FOREST PRACTICES

of BRITISH COLUMBIA

Establishment to Free Growing Guidebook Kamloops Forest Region

Revised edition Version 2.2

May 2000

of BRITISH COLUMBIA

Establishment to Free Growing Guidebook Kamloops Forest Region

Revised edition Version 2.2

May 2000

Authority

Forest Practices Code of British Columbia Act Operational Planning Regulation Strategic Planning Regulation Silviculture Practices Regulation National Library of Canada Cataloguing in Publication Data Main entry under title: Establishment to free growing guidebook, Kamloops Forest Region. – Rev. ed., version 2.2

(Forest practices code of British Columbia)

Includes bibliographical references: p. ISBN 0-7726-4663-5

1. Forest management – British Columbia – Kamloops Region. 2. Reforestation – British Columbia – Kamloops Region 3. Forestry law and legislation – British Columbia. 4. Kamloops Forest Region (B.C.). I. British Columbia. Ministry of Forests. II. Series.

SD409.E87 2000 634.9'56'0971173 C2001-960291-X

© 2000 Province of British Columbia

Citation:

B.C. Ministry of Forests. 2000. Establishment to free growing guidebook. Kamloops Forest Region. Rev. ed., Version 2.2. For. Prac. Br., B.C. Min. For., Victoria, B.C. Forest Practices Code of British Columbia Guidebook.

For copies of this or any guidebook, contact:

Government Publications PO Box 9452 Stn. Prov. Govt. Victoria BC V8W 9V7

Telephone: 1-800-663-6105 (outside Victoria) (250) 387-6409 (within Victoria) Fax: (250) 387-1120

Internet: http://www.publications.gov.bc.ca/

Guidebooks are also available on the British Columbia Ministry of Forests' home page at:

http://www.for.gov.bc.ca/tasb/legsregs/fpc/FPCGUIDE/Guidetoc.htm

Preface

This guidebook has been prepared to help forest resource managers plan, prescribe, and implement sound forest practices that comply with the Forest Practices Code.

Guidebooks are one of the four components of the Forest Practices Code. The others are the *Forest Practices Code of British Columbia Act*, the regulations, and the standards. The *Forest Practices Code of British Columbia Act* is the legislative umbrella authorizing the Code's other components. It enables the Code, establishes mandatory requirements for planning and forest practices, sets enforcement and penalty provisions, and specifies administrative arrangements. The **regulations** lay out the forest practices that apply province-wide. **Standards** may be established by the chief forester, where required, to expand on a regulation. Both regulations and standards where required and established under the Code, must be followed.

Forest Practices Code guidebooks have been developed to support the regulations; however, only those portions of guidebooks cited in regulation are part of the legislation.

The *Establishment to Free Growing Guidebook* is referenced in the Operational Planning and Silviculture Practices Regulation. This requires that where the minimum stocking standards in the SP are to be at least 30% lower than the minimum stocking requirement specified for the applicable biogeoclimatic zone in accordance with the guidebook, then a minum pruning height must be specified in the SP, and all of the crop trees must be pruned to that height unless the DM specifies otherwise. The relevant portion of the guidebook that contains this information is found on page 29 and **is identified by a bar along the page margin labeled with the specific regulation being referenced, as well as a change in the text typeface.**

The recommendations that are not part of the cited portion of guidebooks are not mandatory requirements, but once a recommended practice is included in a plan, prescription or contract, it becomes legally enforceable. Except where referenced by regulation, guidebooks are not intended to provide a legal interpretation of the *Act* or regulations. In general, they describe procedures, practices and results that are consistent with the legislated requirements of the Code.

The information provided in each guidebook is intended to help users exercise their professional judgement in developing site-specific management strategies and prescriptions designed to accommodate resource management objectives. Some guidebook recommendations provide a range of options or outcomes considered to be acceptable under varying circumstances.

Where ranges are not specified, flexibility in the application of guidebook recommendations may be required to adequately achieve land use and resource management objectives specified in higher level plans. A recommended practice may also be modified when an alternative could provide better results for forest resource stewardship. The examples provided in many guidebooks are not intended to be definitive and should not be interpreted as being the only acceptable options.

Contents

Preface	iii
Introduction and purpose	1
Setting management objectives	3
Selecting appropriate species	5
Ecological basis for species selection	5
Correlation by site series	5
Preferred and acceptable species	6
Preferred species	6
Acceptable species	7
Selecting preferred and acceptable species from primary, secondary, and tertiary species	7
Broadleaf species	9
Species restrictions	10
Exotic species	
Mixed species	11
Forest health	13
Soil fertility	13
Species conversion	13
Mixedwood management	13
Biodiversity	14
Variance for cause	14
Selecting appropriate stocking levels	
Development of stocking standards for a specific management unit (TSA/TFL)	
Manage to target stocking levels	17
Minimum stocking levels	17
Well-spaced only	18
Maximum density	
Mosaics	21
Stocking for backlog sites	21
Variance for cause	21
Establishing the stand	22
Regeneration date	22
Evidence of compliance	23
Maintenance of established stand	23

Req	uirements of a free growing stand	. 24
	Minimum time elapsed	. 24
	Stocking requirements	. 25
	Free from brush	. 27
	Healthy	. 28
	Advance regeneration	. 28
	Minimum height requirement	. 28
	<i>Minimum pruning height</i> (OPR [*] 39(1)(a)(ix); SPR 20(2)(a))	. 29
	Administration	. 30
	Evidence of compliance	30
	Minimum stratum size for not satisfactorily restocked and not free growing areas	30
	Recommendations	. 31
Time	e frame by which obligations must be met	. 33
	Time line	
Usin	g the guidelines	. 36
Intro	duction to tree species selection and stocking tables	. 38
	Uneven-aged stocking guidelines	
	Single-tree selection	
	Stocking rules	
	Other silvicultural systems	
Read	ding/Reference list	
Tree	species selection and stocking tables	42
App	endices	
1.	Synopsis of selected silvical characteristics	113
2.	Tree species codes and biogeoclimatic units of British Columbia	
3.	Conceptual approach to tree species selection	
4.	Examples of species selection and stocking standards	
5.	Free growing damage criteria for British Columbia	
6.	Boreal broadleaf stocking guidelines	
7.	Interpretation of cautionary and restrictive codes used in species selection guidelines .	
7. 8.	Forest stand structures	
9.	Free from brush – free growing criteria	
10.	Advance regeneration	
10.		100

^{*} OPR = Operational Planning Regulations; SPR = Silviculture Practices Regulations.

Figures

1.	Sample table showing potential species and stocking by ecosystem unit	6
2.	Decision making for the site selection of species to regenerate forest sites on a site- and situation-specific basis (modified from Klinka <i>et al.</i> 1984)	8
3.	Graphic representation of minimum inter-tree distance and well-spaced trees	18
4.	Graphic presentation of regeneration time line. Includes definitions and responsibilities for critical points from commencement date to latest free growing date	34
5.	Example of an anticipated time schedule to reach free growing for the Cariboo Forest Region ICHwk2/01 site series	35
6.	Another example for the Cariboo Forest Region ICHwk2/01 site series, with prompt silviculture reducing regeneration delay	35
Tabl	es	

1.	Minimum numbers of preferred and acceptable well-spaced conifers required at	
	regeneration delay and free growing assessments	17
2.	Commencement date by silviculture prescription category	23
3.	Stocking requirements for each silvicultural system	26

Introduction and purpose

The *Forest Practices Code of British Columbia Act* requires that everyone responsible for silviculture prescriptions ensures that prescriptions include appropriate species selection, stocking, and specified free growing requirements. This guide focuses on the legal requirements for stand establishment, maintenance, and the production of a free growing stand.

Information in the guide is divided into three sections.

The first section includes the main body of the guidebook. This section covers the legislative authority, background, definitions, and procedures for species selection, stocking, establishment, and free growing. For a structured decision process for determining area-specific maximum density values for coniferous trees, refer to the *Guidelines for Developing Stand Density Management Regimes* and the related chief forester's policy. A chart has been included (see Figure 4, page 34) which displays the important dates between the commencement of harvesting and free growing and their relationship to one another. The chart also includes key definitions and a listing of the relevant sections of the Code.

The second section is made up of criteria tables for ecosystem-based forest establishment. These tables contain guidance with respect to information required by the Code for forest establishment and for the determination of free growing, including tree species selection, stocking standards for conifers and broad-leaved trees (i.e., minimum and target stocking standards), regeneration date, earliest and latest free growing assessment dates, minimum tree height, and percent of crop tree over brush height required to meet free growing.

Site- and species-specific tables are provided for coniferous regeneration. The tables list stocking standards for stands where the primary management objective is sawlog production under an even-aged system.

Stocking guidelines for broad-leaved trees have been developed for several management objectives: sawlogs, plywood, pulp, and oriented strand board. Stocking tables for broad-leaved trees, mixedwood stands (where available), and uneven-aged management regimes (single-tree selection) are provided following the even-aged coniferous stocking tables.

The third section consists of appendices with background and support information referred to in the guide. It also includes free growing damage standards.

When selecting tree species and stocking standards for a particular site, be sure to consult all available information, including ecosystem classification guidebooks and relevant *Forest Practices Code* guidebooks.

This guidebook has evolved to incorporate stocking guidelines that address a wider range of management objectives than its original focus on conifer sawlog production under an even-aged system. The organization of the guidebook has not changed significantly, but now provides stocking standards for boreal broadleaves. Other additions include guidelines for integrating grizzly bear habitat and silviculture for coastal ecosystems, and reference to the guidelines for fire-maintained ecosystems in the Kootenay-Boundary Land Use Plan Implementation Strategy. Where another management objective is more important than conifer sawlog production, and where following these guidelines would negatively affect that objective, deviating from the guidelines is recommended. Both species selection and stocking can be done outside of the guidelines if appropriate. This may include fitting into higher level plans or assumptions included in Timber Supply Analyses for TSAs or TFLs, or being consistent with regional manager-approved stand density management regimes as developed through the procedures outlined in the Guidelines for Developing Stand Density Management Regimes, or creating a stand structure for a value-added end product, biodiversity, or habitat objectives.

Setting management objectives

Authority:

Forest Practices Code of British Columbia Act

Section 4(3) – Landscape Unit Objectives Section 12(a)(i) – Silviculture Prescription Content (Long-term Management Objectives)

Operational Planning Regulation

Part 5, Division 2, Section 41 - Species Selection

Strategic Planning Regulation

Part 2, Section 5 - Landscape Unit Objectives for Biological Diversity

Every tree farm licence (TFL) management plan or timber supply area (TSA) plan must have a set of goals or objectives to be achieved in order for the plan to be called successful.

One of the most important decisions made in any reforestation program is how to meet stand objectives over time. This requires a clear understanding of how the stand fits within a management unit and within landscape priorities and how best to meet those priorities. Once a vision of the desired stand has been identified, a set of steps can be formulated to achieve it.

Species selection and the choice of stocking level, combined with prompt and effective establishment, are crucial elements in creating a desired stand.

In British Columbia, most forest sites can support a variety of tree species, allowing the silviculturist a range of species from which to choose. Similarly, the number of trees to be carried on the site at various benchmark times throughout the rotation will determine the size and value of the goods produced from the trees being grown.

This guidebook focuses on the required results at the time of the free growing assessment. It considers the need for flexibility in the prescription and considers integrated resource values that will be generated throughout the rotation.

In selecting the tree species and stocking requirements for each new stand, there are four elements to success:

- identifying desired stand goals throughout the rotation (e.g., stand structure; intermediate product removal)
- identifying ecological site attributes

- knowing and using the inherent silvical characteristics of all species suited to the site
- carefully matching these elements to produce a prescription that meets management objectives.

In British Columbia, forest land is managed for timber, range, recreation, water, fisheries, wildlife, and other purposes. The desired stand structure and tree species composition may not be the same for each of these management strategies, and may have to be adjusted, depending on various management needs.

In this guide, the conifer species selection and stocking tables have been developed for the primary management objective of sawlog production under an even-aged system. The guidelines for broad-leaved trees and mixedwood stands have been developed for various product objectives, including sawlog, plywood, pulp, and oriented strand board production.

Where forest plans specify a particular product objective, integrated resource management goal, or different regeneration assumptions, modification of these guidelines may be required. Conflicts with higher level plans must be resolved at the higher planning level.

Selecting appropriate species

In British Columbia, most forest sites can support a variety of tree species, allowing the silviculturist a range of species from which to choose.

Ecological basis for species selection

The characteristics of tree species, forest sites, and managed forest ecosystems were important considerations in the development of these guidelines. (See Appendix 1 for a synopsis of selected silvical characteristics of major commercial tree species.)

An ecological and ecosystem-specific approach to the selection of tree species and stocking has been adopted. This was necessary because each tree species has adapted to a specific range of environmental conditions, and its growth and behaviour depend on the ecosystem in which it grows. In an unfavourable environment, that species growth potential will not be realized, and its susceptibility to damaging agents will increase.

Correlation by site series

Correlated site series (sites with similar ecological capabilities) provide the ecological framework for this guide. The most recent coding for tree species and for biogeoclimatic zones, subzones, and variants throughout the province is provided in Appendix 2. The relationship between site series and species selection is indicated in Figure 1 and in the tree species selection and stocking tables (page 42).

	Site series	Primary	Conifer species Secondary	: Tertiary	Broadleaf species ^{.)}	(we	cing stan II-spaced MSSpa	i/ha) •	Regen delay (yrs)	Asses Early (yrs)	sment Late (yrs)	Min. 1 heigl (m)	h1	% tree over brush
01	CwSxw Falsebox Wintergreen	Fd PI Sx	BI	Cw ³⁷	At ^a Ep ^a	1200	700	600	4	9 9	15	PI Fd Others	2.0 1.4 1 D	150
02	CwSxw – Soopolallie	Fd ^{2B} Pl		BI ²⁸ Cw ^{28.37,53} Sx ²⁸	At ^o	1000	500	400	7	12	15	PI Fd	14 1.0	150
03	CwSxw – Falsebox – Soopolallie	Fd ⁹⁸ Pl		Cw ^{28,37,53} Sx ^{28,53}	Ato	1200	700	600	7	12	15	PI Fd	2.0 1.4	150
04	CwSxw – Falsebox – Feathermoss	Fd PI Sx ²⁸	Bi ²⁸	Cw ^{28,37,53}	At ^a Ep ^a	1200	700	600	4	9	15	PI Fd Others	2.0 1 4 1.0	150
05	CwSxw – Thimbleberry	Fd PI Sx	BI Cw ³⁷		Act ^a At ^a Ep ^a	1200	700	600	4	9	15	PI Fd Others	2.0 1.4 1.0	150
97 i	imited by mosture deficit isk of heart rets ninor component		opt	ductive, reliable, a ion ited in productivit								Cont	inved	nexi pag

Figure 1. Sample table showing potential species and stocking by ecosystem unit.

Preferred and acceptable species

Authority:

Operational Planning Regulation

Part 1, Definitions

Part 5, Division 1, Section 39(1) - Content of Silviculture Prescriptions

The selection of preferred and acceptable species must be consistent with higher level plans or the forest development plan for the area under the prescription. Preferred and acceptable species are defined below.

Preferred species

Preferred species are ecologically suited to the site. Management activities are primarily aimed at establishing these species. The characteristics of these species are consistent with the desired timber and non-timber objectives for the site.

Acceptable species

Acceptable species are ecologically suited to the site, but management activities are not aimed at establishing them. The reasons for including a species labelled only as acceptable may be a higher-than-acceptable site limitation, such as pest risk, or a lower productivity than the preferred species. Special restrictions or limitations may apply to the use of these species.

Selecting preferred and acceptable species from primary, secondary, and tertiary species

Preferred and acceptable species are generally selected from the list of primary, secondary, and tertiary species provided in the tree species selection and stocking tables (page 42). Figure 1 is an example of one such table. Primary, secondary, and tertiary species were determined on the basis of a species' productivity, reliability, and silvicultural feasibility based on current knowledge of the productive capability of each site series, the silvics of the tree species, and the growth and development of existing second growth forests. For more detailed background information and examples for determining primary, secondary, and tertiary species, see Appendices 3 and 4.

Figure 2 illustrates a systematic process by which preferred and acceptable tree species can be selected. This process should be undertaken before harvest and be reviewed after harvest.

In determining the appropriate preferred and acceptable species, the prescriber is to review the recommended species options for the site. Consider:

- the desired stand structure
- the non-timber objectives for the area
- the desired reproduction method
- the potential for natural regeneration
- the role of advance regeneration
- the hazards, such as pests, likely to affect the stand throughout the rotation (e.g., in areas with a high risk of leader weevil infestation, spruce should be limited to mixed-species stands) (see Appendix 5; refer to the forest health guidebooks for additional information).
- the feasibility of the treatments required to establish the stand under existing management constraints
- the effect of the species or combination of species on the site
- the maintenance of biological diversity.

In general, preferred and acceptable species are selected from the primary and secondary species lists. In some cases, tertiary species also could be preferred

or acceptable. In choosing preferred and acceptable species, the prescriber should review the species choices and the species restrictions.

Figure 2. Decision making for the site selection of species to regenerate forest sites on a siteand situation-specific basis (modified from Klinka *et al.* 1984).

Primary species

Primary tree species are ecologically acceptable and have a high rating for silvicultural feasibility, reliability, and productivity under the average conditions for a site series. Primary species can be managed as a major component in a stand if the restrictions have been adequately addressed.

Note: Primary species are not by default the preferred species. Species from any of the three categories can be chosen as preferred, if the species meets the identified management objectives and if restrictions can be dealt with through treatments.

Secondary species

Secondary species are ecologically acceptable, but rank lower than primary species for one or more of silvicultural feasibility, reliability, or productivity. Depending on the nature and extent of these limitations, secondary species can be managed as either a major or a minor component in a stand.

Tertiary species

Tertiary species are ecologically acceptable, but rank lower than primary or secondary species for one or more of silvicultural feasibility, reliability, or productivity. Depending on the nature of their limitations, on local conditions, and on management objectives, tertiary species are normally suitable only as a minor component within a stand.

For example, tertiary species can be used as a minor component of all stands within an area.

Broadleaf species

Broadleaf species are included as a separate column in the tree species selection and stocking tables due to the unique management considerations associated with broadleaves. This category includes the broadleaf species known to reach tree size within a site series. The footnotes for broadleaves in the stocking tables differentiate when a species is a productive, reliable, and feasible regeneration option versus when it is limited in one or more of these considerations.

Broadleaf species should be used to fulfill silviculture obligations (i.e., preferred or acceptable well-spaced trees) only if they are:

- consistent with TFL or TSA management plans and are deemed acceptable as a new forest crop. The plans should identify those site series appropriate for broadleaf management
- a short-rotation interim crop to manage for root rot centres.

The establishment or retention of broadleaf trees within a stand may be desirable to provide a nurse crop, promote nutrient cycling, or to meet other resource objectives such as biodiversity or wildlife habitat. In recognition of this, the free growing guidelines allow for a broadleaf component, but to a stocking level where the impact on conifer crop tree growth is acceptable.

Where regeneration of broadleaf trees is a product objective, use the broadleaf stocking standards for the coast and interior (after the tree species selection and stocking tables) or the boreal broadleaf stocking guidelines (Appendix 6) as a guide. Changes to these standards are expected where product objectives vary and where the site characteristics cannot support the stems/ha listed in the guide. Maximum density provisions do not apply to areas managed as broadleaf stands or to the broadleaf component in conifer or mixedwood stands.

For additional information, refer to the following publications: *Paper Birch Manager's Handbook for British Columbia, FRDA Report 240; Red Alder Manager's Handbook for British Columbia, FRDA Report 250; Black Cottonwood and Balsam Poplar Manager's Handbook for British Columbia, FRDA Report 230.*

Species restrictions

Restricted species are ecologically acceptable but raise productivity, reliability, or silvicultural feasibility concerns that need to be addressed.

Restricted species may be in primary, secondary, or tertiary categories. Restrictions are denoted by the footnotes in the stocking tables as seen in Figure 1 (see Appendix 7 for interpretations of all restrictions and cautionary notes). Careful attention must be given to the footnotes when selecting species for preferred or acceptable status.

Some restrictions can be accommodated through management activities, allowing particular species to be considered for use as preferred or acceptable.

Restrictions and cautionary notes fall into several categories and are explained in more detail in Appendix 7.

Exotic species

Exotic species are those species that are introduced, accidentally or intentionally, to a region beyond their natural range. The use of exotic species as part of a reforestation strategy must be consistent with the desired timber and non-timber objectives of the site. When contemplating the use of an exotic species, consider the silvics of the species and how it will interact with the characteristics of the intended site series. Exceeding the transfer limits for that species may decrease its productivity or increase its susceptibility to damaging agents. Problems that may arise when species are transferred beyond their ecological tolerance include poor survival or outright mortality, reduced growth, poor stem form, and undesirable wood properties. Exotic species can be used for small operational trials if they are approved in a silviculture prescription. It is recommended that provenance information of the exotic seed source (elevation, latitude, longitude) be submitted with the silviculture prescription. Extended free growing time frames are also recommended to manage the risk associated with the uncertainty of long-term performance of exotic species.

Operational trials should include tagging of sample trees and a commitment to a schedule of assessments.

Incorporation of comments on the performance of exotics should be included in the free growing report.

Seed of exotic species intended for use on Crown land must be registered. In order to be registered, the seed must meet the Ministry of Forests *Technical Standards for Registration*. More information on the use of some exotic species can be found in the *Seed and Vegetative Material Guidebook*.

Mixed species

Authority:

Operational Planning Regulation

Part 5, Division 2, Section 4 - Harvesting Methods

When proposing the species composition for the silviculture prescription, select a mix of species that is ecologically suited to the area if a mix of species was present on the area before the timber was harvested, unless otherwise specified in a higher level plan.

Reasons for promoting a species mix include maintenance of historical species profiles in the landscape, improving stand resilience to damaging agents (e.g., red alder in root rot infected areas), increased future stand value, enhancing biodiversity, biological and ecological benefits, and even cultural considerations (e.g., western redcedar on the Queen Charlotte Islands).

Under appropriate conditions, these objectives can be achieved by establishing mixed-species stands. The choice between establishing a single species or a mixture of species depends on the management objectives, site characteristics, and species compatibility. Factors affecting species compatibility include:

- the rate and level of natural ingress of all species on the specific site
- the relative growth rates of all species on the specific site

- the relative protection requirements and shade tolerance of the species
- the spatial requirements and branching habit of the crowns for the species
- the nutritional effects of the species or combination of species on the soil and each other
- the pathological and biological (morphological) rotation age of each species
- the forest health concerns (contact the local forest health specialists and refer to the various forest health guidebooks).

The integration of these factors determines how a species will perform in pure or mixed-species stands. Irrespective of tree species, a forest stand can be visualized as one of three general structure types:

- even-aged, non-stratified canopy stand structures
- even-aged, stratified canopy stand structures
- uneven-aged, multi-storey stand structures.

A description of these stand structures is included in Appendix 8.

When required to prescribe a mix of species to meet the stocking requirements of the silviculture prescription, it is recommended that generally no more than 80% of the managed stocking be comprised of a single species established either through planting, seeding, or natural reforestation. The determination of an appropriate species mix, however, will be unique to each site and should include consideration, at the landscape level, of what percentage of cutblocks should have a species mix, and the species distribution within each cutblock.

Maximizing diversity on every site may result in stands that are difficult to manage. Therefore, planning for biological diversity is often best done at the landscape level. The desired tree species and stand structure for a specific site should reflect these landscape level objectives.

Several methods may be adopted in order to address landscape level objectives on a site-specific basis. Selecting a single species only for the minimum stocking standard preferred (MSSp) or selecting a minimum stocking standard for a species are both legitimate strategies in the right context. For example, due to heavy deer browse, western redcedar regeneration is a concern on the Queen Charlotte Islands. The high level of browse has led to a serious reduction of redcedar regeneration. On sites where a species mix is required and redcedar was a component of the pre-harvest stand, establishment of a minimum amount of redcedar as part of the reforestation of these sites is generally required.

Forest health

When making the species selection decision, consider forest health concerns for your specific species and site combination. Consult with local forest health specialists for more information.

Soil fertility

When selecting a tree species, consider the effect that tree species, or a combination of tree species, will have on soil fertility. For example, on nutrient-poor sites, successive rotations of western hemlock or white spruce monoculture may result in a decline in productivity by increasing soil acidity. The relative availability of many plant nutrients is reduced by increasing soil acidity. On such sites, the addition of tree species with base-rich litter, such as western redcedar, trembling aspen, or red alder may ameliorate these conditions and improve soil fertility.

Species conversion

Species conversions, where appropriate, can be an effective means of increasing yield and reducing future site-specific hazards (e.g., from diseases, insects, or frosts). However, species conversions should be undertaken only after carefully weighing the relative risks and benefits of the intended plan relative to the silvics of the tree species, the ecology of the site, and biodiversity.

Mixedwood management

Mixedwood management involves managing both broadleaf and coniferous species on the same site. Mixedwood management produces a viable crop of both broadleaf and coniferous trees. Managing broadleaf species may be desirable for a number of reasons, including biodiversity, wildlife habitat, nurse crops for conifers, reducing the risk of forest health problems, and potentially increasing yield. In mixedwood management, broadleaf species often establish at high initial densities and overtop the coniferous component for several decades. For this reason, coniferous species selection in mixedwood stands is often determined by shade tolerance. This may lead to selection of more shade-tolerant secondary and tertiary species as the preferred/acceptable species. Also, the standard definition of free growing may require modification when assessing conifers overtopped by the broadleaf component.

Biodiversity

British Columbia's forests contain a wide variety of ecosystems and species. Land managers should be aware of the need to maintain the biological diversity of these ecosystems in managed second-growth and third-growth forests. Forest trees, while only one component of a forest environment that includes a variety of life processes, are very important in providing structure and habitat for other organisms.

Tree species composition and stand structure are important variables that affect the biological diversity of a forest ecosystem. When planning a new forest, consider the following points.

- Choose species native to the site. Trees provide food, shelter, or substrate for other organisms. Since local tree species have evolved with the local flora and fauna, they are more likely to furnish these needs than are exotic tree species.
- If exotic species are chosen for reforestation, they should be established in mixes with native species.
- Where feasible, establish mixed-species plantations. For example, a slow-growing, shade-tolerant conifer and a fast-growing, shade-intolerant conifer can complement each other. The resulting stand structure can provide both ecological and economic benefits.
- During early stand development, managed forests tend to increase in both species and structural diversity over time. Care must be taken during stand-tending operations so that this natural diversity is not removed inadvertently (e.g., removal of a species from a site during spacing).

Refer to the *Landscape Unit Planning Guide* and to the *Biodiversity Guidebook* for specific details.

Variance for cause

Both tree species composition and the structure of the regenerated stand may have to be modified to achieve non-timber resource objectives (e.g., fisheries, wildlife, range, or recreation). The district manager may allow or require deviations from these guidelines, on a site-specific basis, to meet those objectives.

Selecting appropriate stocking levels

Authority:

Forest Practices Code of British Columbia Act

Section 70 (4) (a)(d)(e) – Silviculture Prescriptions

Operational Planning Regulation

Part 5, Division 1 – Silviculture Prescriptions Scope and Content Part 5, Division 2 – Silviculture Prescriptions Specific Development Requirements

Initial forest management decisions have a significant impact on the development and nature of a new stand. The choice of stocking standards will influence stand structure, forest biodiversity, stand economics, use by other people, forest health, and rotation lengths. It is crucial that the best decisions be made.

Note: In this guide, stocking standards are referred to frequently. You are cautioned not to confuse this use of the word "standard" with the legislated Standards that make up part of the *Forest Practices Code*.

The references to stocking standards in this guidebook are to provide guidance on maximum density and the number of target and minimum well-spaced stems/ha. In the *Operational Planning Regulation (OPR)* the reference to stocking "standards" and "requirements" includes many other factors such as those listed in Section 39 (1).

The conifer stocking guidelines assume the following objectives and considerations:

- sawlogs as the primary product objective
- trade-off between piece size, value, and maximum volume production
- safe pathological rotation age, considering projected pest risks (e.g., Pl 80 years)
- recognition of higher planting costs associated with higher target stocking and increased harvesting and milling costs associated with smaller piece sizes
- minimized need for repeated stand entries
- ability of coastal species to attain full site occupancy at lower densities
- management units with differing approved timber product or other objectives (e.g., IRM or biodiversity) may have different stocking standards, subject to district manager approval.

The guidelines for broadleaf trees have been developed for several management objectives: sawlogs, plywood, pulp, and oriented strand board production.

The stocking guidelines apply to coniferous and broadleaf regeneration in even-aged silvicultural systems, except where indicated. Stocking standards for uneven-aged management (single-tree selection) are located after the evenaged stocking tables.

All sites, except extremely dry and extremely wet ecosystems, were assumed capable of producing similar product objectives at various rotation lengths. Target and minimum stocking guidelines were reduced for extremely dry and wet ecosystems to reflect site-specific carrying capacities (see Figure 1).

Modification of the stocking levels in this guidebook may be required in the silviculture prescription, depending on specific site conditions and forest management objectives and silviculture strategies.

Development of stocking standards for a specific management unit (TSA/TFL)

The *Guidelines for Developing Stand Density Management Regimes* and the associated chief forester policy establish a structured decision-making framework to carry out biological, economic, and forest-level analysis to develop density management regimes that will achieve management objectives. This evaluation may result in the identification of minimum and target stocking standards that differ from this guidebook. Where minimum and target stocking standards in approved density management regimes differ from the standards in this guidebook, the approved density management regimes should be the basis for prescribing minimum and target stocking in the silviculture prescription.

For details on process, procedures, and standards in developing density management regimes, refer to the *Guidelines for Developing Stand Density Management Regimes* and chief forester policy.

Manage to target stocking levels

Target stocking level is the number of well-spaced preferred and acceptable trees/ha that will, under normal circumstances, produce an optimum free growing crop. When determining stocking status (i.e., satisfactorily restocked versus not satisfactorily restocked (NSR), free growing versus non-free growing), the target stocking standard sets the maximum number of healthy well-spaced trees used in the calculations of mean number of well-spaced trees and the confidence limits. Unless the district manager approves otherwise, the target stocking standard should be set at the density of trees at the free growing time period which will achieve the target stand conditions at the anticipated harvest age or time period.

Minimum stocking levels

To satisfy basic silviculture requirements, the minimum number of wellspaced trees, both of preferred species and of preferred and acceptable species, must be present at the time of regeneration delay and free growing assessments (Table 1).

For example: In the case where 1200 well-spaced preferred and acceptable trees/ha is the target at free growing, the minimum requirement at the regeneration date and to be maintained through to free growing is 700 well-spaced trees of the preferred and acceptable species, of which there must be a minimum of 600 well-spaced preferred trees/ha in order to classify the site as satisfactorily restocked. The same numbers apply for the site to be declared free growing, with the added condition that the well-spaced trees also meet the free growing criteria.

 Table 1.
 Minimum numbers of preferred and acceptable well-spaced conifers required at regeneration delay and free growing assessments

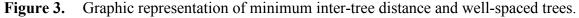
Target stocking standard at free growing,		We	ll-space	ed stem	s/ha	
preferred and acceptable – TSSpa	400	600	800	900	1000	1200
Minimum stocking standard at regeneration date and to be maintained through to free growing, preferred and acceptable – MSSpa	200	400	400	500	500	700
Minimum stocking standard at regeneration date and to be maintained through to free growing, preferred species only – MSSp	200	400	400	400	400	600

TSS - target stocking standards; MSS - minimum stocking standards; pa - preferred and acceptable; p - preferred

Minimum stocking guidelines represent densities below which yield will be unacceptably lowered, given anticipated final crop densities within planned rotations.

This uniform minimum and target stocking guideline was established for all coniferous species to reflect the current precision of silviculture surveys and operational field survey constraints.

Minimum and target stocking guidelines assume a level of normal or average random mortality beyond free growing. Where local experience or conditions indicate higher levels of random mortality, it is prudent to increase target and minimum stocking levels.


Unless the district manager approves otherwise, minimum stocking standards should be set at a density of trees that considers the entire silviculture regime, including any intermediate interventions, and does not result in unacceptable merchantable volume reductions compared to a stand at the target stocking standard.

The negative impacts on future timber yield must be considered when prescribing and approving stocking standards lower than the recommended minimums as described in these guidelines.

Well-spaced only

The trees used to meet regeneration date and free growing obligations must be well-spaced and of preferred and acceptable species. Both target and minimum stocking guidelines consider well-spaced trees only. The measure of what constitutes a well-spaced tree is the minimum inter-tree spacing (Figure 3). The minimum inter-tree spacing is to be included in the silviculture prescription.

The minimum inter-tree spacing establishes a requirement for a degree of uniformity on tree distribution to ensure good coverage and utilization of growing space. The greater the minimum inter-tree spacing is, the greater the requirement for uniform tree distribution. The decision on minimum inter-tree spacing affects the spacing latitude for site preparation and planting.

The provincial stocking standard guidelines were developed on the assumption of a 2 m minimum inter-tree spacing. While a 2 m minimum inter-tree spacing is suitable for most sites, a reduced inter-tree spacing may be appropriate for sites where plantable spots are limited by site characteristics, a site condition, or where clumpy stem distribution is a normal and desirable stand characteristic.

Examples of situations where a reduced minimum inter-tree spacing may be appropriate include:

- hygric or wetter sites
- very rocky sites
- very harsh sites where protected microsites are critical (e.g., shade, snowcreep)
- areas with a high potential for cattle congregation
- sites with a significant number of large wildlife trees (e.g., 50 uniformly distributed trees/ha)
- riparian areas with a high residual component
- sites where a stump avoidance strategy is employed to manage root rot
- cluster planting (e.g., grizzly bear habitat)
- partial cut areas with an abundance of residual regeneration.

However, the need to address these site-specific factors must be balanced against the effects that reducing the minimum inter-tree spacing has on silviculture survey decisions and the associated yield implications. If prescribing minimum inter-tree distance less than 2 m, consider the following:

1. Volume as predicted by well-spaced density at a 2 m minimum inter-tree spacing is almost independent of tree distribution. As the minimum inter-tree distance is reduced below 2 m, consideration of tree distribution becomes an increasingly important factor in predicting volume production. A minimum inter-tree spacing of less than 2 m increases the Ministry of Forests' risk of accepting stands with reduced volume potential due to gaps in the stand.

The negative impacts on future yield must be considered when prescribing and approving inter-tree distances lower than the recommended minimums described in these guidelines. 2. Reductions in the minimum allowable horizontal distance below 2 m increases the risk of incorrectly classifying NSR strata as satisfactorily stocked. This risk is further increased by the Ministry of Forests silviculture survey sampling rule: *if initial confidence limits do not enable a decision and extra plots are required, the decision as to whether an area is satisfactorily restocked or free growing is based on the resultant sample mean.* The 2 m minimum allowable horizontal distance is an effective standard to manage this risk.

Once within an approved silviculture prescription, the minimum inter-tree distance will be used to determine the achievement of minimum stocking standards at the regeneration date and during the free growing assessment period. If at any point after silviculture prescription approval the conditions of the site indicate that an alteration to the minimum inter-distance is appropriate, then an amendment to the silviculture prescription would need to be submitted to the district manager for consideration.

Maximum density

To ensure product objectives are met in a timely fashion, maximum density standards have been created for all preferred and acceptable species. Details on the development of management unit specific maximum density limits are provided in the *Guidelines for Developing Stand Density Management Regimes* and the chief forester's policy. In addition to a maximum density limit, the *OPR* requires that the stocking standards include the maximum and minimum number of healthy well-spaced coniferous trees allowed per hectare after a spacing treatment has been carried out.

The *Act* (section 70(4)(f)) states that spacing for maximum density when required must be carried out prior to the end of the free growing period. Where there are forest health, special wildlife habitat, integrated resource management, range, or other objectives or concerns for an area, the range of well-spaced trees resulting from spacing may be varied. Deviations from the acceptable range must be defined in consultation with the district manager when the silviculture prescription is prepared or amended.

The prescribed number of well-spaced trees to be left after spacing normally should not be more than 600 well-spaced trees above the target stocking standard specified in the silviculture prescription. The prescribed minimum number of well-spaced trees to be left after spacing normally should not be lower than the minimum stocking standard in the silviculture prescription. Where you propose maximum and minimum numbers outside these ranges, reasons for the deviation should be documented. For a discussion of the minimum and maximum number of healthy well-spaced trees allowed after spacing, refer to the *Spacing Guidebook*.

Mosaics

In some cases, blocks may contain more than one site series or treatment unit. If objectives or site capability vary between site series or treatment units, different stocking requirements may be necessary and should be provided in the silviculture prescription under different standards units. Where there is a mosaic of different site series within a standards unit that require different stocking levels, it may be appropriate to prescribe the stocking requirements of the dominant treatment unit. However, if the mosaic in a standards unit is comprised of dispersed ecostrata which have distinct characteristics and can be clearly identified, different stocking standards and standards units should be established.

Stocking for backlog sites

Authority:

Forest Practices Code of British Columbia Act

Part 5, Division 1 - Silviculture Prescriptions Scope and Content

1(1) – Definition of a backlog area

23 - Silviculture Prescription - backlog area

On pre-1982 good and medium not sufficiently restocked sites, stands should be considered sufficiently restocked or free growing where the average age of well-spaced, healthy, and vigorous free growing stems is 12 years or older and where the number of well-spaced, healthy, and vigorous **free growing** stems is 60% or more of the minimum stocking standard listed for that species and site in the stocking tables in this guidebook. A volume adjustment must be applied against these sites through to rotation. Values from the volume adjustment factors table for each species and site index must be recorded on the integrated silviculture information system (ISIS) forest cover data.

Variance for cause

This stocking level decision-making process provides an alternative to high cost treatments where the benefits are questionable. This allows funding to be concentrated on higher priority NSR areas. At no time does this decision-making process prevent a manager from treating partially stocked areas to raise them to target stocking levels, providing the benefit outweighs the cost. Additional direction on backlog sites is provided in the Ministry of Forests *Backlog Management Policy*, dated April 30, 1996.

Establishing the stand

Authority:

Forest Practices Code of British Columbia Act Section 70 (4)(d) – Silviculture Prescriptions

Operational Planning Regulations Section 39 (3)(o) – Content of Prescriptions

Silviculture Practices Regulations

Section 11 (1) – Reforestation Requirement Section 23 (b) – Surveys Required

Each site should be evaluated to identify site-specific hazards that will affect the stand throughout the rotation. Generally:

- stands with composition and structure similar to historical stands in any given area may be more resilient and resistant to various local hazards.
- many hazards can be minimized by establishing and maintaining mixedspecies stands. Extensive use of single-species stands should be avoided.
- using the appropriate provenance will help maintain stand health. For further information on appropriate provenance, see the *Seed and Vegetative Material Guidebook*.

Regeneration date

Regeneration date means the calendar date (year/month) by which at least the minimum number of healthy well-spaced trees of both the preferred and acceptable species and the minimum preferred species must be established and subsequently maintained until the stand is declared free growing. In these guidelines, short regeneration delay periods (e.g., four years in Figure 1) indicate that planting is the preferred method of reforestation. Longer regeneration delay periods (e.g., seven years in Figure 1) indicate that either planting or natural regeneration may be acceptable methods.

Where both natural regeneration and planting are acceptable options in the silviculture prescription, and natural regeneration is prescribed to augment or provide total stocking, these guidelines recommend that the longer regeneration time frames be used for regeneration delay and free growing. Where planting is prescribed to provide total stocking within a site series where this guide indicates a long regeneration period (i.e., provides for natural regeneration), generally a shorter time frame should be used.

If longer regeneration times are prescribed, an application to advance the timing can be made if goals are achieved ahead of schedule. To achieve this, an amendment must be made to the silviculture prescription free growing assessment period. Prescribed regeneration delays should be consistent, as much as possible, with TSA/TFL regeneration assumptions built into the timber supply review.

The regeneration date and the free growing assessment period are measured from the commencement date, the definition of which is provided in section 70 of the *Forest Practices Code of British Columbia Act* and varies with the silviculture prescription category as indicated in Table 2. A silviculture prescription may have more than one standards unit with differing regeneration dates. In these cases, the stocking requirements must be met by each specific regeneration date on a standards unit basis.

 Table 2.
 Commencement date by silviculture prescription category

Silviculture prescription category	Commencement date*
SP for TSL (non-major), woodlot licence, major licence harvesting	the date when harvesting, excluding road and landing construction, begins on the area under the prescription
Damaged or destroyed timber on TFL or timber licence land	the date of the district manager's approval
Trespass or damaged, destroyed timber on TSA land	the date the district manager gives effect to the prescription
Trespass on woodlot, major licence	the date of the district manager's approval
SP for a backlog area	the date any silviculture treatment under the prescription begins
PHSP prepared or district manager approved and in effect on June 15, 1995	the date when harvesting, excluding road and landing construction, begins on the area under the prescription
SP prepared or district manager approved and in effect on June 15, 1995	the date the district manager prepared or approved the SP

* One commencement date applies to all standard units in a SP.

Evidence of compliance

On or before the regeneration date specified in a prescription, a survey must be carried out to determine whether the number of healthy well-spaced trees/ha exceeds the minimum number set in the prescription. For information about conducting surveys, see the *Silviculture Surveys Guidebook*.

Maintenance of established stand

Stocking in established stands must always be maintained at or above the minimum stocking established for the stand (*Forest Practices Code of British Columbia Act* Section 70(4)(d)).

Requirements of a free growing stand

Authority:

Forest Practices Code of British Columbia Act

Section 1 (1) – Definitions Section 70 – Silviculture Prescriptions Section 70 (4)(e) Section 70 (4) (f) Section 70 (6) (a), (b)

Minimum time elapsed

The time period between regeneration date and the earliest free growing date for a site series ensures that a minimum amount of time elapses between establishment and free growing (see Figure 1). In combination with the free growing acceptability criteria, this time period ensures that the crop trees reach a stage where they can reasonably be expected to continue development to maturity without significant additional intervention.

For the CWH, CDF, ICH, SBS, SBPS, BWBS, IDF, MS, BG, and PP zones, a minimum of five years should usually elapse before a free growing assessment can be made (i.e., early free growing date equals regeneration delay plus five years). For the ESSF and MH zones, this establishment period is eight years. However, if achievement of minimum heights occurs earlier and neither the potential expression of forest health agents nor the development of competing vegetation is a concern, it may be appropriate to reduce the time period. Additionally, if the regeneration date is achieved earlier than specified in the silviculture prescription, the early free growing date may be advanced by the same amount subject to district manager approval of a silviculture prescription amendment, resulting in a possible earlier fulfilment of basic silvicultural obligations (see Figures 4 and 5 on pages 34 and 35). However, approval would generally be contingent on whether additional time may be required for adequate assessment of forest health agents or competing vegetation (i.e., red alder ingress or canopy expansion).

Stands of some species on certain ecosystems may exhibit slow juvenile growth rates, requiring an extended free growing period before they can be realistically juvenile spaced if maximum density limits are exceeded. Under these circumstances, the earliest and latest free growing dates specified in the silviculture prescription should be adjusted accordingly (see "Maximum density").

Stocking requirements

Stocking requirements are specified in Section 39 of the *Operational Planning Regulation* and vary with different silvicultural systems which, for the purposes of stocking requirements, are grouped as follows:

- i) clearcutting, patch cutting, group selection, group shelterwood, group seed tree, retention system, and clearcutting with group reserves
- ii) commercial thinning, harvesting of poles, sanitation treatments, and other intermediate cuttings that do not have regeneration objectives
- iii) even-aged partial cutting not described in (i)
- iv) single tree selection.

For definitions of these silvicultural systems, refer to Table 3 and the definitions section of the *Operational Planning Regulation*.

Categories of silviculture systems				S	ilviculture pre	Silviculture prescription content requirements	nt requiremen	Ş			
Clearcutting, patch cutting, group selection, group shelterwood, group seed tree, retention system, clearcutting with group reserves	preferred/ acceptable	mitd*	target stocking – p&a	minimum stocking – p&a	minimum stocking – p	max. density	max/min post-spacing density	minimum height	height relative to competing vegetation	minimum pruning height	
Commercial thinning, poles, sanitation treatments, other intermediate cuttings that do not have regeneration objectives	preferred/ acceptable	stand structure/ composition goals including planned residual basal area or density	species & function of any trees left standing to satisfy non- timber resource objectives								
Even-aged partial cutting not described in Section 39 (1)(a)	preferred/ acceptable	mitd	target stocking – p&a	minimum stocking – p&a	minimum stocking – p	max. density	max/min post-spacing density	minimum height	height relative to competing vegetation	minimum pruning height	stand structure/ composition goals including planned residual basal area or density
Single tree selection	preferred/ acceptable for all layers	mitd for regen, sapling, pole layers	target stocking – p&a for all layers	minimum stocking – p&a, for all layers	minimum stocking – p for all layers	max. density for the sapling layer	max/min post-spacing density for the sapling layer	minimum height	height relative to competing vegetation	planned residual basal area per ha	approximate number of trees by diameter class

Table 3.Stocking requirements for each silvicultural system

mitd = minimum inter-tree distance.

Free from brush

The free growing seedling definition was standardized for the CWH, CDF, ICH, SBPS, BWBS, SBS, and the Vancouver Forest Region IDFww. It specified a crop tree to deleterious brush ratio within the 1 m radius cylinder such that the crop tree must have 150% of the height of the competing vegetation. For the ESSF, IDF, MH, MS, PP, and BG zones, the ratio must be 125%.

However, the free growing guidelines (see Appendix 9) refine the assessment of whether a crop tree is impeded by competing vegetation within the 1 m radius of the crop tree trunk. These guidelines provide tolerances for competing vegetation within the required crop tree to deleterious brush ratio. The guidelines can be applied in all zones except the CWH, CDF, and IDFww. The crop tree to deleterious brush ratio will be used to assess all crop trees in the CWH, CDF, and IDFww. It will also be used to identify potentially free growing trees in certain broadleaf communities. Its use in high elevation ecosystems will be limited.

The rationale for the extended early free growing date (eight years rather than five) and lower crop tree to deleterious brush ratio for the ESSF and MH zones is largely based upon slower conifer growth rates and single layer brush communities. By comparison, other zones have more rapid growth rates for both crop trees and competing vegetation, with a more complex, multi-layer brush community, hence the more secure crop tree to deleterious brush ratio of 150%. If a 150% ratio is achieved in the ESSF or MH zones five years after the regeneration date, the district manager can declare the area free growing if the silviculture prescription is amended. Conversely, if it is anticipated that the competing vegetation on-site, or potentially on-site, can overcome the 150% crop tree to deleterious brush ratio after the free growing assessment period, the ratio can be set at a level that will ensure that trees which are declared free growing will remain so. For example, red alder ingress on some sites may create situations where its height within the free growing assessment period will meet the 150% crop tree to deleterious brush ratio, however, the growth of the red alder will overcome, and potentially over-top, the previously declared free growing crop trees. In this situation, an increase in the crop tree to deleterious brush ratio, either for red alder alone or all competing vegetation, may reduce the potential for reversion of the site to a non-free growing state.

A free growing survey will not be completed immediately following brush treatment. The vegetation must be given time to recover before a realistic assessment of free growing can be made. For the ICH, IDF, MS, PP, BG, SBPS, CWH, CDF, MH, and ESSF zones, this period will be a minimum of two complete growing seasons. For the SBS and BWBS zones, this period will be a minimum of two complete growing seasons if brush control was done with herbicides, and three complete growing seasons if the site was

manually or otherwise treated. The different periods are based on perceived differences in conifer growth rates and brush re-invasion rates in these zones. There may be exceptions, for example, where a stand is old enough and scheduled for juvenile spacing before any further brushing is to be done.

Healthy

To be declared free growing, trees must be free from damage or infection from insects, disease, mammals, or abiotic agents as outlined in the free growing damage criteria for British Columbia (Appendix 5). Additional information on "Free growing criteria and assessment" is provided in the *Dwarf Mistletoe Management Guidebook*, the *Root Disease Management Guidebook*, and the *Pine Stem Rust Management Guidebook*.

Advance regeneration

Advance regeneration and residual mature and pole layer crop trees, if present, should be carefully evaluated to determine their potential for future management. To produce an acceptable crop, advance regeneration must be of good form, able to grow vigorously when released, be windfirm, and able to produce market-sized trees free of serious defect. When the function of prescribed leave trees in even-aged partial cutting systems includes future timber production, the free growing acceptability criteria should be such that only trees having potential to produce a sound, merchantable tree at rotation are acceptable. Appendix 10 provides free growing acceptability guidelines for advance regeneration and residual mature and pole layer crop trees.

Minimum height requirement

Minimum seedling height complements the seedling/brush ratio by focusing on the seedling as well as the vigour and stature of competing vegetation. The requirement for minimum height at free growing encourages a high standard of silviculture. With total height as a factor, there is a strong incentive to plan and carry out the best silviculture treatment to ensure that the crop is established and growing at an acceptable rate. A minimum height recognizes deleterious factors other than light that may negatively impact the crop tree's rate of growth. For example, salal or pine grass may affect crop performance through underground competition rather than by light interception. Poor microsite selection at time of planting may also affect future crop tree growth rates by limiting the amount of resources available to the seedling. In all these cases, minimum height will reflect the silvicultural strategies employed to overcome these restrictions on growth rate. Early achievement of minimum heights may then result in improved future timber yields. Many faults or problems that afflict young trees become evident only as the trees reach a certain diameter and height. For example, by the time lodgepole pine reaches a height of 2 m, problems such as terminal weevil, gall rust, pitch moth, and toppling (an effect of root balling or J-planting) will have become evident.

Minimum height is also crucial in identifying snow-related problems, such as breakage of pine at high elevation or increased terminal damage in saplings as they emerge above the prevailing snow cover (e.g., Douglas-fir in the ICH zone of the Cariboo Forest Region or lodgepole pine in the ESSFmv1 zone of the Prince George Forest Region). As the tree grows, roots are exploring the site, and consequently root rots become more evident. In addition, damage from deer decreases after trees reach a minimum height.

The inclusion of minimum height in the legislation has the effect of "leveling the playing field" between species. Without minimum heights, there is a tendency to plant fast-growing species such as pine rather than spruce because of the rapid juvenile growth often experienced by pine. Setting a higher minimum height for species such as pine is justified ecologically and also decreases the incentive to over-use pioneer species. This allows choosing the most ecologically suited species for the site rather than a species to meet an administrative target. Minimum heights were, therefore, set at a point specific to each species and site series beyond which the majority of forest health concerns will have been expressed.

Minimum pruning height

Operational Planning Regulation 39(1)(a)(ix) and Silviculture Practices Regulation 20(2)(a) Section 39(1)(a)(ix) of the OPR requires that where the minimum stocking standards in the SP are to be at least 30% lower than the minimum stocking requirements specified for the applicable biogeoclimatic zone as set out in the *Establishment to Free Growing Guidebook* as amended from time to time, then a minimum pruning height must be specified in the SP.

Section 20(2)(a) of the SPR provides that where an SP holder is required to establish a free growing stand and the minimum stocking standards are at least 30% lower than the minimum stocking requirements specified for the applicable biogeoclimatic zone as set out in the *Establishment to Free Growing Guidebook* as amended from time to time, then before the end of the free growing assessment period, all of the crop trees on the area must be pruned from a height from the ground as specified in the SP, unless the district manager is of the opinion that it is not necessary to adequately manage and conserve the forest resources for the area.

Administration

Minimum height guidelines have been set to encourage the establishment of thrifty stands. Deviation from the guidelines is encouraged when it can be justified on specific site-limiting factors or other higher-level considerations. Minimum heights were developed for open grown seedlings. Therefore, when the proposed silvicultural system will result in seedlings developing under shaded conditions that may impact potential height growth, it may be appropriate to adjust the minimum height requirement if no forest health impacts are anticipated. Also, where a single block is made up of a mosaic of different site series with differing minimum heights, the district manager may approve a single minimum height for each species.

Minimum height is required only on silviculture prescriptions approved after June 15, 1995 and on silviculture prescriptions amended to include a minimum height requirement or if the free growing criteria (Appendix 9) are used.

Evidence of compliance

Authority:

Silviculture Practices Regulation

Part 3, Division 5/6

Within the free growing assessment period specified in the prescription, a survey must be carried out to determine whether the area covered by the prescription meets the free growing requirements (SPR s23 (c)). For areas without regeneration objectives, a survey is also required (SPR s26).

See the *Silviculture Surveys Guidebook* for a more detailed definition of free growing and free growing survey procedures. Appendix 5 provides a summary of the pest damage standards to be used in free growing surveys.

Minimum stratum size for not satisfactorily restocked and not free growing areas

An area in which silvicultural systems, stocking standards, and soil conservation standards are uniformly applied is known as a standards unit. Standards units are areas that will be managed to a specified silvicultural system and soil conservation and stocking standard. Standards units must be discreetly surveyed to determine whether or not legal obligations have been met. Stratum is a general term that means a "division." A standards unit may contain more than one stratum (or forest cover polygon) – for example, a not satisfactorily restocked (NSR) stratum and a sufficiently restocked (SR) stratum. However, when surveying to determine whether stocking standards have been achieved, a stratum must not contain more than one standards unit, unless the stocking standards are the same. Some older pre-harvest silviculture prescriptions are stratified by treatment unit. If **all** of the stocking requirements in the two treatment units are identical, these areas may be surveyed together.

The appropriate time to treat understocked areas is at the regeneration stage, rather than at the free growing stage. Managing towards target stocking at the regeneration date (e.g., by fill planting) and maintaining stocking at or near target stocking levels is the desirable approach. If the silviculture prescription holder believes that further treatments are not feasible, the stocking survey or free growing report must justify the proposed stratification, describe the condition of the NSR or non-free growing area, and explain why further remedial actions are not warranted. This must occur prior to the late free growing date, allowing sufficient time for remedial action to be undertaken if the district manager deems it necessary.

Section 70 of the *Forest Practices Code of British Columbia Act* requires that a free growing stand be established "on those portions of the area under the prescription that are within the net area to be reforested" (NAR). Therefore, the stand must exist on that whole area. However, a degree of discretion must be applied to this provision.

Although a strict interpretation of Section 70 results in the entire area of the silviculture prescription being the relevant area of assessment, meaning that whatever portion of the area is measured must meet the minimum number of well-spaced or free growing stems/ha, discretion must be applied and consideration should be given to the intention of the prescription as a whole and whether or not the actions of the licensee were reasonable in attempting to achieve the required standards. If any area under the prescription has deficiencies, consideration should also be given to the impact, if any, of those deficiencies.

Recommendations

Portions of the NAR that do not meet the prescribed stocking requirements will fall into three categories.

- 1. The area is too small to be considered a separate stratum. Each opening will have its own unique set of circumstances that will impact the decision of compliance with the prescribed standard.
- 2. The area is large enough to be considered a separate stratum. However, the stocking requirements in the approved silviculture prescription are

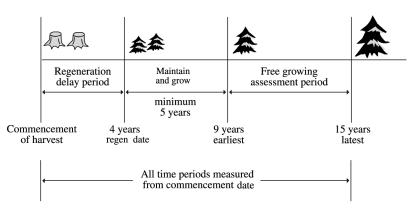
inappropriate (e.g., misidentified ecosystem or change in the management objective) and, therefore, a silviculture prescription amendment is necessary. In this case, the stratum is a separate standards unit and the district manager must decide whether to approve the amendment and accept the existing stocking.

3. The area is large enough to be considered a separate stratum, but the area is not a separate standards unit. If a free growing stand that meets the stocking requirements in the approved silviculture prescription can not be established within the specified time frame, this is a potential non-compliance situation.

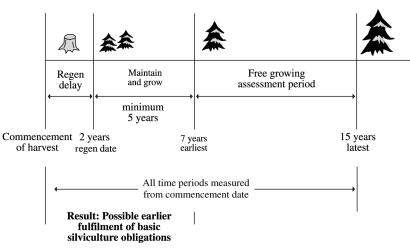
Prior to taking enforcement action, the district manager may wish to consider the following in assessing whether a contravention has occurred:

- management objectives for the block
- productivity of the site
- previous stand characteristics
- configuration of the stratum
- feasibility of treatment
- licensee performance on the entire area under prescription
- standards of the day.

Time frame by which obligations must be met


Responsible forest land management requires that all productive forest land be reforested promptly following disturbance. The *Forest Practices Code of British Columbia Act* stipulates that silviculture prescriptions, required prior to harvest, must include a time frame for establishment of a new stand and for the new stand to be declared free growing. Commencement dates are recorded to the level of month and year in ISIS and subsequent dates are tracked to that level of accuracy. For example, if harvesting commenced January 1997, a three-year regeneration delay would expire at the end of January 2000, and an 11 year latest free growing date would expire at the end of January 2007. The following chart (Figure 4) provides a time line and summary of dates, including associated responsibilities, to be identified in the silviculture prescription.

ate Latest free growing date		Free growing assessment period Forest Practices Code Act, sections 70(1), (4)(e) Operational Planning Regulation Silviculture Practices Regulation Silviculture Practices Regulation The free growing assessment period (FGAP) is the time within which a free growing stand must be established as required in the silviculture prescription. The FGAP is bounded by the earliest and latest free growing dates. On or before the latest free growing date specified in the silviculture prescription, a survey must be carried out to determine whether the numbers set in the prescription. Latest free growing date is the latest date specified in a silviculture prescription that a free growing assessment can occur. If establishment has been retarded (e.g., due to deer browse), the latest free growing date should be annended before the end of the free growing date should be annended before the end of the free growing cannot be declared immediately after a brushing treatment, so brushing treatments should be timed to ensure sufficient time to meet free growing due to neet free growing date.
Earliest free growing date	cking	
Regeneration date (cstablish)	Maintain at least minimum stocking	Regeneration date Forest Practices Code Act, sections 70(1), (4)(d) Operational Planning Regulation Silviculture Practices Regulation Silviculture Practices Regulation Silviculture Practices Regulation Regeneration date means the date by which at least the minimum number of healthy well-spaced trees of the preferred and acceptable species per hectare must be established and subsequently maintained until the stand is declared free growing. The regeneration date specified in the silviculture prescription is advanced if goals are achieved ahead of schedule. On or before the regeneration date specified in a prescription, a survey must be carried out to determine whether the number of healthy well-spaced trees per hectare meets the number set in the prescription. Stocking in established stands must always be maintained at or above the minimum stocking levels established for the stand. For the ESSF and MH zones, regeneration should be established on-site a minimum of eight years before a free growing assessment can be made. For other biogeoclimatic zones, regeneration should be established on site a minimum of five years before a free growing assessment can be made. If the regeneration is achieved early free growing date by the same amount, resulting in a possible earlier fulfilment of basic silviculture obligations.
Commencement date Regeneration del		time Commencement date Forest Practices Code Act, section 70(1) Commencement date identifies the point in time from which the regeneration date and the free growing assessment period are measured. The commencement date varies by the type of prescription, as outlined in section 70(1). Regeneration delay Silviculture Regulation, B.C. Reg. 147/88 section 1(1) Regeneration delay is defined in the Forest Act Silviculture Regulation, as it was immediately before its repeal, and applies to prescriptions approved or prepared before April 1, 1994.


Figure 4. Graphic presentation of regeneration time line. Includes definitions and responsibilities for critical points from commencement date to latest free growing date.

Time line

In general, the district manager has the flexibility to accept an area as free growing before the specified early free growing date if all other free growing objectives or criteria have been met. If the licensee submits the free growing report before the early free growing date, the report must be accompanied by a request for an amendment to the silviculture prescription. Such incentives are available to encourage the practice of good silviculture, in return for prompt relief of obligations (Figures 5 and 6).

Figure 5. Example of an anticipated time schedule to reach free growing for the Cariboo Forest Region ICHwk2/01 site series.

Figure 6. Another example for the Cariboo Forest Region ICHwk2/01 site series, with prompt silviculture reducing regeneration delay. The earliest free growing assessment date can be reduced from nine to seven years due to prompt reforestation.

Using the guidelines

To select the best combination of species and desired stocking, the following steps are to be taken.

- 1. Identify the target stand goals, both at and throughout the rotation. This includes end product and integrated resource management objectives. Product objectives may detail desired piece size and volume. IRM objectives may include snag density, the amount of woody debris, and other vegetation or spatial considerations.
- 2. Identify the ecosystem to the site series level, using field information, biogeoclimatic maps, and regional guidebooks.
- 3. Consult the appropriate table in these guidelines, or the section in the updated regional guidebook, for the list of crop species suited to the site. Primary, secondary, and tertiary species have been provided to indicate the relative:
 - maximum sustainable productivity
 - crop reliability
 - silvicultural feasibility.

From the list of species suited to the site, determine those that will be managed to create the target stand – **preferred species**.

List also the species that, while not actively managed for, will be considered as acceptable stocking on the site – **acceptable species**.

Note: Species that are not listed as primary, secondary, or tertiary may be used as preferred and acceptable species if appropriate justification can be provided (e.g., biodiversity or IRM objectives). This will be rare for timber product objectives, as the range of commercial species provided in these guidelines is comprehensive.

Following is a representation of the process for evaluation and selection of preferred and acceptable tree species.

• Determine the initial stocking that will create the desired stand. Compare the desired stocking to the minimum and target values provided in the guidelines or guidebook for the site series. If the stated minimums and target levels will achieve the stand objectives, use the guideline stocking levels in the silviculture prescription. In those rare instances where the target and minimum stocking levels provided in the guidelines or guidebook for the site series may not result in the achievement of the stand objectives, variations to the guidelines should be considered. If

variations to the guidelines are chosen, justifications for these alternatives should be provided.

These guidelines are to be used in conjunction with regional ecology guidebooks. Ecological guidebooks may have more detailed information regarding species suitability.

For some examples of species selection and the choice of stocking standards, see Appendix 4.

Introduction to tree species selection and stocking tables

Uneven-aged stocking guidelines

Single-tree selection

Minimum inter-tree distance (layers 2, 3, 4): 2 m.

Maximum density (applicable to conifers in layer 3 only): 10 000 stems/ha (sph).

The maximum number of well-spaced stems (sph) following spacing should not normally be greater than 600 above the target stocking set out in the silviculture prescription. For more information on the minimum and maximum number of healthy well-spaced trees allowed after spacing, refer to the *Spacing Guidebook*.

Species: same as in even-aged stocking guidelines.

Crop tree to deleterious brush ratio and minimum height: same as in evenaged stocking guidelines *except for uneven-aged drybelt Douglas-fir stands within the Interior Douglas-fir zone where trees must be five years on site and at least 40 cm tall.*

Stocking rules

Specific instructions on measurement criteria are in the *Silviculture Surveys Guidebook*.

Stocking for an uneven-aged stand is determined through an additive process. Each layer carries its stocking to contribute to the next. Each tree tallied as a well-spaced, preferred and acceptable tree in the upper layers precludes trees in the lower layers from being tallied. That is, well-spaced trees in layer 2 have to be a minimum of 2 m away from well-spaced trees chosen in layer 1; well-spaced trees in layer 3 have to be a minimum of 2 m away from well-spaced trees in layer 4 have to be a minimum of 2 m away from well-spaced trees in layer 4 have to be a minimum of 2 m away from well-spaced trees in layer 3.

The stand is considered stocked when the number of well-spaced preferred and acceptable trees and the number of preferred trees:

- in layer 1 are greater than or equal to the minimum stocking for layer 1
- in layers 1 + 2 are greater than or equal to the minimum stocking for layer 2

- in layers 1 + 2 + 3 are greater than or equal to the minimum stocking for layer 3
- in layers 1 + 2 + 3 + 4 are greater than or equal to the minimum stocking for layer 4.

Other silvicultural systems

The use of uneven-aged stocking standards in silviculture prescriptions for systems other than single-tree selection should be thoroughly evaluated to determine the appropriateness of their use. When the decision has been made that uneven-aged stocking standards are appropriate, residuals of unsuitable quality for timber production, retained for other management objectives, should not be used to meet regeneration date and free growing obligations.

Reading/Reference list

- Allen, A., D. Morrison, and G. Wallis. 1996. Common tree diseases of British Columbia. Natural Resources Canada.
- Banner, A., R.N. Green, A. Inselberg, K. Klinka, D.S. McLennan, D.V. Meidinger, F.C. Nuszdorfer, and J. Pojar. 1990. Site classification for coastal British Columbia. B.C. Min. For., Victoria, BC. Pamphlet.
- Banner, A., W. MacKenzie, S. Haeussler, S. Thompson, J. Pojar, and R. Trowbridge. 1993. A field guide to site identification and interpretation for the Prince Rupert Forest Region. B.C. Min. For., Victoria, BC. Land Manage. Handb. No. 26.
- Green, R.N., P.J. Courtin, and K. Klinka. 1994. A field guide for site identification and interpretation for the Vancouver Forest Region. B.C. Min. For., Victoria, BC. Land Manage. Handb. No. 28.
- Greenough, J.A. and W.A. Kurz. 1996. Stand tending impacts on environmental indicators. B.C. Min. For., For. Prac. Br., Victoria, BC. (http://www.for.gov.bc.ca/hfp/PubsStandTend.htm).
- Hamilton, A.N., C.A. Bryden, and C.J. Clement. 1991. Impacts of glyphosate application on grizzly bear forage production in the coastal western hemlock zone. For. Can. and B.C. Min. For., Res. Br., Victoria, BC. FRDA Report No. 165.
- Johnson, T. 1995. Progress report Activities completed for the grizzly forage assessment project, Fiscal 1995. B.C. Min. Environ., Lands and Parks, Wildl. Br., Victoria, BC.
- Johnson, T. and D. McLennan. 2000. Grizzly bear forage trial review. B.C. Min. Environ., Lands and Parks, Wildl. Br., Victoria, BC.
- Lavender, D.P., R. Parish, C.M. Johnson, G. Montgomery, A. Vyse, R.A. Willis, and D. Winston (editors). 1990. Regenerating British Columbia's forests. UBC Press, Vancouver, BC.
- McLennan, D.S. 1990. Management of black cottonwood, red alder, bigleaf maple and paper birch in coastal British Columbia. For. Can. and B.C. Min. For. Res. Br., Victoria, BC. FRDA Memo No. 133.
- McLennan, D.S. 1991. Black cottonwood: ecological site quality and growth in coastal British Columbia. For. Can. and B.C. Min. For. Res. Br., Victoria, BC. FRDA Memo No. 183.
- McLennan, D.S. and Johnson, T. 1993. An adaptive management approach for integrating grizzly bear habitat requirements and silvicultural practices in coastal British Columbia. Working Plan. B.C. Min. Environ., Lands and Parks, Victoria, BC. Unpubl. rep. 23 pp.

- McLennan, D.S. and K. Klinka. 1990. Black cottonwood a nurse species for regenerating western redcedar on brushy sites. For. Can. and B.C. Min. For. Res. Br., Victoria, BC. FRDA Rep. 114.
- Nanuq Consulting. 1998. Habitat/Ecosystem objectives and monitoring procedures for incremental and backlog silviculture treatments (ver. 2.0).
 B.C. Min. Environ., Lands and Parks, Habitat Br., Victoria, BC.
- Park, A. and L. McCulloch. 1993. Guidelines for maintaining biodiversity during juvenile spacing. B.C. Min. Environ., Lands and Parks, B.C. Min. For., and For. Can., Victoria, BC.
- Province of British Columbia. 1996. Procedures for environmental monitoring in range and wildlife habitat management. B.C. Min. Environ., Lands and Parks and B.C. Min. For., Victoria, BC. (http://www.elp.gov.bc.ca/rib/wis/phm/index.htm).
- Province of British Columbia. 1998. Field manual for describing terrestrial ecosystems. B.C. Min. Environ., Lands and Parks and B.C. Min. For., Victoria, BC. Land Manage. Handb. No. 25.
- Sit, V. and B. Taylor (eds.). 1998. Statistical methods for adaptive management studies. B.C. Min. For., Resear. Br., Victoria, BC.
- Steen, O. and R. Coupé. 1997. A field guide to the site identification and interpretation for the Cariboo Forest Region. B.C. Min. For., Victoria, BC. Land Manage. Handb. No. 39.
- Taylor, B., L. Kremsater, and R. Ellis. 1997. Adaptive management of forest in British Columbia. B.C. Min. For., For. Prac. Br., Victoria, BC.

Also see:

- Guidelines for developing stand density management regimes. 1999.
 B.C. Min. For., For. Prac. Br., Victoria, BC. (http://www.for.gov.bc.ca/hfp/pubs/stand_density_mgt/index.htm).
 Stand management prescription guidebook. 1999.
 - B.C. Min. For., For. Prac. Br., Victoria, BC. (http://www.for.gov.bc.ca/tasb/legsregs/fpc/fpcguide/stand/index.htm).
- Pruning guidebook. 1995. B.C. Min. For., For. Prac. Br., Victoria, BC. (http://www.for.gov.bc.ca/tasb/legsregs/fpc/fpcguide/pruning/pruntoc.htm).

Chief Foresters Policy 2.24 Stand Density Management. 1999. B.C. Min. For., For. Prac. Br., Victoria, BC. (http://www.for.gov.bc.ca/tasb/manuals/policy/resmngmt/rm2-24.htm).

Tree species selection and stocking tables

Kamloops Forest Region	43
Broadleaf guidelines	
Uneven-aged stocking standards (single-tree selection only)	111

Site- and species-specific tables are provided for coniferous and broadleaf regeneration. The tables list target stocking for coniferous stands where the primary management objective is sawlog production under an even-aged system.

Stocking guidelines for broadleaf trees have been developed for several management objectives: sawlogs, plywood, pulp and oriented strand board. Stocking tables for broadleaf trees and uneven-aged management regime (single-tree selection only) are provided following the even-aged coniferous stocking tables.

Kamloops Forest Region Contents

BGxh1	44
BGxh2	
BGxw1	46
ESSFdc1	
ESSFdc2	
ESSFdv	51
ESSFmw	52
ESSFvc	54
ESSFvv	55
ESSFwc1	56
ESSFwc2	57
ESSFwc4	59
ESSFxc	60
ICHmk1	62
ICHmk2	64
ICHmw2	66
ICHmw3	68
ICHvk1	71
ICHwk1	73
IDFdk1	75
IDFdk1a	77
IDFdk2	78
IDFdk3	80
IDFdm1	82
IDFmw1	84
IDFmw2	86
IDFww	88
IDFxh1	90
IDFxh1a	92
IDFxh2	94
IDFxh2a	95
IDFxw	96
MSdc1	97
MSdm1	98
MSdm2	100
MSxk	101
PPxh1	103
PPxh2	105
SBSmm	107

BGxh1 — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

			Conifer species		Broadleaf		king stan Il-spaced		Regen delay	Asses Early	sment Late	Min. tree height	% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\scriptscriptstyle \Delta}$		MSSpa	,	-	(yrs)	(yrs)	(m)	brush
01	Big sage – Bluebunch wheatgrass	non-forested				-	-	-	-	-	-		
01-N	MS Big sage – Neddle- and-thread grass	non-forested				-	-	-	-	-	-		
02	Antelope brush – Needle-and-thread grass	non-forested				-	-	-	-	-	-		
03	Bluebunch wheatgrass – Selaginella	non-forested				-	-	-	-	-	-		
04*	Py – Antelope brush – Red three-awn	Py ²⁷	Fd ²⁷			400	200	200	7	12	15		125
05*	Py – Sumac	Py ²⁷	Fd ²⁷		At ^b	400	200	200	7	12	15		125
06*	PyAct – Nootka rose – Poison ivy	Fd Py			Act ^a At ^a Ep ^b	600	400	400	7	12	15		125
07*	Act – Water birch	Pl ^{1,23} Sx ¹	Fd ¹ Py ¹		Act ^a At ^a Ep ^b	1000	500	400	4	9	15		125
	avoid logging elevated microsites are pref	erred	27 part	ricted to trial use ial canopy cover blishment		ccessful	I					ible regeneratio ility and/or feas May 200	sibility

^A See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

BGxh2 — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

			Conifer species		Broadleaf		ing stan Il-spaced		Regen delay	Asses Early	sment Late	Min. tree height	% tree over
	Site series	Primary	Secondary	Tertiary	species ⁴		MSSpa			(yrs)	(yrs)	(m)	brush
01	Big sage – Bluebunch wheatgrass	non-forested				-	-	-	-	-	-		
02	Bluebunch wheatgrass – Selaginella	non-forested				-	-	-	-	-	-		
03*	Py – Red three-awn		Py ²⁷			400	200	200	7	12	15		125
04*	Py – Bluebunch wheatgrass		Py ²⁷	Fd ²⁷		400	200	200	7	12	15		125
05	Big sage – Needle- and-thread grass	non-forested				-	-	-	-	-	-		
06	Rough fescue – Bluebunch wheatgrass	non-forested				-	-	-	-	-	-		
07*	Act – Snowberry – Dogwood		Fd ¹ Py ¹	Sx ¹	Act ^a At ^a Ep ^b	400	200	200	4	9	15		125
80	Woolly sedge – Arctic rush	non-forested				-	-	-	-	-	-		
	void logging levated microsites are pref	erred		tial canopy cov ablishment	er required for	success	ful					asible regenerat ibility and/or fe	

45

A See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines **pa** – preferred and acceptable

* TSS - target stocking standards MSS – minimum stocking standards p – preferred

BGxw1 — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

			Conifer species		Broadleaf		king stan II-space		Regen delay	Asses Early	sment Late	Min. tree height	% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)	brush
01	Bluebunch wheatgrass – Junegrass	non-forested				-	-	-	-	-	-		
02	Bluebunch wheatgrass – Selaginella	non-forested				-	-	-	-	-	-		
03*	Py – Bluebunch wheatgrass		Py ²⁷	Fd ²⁷		400	200	200	7	12	15		125
04	Big sage – Bluebunch wheatgrass	non-forested				-	-	-	-	-	-		
05*	Py – Rough fescue – Bluebunch wheatgrass		Py ²⁷	Fd ²⁷		400	200	200	7	12	15		125

* avoid logging 27 partial canopy cover required for successful	
establishment	Continued next pag
	May 2001

^A See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

			Conifer species		Broadleaf		cing stan Il-spaced		Regen delay	Asses Early	sment Late	Min. tre height		% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\scriptscriptstyle \Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)		brush
06	Rough fescue – Bluebunch wheatgrass	non-forested				-	-	-	-	-	-	-	-	-
07	Giant wildrye	non-forested				-	-	-	-	-	-	-	-	-
08	At – Snowberry – Kentucky bluegrass			Fd ³²	At ^a	1200	700	600	4	9	15			125
09	Salt grass – Sedge	non-forested				-	-	-	_	-	_	_	_	_

BGxw1 — Kamloops (continued)

Tree Species Selection and Free Growing Stocking Standard Guidelines

32 limited by growing-season frosts

a productive, reliable, and feasible regeneration option

47

 $^{\scriptscriptstyle \Delta}$ See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

May 2001 🚃

ESSFdc1 — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

						Stock	cing stan	dards	Regen	Asses	sment	Min. t	ree	% tree
			Conifer species		Broadleaf		II-space		delay	Early	Late	heig		over
	Site series	Primary	Secondary	Tertiary	species∆	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m))	brush
01	BI – Rhododendron Grouseberry	PI Se	BI			1200	700	600	4	12	20	PI Others	1.6 0.8	125
02	PISe – Pinegrass	PI		BI ¹³ Se		1000	500	400	7	15	20	PI Others	1.2 0.6	125
03	BI – Grouseberry – Cladonia	PI		BI ¹³ Se		1000	500	400	7	15	20	PI Others	1.2 0.6	125
04	BI – Rhododendron – Valerian	PI Se	BI			1200	700	600	4	12	20	PI Others	1.6 0.8	125
05	BI – Trapper's tea	PI Se	BI ^{10,13}			1000	500	400	7	15	20	PI Others	1.2 0.6	125
06	BI – Horsetail – Glow moss	Pl ¹ Se ^{1,32}	BI ^{1,32}			1000	500	400	4	12	20	PI Others	1.2 0.6	125
07	Sedge – Sphagnum	non-forested				-	-	-	-	-	-	-	-	-
	elevated microsites are pre restricted to northerly aspe			stricted to upper lited by growing			matic uni	_ t						
					,							Ma	y 200	1 🚃

^a See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS – target stocking standards MSS – minimum stocking standards pa – preferred and acceptable p – preferred

ESSFdc2 — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

			Conifer species		Broadleaf		ing stand II-spaced		Regen delay	Asses: Early	sment Late	Min. t heigi		% tree over
	Site series	Primary	Secondary	Tertiary	$\textbf{species}^{\Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)		brush
01	BI – Rhododendron – Grouseberry	PI Se	BI			1200	700	600	4	12	20	PI Others	1.6 0.8	125
02*	Juniper – Pinegrass	PI ⁵²		Bl ¹³ Se		-	-	-	-	-	-	-	-	-
03	PISe – Falsebox Pinegrass	PI		BI ¹³ Pa ^{9,17} Se		1000	500	400	7	15	20	PI Others	1.2 0.6	125
04	BI – Grouseberry – Cladonia	PI		BI ¹³ Se		1000	500	400	7	15	20	PI Others	1.2 0.6	125
05	BI – Huckleberry – Feathermoss	PI Se	BI ^{10,13}			1000	500	400	7	15	20	PI Others	1.2 0.6	125
06	BI – Gooseberry – Oak fern	PI Se	BI			1200	700	600	4	12	20	PI Others	1.6 0.8	125
9 r	avoid logging restricted to southerly aspec estricted to northerly aspect		17 res	stricted to upper of stricted to wester				52	restricted	d to shelt	ered mic	rosites wit		p soil next paq
IU I	estricted to northerly aspect	.5	In	region								Cont	inuea	next page

49

^a See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

			Conifer species		Broadleaf		ting stan II-spaced		Regen delay	Asses Early	sment Late	Min. t heiq		% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)		brush
07	BI – Rhododendron – Valerian	PI Se ³²	BI			1200	700	600	4	12	20	PI Others	1.6 0.8	125
80	BI – Trapper's tea	Pl ¹ Se ^{1,32}	BI ^{1,32}			1000	500	400	4	12	20	PI Others	1.2 0.6	125
)9	Sedge – Sphagnum	non-forested				-	-	-	-	-	-	-	-	-

ESSFdc2 — Kamloops (continued)

Tree Species Selection and Free Growing Stocking Standard Guidelines

1 elevated microsites are preferred

32 limited by growing-season frosts

May 2001

 $^{\scriptscriptstyle \Delta}$ See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

ESSFdv — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

			· · · · · · · · · · · · · · · · · · ·					Asses	sessment Min. tree			% tree		
	014-	Deleven	Conifer species		Broadleaf		II-space	<u> </u>	delay	Early	Late	heig		over
	Site series	Primary	Secondary	Tertiary	species $^{\Delta}$	155pa	MSSpa	W22b	(yrs)	(yrs)	(yrs)	(m))	brush
01	BI – Rhododendron – Heron's bill	PI Se	BI ¹³	Pa ^{9,13}		1200	700	600	4	12	20	PI Others	1.6 0.8	125
02*	Pa – Junegrass	PI		BI Pa ^{9,13} Se	At ^b	400	200	200	4	9	15	PI Others	1.2 0.6	125
03	BI Pa – Juniper	PI		BI Pa ^{9,13} Se		1000	500	400	7	15	20	PI Others	1.2 0.6	125
04	BI – Huckleberrry – Brachythecium	PI Se	BI ^{10,13}	Pa ^{9,13}		1000	500	400	7	15	20	PI Others	1.2 0.6	125
05	BI – Valerian – Arnica	PI Se ³²	BI ³²	Pa ^{9,13}		1200	700	600	4	12	20	PI Others	1.6 0.8	125
06	BI – Horsetail – Glow moss	PI ¹ Se ^{1,32}	BI1,32	Pa ^{9,13}		1000	500	400	4	12	20	PI Others	1.2 0.6	125
1	avoid logging elevated microsites are prefi restricted to southerly aspec		13 re:	stricted to northe stricted to upper nited by growing	elevations of		matic uni	b	limited in	n product	ivity, reli	ability and	l/or fea	asibility

 $\overline{\Omega}$

^a See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

* TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p – preferred

ESSFmw — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

		Stocking standards Regen <u>Assess</u> Conifer species Broadleaf (well-spaced/ha)⁺ delay Early							sment Late	Min. t heig		% tree over		
	Site series	Primary	Secondary	, Tertiary	species ⁴		MSSpa	<u> </u>	(yrs)	(yrs)	(yrs)	(m)		brush
01	BIBa – Rhododendron	Se	Ba ¹⁷ BI ¹³	PI ³⁴		1200	700	600	4	12	20	PI Others	2.0 1.0	125
02	BIPI – Juniper – Rhacomitrium	PI	Fd ^{9,14} Se ^{10,13}	BI ^{10,13} Pa ^{9,13,18}		1000	500	400	7	15	20	PI Others	1.4 0.8	125
03	FdBI – Falsebox – Pinegrass	PI	Fd ^{9,14} Se	BI ¹³ Pa ^{9,13,18}		1000	500	400	7	15	20	PI Others	1.4 0.8	125
04	BI – Huckleberry – Falsebox	Pl ³⁴ Se	Ba ¹⁷ Bl ^{10,13} Fd ^{9,14,34}			1200	700	600	7	15	20	PI Others	2.0 1.0	125
05	BIBa – Azalea – Pipecleaner moss	BI ¹³ Se	Ba ¹⁷	PI ³⁴		1200	700	600	4	12	20	PI Others	2.0 1.0	125
06	BI – Gooseberry – Valerian	BI Se	Ba ¹⁷	PI ³⁴		1200	700	600	4	12	20	PI Others	2.0 1.0	125
10	restricted to southerly aspec restricted to northerly aspec restricted to upper elevation	ts	17 re	estricted to lower e estricted to western n region					restricted in region risk of si	I				next page

See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines
 TSS – target stocking standards MSS – minimum stocking standards pa – preferred and acceptable p – preferred

			Conifer specie	S	Broadleaf		ting stan Il-spaced		Regen delay	Asses Early	sment Late	Min. t heigi		% tree over
	Site series	Primary	Secondary	Tertiary	$\boldsymbol{species}^{\scriptscriptstyle \Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)		brush
)7	BIBa – Oak fern – Lady fern	Ba ¹⁷ BI Se	PI ³⁴	Cw ^{14,32} Hw ^{14,32}		1000	500	400	4	12	20	PI Others	1.4 0.8	125
8(BI – Gooseberry – Horsetail	BI ¹ Se ¹	PI ^{1,34}	Ba ¹⁷		1000	500	400	4	12	20	PI Others	1.4 0.8	125

ESSFmw — Kamloops (continued)

Tree Species Selection and Free Growing Stocking Standard Guidelines

1 elevated microsites are preferred

14 restricted to lower elevations of biogeoclimatic unit

32 limited by growing-season frosts

natic unit 34 risk of snow damage

17 restricted to western portion of biogeoclimatic unit in region

S

^a See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

May 2001 🚃

ESSFvc — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

			Conifer species			Stocking standards (well-spaced/ha) *			Regen delay	Early Late		Min. tree height		% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m))	brush
01	BIHm – Rhododendron – Oak fern	BI Se		Hm		1200	700	600	4	12	20	All	0.8	125
02	BIHm – Rhododendron – Leafy liverwort	Se	BI	Hm Pl ^{23,34}		1000	500	400	7	15	20	PI Others	1.2 0.6	125
03	BIHm – Rhododendron – Pipecleaner moss	BI Se		Hm		1000	500	400	7	15	20	All	0.6	125
04	BIHm – Devil's club – Lady fern	BI Se		Hm		1200	700	600	4	12	20	All	0.8	125
05	BIHm – Horsetail	Bl ^{1,32} Se ^{1,32}		Hm ¹		1000	500	400	4	12	20	All	0.6	125
06	Sedge – Sphagnum	non-forested				-	-	-	-	-	-	-	-	-

1	elevated microsites are preferred	32	limited by growing-season frosts
23	restricted to trial use	34	risk of snow damage

May 2001

^A See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

ESSFvv — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

	Cite equipe	Duimonu	Conifer species	Tautiauu	Broadleaf	(we	ting stan	d/ha) *	Regen delay	Asses Early	Late	Min. t heig	ht	% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\scriptscriptstyle \Delta}$	гозра	MSSpa	wssp	(yrs)	(yrs)	(yrs)	(m)		brush
01	Bl – Rhododendron – Foamflower	BI ³² Se ³²		Hm ¹⁶		1200	700	600	4	12	20	All	0.8	125
02	BI – Huckleberry – Mountain liverwort	BI ³² Se ³²		Hm ¹⁶ Pl ³⁴		600	400	400	7	15	20	PI Others	1.2 0.6	125
03	BIHm – Rhododendron – Leafy liverwort	BI ³² Se ³²		Hm ¹⁶		1000	500	400	7	15	20	All	0.6	125
04	BI – Valerian – Groundsel	BI ³² Se ³²		Hm ¹⁶		600	400	400	4	12	20	All	0.6	125
05	Mountain-heather – Alpine sedge	non-forested				-	-	-	-	-	-	-	-	-

16 restricted to southern portion of biogeoclimatic unit in region

32 limited by growing-season frosts

34 risk of snow damage

55

^a See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

MSS – minimum stocking standards * TSS - target stocking standards pa - preferred and acceptable p - preferred May 2001 🚃

ESSFwc1 — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

	Site series		Conifer species		Broadleaf		king stan Il-space		Regen delay	Asses Early	sment Late	Min. tı heigl		% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\scriptscriptstyle \Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)		brush
01	BI – Rhododendron – Oak fern	BI Se	PI ³⁴	Cw ^{9,32} Hw ^{9,32}		1200	700	600	4	12	20	PI Others	1.6 0.8	125
02	Bl – Falsebox – Grouseberry	PI Se		BI Pa		1000	500	400	7	15	20	PI Others	1.2 0.6	125
03	Bl – Devil's club – Lady fern	BI Se		Cw ^{9,32} Hw ^{9,32} Pl ³⁴		1200	700	600	4	12	20	PI 1.0 Others	6125 0.8	
04	Bl – Horsetail – Brachythecium	BI ^{1,32} Se ^{1,32}	PI ^{1,34}	Hw ³²		1200	700	600	4	12	20	PI Others	1.6 0.8	125
05	Sedge – Sphagnum	non-forested				-	-	-	-	-	-	-	-	-

1 elevated microsites are preferred

9 restricted to southerly aspects

32 limited by growing-season frosts

34 risk of snow damage

May 2001

△ See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

ESSFwc2 — Kamloops

57

Tree Species Selection and Free Growing Stocking Standard Guidelines

						Stock	cing stan	dards	Regen	Asses	sment	Min. t	ree	% tree
	.		Conifer specie		Broadleaf		II-spaced	<u> </u>	delay	Early	Late	heig		over
	Site series	Primary	Secondary	Tertiary	species $^{\Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m))	brush
01	BI – Azalea – Oak fern	BI Se		PI ^{17,34}		1200	700	600	4	12	20	PI Others	1.6 0.8	125
02	PI – Huckleberry – Cladonia	PI ¹⁷	BI ^{10,13,14} Se ^{10,13}			1000	500	400	7	15	20	PI Others	1.2 0.6	125
03	BI – Huckleberry – Arnica	Se	BI ^{10,13,14} PI ^{17,34}			1000	500	400	7	15	20	PI Others	1.2 0.6	125
04	BI – Rhododendron – Heron's bill	BI Se	PI ^{17,34}			1200	700	600	7	15	20	PI Others	1.6 0.8	125
05	BI – Azalea – Feathermoss	BI Se		Pl ^{23,34}		1200	700	600	7	15	20	PI Others	1.6 0.8	125
06	BI – Valerian – Oak fern	BI ³² Se ³²		PI ^{23,34}		1200	700	600	4	12	20	PI Others	1.6 0.8	125
13	restricted to northerly asper	ns of biogeoclima	atic unit i	estricted to weste n region	·	oiogeoclir	natic unit		limited b risk of sr			frosts		
13 14		ns of biogeoclima ns of biogeoclima	atic unit i ttic unit 23 r	n region estricted to trial u	ISE	Ū	natic unit					Cont	tinued y 200	

See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

* TSS – target stocking standards MSS – minimum stocking standards pa – preferred and acceptable

p – preferred

			Conifer species		Broadleaf		ting stan Il-spaced		Regen delay	Asses Early	sment Late	Min. ti heigl		% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m))	brush
07	Bl – Devil's club – Lady fern	BI Se		PI ^{23,34}		1200	700	600	4	12	20	PI Others	1.6 0.8	125
08	BI – Horsetail – Sphagnum	BI ^{1,32} Se ^{1,32}		PI ^{23,34}		1000	500	400	4	12	20	PI Others	1.2 0.6	125
09*	PI – Dwarf blueberry – Sphagnum	Pl ¹	BI ^{1,32} Se ^{1,32}			400	200	200	4	12	20	PI Others	1.2 0.6	125
10	Sedge – Sphagnum	non-forested				-	-	-	-	-	-	-	-	-

 avoid logging elevated microsites are preferred restricted to trial use 	32 limited by growing-season frosts 34 risk of snow damage	
A Cas Interior Dreadlast quidelines on page 100	for stocking standard and free growing guidelines	May 2001

A See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS – target stocking standards MSS – minimum stocking standards pa – preferred and acceptable p – preferred

ESSFwc2 — Kamloops (continued)

Tree Species Selection and Free Growing Stocking Standard Guidelines

59

Tree Species Selection and Free Growing Stocking Standard Guidelines

		•				Stock	ing stan	dards	Regen	Asses	sment	Min. ti	ree	% tree
	.		Conifer species		Broadleaf			<u> </u>	delay	Early	Late	heigl		over
	Site series	Primary	Secondary	Tertiary	species $^{\Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)		brush
01	BI – Rhododendron – Oak fern	BI Se	PI ³⁴			1200	700	600	4	12	20	PI Others	1.6 0.8	125
02	BI – Rhododendron – Falsebox	Se	PI ³⁴	BI Pa		1000	500	400	7	15	20	PI Others	1.2 0.6	125
03	BI – Rhododendron – Woodrush	Se	BI PI ³⁴			1000	500	400	7	15	20	PI Others	1.2 0.6	125
04	BI – Rhododendron – Foamflower	Se	BI PI ³⁴			1200	700	600	7	15	20	PI Others	1.6 0.8	125
05	BI – Rhododendron – Lady fern	BI Se				1200	700	600	4	12	20	All	0.8	125
06	Bl – Horsetail – Brachythecium	BI ^{1,32} Se ^{1,32}				1200	700	600	4	12	20	All	0.8	125
07	BI – Sedge – Sphagnum	Se ¹	BI ¹ PI ^{1,34}			1000	500	400	4	12	20	PI Others	1.2 0.6	125
80	Willow – Sedge	non-forested				-	-	-	-	-	-	-	-	-
1	elevated microsites are prefe	<u></u>	ited by growing	owing-season frosts 34 risk of snow damage										

* TSS – target stocking standards MSS – minimum stocking standards pa – preferred and acceptable

p – preferred

ESSFxc — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

						Stock	ing stan	dards	Regen	Asses	sment	Min. t	ree	% tree
			Conifer species		Broadleaf	(we	ll-spaced	i/ha) +	delay	Early	Late	heig	ht	over
	Site series	Primary	Secondary	Tertiary	species∆	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m))	brush
01	BI – Grouseberry – Valerian	PI Se ³²	BI ^{10,13}			1200	700	600	4	12	20	PI Others	1.6 0.8	125
02	PI – Juniper – Lupine	PI		BI ¹³ Se		600	400	400	7	15	20	PI Others	1.2 0.6	125
03	Bluebunch wheatgrass – Pasqueflower	non-forested				-	-	-	-	-	-	-	-	-
04	Big sage – Pinegrass	non-forested				-	-	-	-	-	-	-	-	-
05	BI – Grouseberry – Cladonia	PI		BI ¹³ Se		1000	500	400	7	15	20	PI Others	1.2 0.6	125
06	BI – Rhododendron – Grouseberry	PI Se	BI ¹³			1200	700	600	7	15	20	PI Others	1.6 0.8	125
07	BI – Gooseberry – Foamflower	PI Se ³²	BI ³²			1200	700	600	4	12	20	PI Others	1.6 0.8	125
10	restricted to northerly aspec	te		ited by growing	a-coacon frost				_					
	restricted to upper elevation			ited by growing	J-Season 11051:	> 							tinued y 200	next page

A See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

			Conifer species		Broadleaf		cing stan Il-spaced		Regen delay	Asses Early	sment Late	Min. t heigi		% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\scriptscriptstyle \Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m))	brush
08	BI – Horsetail – Glow moss	Pl1	BI ^{1,32} Se ^{1,32}			1000	500	400	4	12	20	PI Others	1.2 0.6	125
09	Bluejoint – Sedge	non-forested				-	-	-	-	-	-	-	-	-
10	Willow – Sedge	non-forested				-	-	-	-	-	-	-	-	-

ESSFxc — Kamloops (continued)

Tree Species Selection and Free Growing Stocking Standard Guidelines

1 elevated microsites are preferred

32 limited by growing-season frosts

6

^a See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

May 2001 🚃

		Conifer species				Stocking stand Broadleaf (well-spaced			Regen delay	Assessment Early Late		Min. tree height		% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\scriptscriptstyle \Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)		brush
01	CwSxw – Falsebox	Fd ^{9,14,32} Lw ^{9,14,32} PI Sx ^{10,13}	BI ^{10,13}	Cw ^{10,13,32}	Act ^b At ^a Ep ^a	1200	700	600	7	12	15	PI, Lw Fd Others	2.0 1.4 1.0	150
)1-`	YS CwSxw – Aspen	BI ^{10,13} Fd ^{9,14,32} Lw ^{9,14,32} PI Sx ^{10,13}		Cw ^{10,13,32}	Act ^b At ^a Ep ^a	1200	700	600	7	12	15	PI, Lw Fd Others	2.0 1.4 1.0	150
02	Fd – Penstemon – Pinegrass	Fd Pl		BI ^{10,13} Sx ^{10,13}		600	400	400	7	12	15	PI Fd Others	1.4 1.0 0.8	150
03	FdPI – Pinegrass – Twinflower	Fd Lw PI	Sx ^{10,13}	BI ^{10,13} Cw ^{10,13}	At ^a Ep ^b	1000	500	400	7	12	15	PI, Lw Fd Others	1.4 1.0 0.8	150
04	FdPI – Sitka alder – Pinegrass	Fd ³² Lw ³² PI	BI ^{10,13} Sx ^{10,13}	Cw ^{10,13,32}	At ^a Ep ^a	1200	700	600	7	12	15	PI, Lw Fd Others	2.0 1.4 1.0	150
10 (on south aspects (SSE to on north aspects (NW to I n upper elevations of bio	ENE)	32 ris	ower elevations k of frost damage ductive, reliable,	9		ion optior	— — b	limited in	n produc	tivity, reli			next pag

ICHmk1 — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

A See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

		Conifer species			Broadleaf			cking standards /ell-spaced/ha) *		Assessment Early Late		Min. tree height		% tree over
	Site series	Primary	Secondary	Tertiary	species∆		MSSpa		delay (yrs)	(yrs)	(yrs)	(m)		brush
05	Sxw – Gooseberry – Sarsaparilla	PI Sx	BI Fd ^{9,14,32} Lw ^{9,14,32}	Cw ³²	Act ^a At ^a Ep ^a	1200	700	600	4	9	15	PI, Lw Fd Others	2.0 1.4 0.8	150
06	Sxw – Oak fern	PI Sx	BI Fd ^{9,14,32} Lw ^{9,14,32}	Cw ³²	Act ^a At ^a Ep ^a	1200	700	600	4	9	15	PI, Lw Fd Others	2.0 1.4 0.8	150
07	Sxw – Horsetail	PI ¹ Sx ¹ Lw ^{1,32}	BI ¹ Fd ^{1,32}	Cw ³²	Act ^a At ^b Ep ^b	1000	500	400	4	9	15	PI, Lw Fd Others	1.4 1.0 0.8	150
8	Sedge – Cinquefoil	non-forested				-	-	-	-	-	-	-	-	-
	elevated microsites are pro	elevations of I		natic unit		productive limited in			sible rege					

* TSS – target stocking standards MSS – minimum stocking standards pa - preferred and acceptable p - preferred

Tree Species Selection and Free Growing Stocking Standard Guidelines

							ing stan		Regen	Asses		Min. t		% tree
	Site series	Primary	Conifer species Secondary	Tertiary	Broadleaf species [∆]		II-spaced MSSpa	,	delay (yrs)	Early (yrs)	Late (yrs)	heig (m)		over brush
01	CwSxw – Falsebox – Knight's plume	Fd ^{9,14,32} PI Sx	BI10,13	Cw Lw ^{9,14,23,32}	Act ^b At ^a Ep ^a	1200	700	600	7	12	15	PI, Lw Fd Sx Others	2.0 1.4 0.8 1.0	150
02	Fd – Juniper – Pinegrass	Fd Pl		BI ^{10,13} Sx ^{10,13}	At ^b Ep ^b	600	400	400	7	12	15	PI Fd Others	1.4 1.0 0.8	150
03	Fd – Falsebox – Pinegrass	Fd Pl	Sx ^{10,13}	BI ^{10,13} Cw ^{10,13}	At ^a Ep ^b	1000	500	400	7	12	15	PI Fd Others	1.4 1.0 0.8	150
04	CwSxw – Douglas maple – Fairybells	Fd Pl	BI ^{10,13} Sx	Cw ^{10,13} Lw ^{9,14,23,32}	At ^a Ep ^a	1200	700	600	7	12	15	PI, Lw Fd Sx Others	2.0 1.4 0.8 1.0	150
10	restricted to southerly aspects restricted to northerly aspects restricted to upper elevations	;	23 res	tricted to lower tricted to trial us ited by growing-	se	-	natic unit	a b	productiv limited in			bility and/ Cont	or feas	sibility next pag

See Interior Broadleat guidelines on page 109 for stocking standard and free growing guidelines
 TSS – target stocking standards MSS – minimum stocking standards pa – preferred and acceptable p – preferred

			Conifer species		Broadleaf		ting stan Il-spaced		Regen delay	Asses Early	sment Late	Min. t heig		% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)		brush
05	CwSxw – Oak fern – Bunchberry	Fd ^{9,14,32} PI Sx	BI ¹³	Cw ³²	Act ^a At ^a Ep ^a	1200	700	600	4	9	15	PI Fd Others	2.0 1.4 1.0	150
06	Sxw – Horsetail	PI ¹ Sx ¹	BI ¹ Fd ^{1,32}	Cw ³²	Act ^a At ^b Ep ^b	1000	500	400	4	9	15	PI Fd Others	1.4 1.0 0.8	150

ICHmk2 — Kamloops (continued)

Tree Species Selection and Free Growing Stocking Standard Guidelines

1 elevated microsites are preferred

9 restricted to southerly aspects

14 restricted to lower elevations of biogeoclimatic unit32 limited by growing-season frosts

a productive, reliable, and feasible regeneration option

May 2001

b limited in productivity, reliability and/or feasibility

13 restricted to upper elevations of biogeoclimatic unit

65

^a See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

* TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - p

p – preferred

			Conifer species		Broadleaf		cing stan Il-spaced		Regen delay	Asses Early	sment Late	Min. tı heigi		% tre over
	Site series	Primary	Secondary	Tertiary	species $^{\Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)		brush
01	HwCw – Falsebox – Feathermoss	Fd Lw	PI ⁵¹	BI ^{10,13} Cw Hw Pw ³¹ Py ^{9,14,23} Sx ^{10,13}	Act ^b At ^a Ep ^a	1200	700	600	4	9	15	PI, Pw Lw Fd Others	2.0 2.0 1.4 1.0	150
01-	YS CwFd – Feathermoss	Fd Lw	Cw ^{10,13} Hw ^{10,13} Pl ⁵¹ Sx ^{10,13}	BI Pw ³¹	Act ^b At ^a Ep ^a	1200	700	600	7	12	15	PI, Pw Lw Fd Others	2.0 2.0 1.4 1.0	150
02	FdCw – Falsebox – Prince's pine	Fd Lw Pl ⁵¹		BI ^{10,13} Cw Hw Pw ³¹ Py ^{9,14,23} Sx	At ^a Ep ^a	1200	700	600	7	12	15	PI, Pw Lw Fd Others	2.0 2.0 1.4 1.0	150
03	CwFd – Falsebox	Fd Lw Pl ⁵¹	Sx ^{10,13}	BI ^{10,13} Cw Hw Pw ³¹ Py ^{9,14,23}	At ^a Ep ^a	1200	700	600	7	12	15	PI, Pw Lw Fd Others	2.0 2.0 1.4 1.0	150
10	restricted to southerly aspe restricted to northerly aspec restricted to upper elevation	ots	23 rest	ricted to lower e ricted to trial use of white pine bli	9	iogeoclin	natic unit	а	productive	e, reliable	, and fea		neratio or feas	on optio sibility next pa g

ICHmw2 — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

^A See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

66

IVIAY 2001

			Conifer species		Broadleaf		cing stan II-spaced		Regen delay	Asses Early	sment Late	Min. t heig		% tree over
	Site series	Primary	Secondary	Tertiary	species∆		MSSpa	<u> </u>	(yrs)	(yrs)	(yrs)	(m)		brush
)4	CwHw – Oak fern – Foamflower	Cw Fd ^{9,14} Hw Lw ^{9,14} Sx	BI PI ⁵¹ Py ^{9,14,23}	Pw ³¹	Act ^a At ^a Ep ^a	1200	700	600	4	9	15	PI, Pw Lw Fd Others	2.0 2.0 1.4 1.0	150
)5	CwHw – Devil's club – Lady fern	Cw ³² Sx	BI Fd ^{1,32} Hw ³² Lw ^{1,32} PI ⁵¹	Pw ³¹	Act ^a At ^a Ep ^a	1200	700	600	4	9	15	PI, Pw Lw Fd Others	2.0 2.0 1.4 1.0	150
)6	CwHw – Horsetail	Cw ^{1,32} Sx ¹	BI ¹ Hw ^{1,32} PI ^{1,51}	Pw ³¹	Act ^a At ^b Ep ^b	1000	500	400	4	9	15	PI, Pw Others	1.4 0.8	150
)7	CwSxw – Skunk cabbage	e Cw ^{1,32} Pl ^{1,51} Sx ¹	BI ¹ Hw ^{1,32}		Act ^a At ^b Ep ^b	1000	500	400	4	9	15	PI Others	1.4 0.8	150
)8	Bluejoint – Glow moss	non-forested				-	-	-	-	-	-	-	-	-
)	elevated microsites are preferestricted to southerly aspected to southerly aspected to lower elevation:	ts	31 risk o	cted to trial us f white pine b	-			a	productiv	e, reliable	, and fea	ven PI per sible rege bility and/	neratio	on optio

ICHmw2 — Kamloops (continued)

Tree Species Selection and Free Growing Stocking Standard Guidelines

67

^a See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

* TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable

p – preferred

			Conifer species		Broadleaf		king stan Il-spaced		Regen delay	Asses Early	sment Late	Min. t heig		% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m))	brush
01	HwCw – Falsebox – Feathermoss	Fd	PI ⁵¹ Sx ^{10,13}	BI ^{10,13} Cw ^{10,13} Hw ^{10,13} Lw ^{23,32} Pw ³¹	Act ^b At ^a Ep ^a	1200	700	600	4	9	15	PI, Pw Lw Fd Others	2.0 2.0 1.4 1.0	150
01-	YC HwCw – Feathermoss	Fd	Cw ^{10,13} Hw ^{10,13} Pl ⁵¹ Sx ^{10,13}	BI ^{10,13} Lw ^{23,32} Pw ³¹	Act ^b At ^a Ep ^a	1200	700	600	4	9	15	PI, Pw Lw Fd Others	2.0 2.0 1.4 1.0	150
02	Fd – Juniper – Cladina	Fd Pl	Py ^{9,14,23,32}	Cw ^{10,13} Pw ³¹	Ep ^b	1000	500	400	7	12	15	PI, Pw Fd Others	1.4 1.0 0.8	150
10 13						performa	ince	a b	•			asible rege ability and/ Cont	′or fea	

ICHmw3 — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

△ See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS – target stocking standards MSS – minimum stocking standards pa – preferred and acceptable p – preferred

	Site series	Primary	Conifer species Secondary	Tertiary	Broadleaf species [∆]	(we	king stan II-spaced MSSpa	d/ha) +	Regen delay (yrs)	Asses Early (yrs)	sment Late (yrs)	Min. tr heigt (m)	nt	% tre over brush
03	FdPI – Pinegrass – Feathermoss	Fd ³² Pl		BI ^{10,13} Cw ^{10,13} Hw Lw ^{23,32} Pw ³¹ Sx ^{10,13}	At ^{53,a} Ep ^{53,a}	1000	500	400	7	12	15	PI, Pw Lw Fd Others	1.4 1.4 1.0 0.8	150
)4	CwFd – Soopolallie – Twinflower	Fd Pl ⁵¹		BI Cw ^{10,13} Hw ^{10,13} Lw ^{23,32} Pw ³¹ Sx ^{10,13}	At ^a Ep ^a	1200	700	600	7	12	15	PI, Pw Lw Fd Others	2.0 2.0 1.4 1.0	150
05	CwFd – Falsebox	Fd	BI ^{10,13} CW ^{10,13} PI ⁵¹ Sx ^{10,13}	Hw ^{10,13} Lw ^{23,32} Pw ³¹	Act ^b At ^a Ep ^a	1200	700	600	7	12	15	PI, Pw Lw Fd Others	2.0 2.0 1.4 1.0	150
3	restricted to northerly aspec restricted to upper elevation restricted to trial use		natic unit 32 lim	k of white pine blis hited by growing-se stricted to areas wi	performa	ance	a		e, reliable		sible reger bility and/c Cont	or feas		

69

 See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines
 TSS – target stocking standards MSS – minimum stocking standards pa – preferred and acceptable p – preferred

	Site series	Primary	<u>Conifer species</u> Secondary	Tertiary	Broadleaf species∆	(we	cing stan II-spaced MSSpa	l/ha) +	Regen delay (yrs)	Asses Early (yrs)	sment Late (yrs)	Min. t heig (m)	ht	% tre over brush
06	CwHw – Oak fern	Cw Fd ¹⁴ Hw Sx	BI ^{10,13} PI ⁵¹	Lw ²³ Pw ³¹	Act ^a At ^a Ep ^a	1200	700	600	4	9	15	PI, Pw Lw Fd Others	2.0 2.0 1.4 1.0	150
07	CwHw – Devil's club – Lady fern	Cw ³² Sx	BI Fd ^{1,32} Hw ³² PI ⁵¹	Lw ^{1,23,32} Pw ³¹	Act ^a At ^a Ep ^a	1200	700	600	4	9	15	PI, Pw Lw Fd Others	2.0 2.0 1.4 1.0	150
80	CwSxw – Skunk cabbage	Cw ^{1,32} Hw ^{1,32} Pl ^{1,51} Sx ¹	BI ¹	Pw ³¹	Act ^a At ^b Ep ^b	1000	500	400	4	9	15	PI Others	1.4 0.8	150
9	Sedge – Sphagnum	non-forested				-	-	-	-	-	-	-	-	_
0 3	restricted to northerly aspe restricted to upper elevatio	ed microsites are preferred23 restricted to trial useted to northerly aspects31 risk of white pine blister rustted to upper elevations of biogeoclimatic unit32 limited by growing-season frosts								/e, reliabl	le, and fe	oven PI pe asible reg ability and	enerat	ion opti

ICHmw3 — Kamloops (continued)

Tree Species Selection and Free Growing Stocking Standard Guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

ICHvk1 — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

			Conifer species		Broadleaf		king stan II-space		Regen delay	Asses Early	sment Late	Min. t heigi		% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\Delta}$	<u> </u>	MSSpa		(yrs)	(yrs)	(yrs)	(m)		brush
01	CwHw – Devil's club – Lady fern	Cw ³² Sx	BI ¹³ Fd ^{1,9,14,32,34} Hw ³²	Pw ³¹	Act ^a At ^{53,a} Ep ^{53,a}	1200	700	600	4	9	15	Pw Fd Others	2.0 1.4 1.0	150
02	HwCw – Falsebox – Feathermoss	Fd ⁹	BI Cw Hw Sx	Lw ^{9,14,23} Pl ^{23,34,51} Pw ³¹	Act ^b At ^{53,a} Ep ^{53,a}	1200	700	600	4	9	15	PI, Pw Lw Fd Others	2.0 2.0 1.4 1.0	150
03	CwHw – Oak fern – Foamflower	Cw Fd ^{9,14,34} Hw Sx	BI10,13	Lw ^{9,14,23} Pw ³¹		1200	700	600	4	9	15	Pw, Lw Fd Others	2.0 1.4 1.0	150
9 10 13	elevated microsites are preferred23 restricted to triarestricted to southerly aspects31 risk of white pinrestricted to northerly aspects32 limited by growrestricted to upper elevations of biogeoclimatic unit34 risk of snow darestricted to lower elevations of biogeoclimatic unit51 restricted to are				ster rust eason frosts	performa	ance	а	•	e, reliable	,		or feas	sibility next page

7

^a See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

* TSS – target stocking standards MSS – minimum stocking standards pa – preferred and acceptable

eptable **p** – preferred

			Conifer species		Broadleaf		ting stan Il-spaced		Regen delay	Asses Early	sment Late	Min. tı heigl		% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)		brush
04	CwHw – Oak fern Spiny wood fern	Cw Fd ^{9,14} Hw Sx	BI ¹³	Lw ^{9,14,23} Pw ³¹	Act ^a At ^{53,a} Ep ^{53,a}	1200	700	600	4	9	15	Pw, Lw Fd Others	2.0 1.4 1.0	150
05	CwSxw – Devil's club – Horsetail	Cw ^{1,32} Sx ¹	BI ¹ Hw ^{1,32}	Pw ^{1,31}	Act ^a At ^b Ep ^b	1000	500	400	4	9	15	Pw Others	1.4 0.8	150
06	CwSxw – Skunk cabbage	Cw ^{1,32} Hw ^{1,32} Sx ¹	BI ¹	Pl ^{23,34,51} Pw ^{1,31}	Act ^a At ^b Ep ^b	1000	500	400	4	9	15	PI Others	1.4 0.8	150

Tree Species Selection and Free Growing Stocking Standard Guidelines

elevated microsites are preferred restricted to southerly aspects 3 restricted to upper elevations of biogeoclimatic unit 4 restricted to lower elevations of biogeoclimatic unit	23 restricted to trial use 31 risk of white pine blister rust 32 limited by growing-season frosts 34 risk of snow damage	 51 restricted to areas with proven PI performance 53 minor component a productive, reliable, and feasible regeneration optio b limited in productivity, reliability and/or feasibility
See Interior Broadleaf guidelines on page 109 for stock	ing standard and free growing guidelines	May 2001

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

72

ICHvk1 — Kamloops (continued)

ICHwk1 — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

			Conifer species		Broadleaf		king stan Il-space		Regen delay	Asses Early	sment Late	Min. t heiq		% tree over
	Site series	Primary	Secondary	Tertiary	species ⁴	<u> </u>	MSSpa	,	(yrs)	(yrs)	(yrs)	(m)		brush
01	CwHw – Oak fern	Cw Fd ^{9,14} Hw Sx	BI10,13	Lw ^{9,14,23,32} Pl ^{23,34,51} Pw ³¹	Act ^a At ^a Ep ^a	1200	700	600	4	9	15	PI, Pw Lw Fd Others	2.0 2.0 1.4 1.0	150
02	PIHw – Velvet-leaved blueberry	Fd PI ⁵¹		BI ^{10,13} Cw ^{10,13} Hw ^{10,13} Pw ³¹ Sx ^{10,13}		1000	500	400	7	12	15	PI, Pw Fd Others	1.4 1.0 0.8	150
03	HwCw – Step moss	Fd	Cw ^{10,13} Hw ^{10,13} Pl ^{23,34,51}	BI ^{10,13} Lw ^{9,14,23,32} Pw ³¹ Sx ^{10,13}		1200	700	600	4	9	15	PI, Lw Fd Others	2.0 1.4 1.0	150
04	HwCw – Falsebox – Feathermoss	Fd ^{9,14}	Cw Hw Sx ^{10,13}	BI ^{10,13} Lw ^{9,14,23,32} PI ^{23,34,51} Pw ³¹	Act ^b At ^a Ep ^a	1200	700	600	4	9	15	PI, Pw Lw Fd	2.0 2.0 1.4	150
10 13 14	restricted to southerly aspec restricted to northerly aspec restricted to upper elevation restricted to lower elevation ee Interior Broadleaf quideli	ts s of biogeoclim s of biogeoclim	31 risk atic unit 32 lim atic unit 34 risk	tricted to trial use c of white pine blis ited by growing-se c of snow damage	eason frosts			a	productiv	e, reliable	e, and fea		neratio or feas	on option sibility next page

73

	Site series	Primary	Conifer species Secondary	Tertiary	Broadleaf species∆	(we	ting stan II-spaced MSSpa	d/ha) +	Regen delay (yrs)	Asses Early (yrs)	sment Late (yrs)	Min. t heigl (m)	ht	% tree over brush
)5	CwHw – Devil's club – Lady fern	Cw ³² Sx	BI Fd ^{1,14,32} Hw ³² Lw ^{1,9,14,23,32}	PI ^{23,34,51} Pw ³¹	Act ^a At ^a Ep ^a	1200	700	600	4	9	15	Others PI, Pw Lw Fd Others	1.0 2.0 2.0 1.4 1.0	150
)6	CwSxw – Devil's club – Horsetail	Cw ^{1,32} Sx ¹	BI ¹ Hw ^{1,32}	PI ^{1, 23,34,51} Pw ^{1,31}	Act ^a At ^b Ep ^a	1000	500	400	4	9	15	PI, Pw Others	1.4 0.8	150
7	CwSxw – Skunk cabbage	Cw ^{1,32} Hw ^{1,32} Sx ¹	BI ¹	Pl ^{23,34,51}	Act ^a At ^b Ep ^b	1000	500	400	4	9	15	PI Others	1.4 0.8	150
8	Sedge – Sphagnum	non-forested				-	-	-	-	-	-	-	-	-
4	elevated microsites are pref restricted to southerly asper restricted to lower elevation restricted to trial use	performa	nce	a b				sible rege bility and/						

ICHwk1 — Kamloops (continued)

Tree Species Selection and Free Growing Stocking Standard Guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

IDFdk1 — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

			Conifer species		Broadleaf		cing stan Il-spaced		Regen delay	Asses Early	sment Late	Min. t heigi		% tree over
	Site series	Primary	Secondary	Tertiary	species∆		MSSpa	,	(yrs)	(yrs)	(yrs)	(m)		brush
01	FdPI – Pinegrass – Feathermoss	Fd ³² PI	Py ^{9,14}	Lw ^{9,14,23,32} Sx ^{10,13}	At ^a	1000	500	400	7	12	15	PI Lw Fd Sx Py	1.0 1.0 0.8 0.6 0.6	125
02	Fd – Snowberry – Bluebunch wheatgrass	Fd ²⁷ Py ^{9,14}			At ^b	600	400	400	7	12	15	PI Fd Py	1.0 0.8 0.6	125
03	Fd – Juniper – Pinegrass	Fd Pl	Py ^{9,14,23}		At ^b	600	400	400	7	12	15	PI Fd Py	1.0 0.8 0.6	125
04	Fd – Pinegrass – Yarrow	Fd Pl	Py ^{9,14}	Sx ^{10,13}	At ^b	1000	500	400	7	12	15	PI Fd Others	1.0 0.8 0.6	125
10 13	restricted to southerly asper restricted to northerly aspec restricted to upper elevation restricted to lower elevation	cts is of biogeoclima	27 part atic unit esta	ricted to trial use ial canopy cover blishment ted by growing-s	r required for	successfi	11						or feas	sibility next page

75

^a See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

* TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable

ceptable **p** – preferred

						Stock	ing stan	dards	Regen	Asses	sment	Min. t	ree	% tree
			Conifer species		Broadleaf	(we	ll-spaced	i/ha) +	delay	Early	Late	heig	nt	over
	Site series	Primary	Secondary	Tertiary	$\textbf{species}^{\scriptscriptstyle{\Delta}}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)		brush
05	SxwFd – Gooseberry – Feathermoss	Fd ^{9,14,32} Sx	BI ^{10,13} PI	Lw ^{9,14,23,32}	Act ^a At ^a Ep ^b	1000	500	400	7	12	15	PI, Lw Fd Others	1.0 0.8 0.6	125
06	Sxw – Horsetail	PI ¹ Sx ¹	Fd ^{1,32}	BI1	Act ^a At ^b Ep ^b	1000	500	400	4	9	15	PI Fd Others	1.0 0.8 0.6	125
07	Willow – Sedge	non-forested				_	_	_	_	_	_	_	_	_

IDFdk1 — Kamloops (continued)

Tree Species Selection and Free Growing Stocking Standard Guidelines

elevated microsites are preferred restricted to southerly aspects restricted to northerly aspects restricted to upper elevations of biogeoclimatic unit	 14 restricted to lower elevations of biogeoclimatic unit 23 restricted to trial use 32 limited by growing-season frosts 	productive, reliable, and feasible regeneration option limited in productivity, reliability and/or feasibility
A Cas Interior Provident quidelines on page 100 for stool	ing standard and free growing guidelines	May 2001

A See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

IDFdk1a — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

			Conifer species		Broadleaf		ting stan Il-spaced		Regen delay	Asses Early	sment Late	Min. tree height	% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\scriptscriptstyle \Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)	brush
91	Fescue – Bluebunch wheatgrass	non-forested				-	-	-	-	-	-		
92	Bluebunch wheatgrass – Junegrass	non-forested				-	-	-	-	-	-		
93	Spreading needlegrass	non-forested				-	-	-	-	-	-		
94	At – Snowberry – Kentucky bluegrass		Fd ³²	PI	At ^a	1200	700	600	4	9	15	Fd 1.0 Pl 1.4	=-

32 limited by growing-season frosts

a productive, reliable, and feasible regeneration option

7

^a See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

May 2001 🚃

			Conifer species		Broadleaf		ing stan Il-spaced		Regen delay	Asses Early	sment Late	Min. t heig		% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m))	brush
01	FdPI – Pinegrass – Feathermoss	Fd ³² PI	Py ^{9,14}	Lw ^{23,32} Sx ^{10,13}	At ^a	1000	500	400	7	12	15	PI, Lw Fd Sx Py	1.0 0.8 0.6 0.6	125
02	FdPy – Bluebunch wheatgrass – Pinegrass	Fd ²⁷ Py ¹⁴			At ^b	600	400	400	7	12	15	Fd Py	0.8 0.6	125
03	FdPy – Pinegrass	Fd ²⁷ PI	Py ¹⁴		At ^b	1000	500	400	7	12	15	PI Fd Py	1.0 0.8 0.6	125
04	Fd – Feathermoss	Fd ³² PI	Py ^{9,14} Sx ^{10,13}	Lw ^{23,32}	At ^a	1200	700	600	7	12	15	PI, Lw Fd	1.4 1.0	125
10 13	restricted to southerly aspect restricted to northerly aspect restricted to upper elevations restricted to lower elevations	s of biogeoclim	27 parti atic unit estat	icted to trial us al canopy cove blishment ed by growing-	r required for	successfi	1						or feas	sibility next pag

+ TSS – target stocking standards MSS – minimum stocking standards pa – preferred and acceptable p - preferred

82

IDFdk2 — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

Site series	Primary	Conifer species Secondary	Tertiary	Broadleaf species [∆]	(we	ting stan II-spaced MSSpa	d/ha) +	Regen delay (yrs)	Asses Early (yrs)	sment Late (yrs)	Min.t heig (m)	ht	% tre over brusl
one series	Timary	occontrary	ronary	3000103	Toopa	моора	moop	(913)	(913)	(913)	. ,		bruar
SxwFd – Dogwood – Gooseberry	Fd ³² Sx	PI	BI ^{10,13} Cw ³² Lw ^{23,32}	Act ^a At ^a Ep ^a	1200	700	600	4	9	15	Py PI, Lw Fd Others	0.8 1.4 1.0 0.8	125
Sxw – Horsetail	Pl ¹ Sx ¹	Fd ^{1,32}	BI1	Act ^a At ^b Ep ^b	1000	500	400	4	9	15	PI Fd Others	1.0 0.8 0.6	125
CwSxw – Twinberry Soft-leaved sedge	Pl ¹ Sx ¹		BI Cw ³²	Act ^a At ^a Ep ^a	1000	500	400	4	9	15	PI Others	1.0 0.6	125
Willow – Sedge	non-forested				-	-	-	-	-	-	-	-	-
elevated microsites are pr	tricted to trial use								sible rege				

IDFdk2 — Kamloops (continued)

Tree Species Selection and Free Growing Stocking Standard Guidelines

79

See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

* TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable

p – preferred

			Conifer spec	ies	Broadleaf		ting stan Il-spaced		Regen delay	Asses Early	sment Late	Min. hei	tree ght	% tree over
	Site series	Primary	Secondar	y Tertiary	species $^{\Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(r	n)	brush
01	FdPI – Pinegrass – Feathermoss	Fd ^{27,32} PI		Sx ^{13,28}	At ^a	1200	700	600	7	12	15 Fd Sx	PI 1.0 0.8	1.4	125
02*	Fd – Juniper – Kinnikinnick	Fd ²⁷ PI				1000	500	400	7	12	15 Fd	PI 0.8	1.0	125
03*	Fd – Juniper – Peltigera	Fd ²⁷ PI				600	400	400	7	12	15 Fd	PI 0.8	1.0	125
04	Fd – Bluebunch wheatgrass – Needlegrass	Fd ²⁷ PI			At ^b	1200	700	600	7	12	15 Fd	РІ 1.0	1.4	125
05	Fd – Feathermoss – Step moss	Fd ²⁷ PI			At ^b	1200	700	600	7	12	15 Fd	PI 1.0	1.4	125
06	Fd – Pinegrass – Aster	Fd ²⁷ PI			At ^b	1200	700	600	7	12	15 Fd	PI 1.0	1.4	125
13 ı 27 p	avoid logging restricted to upper elevations (partial canopy cover required t restablishment			limited by moisture limited by growing productive, reliable limited in productiv	-season frosts , and feasible	regenera		n				Co	ntinued	next pag

IDFdk3 — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

^A See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS – target stocking standards MSS – minimum stocking standards pa – preferred and acceptable p – preferred

			Conifer species		Broadleaf		king stan Il-space		Regen delay	Asses Early	sment Late	Min. hei		% tree over
	Site series	Primary	Secondary	Tertiary	species ⁴		MSSpa	<u> </u>	(yrs)	(yrs)	(yrs)	(n	.	brush
07	SxwFd – Prickly rose – Sedge	Fd ³² PI Sx			At ^a Ep ^b	1000	500	400	4	9	15 Fd Sx	PI 0.8 0.6	1.0	125
08	SxwFd – Prickly rose – Sarsaparilla	Fd ³² PI Sx			Act ^a At ^a Ep ^b	1000	500	400	4	9	15 Fd Sx	PI 0.8 0.6	1.0	125
09	Sxw – Horsetail – Glow moss	Sx ^{1,32}	Pl ¹		Act ^a	1000	500	400	4	9	15 Sx	PI 0.6	1.0	125

productive, reliable, and feasible regeneration option

IDFdk3 — Kamloops (continued)

Tree Species Selection and Free Growing Stocking Standard Guidelines

32 limited by growing-season frosts b limited in productivity, reliability and/or feasibility

elevated microsites are preferred

May 2001 🚃

^a See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

⁺ TSS – target stocking standards MSS – minimum stocking standards **pa** – preferred and acceptable **p** – preferred

а

20

	Site series	Primary	Conifer species Secondary	Tertiary	Broadleaf species∆	(we	cing stan II-spaced MSSpa	l/ha) +	Regen delay (yrs)	Asses Early (yrs)	sment Late (yrs)	Min. t heig (m	ht	% tree over brush
01	FdPI – Pinegrass – Twinflower	Fd ³² Lw ³² Pl	Py ^{9,14}	BI ^{10,13} Sx ^{10,13}	At ^a Ep ^b	1000	500	400	7	12	15	PI, Lw Fd Others	, 1.0 0.8	125
02	Bluebunch wheatgrass – Junegrass	non-forested				-	-	-	-	-	-	-	-	-
03	FdPy — Bluebunch wheatgrass — Pinegrass	Fd ²⁷ Py ¹⁴		PI	At ^b	600	400	400	7	12	15	PI Fd Py	1.0 0.8 0.6	125
04	Fd – Pinegrass – Kinnikinnick	Fd ³² Lw ³² PI Py ^{9,14}		Sx ^{10,13}	At ^b	1000	500	400	7	12	15	PI, Lw Fd Others	1.0 0.8 0.6	125
05	FdLw – Spruce – Pinegrass	Fd ³² Lw ³² PI	Sx ^{10,13}	BI ^{10,13} Cw ³² Py ^{9,14}	At ^a Ep ^{53,a}	1200	700	600	7	12	15	PI, Lw Fd Others	1.4 1.0 0.8	125
10 13	restricted to southerly aspec restricted to northerly aspec restricted to upper elevation restricted to lower elevation:	ts s of biogeoclimat	ic unit 32 lii	artial canopy cove stablishment nited by growing- inor component			ful						or fea	sibility next page

IDFdm1 — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

△ See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

82

May 2001

			Conifer species		Broadleaf		ting stan Il-space		Regen delay	Asses Early	sment Late	Min. t heig		% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\scriptscriptstyle \Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)		brush
06	SxwFd – Dogwood – Gooseberry	Fd ³² Lw ³² Sx	PI	BI Cw ³²	Act ^a At ^a Ep ^a	1200	700	600	4	9	15	PI, Lw Fd Others	1.4 1.0 0.8	125
07	Sxw – Horsetail	PI ¹ Sx ¹	Fd ^{1,32} Lw ^{1,32}	Bl1	Act ^a At ^a Ep ^b	1000	500	400	4	9	15	PI, Lw Fd Others	1.0 0.8 0.6	125

IDFdm1— Kamloops (continued)

Tree Species Selection and Free Growing Stocking Standard Guidelines

1 elevated microsites are preferred

a productive, reliable, and feasible regeneration option

32 limited by growing-season frosts

limited in productivity, reliability and/or feasibility b

80

^a See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

MSS - minimum stocking standards + TSS - target stocking standards pa - preferred and acceptable p - preferred May 2001 🚃

IDFmw1 — Kaı	mloops
--------------	--------

Tree Species Selection and Free Growing Stocking Standard Guidelines

			Conifer species		Broadleaf				Regen delay	Asses Early	sment Late	Min. t heigi		% tree over
	Site series	Primary	Secondary	Tertiary	species∆			<u> </u>	(yrs)	(yrs)	(yrs)	(m)		brush
01	FdCw – Falsebox – Prince's pine	Fd Lw	PI Py ^{9,14}	Cw ^{10,13} Sx ^{10,13}	At ^a Ep ^a	1200	700	600	7	12	15	PI, Lw Fd Others	1.6 1.0 0.8	125
01-	YC CwFd – Feathermoss	Fd Lw PI	Py ^{9,14}	Cw ^{10,13} Sx ^{10,13}	Act ^b At ^a Ep ^a	1200	700	600	7	12	15	PI, Lw Fd Others	1.6 1.0 0.8	125
02	FdPy – Snowberry – Bluebunch wheatgrass	Fd ²⁷ Py		PI		600	400	400	7	12	15	PI Fd Py	1.2 0.8 0.6	125
03	Fd – Penstemon – Pinegrass	Fd ²⁷ Py ^{9,14}	PI	Lw ^{10,13}	At ^b Ep ^b	600	400	400	7	12	15	PI, Lw Fd Py	1.2 0.8 0.6	125
04	Fd – Pinegrass – Feathermoss	Fd Lw Pl	Py ^{9,14,16}	Cw ^{10,13} Sx ^{10,13}	At ^b Ep ^b	1000	500	400	7	12	15	PI, Lw Fd Others	1.2 0.8 0.6	125
10 13	restricted to southerly aspec restricted to northerly aspec restricted to upper elevation restricted to lower elevations	ts s of biogeoclima	uni tic unit 27 pai	tricted to southerr t in region tial canopy cover i ablishment		-		a b				sible rege bility and/ Cont	or feas	

 See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines
 TSS – target stocking standards MSS – minimum stocking standards pa – preferred and acceptable p – preferred

			Conifer species		Broadleaf		ing stan Il-spaced		Regen delay	Asses Early	sment Late	Min. t heig		% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\scriptscriptstyle \Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m))	brush
05	CwFd – Dogwood	Fd ³² Lw ³² Sx	PI	BI ^{10,13} Cw	Act ^a At ^a Ep ^a	1200	700	600	4	9	15	PI, Lw Fd Others	1.6 1.0 0.8	125
06	Cw – Devil's club – Foamflower	Sx	Fd ^{1,32} Lw ^{1,32}	BI ^{10,13} Cw PI	Act ^a At ^a Ep ^a	1200	700	600	4	9	15	PI, Lw Fd Others	1.6 1.0 0.8	125

IDFmw1 — Kamloops (continued)

Tree Species Selection and Free Growing Stocking Standard Guidelines

1 on elevated microsites

a productive, reliable, and feasible regeneration option

10 restricted to northerly aspects

13 in upper elevations of biogeoclimatic unit

32 risk of frost damage

85

^a See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

May 2001 🚃

IDFmw2 — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

		Conifer specie	s	Broadleaf		king stan Il-space		Regen delay	Asses Early	sment Late	Min. t heigi		% tree over
Site series	Primary	Secondary	Tertiary	$\boldsymbol{species}^{\scriptscriptstyle \Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)		brush
01 FdCw – Falsebox – Prince's pine	Fd Pl		Cw ^{10,13} Lw ^{23,32} Py ^{9,14,16,23} Sx ^{10,1}		1200	700	600	7	12	15	PI, Lw Fd Others	1.6 1.0 0.8	125
01-YC CwFd – Feathermoss	Fd Pl		BI ^{10,13} Cw ^{10,13} Lw ^{23,32} Sx ^{10,13}	Act ^b At ^a Ep ^a	1200	700	600	7	12	15	PI, Lw Fd Others	1.6 1.0 0.8	125
01-YS EpAt – Thimbleberry – Falsebox	Fd	PI	Lw ^{23,32} Sx ^{10,13}	At ^a Ep ^a	1200	700	600	7	12	15	PI, Lw Fd Sx	1.6 1.0 0.8	125
02 Fd – Snowberry – Bluebunch wheatgrass	Fd ²⁷	Py ^{9,14,16,23}		At ^b	600	400	400	7	12	15	PI Fd Py	1.2 0.8 0.6	125
 9 restricted to southerly aspect 10 restricted to northerly aspect 13 restricted to upper elevations 14 restricted to lower elevations 	stricted to southern region stricted to trial use rtial canopy cover re tablishment		-		– 32 a b		e, reliable	e, and fea	asible rege bility and/	'or fea			
A Coo Interior Proodloof quideling												/ 200	

A See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

Site series	Primary	Conifer specie Secondary	s Tertiary	Broadleaf species [∆]	(we	ting stan II-spaced MSSpa	l/ha) †	Regen delay (yrs)	Asses Early (yrs)	sment Late (yrs)	Min. t heig (m)	ht	% tre over brust
03 Fd – Pinegrass – Feathermoss	Fd ¹⁴ Pl	Py ^{9,14,16}	Cw ^{10,13} Lw ^{23,32} Sx ^{10,13}	At ^b Ep ^b	1000	500	400	7	12	15	PI, Lw Fd Others	1.6 1.0 0.8	125
04 CwSxw – Oak fern	Fd ³² Sx	PI	BI ¹³ Cw ^{32,37} Lw ^{23,32}	Act ^a At ^a Ep ^a	1200	700	600	4	9	15	PI, Lw Fd Others	1.6 1.0 0.8	125
05* Dogwood – Sedge	Sx ¹ Pl ¹		BI ¹ Cw ^{1,32}	Act ^a At ^b Ep ^b	400	200	200	4	9	15	PI Others	1.2 0.6	125
 avoid logging elevated microsites are pre restricted to southerly asp restricted to northerly aspris restricted to upper elevation 	ects ects	16 re ur 23 re	stricted to lower ele stricted to southern nit in region stricted to trial use nited by growing-se	portion of b			а		e, reliable	,	sible rege bility and/		sibility

IDFmw2— Kamloops (continued)

78

Tree Species Selection and Free Growing Stocking Standard Guidelines

△ See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

* TSS – target stocking standards MSS – minimum stocking standards pa – preferred and acceptable

table **p** – preferred

			Conifer species	6	Broadleaf		ting stan Il-space		Regen delay	Asses Early	sment Late	Min. t heig		% tre over
	Site series	Primary	Secondary	Tertiary	species $^{\Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m))	brusl
1	FdCw – Hazelnut	Fd	PI Py ^{7,16}	Cw Lw ^{16,23}		600	400	400	4	9	15	Sx PI Fd, Lw Cw, Py	3.0 2.0 1.5 1.5	150
12	FdPI – Peltigera	PI		BI ^{10,13} Cw ^{10,13} Fd Lw ²³ Sx ^{10,13}		1200	700	600	7	12	15	PI, Lw Fd Others	1.6 1.0 0.8	125
3	Fd – Falsebox – Feathermoss	Fd	PI Py ^{7,16}	Lw ²³ Sx ^{10,13}		1200	700	600	7	12	15	PI, Lw Fd Sx, Py	1.6 1.0 0.8	125
4	Fd – Douglas maple – Fairybells	Fd	Py ¹⁶	Cw Lw ^{16,23} PI		600	400	400	7	12	15	PI Fd Cw, Py	1.2 0.8 0.6	125
1 0	restricted to nutrient-mediun restricted to northerly aspect restricted to upper elevations	ts	u	estricted to souther nit in region estricted to trial use		biogeocli	matic	-				Cont	inued	next pa
												— May	/ 200 ⁻	

IDFww — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

* TSS - target stocking standards MSS – minimum stocking standards pa – preferred and acceptable p – preferred

			Conifer species		Broadleaf		ting stan Il-space		Regen delay	Asses Early	sment Late	Min. t heig		% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\scriptscriptstyle \Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m))	brush
05	CwFd – Vine maple	Cw Fd		Sx ^{15,35}		1000	500	400	7	12	15	PI, Lw Fd Others	1.6 1.0 0.8	125
06	Cw – Devil's club – Lady fern	Cw Fd Sx ^{13,15,35}	Bg ¹⁶			1200	700	600	4	9	15	PI, Lw Fd Others	1.6 1.0 0.8	125
07	CwSxw – Skunk cabbage	Cw ¹⁶	Sx ^{1,13,15,35}			400	200	200	4	9	15	PI Others	1.2 0.6	125

1 elevated microsites are preferred

IDFww — **Kamloops** (continued)

13 restricted to upper elevations of biogeoclimatic unit 16

15 restricted to northern portion of biogeoclimatic unit in region

16 restricted to southern portion of biogeoclimatic unit in region

35 risk of weevil damage

68

^a See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

May 2001

Tree Species Selection and Free Growing Stocking Standard Guidelines

IDFxh1 — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

			_				cing stan		Regen		sment	Min.		% tree
	Site series	Primary	Conifer species Secondary	Tertiary	Broadleaf species [∆]		II-space MSSpa	<u> </u>	delay (yrs)	Early (yrs)	Late (yrs)	hei (n	-	over brush
)1	FdPy – Pinegrass	Fd ²⁷ Py	Lw ^{1,10,13,32}		Atb	1000	500	400	7	12	15	All	0.6	125
	FdPy – Bluebunch wheatgrass – Balsamroot	Py ²⁷	Fd ²⁷			400	200	200	7	12	15	All	0.6	125
	FdPy – Bluebunch wheatgrass – Pinegrass	Ру	Fd ²⁷			600	400	400	7	12	15	All	0.6	125
	FdPy – Snowbrush – Pinegrass	Ру	Fd ²⁷			600	400	400	7	12	15	All	0.6	125
	FdPy – Pinegrass – Idaho fescue	Ру	Fd ²⁷			600	400	400	7	12	15	All	0.6	125
ele	void logging evated microsites are prefern stricted to northerly aspects		27 par	tricted to upper tial canopy cov ablishment				t 32 b	limited b limited in		•		nd/or fea	asibility

			Conifer specie	s	Broadleaf		ting stan Il-spaced		Regen delay	Asses Early	sment Late	Min. tı heigl		% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\scriptscriptstyle \Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)		brush
06	FdPy – Spirea – Feathermoss	Fd ²⁷ Py	Lw ^{1,10,13,32}		At ^b	1000	500	400	7	12	15	All	0.6	125
07	FdPy – Snowberry – Spirea	Fd Py	Lw ^{1,10,13,32}	Cw ³⁷	At ^b	1000	500	400	7	12	15	All	0.6	125
08	SxwFd – Douglas maple – Dogwood	Fd ^{1,32} Sx	Pl1	Cw ³⁷ Lw ^{1,10,13,32} Py ^{1,32}	Act ^a At ^a Ep ^a	1200	700	600	4	9	15	PI, Lw Others	1.0 0.8	125
09	Willow – Sedge	non-forested				-	-	-	-	-	-	-	-	-

 elevated microsites are preferred restricted to northerly aspects restricted to upper elevations of biogeoclimatic un 	27 partial canopy cover required for successful establishment t 32 limited by growing-season frosts 37 risk of heart rots	 a t	productive, reliable, and feasible regeneration option limited in productivity, reliability and/or feasibility
---	--	------------	---

6

 $^{\scriptscriptstyle \Delta}\,$ See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

IDFxh1 — Kamloops (continued)

* TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

May 2001

Tree Species Selection and Free Growing Stocking Standard Guidelines

IDFxh1a — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

			Conifer species		Broadleaf		cing stan Il-spaced		Regen delay	Asses Early	sment Late	Min. tree height	% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)	brush
91	Fescue – Bluebunch wheatgrass	non-forested				-	-	-	-	-	-		
92	Big sage – Bluebunch wheatgrass – Balsamroo	non-forested ot				-	-	-	-	-	-		
93	Bluebunch wheatgrass – Balsamroot	non-forested				-	-	-	-	-	-		
94	Big sage — Bluebunch wheatgrass — Idaho fescue	non-forested				-	-	-	-	-	-		

Continued next page

May 2001

△ See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

			Conifer species		Broadleaf		ting stan Il-spaced		Regen delay	Asses Early	sment Late	Min. tree height	% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\scriptscriptstyle \Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)	brush
95	Big sage – Kentucky bluegrass	non-forested				-	-	-	-	-	-		
96	Kentucky bluegrass – Stiff needlegrass	non-forested				-	-	-	-	-	-	-	
97	Prairie rose – Idaho fescue	non-forested				-	-	-	-	-	-	- ·	
98	At – Snowberry – Kentucky bluegrass		Fd ³² Py ³²		At ^a	1200	700	600	4	9	15	Fd 0.4 Py 0.4	

IDFxh1a — Kamloops (continued)

Tree Species Selection and Free Growing Stocking Standard Guidelines

32 limited by growing-season frosts

a productive, reliable, and feasible regeneration option

80

^a See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

May 2001

Tree Species Selection and Free Growing Stocking Standard Guidelines

							cing stan		Regen		sment	Min. t		% tree
	Site series	Primary	Conifer species Secondary	Tertiary	_ Broadleaf species∆		II-space MSSpa	<u> </u>	delay (yrs)	Early (yrs)	Late (yrs)	heig (m)		over brush
01	FdPy – Pinegrass – Feathermoss	Fd ²⁷ Py			At ^b	1000	500	400	7	12	15	AII	0.6	125
02	FdPy – Bluebunch wheatgrass – Rough fesc	Py ²⁷ ue	Fd ²⁷			400	200	200	7	12	15	All	0.6	125
03	FdPy – Bluebunch wheatgrass – Balsamroot	Py ²⁷	Fd ²⁷			400	200	200	7	12	15	All	0.6	125
04	FdPy – Bluebunch wheatgrass – Pinegrass	Ру	Fd ²⁷			600	400	400	7	12	15	All	0.6	125
05	FdPy – Pinegrass	Fd ²⁷ Py				1000	500	400	7	12	15	All	0.6	125
06	Fd – Feathermoss	Fd Py			At ^b	1200	700	600	7	12	15	All	0.6	125
07	CwFd – Dogwood	Fd ³²	Py ³² Sx	Cw ³²	Act ^a At ^a Ep ^a	1200	700	600	4	9	15	All	0.6	125
08	Sxw – Horsetail	Sx ¹	Fd ^{1,32} Pl ^{1,23}		Act ^a At ^a Ep ^a	1000	500	400	4	9	15	PI Others	0.8 0.6	125

1 elevated microsites are preferred

23 restricted to trial use

32 limited by growing-season frosts

a productive, reliable, and feasible regeneration option

27 partial canopy cover required for successful establishment b limited in productivity, reliability and/or feasibility

^A See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

94

May 2001

IDFxh2a — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

			Conifer species		Broadleaf		king stan Il-spaced		Regen delay	Asses Early	sment Late	Min. tree height	% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\scriptscriptstyle \Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)	brush
91	Fescue – Bluebunch wheatgrass	non-forested				-	-	-	-	-	-	-	
92	Bluebunch wheatgrass – Needle-and-thread gra	non-forested Iss				-	-	-	-	-	-	-	
93	Big sage – Kentucky bluegrass	non-forested				-	-	-	-	-	-	-	
94	Balsam root – Kentucky bluegrass	non-forested				-	-	-	-	-	-	-	
95	At – Snowberry – Kentucky bluegrass		Fd ³² Py ³²		At ^a	1200	700	600	4	9	15	All 0.	8 125

32 limited by growing-season frosts

a productive, reliable, and feasible regeneration option

56

^a See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

May 2001 🚃

DFxw —	Kam	loops
--------	-----	-------

Tree Species Selection and Free Growing Stocking Standard Guidelines

						Stocking standards		Regen	Assessment		Min. tree		% tree	
			Conifer species		Broadleaf		II-spaced	<u> </u>	delay	Early	Late	heig	ht	over
	Site series	Primary	Secondary	Tertiary	species∆	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m))	brush
01	Fd – Juniper – Bluebunch wheatgrass	Fd ²⁷ Py				1200	700	600	7	12	15	Fd, Py	0.8	125
02*	FdPy – Bluebunch wheatgrass – Pinegrass	Fd ^{27,28} Py ²⁸				600	400	400	7	12	15	Fd, Py	0.6	125
03*	FdPy – Western snowberry – Bluebunch wheatgrass	Fd ^{27,28} Py ²⁸				600	400	400	7	12	15	Fd, Py	0.6	125
04	FdPy – Bluebunch wheatgrass – Balsamroo	Fd ^{27,28} Py ²⁸ t				600	400	400	7	12	15	Fd, Py	0.6	125
05	Fd – Feathermoss	Fd ²⁷				1200	700	600	7	12	15	Fd	0.8	125
06	Sxw – Water birch	Fd Sx				1000	500	400	4	9	15	Fd, Sx	0.6	125
07	Sxw – Prickly rose – Coltsfoot	Fd ³² Sx				1000	500	400	4	9	15	Fd, Sx	0.6	125

* avoid logging

28 limited by moisture deficit

27 partial canopy cover required for successful establishment 32 limited by growing-season frosts

^A See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

96

May 2001

97

Tree Species Selection and Free Growing Stocking Standard Guidelines

			Conifer species	r species		Stocking standards (well-spaced/ha) *			Regen delay	Assessment Early Late		Min. tree height		% tree over	
	Site series	Primary	Secondary	Tertiary	$\boldsymbol{species}^{\scriptscriptstyle\Delta}$	<u> </u>	MSSpa	,	(yrs)	(yrs)	(yrs)	(m)		brush	
01	Sxw – Wintergreen – Feathermoss	PI Sx	BI ^{10,13} Fd ^{9,14,32}		At ^a	1200	700	600	7	12	15	PI Others	1.4 0.8	125	
02	FdPI – Juniper	PI	Fd ⁹	BI ^{10,13} Pa ^{9,13,17} Sx ^{10,13}		1000	500	400	7	12	15	PI Others	1.0 0.6	125	
03	PI – Spirea – Pinegrass	PI	Fd ^{9,14,32}	BI ^{10,13} Pa ^{9,13,17} Sx ^{10,13}	At ^b	1000	500	400	7	12	15	PI Others	1.0 0.6	125	
04	Sxw – Gooseberry	PI Sx	BI ¹³ Fd ^{9,14,32}		Act ^a At ^a	1200	700	600	4	9	15	PI Others	1.4 0.8	125	
05	Sedge – Glow moss	non-forested				-	-	-	-	-	-	-	-	-	
9 1	restricted to southerly aspec	ts	14 res	tricted to lower elev	vations of bio	geoclima	atic unit	32	limited by	growing	-season 1	rosts			
10 i	restricted to northerly aspec restricted to upper elevation	ts		tricted to western p region	ortion of bio	geoclima	tic unit					sible rege bility and/			
_												Ma	y 200	1 🚃	

MSdm1 — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

	Conifer species		Broadleaf	Stocking standard (well-spaced/ha			Regen delay			_ Min. tree height		% tree over	
Primary	Secondary	Tertiary	species∆					(yrs)	(yrs)	-		brush	
PI Sx	BI Fd ^{9,14,32} Lw ^{9,14,32}		At ^a	1200	700	600	7	12	15	PI, Lw Others	1.4 0.8	125	
Fd Pl	Lw		At ^b	600	400	400	7	12	15	PI, Lw Fd	1.0 0.6	125	
- Pl	Fd ³² Lw ³²	BI ^{10,13} Sx ^{10,13}	At ^b	1000	500	400	7	12	15	PI, Lw Others	1.0 0.6	125	
Fd ^{14,32} Lw ^{14,32} PI		BI ^{10,13} Sx ^{10,13}	At ^b	1200	700	600	7	12	15	PI, Lw Others	1.4 0.8	125	
ea – Pl	BI ^{10,13} Fd ^{9,14,32} Lw ^{9,14,32} Sx		At ^{53,a}	1200	700	600	4	9	15	PI, Lw Others	1.4 0.8	125	
/ aspects r aspects evations of biogeoclin	32 limite	ed by growing-		ogeoclim	atic unit	a b				bility and/o	or feas	ibility	
	PI Sx Fd PI - PI Fd ^{14,32} Lw ^{14,32} PI a – PI	PI Sx BI Fd ^{9,14,32} Lw ^{9,14,32} Fd PI Lw - PI Fd ³² Lw ³² Fd ^{14,32} Lw ^{14,32} PI a - PI BI ^{10,13} Fd ^{9,14,32} Lw ^{9,14,32} Sx	PI Sx BI Fd ^{9,14,32} Lw ^{9,14,32} Fd PI Lw PI Fd ³² Lw ³² BI ^{10,13} Sx ^{10,13} Fd ^{14,32} BI ^{10,13} Lw ^{14,32} PI Sx ^{10,13} a - PI BI ^{10,13} Fd ^{9,14,32} Lw ^{9,14,32} Sx	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PI Sx BI Fd ^{9,14,32} Lw ^{9,14,32} At ^a 1200 Fd PI Lw At ^b 600 - PI Fd ³² Lw ³² BI ^{10,13} Sx ^{10,13} At ^b 1000 Fd ^{14,32} BI ^{10,13} Lw ^{14,32} PI BI ^{10,13} Sx ^{10,13} At ^b 1200 ia - PI BI ^{10,13} Fd ^{9,14,32} Lw ^{9,14,32} At ^{53,a} 1200 x aspects Sx Sx Sx Store and the second procession of biogeoclime 32 limited by growing-season frosts	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PI Sx BI Fd ^{9,14,32} Lw ^{9,14,32} At ^a 1200 700 600 7 Fd PI Lw At ^b 600 400 400 7 - PI Fd ³² Lw ³² BI ^{10,13} Sx ^{10,13} At ^b 1000 500 400 7 - PI Fd ³² Lw ³² BI ^{10,13} Sx ^{10,13} At ^b 1000 500 400 7 - PI Fd ^{14,32} Lw ^{14,32} BI ^{10,13} Sx ^{10,13} At ^b 1200 700 600 7 a - PI BI ^{10,13} Fd ^{9,14,32} Lw ^{9,14,32} Sx At ^{53,a} 1200 700 600 4 a spects I4 restricted to lower elevations of biogeoclimatic unit 32 limited by growing-season frosts a productive b limited in	PI Sx BI Fd ^{9,14,32} Lw ^{9,14,32} At ^a 1200 700 600 7 12 Fd PI Lw At ^b 600 400 7 12 - PI Fd ³² Lw ³² Bl ^{10,13} Sx ^{10,13} At ^b 1000 500 400 7 12 - PI Fd ³² Lw ³² Bl ^{10,13} Sx ^{10,13} At ^b 1000 500 400 7 12 - PI Fd ^{14,32} Lw ^{14,32} PI Bl ^{10,13} Sx ^{10,13} At ^b 1200 700 600 7 12 ia - PI Bl ^{10,13} Fd ^{9,14,32} Lw ^{9,14,32} Sx At ^{53,a} 1200 700 600 4 9 v aspects 32 Imited to lower elevations of biogeoclimatic unit 32 limited by growing-season frosts a productive, reliable b imited in productive	PI Sx BI Fd ^{9,14,32} Lw ^{9,14,32} At ^a 1200 700 600 7 12 15 Fd PI Lw At ^b 600 400 400 7 12 15 - PI Fd ³² Lw ³² Bi ^{10,13} Sx ^{10,13} At ^b 1000 500 400 7 12 15 - PI Fd ³² Lw ³² Bi ^{10,13} Sx ^{10,13} At ^b 1000 500 400 7 12 15 - PI Fd ^{14,32} Lw ^{14,32} PI Bi ^{10,13} Sx ^{10,13} At ^b 1200 700 600 7 12 15 ia - PI Bi ^{10,13} Fd ^{9,14,32} Lw ^{9,14,32} Sx At ^{53,a} 1200 700 600 4 9 15 sects Sx 14 restricted to lower elevations of biogeoclimatic unit 32 limited by growing-season frosts a productive, reliable, and fea b b	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PI Sx BI Fd ^{9,14,32} Lw ^{9,14,32} At ^a 1200 700 600 7 12 15 PI, Lw 1.4 Fd PI Lw At ^a 1200 700 600 7 12 15 PI, Lw 1.4 Others 0.8 Fd PI Lw At ^b 600 400 7 12 15 PI, Lw 1.0 - PI Fd ³² Lw ³² BI ^{10,13} Sx ^{10,13} At ^b 1000 500 400 7 12 15 PI, Lw 1.0 - PI Fd ³² Lw ³² BI ^{10,13} Sx ^{10,13} At ^b 1000 500 400 7 12 15 PI, Lw 1.4 Cw ^{14,32} Lw ^{14,32} Lw ^{14,32} BI ^{10,13} Sx ^{10,13} At ^b 1200 700 600 7 12 15 PI, Lw 1.4 Others 0.8 Sx Sx 1200 700 600 4 9 15 PI, Lw 1.4 Others 0.8 Sx Sx 12 14 restricted to lower	

+ TSS – target stocking standards MSS – minimum stocking standards pa – preferred and acceptable p – preferred

			Conifer species	fer species		Stocking standards (well-spaced/ha) *			Regen delay	Assessment Early Late		Min. tree height		% tree over	
	Site series	Primary	Secondary	Tertiary	species $^{\scriptscriptstyle \Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)		brush	
06	Sxw – Gooseberry	PI Sx	BI Fd ^{9,14,32} Lw ^{9,14,32}		Act ^a At ^a	1200	700	600	4	9	15	PI, Lw Others	1.4 0.8	125	
07	Sxw – Trapper's tea Horsetail	PI ¹ Sx ¹	BI1			1000	500	400	4	9	15	PI Others	1.0 0.6	125	
08	Willow – Sedge	non-forested				-	-	-	-	-	-	-	-	-	

MSdm1 — Kamloops (continued)

Tree Species Selection and Free Growing Stocking Standard Guidelines

1 elevated microsites are preferred

9 restricted to southerly aspects

32 limited by growing-season frosts

a productive, reliable, and feasible regeneration option

14 restricted to lower elevations of biogeoclimatic unit

66

^a See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

May 2001 🚃

$\rm MSdm2-Kamloops$

Tree Species Selection and Free Growing Stocking Standard Guidelines

			Conifer species	\$	Broadleaf		cing stan Il-spaced		Regen delay	Asses Early	sment Late	Min. t heiq				
	Site series	Primary	Secondary	Tertiary	species ⁴		MSSpa			(yrs)	(yrs)	(m)		brush		
01	Sxw – Falsebox – Feathermoss	PI Sx	BI ^{10,13} Fd ^{9,14,32}	Lw ^{14,23,32}	At ^a	1200	700	600	7	12	15	PI, Lw Others	1.4 0.8	125		
02*	Juniper – Pinegrass	non-forested				-	-	-	-	-	-	-	-	-		
03	PI – Juniper – Grouseberry	Fd ^{9,14} PI		BI ^{10,13} Sx ^{10,13}	At ^b	1000	500	400	7	12	15	PI Others	1.0 0.6	125		
04	PI – Grouseberry – Pinegrass	PI	Fd ^{9,14,32} Sx ^{10,13}	BI ^{10,13} Lw ^{14,23,32}	Ata	1200	700	600	7	12	15	PI, Lw Others	1.4 0.8	125		
05	Sxw – Gooseberry – Grouseberry	PI Sx	BI Fd ^{9,14,32}	Cw ³² Lw ^{14,23,32}	Act ^a At ^a	1200	700	600	4	9	15	PI, Lw Others	1.4 0.8	125		
06	Sxw – Gooseberry – Devil's club	PI Sx	BI Fd ^{9,14,32}	Lw ^{14,23,32}	Act ^a At ^a	1200	700	600	4	9	15	PI, Lw Others	1.4 0.8	125		
07	Sxw – Horsetail – Leafy moss	PI Sx	BI		Act ^a At ^b	1000	500	400	4	9	15	PI Others	1.0 0.6	125		
9 r 10 r	void logging estricted to southerly asp estricted to northerly asp estricted to upper elevatic	ects	23 r 32 li	estricted to lower e estricted to trial use mited by growing-s)	-	matic unit	a b	productiv limited in			bility and/		sibility		

^A See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS – target stocking standards MSS – minimum stocking standards pa – preferred and acceptable p – preferred

Tree Species Selection and Free Growing Stocking Standard Guidelines

			Conifer species						Asses Early	sment Late	Min. t heig		% tree over	
	Site series	Primary	Secondary	Tertiary	species ⁴		MSSpa	,	(yrs)	(yrs)	(yrs)	(m)		brush
01	PI – Pinegrass – Lupine	PI	Fd ^{9,14,32} Sx ^{10,13}	BI ^{10,13}	At ^a	1200	700	600	7	12	15	PI Others	1.4 0.8	125
02	Fd – Juniper – Grouseberry	PI	Fd ^{9,14}			1000	500	400	7	12	15	PI Others	1.0 0.6	125
03	Bluebunch wheatgrass – Junegrass	non-forested				-	-	-	-	-	-	-	-	-
04	Big sage – Pinegrass	non-forested				-	-	-	-	-	-	-	-	-
05	FdPI – Pinegrass – Arnica	PI	Fd ^{9,14}	BI ^{10,13} Sx ^{10,13}		1000	500	400	7	12	15	PI Others	1.0 0.6	125
06	Pl – Falsebox – Lupine	PI	BI ^{10,13} Fd ^{9,14,32} Sx ^{10,13}	Lw ^{9,14,23}	At ^a	1200	700	600	7	12	15	PI, Lw Others	1.4 0.8	125
10	restricted to southerly aspe restricted to northerly aspe restricted to upper elevation	cts	23 restri	icted to lower e icted to trial us ed by growing-	e	ogeoclin	natic unit	a	productiv	e, reliable	e, and fea			next page

See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

* TSS - target stocking standards **MSS** – minimum stocking standards **pa** – preferred and acceptable

p – preferred

MSxk — Kamloops (continued)

Tree Species Selection and Free Growing Stocking Standard Guidelines

	Conifer species				Broadleaf		Stocking standards Regen <u>Assessment</u> (well-spaced/ha) * delay Early Late					Min. tree height		
	Site series	Primary	Secondary	Tertiary	species $^{\Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)		brush
07	Sxw – Trapper's tea Grouseberry	PI	BI ^{10,13} Fd ^{1,9,14,32} Sx			1200	700	600	4	9	15	PI Others	1.4 0.8	125
08	Sxw – Gooseberry – Grouseberry	PI Sx	BI Fd ^{9,14,32}		Act ^a At ^a	1200	700	600	4	9	15	PI Others	1.4 0.8	125
09	Sxw – Horsetail – Leafy moss	PI ¹ Sx ¹	BI ¹		Act ^a At ^b	1000	500	400	4	9	15	PI Others	1.0 0.6	125

 elevated microsites are preferred restricted to southerly aspects restricted to northerly aspects 	13 restricted to upper elevations of biogeoclimatic unit14 restricted to lower elevations of biogeoclimatic unit32 limited by growing-season frosts	productive, reliable, and feasible regeneration option limited in productivity, reliability and/or feasibility
△ See Interior Broadleaf quidelines on page 109	for stocking standard and free growing quidelines	May 2001

A See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

PPxh1 — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

			Conifer species		Broadleaf		cing stan Il-spaced		Regen delay	Asses Early	sment Late	Min. t heig		% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m))	brush
01	Py – Bluebunch wheatgrass – Idaho fescue	Py ²⁷	Fd ²⁷			400	200	200	7	12	15	All	0.6	125
02*	Py – Red three-awn	Py ²⁷	Fd ²⁷			400	200	200	7	12	15	All	0.6	125
03	Big sage – Bluebunch n wheatgrass – Balsamroot	ion-forested				-	-	-	-	-	-	-	-	-
04	Py – Bluebunch wheatgrass – Cheatgrass	Py ²⁷	Fd ²⁷			400	200	200	7	12	15	All	0.6	125

* avoid logging

27 partial canopy cover required for successful establishment

^A See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS - minimum stocking standards pa - preferred and acceptable p - preferred

May 2001 📃

PPxh1 — Kamloops (continued)

Tree Species Selection and Free Growing Stocking Standard Guidelines

			Conifer species		Broadleaf		cing stan Il-spaced		Regen delay	Asses Early	sment Late	Min. tre height	e % tree over
	Site series	Primary	nary Secondary		species $^{\Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)	brush
05	Py – Bluebunch wheatgrass – Rough fes	Py ²⁷ scue	Fd ²⁷			400	200	200	7	12	15	All).6 125
06	FdPy – Snowberry – Pinegrass	Fd ²⁷ Py			At ^b Ep ^b	600	400	400	7	12	15	All).6 125
07	FdPy – Snowberry – Spirea	Fd Py				1000	500	400	7	12	15	All).6 125
08	Fd – Water birch – Douglas maple	Fd ¹	Py ^{1,32} Sx ¹	PI ^{1,12,23}	Act ^a At ^b Ep ^b	1000	500	400	4	9	15	All).6 125

1 elevated microsites are preferred 12 suitable on cold air drainage sites 23 restricted to trial use	27 partial canopy cover required for successful establishment32 limited by growing-season frosts	a productive, reliable, and feasible regeneration option b limited in productivity, reliability and/or feasibility
 See Interior Broadleaf guidelines on page 109 	for stocking standard and free growing guidelines	May 2001

See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines
 TSS – target stocking standards MSS – minimum stocking standards pa – preferred and acceptable p – preferred

PPxh2 — Kamloops

Tree Species Selection and Free Growing Stocking Standard Guidelines

			Conifer species		Broadleaf		cing stan Il-spaced		Regen delay	Asses Early	sment Late	Min. tr heigh		% tree over	
	Site series	Primary	Secondary	Tertiary	species $^{\scriptscriptstyle \Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)		brush	
01	Py – Bluebunch wheatgrass – Fescue	Py ²⁷	Fd ²⁷			400	200	200	7	12	15	All	0.6	125	
02*	FdPy – Bluebunch wheatgrass – Selaginella	Py ²⁷	Fd ²⁷			400	200	200	7	12	15	All	0.6	125	
03	Py – Bluebunch wheatgrass	Py ²⁷	Fd ²⁷			400	200	200	7	12	15	All	0.6	125	
04	Py – Big sage – Bluebunch wheatgrass	Py ²⁷	Fd ²⁷			400	200	200	7	12	15	All	0.6	125	

* avoid logging

27 partial canopy cover required for successful establishment

Continued next page
May 2001

 $^{\scriptscriptstyle \Delta}$ See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

* TSS – target stocking standards MSS – minimum stocking standards pa – preferred and acceptable p – preferred

PPxh2 — Kamloops (continued)

Tree Species Selection and Free Growing Stocking Standard Guidelines

			Conifer species		Broadleaf		ing stan Il-spaced		Regen delay	Asses Early	sment Late	Min. hei	tree ight	% tree over
	Site series	Primary	Secondary	Tertiary	species $^{\Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(r	n)	brush
05	Big sage – Bluebunch wheatgrass (– Fescue)	non-forested				-	-	-	-	-	-	-	-	-
06	FdPy – Snowberry – Saskatoon	Fd ²⁷ Py				600	400	400	7	12	15	All	0.6	125
07	Act – Water birch	Pl ^{1,23} Sx ¹	Fd ¹ Py ¹		Act ^a At ^a Ep ^b	1000	500	400	4	9	15	All	0.6	125

elevated microsites are preferred productive, reliable, and feasible regeneration option а 1 b limited in productivity, reliability and/or feasibility 23 restricted to trial use 27 partial canopy cover required for successful establishment May 2001

^A See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS - target stocking standards MSS – minimum stocking standards pa - preferred and acceptable p - preferred

Tree Species Selection and Free Growing Stocking Standard Guidelines

							king stan		Regen	Asses		Min. t		% tree
	Site series	Primary	Conifer species Secondary	Tertiary	Broadleaf species [∆]		II-spaced MSSpa	<u> </u>	delay (yrs)	Early (yrs)	Late (yrs)	heig (m)		over brush
01	Sxw – Falsebox – Knighťs plume	PI Sx	BI ^{10,13} Fd ^{9,14,32}	Lw ^{14,23,32}	Act ^b At ^a	1200	700	600	7	12	15	PI, Lw Fd Others	2.0 1.4 1.0	150
02	PI – Huckleberry – Cladonia	PI	Fd ^{9,13,32}	BI ^{10,13} Sx ^{10,13}	At ^b	1000	500	400	7	12	15	PI Fd Others	1.4 1.0 0.8	150
03	Pl – Douglas-fir – Juniper	Fd ^{9,14,32} PI		BI ^{10,13} Sx ^{10,13}		1000	500	400	7	12	15	PI Fd Others	1.4 1.0 0.8	150
04	PI – Soopolallie – Pinegrass	PI	Fd ^{9,14,32}	BI ^{10,13} Sx ^{10,13}	At ^b	1000	500	400	7	12	15	PI Fd Others	1.4 1.0 0.8	150
10	restricted to southerly asp restricted to northerly asp restricted to upper elevation	ects	23 restr	ricted to lower e ricted to trial us ed by growing-s	е	iogeoclim	natic unit		•	,	,		or fea	sibility next page

See Interior Broadleat guidelines on page 109 for stocking standard and free growing guidelines

* TSS – target stocking standards MSS – minimum stocking standards pa – preferred and acceptable

p – preferred

		Conifer species		Broadleaf		cing stan Il-spaced		Regen delay	Asses Early	sment Late	Min. t heig		% tre over
Site series	Primary	Secondary	Tertiary	species $^{\Delta}$	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m))	brush
	PI	BI ^{10,13} Fd ^{9,14,32} Sx	Lw ^{14,23,32}	At ^a	1200	700	600	7	12	15	PI, Lw Fd Others	2.0 1.4 1.0	150
,	PI Sx	BI ^{10,13} Fd ^{9,14,32}	Lw ^{14,23,32}	At ^a	1200	700	600	7	12	15	PI, Lw Fd Others	2.0 1.4 1.0	150
w – Oak fern	PI Sx	BI Fd ^{9,14,32}	Cw ³²	Act ^a At ^a	1200	700	600	4	9	15	PI Fd Others	2.0 1.4 1.0	150
v – Horsetail	PI ¹ Sx ¹	BI ¹		Act ^a At ^b Ep ^b	1000	500	400	4	9	15	PI Others	1.4 0.8	150
lge – Sphagnum	non-forested												
					iogeoclim	natic unit			,	,	0		
	w – Soopolallie – sebox w – Huckleberry – sebox w – Oak fern w – Horsetail dge – Sphagnum ted microsites are pre icted to southerly aspi	Site seriesPrimaryw - Soopolallie - seboxPIw - Huckleberry - seboxPI Sxw - Oak fernPI Sxw - HorsetailPI^1 Sx^1	Site series Primary Secondary w – Soopolallie – sebox PI BI ^{10,13} Fd ^{9,14,32} Sx w – Huckleberry – PI Sx BI ^{10,13} Fd ^{9,14,32} w – Oak fern PI Sx BI Fd ^{9,14,32} w – Oak fern PI Sx BI Fd ^{9,14,32} w – Horsetail PI ¹ Sx ¹ BI ¹ dge – Sphagnum non-forested 14 rest ted microsites are preferred 14 rest icted to southerly aspects 23 rest	Site seriesPrimarySecondaryTertiaryw - Soopolallie -PI $BI^{10,13}$ $Fd^{9,14,32}$ Sx $Lw^{14,23,32}$ seboxPI Sx $BI^{10,13}$ $Lw^{14,23,32}$ w - Huckleberry -PI Sx $BI^{10,13}$ $Lw^{14,23,32}$ seboxPI Sx $BI^{9,14,32}$ Cw^{32} w - Oak fernPI SxBI $Fd^{9,14,32}$ Cw^{32} w - HorsetailPI^1 Sx^1BI^1dge - Sphagnumnon-forested 14 restricted to lower e 23 restricted to trial us	Site seriesPrimarySecondaryTertiaryspecies $w - Soopolallie - SeboxPIBIBI10.13State14.23.32Ataw - Huckleberry - SeboxPI SxBIBI10.13Lw14.23.32Ataw - Huckleberry - SeboxPI SxBIBI10.13Lw14.23.32Ataw - Oak fernPI SxBI FdFd9.14.32Cw32ActaAtaw - Oak fernPI SxBI FdBI4.23.22Cw32ActaAtaw - HorsetailPI SxBI FdBI4.23.22Cw4.24Ataw - HorsetailPI SxBI FdBI4.24Ataw - HorsetailPI SxBI Fd5.25Cw4.24Ataw - HorsetailPI SxBI StateTake the second second$	Site seriesPrimarySecondaryTertiaryspeciesTSSpa $w - Soopolallie - SeboxPIBI10,131200Fd^{9,14,32} SxLw14,23,32Ata1200w - Huckleberry - SeboxPI SxBI10,13Lw14,23,32Ataw - Oak fernPI SxBI Fd9,14,32Cw32Ata1200w - Oak fernPI SxBI Fd9,14,32Cw32Acta Ata1200w - Oak fernPI SxBI Fd9,14,32Cw32Acta Ata1200w - HorsetailPI Sx1BI1Acta Atb1000Ep^b1000Epb1000Epbdge - Sphagnumnon-forested14 restricted to lower elevations of biogeoclim23 restricted to trial use$	Site seriesPrimarySecondaryTertiaryspeciesTSSpaMSSpa $w - Soopolallie - SeboxPIBI10.131200700w - Huckleberry - SeboxPI SxBI10.13Lw14.23.32Ataw - Huckleberry - SeboxPI SxBI10.13Lw14.23.32Ataw - Huckleberry - SeboxPI SxBI10.13Lw14.23.32Ataw - Oak fernPI SxBI Fd9.14.32Cw32Acta Ata1200w - Oak fernPI SxBI Fd9.14.32Cw32Acta Ata1200w - HorsetailPI^1 Sx1BI1Acta Atb1000500ge - Sphagnumnon-forested14restricted to lower elevations of biogeoclimatic unit23ted microsites are preferredticted to southerly aspects14restricted to trial use$	Site seriesPrimarySecondaryTertiaryspeciesTSSpaMSSpaMSSpaw - Soopolallie - seboxPIBI Fd9.14.32BI Fd9.14.321200700600w - Huckleberry - seboxPI SxBI Fd9.14.32Lw14.23.32Ata1200700600w - Huckleberry - seboxPI SxBI Fd9.14.32Lw14.23.32Ata1200700600w - Oak fernPI SxBI Fd9.14.32Cw32Acta Ata1200700600w - HorsetailPI SxBI TActa Atb1000500400Epb14restricted to lower elevations of biogeoclimatic unit 23 restricted to trial usea	Site seriesPrimarySecondaryTertiaryspeciesTSSpaMSSpaMSSp(yrs)w - Soopolallie - seboxPIBI $Ed^{9,14,32}$ SxLw14,23,32Ata12007006007w - Huckleberry - seboxPI SxBI $Fd^{9,14,32}$ Lw14,23,32Ata12007006007w - Oak fernPI SxBI Fd^{9,14,32}Cw32Acta Ata12007006004w - Oak fernPI SxBI Fd^{9,14,32}Cw32Acta Ata12007006004w - HorsetailPI SxBI Fd^{9,14,32}Cw32Acta Ata12007006004dge - Sphagnumnon-forested14 restricted to lower elevations of biogeoclimatic unit 23 restricted to trial usea productive b limited in	Site seriesPrimarySecondaryTertiaryspecies ATSSpaMSSpaMSSpa(yrs)(yrs)w - Soopolallie - seboxPIBI10.13 Fd9.14.32 SxLw14.23.32Ata1200700600712w - Huckleberry - seboxPI SxBI10.13 Fd9.14.32Lw14.23.32Ata1200700600712w - Huckleberry - seboxPI SxBI10.13 Fd9.14.32Lw14.23.32Ata1200700600712w - Oak fernPI SxBI Fd9.14.32Cw32Acta Ata120070060049w - HorsetailPI SxBI Fd9.14.32Cw32Acta Ata120070060049w - HorsetailPI SxBI Fd9.14.32Cw32Acta Ata120070060049dge - Sphagnumnon-forested14restricted to lower elevations of biogeoclimatic unit 23 restricted to trial useaproductive, reliable b	Site seriesPrimarySecondaryTertiaryspeciesTSSpaMSSpaMSSpaMSSpa(yrs)(yrs)(yrs)w - Soopolallie - seboxPIBI10.13 Fd9.14.32 SxLw14.23.32 Fd9.14.32 Sx120070060071215w - Huckleberry - seboxPI SxBI10.13 Fd9.14.32Lw14.23.32 Fd9.14.32Ata120070060071215w - Huckleberry - seboxPI SxBI10.13 Fd9.14.32Lw14.23.32 Fd9.14.32Ata120070060071215w - Oak fernPI SxBI Fd9.14.32 Fd9.14.32Cw32 Cw32Acta Ata12007006004915w - HorsetailPI 1Sx1BI1 Ep ^b Acta Atb Ep ^b 10005004004915ted microsites are preferred toted to southerly aspects14 restricted to lower elevations of biogeoclimatic unit 23 restricted to trial usea bproductive, reliable, and fea b	Site seriesPrimarySecondaryTertiaryspeciesTSSpaMSSpaMSSpa(yrs)(yrs)(yrs)(m) $w - Soopolallie - SeboxPIBI10,13Fd9,14,32 SxLw14,23,32Ata120070060071215PI, LwseboxFd9,14,32 SxLw14,23,32Ata120070060071215PI, Lww - Huckleberry -PI SxBI10,13Lw14,23,32Ata120070060071215PI, LwseboxFd9,14,32Cw32Acta Ata12007006004915PIw - Oak fernPI SxBI Fd9,14,32Cw32Acta Ata12007006004915PIw - HorsetailPI1 Sx1BI1Acta Atb10005004004915PIdge - Sphagnumnon-forested14restricted to lower elevations of biogeoclimatic unitaproductive, reliable, and feasible regeblimited in productivity, reliability and/$	Site seriesPrimarySecondaryTertiaryspeciesTSSpaMSSpaMSSp(yrs)<

SBSmm— Kamloops (continued)

Tree Species Selection and Free Growing Stocking Standard Guidelines

A See Interior Broadleaf guidelines on page 109 for stocking standard and free growing guidelines

+ TSS – target stocking standards MSS – minimum stocking standards pa – preferred and acceptable p – preferred

Broadleaf —	Interior*
-------------	-----------

Tree Species Selection and Free Growing Stocking Standard Guidelines**

		l stocking sta		Regen		sment	Min. inter-tree	% tree
Target from conifer standards (stems/ha)	(v TSSpa	vell-spaced/l MSSpa	na) + MSSp	delay (yrs)	Early (yrs)	Late (yrs)	distance (m)	over brush
400	600	400	400	4	9	12	2	150
600	1000	500	400	4	9	12	2	150
1000	1200	1000	800	4	9	12	2	150
1200	2000	1200	1000	4	9	12	2	150

May 2000

Cariboo, Kamloops, Nelson, Prince George and Prince Rupert forest regions

** The minimum height for broadleaf trees is based on the minimum height of the tallest conifer for the site series. These standards apply to pure broadleaf stands (black cottonwood, trembling aspen, paper birch, and balsam poplar) for oriented strand board and sawlog production objectives.

TSS – target stocking standards MSS – minimum stocking standards pa – preferred and acceptable p – preferred

Broadleaf — Coast*

Tree Species Selection and Free Growing Stocking Standard Guidelines**

			cking standa well-spaced		Regen delay	<u>Asses</u> Early	sment Late	Min. inter-tree distance	% tree over
Tree species	Product	TSSpa	MSSpa	MSSp	(yrs)	(yrs)	(yrs)	(m)	brush
Red alder [‡] and bigleaf maple	Sawlogs	1200	700	600	3	5	8	2	150
	Pulp	1500	1200	1000	3	5	8	2	150
Coastal black cottonwood	Sawlogs	700	400	400	3	5	8	2	150
(for pulp)	Pulp	900	600	500	3	5	8	2	150

May 2000

* Vancouver Forest Region and the CWH zone of the Prince Rupert Forest Region

** The minimum height for broadleaf trees is based on the minimum height of the tallest conifer for the site series. These standards apply to pure broadleaf stands.

 $^+$ TSS – target stocking standards MSS – minimum stocking standards pa – preferred and acceptable p – preferred

[‡] When growing red alder for sawlog production, it is recommended that stands be thinned to 600 well-spaced trees per hectare, but not before the stands have reached 12 to 16 m in height.

Target from even-aged standards			king stand -spaced/h		Target from even-aged standards			king stand -spaced/h	
(stems/ha)	Layer**	TSSpa	MSSpa	MSSp	(stems/ha)	Layer**	TSSpa	MSSpa	MSSp
1200	1	600	300	250	800	1	300	150	150
	2	800	400	300		2	400	200	200
	3	1000	500	400		3	600	300	300
	4	1200	700	600		4	800	400	400
1000	1	400	200	200	600	1	300	150	150
	2	600	300	250		2	400	200	200
	3	800	400	300		3	500	300	300
	4	1000	500	400		4	600	400	400
900	1	400	200	200	400	1	200	100	100
	2	500	300	250		2	300	125	125
	3	700	400	300		3	300	150	150
	4	900	500	400		4	400	200	200

Uneven-aged Stocking Standards* — Single-tree selection only

Maximum regeneration delay is seven years. For a seven-year regeneration delay, the early free growing is 12 years and the late free growing is 15 years. Regeneration delay can be met immediately following harvest if the residual stand has no significant damage or pest problems and meets minimum stocking standards. If regeneration is achieved immediately following harvest, earliest free growing date is five years post harvest and late free growing assessment is at 15 years.

** Layer 1 = mature layer = trees ≥ 12.5 cm dbh; Layer 2 = pole layer = trees 7.5 cm to 12.4 cm dbh; Layer 3 = sapling layer = trees ≥ 1.3 m in height and up to 7.4 cm dbh; Layer 4 = regeneration layer = trees < 1.3 m in height</p>

** TSS – target stocking standards MSS – minimum stocking standards pa – preferred and acceptable p – preferred

_

	Dis	tribut	tion 8	Distribution along the climatic gradient	the c	limati	ic gra	adien		Distr	ibuti	Distribution along the soil	ong t	he sc		stribu	Distribution along the	buo	the s	soil	ß	Shade tolerance	tolers	ance		for	for	stre	
Species	E ∃S	In the for MS MBS MBS	s orest	PS bic	- odeo	- clima	ticz	ones) ⊾	H/	ւր չու	nois	ture ç	jradie	t jt iking*		or nt	rient g	adi,		.A spøqe- iking,	ade- erant	erant derately ade-tolerant	ade- olerant	y shade- y shade-	*gnixi	tregenera tion tion tion		leiteq merinpe	Special adaptations and indicative values
Pacific silver fir				-		0 10	Ы	10	• 0	ал	ab O	-4 O		∾ 16			u 🔴	oju 🔴	-				4s	9A		48 -		u .	heavy snow cover- & flood-tolerant; indicator of maritime, wet (snowy) climates
		-	-	-	•	•		•	0	\square	0	•		0 16	6	0	•	•		18	•	•		0	8		<u> </u>	Ξ	fluctuating water table & flood-tolerant; indicator of nutrient-rich sites
	•		•	•	0	٠			0	0	•	•		•	0 80	•	ullet		•	6	•		•	0	ю	т	_	-= =	frost-, heavy snow cover-& flood-tolerant; at high elevations, vegetative reproduction by layering
			•									0	•	92	6		0		•	16					26	_	Σ	T	frost- & flood-tolerant; indicator of continental boreal, moist to wet & nutrient-rich sites
Subalpine larch		•								0	•	•		4		0	ullet	•	0	9			0	lacksquare	22	_	Σ	T T	frost-tolerant; indicator of continental subalpine boreal climates
Western larch		•				•	0			0		•	0	5		0	•		•	14			0	lacksquare	18	_	Σ	T	frost-tolerant; deep & wide-spreading root system; indicator of continental temperate climates
Engelmann spruce	•		•	•	0	•			0	0	•	•		0 18	<u>م</u>	•	ullet		•	12	0	•		•	12	N-N	Σ	Σ	frost-, heavy snow cover- & flood-tolerant
White spruce		•		•	0	0			0		•	•	•	0 15	10	0	•	•	•	18	0	•	\bullet	•	÷	Σ	Σ	T T	frost- & flood-tolerant; indicator of continental boreal climates
Black spruce			•	0		0					0	•	•	23	•		•	0		2	•	•	0		9	Σ	_		persistent & semi-serotinous cones, vegetative reproduction by layering. frost-tolerant, indicator of continental boreal climates & nutrient-poor sites
Sitka spruce	0							0	•		0	•		• 21	-		0	•		25		0	lacksquare	٠	14	_	т	T	frost & snow-intolerant; ocean spray-, brackish water- & flood-tolerant; indicator of wet mesothermal climates
Whitebark pine	0	•		-						•	•	•	0	2		•	ullet	•	-	~	-		0	lacksquare	18	_	-	T	egeneration largely from seed caches of Clark's nutcracker; frost-tolerant indicator of subalpine boreal climates
			0							•	•	0		e			•			-			0	lacksquare	22	_	_	л о Т	serotinous cones; frost-tolerant; indicator of continental boreal climates and dry & nutrient-poor sites
Lodgepole pine	•			•	•	٠		0	•	•		•	0	0 7			ullet	0	-	e	-	0	•	lacksquare	17	_	L H	N-N	serotinous cones; frost-tolerant
		0		-	0					•	•	0	-	~			•	•	<u> </u>	15	-		0	lacksquare	18	_	_	T	regeneration largely from seed caches of Clark's nutcracker. frost-tolerant: calciphytic: indicator of continental subalpine boreal climates
Western white pine	0	0			0	•		0	•		0	•	•	0 12	0	0	•	•	•	18	•			•	6	L-M	≥ -⊻	∓ H-₩	flood-tolerant
Ponderosa pine		0			٠	0						•	0	-		0	•	•	•	18		0	•	•	15	_	_	т Т	moderately frost- & flood-tolerant; calciphytic; indicator of dry sites
	0	•	•	•	ullet	٠	0	ullet	•	0			•	8	0	•	ullet		•	6	•			•	10	T-M	H-M	Ξ	flood- & heavy snow cover-intolerant
Western hemlock	0	0			0	lacksquare		0			0		•	0 10			ullet	0		3	•	•			2	т	н	Ľ	indicator of acid substrates
Mountain hemlock		0	0			0			0		0		•	0 10			ullet	0		3	•		0		4	Μ	Σ	Ψ	heavy snow cover-tolerant; indicator of acid substrates
Alaska yellow-cedar	•	0							•		0	•	•	9 23	3	٠	lacksquare	•	•	6	• 0	•	0		9	M-J	Σ	L	frost-intolerant, heavy snow cover-tolerant; indicator of maritime wet (snowy) climates
Western redcedar	0	0	0	-	٠	lacksquare		•		0	•	•	•	• 18	0 80	٠	•	•	•	17	•	•	0		4	Δ	H-M	÷ L	flood-tolerant
Balsam poplar & black cottonwood	0	•	•	•	0	٠	0	•	0		0	•		o 25	2		0	•	•	18			0	lacksquare	22	Γ	н	H	vegetative reproduction from root & stump sprouts; frost- & flood-tolerant; indicator of fresh to moist & nutrient-rich (alluvial) sites
Trembling aspen		•		•	٠	٠	0	0	0	0	•	•	•	o 13	e	0	•	•	•	18		0	٠		16	Γ	т	× H	vegetative reproduction from root suckers & sprouts & stump sprouts
								•		0	•	•	•	9 22	0	0	•	•	•	18			0	lacksquare	18	Г	н	H	in symbiosis with N-fixing <i>Actinomyces alni</i> , vegetative reproduction from stump sprouts; frost- & snow-intolerant, flood-tolerant; indicator of mesothermal climates
Bigleaf maple					0			lacksquare	•		0	•	•	0 14	4		0	•	•	25		0	•	•	13	_	т	×∉	vegetative reproduction from stump sprouts; frost-intolerant, flood-tolerant; indicator of maritime climates & nutrient-rich sites
		•	•	0	•	٠	0	0	0	0	•		•	6 0	_	0	ullet		•	13			0	lacksquare	22	_	т	× T	vegetative reproduction from stump sprouts; frost- & flood-tolerant
								freq.	very frequent	•	frequent	ent	0	less frequent			absent		ΤΞΓ	low medium high	Ē				* Appr (+2 c poort	oximate or 3 of th sst soils, st soils,	compar le 26 sp or mos or most	ative ranl ecies liste t shade-t shade-ir	Approximate comparative ranking of the species along the gradients (+2, or 3 of the 26 species leace), (a., 1 – divest souls, nutrient- onest souls, or most shade-folerant to 26 – writest souls, nutrient- richest souls, or most shade-intolerant.

Appendix 1. Synopsis of selected silvical characteristics

Requiring protection		osure rant	Requiring exposure
Shade tolerant	Shade tolerant	Moderately shade tolerant	Shade intolerant
group selection single-tree selection	clearcutting	clearcutting	clearcutting
	uniform seed-tree	uniform seed-tree	uniform seed-tree
group shelterwood	grouped seed-tree	grouped seed-tree	
uniform shelterwood			grouped seed-tree
strip shelterwood	group selection	strip selection	
irregular shelterwood	single-tree selection	group selection	
nurse-tree shelterwood			group shelterwood
	group shelterwood	group shelterwood	
release cutting*	uniform shelterwood	uniform shelterwood	strip shelterwood
	strip shelterwood	strip shelterwood	
	irregular shelterwood		
	nurse-tree shelterwood release cutting*	release cutting*	

Reproduction methods that favour tree species with different protection requirements and shade tolerances (modified from Klinka and Carter 1991)

* Also known as natural shelterwood or overstorey removal, which releases an existing natural understorey.

Note: Reserves of uncut trees can be used with any of the above systems.

Appendix 2. Tree species codes and biogeoclimatic units of British Columbia

Species symbol	Common name	Scientific name
Conifers		
Ва	amabilis fir	Abies amabilis
Bg	grand fir	Abies grandis
BI	subalpine fir	Abies lasiocarpa
Вр	noble fir	Abies procera
Cw	western redcedar	Thuja plicata
Fd	Douglas-fir	Pseudotsuga menziesii
Hm	mountain hemlock	Tsuga mertensiana
Hw	western hemlock	Tsuga heterophylla
Lt	tamarack	Larix laricina
Lw	western larch	Larix occidentalis
Ра	whitebark pine	Pinus albicaulis
PI	lodgepole pine	Pinus contorta
Pw	western white pine	Pinus monticola
Ру	ponderosa pine	Pinus ponderosa
Sb	black spruce	Picea mariana
Se	Engelmann spruce	Picea engelmannii
Ss	Sitka spruce	Picea sitchensis
Sw	white spruce	Picea glauca
Sx	hybrid spruce	Picea hybrids
Sxs	hybrid Sitka spruce	Picea sitchensis x glauca
Sxw	hybrid white spruce	Picea engelmannii x glauca
Yc	yellow-cedar	Chamaecyparis nootkatensis
Broadleaf trees		
Act	black cottonwood	Populus balsamifera ssp. trichocarpa
Acb	balsam poplar	Populus balsamifera ssp. balsamifera
At	trembling aspen	Populus tremuloides
Dr	red alder	Alnus rubra
Ep	common paper birch	Betula papyrifera
Mb	bigleaf maple	Acer macrophyllum
Qg	Garry oak	Quercus garryana
Ra	arbutus	Arbutus menziesii

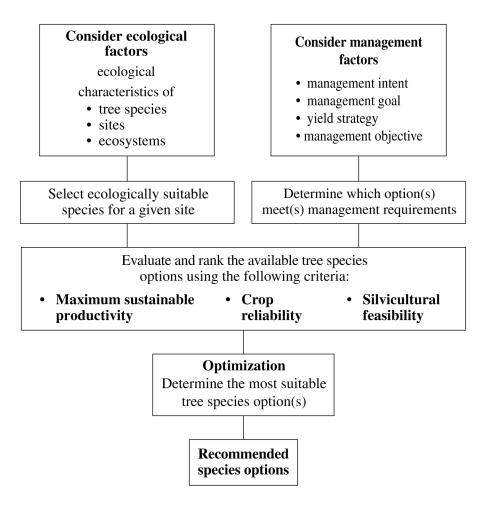
Biogeoclimatic units of British Columbia

Zone	Subzone Va	riant	Name
AT		A	Ipine Tundra
BG	BG BG BGxw BG	B Sxh1 Sxh2 Sxh3 Sxw1 Sxw2	Bunchgrass Very Dry Hot BG Okanagan BGxh Thompson BGxh Fraser BGxh Very Dry Warm BG Nicola BGxw Alkali BGxw
BWBS	BWBSmw BV BV BWBSwk BV BVBSWk BV BVBSWk	VBSdk1 VBSdk2 VBSmw1 VBSmw2 VBSwk1 VBSwk2 VBSwk3	Boreal White and Black Spruce Dry Cool BWBS Stikine BWBSdk Liard BWBSdk Moist Warm BWBS Peace BWBSmw Fort Nelson BWBSmw Wet Cool BWBS Murray BWBSwk Graham BWBSwk Kledo BWBSwk
CDF	CDFmm	С	Coastal Douglas-fir Moist Maritime CDF
CWH	CWHdm CWHds CWHds CWHmm CWHms CWHms CWHwh CWHws CWHws CWHwh CWHws CWHwh CWHwh CWHwh CWHwh CWHwh CWHwh CWHwh	VHxm1 VHxm2 D VHds1 VHds2 VHmm1 VHmm2 VHms1 VHms2 VHwh1 VHws2 VHws1 VHws2 VHvh1 VHvh2 VHvh1 VHvh2	Coastal Western Hemlock Yery Dry Maritime CWH Eastern CWHxm Western CWHxm Dry Submaritime Southern CWHds Central CWHds Moist Maritime CWH Submontane CWHmm Moist Submaritime CWH Southern CWHms Central CWHms Wet Hypermaritime Submontane CWHwh Montane CWHwh Vet Maritime Wet Submaritime Submontane CWHws Very Wet Hypermaritime Southern CWHws Very Wet Hypermaritime Southern CWHws Very Wet Hypermaritime Southern CWHwh Central CWHvh Central CWHvh

ESSFxcVery Dry Cold ESSFESSFxvESSFxv1ESSFxv2ESSFxv2ESSFdkDry Cold ESSFESSFdcDry Cold ESSFESSFdcDry Cold ESSFESSFdcDry Cold ESSFESSFdcDry Cold ESSFESSFdrDry Cold ESSFESSFmwMoist Mile ESSFESSFmmESSFmm2ESSFmmMoist Mile ESSFESSFmmMoist Cold ESSFESSFmvMoist Cold ESSFESSFmvMoist Cold ESSFESSFmvMoist Cold ESSFESSFmvMoist Cold ESSFESSFmvMoist Cold ESSFESSFmvMoist Cold ESSFESSFmv4Graham ESSFmvESSFmv5ESSFmv4ESSFmv4Craiboo ESSFmvESSFwsWet Mild ESSFESSFwsWet Cold ESSFESSFwsWet Cold ESSFESSFwc3Cariboo ESSFwkESSFwc4Selkirk ESSFwcESSFwc3Cariboo ESSFESSFwc4Selkirk ESSFwcESSFwc5Very Ord Parkland ESSFESSFxvpVery Dry Cold Parkland ESSFESSFxvpVery Dry Cold Parkland ESSFESSFxvpVery Dry Cold Parkland ESSFESSFxvpVery Dry Very Cold Parkland ESSFESSFmvpDry Cold Parkland ESSFESSFmvpMoist Mild Parkland ESSFESSFrwpMoist Mild Parkland ESSFESSFmvpMoist Cold Parkland ESSFESSFmvpMoist Cold Parkland ESSFESSFmvpMoist Cold Parkland ESSFESSFmvpMoist Cold Parkland	Zone		
ESSFxcVery Dry Cold ESSFESSFxv1ESSFxv2ESSFdkDry Cold ESSFESSFdkDry Cold ESSFESSFdcDry Cold ESSFESSFdcDry Cold ESSFESSFdcDry Very Cold ESSFESSFdvDry Very Cold ESSFESSFmwMoist SSFdcESSFmmRaush ESSFmmESSFmvMoist Mild ESSFESSFmvMoist Cold ESSFESSFmvCariboo ESSFmvESSFwc1Columbia ESSFmvESSFwc2Northern Monashee ESSFESSFwc3Cariboo ESSFwcESSFwc4Very Very Cold ESSFESSFwc4Sekirk ESSFwcESSFwc5Cariboo ESSFESSFwc7Columbia ESSFESSFwc9Very Dry Very Cold ESSFESSFwp1West Chilcotin ESSFESSFxp2Big Creek ESSFESSFmvp1Kest Cold Parkland ESSFESSFmp2ESSFmp1ESSFmp4Moist Cold Parkland ESSFESSFmp5Moist Mid Parkland ESSFESSFmp4Moist Cold Parkland ESSFESSFmp5ESSFmp4ESSFmp6Moist Cold Parkland ESSFESSFmp7M			Name
ESSFxcVery Dry Cold ESSFESSFxv1ESSFxv2ESSFdkDry Cold ESSFESSFdkDry Cold ESSFESSFdcDry Cold ESSFESSFdcDry Cold ESSFESSFdcDry Very Cold ESSFESSFdvDry Very Cold ESSFESSFmwMoist SSFdcESSFmmRaush ESSFmmESSFmvMoist Mild ESSFESSFmvMoist Cold ESSFESSFmvCariboo ESSFmvESSFwc1Columbia ESSFmvESSFwc2Northern Monashee ESSFESSFwc3Cariboo ESSFwcESSFwc4Very Very Cold ESSFESSFwc4Sekirk ESSFwcESSFwc5Cariboo ESSFESSFwc7Columbia ESSFESSFwc9Very Dry Very Cold ESSFESSFwp1West Chilcotin ESSFESSFxp2Big Creek ESSFESSFmvp1Kest Cold Parkland ESSFESSFmp2ESSFmp1ESSFmp4Moist Cold Parkland ESSFESSFmp5Moist Mid Parkland ESSFESSFmp4Moist Cold Parkland ESSFESSFmp5ESSFmp4ESSFmp6Moist Cold Parkland ESSFESSFmp7M	ESSF		Engelmann Spruce – Subalpine Fir
ESSFxvVery Dry Very Cold ESSF West Chilcotin ESSFxv Big Creek ESSFxvESSFdcDry Cool ESSFESSFdcDry Cool ESSFESSFdcDry Cold ESSFESSFdcDry Cold ESSFESSFdcDry Very Cold ESSFESSFmwMoist Warn ESSFESSFmmMoist Warn ESSFESSFmmMoist Warn ESSFESSFmmMoist Cold ESSFESSFmmMoist Cold ESSFESSFmsMoist Cold ESSFESSFmvMoist Cold ESSFESSFmv2Bullmoose ESSFmvESSFmv4Cariboo ESSFwkESSFwc3Cariboo ESSFwkESSFwc4Selkirk ESSFwcESSFwc3Cariboo ESSFwcESSFwc4Very Very Cold ESSFESSFwc4Selkirk ESSFwcESSFwc4Very Wet Very Cold ESSFESSFwc4Very Ord Parkland ESSFESSFxpVery Dry Cold Parkland ESSFESSFxpVery Dry Cold Parkland ESSFESSFxpVery Dry Cold Parkland ESSFESSFxpDry Cool Parkland ESSFESSFmvpVery Cold Parkland ESSFESSFmvpMoist Warn Parkland ESSFESSFmpMoist Cold Parkland ESSFESSFmpMoist Cold Parkland ESSFESSFmpMoist Cold Parkland ESSFESSFmpMoist Cold Parkland ESSF <td></td> <td>FSSExc</td> <td></td>		FSSExc	
ESSFxv1 Vest Chilootin ESSFxv BSSFv2 Big Creek ESSFv ESSFdc Dry Cold ESSF ESSFdc Dry Cold ESSF ESSFdc Dry Very Cold ESSF ESSFdv Dry Very Cold ESSF ESSFmw Moist Warm ESSF ESSFmm Moist Mild ESSF ESSFmm Moist Cool ESSF ESSFmr ESSFmr Moist Cool ESSF ESSFwr Moist Cool ESSF ESSFrv Mor Very Dry Very Cold ESSF ESSFrv Very Dry Cold Parkland ESSF ESSFrv Very Dry Cold Parkland ESSF ESSFrv Very Dry Cold Parkland ESSF ESSFrv Dry Cold Parkland ESSF ESSFrv Dry Cold Parkland ESSF ESSFrv Moist Mild Parkland ESSF ESSFrv Moist Mild Parkland ESSF ESSFrmp Moist Mild Parkland ESSF ESSFrmp Moist Cool			
ESSFxv2Big Creek ESSFxvESSFdkDry Cool ESSFESSFdc1Okanagan ESSFdcESSFdc2Thompson ESSFdcESSFdvDry Very Cold ESSFESSFmwMoist Warm ESSFESSFmmMoist Warm ESSFESSFmmMoist Mild ESSFESSFmmMoist Mild ESSFESSFmmMoist Cold ESSFESSFmkMoist Cold ESSFESSFmvMoist Cold ESSFESSFmvGraham ESSFmvESSFwvCold ESSFESSFwkWet Mild ESSFESSFwc1Columbia ESSFwcESSFwc2Northern Monashee ESSFESSFwc3Cariboo ESSFwcESSFwc4Selkirk ESSFwcESSFwc4Selkirk ESSFwcESSFwc5ESSFwc3ESSFwc6Very Very Cold ESSFESSFwc7Very Wet Cold ESSFESSFwc9Very Dry Cold Parkland ESSFESSFwpVery Dry Cold Parkland ESSFESSFxpDry Cold Parkland ESSFESSFxpDry Cold Parkland ESSFESSFmpMoist Warm Parkland ESSFESSFmpDry Cold Parkland ESSFESSFmpDry Cold Parkland ESSFESSFmpMoist Warm Parkland ESSFESSFmpMoist Cold Parkland ESSFESSFmpMoist Cold Parkland ESSFESSFmpMoist Cold Parkland ESSFESSFmp			
ESSFdkDry Cool ESSFESSFdcDry Cold ESSFESSFdcThompson ESSFdcESSFdvDry Very Cold ESSFESSFmwMoist Mild ESSFESSFmmRaush ESSFmmESSFmmMoist Cool ESSFESSFmmMoist Cool ESSFESSFmkMoist Cool ESSFESSFmkMoist Cool ESSFESSFmvMoist Cool ESSFESSFmvMoist Cool ESSFESSFmvMoist Cool ESSFESSFmv2Bullmoose ESSFmvESSFmv3Ornineca ESSFmvESSFmv4Carlboo ESSFESSFwkWet Cool ESSFESSFwk1Carlboo ESSFwkESSFwc2Northerm Monashee ESSFESSFwc3Carlboo ESSFwcESSFwc4Selkirk ESSFwcESSFwc5ESSFwc2ESSFvc9Very Wet Very Cold ESSFESSFvc9Very Dry Very Cold ESSFESSFvc9Very Dry Cold Parkland ESSFESSFxvp1West Cold ESSFESSFxvp2Big Creek ESSFxvpESSFdcp1Okanagan ESSFESSFmp3Moist Mild Parkland ESSFESSFmp4Dry Cold Parkland ESSFESSFmp5ESSFmp2ESSFmp4Moist Warm Parkland ESSFESSFmvp1Raush ESSFmmpESSFmvp3Moist Very Cold Parkland ESSFESSFmvp3Graham ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Sult Very Cold			
ESSFdcDry Cold ESSFESSFdc1Okanagan ESSFdcESSFdvDry Very Cold ESSFESSFmwMoist Warm ESSFESSFmmMoist Warm ESSFESSFmmRaush ESSFmmESSFmmMoist Warm ESSFESSFmmRaush ESSFmmESSFmcMoist Cold ESSFESSFmvMoist Cold ESSFESSFmvMoist Cold ESSFESSFmvMoist Cold ESSFESSFmvMoist Cold ESSFESSFmv1Nechako ESSFmvESSFmv3Omineca ESSFmvESSFmv4Wet Mild ESSFESSFmv4Wet Cold ESSFESSFwk1Cariboo ESSFwkESSFwc2Northern Monashee ESSFESSFwc3Cariboo ESSFwcESSFwc4Selkirk ESSFwcESSFwc5ESSFwc3ESSFwc7Very Wet Cold ESSFESSFwc8Wet Very Cold ESSFESSFwc9Very Wet Very Cold ESSFESSFwc9Very Dry Cold Parkland ESSFESSFvc9Very Dry Cold Parkland ESSFESSFxpDry Cold Parkland ESSFESSFxpDry Cold Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFmpMoist Mild Parkland ESSFESSFmpMoist Cold Parkland ESSFESSFmvpMoist Cold Parkland ESSFESSFmvpMoist Cold Parkland ESSFESSFmvpMois			
ESSFdc1 Okanagan ESSFdc ESSFdc2 Thompson ESSFdc ESSFmw Moist Varm ESSF ESSFmm Moist Mild ESSF ESSFmm Raush ESSFmm ESSFmm2 Robson ESSFmm ESSFmm2 Noist Cold ESSF ESSFmc Moist Cold ESSF ESSFmc Moist Cold ESSF ESSFmv2 Bullmoose ESSFmv ESSFmv3 Ornineca ESSFmv ESSFmv4 Graham ESSFmv ESSFwk Wet Cold ESSF ESSFwk Wet Cold ESSF ESSFwc2 Northern Monashee ESSF ESSFwc3 Cariboo ESSFwc ESSFwc4 Selkrik ESSFwc ESSFwc4 Selkrik ESSFwc ESSFwc4 Very Cold ESSF ESSFwc4 Selkrik ESSFwc ESSFwc4 Selkrik ESSFwc ESSFwc4 Dy Very Orld ESSF ESSFwc4 Selkrik ESSFwc ESSFwc4 Selkrik ESSFwc ESSFwc4 Dy Very Wet Cold ESSF ESSFwc4 Selkrik ESSFwc ESSFwc4 Selkrik ESSFwc ESSFwc9 Very Wet Very Cold ESSF ESSFwc9 Very Wet Very Cold ESSF ESSFwc9 Very Wet Cold ESSF ESSFwc9 Very Wet Cold ESSF ESSFwc9 Very Ony Cold Parkland ESSF ESSFwp Very Dry Cold Parkland ESSF ESSFxp Dry Cold Parkland ESSF ESSFkp Dry Cold Parkland ESSF ESSFdcp Dry Cold Parkland ESSF ESSFdcp Dry Cold Parkland ESSF ESSFmp Moist Cold Parkland E			
ESSFdc2Thombor ESSFdcESSFdvDry Very Cold ESSFESSFmmMoist Mild ESSFESSFmm1Raush ESSFmmESSFmm2Robson ESSFmmESSFmcMoist Cold ESSFESSFmcMoist Cold ESSFESSFmv1Nechako ESSFmvESSFmv2Bullmoose ESSFmvESSFmv3Omineca ESSFmvESSFmv4Graham ESSFmvESSFmv5ESSFmv4ESSFmv6Wet Cold ESSFESSFmv7Bullmoose ESSFmvESSFmv8Wet Cold ESSFESSFmv9Omineca ESSFmvESSFmv4Graham ESSFmvESSFwc4Meist Cold ESSFESSFwc5Columbia ESSFwcESSFwc6Wet Cold ESSFESSFwc7Columbia ESSFwcESSFwc7Columbia ESSFwcESSFwc8Wet Cold ESSFESSFwc9Very Cold ESSFESSFwc9Very Cold ESSFESSFwc9Very Dry Very Cold ESSFESSFxvpVery Dry Very Cold ESSFESSFxvpVery Dry Very Cold Parkland ESSFESSFxvpVery Dry Very Cold Parkland ESSFESSFxvpDry Cool Parkland ESSFESSFdcpDry Cool Parkland ESSFESSFdvpDry Very Cold Parkland ESSFESSFmvp1Raush ESSFmmpESSFmvp1Noist Cold Parkland ESSFESSFmvp1Noist Cold Parkland ESSFESSFmvp2ESSFmvp2ESSFmvp3Moist Cold Parkland ESSFESSFmvp4Moist Cold Parkland ESSFESSFmvp3Moist Cold Parkland ESSFESSFmvp4Moist Cold Pa			
ESSFdvDry Very Cold ESSFESSFmmMoist Warm ESSFESSFmm1Raush ESSFmmESSFmm2Robson ESSFmmESSFmkMoist Cold ESSFESSFmcMoist Cold ESSFESSFmvMoist Very Cold ESSFESSFmvMoist Very Cold ESSFESSFmv1Nechako ESSFmvESSFmv2Bullmoose ESSFmvESSFmv3Omineca ESSFmvESSFmv4Graham ESSFmvESSFw1Cariboo ESSFwkESSFwc1Cold ESSFESSFwc2Northern Monashee ESSFESSFwc3Cariboo ESSFwkESSFwc4Selkirk ESSFwcESSFwc4Selkirk ESSFwcESSFvvVery Very Cold ESSFESSFvvVery Wet Very Cold ESSFESSFwc3Cariboo ESSFwcESSFwc4Selkirk ESSFwcESSFvvVery Wet Very Cold ESSFESSFvvVery Wet Very Cold ESSFESSFxvpVery Dry Cold Parkland ESSFESSFxvpVery Dry Cold Parkland ESSFESSFxvpVery Ory Cold Parkland ESSFESSFxp1West Chilcotin ESSFxpESSFdcpDry Cold Parkland ESSFESSFdcpDry Cold Parkland ESSFESSFmp3Raush ESSFmmpESSFmvp4Moist Wild Parkland ESSFESSFmp4Moist Cool Parkland ESSFESSFmp5ESSFmp4ESSFmp4Moist Cool Parkland ESSFESSFmvp3Moist Cold Parkland ESSFESSFmvp4Selst Mild Parkland ESSFESSFmvp3Moist Cold Parkland ESSFESSFmvp4Selst Mild Parkland ESSF<			
ESSFmwMoist Warm ESSFESSFmmRaush ESSFmmESSFmm1Raush ESSFmmESSFmkMoist Cool ESSFESSFmcMoist Cool ESSFESSFmvMoist Cool ESSFESSFmvMoist Cool ESSFESSFmv1Nechako ESSFmvESSFmv2Bullmoose ESSFmvESSFmv4Graham ESSFmvESSFmv4Graham ESSFmvESSFmv4Graham ESSFmvESSFmv4Graham ESSFmvESSFmv4Graham ESSFmvESSFmv4Graham ESSFmvESSFwk1Cariboo ESSFwkESSFwc2Northern Monashee ESSFESSFwc3Cariboo ESSFwcESSFwc4Selkirk ESSFwcESSFwc5Cariboo ESSFwcESSFwc7Very Very Cold ESSFESSFwc9Very Very Cold ESSFESSFwc9Very Wet Very Cold ESSFESSFxcpVery Dry Cold Parkland ESSFESSFxcpVery Dry Cold Parkland ESSFESSFxcpVery Dry Very Cold Parkland ESSFESSFxcpDry Cold Parkland ESSFESSFdcpDry Very Cold Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFmp3Moist Warm Parkland ESSFESSFmp4Moist Colo Parkland ESSFESSFmp5ESSFmp4ESSFmp6Moist Colo Parkland ESSFESSFmp7Moist Colo Parkland ESSFESSFmp7Moist Colo Parkland ESSFESSFmp4Moist Colo Parkland ESSFESSFmp5Moist Colo Parkland ESSFESSFmp4Moist Colo Parkland ESSFESSFmp5Moist Colo Parkland ESSF </td <td></td> <td></td> <td></td>			
ESSFmmMoist Mild ESSFESSFmm1Raush ESSFmmESSFmcRobson ESSFESSFmcMoist Cool ESSFESSFmcMoist Cool ESSFESSFmvMoist Cool ESSFESSFmvMoist Very Cold ESSFESSFmv1Nechako ESSFmvESSFmv3Graham ESSFmvESSFmv4Wet Mild ESSFESSFw4Wet Mild ESSFESSFw5ESSFw4ESSFw6Wet Mild ESSFESSFw6Wet Cool ESSFESSFw7Cariboo ESSFwkESSFwc1Columbia ESSFwc2ESSFwc2Northern Monashee ESSFESSFwc3Cariboo ESSFwcESSFwc4Selkirk ESSFwcESSFwc5Cariboo ESSFwcESSFwc4Selkirk ESSFwcESSFwc5Cariboo ESSFwcESSFwc7Very Cold ESSFESSFwc9Very Cold ESSFESSFwc9Very Very Cold ESSFESSFxpVery Wet Very Cold ESSFESSFxpVery Dry Cold Parkland ESSFESSFxpVery Dry Cold Parkland ESSFESSFxpDry Cool Parkland ESSFESSFdxpDry Cool Parkland ESSFESSFdxpDry Cool Parkland ESSFESSFdxpDry Cool Parkland ESSFESSFmvpMoist Mild Parkland ESSFESSFmvpMoist Mild Parkland ESSFESSFmpMoist Cool Parkland ESSFESSFmpMoist Cool Parkland ESSFESSFmvpMoist Cool Parkland ESSFESSFmvpMoist Cool Parkland ESSFESSFmvpMoist Cool Parkland ESSFESSFmvp1Nechako ESSFmv			
ESSFmm1Raush ESSFmmESSFmkMoist Cool ESSFESSFmcMoist Cool ESSFESSFmvMoist Very Cold ESSFESSFmv1Nechako ESSFmvESSFmv2Bullmoose ESSFmvESSFmv3Omineca ESSFmvESSFmv4Graham ESSFmvESSFwkWet Mild ESSFESSFwkWet Cool ESSFESSFwkWet Cool ESSFESSFwkWet Cool ESSFESSFwkWet Cool ESSFESSFwkWet Cool ESSFESSFwk2Misinchinka ESSFwkESSFwc1Columbia ESSFwcESSFwc2Northern Monashee ESSFESSFwc3Cariboo ESSFwcESSFwc4Selkirk ESSFwcESSFwc5Cariboo ESSFwcESSFwc7Very Very Cold ESSFESSFwc9Very Uery Cold ESSFESSFwc9Very Ury Cold ESSFESSFvc9Very Dry Cold Parkland ESSFESSFxcpVery Dry Cold Parkland ESSFESSFxp1West Chilcotin ESSFxpESSFdcp2Thompson ESSFdcpESSFdcp4Dry Cool Parkland ESSFESSFdcp5Dry Cool Parkland ESSFESSFdcp4Dry Very Cold Parkland ESSFESSFmp4Moist Warm Parkland ESSFESSFmp5Raush ESSFmmpESSFmp4Moist Cool Parkland ESSFESSFmp5Moist Cool Parkland ESSFESSFmp4Moist Cool Parkland ESSFESSFmp5Moist Cool Parkland ESSFESSFmp4Moist Cool Parkland ESSFESSFmp4Moist Cool Parkland ESSFESSFmp5Moist Cool Parkland ESSF			
ESSFmkRobson ESSFmmESSFmkMoist Cool ESSFESSFmvMoist Cold ESSFESSFmv1Nechako ESSFmvESSFmv2Bullmoose ESSFmvESSFmv3Omineca ESSFmvESSFmv4Graham ESSFmvESSFmv4Graham ESSFmvESSFmv4Graham ESSFmvESSFmv4Cariboo ESSFwkESSFwkWet Cool ESSFESSFwkWet Cool ESSFESSFwc2Misinchinka ESSFwkESSFwc3Cariboo ESSFwcESSFwc4Selkirk ESSFwcESSFwc5Columbia ESSFwcESSFwc2Northern Monashee ESSFESSFwc4Selkirk ESSFwcESSFwc5Very Cold ESSFESSFwc4Selkirk ESSFwcESSFvc5Very Wet Very Cold ESSFESSFvc7Very Wet Very Cold ESSFESSFxpVery Dry Cold Parkland ESSFESSFxpVery Dry Cold Parkland ESSFESSFxp1West Chilcotin ESSFxvpESSFdcp1Okanagan ESSFdopESSFdvpDry Cool Parkland ESSFESSFdvpDry Cool Parkland ESSFESSFdvpDry Very Cold Parkland ESSFESSFdvpDry Very Cold Parkland ESSFESSFmvp1Raush ESSFmmpESSFmvp1Noist Mid Parkland ESSFESSFmvp1Nechako ESSFmvpESSFmvp3Moist Cool Parkland ESSFESSFmvp4SesFmvpESSFmvp3Omineca ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4SesFmvp3ESSFmvp3Omineca ESSFmvpESSFmvp3Omineca ESSFmvp </td <td></td> <td></td> <td></td>			
ESSFmkMoist Cool ESSFESSFmcMoist Cold ESSFESSFmvMoist Very Cold ESSFESSFmv2Bullmoose ESSFmvESSFmv3Omineca ESSFmvESSFmv4Graham ESSFmvESSFw4Wet Mild ESSFESSFw4Wet Cool ESSFESSFw4Wet Cool ESSFESSFw4Wet Cool ESSFESSFw5ESSFw4ESSFw6Wet Cool ESSFESSFw6Wet Cool ESSFESSFw7Cariboo ESSFw6ESSFw6Columbia ESSFw6ESSFw6Columbia ESSFw6ESSFw6Columbia ESSFw6ESSFw6Selkirk ESSFw6ESSFw7Very Cold ESSFESSFw6Selkirk ESSFw6ESSFw7Very Wet Cold ESSFESSFw6Very Wet Very Cold ESSFESSFw7Very Ury Cold Parkland ESSFESSFx0pVery Dry Very Cold Parkland ESSFESSFx0pVery Dry Very Cold Parkland ESSFESSFx0pDry Cold Parkland ESSFESSFdcpDry Cold Parkland ESSFESSFdcpDry Cold Parkland ESSFESSFdcpDry Very Cold Parkland ESSFESSFmvpMoist Warm Parkland ESSFESSFmmpMoist Warm Parkland ESSFESSFmmpMoist Cool Parkland ESSFESSFmvpMoist Very Cold Parkland ESSFESSFmvp </td <td></td> <td></td> <td></td>			
ESSFmc Moist Cold ESSF ESSFmv Moist Very Cold ESSF ESSFmv Bullmoose ESSFmv ESSFmv3 Omineca ESSFmv ESSFmv4 Graham ESSFmv ESSFwm Wet Mild ESSF ESSFwk Wet Coll ESSF ESSFwk Wet Coll ESSF ESSFwk Wet Coll ESSF ESSFwc Wet Very Coll ESSF ESSFvc Wery Dry Coll Parkla ESSF ESSFxvp Very Dry Very Coll Parkla ESSF ESSFxvp Dry Coll Parklan ESSF ESSFdcp Dry Coll Parkland ESSF ESSFdcp Dry Coll Parkland ESSF ESSFdcp Dry Very Coll Parkland ESSF ESSFdcp Dry Very Coll Parkland ESSF ESSFdcp Dry Very Coll Parkland ESSF ESSFmwp Moist Warm Parkland ESSF ESSFmp Moist Coll Parkland ESSF ESSFmp Moist Very Coll Parkland ESSF ESSFmp Mo			
ESSFmvMoist Very Cold ESSFESSFmv1Nechako ESSFmvESSFmv2Bullmoose ESSFmvESSFmv3Omineca ESSFmvESSFwmWet Mild ESSFESSFwkWet Cool ESSFESSFwkCariboo ESSFwkESSFwkWet Cool ESSFESSFwkCariboo ESSFwkESSFwcWet Cold ESSFESSFwcWet Cold ESSFESSFwcWet Cold ESSFESSFwcWet Cold ESSFESSFwcSelkirk ESSFwcESSFwcVery Wet Cold ESSFESSFwcVery Wet Cold ESSFESSFwcVery Wet Cold ESSFESSFvcVery Wet Cold ESSFESSFvcVery Wet Cold ESSFESSFxpVery Ury Cold Parkland ESSFESSFxpVery Ury Cold Parkland ESSFESSFxp1West Chilcotin ESSFxpESSFdcpDry Cool Parkland ESSFESSFdcpDry Cool Parkland ESSFESSFdvpDry Very Cold Parkland ESSFESSFdvpDry Very Cold Parkland ESSFESSFmmpMoist Warm Parkland ESSFESSFmp1Raush ESSFmmpESSFmmpMoist Cool Parkland ESSFESSFmp2Robson ESSFmmpESSFmp3Moist Cool Parkland ESSFESSFmvp1Noticd Parkland ESSFESSFmvp3Moist Very Cold Parkland ESSFESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvpESSFmvp4Graham ESSFmvp			
ESSFmv1Nechako ESSFmvESSFmv2Bullmoose ESSFmvESSFmv3Omineca ESSFmvESSFmv4Graham ESSFmvESSFwkWet Mild ESSFESSFwkWet Cool ESSFESSFwkWet Cool ESSFESSFwkWet Cold ESSFESSFwc0Wet Cold ESSFESSFwc1Columbia ESSFwcESSFwc2Northern Monashee ESSFESSFwc3Cariboo ESSFESSFwc4Selkirk ESSFwcESSFwc4Selkirk ESSFwcESSFwc4Selkirk ESSFESSFvc5Very Wet Cold ESSFESSFvc4Very Wet Cold ESSFESSFvc5Very Wet Very Cold ESSFESSFvc9Very Dry Cold Parkland ESSFESSFxvpVery Dry Cold Parkland ESSFESSFxvp1Big Creek ESSFxvpESSFdcpDry Cool Parkland ESSFESSFdcpDry Cold Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFmwpMoist Warm Parkland ESSFESSFmmp1Raush ESSFmmpESSFmp2Robson ESSFmpESSFmp4Moist Cool Parkland ESSFESSFmvp1Noist Cool Parkland ESSFESSFmvp1Noist Cool Parkland ESSFESSFmvp3Omineca ESSFmvpESSFmvp3Sold Parkland ESSFESSFmvp3Bullmoose ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp			
ESSFmv2Bullmoose ESSFmvESSFmv3Omineca ESSFmvESSFw4Graham ESSFmvESSFwmWet Mild ESSFESSFwkWet Cool ESSFESSFwkWet Cool ESSFESSFwk2Wet Cold ESSFESSFwc2Columbia ESSFwcESSFwc3Cariboo ESSFwcESSFwc4Selkirk ESSFwcESSFwc4Selkirk ESSFwcESSFwc5Cariboo ESSFESSFwc4Selkirk ESSFwcESSFwc5Selkirk ESSFwcESSFwc9Very Cold ESSFESSFvc9Very Wet Very Cold ESSFESSFxcpVery Dry Cold Parkland ESSFESSFxp1West Chilcotin ESSFxvpESSFdcpDry Cool Parkland ESSFESSFdcpDry Cool Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFdcp2Thompson ESSFdcpESSFmvpMoist Warm Parkland ESSFESSFmpRaush ESSFmpESSFmmpMoist Mild Parkland ESSFESSFmmpMoist Cool Parkland ESSFESSFmvpMoist Cold Parkland ESSFESSFmvpMoist Very Cold Parkland ESSFESSFmvpMoist Very Cold Parkland ESSFESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvpESSFmvp4Graham ESSFmvp			
ESSFmv3Omineca ESSFmvESSFwmGraham ESSFmvESSFwmWet Mild ESSFESSFwkWet Cold ESSFESSFwkCariboo ESSFwkESSFwk2Misinchinka ESSFwkESSFwcWet Cold ESSFESSFwc2Northern Monashee ESSFESSFwc3Cariboo ESSFwcESSFwc4Selkirk ESSFwcESSFwc4Selkirk ESSFwcESSFwc5Cariboo ESSFwcESSFwc4Selkirk ESSFwcESSFwc5Very Wet Very Cold ESSFESSFwc9Very Wet Very Cold ESSFESSFxcpVery Dry Cold Parkland ESSFESSFxvpVery Dry Cold Parkland ESSFESSFxvpDry Cool Parkland ESSFESSFdcpDry Cool Parkland ESSFESSFdcpDry Cold Parkland ESSFESSFdcpDry Cold Parkland ESSFESSFdcpDry Cold Parkland ESSFESSFdcpDry Very Cold Parkland ESSFESSFdcpDry Very Cold Parkland ESSFESSFmwpMoist Warm Parkland ESSFESSFmmpMoist Cold Parkland ESSFESSFmmpMoist Cold Parkland ESSFESSFmpMoist Cold Parkland ESSFESSFmvpMoist Very Cold Parkland ESSFESSFmvp3Omineca ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp			
ESSFmv4Graham ESSFmvESSFwmWet Mild ESSFESSFwkWet Cool ESSFESSFwk1Cariboo ESSFwkESSFwc2Wet Cold ESSFESSFwc3Columbia ESSFwcESSFwc3Columbia ESSFwcESSFwc4Selkirk ESSFwcESSFwc4Selkirk ESSFESSFwc4Selkirk ESSFESSFwc4Very Vold ESSFESSFwc4Selkirk ESSFESSFwvVery Very Cold ESSFESSFwc4Very Wet Very Cold ESSFESSFxpVery Dry Cold Parkland ESSFESSFxpVery Dry Cold Parkland ESSFESSFxpVery Dry Cold Parkland ESSFESSFxp1West Chilcotin ESSFxvpESSFdkpDry Cool Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFdcp2Thompson ESSFdcpESSFmwpMoist Warm Parkland ESSFESSFmmpMoist Mild Parkland ESSFESSFmmp1Raush ESSFmmpESSFmp2Robson ESSFmmpESSFmvpMoist Cool Parkland ESSFESSFmvpMoist Cool Parkland ESSFESSFmvpSSFmvpESSFmvpMoist Cool Parkland ESSFESSFmvpSSFmvpESSFmvpSSFmvpESSFmvpSSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp			
ESSFwmWet Mild ESSFESSFwkWet Cool ESSFESSFwk1Cariboo ESSFwkESSFwc2Wet Cold ESSFESSFwc1Columbia ESSFwcESSFwc2Northern Monashee ESSFESSFwc3Cariboo ESSFwcESSFwc4Selkirk ESSFwcESSFwc4Selkirk ESSFwcESSFwc4Selkirk ESSFwcESSFwc4Very Wet Very Cold ESSFESSFwcVery Wet Very Cold ESSFESSFvcVery Wet Very Cold ESSFESSFxcpVery Dry Cold Parkland ESSFESSFxp1West Chilootin ESSFxvpESSFdcpDry Cool Parkland ESSFESSFdcpDry Cool Parkland ESSFESSFdcpDry Cold Parkland ESSFESSFdcpDry Cold Parkland ESSFESSFdcpDry Very Cold Parkland ESSFESSFdcpDry Very Cold Parkland ESSFESSFmmpMoist Mild Parkland ESSFESSFmmpMoist Mild Parkland ESSFESSFmmpMoist Cool Parkland ESSFESSFmpMoist Cool Parkland ESSFESSFmpMoist Cool Parkland ESSFESSFmvpMoist Very Cold Parkland ESSFESSFmvpSSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp			
ESSFwkWet Cool ESSFESSFwk1Cariboo ESSFwkESSFwc2Wet Cold ESSFESSFwc1Columbia ESSFwcESSFwc2Northern Monashee ESSFESSFwc3Cariboo ESSFwcESSFwc4Selkirk ESSFwcESSFwcVery Cold ESSFESSFwc4Very Wet Very Cold ESSFESSFwcVery Wet Very Cold ESSFESSFwcVery Wet Very Cold ESSFESSFwvVery Wet Very Cold Parkland ESSFESSFxcpVery Dry Very Cold Parkland ESSFESSFxp1West Chilcotin ESSFxvpESSFdcpDry Cool Parkland ESSFESSFdcpDry Cold Parkland ESSFESSFdcpDry Cold Parkland ESSFESSFdcpDry Cold Parkland ESSFESSFdcpDry Cold Parkland ESSFESSFdcpDry Very Cold Parkland ESSFESSFmmpMoist Warm Parkland ESSFESSFmmpMoist Warm Parkland ESSFESSFmmpMoist Cool Parkland ESSFESSFmmpMoist Cool Parkland ESSFESSFmpMoist Cool Parkland ESSFESSFmpMoist Cool Parkland ESSFESSFmvpMoist Cool Parkland ESSFESSFmvpMoist Cool Parkland ESSFESSFmvpMoist Very Cold Parkland ESSFESSFmvpMoist Cool Parkland ESSFESSFmvpMoist Cool Parkland ESSFESSFmvpBullmoose ESSFmvpESSFmvp1Sechako ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp			
ESSFwk1Cariboo ESSFwk Misinchinka ESSFwkESSFwc2Wet Cold ESSFESSFwc1Columbia ESSFwc ESSFwc2ESSFwc2Northern Monashee ESSFESSFwc3Cariboo ESSFwc ESSFwcESSFwc4Selkirk ESSFwcESSFwc4Wet Very Cold ESSFESSFvcVery Wet Cold ESSFESSFvcVery Wet Cold ESSFESSFvcVery Wet Very Cold ESSFESSFvcVery Dry Cold Parkland ESSFESSFxcpVery Dry Cold Parkland ESSFESSFxvpBig Creek ESSFxvpESSFdcpDry Cool Parkland ESSFESSFdcpDry Cool Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFmvpMoist Warm Parkland ESSFESSFmpMoist Warm Parkland ESSFESSFmmpMoist Cool Parkland ESSFESSFmpMoist Cool Parkland ESSFESSFmcpMoist Cool Parkland ESSFESSFmpMoist Cool Parkland ESSFESSFmvp1Nechako ESSFmvpESSFmvp1SesFmvpESSFmvp1SesFmvpESSFmvp1SesFmvpESSFmvp1SesFmvpESSFmvp1SesFmvpESSFmvp1SesFmvpESSFmvp1SesFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp			
ESSFwk2Misinchinka ESSFwkESSFwcWet Cold ESSFESSFwc1Columbia ESSFwcESSFwc2Northern Monashee ESSFESSFwc3Cariboo ESSFwcESSFwc4Selkirk ESSFwcESSFwc4Selkirk ESSFwcESSFwvVery Cold ESSFESSFvcVery Wet Cold ESSFESSFvcVery Wet Cold ESSFESSFxcpVery Dry Cold Parkland ESSFESSFxcpVery Dry Cold Parkland ESSFESSFxvpVery Dry Very Cold Parkland ESSFESSFxvp1West Chilcotin ESSFxvpESSFdkpDry Cool Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFdcp2Thompson ESSFdcpESSFmwpMoist Warm Parkland ESSFESSFmmpMoist Warm Parkland ESSFESSFmp1Raush ESSFmmpESSFmp2Robson ESSFmmpESSFmp3Moist Cool Parkland ESSFESSFmp4Moist Cool Parkland ESSFESSFmp5ESSFmvp1ESSFmvp3Omineca ESSFmvpESSFmvp4Soft Cod Parkland ESSFESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp			
ESSFwcWet Cold ESSFESSFwc1Columbia ESSFwcESSFwc2Northern Monashee ESSFESSFwc3Cariboo ESSFwcESSFwc4Selkirk ESSFwcESSFwvWet Very Cold ESSFESSFvcVery Wet Cold ESSFESSFvvVery Wet Very Cold ESSFESSFxcpVery Ury Cold Parkland ESSFESSFxvpVery Dry Cold Parkland ESSFESSFxvpVery Dry Very Cold Parkland ESSFESSFxvp1West Chilcotin ESSFxvpESSFdcp1Ory Cold Parkland ESSFESSFdcp2Thompson ESSFdcpESSFdvpDry Cold Parkland ESSFESSFdvpDry Very Cold Parkland ESSFESSFdvpDry Very Cold Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFmwpMoist Warm Parkland ESSFESSFmmpMoist Mild Parkland ESSFESSFmmp1Raush ESSFmmpESSFmp3Moist Cold Parkland ESSFESSFmvp1Kobson ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4SesFmvp			
ESSFwc1Columbia ESSFwcESSFwc2Northern Monashee ESSFESSFwc3Cariboo ESSFwcESSFwc4Selkirk ESSFwcESSFwvWet Very Cold ESSFESSFvcVery Wet Cold ESSFESSFvvVery Wet Very Cold ESSFESSFxcpVery Ury Cold Parkland ESSFESSFxp1West Chilcotin ESSFxvpESSFdcpDry Cool Parkland ESSFESSFdcpDry Cool Parkland ESSFESSFdcpDry Cool Parkland ESSFESSFdcpDry Cool Parkland ESSFESSFdcpDry Cool Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFdcp2Thompson ESSFdcpESSFmwpMoist Warm Parkland ESSFESSFmwpMoist Warm Parkland ESSFESSFmmp1Raush ESSFmmpESSFmp2Robson ESSFmmpESSFmp3Moist Cool Parkland ESSFESSFmvp1Noist Cool Parkland ESSFESSFmvp3Omineca ESSFmvpESSFmvp4SesFmvp			
ESSFwc2Northern Monashee ESSFESSFwc3Cariboo ESSFwcESSFwc4Selkirk ESSFwcESSFwcVery Wet Very Cold ESSFESSFvcVery Wet Cold ESSFESSFvcVery Wet Very Cold ESSFESSFxcpVery Dry Cold Parkland ESSFESSFxvpVery Dry Cold Parkland ESSFESSFxvp1West Chilcotin ESSFxvpESSFdkpDry Cool Parkland ESSFESSFdkpDry Cool Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFdvpDry Very Cold Parkland ESSFESSFdvpDry Very Cold Parkland ESSFESSFdvpDry Very Cold Parkland ESSFESSFdvpDry Very Cold Parkland ESSFESSFmwpMoist Warm Parkland ESSFESSFmmp1Raush ESSFmmpESSFmmp2Robson ESSFmmpESSFmvp3Moist Cold Parkland ESSFESSFmvp4SesFmvp		ESSFwc	
ESSFwc3Cariboo ESSFwcESSFwc4Selkirk ESSFwcESSFwvWet Very Cold ESSFESSFvcVery Wet Cold ESSFESSFvvVery Wet Very Cold ESSFESSFxcpVery Dry Cold Parkland ESSFESSFxvpVery Dry Cold Parkland ESSFESSFxvpVery Dry Cold Parkland ESSFESSFdxpDry Cool Parkland ESSFESSFdkpDry Cool Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFdcp2Thompson ESSFdcpESSFdvpDry Very Cold Parkland ESSFESSFmwpMoist Warm Parkland ESSFESSFmmp1Raush ESSFESSFmmp2Robson ESSFESSFmcpMoist Cool Parkland ESSFESSFmxp1Raush ESSFESSFmxp2Bullmoose ESSFESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp			
ESSFwc4Selkirk ESSFwcESSFwvWet Very Cold ESSFESSFvcVery Wet Cold ESSFESSFvvVery Wet Very Cold ESSFESSFxcpVery Dry Cold Parkland ESSFESSFxvpVery Dry Very Cold Parkl. ESSFESSFxvpVery Dry Very Cold Parkl. ESSFESSFxvpVery Dry Very Cold Parkl. ESSFESSFdkpDry Cool Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFdcp2Thompson ESSFdcpESSFdvpDry Very Cold Parkland ESSFESSFdvpDry Very Cold Parkland ESSFESSFdvpDry Very Cold Parkland ESSFESSFmwpMoist Warm Parkland ESSFESSFmmp1Raush ESSFmmpESSFmkpMoist Cool Parkland ESSFESSFmvp1Noist Cool Parkland ESSFESSFmvp1Noist Cool Parkland ESSFESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp		ESSFwc2	Northern Monashee ESSFwc
ESSFwvWet Very Cold ESSFESSFvcVery Wet Cold ESSFESSFvvVery Wet Very Cold ESSFESSFxcpVery Dry Cold Parkland ESSFESSFxvpVery Dry Very Cold Parkl. ESSFESSFxvp1West Chilcotin ESSFxvpESSFdcpDry Cool Parkland ESSFESSFdcpDry Cold Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFdvpDry Very Cold Parkland ESSFESSFdcp2Thompson ESSFdcpESSFmwpMoist Warm Parkland ESSFESSFmmp1Raush ESSFESSFmp2Robson ESSFmmpESSFmkpMoist Cool Parkland ESSFESSFmvp1Nechako ESSFESSFmvp2Bullmoose ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp		ESSFwc3	Cariboo ESSFwc
ESSFvcVery Wet Cold ESSFESSFvvVery Wet Very Cold ESSFESSFxcpVery Dry Cold Parkland ESSFESSFxvpVery Dry Very Cold Parkl. ESSFESSFxvp1West Chilcotin ESSFxvpESSFxvp2Big Creek ESSFxvpESSFdcpDry Cool Parkland ESSFESSFdcpDry Cold Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFdvpDry Very Cold Parkland ESSFESSFdvpDry Very Cold Parkland ESSFESSFdvpDry Very Cold Parkland ESSFESSFmwpMoist Warm Parkland ESSFESSFmmp1Raush ESSFmmpESSFmkpMoist Cool Parkland ESSFESSFmvpMoist Cold Parkland ESSFESSFmvp1Nechako ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp		ESSFwc4	Selkirk ESSFwc
ESSFvvVery Wet Very Cold ESSFESSFxcpVery Dry Cold Parkland ESSFESSFxvpVery Dry Very Cold Parkl. ESSFESSFxvp1West Chilcotin ESSFxvpESSFdkpDry Cool Parkland ESSFESSFdcpDry Cold Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFdvpDry Very Cold Parkland ESSFESSFdvpDry Very Cold Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFdvpDry Very Cold Parkland ESSFESSFmwpMoist Warm Parkland ESSFESSFmmp1Raush ESSFmmpESSFmkpMoist Cool Parkland ESSFESSFmvp1Robson ESSFmmpESSFmvp1Nechako ESSFESSFmvp1Nechako ESSFmvpESSFmvp2Bullmoose ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp		ESSFwv	Wet Very Cold ESSF
ESSFvvVery Wet Very Cold ESSFESSFxcpVery Dry Cold Parkland ESSFESSFxvpVery Dry Very Cold Parkl. ESSFESSFxvp1West Chilcotin ESSFxvpESSFdkpDry Cool Parkland ESSFESSFdcpDry Cold Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFdvpDry Very Cold Parkland ESSFESSFdvpDry Very Cold Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFdvpDry Very Cold Parkland ESSFESSFmwpMoist Warm Parkland ESSFESSFmmp1Raush ESSFmmpESSFmkpMoist Cool Parkland ESSFESSFmvp1Robson ESSFmmpESSFmvp1Nechako ESSFESSFmvp1Nechako ESSFmvpESSFmvp2Bullmoose ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp		ESSFvc	Very Wet Cold ESSF
ESSFxcpVery Dry Cold Parkland ESSFESSFxvpVery Dry Very Cold Parkl. ESSFESSFxvp1West Chilcotin ESSFxvpESSFdxpDry Cool Parkland ESSFESSFdcpDry Cool Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFdvpDry Very Cold Parkland ESSFESSFdvpDry Very Cold Parkland ESSFESSFdvpDry Very Cold Parkland ESSFESSFmwpMoist Warm Parkland ESSFESSFmmp1Raush ESSFmmpESSFmkpMoist Cool Parkland ESSFESSFmvp1Raush ESSFESSFmvp1Noist Cool Parkland ESSFESSFmvp1Nechako ESSFESSFmvp1Nechako ESSFESSFmvp2Bullmoose ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp		ESSFvv	
ESSFxvpVery Dry Very Cold Parkl. ESSF West Chilcotin ESSFxvpESSFxvp1West Chilcotin ESSFxvpESSFdxpDry Cool Parkland ESSFESSFdcpDry Cold Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFdvpDry Very Cold Parkland ESSFESSFdvpDry Very Cold Parkland ESSFESSFdvpDry Very Cold Parkland ESSFESSFmwpMoist Warm Parkland ESSFESSFmmp1Raush ESSFmmpESSFmkpMoist Cool Parkland ESSFESSFmkpMoist Cool Parkland ESSFESSFmvp1Robson ESSFmmpESSFmvp1Nechako ESSFESSFmvp2Bullmoose ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp		ESSFxcp	
ESSFxvp1West Chilcotin ESSFxvpESSFdxp2Big Creek ESSFxvpESSFdxpDry Cool Parkland ESSFESSFdcpDry Cold Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFdvpDry Very Cold Parkland ESSFESSFdvpDry Very Cold Parkland ESSFESSFmwpMoist Warm Parkland ESSFESSFmmp1Raush ESSFmmpESSFmkpMoist Cool Parkland ESSFESSFmkpMoist Cool Parkland ESSFESSFmcpMoist Cool Parkland ESSFESSFmvp1Raush ESSFESSFmvp2Bullmoose ESSFmvpESSFmvp1Nechako ESSFmvpESSFmvp2Bullmoose ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp		ESSFxvp	Very Dry Very Cold Parkl. ESSF
ESSFxvp2Big Creek ESSFxvpESSFdkpDry Cool Parkland ESSFESSFdcpDry Cold Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFdvpDry Very Cold Parkland ESSFESSFdvpDry Very Cold Parkland ESSFESSFmwpMoist Warm Parkland ESSFESSFmmp1Raush ESSFmmpESSFmkpMoist Cool Parkland ESSFESSFmkpMoist Cool Parkland ESSFESSFmp1Raush ESSFESSFmp2Robson ESSFESSFmvp1Noist Cool Parkland ESSFESSFmvp2Moist Cool Parkland ESSFESSFmvp3Omineca ESSFESSFmvp4Graham ESSF		-	
ESSFdkpDry Cool Parkland ESSFESSFdcpDry Cold Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFdcp2Thompson ESSFdcpESSFmwpDry Very Cold Parkland ESSFESSFmmpMoist Warm Parkland ESSFESSFmmp1Raush ESSFmmpESSFmkpMoist Cool Parkland ESSFESSFmkpMoist Cool Parkland ESSFESSFmcpMoist Cool Parkland ESSFESSFmvp1Raush ESSFESSFmvp2Robson ESSFESSFmvp3Moist Very Cold Parkland ESSFESSFmvp3Omineca ESSFESSFmvp4Graham ESSF			
ESSFdcpDry Cold Parkland ESSFESSFdcp1Okanagan ESSFdcpESSFdcp2Thompson ESSFdcpESSFdvpDry Very Cold Parkland ESSFESSFmwpMoist Warm Parkland ESSFESSFmmp1Raush ESSFmmpESSFmmp2Robson ESSFmmpESSFmkpMoist Cool Parkland ESSFESSFmcpMoist Cool Parkland ESSFESSFmvp1Robson ESSFmmpESSFmvp2Moist Cool Parkland ESSFESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp			
ESSFdcp1Okanagan ESSFdcpESSFdcp2Thompson ESSFdcpESSFdvpDry Very Cold Parkland ESSFESSFmwpMoist Warm Parkland ESSFESSFmmpMoist Mild Parkland ESSFESSFmmp1Raush ESSFmmpESSFmmp2Robson ESSFmmpESSFmkpMoist Cool Parkland ESSFESSFmcpMoist Cool Parkland ESSFESSFmvp1Noist Cool Parkland ESSFESSFmvp2Moist Very Cold Parkland ESSFESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp		ESSFdcp	
ESSFdcp2Thompson ESSFdcpESSFdvpDry Very Cold Parkland ESSFESSFmwpMoist Warm Parkland ESSFESSFmmpMoist Mild Parkland ESSFESSFmmp1Raush ESSFmmpESSFmmp2Robson ESSFmmpESSFmcpMoist Cool Parkland ESSFESSFmvpMoist Cool Parkland ESSFESSFmvpMoist Cool Parkland ESSFESSFmvpMoist Very Cold Parkland ESSFESSFmvp1Nechako ESSFmvpESSFmvp2Bullmoose ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp			
ESSFdvpDry Very Cold Parkland ESSFESSFmwpMoist Warm Parkland ESSFESSFmmpMoist Mild Parkland ESSFESSFmmp1Raush ESSFmmpESSFmkpMoist Cool Parkland ESSFESSFmcpMoist Cold Parkland ESSFESSFmvpMoist Cold Parkland ESSFESSFmvpMoist Very Cold Parkland ESSFESSFmvpMoist Very Cold Parkland ESSFESSFmvpMoist Very Cold Parkland ESSFESSFmvp1Nechako ESSFmvpESSFmvp2Bullmoose ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp			
ESSFmwpMoist Warm Parkland ESSFESSFmmpMoist Mild Parkland ESSFESSFmmp1Raush ESSFmmpESSFmkpMoist Cool Parkland ESSFESSFmcpMoist Cold Parkland ESSFESSFmvpMoist Cold Parkland ESSFESSFmvpMoist Very Cold Parkland ESSFESSFmvp1Nechako ESSFmvpESSFmvp2Bullmoose ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp			
ESSFmmpMoist Mild Parkland ESSFESSFmmp1Raush ESSFmmpESSFmkpRobson ESSFmmpESSFmcpMoist Cool Parkland ESSFESSFmvpMoist Cold Parkland ESSFESSFmvpMoist Very Cold Parkland ESSFESSFmvp1Nechako ESSFmvpESSFmvp2Bullmoose ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp			
ESSFmmp1Raush ESSFmmpESSFmmp2Robson ESSFmmpESSFmkpMoist Cool Parkland ESSFESSFmcpMoist Cold Parkland ESSFESSFmvpMoist Very Cold Parkland ESSFESSFmvp1Nechako ESSFmvpESSFmvp2Bullmoose ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp			
ESSFmmp2Robson ESSFmmpESSFmkpMoist Cool Parkland ESSFESSFmcpMoist Cold Parkland ESSFESSFmvpMoist Very Cold Parkland ESSFESSFmvp1Nechako ESSFmvpESSFmvp2Bullmoose ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp			
ESSFmkpMoist Cool Parkland ESSFESSFmcpMoist Cold Parkland ESSFESSFmvpMoist Very Cold Parkland ESSFESSFmvp1Nechako ESSFmvpESSFmvp2Bullmoose ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp			
ESSFmvpMoist Cold Parkland ESSFESSFmvpMoist Very Cold Parkland ESSFESSFmvp1Nechako ESSFmvpESSFmvp2Bullmoose ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp			
ESSFmvpMoist Very Cold Parkland ESSFESSFmvp1Nechako ESSFmvpESSFmvp2Bullmoose ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp			
ESSFmvp1Nechako ESSFmvpESSFmvp2Bullmoose ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp			
ESSFmvp2Bullmoose ESSFmvpESSFmvp3Omineca ESSFmvpESSFmvp4Graham ESSFmvp			
ESSFmvp3 Omineca ESSFmvp ESSFmvp4 Graham ESSFmvp			
ESSFmvp4 Graham ESSFmvp			
		•	
ESSFwmp Wet Mild Parkland ESSF		ESSEWMP	Wet Mild Parkland ESSF

Establishment to Free Growing Guidebook: Kamloops Forest Region

Zone	Subzon	6	Name
	Gubzon	Variant	Name
	ESSFwo	ср	Wet Cold Parkland ESSF
		ESSFwcp2	Northern Monashee ESSFwcp
		ESSFwcp3	Cariboo ESSFwcp
		ESSFwcp4	Selkirk ESSFwcp
	ESSFw		Wet Very Cold Parkland ESSF
	ESSFvc		Very Wet Cold Parkland ESSF
	ESSFvv	þ	Very Wet Very Cold Parkland ESSF
ICH			Interior Cedar – Hemlock
	ICHxw		Very Dry Warm ICH
	ICHdw		Dry Warm ICH
	ICHdk		Dry Cool ICH
	ICHmw		Moist Warm ICH
		ICHmw1 ICHmw2	Golden ICHmw
		ICHmw2 ICHmw3	Columbia-Shuswap ICHmw Thompson ICHmw
	ICHmm		Moist Mild ICH
	ICHmk		Moist Cool ICH
	ICI IIIK	ICHmk1	Kootenay ICHmk
		ICHmk2	Thompson ICHmk
		ICHmk3	Horsefly ICHmk
	ICHmc		Moist Cold ICH
		ICHmc1	Nass ICHmc
		ICHmc1a	Amabilis Fir Phase, ICHmc1
		ICHmc2	Hazelton ICHmc
	ICHwk		Wet Cool ICH
		ICHwk1	Wells Gray ICHwk
		ICHwk1c	Cold Air Phase, ICHwk1
		ICHwk2	Quesnel ICHwk
		ICHwk3	Goat ICHwk
		ICHwk4	Cariboo ICHwk
	ICHwc		Wet Cool ICH
	ICHvk		Very Wet Cool ICH
		ICHvk1	Mica ICHvk
		ICHvk1c	Cold Air Phase, ICHvk1
		ICHvk2	Slim ICHvk
	ICHvc		Very Wet Cold ICH
IDF			Interior Douglas-fir
	IDFxh		Very Dry Hot IDF
		IDFxh1	Okanagan IDFxh
		IDFxh1a	Grassland Phase, IDFxh1
		IDFxh1b	Steep South Phase, IDFxh1
		IDFxh2	Thompson IDFxh
		IDFxh2a	Grassland Phase, IDFxh2
		IDFxh2b	Steep South Phase, IDFxh2
	IDFxw		Very Dry Warm IDF
	IDFxm		Very Dry Mild IDF
	IDFdm		Dry Mild IDF
		IDFdm1 IDFdm2	Kettle IDFdm Kootenay IDFdm
			Roolenay IDFulli


Zone			
	Subzon	ie Variant	Name
	IDFdk IDFdw IDFmw	IDFdk1 IDFdk1a IDFdk1b IDFdk2 IDFdk3 IDFdk4 IDFmw1 IDFmw2 IDFmw2a	Dry Cool IDF Thompson IDFdk Grassland Phase, IDFdk1 Steep South Phase, IDFdk1 Cascade IDFdk Steep South Phase, IDFdk2 Fraser IDFdk Chilcotin IDFdk Dry Warm IDF Moist Warm IDF Okanagan IDFmw Thompson IDFmw
МН	IDFww		Wet Warm IDF Mountain Hemlock
	MHmm MHwh MHmm	MHmm1 MHmm2 MHwh1 MHwh2 MHmmp1 MHmmp2 MHwhp MHwhp1 MHwhp2	Moist Maritime MH Windward MHmm Leeward MHmm Wet Hypermaritime MH Windward MHwh Leeward MHwh Moist Maritime Parkland MH Windward MHmmp Wet Hypermaritime Parkland MH Windward MHwhp Leeward MHwhp
MS	Movie		Montane Spruce
	MSxk MSxv MSdm	MSdm1 MSdm2	Very Dry Cool MS Very Dry Very Cold MS Dry Mild MS Okanagan MSdm Thompson MSdm
	MSdk MSdc	MSdc1 MSdc2	Dry Cool MS Dry Cold MS Bridge MSdc Tatlayoko MSdc
PP	MSdv PPxh	PPxh1	Dry Very Cold MS Ponderosa Pine Very Dry Hot PP Okanagan PPxh
	PPdh	PPxh1a PPxh2 PPxh2a PPdh1 PPdh2	Grassland Phase, PPxh1 Thompson PPxh Grassland Phase, PPxh2 Dry Hot PP Kettle PPdh Kootenay PPdh
SBPS	SBPSxc SBPSdc SBPSm SBPSm	c k	Sub-Boreal Pine – Spruce Very Dry Cold SBPS Dry Cold SBPS Moist Cool SBPS Moist Cold SBPS

Establishment to Free Growin	ng Guidebook: Kamlo	oops Forest Region
------------------------------	---------------------	--------------------

Zone	Subzone Variant	Name
	Variant	
SBS		Sub-Boreal Spruce
	SBSdh	Dry Hot SBS
	SBSdh1	McLennan SBSdh
	SBSdh2	Robson SBSdh
	SBSdw	Dry Warm SBS
	SBSdw1	Horsefly SBSdw
	SBSdw2	Blackwater SBSdw
	SBSdw3	Stuart SBSdw
	SBSdk	Dry Cool SBS
	SBSmh	Moist Hot SBS
	SBSmw	Moist Warm SBS
	SBSmm	Moist Mild SBS
	SBSmk	Moist Cool SBS
	SBSmk1	Mossvale SBSmk
	SBSmk2	Williston SBSmk
	SBSmc	Moist Cold SBS
	SBSmc1	Moffat SBSmc
	SBSmc2	Babine SBSmc
	SBSmc3	Kluskus SBSmc
	SBSwk	Wet Cool SBS
	SBSwk1	Willow SBSwk
	SBSwk2	Finlay-Peace SBSwk
	SBSwk3	Takla SBSwk
	SBSwk3a	Douglas-fir Phase, SBSwk3
	SBSvk	Very Wet Cool SBS
SWB		Spruce – Willow – Birch
	SWBdk	Dry Cool SWB
	SWBmk	Moist Cool SWB
	SWBdks	Dry Cool Scrub SWB
	SWBmks	Moist Cool Scrub SWB
	SWBvks	Very Wet Cool Scrub SWB

Appendix 3. Conceptual approach to tree species selection

The procedures used for tree species selection in these guidelines are based on work by K. Klinka and M.C. Feller (1984) for forest sites in southwestern British Columbia. These guidelines have been developed with consideration of both ecological and management factors. The evaluation criteria of maximum sustainable productivity, crop reliability, and silvicultural feasibility were stressed throughout the development process. The choice of stocking standards was tied to management objectives.

Species evaluation by site series

A list of ecologically acceptable species was prepared for each site series. Three criteria were then used to determine the most suitable species choices for sawlog production (the assumed management goal):

- maximum sustainable productivity
- crop reliability
- silvicultural feasibility.

Maximum sustainable productivity

To satisfy the maximum sustainable productivity criterion, the relative productivity for each tree species, or combination of tree species, was evaluated to determine which were best suited to each ecosystem unit.

Crop reliability

To satisfy the crop reliability criterion, the relative susceptibility to natural hazards was evaluated for each tree species, to determine which species provide the most reliable choices for a future crop on a given site series. Established stands should be both resilient and resistant to all anticipated hazards, so that they will survive until harvest.

Silvicultural feasibility

To satisfy the criterion of silvicultural feasibility, ecologically viable tree species were evaluated, based on accumulated silvicultural experience, to determine whether they were able to produce sawlogs in a cost-effective manner on each site series within an acceptable rotation length.

Appendix 4. Examples of species selection and stocking standards

1. Determining preferred and acceptable species by management objectives

A block is located in a site series for which the guidelines indicate Pl and Sx as primary species and Bl as a secondary species. The guidelines indicate that the free growing target stocking standard is 1200 well-spaced trees/ha and the minimum stocking standard is 700 well-spaced trees/ha.

Reviews of the management unit plan and landscape priorities have identified that the production of Sx sawlogs, in an 80 year rotation, is the main objective for this portion of the landscape. The prescriber has also determined that, for this site, Sx has the best mix of maximum sustainable productivity, crop reliability, and silvicultural feasibility when compared with other species.

Once spruce sawlogs have been identified as the management objective, Sx is listed as the preferred species in the silviculture prescription. Management activities will be aimed at actively managing for Sx through site preparation, planting, and brush control. Since Pl and Bl will not be planted or actively managed for, they will be identified only as acceptable species in the silviculture prescription. Pl and Bl will be considered acceptable for contributing to tree species diversity and additional stocking to the site.

Management activities will be aimed at meeting the target stocking at free growing.

At the regeneration delay date, a minimum of 700 well-spaced preferred and acceptable trees/ha and a minimum of 600 well-spaced Sx/ha must be on-site (see Table 1, page 17) in order to classify the site as satisfactorily restocked.

Within the free growing assessment period, to be classified as free growing, a minimum of 600 free growing Sx/ha must be on-site (see Table 1). In addition, there must be at least 700 free growing preferred and acceptable trees/ha on-site. If there are fewer than 600 free growing Sx/ha, or fewer than 700 total free growing trees/ha, the area is considered not free growing.

The standards are intended to ensure that sufficient numbers of the preferred tree species are established and free growing in order to produce the desired future forest conditions.

2. Tertiary species as preferred

In this example, site classification shows the block to be on a southwest slope in the lower elevation of the ICH. Armillaria root rot is considered a serious threat to future productivity on the block. The original stand was composed of 30% Cw, 40% Hw, and 30% Fd. Fd and Lw are classed as primary species, Pl and Sx as secondary species, and Bl, Cw, Hw, Pw, and Py as tertiary species. The cautionary and restrictive codes indicate that there is a high risk of blister rust for Pw; that Py be restricted to southerly aspects, at lower elevations, and be used on a trial basis only (as it is out of its natural range); and that Sx be restricted to north aspects and upper elevations. The target and minimum stocking standards provided in the guidelines are 1200 and 700 stems/ha, respectively.

The objective for the stand is to produce sawlog-quality timber over an 80year rotation, while retaining species diversity. To reduce the incidence of root rot, the block is prescribed to be stumped after harvest.

To ensure the maximum productivity on the site and to reduce the chance of future armillaria root rot infection, a mix of species is prescribed for the new stand. Crown closure is estimated to occur in 30 years.

No snags are to be left in this block, but adjacent riparian areas will be left unharvested to provide perching habitat.

The preferred species chosen in the silviculture prescription to create the target stand are Lw, Fd, Pw, and Py, even though Pw and Py are classed as tertiary species. Lw, Fd, and Py will be planted. Because Py is potentially a productive and reliable species on this site, a monitoring program will be established to assess performance. Pw is expected to fill in naturally. Blister rust is not presently a problem in the stand, however, pruning of Pw is prescribed to mitigate possible infection.

Acceptable species in the silviculture prescription are Bl, Cw, and Hw (all classed as tertiary). These species are thought useful in providing varied habitat and structural diversity. Bl, Cw, and Hw will occur naturally, and no management is required for their establishment. Pl and Sx are not listed in the silviculture prescription as either preferred or acceptable, because there is no Pl seed source on site and Sx is not adapted to this aspect or elevation.

The area will be planted at 1000 stems/ha, with an expected infill of 200 wellspaced stems from the preferred and acceptable species, to provide 1200 stems/ha at free growing.

3. Deviation from the established stocking standards is recommended for maintenance of grizzly bear habitat

After a field check with Ministry of Environment staff, the block was identified as providing critical grizzly bear habitat. The block is near a local skunk cabbage swamp that has bear-marked trees in it.

Harvesting in the valley is near the end of the first pass, where large areas of this site series have been clearcut and regenerated successfully to target

stocking levels of Ss. There is a concern that forage availability is becoming constrained due to the ensuing canopy closure in these adjacent areas.

The species guidelines suggest Ba, Cw, and Ss as the primary species. Hw on deep duff is suggested as a secondary species, and Yc is suggested as a tertiary species. The target and minimum stocking standards are suggested as 900 and 500 well-spaced stems/ha, respectively, with a regeneration delay of three years.

Both Ss and Ba are listed as preferred species while Cw, Hw, and Yc are listed as acceptable species in the silviculture prescription. The target stocking is 600 well-spaced stems/ha, with a minimum of 400 well-spaced stems/ha. This is below the 900/500 suggested in these guidelines, but fits within the *Guidelines for integrating grizzly bear habitat and silviculture in the coastal western hemlock biogeoclimatic zone*.

The prescription calls for planting equal numbers of Ss and Ba in clumps of seven trees. Ss is to be planted on the outside of the clumps with Ba in the centres. The minimum inter-tree distance is 1 m. The clumps will be approximately 10 m apart, providing 100 clusters per hectare. Due to brush encroachment and lack of adjacent seed sources, natural regeneration is not expected to influence stocking on this block.

The reduced targets and minimums as well as the clumpy distribution are suggested to allow greater space for colonization and maintenance of key forage species for grizzly bears. The target stand at rotation will provide approximately 450 stems at 80 years with partial canopy closure.

To ensure that the conifers reach free growing, two brushing treatments are scheduled, two and five years after planting. Either backpack spot treatment or manual brushsaw vegetation control methods are suggested. Competing species include red elderberry, salmonberry, and red-osier dogwood. Either treatment should treat only a cylinder around each tree. Control of brush outside the zone of influence is not prescribed. It is intended that crop-tree-centred brushing and clustered conifer spacing will provide adequate space for shrub regrowth, and will provide conditions suitable for adequate berry production through the young sapling and pole stages (5–30 cm dbh).

Appendix 5. Free growing damage criteria for British Columbia

Introduction

Before a stand can be declared free growing, it must have adequate stocking of healthy, well-spaced trees of a preferred or acceptable species. The free growing damage criteria identified in the attached guidelines are not legislated regulations. The guidelines are based on the most current knowledge of forestdamaging agents, and are provided to help users exercise their professional judgment in identifying "healthy" trees. The district manager may allow or require deviations from these guidelines, as long as the legal requirement to produce a healthy tree is met.

These free growing damage criteria are intended to help users uniformly define "healthy" as part of "healthy, well-spaced trees" used in the *Forest Practices Code of British Columbia Act* and regulations. These damage criteria are designed for use at the free growing assessment to determine the damage to, and acceptability of, individual trees (conifers only) across the province. Acceptability of a stand will depend on several factors including thresholds of damage and stocking standards agreed to in the prescription.

The table lists various types of damage, causal agents, and species of trees. Agents and damage are often referred to by their codes listed on the Ministry of Forests Integrated Data Dictionary Pest_Species_Code list (partly listed on the *Silviculture Damage Agent and Condition Codes* (FS 747) field form). Tree species abbreviations are listed in the Forest Productivity Council publication *Minimum Standards for the Establishment and Remeasurement of Permanent Sample Plots in British Columbia* (1999).

There are two key points to keep in mind when using these criteria:

- 1. These criteria apply **only** at the time the free growing survey is conducted and are specific to even-aged, age class 1 stands that are being regenerated primarily to coniferous species for the production of timber. The assumptions made on the impact of pest damage to potential crop trees are founded on these factors.
- 2. Broadleaf species are noted in these criteria (usually as non-susceptible host species) but there are no damage criteria listed for these species. This is because the characteristics of most broadleaf species (e.g., pests and growth habits) are sufficiently different from those of conifers that creating a single table would be difficult and confusing. It is envisioned that broadleaf species, and partial-cut stands (age class 2 and older), will be covered by separate tables in the future.

These criteria are based on best available data and professional opinion, and are expected to be revised in future with newly available knowledge or information.

Free growing damage criteria for even-aged (age class 1) coniferous trees Table A5-1.

vole AV, porcupine AP, (e.g., sunscald) or completely removed from the tree exposing hare AH. Warrens root collar [the sapwood. Measure the wound across the widest point of the exposed sapwood (or dead cambium when the tree is damaged Healed over wounds (=scars) are acceptable. See Figure A5-1. A wound is defined as an injury in which the cambium is dead Only trees that are symptomatic should be checked for insect infestation or mining damage. Non-symptomatic trees are Note: Wounds caused by rodent feeding around rust cankers terminal weevils (IWS, IWP), **Leader dominance** occurs when the tallest leader is at least frost NG, animal damage A. 5 cm taller than the second tallest leader. See Figure A5-3. This criterion applies only for terminal weevil damage. should have stem rust recorded as the causal agent. For horizontal displacement see Figure A5-2. presumed to be unaffected by insect mining. Comments See Figure A5-4. See Figure A5-4. by sunscald) stalactiform blister rust DSS, Likely damage agents & twig moth ISP, sequoia pitch windthrow NW, sunscald NZ, deer AD, elk AE, moose AM, frost NG, hail NH, snow NY, comandra blister rust DSC, stalactiform blister rust DSS. logging TL, mechanical TM. White pine (spruce) weevil IWS, lodgepole pine weevil IWW, sequoia pitch damage agent codes white pine blister rust DSB, white pine blister rust DSB, comandra blister rust DSC, weevil IWP, northern pitch Defoliators ID, white pine lodgepole pine terminal drought ND, logging TL, squirrel AS, beaver AZ, vole AV, porcupine AP, western gall rust DSG. root collar weevil IWW western gall rust DSG, atropellis canker DSA moth ISQ, cattle AC, (spruce) weevil IWS, terminal weevil IWP. moth ISQ, fire NB mechanical TM ⁼or sweep, species Pw, PI, Py ٩ all except Host Cw and Sx, Ss, PI, Sx PI, Py ≩ ₹ the tree has a dead or broken top at a point that All ₹ ₹ a gall rust infection occurs on a live branch less than 5 cm from the stem. the tree has a wound which is greater than 20% insect such as a weevil or a beetle and exhibits the tree is currently attacked by a bark-mining an infection occurs on a live branch less than 60 cm from the stem. 30 cm from the point of defect and originates above 30 cm from the point of germination. the tree has any wound which is greater than and the fork originates above 30 cm from the the tree has a wound centred on an infection the tree leader has been killed three or more times in the last five years (weevil only). dominance expressed after five years growth mistletoe (See Note under Stem: Infection). the pith is horizontally displaced more than is >2 cm (>3 cm for the coast) in diameter. the tree has two or more leaders with no symptoms such as foliage discoloration, caused by a stem rust, canker, or dwarf thinning, and/or reduced height growth **Free being assessed is** UNACCEPTABLE If: 33% of the stem circumference, or any infection occurs on the stem. of the total length of the stem, or point of germination. increments Type of damage sweep, fork, browse, (including sunscald (including cankers and galls) Insect mining at (including crook, Deformation and girdling) and dead or root collar broken top) Infection Infection cankers) Wound Galls Location of damage Branch Branch Stem Stem Stem Stem

PLEASE READ the preceding introduction before using the following table and figures.

Continued	
Table A5-1.	

Location of damage	Type of damage	Tree being assessed is UNACCEPTABLE if:	Host species	Likely damage agents & damage agent codes	Comments
Branch	Gouting	 any adelgid gouting occurs on a branch. 	Ba, Bg, Bl	balsam woolly adelgid IAB.	Gouting is defined as excessive swelling of a branch or shoot caused by balsam woolly adelgid, and is often accompanied by misshapen needles and buds. It is most common on branch tips and at nodes near the ends of branches. Consult a recent distribution map to identify the geographic extent of this pest.
Foliage	Defoliation	 >80% of tree foliage has been removed due to defoliating insects or foliage disease. 	IIV	defoliators ID, foliage diseases DF.	
Stem or Branch	Dwarf mistletoe infection	 any infection occurs on the stem or a live branch, or a susceptible tree is located within 10 m of an overtopping tree, which is infected with dwarf mistletoe. 	Hw, PI, Lw, Fd	hemlock dwarf mistletoe DMH, lodgepole pine dwarf mistletoe DMP, f larch dwarf mistletoe DML, Douglas-fir dwarf mistletoe DMF.	Note: To confirm infection, the surveyor must observe mistletoe aerial shoots or basal cups on regeneration or on live or dead fallen brooms. Overtopping tree is a tree that is three or more times taller than the median height of the trees being assessed.
Roots	Root disease	 sign(s) or a definitive combination of symptoms All of root disease are observed. 		armillaria root disease DRA, s laminated root rot DRL, f tomentosus root rot DRT, s annosus root disease DRN, f blackstain root disease DRB, o	Signs are direct evidence of the pathogenic fungus including fruiting bodies, distinctive mycelium or rhizomorphs. Symptoms include foliar chlorosis or thinning, pronounced resin flow near the root collar, reduced recent leader growth, a distress cone crop, and wood decay or stain. An individual symptom is not sufficient to identify a root disease.
		 infected tree found in plot. See comments for well-spaced tree net down calculation. The multiplier for DRA is two, except in BEC zones PPdh1 and 2, IDFxh1, IDFdm1 and 2, MSdk1, and MSdm1 where the multiplier is one. 	- II	armillaria root disease DRA.	Note: All confer species are considered susceptible. Broadleaf species are considered not susceptible for survey purposes only. Example: How to apply net down for root disease. If root disease-infected trees are found in the plot: 1. In the first sweep, determine the total number of healthy, well-spaced trees using the prescribed minimum inter-tree distance (MITD) (e.g., 12 trees) ignoring the M-value; 2. In a second independent sweep, determine the number of well-spaced infected trees (including dead infected trees and for DRT only, infected stumps) using MITD (e.g., one infected tree). 3. Multiply the number from step 2 by the multiplier for the specific root disease and subtract this number from the number of susceptible healthy well-spaced trees found in step 1 (e.g., for DRA: 12-1(2) = 10). The result is the maximum
		infected conifer found in plot. See comments for Fd, Sx, Se laminated root rot DRL. well-spaced tree net down calculation. The I w Ba	Fd, Sx, Se I I w Ba		number of tree growing trees tailied for the plot. Note: BI, Cw, PI, Pw, Py, and broadleaf species are considered not susceptible for survey nurnoses only
				tomentosus root rot DRT.	Note: Ba, BI, Cw, Fd, PI, Pw, Py and broadleaf species are considered not susceptible for survey purposes only.
		 infected conifer found in plot. See comments for well-spaced tree net down calculation. The multiplier for DRN is two. 	Ba, Hw, Ss	annosus root rot DRN.	Note: Bg, Bl, Cw, Cy, Fd, Hm, Pl, Pw, Py, Sx and broadleaf species are considered not susceptible for survey purposes only.

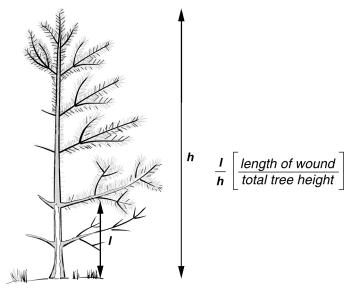
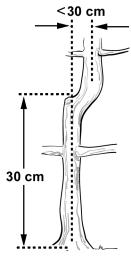



Figure A5-1. Calculation of wound along stem length.

Figure A5-2. Determining horizontal displacement and height above point of germination when assessing stem deformation.

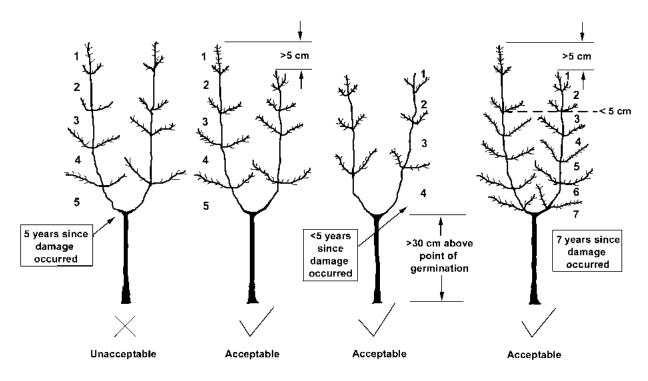


Figure A5-3. Acceptable and unacceptable forks.

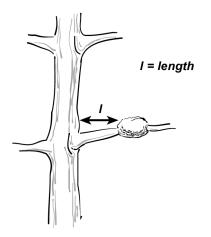


Figure A5-4. Distance measurement from point of infection by canker or gall to main stem.

Definitions

- **decay:** the disintegration of plant tissue. The process by which sound wood is decomposed by the action of wood-destroying fungi and other microorganisms.
- **fork:** two or more leaders have originated from the loss of a leader or apical shoot. At free growing age, a fork is considered persistent if it has not differentiated in height between competing leaders by more than 5 cm after five years of growth since the leader damage occurred. Forks may provide entry points for decay fungi, are points of weakness during felling, and may create waste in the highest value first log.
- **gall:** nodule or lump of malformed bark or woody material caused by a variety of damaging agents, such as western gall rust and some insects.
- **gouting:** excessive swelling of a branch or shoot, often accompanied by misshapen needles and buds. Most common at nodes on branches and frequently caused by balsam woolly adelgid on true firs (*Abies* spp.).
- **infection:** characterized by a lesion or canker on stem or branches or by swelling around the entrance point of a pathogen.
- injury: damage to a tree by a biological, physical, or chemical agent.
- scar: a wound completely healed over with callus tissue
- **wound:** an injury where cambium is dead (e.g., sunscald) or completely removed. Wounds often serve as entry points for decay fungi.

Appendix 6. Boreal broadleaf stocking guidelines

BWBSmw1 and mw2, Prince George Forest Region

10

Site Series	Primary Species	Secondary Species	Tertiary Species² (specify MSSpa %)	TSSpa	MSSpa	MSSp	Minimum inter-tree distance (m)
01	At, Ac ¹		Ep,Sw (15%)	2500	2000	1700	1.4
Regeneration Date (yrs)	Early Free Date (•	te Free Growing Date (yrs)		ree Growing ight (m)	Crop Tree/ Brush Ratio	Maximum Density (countable sph)

¹ Ac acceptable if not sprouting from a cut stump.

5

4

² Acceptability criteria (minimum height, etc.) for secondary or tertiary species would be defined in the silviculture prescription.

2.0

N/A

N/A

Appendix 7. Interpretation of cautionary and restrictive codes used in species selection guidelines

This appendix provides interpretations for each of the footnotes used in the species selection tables of this guidebook.

Footnotes applied to species are intended to inform planners, practitioners, and others of the potential issues surrounding the selection of that species. Each of the footnotes is worded as briefly as possible and users of this guidebook should read this section to familiarize themselves with the ecology and intent behind each footnote.

Footnotes are listed briefly and by number at the end of this appendix.

Microsite limitations (Footnotes 1, 2, 28, 41, 52)

A microsite is a portion of a site that is uniform in microtopography and surface soil characteristics. Microsites can range in size from one to five m² and can change suddenly. Within a site series, some tree species may establish and grow well only on certain microsites.

1. elevated microsites are preferred

Planting on elevated microsites reduces the limitation posed by wet and/or cold soils. Elevated microsites tend to be drier and warm faster than non-elevated sites.

2. suitable on thick forest floors

Western hemlock (*Tsuga heterophylla*) is able to germinate on thick forest floors (>20 cm) and abundant decayed wood. On these sites, it has a comparative advantage over other species such as Sitka spruce and western redcedar.

28. limited by moisture deficit

Dry soils or high rates of moisture loss from the leaves of seedlings can result in poor growth or mortality. Site series where dry soils are common usually occur on shallow soils, coarse-textured soils and/or steep slopes. On these sites, planting on moister microsites such as pockets of deeper soil, slight depressions, and shaded areas reduces the limitation posed by dry soils.

41. limited by poorly drained soils

Survival and growth is limited by poorly drained soils. These soils are identified by having prominent mottling or low chromas (gleying) in the surface 30 cm.

52. restricted to sheltered microsites with deep soil

The species is acceptable only on sheltered microsites with deep pockets of soil. This footnote is used on site series where soil is typically shallow and can be exposed, such as on rock outcrops.

Mesosite restrictions (Footnotes 3, 4, 6–12, 25–27, 36, 42, 54, 55)

Within a site series, some species will be reasonably productive provided they grow on the appropriate mesosite (sometimes recognized in regional field guides as site series phases). Mesosites can be defined by site and soil differences between ecosystems belonging to the same site series. They can occur at scales of 0.01–0.50 ha and have a bearing on establishment and regeneration success.

3. restricted to coarse-textured soils

Coarse-textured soils are defined here as sand and loamy sand; or sandy loam, loam, sandy clay loam with >70% coarse fragments. Some species grow better on coarser textured, well-drained soils.

4. restricted to medium-textured soils

Medium-textured soils are defined here as sandy loam, loam, and sandy clay loam with <70% coarse fragments; silt loam and silt textures with >20% coarse fragments; and silty clay loam and clay loam textures with >35% coarse fragments. Medium-textured soils retain more moisture than the sandy, glaciofluvial soils that may also occur in the same site series.

6. suitable on nutrient-very-poor sites

Species suitable on these sites have a comparative advantage over species whose growth may be more limited by very poor nutrient levels. This applies to lodgepole pine, primarily on drier site series of CWH subzone/variants. Pine's ability to grow well on nutrient-very-poor sites makes it an alternative for Douglas-fir, which also occurs on these sites.

7. restricted to nutrient-medium sites

Species restricted to these sites are usually more sensitive to very poor or poor nutrient levels than other recommended species. Although these species have slightly higher nutrient requirements, they are acceptable alternatives and sometimes primary species on nutrient-medium examples of a site series that is typically very poor to poor.

8. restricted to steep slopes

Steep slopes are defined here as greater than approximately 35% in the interior or greater than 50% on the coast. Species restricted to these sites may be frost intolerant. Steep slopes—especially south-facing—have reduced frost hazards relative to gentler slopes.

9. restricted to southerly aspects

Southerly aspects are mainly SSE to WSW with slopes >25% in the interior or >35% on the coast. Species restricted to these sites may be frost intolerant and/or better adapted to drier soil conditions and lower humidity. South slopes with moderate to steep gradients have reduced frost hazards, relatively drier soil, and lower humidity than other aspects. In some cases, these conditions are also offered by crest slope positions.

10. restricted to northerly aspects

Northerly aspects are mainly NW to ENE with slopes >35% in the interior or >50% on the coast. Species restricted to these sites may be better adapted to cooler and wetter sites within the range of the site series. Species may also be susceptible to heat stress from high surface temperatures and north slopes are generally cooler and moister than south slopes so provide protection from heat stress.

11. restricted to crest slope positions

Species restricted to these sites may be frost intolerant. Crest slope positions have a reduced frost hazard, much like south aspects with moderate to steep gradients. In some cases, planting on moderate to steep south aspects offers similar site conditions as crest slope positions.

12. suitable on cold air drainage sites

Cold air drainage sites are areas susceptible to cold-air ponding and frost. Species suitable on these sites have a comparative advantage over species whose growth may be more limited by cold-air drainage.

25. suitable on sites lacking salal

Some species, such as Sitka spruce, exhibit very poor growth on salaldominated sites. Competition from salal (*Gaultheria shallon*) can severely limit growth of trees by exploiting moisture and nutrients more quickly than seedlings and by shading them out.

26. suitable minor species on salal-dominated sites

These species are usually more sensitive to very poor or poor nutrient levels associated with salal-dominated sites than other recommended species. They may also have a comparative disadvantage to other species with respect to salal competition so should only be used as a minor component

27. partial canopy cover required for successful establishment

The most reliable regeneration option for species restricted to these sites is the establishment of natural regeneration under a partial canopy. Shading created by a partial canopy reduces evaporative losses from soil and seedling leaves, reduces the competitive advantage of shade-intolerant vegetation and reduces the frost hazard. This footnote is primarily applied to Douglas-fir ecosystems in very dry and dry climates.

36. suitable major species on salal-dominated sites

Some species have a comparative advantage over other species with respect to salal competition and low nutrient availability and should be used as a major species on salal-dominated sites.

42. restricted to fresh moisture regimes

The species will not be reasonably productive unless planted on soils with fresh actual soil moisture regime.

54. risk of unsuccessful release of advance regeneration

The species, although acceptable on these sites, is more suited to wetter sites. Moisture deficits may prevent successful release of advance regeneration.

55. acceptable in sx-sm portion of site series

The species is acceptable only on sites in the subxeric to submesic moisture range of the site series.

Geographic restrictions (Footnotes 13–24, 43, 44–46, 50, 53)

Geographic restrictions are noted when a species' range of occurrence does not encompass the entire biogeoclimatic unit and when experience has demonstrated that not all areas are suitable for the species. In these cases, a species may be restricted to the geographic area where it naturally occurs.

13. restricted to upper elevations of biogeoclimatic unit

Species restricted to these elevations may be better adapted to cooler sites than is typical for the subzone/variant. Sites at higher elevations tend to have cooler temperatures than sites at lower elevations in a given subzone/variant. An alternative to planting at higher elevations is to plant on north aspects (see footnote #10), which are also cooler than normal.

14. restricted to lower elevations of biogeoclimatic unit

Species restricted to these sites may be frost intolerant and/or better adapted to sites with warmer air temperatures. Sites at lower elevations tend to have warmer temperatures than sites at upper elevations in a given subzone/variant.

An alternative to planting at lower elevations is to plant on south aspects (see footnote #9), which are also warmer than normal.

The following latitudinal, longitudinal, and specific geographic restrictions are intended to confine the use of a species to its natural geographic range:

15. restricted to northern portion of biogeoclimatic unit in region

- 16. restricted to southern portion of biogeoclimatic unit in region
- 17. restricted to western portion of biogeoclimatic unit in region
- 18. restricted to eastern portion of biogeoclimatic unit in region
- 19. restricted, not in Queen Charlotte Islands
- 20. restricted, not near outer coast
- 21. restricted to mainland
- 22. restricted to southern Gardner Canal-Kitlope area
- 43. suitable on mainland coast only (QCI only)
- 44. suitable in areas with stronger maritime influence
- 45. suitable in areas with stronger continental influence
- 46. restricted to area north of the Dean Channel

23. restricted to trial use

Species extended beyond their normal geographic range should be used on a trial basis only.

24. suitable as major species in wetter portion of biogeoclimatic unit

The species is acceptable as a major component of the stand in the wetter portion of the biogeoclimatic unit and thus serves as an alternative to species that are usually a major component of the stand in all parts of the biogeoclimatic unit.

50. restricted to sites where the species occurs as a major species in a pre-harvest, natural stand

The species is approaching its geographic limit but the boundaries of its range are unclear. It is restricted to sites where it occurs naturally as a major species in a pre-harvest, natural stand. The species' distribution at this extreme of its range is typically spotty, occurring on sites that offer compensating effects for conditions present in its more typical range.

53. minor component

Species generally occurs as a minor component or subcanopy tree in natural stands.

Pest limitations (Footnotes 29–31, 35, 37, 47–49)

Species with specific pest-related footnotes in the tables are known to experience a high level of damage (e.g., white pine) compared to other species that occur on a site unit or within a subzone, and therefore may not be as reliable as other species for management.

29. risk of heavy browsing by moose

Moose (*Alces alces*) browse the terminal and lateral shoots of young conifer seedlings and sometimes uproot them. They pose a risk, primarily to subalpine fir in northern SBS and ICH ecosystems. Subalpine fir is usually managed as a minor component of the stand on these sites, secondary to pine and/or spruce.

30. risk of porcupine damage

Porcupines (*Erethizon dorsatum*) debark the upper bole and major branches of larger trees, injure the bark of saplings, and girdle the base of smaller trees. They pose a risk, primarily to western hemlock and Sitka spruce in the CWHvm1 and vm2 of Prince Rupert Forest Region (Kalum and North Coast forest districts). Western hemlock and Sitka spruce are usually managed as minor components of the stand on these sites, secondary to western redcedar and amabilis fir.

31. risk of white pine blister rust

White pine blister rust (*Cronartium ribicola*) is a stem rust that produces diamond-shaped cankers on western white pine (*Pinus monticola*). Stem infections are lethal but branch infections may be pruned if they are a safe distance from the stem. It poses a serious risk wherever white pine is found, especially where it grows in close proximity to currants and gooseberries (*Ribes* spp.), which are alternate hosts to the rust. Western white pine is usually managed as a minor component of the stand and rated as a tertiary species unless pruning is conducted.

35. risk of weevil damage

The spruce leader weevil (*Pissodes strobi*; also known as spruce weevil, Sitka spruce weevil, or white pine weevil) is an inner bark feeder that attacks the terminal shoots of spruce trees. Faster growing species can serve as a nurse crop (e.g., lodgepole pine, aspen, red alder, cottonwood) to reduce risk of attack on the leaders. For hybrid white spruce, elevation plays a critical role in determining susceptibility and local pest management specialists should be contacted for details.

37. risk of heart rots

Heart rots are caused by decay fungi and can result in growth loss, stem failure, and mortality. Common entry points for infections are wounds, dead branchlets, branch stubs, or other dead woody tissue. Almost all tree species in all ecosystems are susceptible to one or more common heart rots with, as a rough rule, thin barked, less resinous species (e.g., hardwoods, hemlock, true firs) being more prone to decay than thick barked, more resinous species (e.g., pines, Douglas-fir). The risk of heart rot will decline in stands managed as even-aged (using planted stock or seeded regen), and on shorter rotations (e.g., 80–100 years). The longer the trees will be retained, the greater the risk of decay losses.

47. risk of balsam woolly adelgid

The balsam woolly adelgid (*Adelges piceae*), accidentally introduced from Europe, feeds on the stems and branches of true firs causing calluses and galllike formations. Continued feeding disrupts conductive tissue, interferes with the translocation of water and nutrients, and can cause extensive mortality. Its range is still expanding, but is most commonly found on the lower mainland, southern Vancouver Island (as far north as Campbell River on the east side), West Thurlow Island, the Sunshine Coast south of the Jervis Inlet, and probably as far inland as Merritt and Lillooet forest districts. In these areas, it poses a risk, primarily to amabilis fir, but as it expands into the interior, subalpine fir may be seriously impacted. Effects on grand fir (*Abies grandis*) can be significant as well.

48. risk of heavy browsing by deer

Black-tailed deer (*Odocoileus hemionus columbianus*) browse the terminal and lateral shoots of young conifer seedlings and sometimes uproot them. They pose a risk, primarily to western redcedar and yellow-cedar on the outer coast (CWHvh2) and on islands with no natural deer predators such as Texada and the Queen Charlotte Islands. Plantations of red alder (*Alnus rubra*) have also been heavily browsed on the Queen Charlotte Islands.

49. applies only to rust resistant, planted stock

White pine planting stock that has proven resistant (65–70% rust free after 13 years) to blister rust is available from the United States Forest Service Seed Orchard at Moscow, Idaho. Only this seed source is currently considered sufficiently "resistant" to allow the use of white pine. Use of the Moscow stock is restricted to the southern interior ICH, south of 52° latitude. It is not suitable for the coast.

Abiotic limitations (Footnotes 32, 34, 39, 40, 51)

32. limited by growing-season frosts

During the establishment phase, some tree species are highly susceptible to growing-season frosts, resulting in damage and mortality. On site series where growing-season frosts are common, the use of frost-tolerant species is recommended.

Possible remedies when using frost-susceptible species include maintaining a protective overstorey cover, improving air drainage, mixed-planting with fast-growing species (e.g., Pl, Acb) to provide some overstorey protection, and planting on elevated microsites to raise the seedling above the layer of most intense frost.

Relative tolerance to growing season frosts for the tree species of British Columbia included in these guidelines:

Relative tolerance to growing-season frost	Tree species
Very low	Cw, Dr, Fd, Hw, Mb
Low	Bg, Lw, Ss
Moderate	Ba, Bl, Pw, Py, Se, Sw, Sxs, Sx(w), Yc
High	At, Acb, Act, Ep, Hm, Lt, Pl, Pj, Pa, Sb

34. risk of snow damage

The use of a species may be restricted in a subzone or variant where the species has a high risk of *snow breakage* or damage resulting from snow press or snow creep. Snow breakage is most significant on species with ascending branching habits in areas of high snowfall or where wet snow is common. The use of provenance or progeny adapted to high snowfall may help ameliorate this problem.

Snow press may cause widespread damage to young tree seedlings, especially in plantations in high snowfall climates and sites with the greatest spring snow pack. Seedlings are damaged when leafy herbaceous plants are pressed downward onto them by the snow pack or when the snow pack itself breaks or tears lateral branches. The effects of snow press damage can be at least partially ameliorated by removing overtopping herbaceous vegetation from around the tree seedling and by planting species and stock types relatively resistant to snow press. Small diameter lodgepole pole stock is especially susceptible to snow press.

Snow creep occurs when the snow pack slides very slowly downhill and presses tree seedlings to the ground in the down-slope direction either directly or indirectly by pressing vegetation onto the seedling. Seedlings planted on the downhill side of barriers such as stumps are less affected by snow creep.

39. avoid exposed and windy sites

Growth and form are affected by persistent, strong winds. Buds on terminal shoots are abraded and foliage is lost under these conditions. This is primarily a concern for red alder on the outer coast.

40. risk of redheart

Redheart is a reddening of the "heartwood" of alder trees caused by a nonspecific physiological response to fungal infections, frost cracks, and other stresses. It poses a risk primarily in submaritime climates where cold air outflows are common. The reddening devalues alder sawlogs considerably but does not affect their structural properties unless accompanied by a fungal heart rot.

51. restricted to areas with proven Pl performance

Lodgepole pine appears to be very susceptible to rusts, foliar pathogens, insects, and mammal damage at higher elevations and climatically wetter areas of the ICHmw2 and ICHmw3 of the Clearwater, Vernon, and Salmon Arm forest districts. Also, avoid higher elevation steep slopes with a history of snow damage. Pl should be restricted to geographic areas where it has a proven record and has formed mature stands containing a minimum volume of 15% Pl.

Broadleaf management (a, b)

Broadleaf species are valid regeneration options on many sites but are often limited in productivity, reliability, and/or feasibility. However, on some sites such as fluvial benches and floodplains, broadleaf management is often preferred.

a. productive, reliable, and feasible regeneration option

The species is not significantly limited in productivity, reliability, and feasibility and can be considered as a regeneration option within regional broadleaf management strategies.

b. limited in productivity, reliability, and/or feasibility

The species is capable of growing on the site but is not recommended as preferred because of its limitations in productivity, reliability, and/or feasibility. Alternatively, the species' regeneration performance may be unknown for the site. These sites are best managed for conifer species although broadleaves may be managed as minor components of the stand, especially where these species are managed to provide for non-timber values.

Cautionary and restrictive codes	used in species	selection guidelines
----------------------------------	-----------------	----------------------

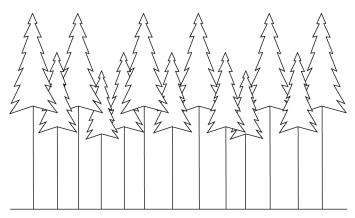
Number	Short description	Current examples of usage		
1	elevated microsites are preferred	most hygric and some sub-hygric sites		
2	suitable on thick forest floors	Hw in CWHvh2/05, 06, 07		
3	restricted to coarse-textured soils	Fd in ICHvk2/01, 04		
4	restricted to medium-textured soils	SbSx in SBPSdc/03a, 03b		
5	Footnote retired			
6	suitable on nutrient-very-poor sites	PI in CDFmm/01, 02		
7	restricted to nutrient-medium sites	BaSs in CWHvh2/01		
8	restricted to steep slopes	Fd in SBSmk1/07		
9	restricted to southerly aspects	FdLwPy at northern limits of range		
10	restricted to northerly aspects	BISx in Kamloops and Nelson regions		
11	restricted to crest slope positions	Fd in SBPSxc/02a, 02b, 02c		
12	suitable on cold air drainage sites	BI in CWHws2		
13	restricted to upper elevations of biogeoclimatic unit	BISx in Kamloops and Nelson regions		
14	restricted to lower elevations of biogeoclimatic unit	CwSs in MHwh		
15	restricted to northern portion of biogeoclimatic unit in region	Ss in IDFww, Fd in SBSmc1/01, 06, 07		
16	restricted to southern portion of biogeoclimatic unit in region	BI in MSxv, Hm in ESSFvv		
17	restricted to western portion of biogeoclimatic unit in region	Fd in SBSwk1, Yc in MHmm2		
18	restricted to eastern portion of biogeoclimatic unit in region	Fd in SBPSxc, LwSe in CWHms1		
19	restricted, not in Queen Charlotte Islands Ba in CWHvh2			
20	restricted, not near outer coast			
21	restricted to mainland			
22	restricted to southern Gardner Canal-Kitlope area	Fd in CWHvm1, PR region only		
23	restricted to trial use PI in ESSFwc2, Lw in Kamloops/Nelson IC			
24	suitable as major species in wetter portion of biogeoclimatic unit	Hw in CWHxm/01		
25	suitable on sites lacking salal	PISs in CWHwh1/04		
26	suitable minor species on salal-dominated sites Ba in CWHvm1			
27	partial canopy cover required for successful establishment Fd on various sites in IDF			
28	limited by moisture deficit	BISx on various dry site series in dry climates		
29	risk of heavy browsing by moose	BI in ICHmm		
30	risk of porcupine damage	HwSs in CWHvm		
31	risk of white pine blister rust	Pw on most sites		
32	limited by growing-season frosts many species, many sites			
33	Footnote retired and replaced with footnote 'a'			
34	risk of snow damage	PI in ESSF		
35	risk of weevil damage	Ss in CWHvm		
36	suitable major species on salal-dominated sites	Cw in CWHwh1/01		
37	risk of heart rots Cw in wetter units of ICH			
38	Footnote retired			
39	avoid exposed and windy sites	alder on outer coast		
а	productive, reliable, and feasible regeneration option	Act on floodplains		
b	limited in productivity, reliability and/or feasibility	broadleaf maple in CWHvm1/01		

Number	Short description	Current examples of usage		
40	risk of redheart	alder in CWH		
41	limited by poorly drained soils	alder in the CWH		
42	restricted to fresh moisture regimes	broadleaves in the CWH		
43	suitable on mainland coast only	Ba in MHwh, Vancouver Forest Region		
44	suitable in areas with stronger maritime influence	Hw in MHmm2, Vancouver Forest Region		
45	suitable in areas with stronger continental influence	BI in MHmm2, Vancouver Forest Region		
46	restricted to areas north of the Dean Channel	Ss in CWHms2/05, Vancouver Forest Region (single use)		
47	risk of balsam woolly adelgid	Ba in CWHmm1/07, Vancouver Forest Region (single use)		
48	risk of heavy browsing by deer	Cw and Yc in the CWHvh2 of Prince Rupert Forest Region		
49	applies only to rust resistant, planted stock	all Pw in southern interior ICH		
50	restricted to sites where the species occurs as a major species in a pre-harvest, natural stand newly added tertiary species approaching g limit in Cariboo Forest Region			
51	restricted to areas with proven PI performance			
52 restricted to sheltered microsites with deep soil Fd and PI on some rocky sites in Kamloo Forest Region		Fd and PI on some rocky sites in Kamloops Forest Region		
53	53 minor component newly added tertiary species in Pri Forest Region			
54	risk of unsuccessful release of advance regeneration	BI on very dry sites in Nelson Forest Region		
55	acceptable in sx-sm portion of site series Cw in ESSFwc1/02 in Nelson Forest Region (sin			

Appendix 8. Forest stand structures

Forest stands can be visualized as three general structural types:

- even-aged, non-stratified canopy stand structures of single or mixedspecies stands
- even-aged, stratified canopy stand structures of mixed-species stands
- uneven-aged, multi-storied stand structures of single or mixed-species stands.


This section is based upon the principles outlined in Klinka *et al.* 1984, and in Klinka and Carter 1990. These principles have been modified only to reflect the provincial scope of these guidelines.

This analysis of stand structure is done mostly from the perspective of having sawlog production as the primary management objective. Higher level plans may require analysis of these forest structures from other perspectives (forage, wildlife, recreation, conservation and other natural resource values).

Even-aged, single canopy, single crop species

This stand structure is best suited to harsh environments where relatively few species options are available.

For example, on very dry, nutrient-very-poor sites, where both lodgepole pine and Douglas-fir are ecologically suitable, lodgepole pine has a much faster initial growth rate than does Douglas-fir, and will become merchantable at a much earlier age. Consequently, on a short rotation, a mixture of the two species would be less productive than a pure lodgepole pine stand.

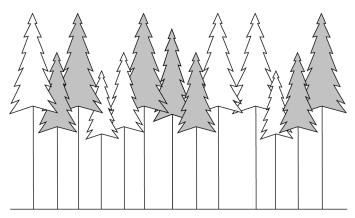


Figure A8-1. The structure of a single canopy, mature, even-aged, single crop species stand, showing relative positions of the dominant and codominant crown classes.

Even-aged, single canopy, two crop species

This stand structure is best suited to those tree species that have very similar growth rates, shade tolerance, and natural pruning.

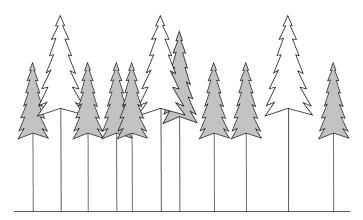

If species with differing growth rates are intimately intermingled, these nonstratified single-canopy mixtures may be less productive than pure stands of any one of the component species. In such mixtures, the production potential of the fastest-growing species may be diluted by the less-productive species. As well, the species with the most rapid juvenile growth may attain dominance, and the slower-growth species may lapse into the understorey. If not sufficiently shade-tolerant, the slower-growth species will suffer suppression and may not become a useful size within the intended rotation.

Figure A8-2. The structure of a single canopy, mature, even-aged, two crop species stand. This stand structure is applicable only to those species that grow at similar rates and have similar tolerances to shade (e.g., Fd-Se mixtures in the CWH ms1 variant).

Even-aged, double canopy, mixed stands of a minor, less shadetolerant crop species and a major, more shade-tolerant crop species

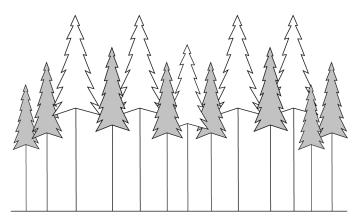

In this stand structure, the uppermost stratum consists of scattered emergents above the general canopy. These dominant trees will continue to grow in diameter for a long time because their crowns will remain deep and exposed to light. The trees of the lower strata may act as trainers, causing some continued natural pruning. This stand structure could be a useful method of growing a highly valuable species such as white pine that has a high pest risk (blister rust).

Figure A8-3. The structure of a double-canopy, mature, even-aged stand, composed of a minor, less shade-tolerant crop species and a major, more shade-tolerant crop species. This sketch approximates Pw-Fd or Py-Fd mixtures.

Even-aged, double canopy, mixed stands of a major, less shadetolerant crop species and a major, more shade-tolerant crop species

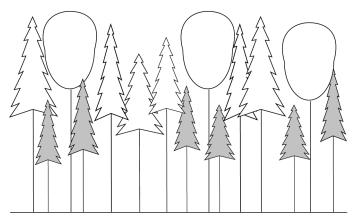
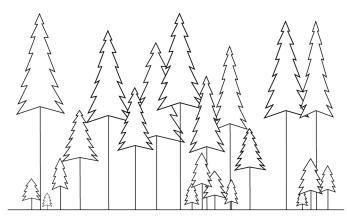

Stratified double canopy mixtures of compatible species (compatible primarily due to light requirements) are likely to be more productive than pure stands of any one species. Establishment of an even-aged stand consisting of a shade-intolerant species in the upper layer with one or two shade-tolerant species in the lower layer will result in maximum use of the above- and below-ground growing space, and in turn will maximize volume production.

Figure A8-4. The structure of a double canopy, mature, even-aged, mixed stand, composed of two major crop species of which one species is more shade-tolerant than the other. This sketch approximates Fd-Cw, Hw-Cw, Hw-Ba, or Se-Bl mixtures.

Even-aged, multiple canopy, mixed stands of several major crop species


This stand structure is most suited to sites where soil conditions (moisture and nutrients) and the climate favour the productive growth of several tree species. These stands comprise multiple layers of several crop species, each with different tolerances to shade. The tree species in these stands are usually arranged with the intolerant species in the upper layer and species of increasing tolerance in successive layers.


Figure A8-5. The structure of a multiple canopy, mature, even-aged, mixed stand composed of three crop species. This sketch approximates an Act-Ba-Cw mixture, which is an option for active alluvial floodplains in the CWHdm subzone.

Uneven-aged, multi-storied stand structures

The most complex of all the stand structures is the uneven-aged, multi-storied stand structure. This form of stand is commonly irregular, consisting of a variety of age classes and sizes. The most common type of uneven-aged structure is a multi-aged stand (in contrast to an all-aged stand) of two or more age classes. These stand structures range from the rather simple two-storied, uneven-aged stands (Figure A8-6), which often form from single-storied, even-aged stands in the advanced stages of secondary succession, to the more complex multi-storied, uneven-aged stands (Figure A8-7).

Figure A8-6. Uneven-aged, two-storied stand structure. The lower stratum is usually a shadetolerant species that has seeded during the late stages of secondary succession. This sketch approximates an Sw-Bl mixture.

Figure A8-7. Uneven-aged, multi-storied stand structure. This sketch approximates an unevenaged interior Douglas-fir stand characteristic of the interior Douglas-fir zone.

> Uneven-aged stands, unlike even-aged stands, are harvested by selection methods and almost always regenerate naturally. In these stands, the postharvest stand structures and species composition depend on the pre-harvest stand condition. The future stand structure and species composition are determined by regulating which trees are to be left after harvest. The residual stand not only makes up part of the future stand structure but also provides a seed source for natural regeneration. As well, the species composition can be shifted in younger age classes to shade-intolerant or shade-tolerant species, whichever is desirable, by keeping the overstorey thin or allowing it to grow dense.

Appendix 9. Free from brush – free growing criteria

Background

Free growing surveys are used to assess fulfillment of a silviculture prescription (SP) holder's reforestation obligations. To achieve this, the surveys describe the number of trees on an opening that meet the free growing guidelines.

There will be two possible methods for evaluating free growing. First, silviculture prescription holders can choose to use the free growing requirements in their approved SPs. Alternatively, the free growing guidelines described below can be the basis for assessing fulfillment of free growing obligations.

Free growing criteria

Each free growing tree must be:

- a preferred or acceptable species as outlined in the SP
- well-spaced as outlined in the SP
- free from damaging forest health agent incidences as defined in the free growing damage criteria
- free from unacceptable damage as defined in the advance regeneration acceptability criteria
- the required minimum height specified in the SP or, for SPs without a specified minimum height, must meet the minimum height requirement specified in the *Establishment to Free Growing Guidebook* for the species and site series
- free from unacceptable brush and broadleaf tree competition as described below. Acceptable levels of competition will vary depending on the type of vegetation (broadleaf tree or non-broadleaf tree) that is found within the effective growing space of the crop tree. The effective growing space of a crop tree is defined as a 1 m radius cylinder centred around the tree. A summary of the generalized free growing criteria described above, is provided in Figure A9-1.

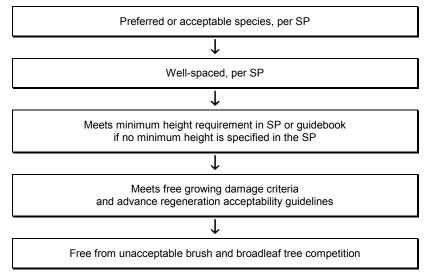


Figure A9-1. Free growing criteria.

Methods for evaluating free growing acceptability

Acceptable levels of brush and broadleaf tree competition

A free growing stand as defined in the *Forest Practices Code of British Columbia Act* is a stand of healthy trees of a commercially valuable species, the growth of which is not impeded by competition from plants, shrubs, or other trees. The concept of free growing was introduced to ensure that once adequate stocking and survival had been attained, productivity would be maintained.

The intent of the free growing concept is to identify and classify those areas of provincial forest land that have satisfactorily regenerated and reached a point where they are not being impeded by brush and can reasonably be expected to continue development to maturity without significant additional intervention. At this stage, liability and responsibility for free growing stands reverts from the licensee to the Crown.

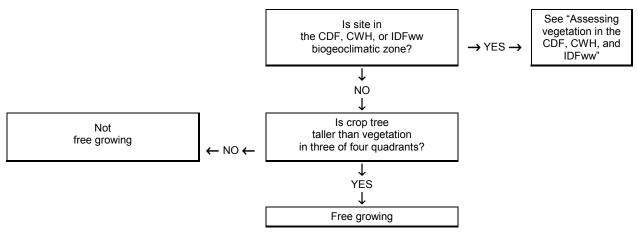
The free growing guideline is not a competition index. Rather, it is a desired state for the free growing crop, which represents an "acceptable" level of risk to the Crown.

The risk that future treatments will be required varies with the type of vegetation and the maturity of the crop tree. For this reason, acceptable levels of vegetation within the effective growing space of a crop tree will be evaluated, in each free growing survey plot, under the following three broad categories:

1. vegetation communities without broadleaf tree competition

- 2. vegetation communities that include aspen, birch, and upland cottonwood (cottonwood with the same form as aspen)
- 3. vegetation communities with red alder, bigleaf maple, and cottonwood (with coastal form).

All brush and broadleaf tree vegetation found within the 1 m radius effective growing space of a crop tree must be considered when assessing levels of competition. This includes brush and broadleaf tree vegetation originating inside and outside of the 1 m radius cylinder.


Acceptable levels of vegetation in the CWH and CDF zones and in the IDFww subzone are evaluated differently from other biogeoclimatic subzones. Assessment procedures for these areas are discussed in the section "Assessing vegetation in the CWH and CDF zones and IDFww subzone."

Methods for evaluating acceptable levels of vegetation include a quadrant system and allowable numbers of countable broadleaf trees for aspen, birch, and upland cottonwood. Detailed information on evaluation methods is provided in the section "How to assess free growing trees."

Assessing vegetation communities without broadleaf tree competition

Non-broadleaf tree vegetation includes all other types of vegetation including herbaceous/low shrub and tall woody shrub species (e.g., fireweed and willow). To be free growing, the crop tree must be taller than the non-broadleaf tree vegetation in at least three quadrants of its effective growing space (1 m radius cylinder). Non-broadleaf tree vegetation will commonly be referred to as "other vegetation" in this document (Figure A9-2).

Retention of certain herbaceous or shrub species, at levels that exceed the guidelines, may be considered beneficial for a given site. These species would not be considered competitors under specific circumstances. For example, a dry alder complex in the site series IDFdk3 01 has Sitka alder cover estimated to be 15% and conifers are growing well and have good height and diameter increment. The cautionary and restrictive notes for the IDF dk3 01 indicate management strategies should provide planted seedlings and natural regeneration with shade and protection from frost damage. In this case, well-spaced, healthy crop trees that have reached the minimum height may be considered free growing if taller Sitka alder exists in more than one quadrant.

Figure A9-2. Free growing decision matrix for vegetation communities without broadleaf tree competition.

Assessing vegetation communities that include broadleaf tree competition*

In vegetation communities that include broadleaf trees, a crop tree is considered free growing if:

• The crop tree is at least the required height above the broadleaf tree or other vegetation. The required height is expressed as a percent (150% or 125%) of the brush height (as stated in the SP). A conifer to brush ratio of 150% or 125% means that the tree must be 50% or 25% taller, respectively, than the height of the broadleaf tree or other vegetation that is within the effective growing space.

The next section provides an opportunity to count some crop trees as free growing where the crop tree is less than the required height above the broadleaf tree or other vegetation.

Assessing vegetation communities that include aspen, birch, and upland cottonwood

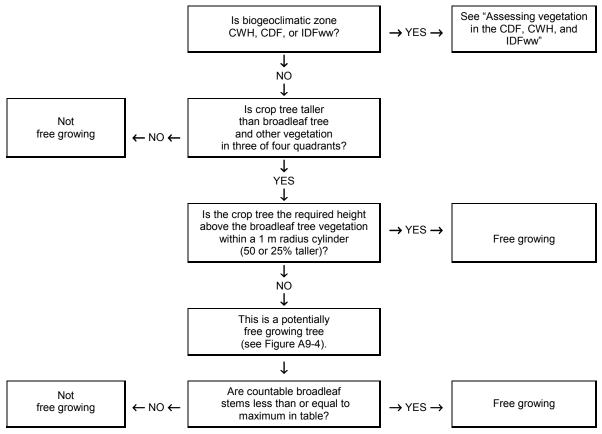
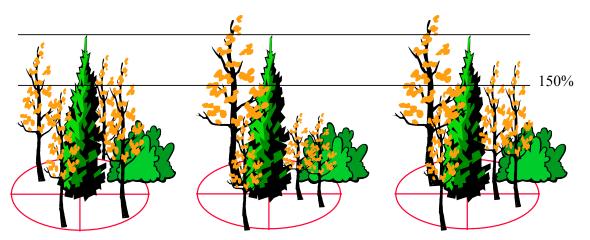
For the purpose of this section, upland cottonwood refers to cottonwood that has the same general form as aspen. It is expected that cottonwood will be assessed in this fashion on most interior sites. Where cottonwood growth is very aggressive (e.g., on productive coastal ecosystems, alluvial flood plains, or other rich sites), it is recommended that cottonwood be treated in a similar fashion to red alder and bigleaf maple (see "Assessing vegetation communities with red alder, bigleaf maple, and cottonwood"). District managers will provide direction on how cottonwood will be assessed in their district.

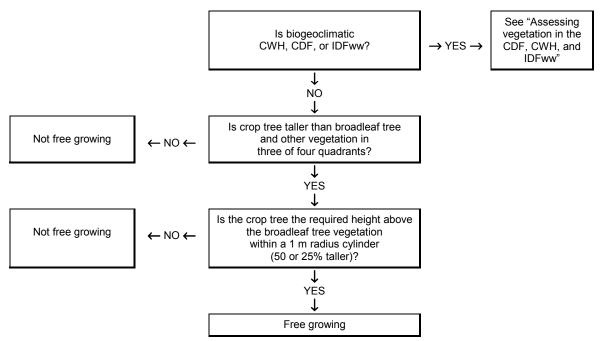
^{*} Direction or assessment procedures for species such as 'pin cherry' which are not logically classified as a tall woody shrub, will be required from the district.

In communities that include aspen, birch, and upland cottonwood, a crop tree may not meet free growing requirements due to broadleaf trees, other vegetation or a combination of the two. For example, a crop tree is not free growing if broadleaf trees, other vegetation, or any combination of broadleaf trees and other vegetation are taller than the crop tree in two or more quadrants. If a crop tree is overtopped in only one quadrant (or not overtopped in any quadrant), the crop tree meets the free growing standard for vegetation other than broadleaf trees.

A crop tree that is not the required height above aspen, birch, and upland cottonwood (not 150% or 125% the height of the broadleaf tree) but is taller than the broadleaf tree and other vegetation in three of the four quadrants *can* be considered free growing if:

• the number of countable aspen, birch, and upland cottonwood trees is within the prescribed threshold limits (Figure A9-3). (See the section "How to assess free growing trees" for detail on countable stems, and Table A9-2 for allowable number of broadleaf trees).


Figure A9-3. Free growing decision matrix for areas with aspen, birch, and upland cottonwood.

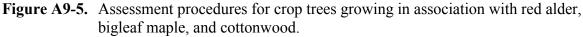
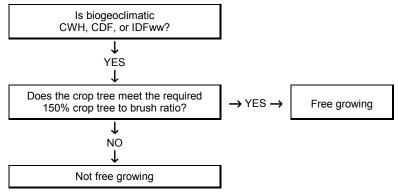


Figure A9-4. Potentially free growing trees. Left: Crop tree is not the required height above the broadleaf trees. Centre and right: Crop tree is taller than broadleaf tree and other competition in three of four quadrants.

Assessing vegetation communities with red alder, bigleaf maple, and cottonwood

For these broadleaf tree species a crop tree is considered free growing if the crop tree is at least the required height (50% or 25%) above any broadleaf tree vegetation within a 1 m radius cylinder as required by the SP. If this requirement is not met, the crop tree is not free growing (Figure A9-5). Guidelines regarding numbers of 'countable' broadleaf trees (3.99 m plot) do not apply to these species. For a crop tree to be free growing, it must also meet the free growing requirements for other vegetation as presented in Figure A9-5 below.



Assessing vegetation in the CDF and CWH zones and in the IDFww subzone

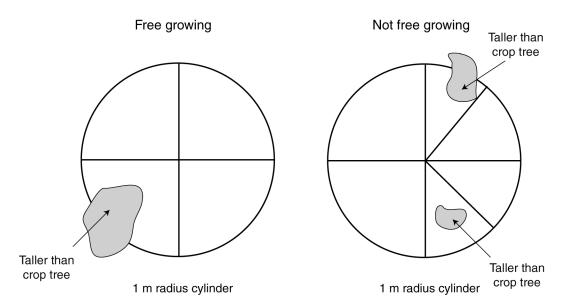
In the CDF and CWH zones and in the IDFww subzone, a crop tree is considered free growing if the crop tree is at least the required height above broadleaf tree and other vegetation. The required height is expressed as a percent (150%) of the brush height within the effective growing space, as required by the SP (Figure A9-6). If this requirement is not met, the crop tree is not free growing. Districts may vary from this guideline on a site-specific basis.

Minimum heights are not a requirement, unless contained in the SP.

Figure A9-6. Assessment procedures for crop trees growing in the CWH or CDF zones and the IDFww subzone.

How to assess free growing trees

Three methodologies that will be used to determine whether a crop tree is free growing or not free growing are explained below:


- the quadrant method
- countable broadleaf trees
- allowable number of countable broadleaf trees.

The quadrant method

The quadrant method is used to determine whether a crop tree in the immediate vicinity of non-broadleaf tree vegetation is free growing. It is also used to determine whether a crop tree in the immediate vicinity of broadleaf tree vegetation is potentially free growing. The following three steps describe the quadrant method.

1. Divide the 1 m radius cylinder around the crop tree into four equal quadrants

- 2. Align the quadrants to minimize the number of quadrants that contain vegetation taller than the crop tree (including vegetation originating inside and outside the cylinder)
- 3. Determine whether the number of quadrants containing vegetation taller than the crop tree exceeds one quadrant (i.e., the tree is not free growing). Quadrants can not be split or divided (see Figure A9-7).

Figure A9-7. Assessing free growing using the quadrant method. The cylinder on the left illustrates one quadrant with vegetation taller than the crop tree. The cylinder on the right shows two quadrants with vegetation taller than the crop tree.

Countable aspen, birch, and upland cottonwood trees

Countable aspen, birch, and upland cottonwood trees will be assessed in the 50 m² (3.99 m radius) free growing survey plot. All aspen, birch, and upland cottonwood trees greater than the median height of all the potentially free growing trees will be considered countable broadleaf trees. When the heights of all the potentially free growing trees are placed in order from shortest to tallest, the median height is the middle height, or the mean of the two middle values where there is no one middle height. A potentially free growing tree is a crop tree that is not the required height above the aspen, birch, and/or upland cottonwood within the 1 m effective growing space, but is taller than the aspen, birch, and upland cottonwood in at least three of four quadrants (see Figure A9-4).

Where the early free growing date is advanced, or where other factors indicate that the median height of the potentially free growing trees does not adequately reflect the risk associated with the growth potential of the broadleaf trees, it is recommended that the district manager set a height limit for countable broadleaf trees.

Broadleaf tree clumps

The crown area of multiple stemmed broadleaf trees is larger than that of single-stemmed individuals. However, the total crown area and competitive effects of a multiple stemmed tree are often not as large as would be encountered with the same number of single-stemmed trees.

While numerous birch stems will often originate from one stump, aspen is more likely to sucker from below the ground or at the root collar (see Figure A9-8). Table A9-1 shows the relationship between the actual number of birch stems originating from a cut stump and the related number of countable broadleaf trees used during a free growing assessment. For aspen and cottonwood, and for birch that originate from below the ground level, all stems greater than the median height of the potentially free growing trees will be tallied as countable stems.

- **Figure A9-8.** Numerous broadleaf stems originating from a stump and from below ground root suckers. Left: Three stems originating from a birch stump would be tallied as two countable trees. Right: Three aspen stems originating from below ground aspen root suckers are tallied as three countable trees.
- **Table A9-1.** Comparison of multi-stemmed birch to numbers of countable birch trees.

Number of birch stems	Number to count
1	1
2–5	2
6 +	3

Allowable number of countable broadleaf trees

As broadleaf tree density increases, the reduced light availability may lead to a decrease in coniferous growth rates. However, coniferous growth can also be limited by other factors (e.g., presence and incidence of pests or diseases). Deviations from these guidelines may be necessary when other limiting factors are present. The allowable number of broadleaf trees will be assessed using a 50 m² (3.99 m radius) plot.

Aspen, birch, and upland cottonwood trees

All aspen, birch, and upland cottonwood that exceed the countable broadleaf tree height will be tallied. The number of countable trees in the plot will be compared to the allowable number of aspen, birch, and upland cottonwood trees shown in Table A9-2.

When a plot contains more than the allowable aspen, birch, or cottonwood trees for a given species and biogeoclimatic subzone/site series, only the potentially free growing trees of that species will become not free growing. A crop tree that meets the required SP crop tree-to-brush ratio (and all other free growing criteria) is free growing regardless of the number of broadleaf trees in the 50 m² plot.

For example, a plot in the ICHmk3 contains one potentially free growing lodgepole pine, one potentially free growing spruce, two free growing Douglas-fir, and four countable aspen. Only the potentially free growing pine will not be free growing (four countable trees exceed the limit of two for lodgepole pine), while the other three crop trees, including the spruce (four countable trees does not exceed the limit of five for spruce), are free growing. If the same plot was located in the IDFdk3 05 (submesic), the allowable number of countable broadleaf trees for lodgepole pine increases from two to five trees, therefore, all potentially free growing trees, including the lodgepole pine, are free growing.

Table A9-2. Allowable numbers of aspen, birch, and	upland cottonwood trees ^a
--	--------------------------------------

Crop tree species	Biogeoclimatic subzone/site series	Allowable countable broadleaf trees per 50 m ² plot	
PI, Py, Lw	IDFdk1, 2, 3, 4, – mesic and drier	5	
	MSxv, SBPSdc, mk,	5	
	SBSdw1, 2 subxeric and drier	5	
	all other	2	
Fdi, Pw, Pa	all	3	
Sw, Se, Sb, Sx	BWBSmw1 (01, 03, 05, 06, 07), mw2 (01, 05, 06)	2 At, Act; 5 Ep	
	all other	5	
All other	all	5	

^a When a survey unit contains more than one subzone or site series, use the lower countable broadleaf limit.

Free growing surveys are carried out five to 20 years after commencement of harvesting. When surveys are conducted shortly after year five, conifers can be growing at an acceptable rate with broadleaf densities higher than those listed in Table A9-2. However, the allowable numbers of countable broadleaf trees must consider the development of these stands after year 20. The numbers in Table A9-2 reduce the risk that broadleaf trees will, subsequent to free growing being achieved, dominate the site.

Other broadleaf tree species

Crop trees in the other broadleaf tree complexes including red alder, bigleaf maple, and cottonwood (not upland), will be assessed using the pre-1999 guidelines and survey methodology (i.e., all crop trees must meet the required 125% or 150% crop tree to brush ratio). While the pre-1999 system does not allow for any of these broadleaf tree species within the 1 m radius circle of the crop tree, it is recognized that these species are beneficial at certain densities. Districts may set maximums for these species. However, using the methodology (3.99 m radius plot) to determine countable stems would not be effective because this plot size is too small to reflect densities that may be appropriate on some sites (i.e., each tree in the 3.99 m plot represents 200 trees/ha).

Appendix 10. Advance regeneration

Free growing acceptability guidelines for advance regeneration and residual mature and pole layer crop trees

In assessing advance regeneration and residual mature/pole layer crop trees, consider the following factors in preparing a silviculture prescription:

- Number of trees/ha: if advance regeneration is to be solely relied upon to restock a cutover, sufficient numbers must be present before harvest to compensate for logging and post-logging losses. A manageable stand of advance regeneration should contain total stem densities of at least twice the target stocking level to compensate for these losses.
- Tree quality: future crop trees should have good form and a healthy, vigorous appearance (i.e., good needle colour and length, no unacceptable pest damage or indicators, no major sweeps, and roots in acceptable medium). See Table A10-1, Table A10-2, and Appendix 5, "Free growing damage criteria for British Columbia."
- Tree height: the risk of windthrow of advance regeneration is often correlated with tree height. For example, in northern British Columbia following the removal of overstorey aspen, the risk of windthrow of understorey spruce has been found to increase dramatically for tree heights greater than 7 m.
- Height increment: Generally, trees growing well before harvest will respond well after harvest. Good post-harvest height increment is desirable, however, periodic reduced annual height growth may be acceptable when attributed to an external environmental factor (e.g., drought). Therefore, it is not always necessary that current year leader length exceed the previous year leader length.
- Age: With some species, pathological risk increases significantly with age or size. This is a feature mainly of shade-tolerant species such as Ba, Bl, Cw, Hw, or Yc. In addition, older trees may not respond as well as younger trees.
- IRM: Stems may be retained for wildlife habitat or other IRM purposes.

Site-specific factors may require that additional criteria for advance regeneration be specified in the silviculture prescription.

Table A10-1 outlines the free growing acceptability guidelines for layer three and four trees, while Table A10-2 outlines the free growing acceptability guidelines for layer one and two trees.

Table A10-1.	Free growing acceptability guidelines for layer three and four
	advance regeneration

Species*	Ba, Bl,	Cw**, Hm, Yc	Hw		Sx, Se, Sw	Fdi, Lw	Pa, Pli, Py
BEC Zones	All***	CWH, CDF, MH, ICH	CWH, CDF, MH, ICH (Pr.Rup.)	ICH (other regions)	All*** (except BWBS)	All***	All***
Height at time of release	No height limit			<0.5m		No height lin	nit
Scars and damage	All species: No open (unhealed) injuries; no closed (healed) injuries with a horizontal width at the widest point(s), which is greater than 25% of the circumference of the tree at that point; no closed injuries that exceed 10% of the total length of the stem; no stem infection caused by a stem rust or dwarf mistletoe; no other externally visible pathological indicators including broken top, frost crack, conk, extreme basal sweep or unacceptable forks and crooks (see free growing damage criteria in Appendix 5 for description of unacceptable forks and crooks)						
Continuous live crown	All species: An acceptable tree has greater than 30% continuous live crown. Continuous live crown is the length of continuous green foliage on a tree expressed as a percentage of its total height. Continuous live crown refers to foliage on adjacent live green branches that forms the main part of the crown of a tree and extends over at least half of the circumference of the tree.						
Vigour	All species: Evidence of release (i.e., generally good post-harvest height increment) – Increased leader growth is not a requirement for trees in layer three and four in partial cut situations with low basal area removal where the trees remain heavily shaded by layer one and two trees.						

* For those species not listed here, the normal free growing acceptability criteria apply. At regeneration delay, consider whether naturals will meet these criteria by free growing.

If western white pine (Pw) is to be considered, consult the Pine Stem Rust Management Guidebook.

** Beware of sun scald. If advance regeneration western redcedar is to be used, check for incidence of heart rot.

*** All refers to zones where these species are acceptable.

For additional information regarding decay fungi and advance regeneration refer to the *Tree Wounding and Decay Guidebook*.

Scars and Damage	The impact that decay fungi have on residual trees depends largely on the retention period for the trees left behind. The management objectives determine how decay fungi should be managed. The <i>Tree Wounding and Decay Guidebook</i> provides recommended damage criteria by management regime. A tree is not acceptable as a residual crop tree if it meets or exceeds the applicable level of damage as determined by the stand management regime defined in Table 4 of the <i>Tree Wounding and Decay Guidebook</i> .
Continuous Live Crown	An acceptable tree should generally have greater than 30% continuous live crown. However, for trees greater than 17.5 cm dbh (>12.5 cm dbh for Pli), greater than 20% live crown will be acceptable.
Vigour	Evidence of release.
Other Considerations	Destructive sampling of a few stems is encouraged to ensure that most of the retained stems are sound. This is critical when heart rot susceptible species are retained as pole/mature residual crop trees and are listed as <i>preferred</i> in the SP.

Other survey criteria

Where advance regeneration or trees that vary from free growing survey criteria presented in the *Establishment to Free Growing Guidebooks* are expected to contribute toward stocking at free growing assessment, the criteria for acceptability should be stated with the stocking standards.

For more information on acceptability of advance regeneration and prescription development, see the *Silviculture Prescription Guidebook* and the *Silvicultural Systems Guidebook*.