, M.Sc., PE, P.Eng. Senior Civil Materials Engineer

Reporting of these test results constitutes a testing services only. Engineering interpretation or evaluation of these test results is provided only on written request. The data presented is for the sole use of the client stipulated above.

SIEVE SIZE (mm)

SIEVE ANALYSIS REPORT

CLIENT: Ministry of Transportation & Infrastructure 310 - 1500 Woolridge St. Coquitlam, BC V3K 0B8

ATTN: Terence Lai

PROJECT: Florence Pit - Lower Mainland District

amec foster wheeler

Project Number: KA21098-1200 Date: March 24, 2015 Client Contract No.: 156CS0824 Client Project No.: 39100-20-Florence Pit

Lab Number: L5271

Date Sampled: Sampled by MOTI Date Received: 9-Mar-15 Date Tested: 16-Mar-15 Sampled By: MOTI Tested By: Rodrigo Lauricio

TP/TH No.: TP15-13 Bag No.: 569 Material Type: Crushed Sample No.: 1

Gravel Sizes	Percent	Gradat	ion Lin	its	Sand Sizes And	Percent	Grad	ation Limit	S
(mm)	Passing	Lower	Up	per	Fines (mm)	Passing	Lower	Upper	1966
100	100		-		4.75	39	35	- 70	
75	100		-		2.36	30	25	- 50	
50	100		-		1.18	22	15	- 35	
37.5	100		-		0.6	14			
25	100	100	- 10	0	0.3	7.1	5	- 20	
19	87	80	- 10	0	0.15	5.1		•	
12.5	64		-		0.075	4.1	0	- 5	
9.5	55	50	- 8	5					

Comments: Sieve analysis test was conducted in accordance with ASTM C136 and C117 Plotted to Table 202-C WGB gradation specification

Prepared By: Giti Ghorbanian Senior Materials Technologist **Reviewed By:**

12 m

Daniel St-Pierre, M.Sc., PE, P.Eng. Senior Civil Materials Engineer

SIEVE ANALYSIS REPORT

CLIENT: Ministry of Transportation & Infrastructure 310 - 1500 Woolridge St. Coquitlam, BC V3K 0B8

ATTN: Terence Lai

PROJECT: Florence Pit - Lower Mainland District

Lab Number: L5272

Client Contract No: 156CS0824

Project Number: KA21098-1200

Client Project No: 39100-20-Florence Pit

Date: March 24, 2015

Date Sampled: Sampled by MOTI Date Received: 9-Mar-15 Date Tested: 11-Mar-15 Sampled By: MOTI Tested By: Rodrigo Lauricio

TP/TH No.: TP15-14 Bag No.: 570 Material Type: Pit Run Sample No.: 1

Gravel Sizes	Percent	Gradatio	on Limits	Sand Sizes A	
(mm)	Passing	Lower	Upper	Fines (mm)	
100	100		• 10 1 1 1 1 1 1	4.75	
75	100	100 -	100	2.36	
50	94	-		1.18	
37.5	85			0.6	
25	72	-		0.3	
19	64	15 -	100	0.15	
12.5	54	-		0.075	
9.5	50	0 -	100		

Percent	Gradation Limits		
Passing	Lower	U	oper
41		-	
33		-	
21		-	
11	0	-	100
6.9	0	-	15
5.5		-	
4.6	0	-	5
	Percent Passing 41 33 21 11 6.9 5.5 4.6	Percent Grada Passing Lower 41	Percent Gradation Passing Lower Up 41 - - 33 - - 21 - - 11 0 - 6.9 0 - 5.5 - - 4.6 0 -

Comments: Sieve analysis test was conducted in accordance with ASTM C136 and C117 Plotted to Table 202-C SGSB gradation specification

Prepared By: Giti Ghorbanian Senior Materials Technologist Reviewed By:

Daniel St-Pierre, M.Sc., PE, P.Eng. Senior Civil Materials Engineer

SIEVE ANALYSIS REPORT

CLIENT: Ministry of Transportation & Infrastructure 310 - 1500 Woolridge St. Coquitlam, BC V3K 0B8

ATTN: Terence Lai

PROJECT: Florence Pit - Lower Mainland District

amec foster wheeler

Project Number: KA21098-1200 Date: March 24, 2015 Client Contract No.: 156CS0824 Client Project No.: 39100-20-Florence Pit

Lab Number: L5272

Date Sampled: Sampled by MOTI Date Received: 9-Mar-15 Date Tested: 16-Mar-15 Sampled By: MOTI Tested By: Rodrigo Lauricio

TP/TH No.: TP15-14 Bag No.: 570 Material Type: Crushed Sample No.: 1

Gravel Sizes	Percent	Gradation Limits		Limits	Sand Sizes And	Percent	Gradation Limits		
(mm)	Passing	Lower		Upper	Fines (mm)	Passing	Lower	-	Upper
100	100		-		4.75	45	35	-	70
75	100		-		2.36	35	25	-	50
50	100		-		1.18	23	15	-	35
37.5	100		-		0.6	13		-	
25	100	100	-	100	0.3	7.9	5	-	20
19	88	80	-	100	0.15	6.1		-	
12.5	67		-		0.075	5.0	0	-	5
9.5	59	50	-	85					

Comments: Sieve analysis test was conducted in accordance with ASTM C136 and C117 Plotted to Table 202-C WGB gradation specification

Prepared By: Giti Ghorbanian Senior Materials Technologist **Reviewed By:**

Daniel St-Pierre, M.Sc., PE, P.Eng. Senior Civil Materials Engineer

Date: March 24, 2015

Client Contract No.: 156CS0824

Client Project No.: 39100-20-Florence Pit

SOUNDNESS OF AGGREGATE

CLIENT: Ministry of Transportation & Infrastructure 310 - 1500 Woolridge St. Coquitlam, BC V3K 0B8

ATTN: Terence Lai

PROJECT: Florence Pit - Lower Mainland District

Lab No.: L5272

Sample No.: TP15-14 Bag #570 - Crushed - Coarse

Sieve Size (mm)	Original Weight (g)	Grading of Original Sample (%)	Wt. Of Test Fraction Before test (g)	Wt. Of Test Fraction After test (g)	Percentage passing designated Sieve after Test	Weighted Percentage Loss
37.5-19	이 영화 관계 것 한		an a g <mark>i</mark> tha bh			-
25 to 19	3110.0	21.2	504.2	445.0	11.7	2.5
19 to 12.5	5854.0	39.8	670.9	638.2	4.9	1.9
12.5 to 9.5	2115.0	14.4	326.9	293.5	10.2	1.5
9.5 to 4.75	3616.0	24.6	302.6	260.4	13.9	3.4
Totals						9.3

Sample No.: TP15-14 Bag #570 - Crushed - Fine

Sieve Size (mm)	Original Weight (g)	Grading of Original Sample (%)	Wt. Of Test Fraction Before test (g)	Wt. Of Test Fraction After test (g)	Percentage passing designated Sieve after Test	Weighted Percentage Loss
4.75	-	-		<u>, s</u>		
4.75 to 2.36	347.1	28.8	100.0	84.7	15.3	4.4
2.36 to1.18	376.8	31.3	100.0	82.5	17.5	5.5
1.18 to 0.6	332.9	27.6	100.0	82.6	17.4	4.8
0.6 to 0.3	148.1	12.3	100.0	77.6	22.4	2.8
Totals						17.4

Comments: Soundness of aggregate by use of Magnesium Sulfate tests were conducted in accordance with ASTM C88

Prepared By: Giti Ghorbanian Senior Materials Technologist **Reviewed By:**

Daniel St-Pierre, M.Sc., PE, P.Eng. Senior Civil Materials Engineer

RELATIVE DENSITY AND ABSORBTION OF AGGREGATE REPORT

CLIENT: Ministry of Transportation & Infrastructure 310 - 1500 Woolridge St. Coquitlam, BC V3K 0B8

Project Number: KA21098-1200 Date: March 24, 2015 Client Contract No.: 156CS0824 Client Project No.: 39100-20-Florence Pit

ATTN: Terence Lai

PROJECT: Florence Pit - Lower Mainland District Lab No : L5272

Sample Number &Type		Relative density (Oven Dry)	Apparent Relative Density	Relative Density (SSD)	Absorption %
TP 15-14, SA # 1,	Coarse	2.72	2.80	2.75	1.0
Bag #570, Crushed	Fine	2.56	2.78	2.64	3.0

Comments: Relative Density and Absorption of coarse and fine aggregate were conducted in accordance with ASTM C127 and C128

Prepared By: Giti Ghorbanian Senior Materials Technologist **Reviewed By:**

Daniel St-Pierre, M.Sc., PE, P.Eng. Senior Civil Materials Engineer

Reporting of these test results constitutes a testing service only.

Engineering interpretation or evaluation of the test results is provided only on written request.

Sand Equivalent Value of Soils and Fine Aggregate

CLIENT: Ministry of Transportation & Infrastructure 310 - 1500 Woolridge St. Coquitlam, BC V3K 0B8 ATTN: Terence Lai Project Number: KA21098-1200 Date: March 24, 2015 Client Contract No.: 156CS0670 Client Project No.: 39100-20-Florence Pit

PROJECT: Florence Pit- Lower Mainland District

Lab No.: L5272

Sample type and No.: TP15-14, Bag #570, SA#1

Sample Source: Sampled and Submitted by MOTI

Trial #	1	2	3	
Sand Height, mm	97	99	97	
Clay Height, mm	185	188	185	
Sand Equivalent Value=	<u> </u>	50	50	
100*Sand Height/Clay Height	52	53	52	
Average Sand Equivalent		52		

Comments: Sand Equivalent test was conducted in accordance with ASTM D2419

Prepared By: Giti Ghorbanian Senior Materials Technologist **Reviewed By:**

Daniel St-Pierre, M.Sc., PE, P.Eng. Senior Civil Materials Engineer