Ministry of
Transportation and Infrastructure

Alaska Highway 97 Corridor Study

Final Report

McEIhanney

McEIhanney Consulting Services Ltd.
100-780 Beatty Street
Vancouver, BC
V6B 2M1

Contact: Denny Leung, PEng
Phone 1-604-424-4860
Email: dleung@mcelhanney.com

Table of Contents

Executive Summary i
1 Introduction 1
1.1 Study Area. 1
1.2 Study Objectives 3
1.3 Site Observations 3
2 Existing Passing Opportunities 5
2.1 Segment 1180, LKI 9.96 to 59.60 6
2.2 Segment 1180, LKI 59.60 to 87.90
2.3 Segment 1183, LKI 0.00 to 118.16 6
2.4 Pre-Study Candidate Passing Lane Locations 6
3 Existing Traffic Volumes 8
3.1 Intersection Traffic Volumes 8
3.2 Roadway Traffic Volumes 11
4 Winter Traffic Volumes 16
5 Heavy Vehicle Traffic 18
6 Future (2039) Traffic Growth 20
6.1 Future Roadway Traffic Volumes 23
7 Traffic Analysis 26
7.1 Intersection Level of Service Criteria 26
7.1.1 Unsignalized Intersections 26
7.1.2 $95^{\text {th }}$ Percentile Queue Length 26
7.2 Existing 2014 Intersection Analysis Results 27
7.3 Year 2039 Intersection Analysis Results 30
7.4 Roadway Level of Service Analysis Criteria 32
7.5 Existing 2014 Roadway Level of Service 33
7.6 Future 2039 Roadway Level of Service 41
7.7 Passing Lane Opportunities 48
7.7.1 Potential Passing Lanes 48
7.7.2 Potential Passing Lane Operations 51
8 Safety Analysis 55
8.1 Collision Data 55
8.2 Corridor Safety Analysis 55
8.2.1 Primary Collision Occurrences and Crash Frequencies 55
8.2.2 Main Contributing Factors for Collisions 60
8.3 Safety Performance Methodology 60
8.3.1 Traditional Methodology 61
8.3.2 Collision Prediction Model (CPM) and Collision Modification Factor (CMF) 62
8.4 Collision Roadway Section Analysis 63
8.5 Intersection Safety Analysis 66
9 Problem Definition 68
9.1 Intersections 72
9.2 Roadway Sections 72
9.3 Intersection: Highway 97 and Highway 29 72
9.3.1 Sensitivity Testing 73
9.4 Wonowon 73
9.5 Shortage of Passing Lanes 74
9.6 Platoons 75
9.7 Roadway Section Operations and Passing Lane Candidates 75
9.8 Sight Distance, Grade Changes, and Horizontal Curves 77
9.9 Posted Speed Limits and Access to Services 78
9.10 Future Development 79
9.11 General Signing and Pavement Markings 80
9.12 Lighting 80
10 Opportunities for Road Improvements 81
10.1 Short to Medium Term Opportunities (1 to 10 years) 81
10.1.1 Passing Lane Locations for Short to Medium-Term Consideration (1 to 10 years) 82
10.1.2 Lighting 83
10.1.3 Speed Limit Reductions 85
10.2 Long Term Opportunities (10+ years) 87
10.2.1 Passing Lane Locations for Long Term Consideration (10+ years) 87
10.2.2 Passing Lanes Not Recommended. 89
10.2.3 Signalization of Highway 97 / Highway 29 89
11 Cost Benefit Analysis 92
11.1 ShortBen Assumptions. 93
11.2 Safety Improvements 93
11.3 ShortBEN Results 94
12 Staging 96
13 Summary 99
Figures
Figure E-1 Study Area iii
Figure E-2 Proposed Passing Lanes xi
Figure 1 Study Area 2
Figure 2A Existing (2014) AM, Mid-day, and PM Peak Hour Intersection Volumes 9
Figure 2B Existing (2014) AM, Mid-day, and PM Peak Hour Intersection Volumes 10
Figure 3 Existing (2014) Roadway Volumes 15
Figure 4A 2039 AM, Mid-day, and PM Peak Hour Intersection Volumes 21
Figure 4B 2039 AM, Mid-day, and PM Peak Hour Intersection Volumes 22
Figure 52039 Roadway Volumes 23
Figure 6A 2014 AM Roadway LOS Results 38
Figure 6B 2014 Mid-day Roadway LOS Results 39
Figure 6C 2014 PM Roadway LOS Results 40
Figure 7A 2039 AM Roadway LOS Results 45
Figure 7B 2039 Mid-day Roadway LOS Results 46
Figure 7C 2039 PM Roadway LOS Results 47
Figure 8 Primary Collision Occurrences for LKI 1180, 9.96-59.60 56
Figure 9 LKI 1180, 9.96-59.60, Collision Frequency 56
Figure 10 Primary Collision Occurrences for LKI 1180, 59.60-87.90 57
Figure 11 LKI 1180, 59.60-87.90, Collision Frequency 58
Figure 12 Primary Collision Occurrences for LKI 1183, 0.00-118.16 59
Figure 13 LKI 1183, 0.00-118.16, Collision Frequency 59
Figure 14 Contributing Factors 60
Figure 15 Critical Curves for Collision Prone Locations 63
Figure 16 Identified Problem Areas (2014) 70
Figure 17 Potential Problem Areas (2039) 71
Figure 18 Short to Medium Term Improvements 86
Figure 19 Long Term Improvements 91
Tables
Table E-1 Roadway Sections ii
Table E-2 Roadway Sections Operating at LOS D in 2039 vi
Table E-3 5 Year (January 2009 - December 2013) Corridor Collision Data vii
Table E-4 Summary of Problem Definition Issues viii
Table E-5 Recommended Passing Lane Locations for Short to Medium-term Consideration ix
Table E-6 Recommended Passing Lane Locations for Long--term Consideration x
Table E-7 Benefit / Cost Summary xiii
Table E-8 Staging Recommendations for Passing Lane Locations for Short to Medium-term Consideration. xiv
Table E-9 Staging Recommendations for Passing Lane Locations for Long-term Consideration xv
Table 1 Existing Passing Opportunities 5
Table 2 Roadway Sections 12
Table 3 Existing Conditions (2014) -Roadway Volumes 14
Table 4 Comparison of Summer (September 2014) and Winter (January 2015) Total Intersection Volumes 17
Table 5 Heavy Vehicle Percentages for Roadway Sections 18
Table 6 Future (2039) Conditions - Roadway Volumes 23
Table 7 Intersection Level of Service and Delay Criteria 26
Table 8 Year 2014 AM Peak Hour Intersection Operations. 27
Table 9 Year 2014 Mid-day Peak Hour Intersection Operations 28
Table 10 Year 2014 PM Peak Hour Intersection Operations 29
Table 11 Year 2039 AM Peak Hour Intersection Operations. 30
Table 12 Year 2039 Mid-day Peak Hour Intersection Operations 31
Table 13 Year 2039 PM Peak Hour Intersection Operations 32
Table 14 HCM Roadway Level of Service Criteria 33
Table 15 Existing (2014) AM Peak Hour Roadway Level of Service 34
Table 16 Existing (2014) Mid-day Peak Hour Roadway Level of Service 35
Table 17 Existing (2014) PM Peak Hour Roadway Level of Service 36
Table 18 Future (2039) AM Peak Hour Roadway Level of Service 41
Table 19 Future (2039) Mid-day Peak Hour Roadway Level of Service 42
Table 20 Future (2039) PM Peak Hour Roadway Level of Service 43
Table 21 Roadway Sections Operating at LOS D in 2039 44
Table 22 Potential Passing Lane Locations 50
Table 23 AM Peak Hour Future (2039) Roadway LOS for Potential Passing Lane Locations 52
Table 24 PM Peak Hour Future (2039) Roadway LOS for Potential Passing Lane Locations. 53
Table 25 5-Year (January 2009 - December 2013) Corridor Collision Data 55
Table 26 Fatal Collisions Summary 57
Table 27 Corridor Safety Performance - Traditional Method 64
Table 28 Corridor Safety Performance - CPM Method 65
Table 29 Intersection Safety Performance - Traditional Method. 66
Table 30 Intersection Safety Performance - CPM Method 67
Table 31 Summary of Problem Definition Issues 69
Table 32 Roadway Sections Operating at LOS D in 2039 76
Table 33 Passing Lane Locations for Short to Medium-term Consideration 83
Table 34 Passing Lane Locations for Long-term Consideration 88
Table 35 Summary of Wolski Cost Estimate. 92
Table 36 Benefit / Cost Summary 94
Table 37 Staging Recommendations for Passing Lane Locations for Short to Medium-term Consideration 97
Table 38 Staging Recommendations for Passing Lane Locations for Long-term Consideration 98
Photos
Photo E-1 Southbound Truck Platoon, South of Wonowon vii
Photo 1 Southbound Left Turn Queuing at Highway 97 / 29 Intersection 73
Photo 2 Southbound Truck Platoon, South of Wonowon. 74
Photo 3 SB Truck Platoon near Beatton River Airport Road. 75
Photo 4 Restricted Sight Distance at Red Creek Road. 78
Photo 5 Northbound Approach to Sikanni River Bridge 78

Appendices

A
B
C
D
E

K ShortBEN Analysis Worksheets

Executive Summary

Study Purpose

The purpose of this study is to evaluate the Existing (2014) and Future (2039) traffic operations and safety of the Alaska Highway (Highway 97) corridor between Charlie Lake Crescent (approximately 10 km north of Fort St. John) and the Buckinghorse River. The study area was evaluated for passing opportunities, intersection operations, roadway section operations, and safety.

Study Area

The study area, which includes highway segments under both Ministry of Transportation and Infrastructure (MoTI) and Public Works and Government Services Canada (PWGSC) jurisdiction, is shown in Figure E-1. The study area is comprised of 196.1 km along Highway 97 and has been divided into three (3) Landmark Kilometre Index (LKI) segments:

LKI Segment 1180, km 9.96 (Charlie Lake Crescent) to	Length $=49.64 \mathrm{~km}$ (Provincial jurisdiction)
km 59.60 (North Peace Maintenance Jurisdiction)	Length $=28.30 \mathrm{~km}$ (Federal jurisdiction)
LKI Segment 1180, km 59.60 (North Peace Maintenance Jurisdiction) to km 87.90 (Wonowon)	Length $=118.16 \mathrm{~km}$ (Federal jurisdiction)
LKI Segment $1183, \mathrm{~km} 0.00$ (Wonowon) to km 118.16 (Buckinghorse River Bridge)	

For the purpose of this study, 21 study intersections were selected for analysis by MoTI and PWGSC, for their respective jurisdictions. The corridor was also divided into 17 roadway sections, based on site observations, geography and terrain, collision data, and AADT. The 21 study intersections are listed below, and the 17 roadway sections are described in Table E-1.

1. Highway 97 / Highway 29
2. Highway 97 / Stoddart Creek Road
3. Highway 97 / Red Creek Road
4. Highway 97 / Montney Highway
5. Highway 97 / Becker Hill Road
6. Highway 97 / Lower Cache Road
7. Highway 97 / Beatton River Airport Road
8. Highway 97 / Wonowon Esso Access \#1
9. Highway 97 / Wonowon Esso Access \#2
10. Highway 97 / Wonowon Esso Access \#3
11. Highway 97 / Cypress Creek Road
12. Highway 97 / Pink Mountain Store Access \#1
13. Highway 97 / Pink Mountain Store Access \#2
14. Highway 97 / Pink Mountain Store Access \#3
15. Highway 97 / Sasquatch Crossing Lodge Access \#1
16. Highway 97 / Sasquatch Crossing Lodge Access \#2
17. Highway 97 / Sasquatch Crossing Lodge Access \#3/Pink Mountain Road
18. Highway 97 / Sasquatch Crossing Lodge Access \#4

McEIhanney

19. Highway 97 / Buckinghorse Camp and Lodge Access \#1
20. Highway 97 / Buckinghorse Camp and Lodge Access \#2
21. Highway 97 / Buckinghorse Camp and Lodge Access \#3

Table E-1 Roadway Sections

Section \#	Southern Point	Southern Point LKI	Northern Point	Northern Point LKI	Section Length (km)
LKI Segment 1180					
1	Highway 29	12.52	Stoddart Creek Road	20.35	7.8
2	Stoddart Creek Road	20.35	Montney Highway	29.46	9.1
3	Montney Highway	29.46	Becker Hill Road	32.86	3.4
4	Becker Hill Road	32.86	258 Road	36.28	3.4
5	258 Road	36.28	Mile 72 Frontage Road	41.52	5.2
6	Mile 72 Frontage Road	41.52	Beatton River Airport Road	43.89	2.4
7	Beatton River Airport Road	43.89	Mile 80 Frontage Road	53.44	9.6
8	Mile 80 Frontage Road	53.44	Inga Lake Road	71.94	18.5
9	Inga Lake Road	71.94	Wonowon	87.90	16
LKI Segment 1183					
10	Wonowon	0.00	Jedney Road	38.33	38.3
11	Jedney Road	38.33	Mile 135 Road	52.60	14.3
12	Mile 135 Road	52.60	Mile 141 Road	61.10	8.5
13	Mile 141 Road	61.10	Cypress Creek Road	63.93	2.8
14	Cypress Creek Road	63.93	Pink Mountain Road	70.68	6.8
15	Pink Mountain Road	70.68	Sikanni River Bridge	94.27	23.6
16	Sikanni River Bridge	94.27	Sikanni Chief Road	96.11	1.8
17	Sikanni Chief Road	96.11	Buckinghorse River Bridge	118.16	22.1

Site Observations

A site visit of the Alaska Highway 97 corridor was conducted on August 20, 2014, with the purpose of assessing the existing conditions of the corridor. In conjunction with operations and safety analysis, site observations were used to identify deficiencies. Some notable observations from the site visit include:

- Limited passing opportunities and the need for additional passing lanes
- High heavy vehicle percentages
- Substantial and frequent vehicle/truck platoons
- Limited signage, particularly to inform drivers of upcoming service, rest, and base camp areas or approaching intersections
- Limited lighting at roadway intersections and at rest and service areas and base camps
- Congestion at Highway 97 / Highway 29 intersection, primarily related to queued trucks accessing the Fort St. John inspection station
- Potential sight distance issues due to grade changes and horizontal curves

Further traffic and safety analysis was conducted to verify field observations.

Existing Passing Opportunities

Currently, passing opportunities (dashed yellow paint lines) are provided for approximately 40% to 55% of each roadway segment; however, some of these passing zone lengths do not meet the MoTI recommended 400 m minimum associated with the $100 \mathrm{~km} / \mathrm{h}$ posted speed limit. It should be noted the passing opportunities not meeting the currently recommended minimum length may have met the standard recommended length at the time of installation.

Over the 200 km corridor, there is only one northbound and one southbound passing lane in place, near Sikanni River Bridge. MoTI has announced an additional northbound passing lane at Mile 63 / Evergreen Road, scheduled for construction in 2015.

Traffic Volumes

Intersection Volumes

Twenty-one (21) intersections were selected for the traffic operations analysis. Traffic counts at these locations were conducted from September 15 to 24, 2014, by Peak Traffic Technology, Ltd. for the periods 5-8 AM, 11 AM - 1 PM, and 4-7 PM.

Heavy Vehicles

Highway 97 carries a high percentage of heavy vehicles. During the peak hours, heavy vehicles constituted approximately 20% to 35% of the total traffic on the roadway. The presence of this many heavy vehicles leads to a high frequency of platoons. Platoons indicate the need for additional safe opportunities to allow passing of slower moving vehicles to break up platoons and reduce driver frustration.

Winter Volumes

For comparison, winter traffic volumes, for the AM, Mid-day, and PM peak hours, were collected at all 21 study intersections in January 2015. The comparison of the January 2015 counts to the September 2014 counts showed that the winter traffic volumes along the corridor are approximately 80% of the September (summer)
traffic volumes. Because the September 2014 counts are higher than the January 2015 counts, the September data was used for analysis purposes; this allows for more conservative results.

Roadway Volumes

The AADT and peak hour roadway volumes were extracted from MoTI count stations along the corridor and information provided by PWGSC. Roadway volumes were also derived from intersection turning movement counts taken in September 2014. For longer sections, where MoTI count stations or intersection counts were spread out, volume averages were used to determine AADT. Roadway peak hour volumes were calculated based on a combination of intersection peak hour counts and roadway AADT.

In 2014, the southern-most portion of the corridor has an AADT of approximately 5,450 vehicles. The AADT for sections between Stoddart Creek Road and Pink Mountain Road range between 2,460 and 4,190 vehicles. The northern portion of LKI 1183 (north of Sikanni River Bridge) has an AADT of approximately 1,100.

Future Traffic Growth

Traffic volume projections were calculated for a 25 -year (2039) horizon. Historic counts, Census data, and the Official Community Plan (2011) for Fort St. John showed a wide range of estimated growth in the area. In further consultations with MoTI, and to remain consistent with other studies in the vicinity, a conservative 3.0\% per year linear growth rate was considered appropriate for this study and was applied to existing traffic volumes to estimate future volumes.

In 2039, the southernmost portion of the corridor is expected to have an AADT of approximately 9,540 vehicles. With an estimated AADT of 9,540 , this roadway section could be considered for expansion to 4 lanes. Passing lanes, which are discussed in depth and recommended as part of this study, are one way to prolong the effectiveness of a 2 -lane highway before expending to 4 lanes. Expansion to 4 lanes is not a focus of this study.

The AADT for sections between Stoddart Creek Road and Pink Mountain Road are anticipated to increase to a range of 4,300 to 7,330 vehicles. The northern portion of LKI 1183 (north of Sikanni River Bridge) is expected to have an AADT of approximately 1,930 .

It is important to note that industry activities in the area may vary, which could affect the projected rate of growth. Changes in the growth rate could alter the timing and implementation of some of the improvements discussed in this study. It is recommended that traffic volumes are monitored to assess traffic projections and determine appropriate timing for the suggested improvements.

Traffic Operations Analysis

Intersection Analysis

All 21 intersections were analyzed for Existing (2014) and Future (2039) conditions. Intersection operations analysis showed that all of the study intersections would operate at LOS D or better under all conditions, except the intersection of Highway 97 and Highway 29. In the future, this intersection is expected to operate at LOS F and signalization may be required to improve service levels, in the long-term.

Further analysis, including sensitivity testing and signal warrants, was conducted at the Highway 97 / Highway 29 intersection. During the PM peak hour, the worst movement (westbound) is expected to reach LOS E by 2015 and LOS F by 2019. Signal warrants were met for this intersection based on 2039 projected intersection volumes. The low levels of future service at the Highway 29 / Highway 97 intersection could be partly related to
the inspection station located at the southeast corner. Any changes to the intersection should be made in conjunction with modifications to or potential relocation of the inspection station.

Roadway Section Analysis

HCS 2010 software was used to analyze the 17 roadway sections for Existing (2014) and Future (2039) conditions. Based on roadway volumes, there is a clear commuting direction along the corridor; northbound in the AM and southbound in the Mid-day and PM peak hours. Roadway sections were analyzed for both average travel speed and percentage of time spent following. For existing conditions (2014), all of the study sections, northbound and southbound, operated at LOS C or better during AM, Mid-day and PM peak periods, in terms of both average travel speed and percent time spent following criteria, except for Section 1, which is operating at LOS D, southbound, during the PM peak hour. In the future (2039), 13 roadway sections degrade to LOS D, in at least one direction, during at least one peak hour. Table $E-2$ shows the sections that are expected to perform at LOS D by 2039.

Table E-2 Roadway Sections Operating at LOS D in 2039

Section \#	Southern Point	Northern Point	Peak Hour	Direction
1	Highway 29	Stoddart Creek Road	AM	NB
			Mid-Day	SB
			PM	NB, SB ${ }^{1}$
2	Stoddart Creek Road	Montney Highway	AM	NB
			PM	SB
3	Montney Highway	Becker Hill Road	AM	NB
			PM	SB
4	Becker Hill Road	258 Road	AM	NB
			PM	SB
5	258 Road	Mile 72 Frontage Road	PM	SB
6	Mile 72 Frontage Road	Beatton River Airport Road	AM	NB
			Mid-Day	SB
			PM	SB
7	Beatton River Airport Road	Mile 80 Frontage Road	AM	NB
			Mid-Day	SB
			PM	SB
8	Mile 80 Frontage Road	Inga Lake Road	PM	SB
9	Inga Lake Road	Wonowon	PM	SB
11	Jedney Road	Mile 135 Road	PM	SB
12	Mile 135 Road	Mile 141 Road	AM	NB
			PM	SB
13	Mile 141 Road	Cypress Creek Road	AM	NB
			PM	SB
14	Cypress Creek Road	Pink Mountain Road	PM	SB

Notes:

1. Section 1 SB operates at LOS D during the PM peak hour under Existing Conditions (2014).

Most of the sections operating at LOS D in 2039 are in LKI Segment 1180 (south of Wonowon). Four (4) sections in LKI 1183 (sections 11, 12, 13 and 14) is expected to experience LOS D, in at least one direction during the AM and/or PM peak hour, by 2039. Sections operating at LOS D in 2039 are priority candidates for the addition of passing lanes in the future.

Safety Analysis

Collision data representing a 5-year period from January 2009 to December 2013 was extracted from MoTl's
CIS (Collision Information System) database. For the Highway 97 study area, the CIS database includes 195 collisions for the 5 -year time period. Table $E-3$ shows the breakdown of collisions by study segment.

Table E-3 5-Year (January 2009 - December 2013) Corridor Collision Data

Study Segment LKI	Southern LKI	Northern LKI	Total Collisions	Property Damage Only	Injury	Fatal	Annual Collisions per km
1180	9.96	59.60	94	59	30	5	0.38
1180	59.60	87.90	44	23	21	0	0.10
1183	0.00	118.16	54	34	19	1	0.09

Of the 6 fatal collisions, 5 occurred in the southern Segment 1180 between km 9.96 and 59.60 . Ninety-four (94), or 48%, of the collisions occurred in the southern most segment (LKI 1180, 9.96-59.60); this is the most populated area and is closest to Fort St. John.

Two methodologies were used for safety analysis: (1) the traditional method that analyzes safety performance measures that include Collision Frequency, Collision Rate and Collision Severity Index, and (2) the Collision Prediction Model (CPM) approach, which estimates the safety performance of major provincial highway segments and intersections in British Columbia.

Based on both safety analysis methods, none of the roadway sections or study intersections are considered collision prone.

Problem Definitions

Specific issues along the corridor, as related to site observations, traffic operations, collision history, and passing opportunities, have been identified. Table E-4 summarizes the main issues.

Photo E-1: Southbound truck platoon, South of Wonowon

Table E-4 Summary of Problem Definition Issues

Location / Description	Issues
Highway 97 / Highway 29 Intersection	- Anticipated LOS F in 2039 - Conflicts with inspection station - Signal warranted in 2039
Wonowon	- Reduced speed zone $(70 \mathrm{~km} / \mathrm{h})$ may not be enforced or obeyed - Limited signage - Heavy truck volumes - Roadway section just south of Wonowon has $4^{\text {th }}$ highest number of recorded collisions (25 collisions from 2009-2013) - Truck platoons forming, entering and exiting Wonowon area
Roadway Sections Operating at LOS D	- Limited passing opportunities - Over 60% of time spent following - Decreased LOS leads to longer platoons - Leads to driver frustration and risk taking
Platoons	- High heavy vehicle traffic - Limited passing opportunities - Rolling terrain, grade changes, and limited sight distance is slowing larger vehicles and vehicles following heavy trucks - Increased driver frustration leads to risk taking
Passing Lanes	- Only 1 NB and 1 SB passing lane over 200 km corridor (1 additional NB passing lane to be installed in 2015) - Many passing zone lengths do not meet 400 m recommendation for $100 \mathrm{~km} / \mathrm{h}$ speed zones, although they may have met the standards at the time of installation - Limited passing opportunities leads to driver frustration and risk taking
Sight Distance, Grade Changes, and Horizontal Curves	- Ensure signage meets all MoTI guidelines and provides adequate warning for drivers - Can slow larger vehicles, leading to platoons - Limited signage or warning for drivers
Posted Speeds through Rest / Service Areas and Base Camps	- Numerous vehicles entering and exiting these areas - Limited signage or warning for drivers - Where posted speeds are reduced, speeds many not be enforced or obeyed
Future Development	- Increased traffic from developments will increase traffic on Highway 97 - Additional access density, resulting in potential conflicts
General Signing and Pavement Markings	- Review signage along the corridor to ensure it meets MoTI guidelines - Increase signage for intersections, rest stops, service areas, and base camps - Repaint faded lane markings, particularly in southern-most segment (LKI Segment 1180, km 9.96-59.60)
Lighting	- Increase lighting at intersections, if warranted - Increase lighting at rest stops, service areas, and base camps, if warranted - Increased lighting will provide more warning time for drivers

Opportunities for Roadway Improvements

Opportunities for roadway improvements have been recommended for both short to medium- (1 to 10 years) and long-term (10 to 25 years), subject to funding, priority, and programming.

Passing Lane Recommendations

Recommended passing lane locations were determined based on level of service, average annual daily traffic (AADT), terrain, proximity to other passing lanes, the length of no-passing zones in the area, and other
roadway characteristics (such as access density or platoons frequency). Of the 20 potential passing lanes identified, 16 were recommended for installation. Specific passing lanes have been identified for both short to medium- and long-term implementation, ultimately creating a system of passing lanes to improve operations and safety throughout the corridor. In general, the short to medium-term passing lanes were recommended for areas with the highest traffic volumes, lower levels of service, and higher collision rates. Tables E-5 and E-6 summarize the recommended short to medium- and long-term passing lanes, respectively.

The suggested passing lane locations are approximations, and the exact location for each passing lane will be determined during the detailed design phase. Also, future conditions, such as changes in industry demand and variations in expected growth, may alter passing lane priorities and locations. It should be noted that all of the passing lanes are recommended to be approximately 2 km long.

Figure E-2 illustrates the proposed system of passing lanes.
Table E-5 Recommended Passing Lane Locations for Short to Medium-term Consideration

Segment	LKI	Location	Passing Lane Direction	Rationale
1180	27.3-29.5	Evergreen Road	Northbound	- Improve LOS - Relatively high AADT - Reduce platooning - In Section 2, $2^{\text {nd }}$ highest number of collisions in 5 -year period - 2 fatal collisions
1180	41.5-43.9	South of Beatton River Airport Road	Northbound	- Improve LOS - Relatively high AADT - Reduce platooning
1180	68.5-70.5	South of Inga Lake Road	Northbound	- Improve LOS - Provide passing opportunity in rolling terrain - Reduce platooning - Increase safety (within roadway section with highest number of collisions)
1183	19-21.2	South of Tommy Lakes Road	Northbound	- Provide passing opportunity in rolling terrain - Reduce platooning - Approximately 36 km north and 12 km south of nearest proposed passing lane
1180	20-17.5	South of Stoddart Creek Road	Southbound	- Improve LOS - Relatively high AADT - Reduce platooning
1180	35.6-33.6	South of Lower Cache Road	Southbound	- Improve LOS - Relatively high AADT - Grade change (incline)
1180	51.2-48.7	North of Beatton River Airport Road	Southbound	- Improve LOS - Relatively high AADT - Reduce platooning - Approximately 13 km north and 18 km south of nearest proposed passing lane
1180	71.2-69.2	South of Inga Lake Road	Southbound	- Improve LOS - Provide passing opportunity in rolling terrain - Reduce platooning - Increase safety (within roadway section with highest number of collisions)

Table E-6 Recommended Passing Lane Locations for Long--term Consideration

Segment	LKI	Location	Passing Lane Direction	Rationale
1180	17.6-19.6	248 Road	Northbound	- Improve LOS - Relatively high AADT
1180	33.8-35.2	Becker Hill Road	Northbound	- Improve LOS - Should not be implemented until AADT reaches approximately 7,000 . Otherwise, this passing lane will be too close to nearest recommended passing lanes, according to TAC spacing guidelines
1180	55-57.5	South of Aitken Creek Road	Northbound	- Improve LOS - Provide passing opportunity in rolling terrain - Reduce platooning - Approximately 11 km north and 50 km south of nearest proposed passing lane
1183	35.8-38.3	South of Jedney Road	Northbound	- Provide passing opportunity between Wonowon and Pink Mountain service areas - Grade change (incline) - Area with over 2 km of no-passing
1180	82.2-80.2	North of Upper Halfway Road	Southbound	- Improve LOS - Reduce platooning - Provide passing opportunity in rolling terrain
1183	14.9-12.9	North of 109 Road	Southbound	- Provide passing opportunity in rolling terrain - Approximately 19 km north and 38 km south of nearest proposed passing lane - Section of roadway with no conflicting accesses
1183	40.5-38.5	North of Jedney Road	Southbound	- Improve LOS - Provide passing opportunity between Wonowon and Pink Mountain service areas - Grade change (incline) - Area with over 3 km of no-passing
1183	55-52.6	North of 135 Road	Southbound	- Improve LOS - Approximately 24 km north of nearest proposed passing land and 40 km south of existing SB passing lane at Sikanni River Bridge

Short to Medium-term Recommendations

It is recommended that the following are implemented in the short to medium-term (1 to 10 years), subject to funding, priority, and programming:

1. Install additional passing lanes (see Table E-5 above).
2. MoTI and PWGSC to review possible improvements to signing and pavement markings, the need to increase the use of post-mounted delineations and shoulder rumble strips at curved sections, and ensure that advance intersection warning signs coupled with the street names are consistent with MoTI guidelines.
3. According to MoTI guidelines, increase frequency and strategically locate signs warning of restricted sight distance, curve ahead, and grade change/percent incline.
4. Increase lighting along the corridor, at intersections and rest / services areas and base camps, where warranted. It is a noted constraint that there is currently no power provided along the roadway in LKI Segment 1183.
5. Consider speed reductions to $80 \mathrm{~km} / \mathrm{h}$, near Sasquatch Crossing Lodge / Mae's Kitchen and Buckinghorse Lodge and Camp. Also consider speed reduction from $100 \mathrm{~km} / \mathrm{h}$ to $80 \mathrm{~km} / \mathrm{h}$ prior to the 50km/h speed warning signs approaching the Sikanni River Bridge.
6. More detailed operational analysis should be conducted to determine if acceleration and/or deceleration lanes would be beneficial at rest and service areas.
7. General: new painted lane lines, particularly south of Aitken Creek Road (LKI 1180, km 57.07).

Long-term Recommendations

The following longer term improvements do not require immediate attention but should be pursued as opportunities or funding arise:

1. Install additional passing lanes to develop a system of passing lanes to meet the 2039 traffic demand (see Table E-6 above).
2. Signalize Highway 97 / Highway 29 intersection by 2039, if/when warranted.
3. Relocate/redesign inspection station at Highway 29 / Highway 97 intersection.
4. General: new painted lane lines, per MoTI and PWGSC regular maintenance plan.

Cost Benefit Analysis

A cost benefit analysis was performed for the proposed passing lanes to determine if the benefits of the improvements outweigh the costs. The Wolski Cost Estimating methodology was used to prepare the cost estimate, and a ShortBEN analysis was conducted to determine the feasibility of the recommended improvements. In all cases, except for the 2 passing lanes near Jedney Road, the benefits of the passing lanes outweigh the cost. The costs outweigh the benefits of the Jedney Road passing lanes because of substantial rock cuts that would be necessary. However, there are a number of elements, such as grade changes, no passing opportunities, and observed platoon formation, near Jedney Road that are not accounted for in the ShortBEN analysis, so these passing lanes are still recommended for long-term consideration. Table E-7 summarizes the benefit / cost analysis.

Table E-7 Benefit / Cost Summary

Cost
(Construction \& Engineering)

Net Present Value (NPV)

Benefit/Cost Ratio (B/C)

Passing Lanes for Short to Medium-term Consideration

Northbound Passing Lanes

South of Beatton River Airport Road	$\begin{aligned} & \text { 1180, } \\ & 41.5-43.9 \end{aligned}$	\$2.65 M	\$0.84 M	1.49
South of Inga Lake Road	$\begin{aligned} & \text { 1180, } \\ & 68.5-70.5 \end{aligned}$	\$2.29 M	\$0.70 M	1.46
South of Tommy Lakes Road	$\begin{aligned} & 1183, \\ & 19-21.2 \end{aligned}$	\$2.47 M	\$0.67 M	1.41
Southbound Passing Lanes				
South of Stoddart Creek Road	$\begin{aligned} & 1180, \\ & 20-17.5 \end{aligned}$	\$2.78 M	\$2.56 M	2.45
South of Lower Cache Road	$\begin{aligned} & 1180, \\ & 35.6-33.6 \end{aligned}$	\$2.07 M	\$1.61 M	2.19
North of Beatton River Airport Road	$\begin{aligned} & \text { 1180, } \\ & 51.2-48.7 \end{aligned}$	\$2.56 M	\$2.01 M	2.26
South of Inga Lake Road	$\begin{aligned} & 1180, \\ & 71.2-69.2 \end{aligned}$	\$2.17 M	\$2.53 M	2.77

Passing Lanes for Long-term Consideration

Northbound Passing Lanes

248 Road	$\begin{aligned} & 1180 \\ & 17.6-19.6 \end{aligned}$	\$2.29 M	\$1.37 M	1.90
Becker Hill Road	$\begin{aligned} & 1180 \\ & 33.8-35.2 \end{aligned}$	\$2.07 M	\$1.98 M	2.46
South of Aitken Creek Road	$\begin{aligned} & 1180, \\ & 55-57.5 \end{aligned}$	\$2.56 M	\$0.67 M	1.42
South of Jedney Road	$\begin{aligned} & 1183, \\ & 35.8-38.3 \end{aligned}$	\$2.99 M	-\$0.26 M	0.87
Southbound Passing Lanes				
North of Upper Halfway Road	$\begin{aligned} & 1180, \\ & 82.2-80.2 \end{aligned}$	\$2.65 M	\$1.24 M	1.69
North of 109 Road	$\begin{aligned} & \text { 1183, } \\ & \text { 14.9-12.9 } \end{aligned}$	\$2.28 M	\$0.62 M	1.41
North of Jedney Road	$\begin{aligned} & 1183, \\ & 40.5-38.5 \end{aligned}$	\$3.94 M	-\$0.79 M	0.72
North of 135 Road	$\begin{aligned} & 1183, \\ & 55-52.6 \end{aligned}$	\$2.56 M	\$0.55 M	1.34

It is not feasible or necessary to implement all of the proposed improvements immediately. The improvements have been recommended for short to medium-term (1 to 10 years) and long-term (10+ years) consideration, prioritizing areas of high traffic volumes, low levels of service, and higher collision rates.

Table E-8 summarizes the priorities for the passing lanes identified for short to medium-term implementation (1 to 10 years). Table E-9 summarizes the priorities for the passing lanes identified for long-term implementation (10+ years).

Projects identified in the short to medium-term term are required to mitigate safety and traffic operation issues. Some of the projects suggested for long-term implementation reflect higher implementation costs and require detailed planning and design prior to execution.

Table E-8: Staging Recommendations for Passing Lane Locations for Short to Medium-term Consideration

Priority	Segment LKI	Location	Passing Lane Direction	Rationale	Cost
1	$\begin{aligned} & 1180 \\ & 20-17.5 \end{aligned}$	South of Stoddart Creek Road	Southbound	- Improve LOS - Highest roadway section AADT - Reduce platooning - In southern LKI Segment 1180 (highest collision rate along study corridor) - Within study section 1 , with $3^{\text {rd }}$ highest \# of collisions along study corridor	\$2.78 M
2	$\begin{aligned} & 1180, \\ & 41.5-43.9 \end{aligned}$	South of Beatton River Airport Road	Northbound	- Improve LOS - Relatively high AADT - Reduce platooning - In southern LKI Segment 1180 (highest collision rate along study corridor)	\$2.65 M
3	$\begin{aligned} & \text { 1180, } \\ & 51.2-48.7 \end{aligned}$	North of Beatton River Airport Road	Southbound	- Improve LOS - Relatively high AADT - Reduce platooning - Approximately 13 km north and 18 km south of closest proposed passing lane - In southern LKI Segment 1180 (highest collision rate along study corridor)	\$2.56 M
4	$\begin{aligned} & 1180, \\ & 35.6-33.6 \end{aligned}$	South of Lower Cache Road	Southbound	- Improve LOS - Relatively high AADT - Grade change (incline) - In southern LKI Segment 1180 (highest collision rate along study corridor)	\$2.07 M
5	$\begin{aligned} & 1180, \\ & 71.2-69.2 \end{aligned}$	South of Inga Lake Road	Southbound	- Improve LOS - Provide passing opportunity in rolling terrain - Provide passing opportunity as exiting Wonowon service area / reduced speed zone - Reduce platooning - Within study section 8 , with highest \# of collisions along study corridor	\$2.17 M
6	$\begin{aligned} & \text { 1180, } \\ & 68.5-70.5 \end{aligned}$	South of Inga Lake Road	Northbound	- Improve LOS - Provide passing opportunity in rolling terrain - Provide passing opportunity as approaching Wonowon service area - Reduce platooning - Within study section 8 , with highest \# of collisions along study corridor	\$2.29 M
7	$\begin{aligned} & \text { 1183, } \\ & \text { 19-21.2 } \end{aligned}$	South of Tommy Lakes Road	Northbound	- Provide passing opportunity in rolling terrain - Reduce platooning - Approximately 36 km north and 12 km south of closest proposed passing lane	\$2.47 M

Priority	Segment LKI	Location	Passing Lane Direction	Rationale	Cost
1	$\begin{aligned} & 1180, \\ & 17.6-19.6 \end{aligned}$	248 Road	Northbound	- Improve LOS - Highest roadway section AADT - In southern LKI Segment 1180 (highest collision rate along study corridor) - Within study section 1 , with $3^{\text {rd }}$ highest \# of collisions	\$2.29 M
2	$\begin{aligned} & 1180, \\ & 55-57.5 \end{aligned}$	South of Aitken Creek Road	Northbound	- Improve LOS - Provide passing opportunity in rolling terrain - Reduce platooning - Approximately 11 km north and 50 km south of closest proposed passing lane - In southern LKI Segment 1180 (highest collision rate along study corridor) - Within study section 8 , with highest \# of collisions along study corridor	\$2.56 M
3	$\begin{aligned} & 1180, \\ & 82.2-80.2 \end{aligned}$	North of Upper Halfway Road	Southbound	- Improve LOS - Reduce platooning - Provide passing opportunity in rolling terrain - Provide passing opportunity as exiting Wonowon service area / reduced speed zone - Within roadway section $9,4^{\text {th }}$ highest $\#$ of collisions along study corridor	\$2.65 M
4	$\begin{aligned} & \text { 1183, } \\ & \text { 14.9-12.9 } \end{aligned}$	North of 109 Road	Southbound	- Provide passing opportunity in rolling terrain - Reduce platooning as approaching Wonowon service area - Approximately 19 km north and 38 km south of closest proposed passing lane - Section of roadway with no conflicting accesses	\$2.28 M
5	$\begin{aligned} & \text { 1183, } \\ & 55-52.6 \end{aligned}$	North of 135 Road	Southbound	- Improve LOS - Reduce platooning upon exiting Pink Mountain service area - Approximately 24 km north of closest proposed passing land and 40 km south of existing SB passing lane at Sikanni River Bridge	\$2.56 M
6	$\begin{aligned} & 1183, \\ & 40.5-38.5 \end{aligned}$	North of Jedney Road	Southbound	- Provide passing opportunity between Wonowon and Pink Mountain service areas - Grade change (incline) - Area with over 3 km of no-passing	\$3.94 M
7	$\begin{aligned} & 1183, \\ & 35.8-38.3 \end{aligned}$	South of Jedney Road	Northbound	- Provide passing opportunity between Wonowon and Pink Mountain service areas - Grade change (incline) - Area with over 2 km of no-passing	\$2.99 M
8	$\begin{aligned} & 1180, \\ & 33.8-35.2 \end{aligned}$	Becker Hill Road	Northbound	- Improve LOS - Should not be implemented until AADT reaches approximately 7,000 . Otherwise, this passing lane will be too close to adjacent, recommended passing lanes, according to TAC spacing guidelines	\$2.07 M

Changes in industry demand and growth in the area can change the timing and priority of the recommended improvements. Traffic projections are estimations and traffic volumes should be monitored to determine appropriate timing for all improvements. It should be noted that all passing lane locations are approximations, and the exact location will be identified during the detailed design phase. Additionally, all improvements are subject to funding, priority, and programming as determined by MoTI and PWGSC.

With the recommended improvements, it is anticipated that LOS will improve to LOS C or better, percentage of time spent following will be less than 60%, platoons will be reduced, and safety concerns will be addressed. In summary, there are a number of issues with traffic operations and safety that have been identified along the Alaska Highway 97 corridor, from Charlie Lake Crescent to Buckinghorse River Bridge, but these issues can be remedied over the next 25 years with the proposed improvements.

1 Introduction

The Alaska Highway (Highway 97) extends from Prince George, British Columbia to the south, through Watson Lake, Yukon Territories to the north, concluding in Fairbanks, Alaska, USA. This study focuses on the portion of Alaska Highway 97 just north of Fort St. John, British Columbia.

Fort St. John, located on a plateau above the Peace River Valley, is the largest city in the Northeast Region of British Columbia. It is a resource base for oil, natural gas, forestry and agriculture. Fort St. John is approximately 73 km northwest of Dawson Creek, BC, and 387 km southeast of Fort Nelson, BC. North of Fort St. John, Alaska Highway 97 is a two lane highway that passes through numerous river valleys and mountain landscapes before reaching Fort Nelson. Fort Nelson is a growing community at the edge of the northern Rocky Mountains with a thriving oil and gas industry, including North America's largest natural gas processing plant, and a substantial forestry sector.

The purpose of this study is to evaluate the Existing (2014) and Future (2039) traffic operations and safety of the Alaska Highway (Highway 97) corridor between Charlie Lake Crescent (north of Fort St. John) and the Buckinghorse River. This is a joint study commissioned by the Ministry of Transportation and Infrastructure (MoTI) and Public Works and Government Services Canada (PWGSC).

1.1 Study Area

The study area is comprised of 196.1 km along Highway 97, extending from Charlie Lake Crescent (near the south end of Charlie Lake, north of Fort St. John) to the 280 km Post, located 1.89 km north of the Buckinghorse River Bridge. The study corridor has been broken down into three (3) segments, defined by the Ministry of Transportation and Infrastructure's (MoTI) Landmark Kilometer Index (LKI):

LKI Segment 1180, km 9.96 (Charlie Lake Crescent) to km 59.60 (North Peace Maintenance Jurisdiction)

LKI Segment 1180, km 59.60 (North Peace Maintenance Jurisdiction) to km 87.90 (Wonowon)

Length $=49.64 \mathrm{~km}$ (Provincial jurisdiction)

LKI Segment 1183, km 0.00 (Wonowon) to km 118.16
(Buckinghorse River Bridge)
Length $=28.3 \mathrm{~km}$ (Federal jurisdiction)

Length $=118.16 \mathrm{~km}$ (Federal jurisdiction)

Figure 1, on page 2, shows the study area.

1.2 Study Objectives

The objective of this study is to recommend opportunities to improve the quality of service and safety along the corridor, in order to provide transportation options for the next 25 years (2039).

The purpose of this report is to evaluate existing conditions, identify and investigate deficiencies along the corridor, and describe opportunities for roadway improvements. The problems defined in this document are based on:

- Discussions with MoTI and PWGSC;
- Site visits;
- Existing (2014) and Future (2039) conditions traffic operations analysis for 21 intersections and 17 highway sections along the highway corridor; and
- Safety analysis for the previous 5 years (2009-2013).

This report will address potential solutions for the problems identified and discuss the rationale behind these opportunities, implementation, and cost benefit analysis of the recommendations.

1.3 Site Observations

A site visit of the Alaska Highway 97 corridor was conducted on August 20, 2014. The purpose of the site visit was to assess the existing conditions of the corridor. In conjunction with operations and safety analysis, site observations were used to determine improvements along the corridor. Some notable observations from the site visit include:

- Limited passing opportunities and the need for additional passing lanes
- High heavy vehicle percentages
- Substantial and frequent vehicle / truck platoons
- Limited signage, specifically:
- Informing drivers of upcoming rest and service areas and lodging or base camps
- To warn motorists of reduced speed zones near Wonowon and Pink Mountain Store and the Sikanni River Bridge
- To warn motorists of approaching intersections (particularly in the LKI 1180 southern segment)
- Limited lighting at roadway intersections and at rest and service areas and base camps
- Congestion at Highway 97 / Highway 29 intersection, primarily related to queued trucks accessing the Fort St. John inspection station
- Potential sight distance issues due to grade changes, vertical alignment, and horizontal curves at some locations, such as:
- Sight distance at Red Creek Road (LKI 1180, km 28.57)
- Curvature north of Beatton River Airport Road (LKI 1180, 43.89)
- Rolling terrain with limited sight distance between Gundy Road (LKI 1183, 30.38) and Pink Mountain Store (approximate LKI 1183, 63.93)
- Sight distance approaching and departing Pink Mountain Store (approximate LKI 1183, 63.93), northbound and southbound
- Sikanni River Bridge: approximate LKI 1183, 94.27, numerous grade changes and curvature accessing the bridge, northbound and southbound. This area should continue to be reviewed to ensure all necessary warning signs are in place.

Further traffic and safety analysis was conducted to verify field observations.

2 Existing Passing Opportunities

The study area contains many southbound and northbound passing opportunities (passing zones, e.g. dashed yellow lines), but a very limited number of passing lanes and pull-outs for slower vehicles. Table 1 summarizes existing passing opportunities, measured from the site visit video log and Google Street View.

Table 1 Existing Passing Opportunities

Segment LKI	Segment Length (km)	No. of Passing Opportunities		\% Passing Opportunities ${ }^{(1)}$		Total Passing Length (km)		\# of Passing Lengths less than $400 \mathrm{~m}^{(2)}$	
		NB	SB	NB	SB	NB	SB	NB	SB
$\begin{aligned} & 1180, \\ & 9.96-59.60 \end{aligned}$	49.6	40	38	41\%	40\%	20.52	20.04	19 (48\%)	16 (42\%)
$\begin{aligned} & 1180, \\ & 59.60-87.90 \end{aligned}$	28.3	23	23	49\%	49\%	13.84	13.84	7 (30\%)	6 (26\%)
$\begin{aligned} & 1183 \\ & 0.00-118.16 \end{aligned}$	118.16	74	72	53\%	54\%	62.62	63.41	16 (22\%)	21 (29\%)

Notes:

1. Percent (\%) of the total length of roadway segment
2. Passing Zone Lengths less than the MoTI Manual of Standard Traffic Signs \& Pavement Markings (2000) minimum recommended length associated with the posted speed limit. For posted speed of $100 \mathrm{~km} / \mathrm{h}$, recommended passing length minimum is 400 m . The percentage shown is the $\%$ of passing opportunities with lengths less than 400 m .
Note: Distances measured from site visit video log and Google Street View.
The MoTI Manual of Standard Traffic Signs \& Pavement Markings (2000), Chapter 7, Section 7.10, states that, based on posted speed limit, a no-passing zone should be in place where sight distance is equal to or less than the following:

- $80 \mathrm{~km} / \mathrm{h}, \mathrm{PZL} \geq 275 \mathrm{~m}$
- $90 \mathrm{~km} / \mathrm{h}, \mathrm{PZL} \geq 330 \mathrm{~m}$
- $100 \mathrm{~km} / \mathrm{h}, \mathrm{PZL} \geq 400 \mathrm{~m}$

Additionally, any passing zone in one direction, situated between no-passing zones, should not be less than the distance stated above. The majority of the posted speed along the study corridor is $100 \mathrm{~km} / \mathrm{h}$, with a few exceptions approaching major intersections, bridges, or gas stations / lodges / rest areas. Therefore, it is recommended that the PZLs are at least 400 m .
As can be seen in Table 1, each study segments permits passing along 40% to 55% of the segment. Most of these passing zone lengths (PZL) are less than 1 km long. The southern segment of LKI 1180 has the fewest passing opportunities with the highest number of passing zone lengths less than 400 m . The area from Wonowon to Buckinghorse Bridge has the highest number of passing opportunities, most of which exceed the 400 m recommendation. It should be noted that passing zone lengths less than 400 m may have met the recommended standards at the time of installation.

Short passing zone lengths, particularly with high speeds and the high percentage of heavy vehicle traffic along the corridor, potentially reduces safety along Highway 97. Because there are limitations with measuring PZLs using the site visit video log and Google Street View, it is recommended that MoTI and PWGSC verify the PZLs and review the pavement marking program.

2.1 Segment 1180, LKI 9.96 to 59.60

For the segment of Highway 97 between Charlie Lake Crescent and the end of the North Peace Maintenance Jurisdiction, there are 40 northbound and 38 southbound passing opportunities, representing a total of approximately 20.52 km northbound passing length and 20.04 km of southbound passing length.
Approximately 19 opportunities, in this segment, allow passing in both directions (7.85 total kilometers).
Of these passing opportunities, approximately $4.59 \mathrm{~km}(48 \%)$ northbound and $4.03 \mathrm{~km}(42 \%)$ southbound of the passing zone lengths do not appear to meet the minimum recommended 400 m passing zone length for the posted speed ($100 \mathrm{~km} / \mathrm{h}$).

2.2 Segment 1180, LKI 59.60 to 87.90

For the segment between the end of the North Peace Maintenance Jurisdiction and Wonowon, there are 23 passing opportunities, both northbound and southbound. There is approximately 13.84 km of both northbound and southbound passing length. Of the passing opportunities along this segment, approximately 16 allow passing in both directions (5.43 total kilometers).

Approximately $1.61 \mathrm{~km}(30 \%)$ northbound and $1.43 \mathrm{~km}(26 \%)$ southbound of the passing zone lengths do not appear to meet the 400 m minimum passing zone length recommended for the posted speed ($100 \mathrm{~km} / \mathrm{h}$).

2.3 Segment 1183, LKI 0.00 to 118.16

Segment 1183, between Wonowon and just north of the Buckinghorse River Bridge, has 74 northbound and 72 southbound passing opportunities. There is approximately 62.62 km of roadway available for northbound passing and 63.41 km of roadway available for southbound passing. Of the passing opportunities along Segment 1183, there are approximately 58 opportunities that allow passing in both directions (42.35 total kilometers).

Approximately $4.49 \mathrm{~km}(22 \%)$ northbound and $6.74 \mathrm{~km}(29 \%)$ southbound of the passing zone lengths do not appear to meet the 400 m minimum passing zone length recommended for the posted speed ($100 \mathrm{~km} / \mathrm{h}$).

There is one section of Segment 1183 with passing lanes. Northbound, there are passing lanes provided just north of the Sikanni River Bridge, from LKI 94.46 to LKI 96.17 (1.71 km). Southbound, just south of the Sikanni River Bridge, passing lanes are provided from LKI 89.29 to 93.95 (4.66 km).

2.4 Pre-Study Candidate Passing Lane Locations

Prior to this study, MoTI identified six (6) potential locations for passing lanes analysis along the corridor with input from stakeholders. All 6 locations are on the southern portion of the corridor (LKI 1180, km 9.96 to 59.60). These locations are:

- Southbound at Stoddart Road - approximately 3 km of passing length
- Northbound at Mile 63 / Evergreen Road - approximately 2 km of passing length
- Northbound at Becker Hill Road - approximately 3 km of passing length
- Northbound at Mile 258 Road - approximately 1.7 km of passing length
- Southbound at Mile 260 Road - approximately 2.8 km of passing length
- Northbound at Mile 158 Road - approximately 2.2 km of passing length

In September 2014, MoTI announced the construction of a passing lane northbound at Mile 63 / Evergreen Road, approximately 26 km north of Fort St. John. The passing lane will be approximately 2 km long and will include left turn lanes and luminaires at Evergreen Road and Red Creek Road. Construction will begin in 2015. The addition of this passing lane will also encompasses a deceleration lane at the study intersection of Highway 97 / Montney Highway.

Based on site visit observations and corridor analysis, this study will examine other potential locations, besides the ones identified by MoTI, for passing lanes along the corridor, as described in Sections 7.7, 10.1.1, and 10.2.1.

3 Existing Traffic Volumes

3.1 Intersection Traffic Volumes

Twenty-one (21) intersections were selected by MoTI and PWGSC for the traffic operations analysis. Traffic counts at these locations were conducted from September 15 to 24, 2014, for the periods 5-8 AM, 11 AM - 1 PM, and 4-7 PM, by Peak Data Services. The study intersections are:

1. Highway 97 / Highway 29 (LKI 1180, km 12.52)
2. Highway 97 / Stoddart Creek Road (LKI 1180, km 20.35)
3. Highway 97 / Red Creek Road (LKI 1180, km 28.58)
4. Highway 97 / Montney Highway (LKI 1180, km 29.46)
5. Highway 97 / Becker Hill Road (LKI 1180, km 32.86)
6. Highway 97 / Lower Cache Road (LKI 1180, km 35.86)
7. Highway 97 / Beatton River Airport Road (LKI 1180, km 43.89)
8. Highway 97 / Wonowon Esso Access \#1 (LKI 1183, km 0.11)
9. Highway 97 / Wonowon Esso Access \#2 (LKI 1183, km 0.21)
10. Highway 97 / Wonowon Esso Access \#3 (LKI 1183, km 0.34)
11. Highway 97 / Cypress Creek Road (LKI 1183, km 63.93)
12. Highway 97 / Pink Mountain Store Access \#1 (LKI 1183, km 64.11)
13. Highway 97 / Pink Mountain Store Access \#2 (LKI 1183, km 64.21)
14. Highway 97 / Pink Mountain Store Access \#3 (LKI 1183, km 64.25)
15. Highway 97 / Sasquatch Crossing Lodge Access \#1 (LKI 1183, km 70.14)
16. Highway 97 / Sasquatch Crossing Lodge Access \#2 (LKI 1183, km 70.32)
17. Highway 97 / Sasquatch Crossing Lodge Access \#3/Pink Mountain Road (LKI 1183, km 70.71)
18. Highway 97 / Sasquatch Crossing Lodge Access \#4 (LKI 1183, km 70.84)
19. Highway 97 / Buckinghorse Camp and Lodge Access \#1 (LKI 1183, km 116.42)
20. Highway 97 / Buckinghorse Camp and Lodge Access \#2 (LKI 1183, km 116.56)
21. Highway 97 / Buckinghorse Camp and Lodge Access \#3 (LKI 1183, km 116.71)

The Existing (2014) AM, Mid-day, and PM peak hour intersection traffic volumes, are shown on Figures $2 A$ and $2 B$, on pages 9 and 10. The traffic count data sheets for the September 2014 counts can be found in Appendix A.

INSET 1
NOT TO SCALE

KEY MAP NOT TO SCALE

3.2 Roadway Traffic Volumes

For the purpose of roadway operational analysis, the study corridor was divided into 17 sections of rural highway. Sections were determined though the site visit, terrain changes, intersections with Highway 97, AADT, and jurisdictional changes, which allowed for clearer evaluation of traffic volumes and operations and collision data.

Roadway sections 1 through 8 are located in the southern portion of Segment 1180 (section 8 extends into the northern portion of LKI 1180), which has the highest AADT along the corridor, the highest collision rates of the three study segments, observed frequent truck platoons, high heavy vehicle percentages, and regular intervals of access points and intersections. Additionally, some of these sections were previously identified by MoTI for potential locations for passing lanes.

Section 9 abuts the Wonowon area, where high heavy vehicle traffic was observed; this section of roadway also has the $4^{\text {th }}$ highest number of collisions recorded for the 5 -year study period (25 collisions). Wonowon is also a service area with multiple accesses on Highway 97 and a reduced speed zone.
Sections 10 through 14 have the highest AADT of Segment 1183, have very few passing opportunities, and rolling terrain and grade changes that could slow heavy vehicles and cause platoons. Some platoons were observed during the site visit. The Pink Mountain Store and Sasquatch Crossing Lodge are in this vicinity, both with multiple accesses on Highway 97. Also, the Pink Mountain Store area has a reduced speed zone surrounded by limited passing opportunities.

Section 15 and 16 encompass the only existing passing lanes along the corridor, near the Sikanni River Bridge.
Section 17 is the northern most portion of the study corridor. While this segment does not have high AADT, high numbers of collisions, or frequent platoons, it was analyzed to ensure that all portions of the corridor were represented and evaluated for any potential issues. Additionally, the Buckinghorse Camp and Lodge has multiple accesses on Highway 97 within this roadway section.

Table 2 provides definitions for the sections, and they are shown on Figure 3 (on page 15).

Table 2 Roadway Sections

Section \#	Southern Point	Southern Point LKI	Northern Point	Northern Point LKI	Section Length (km)
LKI Segment 1180					
1	Highway 29	12.52	Stoddart Creek Road	20.35	7.8
2	Stoddart Creek Road	20.35	Montney Highway	29.46	9.1
3	Montney Highway	29.46	Becker Hill Road	32.86	3.4
4	Becker Hill Road	32.86	258 Road	36.28	3.4
5	258 Road	36.28	Mile 72 Frontage Road	41.52	5.2
6	Mile 72 Frontage Road	41.52	Beatton River Airport Road	43.89	2.4
7	Beatton River Airport Road	43.89	Mile 80 Frontage Road	53.44	9.6
8	Mile 80 Frontage Road	53.44	Inga Lake Road	71.94	18.5
9	Inga Lake Road	71.94	Wonowon	87.90	16.0
LKI Segment 1183					
10	Wonowon	0.00	Jedney Road	38.33	38.3
11	Jedney Road	38.33	Mile 135 Road	52.60	14.3
12	Mile 135 Road	52.60	Mile 141 Road	61.10	8.5
13	Mile 141 Road	61.10	Cypress Creek Road	63.93	2.8
14	Cypress Creek Road	63.93	Pink Mountain Road	70.68	6.8
15	Pink Mountain Road	70.68	Sikanni River Bridge	94.27	23.6
16	Sikanni River Bridge	94.27	Sikanni Chief Road	96.11	1.8
17	Sikanni Chief Road	96.11	Buckinghorse River Bridge	116.30	8.1

The AADT (annual average daily traffic) and peak hour roadway volumes were extracted from the MoTI count stations and information provided by PWGSC:

- P-44-1NS, Inga Lake, Route 97, 2.4 km south of Inga Lake Compressor Road, south of Wonowon
- P-44-2NS, Sikanni, Route 97, 8.0 km north of the Sikanni River Bridge, north of Fort St. John
- 44-004NS, Route 97, 0.5 km north of Route 29, Charlie Lake
- $44-005 \mathrm{NS}, 0.3 \mathrm{~km}$ South of Buick Creek Road, North of Charlie Lake
- 44-006NS, Route 97, 0.8 km south of 100 Street, Fort St. John
- 44-007NS, Route 97, 0.5 km south of Route 29, Charlie Lake
- 44-009NS, 0.3 km South of Buick Creek Road, north of Charlie Lake
- 44-010NS, Route 97, 8.2 km north of Wonowon
- $44-016 \mathrm{NS}$, Route $97,0.1 \mathrm{~km}$ south of 42 nd Ave, Fort Nelson

AADT was derived from the MoTI count stations and intersection turning movement counts taken in September 2014. Based on data collected at MoTI count stations, AADT is approximately 74\% of September monthly average daily traffic (MADT). For this reason, where necessary, September MADT and September intersection counts were multiplied by a factor of 0.74 to determine roadway sections AADT. Additionally, for longer sections, where MoTI count stations or intersection counts were spread out, volume averages were used to
determine AADT. 2013 MADT for the two permanent count stations within the study corridor can be seen in Appendix B.

Hourly permanent count station data was compared to AADT to determine a peak hour volume factor, from which peak hour roadway volumes were calculated. Based on the permanent count stations in the study area, AM and Mid-day peak hour roadway volumes are approximately 5% of the AADT, respectively, and PM peak hour volumes are approximately 7% of the AADT volumes.

AADT was derived by MoTI permanent count stations; however, 2014 counts were also provided by PWGSC at two locations along the study corridor: near Aitken Creek Road and near Buckinghorse River Bridge. The 2014 counts showed a slight increase in AADT (approximately 100 vehicles more per day) at these locations. For analysis purposes, the roadway volumes were updated using the higher 2014 volumes at these locations.

Table 3 identifies the study roadway sections and the existing (2014) AADT, AM, Mid-day and PM peak hour traffic volumes. They are also shown in Figure 3, on page 15.

Table 3 Existing Conditions (2014)-Roadway Volumes

$\begin{aligned} & \text { Section } \\ & \# \end{aligned}$	Southern Point	Northern Point	AADT	AM Peak Hr Volumes		Mid-day Peak Hr Volumes		PM Peak Hr Volumes	
1	Highway 29	Stoddart Creek Road	5,450	NB	181	NB	124	NB	164
				SB	107	SB	141	SB	225
2	Stoddart Creek Road	Montney Highway	4,190	NB	139	NB	96	NB	126
				SB	82	SB	108	SB	173
3	Montney Highway	Becker Hill Road	3,860	NB	128	NB	88	NB	116
				SB	76	SB	100	SB	159
4	Becker Hill Road	258 Road	3,970	NB	132	NB	91	NB	120
				SB	78	SB	102	SB	164
5	258 Road	Mile 72 Frontage Road	4,130	NB	137	NB	94	NB	125
				SB	81	SB	107	SB	170
6	Mile 72 Frontage Road	Beatton River Airport Road	4,130	NB	137	NB	94	NB	125
				SB	81	SB	107	SB	170
7	Beatton River Airport Road	Mile 80 Frontage Road	3,720	NB	124	NB	85	NB	112
				SB	73	SB	96	SB	154
8	Mile 80 Frontage Road	Inga Lake Road	3,200	NB	106	NB	73	NB	90
				SB	63	SB	83	SB	132
9	Inga Lake Road	Wonowon	2,560	NB	85	NB	58	NB	77
				SB	50	SB	66	SB	106
10	Wonowon	Jedney Road	2,460	NB	82	NB	56	NB	74
				SB	48	SB	63	SB	102
11	Jedney Road	Mile 135 Road	2,810	NB	93	NB	64	NB	85
				SB	55	SB	73	SB	116
12	Mile 135 Road	Mile 141 Road	2,980	NB	99	NB	68	NB	90
				SB	58	SB	77	SB	123
13	Mile 141 Road	Cypress Creek Road	3,150	NB	105	NB	72	NB	95
				SB	62	SB	81	SB	130
14	Cypress Creek Road	Pink Mountain Road	3,220	NB	107	NB	73	NB	97
				SB	63	SB	83	SB	133
15	Pink Mountain Road	Sikanni River Bridge	1,060	NB	35	NB	24	NB	32
				SB	21	SB	27	SB	44
16	Sikanni River Bridge	Sikanni Chief Road	1,020	NB	34	NB	23	NB	31
				SB	20	SB	26	SB	42
17	Sikanni Chief Road	Buckinghorse River Bridge	1,100	NB	37	NB	25	NB	33
				SB	22	SB	28	SB	45

As can be seen in Table 3, the highest AADT is in the southern portion of the corridor, nearest to Fort St. John. The highest AADT is between Highway 29 and Stoddart Creek Road with 5,450 vehicles, daily. The sections between Stoddart Creek Road, on the southern end, and Pink Mountain Road, on the northern end, range between 2,500 and 4,200 vehicles, daily. The lowest AADT is found north of the Sikanni River, where there are approximately 1,100 vehicles, daily. It should be noted that the AM peak commuter direction is northbound and the PM peak commuter direction is southbound.

4 Winter Traffic Volumes

For comparison, winter traffic volumes, for the AM, Mid-day, and PM peak hours, were collected at all 21 study intersections in January 2015. The comparison of the January 2015 counts to the September 2014 counts showed that the winter traffic volumes along the corridor are approximately 80% of the September (summer) traffic volumes. Table 4 shows a comparison of summer versus winter counts at each intersection (total intersection volumes). It should be noted that in the instances of a volume increase in the winter time, the increase was fewer than 35 vehicles during the peak hour and may have been related to specific traffic of the day and not necessarily a typical traffic trend. The winter traffic counts can be found in Appendix C.

Table 4 Comparison of Summer (September 2014) and Winter (January 2015) Total Intersection Volumes

	AM Peak Hour				Mid-day Peak Hour				PM Peak Hour			
Intersection	$\begin{aligned} & \text { Sept } \\ & 2014 \end{aligned}$	$\begin{gathered} \text { Jan } \\ 2015 \end{gathered}$	Volume Difference (Sept-Jan)	$\begin{gathered} \text { Jan/ Sept } \\ \% \end{gathered}$	$\begin{aligned} & \text { Sept } \\ & 2014 \end{aligned}$	$\begin{gathered} \text { Jan } \\ 2015 \end{gathered}$	Volume Difference (Sept-Jan)	$\begin{gathered} \text { Jan/ Sept } \\ \% \end{gathered}$	$\begin{aligned} & \text { Sept } \\ & 2014 \end{aligned}$	$\begin{gathered} \text { Jan } \\ 2015 \end{gathered}$	Volume Difference (Sept-Jan)	Jan/ Sept \%
Highway 97 / Highway 29	741	642	99	87\%	521	444	77	85\%	948	422	526	45\%
Highway 97 / Stoddart Creek Road	394	348	46	88\%	295	252	43	85\%	466	386	80	83\%
Highway 97 / Red Creek Road	345	308	37	89\%	259	239	20	92\%	399	352	47	88\%
Highway 97 / Montney Highway	424	319	105	75\%	309	234	75	76\%	421	344	77	82\%
Highway 97 / Becker Hill Road	330	300	30	91\%	254	234	20	92\%	362	326	36	90\%
Highway 97 / Lower Cache Road	394	288	106	73\%	316	242	74	77\%	409	322	87	79\%
Highway 97 / Beatton River Airport Road	415	250	165	60\%	309	264	45	85\%	408	308	100	75\%
Highway 97 / Wonowon Esso Access \#1	204	190	14	93\%	236	203	33	86\%	260	292	-32	112\%
Highway 97 / Wonowon Esso Access \#2	214	205	9	96\%	229	198	31	86\%	287	315	-28	110\%
Highway 97 / Wonowon Esso Access \#3	215	194	21	90\%	235	204	31	87\%	274	302	-28	110\%
Highway 97 / Cypress Creek Road	202	132	70	65\%	137	135	2	99\%	307	186	121	61\%
Highway 97 / Pink Mountain Store Access \#1	205	138	67	67\%	141	139	2	99\%	308	193	115	63\%
Highway 97 / Pink Mountain Store Access \#2	224	144	80	64\%	150	138	12	92\%	339	202	137	60\%
Highway 97 / Pink Mountain Store Access \#3	184	147	37	80\%	129	127	2	98\%	329	185	144	56\%
Highway 97 / Sasquatch Crossing Lodge Access \#1	205	160	45	78\%	166	105	61	63\%	303	183	120	60\%
Highway 97 / Sasquatch Crossing Lodge Access \#2	190	160	30	84\%	140	97	43	69\%	253	187	66	74\%
Highway 97 / Sasquatch Crossing Lodge Access \#3	219	172	47	79\%	163	101	62	62\%	294	202	92	69\%
Highway 97 / Sasquatch Crossing Lodge Access \#4	N/A	157	N/A	N/A	152	92	60	61\%	243	186	57	77\%
Highway 97 / Buckinghorse Camp and Lodge Access \#1	121	85	36	70\%	119	84	35	71\%	152	102	50	67\%
Highway 97 / Buckinghorse Camp and Lodge Access \#2	75	78	-3	104\%	102	66	36	65\%	109	96	13	88\%
Highway 97 / Buckinghorse Camp and Lodge Access \#3	66	74	-8	112\%	111	71	40	64\%	105	101	4	96\%

Based on the total intersection volumes shown above, the higher traffic volumes observed in September 2014
Traffic operations analysis was conducted using the September 2014 counts because this provides a more conservative analysis of traffic conditions.

5 Heavy Vehicle Traffic

Highway 97 carries a high percentage of heavy vehicle traffic, as the area has a significant amount of logging activities and liquefied natural gas (LNG) / oil / industrial development. Table 5, below, shows the breakdown of heavy vehicle percentages for the analyzed roadway sections; these percentages were recorded in September 2014 as part of the intersection traffic volume counts and subsequently used to determine roadway heavy vehicle percentages.

Table 5 Heavy Vehicle Percentages for Roadway Sections

Section \#	Southern Point	Northern Point	Heavy Vehicle \%		
			AM	Mid-Day	PM
1	Highway 29	Stoddart Creek Road	12\%	21\%	15\%
2	Stoddart Creek Road	Montney Highway	15\%	26\%	17\%
3	Montney Highway	Becker Hill Road	21\%	31\%	19\%
4	Becker Hill Road	258 Road	22\%	33\%	20\%
5	258 Road	Mile 72 Frontage Road	27\%	37\%	22\%
6	Mile 72 Frontage Road	Beatton River Airport Road	27\%	37\%	22\%
7	Beatton River Airport Road	Mile 80 Frontage Road	28\%	37\%	23\%
8	Mile 80 Frontage Road	Inga Lake Road	28\%	37\%	23\%
9	Inga Lake Road	Wonowon	28\%	36\%	26\%
10	Wonowon	Jedney Road	26\%	27\%	24\%
11	Jedney Road	Mile 135 Road	26\%	27\%	24\%
12	Mile 135 Road	Mile 141 Road	26\%	27\%	24\%
13	Mile 141 Road	Cypress Creek Road	22\%	27\%	28\%
14	Cypress Creek Road	Pink Mountain Road	20\%	28\%	20\%
15	Pink Mountain Road	Sikanni River Bridge	22\%	31\%	21\%
16	Sikanni River Bridge	Sikanni Chief Road	22\%	31\%	21\%
17	Sikanni Chief Road	Buckinghorse River Bridge	17\%	23\%	21\%

The percentages shown in Table 5 were used in roadway operations analysis for both Existing (2014) and Future (2039) scenarios. As can be seen, heavy vehicles comprised the highest percentage of total traffic during the Mid-day peak, ranging between 21% and 37% of total traffic. During the AM peak, heavy vehicles accounted for 12% to 28% of traffic along the corridor and, during the PM peak period, 15% to 28% of total traffic was heavy vehicles.

It should be noted that the percentage of heavy vehicles was observed to be higher during the winter months due to lower overall traffic volumes. The heavy vehicle percentage ranged from 12% to 37% in the AM peak hour, 18% to 44% during the Mid-day peak hour, and 14% to 37% in the PM peak hour in January 2015. However, because analysis was conducted using the higher total traffic volumes observed in September 2014, the coinciding heavy vehicle percentages were also used for analysis purposes.

The high percentage of heavy vehicle traffic can have a significant impact on roadway traffic operations. Heavy vehicles tend to be slower moving, particularly on roadways with a rolling terrain and frequent hill climbing. This can lead to a platooning effect on 2-lane highways with few or limited passing lanes, reducing traffic
efficiency and creating potential safety risks for vehicles trying to by-pass the slower moving vehicles. This issue will be discussed in further detail later in the report.

6 Future (2039) Traffic Growth

Traffic volume projections were calculated for a twenty five-year horizon (2039). Based on the historic counts at the MoTl count stations P-44-1NS (Inga Lake, Route $97,2.4 \mathrm{~km}$ south of Inga Lake Compressor Road, south of Wonowon) and P-44-2NS (Sikanni, Route 97, 8.0 km north of the Sikanni River Bridge, north of Fort St. John) the annual growth rates are estimated to be 7.47% and 2.18%, respectively. However, historic counts at other stations along the corridor from 1995 to 2013 vary from -2.52\% near Fort Nelson to 10.54\%, annually, near Beatton River Airport Road / Buick Creek Road. Additionally, Census data from 2006 to 2011, shows that the region's population has grown approximately 1 to 1.5% per year. The Official Community Plan (2011) for Fort St. John estimates the population in the area will grow by 3-4\% per year.

In further consultations with MoTI and PWGSC, and to remain consistent with other studies in the vicinity, a conservative 3.0% per year linear growth rate was considered appropriate for this study and was applied to existing traffic volumes to estimate future volumes. This level of growth represents a 75% increase from Existing (2014) to the 25 -year horizon (2039). The future (2039) traffic volumes at the 21 study intersections are summarized in Figures $4 A$ and $4 B$, on pages 21 and 22 .

It is important to note that industry activities in the area may vary, which could affect the projected rate of growth.

INSET 1
NOT TO SCALE

KEY MAP NOT TO SCALE

6.1 Future Roadway Traffic Volumes

The same 17 roadway segments identified in Section 3.2 were evaluated with the Future (2039) traffic volumes. The future roadway traffic volumes were determined using the same 75% growth (3% per year linear growth), as described above. Table 6 and Figure 5 (on page 25) identify the roadway sections' future (2039) traffic volumes.

Table 6 Future (2039) Conditions - Roadway Volumes

Section \#	Southern Point	Northern Point	AADT	AM Peak Hr Volumes		Mid-day Peak Hr Volumes		PM Peak Hr Volumes	
1	Highway 29	Stoddart Creek Road	9,540	NB	317	NB	218	NB	288
				SB	187	SB	246	SB	394
2	Stoddart Creek Road	Montney Highway	7,330	NB	244	NB	167	NB	221
				SB	144	SB	189	SB	303
3	Montney Highway	Becker Hill Road	6,760	NB	224	NB	154	NB	204
				SB	132	SB	174	SB	279
4	Becker Hill Road	258 Road	6,950	NB	231	NB	159	NB	209
				SB	136	SB	179	SB	287
5	258 Road	Mile 72 Frontage Road	7,230	NB	240	NB	165	NB	218
				SB	141	SB	187	SB	298
6	Mile 72 Frontage Road	Beatton River Airport Road	7,230	NB	240	NB	165	NB	218
				SB	141	SB	187	SB	298
7	Beatton River Airport Road	Mile 80 Frontage Road	6,510	NB	216	NB	149	NB	196
				SB	127	SB	168	SB	269
8	Mile 80 Frontage Road	Inga Lake Road	5,600	NB	186	NB	128	NB	169
				SB	110	SB	145	SB	231
9	Inga Lake Road	Wonowon	4,480	NB	149	NB	102	NB	135
				SB	88	SB	116	SB	185
10	Wonowon	Jedney Road	4,310	NB	143	NB	98	NB	130
				SB	84	SB	111	SB	178
11	Jedney Road	Mile 135 Road	4,920	NB	163	NB	112	NB	148
				SB	96	SB	127	SB	203
12	Mile 135 Road	Mile 141 Road	5,220	NB	173	NB	119	NB	157
				SB	102	SB	135	SB	215
13	Mile 141 Road	Cypress Creek Road	5,510	NB	183	NB	126	NB	166
				SB	108	SB	142	SB	228
14	Cypress Creek Road	Pink Mountain Road	5,640	NB	187	NB	129	NB	170
				SB	110	SB	145	SB	233
15	Pink Mountain Road	Sikanni River Bridge	1,860	NB	62	NB	42	NB	56
				SB	36	SB	48	SB	77
16	Sikanni River Bridge	Sikanni Chief Road	1,790	NB	59	NB	41	NB	54
				SB	35	SB	46	SB	74
17	Sikanni Chief Road	Buckinghorse River Bridge	1,930	NB	64	NB	44	NB	58
				SB	38	SB	50	SB	79

It is significant to note that the projected 2039 AADT for section 1 of the corridor (between Highway 29 and Stoddart Creek Road) is approximately 9,540 ; according to BC Provincial guidelines described in Auxiliary Lane Warrants for Two-Lane Highways, ADI Limited (May 1993), 4-laning is recommended when the AADT is 8,000 to 10,000 vehicles or design hour volumes are approximately 1,000 vehicles per hour. Passing lanes, which
are discussed in other sections of this report, are part of the progression of upgrading to a 4-lane section; expanding this section to 4 lanes is not recommended as part of this study.

The AADT for sections between Stoddart Creek and Pink Mountain Road are anticipated to increase to a range of 4,300 to 7,330 vehicles, and the northern most roadway sections are anticipated to near 2,000 vehicles per day.

7 Traffic Analysis

7.1 Intersection Level of Service Criteria

Traffic performance of roadway facilities are described in terms of Level of Service (LOS). LOS is a qualitative description of traffic flow based on factors such as speed, travel time, delay, and freedom to manoeuvre. Six service levels are defined ranging from LOS A, the best operating conditions, to LOS F, the worst operating conditions. LOS E corresponds to "at or near capacity" operations. When volumes exceed capacity, stop-andgo conditions result and operations are designated LOS F. Typical criteria for acceptable intersection operation is LOS D. Therefore, any intersection operating at LOS E or worse indicates a possible need for improvement. The Synchro software package was used to analyze intersection LOS at the study intersections.

7.1.1 Unsignalized Intersections

All 21 intersections in the study are unsignalized with side-street stop controls. For unsignalized (roundabout and side-street stop-controlled) intersections, the level of service calculations were conducted using the method in Chapter 19 of the 2010 Highway Capacity Manual. The LOS rating is based on the average control delay expressed in seconds per vehicle. For controlled approaches composed of a single lane, the control delay is computed as the average of all movements in that lane. Table 7 presents the LOS delay thresholds for unsignalized intersections.

Table 7 Intersection Level of Service and Delay Criteria

LOS	Delay Criteria (sec/veh)	
	Unsignalized	Description
A	<10	Represents free flow. Individual users are virtually unaffected by others in the traffic stream.
B	>10 and <15	Stable flow, but the presence of other users in the traffic stream begins to be noticeable. C>15 and <25
D	>25 and <35	Stable flow, but the operation of individual users becomes significantly affected by interactions with others in the traffic stream.
E	>35 and <50	Represents high-density, but stable flow.
F	>50	Represents operating conditions at or near the capacity level.

7.1.2 95th Percentile Queue Length

Synchro reports the queue lengths for signalized intersections. Because the study intersections are unsignalized, the $95^{\text {th }}$ percentile queues are not reported in the level of service tables below.

7.2 Existing 2014 Intersection Analysis Results

As stated previously, the study intersections were analyzed in detail using Synchro traffic analysis software. Summaries of LOS results are shown on Tables 8 through 10 for Existing (2014), AM, Mid-day and PM peak conditions. September 2014 traffic volumes were used for conservative analysis, as they are higher than the traffic volumes observed in January 2015. Detailed analysis reports can be found in Appendix D.

Because the study intersections are unsignalized and side-street-stop controlled only, LOS for minor movements are shown. All intersections operate at LOS D or better during the AM, Mid-day, and PM peak hours in 2014.

It should be noted that there is an existing inspection station on the southeast side of the Highway 97 / Highway 29 junction. Trucks approaching this station, particularly the southbound left turning movement, frequently delay traffic, contributing to a reduced level of service at this intersection.

Table 8 Year 2014 AM Peak Hour Intersection Operations

Location	Control ${ }^{1}$	AM Peak Hour					
		Minor Movement \#1			Minor Movement \#2		
		Direction	LOS	Delay ${ }^{2}$	Direction	LOS	Delay
Hwy 97 / Highway 29	SSSC	EB	B	11	WB	B	14
Hwy 97 / Stoddart Creek Rd	SSSC	WB	B	12	N/A	N/A	N/A
Hwy 97 / Red Creek Rd	SSSC	EB	A	9	N/A	N/A	N/A
Hwy 97 / Montney Highway	SSSC	WB	B	11	N/A	N/A	N/A
Hwy 97 / Becker Hill Rd	SSSC	WB	B	11	N/A	N/A	N/A
Hwy 97 / Lower Cache Rd	SSSC	EB	B	11	N/A	N/A	N/A
Hwy 97 / Beatton River Airport Rd	SSSC	WB	B	11	N/A	N/A	N/A
Hwy 97 / Wonowon Esso Access \#1	SSSC	EB	B	10	WB	B	10
Hwy 97 / Wonowon Esso Access \#2	SSSC	EB	B	11	WB	B	10
Hwy 97 / Wonowon Esso Access \#3	SSSC	EB	B	10	WB	B	10
Hwy 97 / Cypress Creek Rd	SSSC	EB	B	10	N/A	N/A	N/A
Hwy 97 / Pink Mountain Store Access \#1	SSSC	EB	B	10	WB	B	10
Hwy 97 / Pink Mountain Store Access \#2	SSSC	EB	B	10	WB	B	10
Hwy 97 / Pink Mountain Store Access \#3	SSSC	EB	B	10	N/A	N/A	N/A
Hwy 29 / Sasquatch Crossing Lodge Access \#1	SSSC	WB	B	10	N/A	N/A	N/A
Hwy 29 / Sasquatch Crossing Lodge Access \#2	SSSC	WB	A	9	N/A	N/A	N/A
Hwy 29 / Sasquatch Crossing Lodge Access \#3	SSSC	EB	A	9	WB	B	10
Hwy 29 / Sasquatch Crossing Lodge Access \#4	SSSC	N/A	N/A	N/A	N/A	N/A	N/A
Hwy 29 / Buckinghorse Camp and Lodge Access \#1	SSSC	EB	A	9	WB	B	10
Hwy 29 / Buckinghorse Camp and Lodge Access \#2	SSSC	WB	A	9	N/A	N/A	N/A
Hwy 29 / Buckinghorse Camp and Lodge Access \#3	SSSC	EB	A	9	N/A	N/A	N/A

Notes:

1. $\operatorname{SSSC}=$ side-street stop-controlled
2. Delay $=$ seconds/vehicle

Table 9 Year 2014 Mid-day Peak Hour Intersection Operations

Location	Control ${ }^{1}$	Mid-day Peak Hour					
		Minor Movement \#1			Minor Movement \#2		
		Direction	LOS	Delay ${ }^{2}$	Direction	LOS	Delay
Hwy 97 / Highway 29	SSSC	EB	B	10	WB	B	10
Hwy 97 / Stoddart Creek Rd	SSSC	WB	B	10	N/A	N/A	N/A
Hwy 97 / Red Creek Rd	SSSC	EB	B	10	N/A	N/A	N/A
Hwy 97 / Montney Highway	SSSC	WB	B	10	N/A	N/A	N/A
Hwy 97 / Becker Hill Rd	SSSC	WB	B	10	N/A	N/A	N/A
Hwy 97 / Lower Cache Rd	SSSC	EB	B	10	N/A	N/A	N/A
Hwy 97 / Beatton River Airport Rd	SSSC	WB	B	12	N/A	N/A	N/A
Hwy 97 / Wonowon Esso Access \#1	SSSC	EB	B	10	WB	B	11
Hwy 97 / Wonowon Esso Access \#2	SSSC	EB	B	11	WB	B	10
Hwy 97 / Wonowon Esso Access \#3	SSSC	EB	B	11	WB	B	10
Hwy 97 / Cypress Creek Rd	SSSC	EB	A	9	N/A	N/A	N/A
Hwy 97 / Pink Mountain Store Access \#1	SSSC	EB	B	10	WB	B	10
Hwy 97 / Pink Mountain Store Access \#2	SSSC	EB	A	9	WB	A	9
Hwy 97 / Pink Mountain Store Access \#3	SSSC	EB	A	9	N/A	N/A	N/A
Hwy 29 / Sasquatch Crossing Lodge Access \#1	SSSC	WB	B	10	N/A	N/A	N/A
Hwy 29 / Sasquatch Crossing Lodge Access \#2	SSSC	WB	A	9	N/A	N/A	N/A
Hwy 29 / Sasquatch Crossing Lodge Access \#3	SSSC	EB	B	10	WB	B	10
Hwy 29 / Sasquatch Crossing Lodge Access \#4	SSSC	WB	A	9	N/A	N/A	N/A
Hwy 29 / Buckinghorse Camp and Lodge Access \#1	SSSC	EB	A	9	WB	B	10
Hwy 29 / Buckinghorse Camp and Lodge Access \#2	SSSC	WB	A	9	N/A	N/A	N/A
Hwy 29 / Buckinghorse Camp and Lodge Access \#3	SSSC	EB	A	9	N/A	N/A	N/A

Notes:

1. SSSC $=$ side-street stop-controlled
2. Delay $=$ seconds/vehicle

Table 10 Year 2014 PM Peak Hour Intersection Operations

Location	Control ${ }^{1}$	PM Peak Hour					
		Minor Movement \#1			Minor Movement \#2		
		Direction	LOS	Delay ${ }^{2}$	Direction	LOS	Delay
Hwy 97 / Highway 29	SSSC	EB	B	15	WB	D	32
Hwy 97 / Stoddart Creek Rd	SSSC	WB	B	12	N/A	N/A	N/A
Hwy 97 / Red Creek Rd	SSSC	EB	B	10	N/A	N/A	N/A
Hwy 97 / Montney Highway	SSSC	WB	B	12	N/A	N/A	N/A
Hwy 97 / Becker Hill Rd	SSSC	WB	B	10	N/A	N/A	N/A
Hwy 97 / Lower Cache Rd	SSSC	EB	B	11	N/A	N/A	N/A
Hwy 97 / Beatton River Airport Rd	SSSC	WB	B	12	N/A	N/A	N/A
Hwy 97 / Wonowon Esso Access \#1	SSSC	EB	B	10	WB	B	11
Hwy 97 / Wonowon Esso Access \#2	SSSC	EB	B	12	WB	B	11
Hwy 97 / Wonowon Esso Access \#3	SSSC	EB	B	11	WB	B	11
Hwy 97 / Cypress Creek Rd	SSSC	EB	B	10	N/A	N/A	N/A
Hwy 97 / Pink Mountain Store Access \#1	SSSC	EB	A	9	WB	B	11
Hwy 97 / Pink Mountain Store Access \#2	SSSC	EB	B	11	WB	B	12
Hwy 97 / Pink Mountain Store Access \#3	SSSC	EB	B	11	N/A	N/A	N/A
Hwy 29 / Sasquatch Crossing Lodge Access \#1	SSSC	WB	B	11	N/A	N/A	N/A
Hwy 29 / Sasquatch Crossing Lodge Access \#2	SSSC	WB	B	10	N/A	N/A	N/A
Hwy 29 / Sasquatch Crossing Lodge Access \#3	SSSC	EB	B	10	WB	B	11
Hwy 29 / Sasquatch Crossing Lodge Access \#4	SSSC	WB	B	10	N/A	N/A	N/A
Hwy 29 / Buckinghorse Camp and Lodge Access \#1	SSSC	EB	A	9	WB	B	10
Hwy 29 / Buckinghorse Camp and Lodge Access \#2	SSSC	WB	A	9	N/A	N/A	N/A
Hwy 29 / Buckinghorse Camp and Lodge Access \#3	SSSC	EB	A	9	N/A	N/A	N/A

Notes:

1. $\operatorname{SSSC}=$ side-street stop-controlled
2. Delay $=$ seconds/vehicle

7.3 Year 2039 Intersection Analysis Results

The 2039 intersection traffic volumes were developed using a 3\% per year linear growth rate (for a total of 75% growth). Summaries of LOS results are shown on Tables 11 through 13 for the Future (2039) conditions. Future 2039 traffic volumes were developed using September 2014 traffic volumes. Detailed analysis reports can be found in Appendix D.

As shown in Tables 11 through 13, for the most part, the intersections operate at LOS D or better during the AM, Mid-day and PM peak hours, as they did under the existing conditions analysis. However, the intersection of Highway 97 and Highway 29 declines to LOS F westbound during the AM peak period and LOS F for both minor movements during the PM peak.

As mentioned above, the Fort St. John inspection station is located on the east side of the Highway 97 / Highway 29 junction, contributing to the poor level of service at this location. A separate study of inspection station operations was completed in September 2014. Future changes to the inspection station operations could change the level of service at this intersection.

Table 11 Year 2039 AM Peak Hour Intersection Operations

Location	Control ${ }^{1}$	AM Peak Hour					
		Minor Movement \#1			Minor Movement \#2		
		Direction	LOS	Delay ${ }^{2}$	Direction	LOS	Delay
Hwy 97 / Highway 29	SSSC	EB	C	16	WB	F	82
Hwy 97 / Stoddart Creek Rd	SSSC	WB	C	16	N/A	N/A	N/A
Hwy 97 / Red Creek Rd	SSSC	EB	B	10	N/A	N/A	N/A
Hwy 97 / Montney Highway	SSSC	WB	C	15	N/A	N/A	N/A
Hwy 97 / Becker Hill Rd	SSSC	WB	B	14	N/A	N/A	N/A
Hwy 97 / Lower Cache Rd	SSSC	EB	B	13	N/A	N/A	N/A
Hwy 97 / Beatton River Airport Rd	SSSC	WB	B	14	N/A	N/A	N/A
Hwy 97 / Wonowon Esso Access \#1	SSSC	EB	B	11	WB	B	12
Hwy 97 / Wonowon Esso Access \#2	SSSC	EB	B	13	WB	B	10
Hwy 97 / Wonowon Esso Access \#3	SSSC	EB	B	12	WB	B	11
Hwy 97 / Cypress Creek Rd	SSSC	EB	B	11	N/A	N/A	N/A
Hwy 97 / Pink Mountain Store Access \#1	SSSC	EB	B	12	WB	B	12
Hwy 97 / Pink Mountain Store Access \#2	SSSC	EB	B	11	WB	B	13
Hwy 97 / Pink Mountain Store Access \#3	SSSC	EB	B	11	N/A	N/A	N/A
Hwy 29 / Sasquatch Crossing Lodge Access \#1	SSSC	WB	B	12	N/A	N/A	N/A
Hwy 29 / Sasquatch Crossing Lodge Access \#2	SSSC	WB	B	10	N/A	N/A	N/A
Hwy 29 / Sasquatch Crossing Lodge Access \#3	SSSC	EB	B	10	WB	B	12
Hwy 29 / Sasquatch Crossing Lodge Access \#4	SSSC	N/A	N/A	N/A	N/A	N/A	N/A
Hwy 29 / Buckinghorse Camp and Lodge Access \#1	SSSC	EB	A	9	WB	B	11
Hwy 29 / Buckinghorse Camp and Lodge Access \#2	SSSC	WB	B	10	N/A	N/A	N/A
Hwy 29 / Buckinghorse Camp and Lodge Access \#3	SSSC	EB	A	9	N/A	N/A	N/A

Notes:

1. $\operatorname{SSSC}=$ side-street stop-controlled
2. Delay $=$ seconds/vehicle

Table 12 Year 2039 Mid-day Peak Hour Intersection Operations

Location	Control ${ }^{1}$	Mid-day Peak Hour					
		Minor Movement \#1			Minor Movement \#2		
		Direction	LOS	Delay ${ }^{2}$	Direction	LOS	Delay
Hwy 97 / Highway 29	SSSC	EB	B	13	WB	B	13
Hwy 97 / Stoddart Creek Rd	SSSC	WB	B	12	N/A	N/A	N/A
Hwy 97 / Red Creek Rd	SSSC	EB	B	11	N/A	N/A	N/A
Hwy 97 / Montney Highway	SSSC	WB	B	12	N/A	N/A	N/A
Hwy 97 / Becker Hill Rd	SSSC	WB	B	11	N/A	N/A	N/A
Hwy 97 / Lower Cache Rd	SSSC	EB	B	12	N/A	N/A	N/A
Hwy 97 / Beatton River Airport Rd	SSSC	WB	C	16	N/A	N/A	N/A
Hwy 97 / Wonowon Esso Access \#1	SSSC	EB	B	11	WB	B	13
Hwy 97 / Wonowon Esso Access \#2	SSSC	EB	B	13	WB	B	12
Hwy 97 / Wonowon Esso Access \#3	SSSC	EB	B	13	WB	B	12
Hwy 97 / Cypress Creek Rd	SSSC	EB	B	10	N/A	N/A	N/A
Hwy 97 / Pink Mountain Store Access \#1	SSSC	EB	B	10	WB	B	10
Hwy 97 / Pink Mountain Store Access \#2	SSSC	EB	B	10	WB	B	10
Hwy 97 / Pink Mountain Store Access \#3	SSSC	EB	B	10	N/A	N/A	N/A
Hwy 29 / Sasquatch Crossing Lodge Access \#1	SSSC	WB	B	11	N/A	N/A	N/A
Hwy 29 / Sasquatch Crossing Lodge Access \#2	SSSC	WB	B	10	N/A	N/A	N/A
Hwy 29 / Sasquatch Crossing Lodge Access \#3	SSSC	EB	B	10	WB	B	11
Hwy 29 / Sasquatch Crossing Lodge Access \#4	SSSC	WB	B	10	N/A	N/A	N/A
Hwy 29 / Buckinghorse Camp and Lodge Access \#1	SSSC	EB	B	10	WB	B	10
Hwy 29 / Buckinghorse Camp and Lodge Access \#2	SSSC	WB	B	10	N/A	N/A	N/A
Hwy 29 / Buckinghorse Camp and Lodge Access \#3	SSSC	EB	B	10	N/A	N/A	N/A

Notes:

1. SSSC $=$ side-street stop-controlled
2. Delay $=$ seconds/vehicle

Table 13 Year 2039 PM Peak Hour Intersection Operations

Location	Control ${ }^{1}$	PM Peak Hour					
		Minor Movement \#1			Minor Movement \#2		
		Direction	LOS	Delay ${ }^{2}$	Direction	LOS	Delay
Hwy 97 / Highway 29	SSSC	EB	F	61	WB	F	>80
Hwy 97 / Stoddart Creek Rd	SSSC	WB	C	16	N/A	N/A	N/A
Hwy 97 / Red Creek Rd	SSSC	EB	B	12	N/A	N/A	N/A
Hwy 97 / Montney Highway	SSSC	WB	C	17	N/A	N/A	N/A
Hwy 97 / Becker Hill Rd	SSSC	WB	B	11	N/A	N/A	N/A
Hwy 97 / Lower Cache Rd	SSSC	EB	B	14	N/A	N/A	N/A
Hwy 97 / Beatton River Airport Rd	SSSC	WB	C	18	N/A	N/A	N/A
Hwy 97 / Wonowon Esso Access \#1	SSSC	EB	B	12	WB	B	13
Hwy 97 / Wonowon Esso Access \#2	SSSC	EB	C	15	WB	B	13
Hwy 97 / Wonowon Esso Access \#3	SSSC	EB	B	14	WB	B	13
Hwy 97 / Cypress Creek Rd	SSSC	EB	B	11	N/A	N/A	N/A
Hwy 97 / Pink Mountain Store Access \#1	SSSC	EB	B	12	WB	B	13
Hwy 97 / Pink Mountain Store Access \#2	SSSC	EB	C	15	WB	C	16
Hwy 97 / Pink Mountain Store Access \#3	SSSC	EB	B	13	N/A	N/A	N/A
Hwy 29 / Sasquatch Crossing Lodge Access \#1	SSSC	WB	B	14	N/A	N/A	N/A
Hwy 29 / Sasquatch Crossing Lodge Access \#2	SSSC	WB	B	11	N/A	N/A	N/A
Hwy 29 / Sasquatch Crossing Lodge Access \#3	SSSC	EB	B	13	WB	C	15
Hwy 29 / Sasquatch Crossing Lodge Access \#4	SSSC	WB	B	11	N/A	N/A	N/A
Hwy 29 / Buckinghorse Camp and Lodge Access \#1	SSSC	EB	A	9	WB	B	11
Hwy 29 / Buckinghorse Camp and Lodge Access \#2	SSSC	WB	B	10	N/A	N/A	N/A
Hwy 29 / Buckinghorse Camp and Lodge Access \#3	SSSC	EB	A	9	N/A	N/A	N/A

Notes:
3. $\operatorname{SSSC}=$ side-street stop-controlled
4. Delay $=$ seconds/vehicle

7.4 Roadway Level of Service Analysis Criteria

The roadway sections were analyzed using Highway Capacity Manual (HCM) methodologies (2010). The operations of the 2-lane roadway are described in terms of Level of Service (LOS) and can be related to the "percentage following" (\%FOLL) and average travel speed, as shown in Table 14. The Highway Capacity Manual defines \%FOLL as the percentage of vehicles that are travelling in platoons at headways of less than 5 seconds. The information shown in Table 14 is the criteria for Class I Highways. According to HCM methodologies, Class I Highways are defined as two-lane highways that primarily serve intercity routes, daily commuter routes and/or are primary links in the provincial or federal network, on which motorists expect to travel at relatively high speeds.

HCM methodologies were used for analysis and used to determine the level of service based on average travel speed. MoTI uses a variation on HCM criteria for percent time spent following (\%FOLL) level of service; MoTI criteria was applied to the roadway analysis to determine level of service from percent time spent following (\%FOLL).

Table 14 HCM Roadway Level of Service Criteria

LOS	AverageTravel Speed $(\mathrm{km} / \mathrm{hr})^{1}$	\% FOLL ${ }^{2}$	Traffic Characteristics
A	> 90	$0 \leq \% F O L L<30$	- Highest quality of traffic service - Drivers at their desired speeds - Platooning is rare - Passing demand well below passing capacity (drivers have little difficulty passing)
B	> 80-90	$30 \leq \% F O L L \leq 45$	- Passing demand approximately equals passing capacity - No noticeable increase in platoon sizes - Relatively small speed reductions
C	> 70-80	$45<\% F O L L \leq 60$	- Most vehicles travel in platoons - Increased frequency of passing impediment - Passing demand exceeds passing capacity - Speeds are noticeably curtailed - Consider passing lanes
D	> 60-70	$60<\% F O L L \leq 75$	- Passing demand increases dramatically - High passing demand and passing capacity approaches zero - Mean platoon sizes of 5-10 - Fraction of passing zones has little influence on passing - Installation of passing lanes recommended
E	≤ 60	$75<\% F O L L<100$	- Demand is approaching capacity - Passing is virtually impossible - Platooning becomes intense - Speeds are seriously curtailed
F	Exists wheneve unstable and h	demand flow in one avy congestion exists.	oth directions exceeds the capacity of the segment. Operating conditions are

Notes:

1. Average travel speed LOS based on HCM criteria
2. \%FOLL based on MoTI criteria

As explained in Section 3.2, for the purpose of roadway operational analysis, the study corridor was divided into seventeen (17) roadway sections. Highway Capacity Software (HCS 2010) was used for the roadway analysis.
Detailed results of the HCS roadway analysis can be found in Appendix E.

7.5 Existing 2014 Roadway Level of Service

Tables 15 through 17 show the roadway LOS results for the analyzed sections along Highway 97 under Existing Conditions (2014); both the HCS roadway LOS for average travel speeds and the percent following (\%FOLL) LOS are shown. Results are shown graphically in Figures 6A, 6B, and 6C, following page 37. It should be noted that the AM peak commuter direction is northbound and the PM peak commuter direction is southbound.

Table 15 Existing (2014) AM Peak Hour Roadway Level of Service

Section \#	Southern Point	Northern Point	Section Length (km)	$\begin{aligned} & \text { Posted } \\ & \text { Speed } \\ & (\mathrm{km} / \mathrm{hr}) \end{aligned}$	AM Peak Hr			
					Travel Speed LOS		Percent Following (\%FOLL) LOS	
1	Highway 29	Stoddart Creek Road	7.8	100	NB	C	NB	(59\%) C
					SB	B	SB	(41\%) B
2	Stoddart Creek Road	Montney Highway	9.1	100	NB	C	NB	(55\%) C
					SB	B	SB	(35\%) B
3	Montney Highway	Becker Hill Road	3.4	100	NB	B	NB	(50\%) C
					SB	B	SB	(35\%) B
4	Becker Hill Road	258 Road	3.4	100	NB	C	NB	(55\%) C
					SB	A	SB	(34\%) B
5	258 Road	Mile 72 Frontage Road	5.2	100	NB	B	NB	(48\%) C
					SB	A	SB	(33\%) B
6	Mile 72 Frontage Road	Beatton River Airport Road	2.4	100	NB	C	NB	(55\%) C
					SB	B	SB	(38\%) B
7	Beatton River Airport Road	Mile 80 Frontage Road	9.6	100	NB	C	NB	(56\%) C
					SB	B	SB	(36\%) B
8	Mile 80 Frontage Road	Inga Lake Road	18.5	100	NB	B	NB	(50\%) C
					SB	A	SB	(31\%) B
9	Inga Lake Road	Wonowon	16	100	NB	B	NB	(47\%) C
					SB	A	SB	(28\%) A
10	Wonowon	Jedney Road	38.3	100	NB	B	NB	(49\%) C
					SB	A	SB	(29\%) A
11	Jedney Road	Mile 135 Road	14.3	100	NB	B	NB	(47\%) C
					SB	A	SB	(30\%) B
12	Mile 135 Road	Mile 141 Road	8.5	100	NB	C	NB	(52\%) C
					SB	A	SB	(32\%) B
13	Mile 141 Road	Cypress Creek Road	2.8	100	NB	C	NB	(53\%) C
					SB	B	SB	(35\%) B
14	Cypress Creek Road	Pink Mountain Road	6.8	100	NB	B	NB	(49\%) C
					SB	A	SB	(29\%) A
15	Pink Mountain Road	Sikanni River Bridge	23.6	100	NB	B	NB	(32\%) B
					SB	A	SB	(10\%) A
16	Sikanni River Bridge	Sikanni Chief Road	1.8	100	NB	A	NB	(19\%) A
					SB	A	SB	(24\%) A
17	Sikanni Chief Road	Buckinghorse River Bridge	22.1	100	NB	B	NB	(35\%) B
					SB	A	SB	(21\%) A

Table 16 Existing (2014) Mid-day Peak Hour Roadway Level of Service

Section \#	Southern Point	Northern Point	Section Length (km)	$\begin{aligned} & \text { Posted } \\ & \text { Speed } \\ & (\mathrm{km} / \mathrm{hr}) \end{aligned}$	Mid-Day Peak Hr			
					Travel Speed LOS		Percent Following (\%FOLL) LOS	
1	Highway 29	Stoddart Creek Road	7.8	100	NB	B	NB	(50\%) C
					SB	C	SB	(55\%) C
2	Stoddart Creek Road	Montney Highway	9.1	100	NB	B	NB	(46\%) C
					SB	B	SB	(48\%) C
3	Montney Highway	Becker Hill Road	3.4	100	NB	B	NB	(40\%) B
					SB	B	SB	(48\%) C
4	Becker Hill Road	258 Road	3.4	100	NB	B	NB	(45\%) B
					SB	B	SB	(46\%) C
5	258 Road	Mile 72 Frontage Road	5.2	100	NB	B	NB	(42\%) B
					SB	B	SB	(47\%) C
6	Mile 72 Frontage Road	Beatton River Airport Road	2.4	100	NB	C	NB	(51\%) C
					SB	C	SB	(57\%) C
7	Beatton River Airport Road	Mile 80 Frontage Road	9.6	100	NB	B	NB	(48\%) C
					SB	C	SB	(52\%) C
8	Mile 80 Frontage Road	Inga Lake Road	18.5	100	NB	B	NB	(41\%) B
					SB	B	SB	(46\%) C
9	Inga Lake Road	Wonowon	16	100	NB	B	NB	(38\%) B
					SB	B	SB	(44\%) B
10	Wonowon	Jedney Road	38.3	100	NB	B	NB	(37\%) B
					SB	B	SB	(41\%) B
11	Jedney Road	Mile 135 Road	14.3	100	NB	B	NB	(37\%) B
					SB	B	SB	(43\%) B
12	Mile 135 Road	Mile 141 Road	8.5	100	NB	B	NB	(40\%) B
					SB	B	SB	(45\%) B
13	Mile 141 Road	Cypress Creek Road	2.8	100	NB	B	NB	(40\%) B
					SB	B	SB	(45\%) B
14	Cypress Creek Road	Pink Mountain Road	6.8	100	NB	B	NB	(39\%) B
					SB	B	SB	(43\%) B
15	Pink Mountain Road	Sikanni River Bridge	23.6	100	NB	A	NB	(25\%) A
					SB	A	SB	(13\%) A
16	Sikanni River Bridge	Sikanni Chief Road	1.8	100	NB	A	NB	(14\%) A
					SB	A	SB	(34\%) B
17	Sikanni Chief Road	Buckinghorse River Bridge	22.1	100	NB	A	NB	(28\%) A
					SB	A	SB	(31\%) B

Table 17 Existing (2014) PM Peak Hour Roadway Level of Service

Section \#	Southern Point	Northern Point	Section Length (km)	Posted Speed (km/hr)	PM Peak Hr			
					Travel Speed LOS		Percent Following (\%FOLL) LOS	
1	Highway 29	Stoddart Creek Road	7.8	100	NB	C	NB	(52\%) C
					SB	C	SB	(64\%) D
2	Stoddart Creek Road	Montney Highway	9.1	100	NB	B	NB	(47\%) C
					SB	C	SB	(56\%) C
3	Montney Highway	Becker Hill Road	3.4	100	NB	B	NB	(43\%) B
					SB	C	SB	(56\%) C
4	Becker Hill Road	258 Road	3.4	100	NB	B	NB	(47\%) C
					SB	C	SB	(54\%) C
5	258 Road	Mile 72 Frontage Road	5.2	100	NB	B	NB	(44\%) B
					SB	C	SB	(54\%) C
6	Mile 72 Frontage Road	Beatton River Airport Road	2.4	100	NB	B	NB	(49\%) C
					SB	C	SB	(60\%) C
7	Beatton River Airport Road	Mile 80 Frontage Road	9.6	100	NB	B	NB	(47\%) C
					SB	C	SB	(59\%) C
8	Mile 80 Frontage Road	Inga Lake Road	18.5	100	NB	B	NB	(42\%) B
					SB	C	SB	(55\%) C
9	Inga Lake Road	Wonowon	16	100	NB	B	NB	(40\%) B
					SB	B	SB	(52\%) C
10	Wonowon	Jedney Road	38.3	100	NB	B	NB	(39\%) B
					SB	C	SB	(51\%) C
11	Jedney Road	Mile 135 Road	14.3	100	NB	B	NB	(39\%) B
					SB	C	SB	(52\%) C
12	Mile 135 Road	Mile 141 Road	8.5	100	NB	B	NB	(43\%) B
					SB	C	SB	(55\%) C
13	Mile 141 Road	Cypress Creek Road	2.8	100	NB	B	NB	(43\%) B
					SB	C	SB	(54\%) C
14	Cypress Creek Road	Pink Mountain Road	6.8	100	NB	B	NB	(40\%) B
					SB	C	SB	(52\%) C
15	Pink Mountain Road	Sikanni River Bridge	23.6	100	NB	A	NB	(24\%) A
					SB	A	SB	(17\%) A
16	Sikanni River Bridge	Sikanni Chief Road	1.8	100	NB	A	NB	(15\%) A
					SB	B	SB	(40\%) B
17	Sikanni Chief Road	Buckinghorse River Bridge	22.1	100	NB	A	NB	(25\%) A
					SB	A	SB	(34\%) B

As can be seen in Tables 15 through 17, all sections in the study area are performing at LOS C or better during AM, Mid-day and PM peak periods, northbound and southbound, in terms of both Average Travel Speed and Percent Time Spent Following criteria, except for Section 1 southbound, which is operating at LOS D, based on \%FOLL, during the PM peak hour. This section is performing at the lowest level of service under existing conditions.

Existing conditions analysis includes only the existing passing lanes near the Sikanni River Bridge. The planned passing lane at Mile 63 / Evergreen Road, northbound, was analyzed for future conditions (2039) only.

Based on the description of LOS C in Table 14, sections performing at LOS C may be candidates for passing lanes, especially those nearing 60% time spent following, because vehicles are frequently traveling in platoons
and passing demand reaches or exceeds passing capacity. Some other considerations are the curvature and grade of the roadway through that section, the number of passing opportunities along the section, and proximity to other passing lanes. Sections identified as potential locations for passing lanes, and the criteria used to make this determination, are discussed later in this report.

7.6 Future 2039 Roadway Level of Service

The Future (2039) roadway LOS (HCM roadway LOS and percent time spent following LOS) were calculated and are summarized in Tables 18 through 20. Results are shown graphically in Figures 7A, 7B, and 7C, following page 44. It should be noted that 2039 analysis for Section 2 included the planned northbound passing lane at Mile 63 / Evergreen Road (LKI 1180, 27.46 to 29.46).

Table 18 Future (2039) AM Peak Hour Roadway Level of Service

Section \#	Southern Point	Northern Point	Section Length (km)	$\begin{aligned} & \text { Posted } \\ & \text { Speed } \\ & (\mathrm{km} / \mathrm{hr}) \end{aligned}$	AM Peak Hr			
					Travel Speed LOS		Percent Following (\%FOLL) LOS	
1	Highway 29	Stoddart Creek Road	7.8	100	NB	D	NB	(68\%) D
					SB	C	SB	(51\%) C
2	Stoddart Creek Road	Montney Highway	9.1	100	NB	C	NB	(60\%) C
					SB	B	SB	(47\%) C
3	Montney Highway	Becker Hill Road	3.4	100	NB	C	NB	(61\%) D
					SB	B	SB	(46\%) C
4	Becker Hill Road	258 Road	3.4	100	NB	D	NB	(66\%) D
					SB	B	SB	(46\%) C
5	258 Road	Mile 72 Frontage Road	5.2	100	NB	C	NB	(60\%) C
					SB	B	SB	(44\%) B
6	Mile 72 Frontage Road	Beatton River Airport Road	2.4	100	NB	D	NB	(66\%) D
					SB	B	SB	(48\%) C
7	Beatton River Airport Road	Mile 80 Frontage Road	9.6	100	NB	D	NB	(65\%) D
					SB	B	SB	(47\%) C
8	Mile 80 Frontage Road	Inga Lake Road	18.5	100	NB	C	NB	(59\%) C
					SB	B	SB	(42\%) B
9	Inga Lake Road	Wonowon	16	100	NB	C	NB	(56\%) C
					SB	B	SB	(38\%) B
10	Wonowon	Jedney Road	38.3	100	NB	C	NB	(58\%) C
					SB	B	SB	(39\%) B
11	Jedney Road	Mile 135 Road	14.3	100	NB	C	NB	(57\%) C
					SB	B	SB	(39\%) B
12	Mile 135 Road	Mile 141 Road	8.5	100	NB	C	NB	(61\%) D
					SB	B	SB	(43\%) B
13	Mile 141 Road	Cypress Creek Road	2.8	100	NB	C	NB	(64\%) D
					SB	B	SB	(46\%) C
14	Cypress Creek Road	Pink Mountain Road	6.8	100	NB	C	NB	(58\%) C
					SB	B	SB	(40\%) B
15	Pink Mountain Road	Sikanni River Bridge	23.6	100	NB	B	NB	(38\%) B
					SB	A	SB	(13\%) A
16	Sikanni River Bridge	Sikanni Chief Road	1.8	100	NB	A	NB	(24\%) A
					SB	A	SB	(27\%) A
17	Sikanni Chief Road	Buckinghorse River Bridge	22.1	100	NB	B	NB	(41\%) B
					SB	A	SB	(25\%) A

As can be seen in Table 18, there are 7 sections (sections 1, 3, 4, 6, 7, 12 and 13) anticipated to operate at LOS D, based on average travel speed and/or percent time spent following, during the AM peak hour in 2039. All of these sections are LOS D in the northbound direction. The southbound direction of these 7 sections and remaining 10 sections, northbound and southbound, are anticipated to operate at LOS C or better.

Table 19 Future (2039) Mid-day Peak Hour Roadway Level of Service

Section \#	Southern Point	Northern Point	Section Length (km)	Posted Speed (km/hr)	Mid-Day Peak Hr			
					Travel Speed LOS		Percent Following (\%FOLL) LOS	
1	Highway 29	Stoddart Creek Road	7.8	100	NB	C	NB	(59\%) C
					SB	C	SB	(64\%) D
2	Stoddart Creek Road	Montney Highway	9.1	100	NB	C	NB	(50\%) C
					SB	C	SB	(59\%) C
3	Montney Highway	Becker Hill Road	3.4	100	NB	C	NB	(52\%) C
					SB	C	SB	(59\%) C
4	Becker Hill Road	258 Road	3.4	100	NB	C	NB	(55\%) C
					SB	C	SB	(58\%) C
5	258 Road	Mile 72 Frontage Road	5.2	100	NB	C	NB	(54\%) C
					SB	C	SB	(58\%) C
6	Mile 72 Frontage Road	Beatton River Airport Road	2.4	100	NB	C	NB	(59\%) C
					SB	C	SB	(65\%) D
7	Beatton River Airport Road	Mile 80 Frontage Road	9.6	100	NB	C	NB	(58\%) C
					SB	C	SB	(62\%) D
8	Mile 80 Frontage Road	Inga Lake Road	18.5	100	NB	C	NB	(53\%) C
					SB	C	SB	(57\%) C
9	Inga Lake Road	Wonowon	16	100	NB	B	NB	(49\%) C
					SB	C	SB	(54\%) C
10	Wonowon	Jedney Road	38.3	100	NB	B	NB	(48\%) C
					SB	C	SB	(53\%) C
11	Jedney Road	Mile 135 Road	14.3	100	NB	B	NB	(48\%) C
					SB	C	SB	(53\%) C
12	Mile 135 Road	Mile 141 Road	8.5	100	NB	C	NB	(52\%) C
					SB	C	SB	(56\%) C
13	Mile 141 Road	Cypress Creek Road	2.8	100	NB	C	NB	(52\%) C
					SB	C	SB	(56\%) C
14	Cypress Creek Road	Pink Mountain Road	6.8	100	NB	B	NB	(50\%) C
					SB	C	SB	(54\%) C
15	Pink Mountain Road	Sikanni River Bridge	23.6	100	NB	A	NB	(33\%) B
					SB	A	SB	(18\%) A
16	Sikanni River Bridge	Sikanni Chief Road	1.8	100	NB	A	NB	(18\%) A
					SB	B	SB	(39\%) B
17	Sikanni Chief Road	Buckinghorse River Bridge	22.1	100	NB	A	NB	(32\%) B
					SB	B	SB	(36\%) B

Table 19 shows that during the Mid-day peak hour, 3 sections (sections 1, 6 and 7) are expected to degrade to LOS D in the southbound direction by 2039. The northbound direction of these 3 sections and the remaining 14 sections, northbound and southbound, are expected to operate at LOS C or better.

Table 20 Future (2039) PM Peak Hour Roadway Level of Service

Section \#	Southern Point	Northern Point	Section Length (km)	Posted Speed (km/hr)	PM Peak Hr			
					$\begin{gathered} \text { Travel Speed } \\ \text { LOS } \end{gathered}$		Percent Following (\%FOLL) LOS	
1	Highway29	Stoddart Creek Road	7.8	100	NB	C	NB	(61\%) D
					SB	D	SB	(70\%) D
2	Stoddart Creek Road	Montney Highway	9.1	100	NB	C	NB	(50\%) C
					SB	D	SB	(65\%) D
3	Montney Highway	Becker Hill Road	3.4	100	NB	C	NB	(53\%) C
					SB	D	SB	(65\%) D
4	Becker Hill Road	258 Road	3.4	100	NB	C	NB	(55\%) C
					SB	C	SB	(65\%) D
5	258 Road	Mile 72 Frontage Road	5.2	100	NB	C	NB	(56\%) C
					SB	C	SB	(64\%) D
6	Mile 72 Frontage Road	Beatton River Airport Road	2.4	100	NB	C	NB	(57\%) C
					SB	D	SB	(69\%) D
7	Beatton River Airport Road	Mile 80 Frontage Road	9.6	100	NB	C	NB	(56\%) C
					SB	D	SB	(68\%) D
8	Mile 80 Frontage Road	Inga Lake Road	18.5	100	NB	C	NB	(54\%) C
					SB	C	SB	(64\%) D
9	Inga Lake Road	Wonowon	16	100	NB	C	NB	(51\%) C
					SB	C	SB	(62\%) D
10	Wonowon	Jedney Road	38.3	100	NB	C	NB	(50\%) C
					SB	C	SB	(60\%) C
11	Jedney Road	Mile 135 Road	14.3	100	NB	C	NB	(51\%) C
					SB	C	SB	(62\%) D
12	Mile 135 Road	Mile 141 Road	8.5	100	NB	C	NB	(54\%) C
					SB	C	SB	(65\%) D
13	Mile 141 Road	Cypress Creek Road	2.8	100	NB	C	NB	(53\%) C
					SB	C	SB	(64\%) D
14	Cypress Creek Road	Pink Mountain Road	6.8	100	NB	C	NB	(51\%) C
					SB	C	SB	(62\%) D
15	Pink Mountain Road	Sikanni River Bridge	23.6	100	NB	A	NB	(29\%) A
					SB	A	SB	(24\%) A
16	Sikanni River Bridge	Sikanni Chief Road	1.8	100	NB	A	NB	(20\%) A
					SB	B	SB	(46\%) C
17	Sikanni Chief Road	Buckinghorse River Bridge	22.1	100	NB	A	NB	(31\%) B
					SB	B	SB	(41\%) B

Table 20 summarizes that 13 of the 17 roadway sections will operate at LOS D in the future, southbound, during the PM peak hour. Only section 1 will also operate at LOS D in the northbound direction. The northern most sections (15 through 17) are anticipated to operate at an acceptable level of service in 2039. Section 10 is the only other section expected to operate at LOS C or better in both directions; however, the southbound direction is estimate to have 60% time spent following, which is the maximum percent time spent following acceptable within the LOS C threshold.

In 2039, 13 roadway sections are anticipated to degrade to LOS D for north- and/or southbound, during the AM, Mid-day and/or PM peak hours, based on average travel speed and/or percent time spent following. These sections are further highlighted in Table 21.

Table 21 Roadway Sections Operating at LOS D in 2039

Section \#	Southern Point	Northern Point	Peak Hour	Direction
1	Highway 29	Stoddart Creek Road	AM Mid-Day PM	$\begin{aligned} & \hline \text { NB } \\ & \text { SB } \\ & \text { NB, SB }{ }^{1} \end{aligned}$
2	Stoddart Creek Road	Montney Highway	PM	SB
3	Montney Highway	Becker Hill Road	AM	NB
			PM	SB
4	Becker Hill Road	258 Road	AM	NB
			PM	SB
5	258 Road	Mile 72 Frontage Road	PM	SB
6	Mile 72 Frontage Road	Beatton River Airport Road	AM	NB
			Mid-Day	SB
			PM	SB
7	Beatton River Airport Road	Mile 80 Frontage Road	AM	NB
			Mid-Day	SB
			PM	SB
8	Mile 80 Frontage Road	Inga Lake Road	PM	SB
9	Inga Lake Road	Wonowon	PM	SB
11	Jedney Road	Mile 135 Road	PM	SB
12	Mile 135 Road	Mile 141 Road	AM	NB
			PM	SB
13	Mile 141 Road	Cypress Creek Road	AM	NB
			PM	SB
14	Cypress Creek Road	Pink Mountain Road	PM	SB

Notes:

1. Section 1 SB operates at LOS D during the PM peak hour under Existing Conditions (2014).

The analysis results and the data in Table 21 show that there is a distinct peak hour direction along the corridor. Seven (7) sections operate at LOS D during the AM peak hour, all in the northbound direction. Three (3) sections operates at LOS D during the Mid-day peak hour, all in the southbound direction, and 13 sections operate at LOS D in the PM peak hour, all southbound, except Section 1, which operates at LOS D in both directions during the PM peak hour.

As previously mentioned, sections performing at LOS C may also be candidates for passing lanes, based on level of service and other criteria; however, the priority is to determine if passing lanes would improve sections that are anticipated to degrade to LOS D in the future.

7.7 Passing Lane Opportunities

There are currently only 2 passing lanes (1 northbound and 1 southbound at Sikanni River Bridge) over the entirety of the 200 km study corridor. MoTI has announced the addition of a northbound passing lane at Mile 63 Road / Evergreen Road, to be constructed in 2015. Section 7.7.1, below, describes guidelines for determining when and where new passing lanes would be beneficial and discusses recommended passing lane locations based on these guidelines and analysis results. Section 7.7.2 provides level of service analysis of these potential passing lanes.

7.7.1 Potential Passing Lanes

Passing Lane Guidelines

MoTI passing zone length guidelines state that at posted speeds of $100 \mathrm{~km} / \mathrm{h}$, more than 400 m of passing zone length (dashed yellow line) is recommended. It is important to note that the passing lengths less than 400 m may have met the current standards at the time of installation. However, based on the recommendation of 400 m , all three study LKI segments appear to have passing length deficiencies ranging from 22% of passing opportunities for LKI Segment 1183, northbound, to 48\% of passing opportunities along LKI Segment 1180 (9.96 to 59.60), northbound.

According to BC MoTI, Supplement to TAC Geometric Design Guide (July 2014), Section 930, passing lanes should be considered when the following occur:

- long stretch of roadway with no-passing opportunities
- circuitous alignment in rolling or mountainous terrain
- sparse local roadway network, forcing all traffic onto the highway
- high percentage of long distance, high speed trips, mixed with slow moving vehicle
- significant percentage of slow moving vehicles (i.e. heavy vehicles) generating platoons
- traffic volume high enough to restrict passing, but too low to warrant expansion to 4 lanes (AADT 8,000-10,000)
Based on these criteria, there are many locations along the corridor that would qualify for passing lanes.
Ideally, passing lanes would be approximately 2 km in length. The lanes should allow for at least 30 seconds of passing opportunity to disperse 4 to 6 vehicles. As a guideline, vehicles should have either a passing zone or passing lane or slow moving vehicle pullout every 10 minutes at $100 \mathrm{~km} / \mathrm{h}$ (approximately 16.7 km) to avoid driver risk-taking in no-passing zones. Passing lane frequency is dependent on:
- passing lane length
- traffic volumes
- traffic composition
- downstream passing opportunities

Table 930.A in BC MoTI, Supplement to TAC Geometric Design Guide (July 2014) shows passing lane spacing guidelines based on AADT. For Highway 97, the recommended spacing is:

- AADT 1,001 to $3,000=9.6 \mathrm{~km}$
- AADT 3,001 to $5,000=8 \mathrm{~km}$
- AADT 5,001 to $7,000=6.4 \mathrm{~km}$
- AADT 7,001 to $9,000=4.4 \mathrm{~km}$

McEIhanney

It should be noted that the above spacing is a guideline if/when a passing lane is warranted, based on operations and safety analysis, and is not a warrant in itself or a design guideline. The combination of limited passing opportunities, passing lengths less than the 400 m minimum (recommended by MoTl for $100 \mathrm{~km} / \mathrm{h}$ speed zones), and minimal passing lanes or pullouts leads to platoons, frustrated drivers, and risky driver behaviour. All of this reduces safety along the corridor.

Potential Passing Lane Locations

The above identifies guidelines for determining if passing lanes should be considered for stretches of two-lane highways. Based on the MoTI TAC guidelines, traffic operations analysis, and observations, there are a number of locations along the corridor that are good candidates for the addition of passing lanes. Some of these areas were previously identified by MoTI with input from stakeholders, while others were identified through this study. Many of these areas coincide with the roadway sections expected to operate at LOS D in the future; however, the selection is also based on terrain, observed platoons, passing opportunities in the area (or lack thereof), and AADT. Table 22 identifies potential passing lane locations, as determined by MoTI and/or this study.

Table 22 Potential Passing Lane Locations

Location	Segment and Approximate LKI	Approximate Section 2014 AADT (Total)	Total NoPassing in PL Direction (km)	Total \# of Accesses (NB and SB)	Distance from Closest Potential Passing Lane (km)	HCS Section \#
Northbound Passing Lane Opportunities						
248 Road	$\begin{aligned} & \text { 1180, } \\ & \text { 17.6-19.6 } \end{aligned}$	5,450	1.74	8	7.8 (south)	1
Evergreen Road	$\begin{aligned} & 1180, \\ & 27.3-29.5 \end{aligned}$	Announced by MoTI				2
*Becker Hill Road	$\begin{aligned} & 1180, \\ & 33.8-35.2 \end{aligned}$	3,970	1.37	3	4.3	4
*South of Beatton River Airport Road	$\begin{aligned} & 1180, \\ & 41.5-43.9 \end{aligned}$	4,130	1.27	8	6.4	6
North of Beatton River Airport Road	$\begin{aligned} & 1180, \\ & 45.5-48.3 \end{aligned}$	3,720	1.56	5	1.6	7
South of Aitken Creek Road	$\begin{aligned} & 1180, \\ & 55-57.5 \end{aligned}$	3,800	1.94	4	6.7	8
South of Inga Lake Road	$\begin{aligned} & 1180, \\ & 68.5-70.5 \end{aligned}$	3,200	0.99	1	11	8
South of Tommy Lakes Road	$\begin{aligned} & \text { 1183, } \\ & \text { 19-21.2 } \end{aligned}$	2,500	1.47	3	36.4	10
South of Gundy Road	$\begin{aligned} & 1183 \\ & 28-30.4 \end{aligned}$	2,460	1.28	4	6.8	10
South of Jedney Road	$\begin{aligned} & \text { 1183, } \\ & 35.8-38.3 \end{aligned}$	2,460	2.19	5	5.5	10
Southbound Passing Lane Opportunities						
*South of Stoddart Creek Road	$\begin{aligned} & 1180, \\ & 20-17.5 \end{aligned}$	5,450	2	13	13.6 (from Lower Cache Rd)	1
South of Lower Cache Road	$\begin{aligned} & 1180, \\ & 35.6-33.6 \end{aligned}$	3,970	1.3	6	13.6	4
North of Beatton River Airport Road	$\begin{aligned} & \text { 1180, } \\ & 51.2-48.7 \end{aligned}$	3,720	2.07	3	13.1	7
South of Aitken Creek Road	$\begin{aligned} & 1180, \\ & 56.4-54.5 \end{aligned}$	3,800	1.61	3	3.3	8
South of Inga Lake Road	$\begin{aligned} & 1180, \\ & 71.2-69.2 \end{aligned}$	3,200	1.47	2	12.8	8
North of Upper Halfway Road	$\begin{aligned} & 1180, \\ & 82.2-80.2 \end{aligned}$	2,560	1.26	1	9	9
North of 109 Road	$\begin{aligned} & \text { 1183, } \\ & \text { 14.9-12.9 } \end{aligned}$	2,560	1.22	0	18.6	10
North of Jedney Road	$\begin{aligned} & 1183, \\ & 40.5-38.5 \end{aligned}$	2,460	2	2	23.6	11
North of 135 Road	$\begin{aligned} & 1183, \\ & 55-52.6 \end{aligned}$	2,980	1.63	3	12.1	12
North of 138 Road	$\begin{aligned} & 1183, \\ & 57.5-55 \end{aligned}$	2,980	1.76	5	Adjacent	12

*Identified by MoTI

The addition of any of the passing lanes identified in Table 22 could improve traffic operations along the corridor. However, not all of these passing lanes are necessary or would be advised because the distance between passing lanes should be determined based on AADT, other adjacent passing opportunities, and other potential conflicts in the area (i.e. the number of roadway accesses in the vicinity). Based on analysis results
and design standards, Sections 10.1.1 and 10.2.1 recommend specific passing lanes to create a cohesive passing lane system through the corridor.

It is important to note that the passing lane locations are approximations and subject to other factors, including, but not limited to, geotechnical considerations, topography constraints, and costs. The precise locations will be determined during the detailed design phase of implementation.

7.7.2 Potential Passing Lane Operations

The roadway sections with potential passing lanes were analyzed with the addition of passing lanes for future (2039) conditions. It should be noted that while not all of the roadway sections operating at LOS C or D were evaluated with the addition of passing lanes, for various reasons, this does not mean that the addition of a passing lane would not improve operations at adjacent segments. HCS 2010 software does not have the capability to demonstrate how a roadway section with a passing lane might improve an adjacent section that does not have a passing lane. HCS also does not have the capability to analyze multiple passing lanes within a single roadway section; for this reason, where more than one passing lane is proposed within a single study section, this section was analyzed separately with the addition of each proposed passing lane.

Tables 23 and 24 show the results of the roadway operations analysis with the addition of a passing lane. The LOS result with the addition of the passing lane is highlighted in BLUE. The northbound direction was analyzed for both AM and PM peak hours because northbound has the highest directional volume during the AM peak hour, but the overall volumes are higher in the PM peak hour. Only PM peak hour was evaluated for the southbound direction because the PM peak has the highest volumes in this direction and overall. In all cases, a 2 km passing lane was used for analysis purposes. Detailed analysis results can be found in Appendix F.

Table 23 AM Peak Hour Future (2039) Roadway LOS for Potential Passing Lane Locations

Section \#	Southern Point	Northern Point	Section Length (km)	Passing Lane Approx. Location	AM Peak Hr			
					Travel Speed LOS		Percent Following (\%FOLL) LOS	
					Direction	Without PL	Direction	Without PL
						With PL		With PL
1	Highway 29	Stoddart Creek Road	7.8	$\begin{aligned} & 1180, \\ & 17.6-19.6 \end{aligned}$	NB	$\begin{aligned} & \mathrm{D} \\ & \mathrm{C} \end{aligned}$	NB	$\begin{aligned} & (68 \%) D \\ & (59 \%) C \end{aligned}$
4	Becker Hill Road	258 Road	3.4	$\begin{aligned} & 1180, \\ & 33.8-35.2 \end{aligned}$	NB	D	NB	(66\%) D
						B		(47\%) C
6	Mile 72 Frontage Road	Beatton River Airport Road	2.4	$\begin{aligned} & 1180, \\ & 41.5-43.9 \end{aligned}$	NB	$\begin{aligned} & \text { D } \\ & \text { B } \end{aligned}$	NB	$\begin{aligned} & (66 \%) ~ D \\ & (40 \%) B \end{aligned}$
7	Beatton River Airport Road	Mile 80 Frontage Road	9.6	$\begin{aligned} & 1180, \\ & 45.5-48.3 \end{aligned}$	NB	D	NB	(65\%) D
						B		(46\%) C
$8^{\text {a }}$	Mile 80 Frontage Road	Inga Lake Road	18.5	$\begin{aligned} & 1180 \\ & 55-57.5 \end{aligned}$	NB	C	NB	(59\%) C
						B		(45\%) B
$8^{\text {b }}$	Mile 80 Frontage Road	Inga Lake Road	18.5	$\begin{aligned} & 1180, \\ & 68.5-70.5 \end{aligned}$	NB	C	NB	(59\%) C
						C		(55\%) C
10°	Wonowon	Jedney Road	38.3	1183,	NB	C	NB	(58\%) C
				19-21.2	NB	C	NB	(55\%) C
$10^{\text {d }}$	Wonowon	Jedney Road	38.3	$\begin{aligned} & 1183, \\ & 28-30.4 \end{aligned}$	NB	C	NB	(58\%) C
						B		(43\%) B
10^{e}	Wonowon	Jedney Road	38.3	$\begin{aligned} & 1183, \\ & 35.8-38.3 \end{aligned}$	NB	C	NB	(58\%) C
						C		(51\%) C

Notes:
RED text denotes LOS D or worse
BLUE text denotes analysis result with addition of a passing lane
a. Addition of Aitken Creek Road NB passing lane
b. Addition of Inga Lake Road NB passing lane
c. Addition of Tommy Lakes Road NB passing lane
d. Addition of Gundy Road NB passing lane
e. Addition of Jedney Road NB passing lane

Table 24 PM Peak Hour Future (2039) Roadway LOS for Potential Passing Lane Locations

Section \#	Southern Point	Northern Point	Segment Length (km)	Passing Lane Approx. Location	PM Peak Hr			
					Travel Speed LOS		Percent Following (\%FOLL) LOS	
						Without PL		Without PL
					Direction	With PL	Direction	With PL
Northbound Potential Passing Lanes								
1	Highway 29	Stoddart Creek Road	7.8	1180,	NB	C	NB	(61\%) D
				17.6-19.6		B		(52\%) C
4	Becker Hill Road	258 Road	3.4	$\begin{aligned} & 1180, \\ & 33.8-35.2 \end{aligned}$	NB	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	NB	$\begin{aligned} & \text { (55\%) C } \\ & (39 \%) \text { B } \end{aligned}$
6	Mile 72 Frontage Road	Beatton River Airport Road	2.4	1180,	NB	C	NB	(58\%) C
				41.5-43.9		A		(35\%) B
7	Beatton River Airport Road	Mile 80 Frontage Road	9.6	$\begin{aligned} & 1180, \\ & 45.5-48.3 \end{aligned}$	NB	$\begin{aligned} & \text { C } \\ & \text { A } \end{aligned}$	NB	$\begin{aligned} & (56 \%) \text { C } \\ & (39 \%) \text { B } \end{aligned}$
$8^{\text {a }}$	Mile 80 Frontage Road	Inga Lake Road	18.5	1180,	NB	C	NB	(54\%) C
				55-57.5		B		(40\%) B
$8^{\text {b }}$	Mile 80 Frontage Road	Inga Lake Road	18.5	$\begin{aligned} & 1180, \\ & 68.5-70.5 \end{aligned}$	NB	$\begin{aligned} & \text { C } \\ & \text { B } \end{aligned}$	NB	$\begin{aligned} & \text { (54\%) C } \\ & (50 \%) \text { C } \end{aligned}$
10°	Wonowon	Jedney Road	38.3	1183,	NB	C	NB	(50\%) C
				19-21.2		B		(48\%) C
$10^{\text {d }}$	Wonowon	Jedney Road	38.3	1183,	NB	C	NB	(50\%) C
				28-30.4		B		(38\%) B
$10^{\text {e }}$	Wonowon	Jedney Road	38.3	1183,	NB	C	NB	(50\%) C
				35.8-38.3		B		(45\%) B
Southbound Potential Passing Lanes								
1	Highway 29	Stoddart Creek Road	7.8	1180,	SB	D	SB	(70\%) D
				20-17.5		C		(60\%) C
4	Becker Hill Road	258 Road	3.4	1180,	SB	C	SB	(65\%) D
				35.6-33.6	SB	B	SB	(45\%) B
7	Beatton River Airport Road	Mile 80 Frontage Road	9.6	1180,	SB	D	SB	(67\%) D
				51.2-48.7	SB	C		(55\%) C
8^{f}	Mile 80 Frontage Road	Inga Lake Road	18.5	1180,	SB	C	SB	(64\%) D
				56.4-54.5	SB	C	SB	(60\%) C
8^{9}	Mile 80 Frontage Road	Inga Lake Road	18.5	1180,	SB	C	SB	(64\%) D
				71.2-69.2	SB	C		(51\%) C
9	Inga Lake Road	Wonowon	16.0	1180,	SB	C	SB	(62\%) D
				82.2-80.2	SB	B	SB	(50\%) C
10	Wonowon	Jedney Road	38.3	1183,	SB	C	SB	(60\%) C
				14.9-12.9		B		(48\%) C
11	Jedney Road	Mile 135 Road	14.3	1183,	SB	C	SB	(62\%) D
				40.5-38.5	SB	C	SB	(58\%) C
12^{h}	Mile 135 Road	Mile 141 Road	8.5	1183,	SB	C	SB	(65\%) D
				55-52.6	SB	B	SB	(43\%) B
12^{i}	Mile 135 Road	Mile 141 Road	8.5	1183.		C	SB	(65\%) D
				$57.5-55$	SB	B		(48\%) C

Notes:

RED text denotes LOS D or worse
BLUE text denotes analysis result with addition of a passing lane
a. Addition of Aitken Creek Road NB passing
lane
b. Addition of Inga Lake Road NB passing
lane
c. Addition of Gundy Road NB passing lane
d. Addition of Tommy Lakes Road NB passing lane

McElhanney

As can be seen in Tables 23 and 24, the addition of passing lanes improves roadway operations in terms of both average travel speeds and percent time spent following. Where the LOS is D without the passing lane, it improves to LOS C or B, and where the LOS is C prior to the addition of a passing lane, it improves to LOS C with higher average travel speeds and lower percentage of time spent following or LOS B.

As previously mentioned, installing all of the above passing lanes is not recommended. The spacing of passing lanes should be determined by the AADT and distance from adjacent passing lanes. Based on the Existing (2014) AADT of these sections, a spacing of a minimum of 8 km is suggested; however, the projected AADT for the Future (2039) for these sections could reduce the spacing between lanes to 4.4 to 6.4 km apart, in some cases.

In conjunction with spacing of passing lanes in the same direction, it is generally desirable to stagger opposing direction passing lanes to avoid the impression of a 4-lane highway. Some overlap is acceptable, but where possible, it is best to place opposing lanes tail to tail (diverge to diverge). The guidelines for a system of passing lanes is described in section 930.06 of the BC MoTI Supplement to TAC Geometric Design Guide (July 2014). It should be noted that these are specifically spacing recommendations and not passing lane warrants or design guidelines.

8 Safety Analysis

8.1 Collision Data

Collision data representing a 5-year period from January 2009 to December 2013 was extracted from MoTl's CIS (Collision Information System) database. The CIS database summarizes the severity and type of collisions that occurred at the intersections and along sections of the roadway. It is noted that the CIS database only includes reported collisions when the police attended the incident. The actual number of collisions in the ICBC claims database may be more than the CIS database.

8.2 Corridor Safety Analysis

For the Highway 97 study area, the CIS database includes 195 collisions for the 5 year time period. Table 25 shows the breakdown of collisions by study segment.

Table 25 5-Year (January 2009 - December 2013) Corridor Collision Data

| LKI Study
 Segment | Southern
 LKI | Northern
 LKI | Total
 Collisions | Property
 Damage Only | Injury |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

As can be seen in Table 25, 116 collisions resulted in property damage only and 70 resulted in injuries. Six (6) fatal collision occurred in the analysis period. Five (5) of the fatal collisions and 94 (or 48%) of the total collisions occurred in the southern LKI Segment 1180, km 9.96 and 59.60; this is the most populated area, with the highest traffic volumes, and is closest to Fort St. John.

8.2.1 Primary Collision Occurrences and Crash Frequencies

LKI Segment 1180, 9.96-59.60
For LKI Segment 1180, 9.96-59.60 (Charlie Lake Crescent to North Peace Maintenance jurisdiction), approximately a quarter of the collisions (27\%) occurred were off-road right. Off-road left and head-on collisions encompass an additional 30% (14% and 16%, respectively). The percentage breakdown of collision occurrences at LKI 1180, 9.96-59.60, can be seen in Figure 8. Figure 9 shows the overall crash frequencies for LKI 1180, 9.96-59.60.

Figure 8 Primary Collision Occurrences for LKI 1180, 9.96-59.60

Figure 9 LKI 1180, 9.96-59.60, Collision Frequency

The location with the most collisions, shown by the spike on the Figure 9 histogram, is at the intersection of Highway 97 and Highway 29 (Segment 1180, LKI 12.5), with 7 collisions during the 5 -year study period. There were also 5 fatal collisions along this segment during the 5 -year period. The fatal collisions occurred near LKIs 18.4, 26, 27.9, 50, and 53.6. One fatal collision occurred near the Evergreen Road intersection (LKI 27.9), and
the other four (4) occurred between intersections. A summary of the fatal collisions from the CIS database is shown in Table 26.

Table 26 Fatal Collisions Summary

Segment	Collison LKI	Location	Direction	Primary Occurrence	Contributing Factor
1180	18.4	400 m South of Campbell Rd	Northbound	Other	- Other
1180	26.0	Near Road 62 (Mile 62 Subdivision)	Northbound	Head-on	- Driving on wrong side of the road
1180	27.9	Evergreen Rd	Northbound	Other	- Road Condition (ice, snow, slush)
1180	50.0	3 km south of Mile 80 Rest Area	Northbound	Other	- Exceeding speed limit
1180	53.6	Mile 80 Rest Area Access	Northbound	Off road right	- Wild Animal

As seen in Table 26, all five fatal collisions occurred in the northbound direction, but there is no clear pattern in terms of collision type or contributing factors. The contributing factors varied from wild animal-related to poor road conditions to driver error.

LKI Segment 1180, 59.60-87.90
For LKI Segment 1180, 59.60-87.90 (North Peace Maintenance jurisdiction to Wonowon), almost half of the collisions (43%) occurred off-road right. Off-road left and head-on make up an additional quarter of the collisions (13% each). The percentage breakdown of collision occurrences at LKI 1180, 59.60-87.90, can be seen in Figure 10. Figure 11 shows the overall crash frequencies for LKI 1180, 59.60-87.90.

Figure 10 Primary Collision Occurrences for LKI 1180, 59.60-87.90

Figure 11 LKI 1180, 59.60-87.90, Collision Frequency

The locations with the most collisions, shown by the spikes on the Figure 11 histogram, are at the intersections of Highway 97 and Kitt Road / Road 315 and Highway 97 and Inga Lake Road / Road 170 (Segment 1180, LKI 64.6 and 71.9), experiencing three (3) collisions each over the 5 -year period. There were no fatal collisions along this segment during the 5 -year study period.

LKI Segment 1183, 0.00-118.16

For LKI Segment 1183, 0.00-118.16 (Wonowon to Buckinghorse River Bridge), approximately one third (35\%) of the collisions occurred off-road right. Side swipe and rear end make up an additional quarter of the collisions (11% each). The percentage breakdown of collision occurrences at LKI 1183, 0.00-118.16, can be seen in Figure 12. Figure 13 shows the overall crash frequencies for LKI 1183, 0.00-118.16.

Figure 12 Primary Collision Occurrences for LKI 1183, 0.00-118.16

Figure 13 LKI 1183, 0.00-118.16, Collision Frequency

The locations with the most collisions, shown by the spikes on the Figure 13 histogram, are at or near the intersections of Highway 97 / Unocal Road (LKI 21), Highway 97 / Mile 148 Road (LKI 71.6), near the rest area at LKI 88.6, and at the Buckinghorse River Bridge (LKI 116.2), each experiencing two (2) collisions over the 5year period. There was one (1) fatal collision along this segment during the 5 -year period, at LKI 66.3 , between the intersections of Cypress Creek Road and Pink Mountain Road; it was a head-on collision involving an impaired driver.

8.2.2 Main Contributing Factors for Collisions

The main contributing factors for collisions during the 5 -year study period are shown graphically in Figure 14. Poor road condition (snow, ice, etc.) was the leading contributor to all collisions and to injury and fatal collisions. Driving too fast was recorded as the second highest contributing factor for collisions resulting in injury and fatality. Wild animals were the second leading cause for all collisions.

Figure 14 Collision Contributing Factors
Collision Contributing Factors

8.3 Safety Performance Methodology

The safety performance of the highway segments and the intersections were based on two methodologies: (1) the traditional methodology using collision rates and severity index, and (2) the Collison Prediction Models (CPM) methodology, as described in Sections 8.3.1 and 8.3.2.

8.3.1 Traditional Methodology

The safety performance measures used in the traditional analysis method include the Collision Frequency, Collision Rate and Collision Severity Index. These safety measures were determined using historical collision records and are commonly used when assessing the safety performance of a corridor or intersections. These measures are defined as follows.

- Collision Frequency: The collision frequency is the number of collisions per location during a specific time period.
- Collision Rate: The collision rate is collisions per million-vehicle-kilometers (MVKm) for highway sections and collisions per million-entering-vehicles (MEV) for the intersections.
- Collision Severity Index: The collision severity index is a measure of collision severity levels, which is the weighted sum of fatal, injury, and property damage-only (PDO) collisions. A fatal collision is given a weighting of 100 , an injury collision is given a weighting of 10 and a PDO collision is given a weighting of 1 , thus, $\mathrm{CSI}=(100 \mathrm{xF}+10 \mathrm{xI}+\mathrm{PDO}) /(\mathrm{F}+\mathrm{I}+\mathrm{PDO})$. A higher severity index indicates a higher proportion of high severity collisions.

Provincial Safety Benchmarks

The safety performance measures for the study locations were compared to provincial benchmarks to determine if the study locations are within the provincial average of similar roadways. A 5-year traffic volume range of provincial data (January 1, 2006 to December 31, 2010) and average provincial collision rates by highway service class were used to compare the observed rates along the study roadway sections and at the study intersections. The Provincial Average Rate Table is provided in Appendix G. The following safety performance benchmarks, based on provincial rates, are the most commonly used to determine the performance of a corridor and have been used as part of this study.

- Provincial Average Collision Rate: An average collision rate is simply an average of the calculated collision rates for a large group of similar locations that can be used as the basis for comparison. The average collision rates are often generated by road classification and traffic volume levels, as provided in Appendix G.
- Critical Collision Rate (CR): The Critical Collision rate, which is based on statistical quality control procedures, has been the most widely used statistical technique among highway agencies to identify collision prone locations. The technique defines a location as collision prone if the observed collision rate exceeds a critical collision rate, which is based on the average collision rate. The Critical Collision rate is calculated as follows:
$C R=C$ ave $+k \sqrt{\frac{\text { CRave }}{m}}+\frac{1}{2 m}$
where,
$C R_{\text {ave }}=$ Average Provincial collision rate
k is a constant (1.64 for 95% confidence)
$m=$ Million Vehicle Kilometers (MVK) for segments and Million Entering Vehicles for intersections
- Provincial Average Collision Severity Index (CSI): An average collision severity index is simply an average of the calculated collision severity indices for a large group of similar locations that can be used as the basis for comparison. Similar to average collision rates, the average CSI are often generated by road classification.

Severity Rate $=(100 \times F+10 \times I+P D O) /(F+I+P D O)$
where,
$F=$ Fatal collisions
$I=$ Injury collisions
PDO = Property Damage Only collisions

8.3.2 Collision Prediction Model (CPM) and Collision Modification Factor (CMF)

The CPM methodology is illustrated in the MoTI document "Collision Prediction Model for British Columbia," December 2008, by Paul de Leur, PhD, P.Eng., and Tarek Sayed, PhD, P.Eng. This report describes and presents a set of CPMs that were developed using the BC highway collision data. The CPMs can be used to estimate the safety performance of major provincial highway segments and intersections in British Columbia.

The MoTI Collision Prediction Model for a Rural Arterial Undivided 2-Lane Highway segment (RAU2) and unsignalized intersections, was used to estimate the future collision frequency in this study.

$$
\begin{aligned}
& E(\Lambda)=a_{0} V_{1}^{a 1} L_{1}^{a 2} \quad \text { (Segment Model) } \\
& E(\Lambda)=a_{0} V_{1}^{a 1} V_{2}^{a 2} \quad \text { (Intersection Model) }
\end{aligned}
$$

where,
$E(\wedge)=$ collision frequency (collisions / 5 years)
$L_{1}=$ Segment length
$V_{1}=$ AADT for Major Road / Highway Segment
$V_{2}=$ AADT for Minor Road
a_{0}, a_{1}, and $a_{2}=$ model parameters
The Empirical Bays (EB) approach was used to refine the estimate of expected number of collisions at a location by combining the observed number of collisions at the location with the predicted number of collisions obtained from the collision prediction model to yield a more accurate location-specific safety assessment. The EB estimate of the expected number of collisions at any location can be calculated by using the following equation:

$$
E B=\alpha \times \text { prediction }+(1-\alpha) \times \text { observed }
$$

$$
\alpha=k /(k+\text { predicted })
$$

where,
observed = observed number of collisions / 5 yrs
predicted $=$ predicted collisions as per the CPM
$k=$ Model dispersion parameter

Collision Prone Location

Collision-Prone Locations (CPLs) are defined as locations that exhibit a significant number of collisions compared to a specific norm. The MoTI CPM report includes Critical Collision Frequency curves, developed to estimate the collision threshold. A Critical Collision Frequency curve indicates the number of collisions that
would be observed to identify a location as collision-prone, based on a specific collision prediction model and a confidence level. Figure 15 shows these curves. The curves shown represent the 95% confidence level.

Figure 15 Critical Curves for Collision Prone Locations

Source: "Collision Prediction Model for British Columbia," December 2008, by Paul de Leur, PhD, P.Eng, and Tarek Sayed, PhD, P.Eng, Figure 4.2.

8.4 Collision Roadway Section Analysis

Corridor safety analysis was conducted for the 17 highway sections defined in Section 3.2. For this analysis, the average AADT from 2009 to 2013 was used to coincide with the collision data 5 -year period from January 2009 to December 2013.

Tables 27 and 28 summarize the safety performance results for all 17 study sections using traditional and CPM methods.

	Southern Point		Northern Point	Northern Point LKI	Section Length (km)	TotalCollisions	Fatal	Injury	PDO	Frequency(Coll/yr)	AADT	Observed Coll Rate (OCR)	ProvincialAve CollRate(CRave)	Critical Rate (CR)	$\begin{array}{\|c} \text { Coll Prone } \\ \text { If OCR>CR } \\ (y / n) \end{array}$	Collision Severity Index		
$\begin{gathered} \text { Section } \\ \# \end{gathered}$		Southern Point LKI														CSI	$\begin{array}{\|c\|} \hline \text { Provincial } \\ \text { Avg CSI } \end{array}$	If $\mathrm{CSI}>$ Avg CSI
LKI Segment 1180																		
1	Highway 29	12.52	Stoddart Creek Road	20.35	7.8	26	1	8	17	5.2	5080	0.36	0.48	0.62	N	7.6	7.05	Y
2	Stoddart Creek Road	20.35	Montney Highway	29.46	9.1	27	2	7	18	5.4	3910	0.42	0.55	0.71	N	10.7	7.39	Y
3	Montney Highway	29.46	Becker Hill Road	32.86	3.4	9	0	2	7	1.8	3600	0.40	0.55	0.83	N	3.0	7.39	N
4	Becker Hill Road	32.86	258 Road	36.28	3.4	6	0	2	4	1.2	3700	0.26	0.55	0.83	N	4.0	7.39	N
5	258 Road	36.28	Mile 72 Frontage Road	41.52	5.2	2	0	1	1	0.4	3850	0.05	0.55	0.76	N	5.5	7.39	N
6	Mile 72 Frontage Road	41.52	Beatton River Airport Road	43.89	2.4	5	0	2	3	1.0	3850	0.30	0.55	0.88	N	4.6	7.39	N
7	Beatton River Airport Road	43.89	Mile 80 Frontage Road	53.44	9.6	6	1	2	3	1.2	3470	0.10	0.55	0.72	N	20.5	7.39	Y
8	Mile 80 Frontage Road	53.44	Inga Lake Road	71.94	18.5	28	1	16	11	5.6	2980	0.28	0.55	0.68	N	9.7	7.39	Y
9	Inga Lake Road	71.94	Wonowon	87.90	16	25	0	12	13	5.0	2390	0.36	0.55	0.70	N	5.3	7.39	N
LKI Segment 1183																		
10	Wonowon	0.00	Jedney Road	38.33	38.3	17	0	7	10	3.4	2290	0.11	0.55	0.65	N	4.71	7.39	N
11	Jedney Road	38.33	Mile 135 Road	52.60	14.3	7	0	1	6	1.4	2620	0.10	0.55	0.71	N	2.29	7.39	N
12	Mile 135 Road	52.60	Mile 141 Road	61.10	8.5	3	0	1	2	0.6	2780	0.07	0.55	0.75	N	4.00	7.39	N
13	Mile 141 Road	61.10	Cypress Creek Road	63.93	2.8	2	0	0	2	0.4	2940	0.13	0.55	0.90	N	1.00	7.39	N
14	Cypress Creek Road	63.93	Pink Mountain Road	70.68	6.8	4	1	2	1	0.8	3000	0.11	0.55	0.76	N	30.25	7.39	Y
15	Pink Mountain Road	70.68	Sikanni River Bridge	94.27	23.6	12	0	5	7	2.4	990	0.28	0.55	0.75	N	4.75	7.39	N
16	Sikanni River Bridge	94.27	Sikanni Chief Road	96.11	1.8	0	0	0	0	0.0	950	0.00	0.55	1.39	N	-	7.39	-
17	Sikanni Chief Road	96.11	Buckinghorse River Bridge	118.16	22.1	12	0	5	7	2.4	1030	0.29	0.55	0.75	N	4.75	7.39	N

$\begin{gathered} \text { Section } \\ \# \end{gathered}$	Southern Point	Southern Point LKI	Northern Point	Northern Point LKI	Section Length (km)	Total Collisions	Fatal	Injury	PDO	$\begin{array}{\|c\|} \hline \text { Frequency } \\ (\text { Coll/yr) } \end{array}$	AADT	Collision Prediction by CPM (Coll/5yrs)	Empirical Bays Estimate (Coll/5yrs)	Threshold collisions based on Critical Curves	Collision Prone If Observed coll >Threshold coll
LKI Segment 1180															
1	Highway 29	12.52	Stoddart Creek Road	20.35	7.8	26	1	8	17	5.2	5080	43	28	35	No
2	Stoddart Creek Road	20.35	Montney Highway	29.46	9.1	27	2	7	18	5.4	3910	41	29	36	No
3	Montney Highway	29.46	Becker Hill Road	32.86	3.4	9	0	2	7	1.8	3600	17	11	17	No
4	Becker Hill Road	32.86	258 Road	36.28	3.4	6	0	2	4	1.2	3700	17	8	13	No
5	258 Road	36.28	Mile 72 Frontage Road	41.52	5.2	2	0	1	1	0.4	3850	26	5	10	No
6	Mile 72 Frontage Road	41.52	Beatton River Airport Road	43.89	2.4	5	0	2	3	1.0	3850	13	7	12	No
7	Beatton River Airport Road	43.89	Mile 80 Frontage Road	53.44	9.6	6	1	2	3	1.2	3470	40	9	14	No
8	Mile 80 Frontage Road	53.44	Inga Lake Road	71.94	18.5	28	1	16	11	5.6	2980	63	30	36	No
9	Inga Lake Road	71.94	Wonowon	87.90	16	25	0	12	13	5.0	2390	48	27	33	No
LKI Segment 1183															
10	Wonowon	0.00	Jedney Road	38.33	38.3	17	0	7	10	3.4	2290	99	20	26	No
11	Jedney Road	38.33	Mile 135 Road	52.60	14.3	7	0	1	6	1.4	2620	46	10	15	No
12	Mile 135 Road	52.60	Mile 141 Road	61.10	8.5	3	0	1	2	0.6	2780	31	6	11	No
13	Mile 141 Road	61.10	Cypress Creek Road	63.93	2.8	2	0	0	2	0.4	2940	13	5	10	No
14	Cypress Creek Road	63.93	Pink Mountain Road	70.68	6.8	4	1	2	1	0.8	3000	27	7	12	No
15	Pink Mountain Road	70.68	Sikanni River Bridge	94.27	23.6	12	0	5	7	2.4	990	37	15	21	No
16	Sikanni River Bridge	94.27	Sikanni Chief Road	96.11	1.8	0	0	0	0	0.0	950	4	2	6	No
17	Sikanni Chief Road	96.11	Buckinghorse River Bridge	118.16	22.1	12	0	5	7	2.4	1030	35	15	21	No

As shown in Table 27, Sections 8, 2, 1 and 9 experienced the most collisions during the 5 year study period with $28,27,26$ and 25 collisions, respectively.

Based on the traditional method, the collision rates for all 17 highway sections are less than the critical collision rates and the provincial averages. None of the study sections are considered collision prone because they operate above the provincial safety performance benchmarks. The Collision Severity Index of 5 sections Sections $1,2,7,8$, and 14 - is more than the provincial average CSI. This indicates that the collisions that occurred within these 5 sections during the study period were more severe than the provincial average. All 5 sections experienced at least 1 fatal collision during the 5 -year study period, which tends to increase the CSI. However, it is important to note the total number of collisions for Sections 7 and 14 is low, but all resulted in injury or fatality, which may skew the CSI to be above the provincial average CSI. Additionally, the fatal collision in Section 14 was due to impaired driving and was not related to highway conditions.

Based on the CPM method (shown in Table 28), none of the highway sections are collision prone; the observed collisions, along all 17 study roadway sections during the 5 -year study period (2009 to 2013), are fewer than the collision threshold estimated from the critical curves.

8.5 Intersection Safety Analysis

Of the 21 study intersections identified in Section 3.1, 10 intersections experienced collisions during the 5 -year period studied for the safety analysis. Over the 5 -year period, 32 collisions occurred at these 10 intersections: 20 were property-damage-only and 12 resulted in injuries. No fatal collisions occurred at the study intersections. Safety analysis was conducted for these study intersections. Tables 29 and 30 show the safety performance summary for the 10 study intersections, using both the traditional and CPM methods.

Table 29 Intersection Safety Performance - Traditional Method

Segment LKI	Intersection	Total Collisions (2009-2013)	Collision Rate			Collision Severity		
			Observed Collision Rate (coll/MEV)	Critical Rate	Collision Prone (Y/N)	CSI	Provincial Average CSI	$\begin{aligned} & \text { CSI } \geq \operatorname{avg} \\ & \text { CSI } \\ & (\mathrm{Y} / \mathrm{N}) \end{aligned}$
1180, 12.52	Hwy 97 / Hwy 29	7	0.32	0.42	N	4.86	7.21	N
1180, 20.3	Hwy 97 / Stoddart Creek Rd	5	0.58	0.87	N	1.00	6.85	N
1180, 28.57	Hwy 97 / Red Creek Rd	2	0.27	0.91	N	1.00	6.85	N
1180, 29.46	Hwy 97 / Montney Hwy	3	0.39	0.90	N	4.00	6.85	N
1180, 32.86	Hwy 97 / Becker Hill Rd	2	0.30	0.94	N	5.50	6.85	N
1180, 35.86	Hwy 97 / Lower Cache Rd	2	0.27	0.91	N	5.50	6.85	N
1180, 43.9	Hwy 97 / Beatton River Airport Rd	5	0.62	0.89	N	4.60	6.85	N
1180, 87.9	Hwy 97 / Wonowon Esso	3	0.55	1.00	N	10.00	6.85	Y
1183, 70.86	Hwy 97 / Sasquatch Crossing Lodge	1	0.16	0.97	N	1.00	6.85	N
1183, 116.3	Hwy 97 / Buckinghorse Camp and Lodge	2	0.64	1.22	N	5.50	6.85	N

Table 30 Intersection Safety Performance - CPM Method

| Segment LKI | Intersection | Observed
 Collisions
 $(2009-2013)$ | Collision
 Prediction
 by CPM
 (Coll/5yrs) | Empirical Bays
 Estimate
 (Coll/5yrs) | Threshold
 Collisions based
 on Critical
 Curves | Collision Prone
 If Observed coll
 >Threshold coll |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $1180,12.52$ | Hwy 97 / Hwy 29 | 7 | 11.0 | 10.8 | 29 | No |
| $1180,20.3$ | Hwy 97 / Stoddart
 Creek Rd | 5 | 0.8 | 0.8 | 14 | No |
| $1180,28.57$ | Hwy 97 / Red Creek Rd | 2 | 0.6 | 0.6 | 14 | No |
| $1180,29.46$ | Hwy 97 / Montney Hwy | 3 | 0.7 | 0.8 | 14 | No |
| $1180,32.86$ | Hwy 97 / Becker Hill Rd | 2 | 0.4 | 0.4 | 13 | No |
| $1180,35.86$ | Hwy 97 / Lower Cache
 Rd | 2 | 0.4 | 0.4 | 13 | No |
| $1180,43.9$ | Hwy 97 / Beatton River
 Airport Rd | 5 | 1.1 | 1.1 | 14 | No |
| $1180,87.9$ | Hwy 97 / Wonowon
 Esso | 3 | 2.3 | 2.3 | 15 | No |
| $1183,70.86$ | Hwy 97 / Sasquatch
 Crossing Lodge | 1 | 0.7 | 0.7 | 14 | No |
| $1183,116.3$ | Hwy 97 / Buckinghorse
 Camp and Lodge | 2 | 1.2 | 1.2 | 14 | No |

Based on the traditional method results shown in Table 29, none of the intersections are considered collision prone because the observed collision rate is less than the critical rate. However, the Collision Severity Index of one intersection (Highway 97 / Wonowon Esso) is above the provincial average CSI despite low collision frequency. The collisions that occurred at this location appear more severe than the provincial average; there were only 3 collisions at this location over the 5 -year period, but all 3 collisions resulted in injuries.

Based on the CPM method results, shown in Table 30, none of the study intersections are considered collision prone because the number of observed collisions, during the 5 -year study period (2009 to 2013), were fewer than the collision threshold estimated from the critical curves for each intersection.

9 Problem Definition

Based on the site visit / observations and analysis of traffic operations and collision data, detailed in Sections 2 through 8, there are some traffic operational and safety concerns associated with the 21 study intersections and along the corridor.

The corridor traffic and safety review identifies some areas of concern along the corridor. These issues include:

- Lack of passing lanes
- Limited number of passing opportunities
- Some passing zone lengths do not appear to meet MoTI guidelines for posted speed limit
- Heavy vehicle platoons
- General lighting, signing, and pavement marking concerns

All of the issues mentioned above can increase driver frustration, which can lead to risk taking at high speeds. This creates safety risks along the corridor. The identified issues are described below. Each of the identified existing issues is referenced in Figure 16, on page 70, and summarized in Table 31. Figure 17, on page 71, shows potential future issues that were identified through analysis and the site visit and influenced mitigation recommendations. Opportunities for mitigations and improvements are described in more detail in Section 10.

Table 31 Summary of Problem Definition Issues

Location / Description	Issues
Highway 97 / Highway 29 Intersection	- Anticipated LOS F in 2039 - Conflicts with inspection station - Signal warranted in 2039
Wonowon	- Reduced speed zone ($70 \mathrm{~km} / \mathrm{h}$) may not be enforced or obeyed - Limited signage - Heavy truck volumes - Roadway section just south of Wonowon has $3^{\text {rd }}$ highest number of collisions (19 collisions from 2009-2013) - Truck platoons forming, entering and exiting Wonowon area
Roadway Sections Operating at LOS D	- Limited passing opportunities - Over 65% of time spent following - Decreased LOS leads to longer platoons - Leading to driver frustration and risk taking
Platoons	- High heavy vehicle traffic - Limited passing opportunities - Rolling terrain, grade changes, and limited sight distance is slowing larger vehicles and vehicles following heavy trucks - Increased driver frustration leads to risk taking
Passing Lanes	- Only 1 NB and 1 SB passing lane over 200 km corridor (1 additional NB passing lane to be installed in 2015) - Many passing zone lengths do not meet 400 m recommendation for $100 \mathrm{~km} / \mathrm{h}$ speed zones, although they may have met the standard at time of installation - Limited passing opportunities leads to driver frustration and risk taking
Sight Distance, Grade Changes, and Horizontal Curves	- Ensure signage meets all MoTI guidelines and provides adequate warning for drivers - Can slow larger vehicles, leading to platoons
Posted Speeds through Rest / Service Areas and Base Camps	- Numerous vehicles entering and exiting these areas - Limited signage or warning for drivers - Where posted speeds are reduced, speeds many not be enforced or obeyed
Future Development	- Increased traffic from developments will increase traffic on Highway 97 - Additional access density, resulting in additional potential conflicts
General Signing and Pavement Markings	- Review signage along the corridor to ensure it meets MoTI guidelines - Increase signage for intersections, rest stops, service areas, and base camps - Repaint faded lane markings, particularly in southern-most segment (LKI Segment 1180, km 9.96-59.60)
Lighting	- Increase lighting at intersections, if warranted - Increase lighting at rest stops, service areas, and base camps, if warranted - Increased lighting will provide more warning time for drivers

9.1 Intersections

All the intersections are generally operating at an acceptable level of service during the AM, Mid-day, and PM peak hours, currently and in the 25 year horizon. Only the intersection of Highway 97 and Highway 29 is anticipated to have side street movements operating at LOS F in the 25 year horizon (discussed further in Section 9.3):

- AM Peak Hour: LOS F, westbound
- PM Peak Hour: LOS F, eastbound and westbound

Based on the collision data for the past 5 years, 11 of the 21 study intersections did not experience any collisions. The remaining 10 intersections have some collisions, but their collision rates are within the provincial safety benchmark. Based on the traditional safety analysis methodology, the intersections of Highway 97 / Wonowon Esso had a collision severity index higher than the provincial average; however, the intersection has a very low collision frequency. Only 3 collisions occurred at this location during the 5 -year period. The CSI is misleading because all 3 collisions resulted in injuries. All the collisions at the study intersections resulted in injuries or property-damage-only; none of the collisions resulted in fatalities.

Based on the CPM methodology, none of the intersections are considered collision prone.

9.2 Roadway Sections

The 17 roadway sections analyzed along Highway 97 are also operating at an acceptable level of service (LOS C or better) during Existing (2014) conditions, except for Section 1, southbound, which operates at LOS D during the PM peak hour.

For the Future (2039) horizon, there are 13 roadway sections that degrade to LOS D during the AM, Mid-day and/or PM peak hours. Three (3) roadway sections (Sections 1, 6 and 7) are expected to operate at LOS D during all peak hours. Section 1 is expected to operate at LOS D, northbound in the AM, southbound at Midday, and in both directions in the PM. Sections 6 and 7 are anticipated to operate at LOS D northbound in the AM and southbound at Mid-day and in the PM peak hours.

The 5-year collision data, based on the traditional safety analysis methodology, show that the collision rates for all 17 highway sections are less than the critical collision rates and the provincial averages; therefore, the study sections are not considered collision prone. However, the Collision Severity Index of five (5) roadway sections - Sections $1,2,7,8$, and 14 - is more than the provincial average CSI, indicating that the collisions occurring within these five sections are more severe than the provincial average. All 5 sections experienced at least 1 fatal collision during the 5 -year study period. However, the CSI in Sections 7 and 8 may be skewed due to the low number of total collisions in these sections. Section 14 should not be considered because the fatal collision was a result of impaired driving, not highway conditions.

Based on the CPM methodology, none of the roadway sections are considered collision prone.

9.3 Intersection: Highway 97 and Highway 29

The Highway 97 and Highway 29 intersection is the only study intersection anticipated to degrade to LOS F in the future. Seven (7) collisions occurred at this intersection during the 5 -year observation period; none were fatal. Based on Provincial indices, this is not a collision prone intersection. However, lower service levels,
anticipated in the future, can decrease safety levels at the intersection as frustrated drivers, approaching Highway 29 will take higher risks and select smaller gaps in traffic to avoid delays at the intersection.

Because this is currently a side-street-stop controlled intersection, queues are not likely to occur on Highway 97 , but it is estimated that 261 vehicles will be making a northbound left, opposed by 630 southbound vehicles during the PM peak hour by 2039. In this case, the queue for the northbound left turn could exceed the left turn pocket, delaying northbound through vehicles on Highway 97.

Additionally, the Fort St. John inspection station is operating at the southeast corner of this intersection. When the inspection station is busy, truck traffic can back up onto Highway 97, and trucks accessing the inspection station can regularly delay the southbound left turn movement. Both of these issues can lead to delays, decreased level of service, and driver frustration. Depending on the backup onto the highway, this situation can also pose a safety risk if drivers on Highway 97 attempt to pull around the waiting truck traffic. The inspection station is operational Sunday through Friday 6:00 AM to 9:00 PM and Saturday 8:00 AM to 3:00 PM. Photo 1 shows some of the queuing that occurs at this intersection when the inspection station is in operation.

Photo 1 Southbound Left Turn Queuing at Highway 97 / 29 Intersection

9.3.1 Sensitivity Testing

Based on sensitivity testing at the Highway 97 / Highway 29 intersection, it is estimated that during the PM peak hour, the period of highest volumes at this location, the following decline is expected:

- Westbound (worst movement) will decrease from LOS D to E in 2015 (1 year)
- Westbound will decrease from LOS E to F in 2019 (5 years)
- Eastbound will decline from LOS D to E in 2033 (19 years)
- Eastbound will decline from LOS E to F in 2037 (23 years)

Detailed analysis results for the Highway 97 / Highway 29 sensitivity testing can be found in Appendix H .

9.4 Wonowon

The area around the Wonowon Esso station is a hub of activity along the corridor. The posted speed limit through this stretch is reduced from $100 \mathrm{~km} / \mathrm{h}$ to $70 \mathrm{~km} / \mathrm{h}$. Approximately 2.5 km of Highway 97 through the

Wonowon rest area is $70 \mathrm{~km} / \mathrm{h}$; however, it is possible that this reduced speed limit is not being observed. Additionally, while the speed limit reduction signs are obvious, there is very little other information signage to warn drivers of upcoming services or potential vehicles entering and exiting the highway, which increases safety risks, particularly if drivers are not obeying the posted speed limit.

There were three (3) collisions near the Wonowon Esso intersections over the 5 -year collision study period. While this is a very low number of collisions, all three resulted in injury, so the collision severity index at this location exceeds the Provincial average. There are many vehicles turning onto and off the highway and there are no acceleration or deceleration lanes to separate entering and existing vehicles from through traffic. Over the 5 -year period, there were also 25 collisions on the section of Highway 97 between Inga Lake Road and Wonowon. This section has the fourth highest number of collisions of the 17 roadway study sections.

Compared to surrounding sections, this area has a higher volume of heavy vehicle and total traffic. During the three peak hour study periods, the heavy vehicle percentage ranged from 26% to 36% of total traffic. Because of reduced speeds, the higher number of vehicles entering and exiting the highway, and the limited passing opportunities approaching Wonowon, truck and vehicle platoons form. Photo 2 shows an observed truck platoon just south of Wonowon. This particular platoon was 11 vehicles long, 6 of which were heavy vehicles.

Photo 2 Southbound Truck Platoon, South of Wonowon

9.5 Shortage of Passing Lanes

As discussed in Section 2, the ability to pass is permitted along passing zones (dashed centerline pavement markings) covering approximately 40% to 55% of the roadway segments, varying by LKI segment and travel direction. However, there are a number of areas where passing is not permitted for more than 1 km . Nopassing zone lengths exceeding 1 km can lead to driver frustration.

Over the 200 km of study roadway, there is currently only one location (northbound and southbound) near the Sikanni River Bridge with passing lanes.

The combination of limited passing opportunities, passing lengths less than the 400 m minimum (recommended by MoTI for $100 \mathrm{~km} / \mathrm{h}$ speed zones), and minimal passing lanes or pullouts leads to platoons, frustrated drivers, and risky driver behaviour. All of this reduces safety along the corridor.

9.6 Platoons

The Alaska Highway corridor is a two-lane undivided highway with a high proportion of heavy vehicle traffic (ranging from 15% to 35%, depending on time of day and location along the corridor). With very few pullouts and passing lanes along the 200 km corridor, one or two slow trucks can create a platooning effect on following traffic. A truck and/or vehicle platoon occurs when multiple vehicles follow closely behind a slow moving lead vehicle, generally at a reduced speed (below the posted speed limit). This can reduce roadway level of service and increase the risk of rear-end collisions should a vehicle need to slow or stop suddenly.

During the site visit conducted in August 2014, approximately 30 southbound platoons and 20 northbound platoons were observed over approximately 4 hours, including the PM peak hour. A large portion of these platoons occurred between Charlie Lake Crescent and Wonowon, where traffic volumes are highest along the corridor, and again around Pink Mountain, where there is rolling terrain and reduced sight lines.

Photo 3 SB Truck Platoon near Beatton River Airport Road

9.7 Roadway Section Operations and Passing Lane Candidates

Most roadway sections operate at LOS C or better during Existing conditions (2014). It should be noted that in rural areas, LOS C is often preferred as the threshold of acceptable operations. In some cases, sections operating at LOS C could be considered for passing lanes, depending on the LOS and additional criteria, including but not limited to terrain, AADT, number of passing opportunities, and distance from other passing lanes (per BC MoTI, Supplement to TAC Geometric Design Guide (July 2014), Section 930). There are 13 sections that are anticipated to operate at LOS D in the Future (2039). These sections would be top candidates for the addition of passing lanes based on their anticipated level of service as well as the other criterion mentioned above. These roadway sections were analyzed in Section 7.6 and the results from Table 21 are repeated again in Table 32, for convenience.

Table 32 Roadway Sections Operating at LOS D in 2039

Section \#	Southern Point	Northern Point	Peak Hour	Direction
1	Highway 29	Stoddart Creek Road	AM Mid-Day PM	NB SB NB, SB ${ }^{1}$
2	Stoddart Creek Road	Montney Highway	PM	SB
3	Montney Highway	Becker Hill Road	AM PM	NB
4	Becker Hill Road	258 Road	$\begin{aligned} & \text { AM } \\ & \text { PM } \end{aligned}$	$\begin{aligned} & \text { NB } \\ & \text { SB } \end{aligned}$
5	258 Road	Mile 72 Frontage Road	PM	SB
			AM	NB
6	Mile 72 Frontage Road	Beatton River Airport Road	Mid-Day	SB
			PM	SB
			AM	NB
7	Beatton River Airport Road	Mile 80 Frontage Road	Mid-Day	SB
			PM	SB
8	Mile 80 Frontage Road	Inga Lake Road	PM	SB
9	Inga Lake Road	Wonowon	PM	SB
11	Jedney Road	Mile 135 Road	PM	SB
12	Mile 135 Road	Mile 141 Road	AM	NB
			PM	SB
13	Mile 141 Road	Cypress Creek Road	AM	NB
			PM	SB
14	Cypress Creek Road	Pink Mountain Road	PM	SB

Notes:

1. Section 1 SB operates at LOS D during the PM peak hour under Existing Conditions (2014).

Section 2, northbound, includes the Mile 63 / Evergreen Road passing lanes announced by MoTI in September 2014. With the passing lane addition, this section operates at an acceptable LOS, northbound. In addition to the Mile 63 / Evergreen Road passing lane, MoTI, with input from stakeholders, has identified other potential passing lane locations within the sections mentioned above:

- Southbound at Stoddart Road - approximately 3 km of passing length
- Northbound at Becker Hill Road - approximately 3 km of passing length
- Northbound at Mile 258 Road - approximately 1.7 km of passing length
- Southbound at Mile 260 Road - approximately 2.8 km of passing length
- Northbound at Mile 158 Road - approximately 2.2 km of passing length

Along with the potential passing lanes identified by MoTI/stakeholders, based on observations and operations analysis, the following locations were also selected for possible passing lanes:

- Northbound
- 248 Road - LKI 1180, km 17.6-19.6
- Becker Hill Road - LKI 1180, km 33.78-35.15
- South of Beatton River Airport Road - LKI 1180, km 41.52-43.89
- North of Beatton River Airport Road - LKI 1180, km 45.5-48.3
- South of Aitken Creek Road - LKI 1180, km 55-57.5
- South of Inga Lake Road - LKI 1180, km 68.5-70.5

McEIhanney

- South of Tommy Lakes Road - LKI 1183, km 19-21.19
- South of Gundy Road - LKI 1183, km 28-30.38
- South of Jedney Road - LKI 1183, km 35.83-38.33
- Southbound
- South of Stoddard Creek Road - LKI 1180, km 20-17.5
- South of Lower Cache Road - LKI 1180, km 35.6-33.6
- North of Beatton River Airport Road - LKI 1180, km 51.2-48.7
- South of Aitken Creek Road - LKI 1180, km 56.4-54.5
- South of Inga Lake Road - LKI 1180, km 71.2-69.2
- North of Upper Halfway Road - LKI 1180, km 82.2-80.2
- North of 109 Road - LKI 1183, km 14.9-12.9
- North of Jedney Road - LKI 1183, km 40.5-38.5
- North of 135 Road - LKI 1183, 55-52.5
- North of 138 Road - LKI 1183, km 57.5-55

Additionally, Sections 1, 2, 7, 8, and 14 have a collision severity index above the provincial average CSI. The collisions occurred as a result of a number of variables, but, combined with declining levels of service, these sections are candidates for safety improvements.

9.8 Sight Distance, Grade Changes, and Horizontal Curves

Considering the terrain along the Highway 97 corridor, there are very few warnings of grade changes, horizontal curves and any related or unrelated restricted sight lines. Based on observations along the corridor, the following areas experience substantial terrain changes with limited to no signage; many of the terrain changes occur near the Pink Mountain Store and the Sikanni River Bridge. Some places of note are:

- Sight distance at Red Creek Road (LKI 1180, km 28.57), due to horizontal geometry
- Curvature north of Beatton River Airport Road (LKI 1180, 43.89)
- Rolling terrain with limited sight distance between Gundy Road (LKI 1183, 30.38) and Pink Mountain Store (approximate LKI 1183, 63.93)
- Sight distance approaching and departing Pink Mountain Store (approximate LKI 1183, 63.93) northbound and southbound
- Sikanni River Bridge: approximate LKI 1183, 94.27 - numerous grade changes and curvature accessing the bridge northbound and southbound. This area should continue to be reviewed annually to ensure all necessary warning signs are in place. It should be noted that there are already climbing lanes northbound and southbound departing the bridge and warning signs (curve, speed reduction, steep grades) in place near the Sikanni River Bridge to accommodate the curved alignments and grade change.

Photo 4 Restricted Sight Distance at Red Creek Road

Photo 5
Northbound Approach to Sikanni River Bridge

Existing signing and pavement markings should continue to be monitored to ensure that drivers have appropriate warnings and signage, which increase driver awareness and roadway safety.

9.9 Posted Speed Limits and Access to Services

There are four (4) notable rest stops / gas station / lodging / general store (service) areas along the study corridor:

- Wonowon Esso
- Pink Mountain Store and Lodge
- Sasquatch Crossing Lodge / Mae's Kitchen

McElhanney

- Buckinghorse River Lodge and Camp

Heavy vehicles account for approximately 25% or more of traffic at these locations. This leads to extensive heavy vehicle turning movements into and out of these rest areas, restaurants, lodging, gas stations, or base camps. While the shoulders are wide at all 4 locations, there are no official acceleration or deceleration lanes to allow heavy vehicles (and any other vehicles) to enter or exit traffic separately from through traffic. Acceleration and deceleration warrants should be conducted at these locations to determine if they are good candidates for acceleration and/or deceleration lanes.

Additionally, sight distance approaching and leaving these areas is limited. Clear signage should be in place to warn drivers of upcoming services and vehicles entering and exiting the highways, particularly at Pink Mountain Store.

Near the Sikanni River Bridge there is a speed reduction from $100 \mathrm{~km} / \mathrm{h}$ to $50 \mathrm{~km} / \mathrm{h}$ as approaching the bridge. This is a substantial speed reduction for drivers to make while navigating the curves and grade changes in the vicinity. A gradual speed reduction (i.e. from $100 \mathrm{~km} / \mathrm{h}$ to $80 \mathrm{~km} / \mathrm{h}$ before the $50 \mathrm{~km} / \mathrm{h}$ warning signs as approaching the bridge) would be more manageable for drivers.

Lastly, there are already speed reductions to $70 \mathrm{~km} / \mathrm{h}$ at Pink Mountain Store, Wonowon Esso, and Sikanni River Bridge. It is vital that the speed reduction signs are easily visible to drivers. Speed reductions at the other two locations (Buckinghorse River Lodge and Camp and Sasquatch Crossing Lodge / Mae's Kitchen), combined with adequate signage, would also increase safety for vehicles entering and exiting the highway.

MoTI and PWGSC should discuss, coordinate and work with enforcement agencies (RCMP and CVSE) to ensure speed limit compliance; RCMP enforcement may be needed if speeding is an issue.

9.10 Future Development

Fort St. John and surrounding areas are rapidly growing in employment and housing, in conjunction with population growth. The energy sector (liquid natural gas, oil pipelines, and new dam construction) is anticipated to provide substantial employment (80,000 jobs between Fort Nelson, Fort St. John and Dawson Creek) over the next 25 years and contribute to the growth in population and housing. According to the Fort St. John Official Community Plan (OCP), 2011, housing is anticipated to increase by 3,000 to 4,000 additional houses over the next 25 years.

There are new subdivisions emerging in the Fort St. John area, including, but not limited to:

- Stoddard Creek Road: future potential subdivision development
- Garrison Landing Housing Development: mix of single and multi-family homes
- Sunset Ridge Housing Subdivision: 8 phase residential development; 300 home subdivision with a park, lake, walking trails
- Station 44 Town Centre: located on Highway 97, upon completion the development will have, commercial, hotel, motel and truck services and a mix of multi-family, duplex and single family residential.

The existing developments along the corridor have frontage roads in place to limit the number of access points on Highway 97. The existing access density has not shown to be an issue.
With the increase in development, an increase in traffic impacts can be expected. To mitigate this, MoTI should consider frontage road connections with proper bulb-outs to connect the new developments to Highway 97 and limit access points, similar to existing developments. Right in / out and left in may be considered at the
intersections, but not left-out, due to intersection spacing limitations. Proper frontage road design connections will facilitate access to businesses or residential developments and enhance safe traffic operation. As Highway 97 is the primary roadway connecting these communities to Fort St. John, it is anticipated that the increased traffic from future developments will impact traffic operations along the corridor.

9.11 General Signing and Pavement Markings

In general, the signing and pavement markings along Highway 97 appear to be adequate, but faded in many locations. However, due to heavy snow plowing and sanding over the winter seasons, paint lines are dull. This is particularly noticeable in LKI Segment 1180, 9.96-59.60. It is noted that PWGSC's contractor paints twice a year, and MoTl's contractor paints annually.

Where not existing, other road safety features such as shoulder rumble strips, should be installed to alert drivers when they drift from their lane. In addition, centre line rumble strips could be installed at some of the double solid line locations where no passing is allowed in both directions of travel.

It is recommended that possible improvements to signing and pavement markings be reviewed, particularly at curved sections of the roadway and for night time and winter driving conditions. It is also recommended that MoTI review the need to increase the use of post-mounted delineations and shoulder rumble strips at curved sections. Advance intersection warning signs coupled with street names should be reviewed for consistency with MoTI guidelines.

9.12 Lighting

Due to the rural nature of the corridor, there is limited lighting along the roadway, specifically, lighting at access points, larger intersections and gas/lodging/store access. Inadequate lighting creates a safety risk by not highlighting intersections or accesses where there could be oncoming or entering/exiting traffic. Increased lighting, if warranted, would provide additional decision time for drivers to make turns, adjust speed, and potentially allow additional time to see potential hazards in the roadway. There is currently lighting provided at the Highway 97 / Beatton River Airport Road intersection and at the Wonowon Esso station.

It is noted that there is currently no power provided along Highway 97, north of Wonowon. Therefore, this limits the opportunities for lighting along the roadway and at intersections north of Wonowon.

10 Opportunities for Road Improvements

Figures 18 (on page 86) and 19 (on page 91), present some of the short-to-medium and long term road network improvement recommendations that could mitigate the issues identified in Section 9.

It is important to note that industry activities in the area may vary, which could affect the projected rate of growth. Changes in the growth rate could alter the timing and implementation of some of the improvements discussed below. It is recommended that traffic volumes are regularly monitored to assess traffic projections and determine appropriate timing for the suggested improvements.

10.1 Short to Medium Term Opportunities (1 to 10 years)

Short to medium-term opportunities were identified, prioritizing areas of high traffic volumes, low levels of service, and higher collision rates. The following are short to medium-term improvements that can be done, subject to funding, priority, and programming, as shown in Figure 18 (on page 86)

1. Install additional passing lanes (see Section 10.1 .1 for further discussion)
2. General: MoTI and PWGSC to review possible improvements to signing and pavement markings, particularly at curved sections of the roadway and for night time and winter driving conditions. It is also recommended that MoTI review the need to increase the use of post-mounted delineations and shoulder rumble strips at curved sections. Advance intersection warning signs coupled with the street names should be reviewed for consistency with MoTI guidelines.
3. According to MoTI guidelines, confirm need and increase frequency and strategically locate signs warning of restricted sight distance, curve ahead, and grade change/percent incline.
4. Increase lighting, where warranted, along the corridor (see Section 10.1.2 for further discussion)

- Prioritize intersections in the southern section of LKI 1180
- Prioritize rest area / service accesses / lodging

5. The speed limit near the Wonowon Esso and Pink Mountain Store decreases from $100 \mathrm{~km} / \mathrm{h}$ to 70 km / h. Consider speed reductions to $80 \mathrm{~km} / \mathrm{h}$ near Sasquatch Crossing Lodge / Mae's Kitchen and Buckinghorse Lodge and Camp. Also consider speed reduction from $100 \mathrm{~km} / \mathrm{h}$ to $80 \mathrm{~km} / \mathrm{h}$ prior to the $50 \mathrm{~km} / \mathrm{h}$ speed warning signs approaching the Sikanni River Bridge (see Section 10.1.3 for further discussion). Use oversized speed zone signs at these locations.
6. General: new painted lane lines, particularly south of Aitken Creek Road (LKI 1180, km 57.07).
7. More detailed operational analysis should be conducted to determine if acceleration and/or deceleration lanes would be beneficial at rest and service areas:

- Wonowon Esso
- Pink Mountain Store
- Sasquatch Crossing Lodge / Mae's Kitchen
- Buckinghorse Lodge and Camp

10.1.1 Passing Lane Locations for Short to Medium-Term Consideration (1 to 10 years)

Section 9.5 identifies guidelines for determining if passing lanes should be considered for stretches of two-lane highways. There are currently only 2 passing lanes (1 northbound and 1 southbound at Sikanni River Bridge) over the entirety of the 200 km study corridor. MoTI has announced the addition of a northbound passing lane at Mile 63 Road / Evergreen Road, to be constructed in 2015.

It is important to note that all proposed passing lane locations are approximations, and precise locations would be determined during the detailed design phase.

It is recommended that additional passing lanes be considered in the short to medium term within the southern segment (LKI 1180, km 9.96 to 59.60) of the corridor. This segment has the highest AADT (existing and future), highest collision history along the corridor, substantial potential for vehicular platoons, long distances of no-passing zone lengths, and/or low levels of service. Of the passing lanes analyzed above, Table 33 and Figure 18 (on page 86) show the passing lanes recommended for implementation in the short to medium-term (1 to 10 years):

Table 33 Passing Lane Locations for Short to Medium-term Consideration

Segment	LKI	Location	Study Section	Rationale
Northbound Passing Lanes				
1180	27.3-29.5	Evergreen Road	2	- Improve LOS - Relatively high AADT - Reduce platooning - In Section 2, $2^{\text {nd }}$ highest number of collisions in 5year period - 2 fatal collisions
1180	41.5-43.9	South of Beatton River Airport Road	4	- Improve LOS - Relatively high AADT - Reduce platooning
1180	68.5-70.5	South of Inga Lake Road	8	- Improve LOS - Provide passing opportunity in rolling terrain - Reduce platooning - Increase safety (section with highest number of collisions in 5 year study period)
1183	19-21.2	South of Tommy Lakes Road	10	- Provide passing opportunity in rolling terrain - Reduce platooning - Approximately 36 km north and 12 km south of closest proposed passing lanes
Southbound Passing Lanes				
1180	20-17.5	South of Stoddart Creek Road	1	- Improve LOS - Relatively high AADT - Reduce platooning
1180	35.6-33.6	South of Lower Cache Road	4	- Improve LOS - Relatively high AADT - Grade change (incline)
1180	51.2-48.7	North of Beatton River Airport Road	7	- Improve LOS - Relatively high AADT - Reduce platooning - Approximately 13 km north and 18 km south of closest proposed passing lanes
1180	71.2-69.2	South of Inga Lake Road	8	- Improve LOS - Provide passing opportunity in rolling terrain - Reduce platooning - Increase safety (section with highest number of collisions in 5 year study period)

10.1.2 Lighting

Because this is a rural corridor, there is limited lighting along the roadway and at intersections. As mentioned in Item 4, above, when considering lighting improvements, it is important to:

- Prioritize intersections in the southern section of LKI 1180
- Prioritize rest area / service accesses / lodging

Additional lighting at intersections and busy access points, where warranted, combined with improved signing (mentioned above), will provide drivers with additional time to make decisions and additional warning of the possibility of vehicles entering and exiting the highway. Lighting will also allow drivers to see upcoming intersections prior to arrival and potentially before signage is apparent.

McEIhanney

As noted in Section 9.12, there is no power currently provided north of Wonowon, which limits the opportunities for lighting in LKI 1183, as it may be costly and difficult to implement.

The addition of lighting at some of the locations discussed below can be combined with the addition of proposed passing lanes.

LKI 1180 (km 9.96 to km 59.60)

The southern segment of LKI 1180 supports the highest volumes along the corridor. This portion of the roadway also has more accesses per kilometre and higher collision frequency than the northern LKI 1180 segment and LKI segment 1183. In the southern segment of LKI 1180, lighting is recommended at:

- Highway 97 / Stoddart Creek Road (in conjunction with installation of the southbound passing lane)
- Highway 97 / Evergreen Road (in conjunction with the construction of the Evergreen Road northbound passing lane announced by MoTI)
- Highway 97 / Red Creek Road (in conjunction with the construction of the Evergreen Road northbound passing lane announced by MoTI)
- Highway 97 / Lower Cache Road
- Highway 97 / Aitken Creek Road

LKI 1180 (km 59.60 to km 87.90)

There are three intersections in the northern segment of LKI 1180 that would benefit from additional lighting. While no fatal collisions occurred along this portion of the corridor, 25 collisions occurred between Inga Lake Road and Wonowon. This is the fourth highest number of collisions along sections of the roadway. Lighting is recommended at the following locations along the northern segment of LKI 1180:

- Highway 97 / Kitt Road
- Highway 97 / Inga Lake Road
- Highway 97 / Upper Halfway Road

It should be noted that there is lighting provided around the Wonowon Esso access points.

LKI 1183 (km 0.00 to km 118.16)

LKI 1183 has a lower AADT than LKI 1180 but could still benefit from additional lighting at strategic locations. In addition to lighting at intersections, three service areas are located along this portion of the corridor. The service areas have higher volumes of vehicles (and heavy vehicles) entering and exiting the highway and are areas of potential speed reductions (speeds are already reduced in the Pink Mountain Store area). Lighting is recommended at the following locations along LKI 1183. It is a noted constraint that there is currently no power provided along the roadway in this area, which could make lighting difficult and costly to install.

Service Locations:

- Pink Mountain Store
- Sasquatch Crossing Lodge
- Buckinghorse Camp and Lodge

These locations provide services similar to the Wonowon Esso. For consistency along the corridor and to give drivers adequate warning and decision making time, these areas should be easily recognizable and visible from the roadway.

Intersections:

- Highway 97 / Tommy Lakes Road
- Highway 97 / Gundy Road
- Highway 97 / Jedney Road
- Highway 97 / Cypress Creek Road (in conjunction with improved lighting at Pink Mountain Store)
- Highway 97 / Pink Mountain Road (in conjunction with improved lighting at Sasquatch Crossing Lodge)

10.1.3 Speed Limit Reductions

There are two (2) speed limit reductions along the corridor. These are:

- Wonowon Esso - posted speed reduction from $100 \mathrm{~km} / \mathrm{h}$ to $70 \mathrm{~km} / \mathrm{h}$
- Pink Mountain Store - posted speed reduction from $100 \mathrm{~km} / \mathrm{h}$ to $70 \mathrm{~km} / \mathrm{h}$

Because of the number of vehicles entering and exiting the highway and the access provided to roadside services, speed reductions should be considered (if warranted) at the Sasquatch Camp and Lodge and Buckinghorse Camp and Lodge.

Due to the curvilinear alignments and steep grades approaching the Sikanni River Bridge, there are currently $50 \mathrm{~km} / \mathrm{h}$ advisory speed signs along with curve and steep grade warning sign in place. A regulatory speed reduction from $100 \mathrm{~km} / \mathrm{h}$ to $80 \mathrm{~km} / \mathrm{h}$ speed should be considered prior to the $50 \mathrm{~km} / \mathrm{h}$ warning signs. This would provide a gradual speed reduction as approaching the steep grades and curved alignment, which will better assist motorists in negotiating the curves and grades.

After discussions with MoTI about possible speed reductions at these locations, it was determined that the most feasible approach would be to reduce the speed limit from $100 \mathrm{~km} / \mathrm{h}$ to $80 \mathrm{~km} / \mathrm{h}$. A $20 \mathrm{~km} / \mathrm{h}$ drop in speed limit is more appropriate than a sharp $30 \mathrm{~km} / \mathrm{h}$ reduction. Implementation of these reductions will require substantial signage and warnings for drivers, as they will be accustomed to the $100 \mathrm{~km} / \mathrm{h}$ speed limit through these areas.

Additionally, it is recommended that oversized speed signs are installed at these locations and the locations of existing speed reductions, and all speed reduction locations are monitored for driver observance. Without RCMP or CVSE enforcement, many drivers may ignore these slower speeds, which could decrease safety in these areas. MoTI and PWGSC to discuss, coordinate and work with the enforcement agencies to determine if speed enforcement is required, especially if speeding becomes an issue.

10.2 Long Term Opportunities (10+ years)

The following improvements are recommended for the long-term because they do not serve an immediate need, may require detailed planning and design prior to implementation, and may have a higher cost. They should be pursued as opportunities or funding arise:

1. Install additional passing lanes to develop a system of passing lanes to meet the 2039 traffic demand (see Section 10.2.1 for further discussion)
2. Signalize Highway 97 / Highway 29 intersection (see discussion in Section 10.2.3)
3. Relocate / redesign inspection station at Highway 29 / Highway 97 intersection
4. General: new painted lane lines, in conjunction with regular MoTI maintenance

10.2.1 Passing Lane Locations for Long Term Consideration (10+ years)

Table 34 and Figure 19 (on page 91) identify the potential passing lanes recommended as longer term improvements (10+ years). These improvements will ultimately create a system of passing lanes to meet the 2039 traffic demand.

Table 34 Passing Lane Locations for Long-term Consideration

Segment	LKI	Location	Study Section	Rationale
Northbound Passing Lanes				
1180	17.6-19.6	248 Road	1	- Improve LOS - Relatively high AADT
1180	33.8-35.2	Becker Hill Road	4	- Improve LOS - Should not be implemented until AADT approaches 7,000 . Otherwise, this passing lane will be too close to adjacent passing lanes, according to TAC design guidelines
1180	55-57.5	South of Aitken Creek Road	8	- Improve LOS - Provide passing opportunity in rolling terrain - Reduce platooning - Increase safety (section with highest number of collisions in 5 year study period) - Approximately 11 km north and 50 km south of closest proposed passing lanes
1183	35.8-38.3	South of Jedney Road	10	- Provide passing opportunity between Wonowon and Pink Mountain service areas - Grade change (incline) - Area with over 2 km of no-passing
Southbound Passing Lanes				

- Improve LOS
- Reduce platooning

1180 82.2-80.2 North of Upper Halfway Road 9
14.9-12.9 North of 109 Road

1183
40.5-38.5 North of Jedney Road

1183
55-52.6 North of 135 Road
12

- Provide passing opportunity in rolling terrain
- Provide passing opportunity exiting the Wonowon service area / reduced speed zone area
- Provide passing opportunity in rolling terrain
- Approximately 19 km north and 38 km south of closest proposed passing lanes
- Section of roadway with no conflicting accesses
- Improve LOS
- Provide passing opportunity between

Wonowon and Pink Mountain service areas

- Grade change (incline)
- Area with over 3 km of no-passing
- Improve LOS
- Approximately 24 km north of closest proposed passing lane and 40 km south of existing SB passing lane at Sikanni River Bridge

There were 20 potential passing lanes (10 northbound and 10 southbound) analyzed to help improve roadway LOS in the future, reduce platooning, allow for passing opportunities in rolling terrain, and provide passing in areas with limited existing opportunities. In addition to the Mile 63 / Evergreen Road northbound passing lane, announced by MoTI, 7 passing lanes (3 northbound and 4 southbound) are recommended for implementation by 2024 (short to medium-term). Eight (8) others (4 northbound and 4 southbound) are recommended for longterm consideration. Upon completion, these passing lanes would create a system of 9 northbound passing
lanes, including the Mile 63 / Evergreen Road passing lane and the existing passing lanes at Sikanni River Bridge, and 9 southbound passing lanes, including the existing passing lane at the Sikanni River Bridge. Section 10.2.2 discusses the passing lanes that were analyzed but not selected for implementation.

Analysis results show that this system of passing lanes will improve roadway LOS along the corridor. HCS software does not have the capability to show the impact of a passing lane on an adjacent roadway section that does not have a passing lane; however, the percentage of time spent following will decrease with the addition of passing lanes, thereby improving LOS of adjacent roadway sections.

10.2.2 Passing Lanes Not Recommended

There are no passing lanes recommended north of the Sikanni River Bridge because the AADT is anticipated to remain below 2,000 vehicles and roadway operations are expected to continue to operation at high levels of service (LOS A or B) into the future.

As can be seen in Tables 22, 33, and 34, 20 possible passing lanes were analyzed, but only 16 are recommended (including the Mile 63 / Evergreen Road passing lane). Of the potential passing lanes, the following 4 are not currently recommended:

- Northbound
- North of Beatton River Road (LKI 1180, 45.5-48.3) - too close to recommended passing lane South of Beatton River Road.
- South of Gundy Road (LKI 1183, 28-30.4) - too close to passing lanes recommended South of Tommy Lakes Road and South of Jedney Road. This section of roadway is anticipated to benefit from both of these adjacent passing lanes.
- Southbound
- South of Aitken Creek Road (LKI 1180, 56.4-54.5) - too close to recommended passing lane North of Beatton River Road.
- North of 138 Road (LKI 1183, 57.5-55) - adjacent to recommended passing lane North of 135 Road. Analysis showed that this passing lane would not improve the roadway LOS along this roadway section as much as the 135 Road passing lane would. This section is anticipated to benefit from the installation of the North of 135 Road passing lane.

These passing lanes are not currently recommended because of their proximity to other proposed passing lanes, according to TAC design guidelines, and anticipation that these roadway sections may experience indirect improvements with the installation of passing lanes in adjacent roadway sections.

10.2.3 Signalization of Highway 97 / Highway 29

A sensitivity test and signal warrant analysis was performed for the intersection of Highway 97 and Highway 29. As stated in the Section 9.3, based on sensitivity testing, it is estimated that during the PM peak hour, the period of highest volumes at this location, the following level of service decline is expected:

- Westbound (worst movement) will decrease from LOS D to E in 2015 (1 year)
- Westbound will decrease from LOS E to F in 2019 (5 years)
- Eastbound will decline from LOS D to E in 2033 (19 years)
- Eastbound will decline from LOS E to F in 2037 (23 years)

McElhanney

Transportation Association of Canada (TAC) signal warrant analysis is based on an average of the 6-hour peak turning movement volumes. A TAC signal warrant analysis was conducted in 5 year increments from 2014 to 2039; it determined that a signal would be warranted between 2034 and 2039. Signal warrant analysis results can be found in Appendix I.

In addition to the TAC signal warrant, a full MoTI signal warrant analysis was conducted at this intersection using both existing (2014) volumes and projected 2039 volumes. Based on 2014 volumes, 2 of 9 MoTI warrants were met. Based on the results of both TAC and MoTI signal warrant analysis, a signal may not be warranted at this location under current conditions.

With Future 2039 volumes, 7 of 9 MoTI warrants are met. In conjunction with the results of the TAC signal warrant analysis, a signal at the Highway 97 / Highway 29 intersection could be considered by 2039. The results of the MoTI signal warrant analysis can also be found in Appendix I.

Signalization of Highway 97 / Highway 29 will allow the intersection to operate at LOS B overall and LOS C at the minor movements during the PM peak period in 2039 with the current lane configuration. Signalization would help maintain relatively low collision frequency and severity at the intersection.

Based on sensitivity testing and signal warrant analysis, signal installation should be considered in the long term, if warranted, and if it is consistent with the Highway 97 corridor strategy. Because sensitivity testing showed a decline in westbound level of service to LOS F in 5 years, it is recommended that this intersection be regularly monitored and a signal installed prior to 2034, should conditions require it. Other mitigations besides a signal could be considered at this intersection; however, analysis results show that the installation of a signal, while maintaining the current lane configuration, would improve LOS to acceptable levels in the future.

Any improvements made at this intersection should be coordinated with improvements to or relocation of the inspection station.

11 Cost Benefit Analysis

The Wolski Cost Estimating Methodology (Wolski) was used to prepare the cost estimate for the recommended passing lanes described in Sections 7.7, 10.1.1 and 10.2.1. According to Wolski, the typical precision range for conceptual level cost estimation varies from -25% to $+75 \%$ as summarized below in Table 35. A detailed table of the estimated costs can be found in Appendix J.

Table 35 Summary of Wolski Cost Estimate

Passing Lane	Segment and Approximate	Cost Range		
	LKI	Lower	Estimated	Upper

Passing Lanes for Short to Medium-term Consideration

Northbound Passing Lanes

$\left.\begin{array}{|l|l|l|l|l|}\hline \text { South of Beatton River Airport Road } & 1180, & 41.5-43.9 & \$ 1.99 \mathrm{M} & \$ 2.65 \mathrm{M} \\ \hline \text { South of Inga Lake Road } & 1180, & \$ 1.72 \mathrm{M} & \$ 2.29 \mathrm{M} & \$ 4.64 \mathrm{M} \\ \hline \text { South of Tommy Lakes Road } & 68.5-70.5 & 1183, & \$ 1.86 \mathrm{M} & \$ 2.47 \mathrm{M}\end{array}\right] \$ \$ 4.33 \mathrm{M}$

Southbound Passing Lanes

South of Stoddart Creek Road	1180, $20-17.5$	$\$ 2.09 \mathrm{M}$	$\$ 2.78 \mathrm{M}$	$\$ 4.87 \mathrm{M}$
South of Lower Cache Road	1180,	$\$ 1.56 \mathrm{M}$	$\$ 2.07 \mathrm{M}$	$\$ 3.63 \mathrm{M}$
North of Beatton River Airport Road	1180,			
South of Inga Lake Road	$51.2-48.7$	$\$ 1.92 \mathrm{M}$	$\$ 2.56 \mathrm{M}$	$\$ 4.49 \mathrm{M}$

Passing Lanes for Long-term Consideration

Northbound Passing Lanes

248 Road	$\begin{aligned} & 1180, \\ & 17.6-19.6 \end{aligned}$	\$1.72 M	\$2.29 M	\$4.00 M
Becker Hill Road	$\begin{aligned} & 1180, \\ & 33.8-35.2 \end{aligned}$	\$1.56 M	\$2.07 M	\$3.63 M
South of Aitken Creek Road	$\begin{aligned} & 1180 \\ & 55-57.5 \end{aligned}$	\$1.92 M	\$2.56 M	\$4.49 M
South of Jedney Road	$\begin{aligned} & \text { 1183, } \\ & 35.8-38.3 \end{aligned}$	\$2.24 M	\$2.99 M	\$5.23 M
Southbound Passing Lanes				
North of Upper Halfway Road	$\begin{aligned} & 1180, \\ & 82.2-80.2 \end{aligned}$	\$1.99 M	\$2.65 M	\$4.64 M
North of 109 Road	$\begin{aligned} & \text { 1183, } \\ & 14.9-12.9 \end{aligned}$	\$1.71 M	\$2.28 M	\$4.00 M
North of Jedney Road	$\begin{aligned} & 1183 \\ & 40.5-38.5 \end{aligned}$	\$2.95 M	\$3.94 M	\$6.89 M
North of 135 Road	$\begin{aligned} & 1183, \\ & 55-52.6 \end{aligned}$	\$1.92 M	\$2.56 M	\$4.48 M

11.1 ShortBen Assumptions

ShortBEN is a high level Benefit Cost Analysis tool used by MoTI to estimate the potential benefit of proposed improvement options. It is a spreadsheet-based benefit-cost model used for preliminary evaluation of highway projects. It follows a typical benefit-cost framework where project and cost data for a base and proposed case is entered and then the model calculates a benefit/cost ratio and net present value based on the incremental benefits and costs. The input data includes:

- Project cost
- Traffic volumes
- Project length (travel distance)
- Speed and delay
- Collision rates
- Unit cost for time, fuel, and collisions

For the most part, the ShortBEN default values were used for this study, but the following were modified:

- Engineering costs were assumed to be 10% of the total cost
- Maintenance cost of $\$ 5,000$ ($\$ /$ Lane-km) was used, due to remote location, instead of the default \$3,839 (\$/ Lane-km)
- Resurfacing cost of $\$ 75,000$ ($\$ /$ Lane-km) was used, due to remote location, instead of the default \$60,000 (\$/ Lane-km)
- A 6\% discount rate was applied to translate future costs into present values (this is a MoTI default)
- 30% contingency included in cost estimates.

The default collision costs in ShortBEN were accepted. These values are:

- Fatal = \$6.38 M
- \quad Injury $=\$ 0.135 \mathrm{M}$
- Property Damage Only (PDO) = \$0.011 M

The default collision severity proportions for Highway Class RAU2 (undivided, two-lane, rural arterial) were used.

11.2 Safety Improvements

The base-case collision rate was calculated based on observed collisions from the CIS database, expressed as observed collisions per million vehicle kilometers. The proposed options were analyzed for relative safety improvements by applying Collision Modification Factors (CMFs) to existing collision data. CMFs are empirically derived factors used to estimate the change in collision frequency, attributed to specific countermeasures (i.e. changes in intersection geometry, signals or other element) at a specific location. The CMF selected, from the BC MoTI Collision Modification Factors Manual (2008), is for installing a passing lane at a two-lane, rural highway. The CMF value is 0.75 , indicating a 25% reduction of all collision types.

11.3 ShortBEN Results

All costs, such as construction, maintenance and resurfacing costs, were entered into the ShortBEN worksheet, along with traffic volumes and collision rates. ShortBEN analysis results are based on benefits accrued over the 25 -year period. Table 36 summarizes key results for the study area. ShortBEN worksheets are located in Appendix K.

Table 36 Benefit / Cost Summary

Passing Lanes for Short to Medium-term Consideration
Northbound Passing Lanes

South of Beatton River Airport Road	1180,			
South of Inga Lake Road	$11.5-43.9$	$\$ 2.65 \mathrm{M}$	$\$ 0.84 \mathrm{M}$	1.49
South of Tommy Lakes Road	$68.5-70.5$	$\$ 2.29 \mathrm{M}$	$\$ 0.70 \mathrm{M}$	1.46

Southbound Passing Lanes

South of Stoddart Creek Road	$\begin{aligned} & 1180, \\ & 20-17.5 \end{aligned}$	\$2.78 M	\$2.56 M	2.45
South of Lower Cache Road	$\begin{aligned} & 1180, \\ & 35.6-33.6 \end{aligned}$	\$2.07 M	\$1.61 M	2.19
North of Beatton River Airport Road	$\begin{aligned} & 1180 \\ & 51.2-48.7 \end{aligned}$	\$2.56 M	\$2.01 M	2.26
South of Inga Lake Road	$\begin{aligned} & 1180, \\ & 71.2-69.2 \end{aligned}$	\$2.17 M	\$2.53 M	2.77

Passing Lanes for Long-term Consideration

Northbound Passing Lanes

248 Road	$\begin{aligned} & 1180 \\ & 17.6-19.6 \end{aligned}$	\$2.29 M	\$1.37 M	1.90
Becker Hill Road	$\begin{aligned} & 1180, \\ & 33.8-35.2 \end{aligned}$	\$2.07 M	\$1.98 M	2.46
South of Aitken Creek Road	$\begin{aligned} & 1180, \\ & 55-57.5 \end{aligned}$	\$2.56 M	\$0.67 M	1.42
South of Jedney Road	$\begin{aligned} & 1183, \\ & 35.8-38.3 \end{aligned}$	\$2.99 M	-\$0.26 M	0.87
Southbound Passing Lanes				
North of Upper Halfway Road	$\begin{aligned} & 1180, \\ & 82.2-80.2 \end{aligned}$	\$2.65 M	\$1.24 M	1.69
North of 109 Road	$\begin{aligned} & 1183, \\ & 14.9-12.9 \end{aligned}$	\$2.28 M	\$0.62 M	1.41
North of Jedney Road	$\begin{aligned} & 1183 \\ & 40.5-38.5 \end{aligned}$	\$3.94 M	-\$0.79 M	0.72
North of 135 Road	$\begin{aligned} & 1183, \\ & 55-52.6 \end{aligned}$	\$2.56 M	\$0.55 M	1.34

A benefit cost ratio (B / C) of greater than 1 suggests that the benefits outweigh their respective costs. Based on the information provided in Table 36, the benefits outweigh the costs for all of the recommended passing lanes, except the northbound passing lane south of Jedney Road and the southbound passing lane north of Jedney Road due to relatively high costs associated with their implementation (i.e. necessary rock cuts).

The cost of the two proposed passing lanes near Jedney Road exceed the benefit, based on the ShortBEN analysis. However, this section of roadway has grade changes (inclines) where the passing lanes are proposed and very few passing opportunities in the vicinity. The addition of these passing lanes would reduce platoons in the area and provide passing opportunities between the Wonowon and Pink Mountain service areas, which have high heavy vehicle traffic and reduced speed zones. Providing passing lanes in this vicinity will likely decrease driver frustration, which would reduce risky driving behaviours. Additionally, both of these passing lanes are recommended for long-term consideration. Monitoring of this roadway section will help determine when, over the next 25 years, these passing lanes may be beneficial.

12 Staging

In addition to being recommended for short to medium-term or long-term implementation, each recommended passing lane has been giving a priority ranking for implementation.

Table 37 summarizes the priority ranking for passing lanes identified for short to medium-term implementation, and Table 38 summarizes the priority ranking for passing lanes identified for long-term implementation.

Projects identified in the short to medium-term are generally in the areas of high traffic volumes, low levels of service, and higher collision rates, which require more immediate attention. This is also true for the higher priority passing lane projects identified in the long-term recommendations.

It is important to note that industry activities in the area may vary, which could affect future traffic conditions, which could alter the timing and implementation of some of the proposed passing lanes and other improvements. It is recommended that traffic conditions are monitored to assess traffic projections and determine appropriate timing for the suggested improvements.

Table 37 Staging Recommendations for Passing Lane Locations for Short to Medium-term Consideration

Priority	Segment LKI	Location	Passing Lane Direction	Rationale	Cost
1	$\begin{aligned} & 1180 \\ & 20-17.5 \end{aligned}$	South of Stoddart Creek Road	Southbound	- Improve LOS - Highest roadway section AADT - Reduce platooning - In southern LKI Segment 1180 (highest collision rate along study corridor) - Within study section 1 , with $3^{\text {rd }}$ highest \# of collisions along study corridor	\$2.78 M
2	$\begin{aligned} & \text { 1180, } \\ & 41.5-43.9 \end{aligned}$	South of Beatton River Airport Road	Northbound	- Improve LOS - Relatively high AADT - Reduce platooning - In southern LKI Segment 1180 (highest collision rate along study corridor)	\$2.65 M
3	$\begin{aligned} & 1180, \\ & 51.2-48.7 \end{aligned}$	North of Beatton River Airport Road	Southbound	- Improve LOS - Relatively high AADT - Reduce platooning - Approximately 13 km north and 18 km south of closest proposed passing lane - In southern LKI Segment 1180 (highest collision rate along study corridor)	\$2.56 M
4	$\begin{aligned} & 1180, \\ & 35.6-33.6 \end{aligned}$	South of Lower Cache Road	Southbound	- Improve LOS - Relatively high AADT - Grade change (incline) - In southern LKI Segment 1180 (highest collision rate along study corridor)	\$2.07 M
5	$\begin{aligned} & \text { 1180, } \\ & 71.2-69.2 \end{aligned}$	South of Inga Lake Road	Southbound	- Improve LOS - Provide passing opportunity in rolling terrain - Provide passing opportunity as exiting Wonowon service area / reduced speed zone - Reduce platooning - Within study section 8 , with highest \# of collisions along study corridor	\$2.17 M
6	$\begin{aligned} & \text { 1180, } \\ & 68.5-70.5 \end{aligned}$	South of Inga Lake Road	Northbound	- Improve LOS - Provide passing opportunity in rolling terrain - Provide passing opportunity as approaching Wonowon service area - Reduce platooning - Within study section 8 , with highest \# of collisions along study corridor	\$2.29 M
7	$\begin{aligned} & \text { 1183, } \\ & \text { 19-21.2 } \end{aligned}$	South of Tommy Lakes Road	Northbound	- Provide passing opportunity in rolling terrain - Reduce platooning - Approximately 36 km north and 12 km south of closest proposed passing lane	\$2.47 M

Table 38 Staging Recommendations for Passing Lane Locations for Long-term Consideration

Priority	Segment LKI	Location	Passing Lane Direction	Rationale	Cost
1	$\begin{aligned} & \text { 1180, } \\ & 17.6-19.6 \end{aligned}$	248 Road	Northbound	- Improve LOS - Highest roadway section AADT - In southern LKI Segment 1180 (highest collision rate along study corridor) - Within study section 1, with 3 rd highest \# of collisions	\$2.29 M
2	$\begin{aligned} & 1180, \\ & 55-57.5 \end{aligned}$	South of Aitken Creek Road	Northbound	- Improve LOS - Provide passing opportunity in rolling terrain - Reduce platooning - Approximately 11 km north and 50 km south of closest proposed passing lane - In southern LKI Segment 1180 (highest collision rate along study corridor) - Within study section 8 , with highest \# of collisions along study corridor	\$2.56 M
3	$\begin{aligned} & 1180, \\ & 82.2-80.2 \end{aligned}$	North of Upper Halfway Road	Southbound	- Improve LOS - Reduce platooning - Provide passing opportunity in rolling terrain - Provide passing opportunity as exiting Wonowon service area / reduced speed zone - Within roadway section $9,4^{\text {th }}$ highest $\#$ of collisions along study corridor	\$2.65 M
4	$\begin{aligned} & 1183, \\ & 14.9-12.9 \end{aligned}$	North of 109 Road	Southbound	- Provide passing opportunity in rolling terrain - Reduce platooning as approaching Wonowon service area - Approximately 19 km north and 38 km south of closest proposed passing lane - Section of roadway with no conflicting accesses	\$2.28 M
5	$\begin{aligned} & 1183, \\ & 55-52.6 \end{aligned}$	North of 135 Road	Southbound	- Improve LOS - Reduce platooning upon exiting Pink Mountain service area - Approximately 24 km north of closest proposed passing land and 40 km south of existing SB passing lane at Sikanni River Bridge	\$2.56 M
6	$\begin{aligned} & 1183 \\ & 40.5-38.5 \end{aligned}$	North of Jedney Road	Southbound	- Provide passing opportunity between Wonowon and Pink Mountain service areas - Grade change (incline) - Area with over 3 km of no-passing	\$3.94 M
7	$\begin{aligned} & \text { 1183, } \\ & 35.8-38.3 \end{aligned}$	South of Jedney Road	Northbound	- Provide passing opportunity between Wonowon and Pink Mountain service areas - Grade change (incline) - Area with over 2 km of no-passing	\$2.99 M
8	$\begin{aligned} & 1180, \\ & 33.8-35.2 \end{aligned}$	Becker Hill Road	Northbound	- Improve LOS - Should not be implemented until AADT reaches approximately 7,000 . Otherwise, this passing lane will be too close to adjacent, recommended passing lanes, according to TAC spacing guidelines	\$2.07 M

13 Summary

The purpose of this study is to provide recommendations for improving the quality of service and safety along the Alaska Highway (Highway 97) corridor between Charlie Lake Crescent (north of Fort St. John) and the Buckinghorse River. Existing (2014) and Future (2039) traffic operations and safety were analyzed for this 196.1 km stretch of Highway 97.

The study area is comprised of 196.1 km along Highway 97 and has been divided into 3 Landmark Kilometre Index (LKI) segments:

LKI Segment 1180, km 9.96 (Charlie Lake Crescent)
to km 59.60 (North Peace Maintenance Jurisdiction)
Length $=49.64 \mathrm{~km}$ (Provincial jurisdiction)
LKI Segment 1180, km 59.60 (North Peace \quad Length $=28.3 \mathrm{~km}$ (Federal jurisdiction)
Maintenance Jurisdiction) to km 87.90 (Wonowon) \quad (Fer
LKI Segment 1183, km 0.00 (Wonowon) to km
118.16 (Buckinghorse River Bridge)

This study evaluated passing opportunities, intersection operations, roadway section operations, and safety. As part of this study, 21 study intersections and 17 roadway sections were analyzed.

A site visit of the Alaska Highway corridor was conducted on August 20, 2014, to evaluate the existing conditions of the corridor. In conjunction with operations and safety analysis, site observations were used to determine improvements along the corridor.

Heavy Vehicles

Highway 97 carries a high percentage of heavy vehicles. During the peak hours, heavy vehicles constituted approximately 20% to 35% of the total traffic on the roadway. The presence of this many heavy vehicles leads to a high frequency of platoons. Platoons indicate the need for additional, safe, opportunities to allow vehicles to pass slower moving vehicles to break up platoons and reduce driver frustrations.

Roadway Analysis and Passing Lanes

Seventeen (17) roadway sections were analyzed for Existing (2014) and Future (2039) conditions. There is a clear commuting direction on the roadway; the commuting direction is northbound in the AM and southbound in the Mid-day and PM peak hours. Sections operating at LOS C or D during peak hours could be considered for the addition of passing lanes, if they also meet other criteria. Not all sections operating at LOS C or D are good candidates for passing lanes; however, adjacent passing lanes may improve roadway operations along sections without passing lanes.

Currently, approximately 40 to 55% of the length of each roadway segment provides passing opportunities; however, some of these passing zone lengths do not meet the minimum 400 m length recommended by MoTl guidelines for the $100 \mathrm{~km} / \mathrm{h}$ posted speed limit. However, those passing zone lengths less than 400 m may have met the recommended standards at the time of installation.

There is one northbound and one southbound passing lane in place near Sikanni River Bridge. MoTI has announced the construction of a passing lane, northbound, at Mile 63 / Evergreen Road. This study analyzed 20 possible passing lanes (including Mile 63 / Evergreen Road passing lane), and in all cases, the roadway operations improved with the addition of the passing lane. Ultimately 16 of the 20 potential passing lanes were recommended for implementation.

McElhanney

Passing lane locations should be determined based on level of service, AADT, terrain, adjacency to other passing lanes, the length of no-passing zones in the area, and other roadway characteristics (such as number of access or frequent platoons). All potential passing lane locations mentioned in this study are approximations, and the precise location of any new passing lane will be determined during the detailed design phase.

Intersection Analysis

Twenty-one (21) intersections were analyzed as part of this study for Existing (2014) and Future (2039) conditions. Intersection operations analysis showed that all of the study intersections would operate at LOS C or better under all conditions, except the intersection of Highway 97 and Highway 29. In the future, this intersection is expected to operate at LOS F, and signalization may be required to improve service levels.

Safety Analysis

Two methodologies were used to analyze safety along the corridor and at the study intersections. Traditional safety analysis results of the 5 year period (2009-2013) showed that, for the most part, the collisions occurring along the corridor at the study intersections are within the average severity and frequency as compared to other similar roadways and intersections around the Province. In some cases, the data is slightly skewed because of a low number of collisions. The Collision Prediction Model (CPM) method also concluded that the roadway sections and intersections are not considered collision prone.

Short to Medium-term and Long-term Recommendations

Based on the site visit, collaboration with MoTI and PWGSC, traffic analysis, and collision analysis, a number of problems have been identified in this report and potential improvements recommended. The focus of these improvements is on providing additional passing opportunities through the corridor. Over the next 25 years, a system of 16 passing lanes (8 northbound and 8 southbound) is recommended. Other improvements include: lighting at major intersections and rest and service areas, if warranted; speed reductions and enforcement at rest and service areas; verification that all signage meets MoTI guidelines and additional signage at key locations; and repainting pavement markings.

A cost/benefit analysis, using ShortBEN methodology, was used to determine the feasibility of the proposed passing lanes. For all of the passing lanes, except the 2 near Jedney Road, the benefit outweighs the cost of implementation.

It is not feasible or necessary to implement all of the proposed improvements immediately. The improvements have been recommended for short to medium-term (1 to 10 years) and long-term ($10+$ years) consideration, prioritizing areas of high traffic volumes, low levels of service, and higher collision rates. Passing lanes have also been prioritized within the short to medium-term and long-term recommendations. Prior to implementation, all potential passing lane locations should be monitored for increased traffic volumes and other changes in traffic conditions.

Changes in industry demand and growth in the area can change the timing and priority of the recommended improvements. Traffic projections are estimations and traffic volumes should be monitored to determine appropriate timing for all recommended improvements. It should be noted that all passing lane locations are approximations, and the exact location will be identified during the detailed design phase. Additionally, all improvements are subject to funding, priority, and programming as determined by MoTI and PWGSC.

In summary, there are a number of issues that have been identified along the Alaska Highway 97 corridor, from Charlie Lake Crescent to Buckinghorse River Bridge, that affect traffic operations and safety, but these issues can be remedied, over the next 25 years, with the proposed improvements. These improvements are anticipated to improve both traffic operations and safety though the corridor.

Appendix A: September 2014 Traffic Volume Count Data

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Beatton River Airport Rd to Buick Site Code: 7
Start Date: 2014/09/17
Page No: 1

Turning Movement Data

Hourly Total	11	181	0	0	192	38	1	0	0	39	92	10	0	0	102	333
06:00 PM	2	53	0	0	55	10	0	0	0	10	21	3	0	0	24	89
06:15 PM	3	52	0	0	55	7	1	0	0	8	18	3	0	0	21	84
06:30 PM	1	77	0	0	78	12	0	0	0	12	27	6	0	0	33	123
06:45 PM	1	78	0	0	79	5	1	0	0	6	24	3	0	0	27	112
Hourly Total	7	260	0	0	267	34	2	0	0	36	90	15	0	0	105	408
07:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	44	1038	0	0	1082	194	21	0	0	215	1117	186	0	0	1303	2600
Approach \%	4.1	95.9	0.0	-	-	90.2	9.8	0.0	-	-	85.7	14.3	0.0	-	-	-
Total \%	1.7	39.9	0.0	-	41.6	7.5	0.8	0.0	-	8.3	43.0	7.2	0.0	-	50.1	-
Lights	13	637	0	-	650	116	7	0	-	123	697	125	0	-	822	1595
\% Lights	29.5	61.4	-	-	60.1	59.8	33.3	-	-	57.2	62.4	67.2	-	-	63.1	61.3
Mediums	8	132	0	-	140	30	3	0	-	33	134	16	0	-	150	323
\% Mediums	18.2	12.7	-	-	12.9	15.5	14.3	-	-	15.3	12.0	8.6	-	$-$	11.5	12.4
Articulated Trucks	23	269	0	-	292	48	11	0	-	59	286	45	0	-	331	682
\% Articulated Trucks	52.3	25.9	-	-	27.0	24.7	52.4	-	-	27.4	25.6	24.2	-	-	25.4	26.2
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	\cdot	-	-	-	-	-	\checkmark	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Beatton River Airport Rd to Buick Site Code: 7
Start Date: 2014/09/17
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Beatton River Airport Rd to Buick Site Code: 7

09/17
250-819-2527 paul@peaktraffic.ca
Page No: 4

Start Time	Turning Movement Peak Hour Data (07:00 AM)															
	Alaska Hwy 97					Beatton R. Airport Rd.					Alaska Hwy 97					Int. Total
	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	
07:00 AM	0	7	0	0	7	1	1	0	0	2	60	12	0	0	72	81
07:15 AM	1	25	0	0	26	4	0	0	0	4	59	21	0	0	80	110
07:30 AM	0	9	0	0	9	5	0	0	0	5	72	27	0	0	99	113
07:45 AM	1	21	0	0	22	2	0	0	0	2	69	18	0	0	87	111
Total	2	62	0	0	64	12	1	0	0	13	260	78	0	0	338	415
Approach \%	3.1	96.9	0.0	-	-	92.3	7.7	0.0	-	-	76.9	23.1	0.0	-	-	-
Total \%	0.5	14.9	0.0	-	15.4	2.9	0.2	0.0	-	3.1	62.7	18.8	0.0	-	81.4	-
PHF	0.500	0.620	0.000	-	0.615	0.600	0.250	0.000	-	0.650	0.903	0.722	0.000	-	0.854	0.918
Lights	1	34	0	-	35	5	0	0	-	5	157	50	0	-	207	247
\% Lights	50.0	54.8	-	-	54.7	41.7	0.0	-	-	38.5	60.4	64.1	-	-	61.2	59.5
Mediums	0	5	0	-	5	2	0	0	-	2	35	8	0	-	43	50
\% Mediums	0.0	8.1	-	-	7.8	16.7	0.0	-	-	15.4	13.5	10.3	-	-	12.7	12.0
Articulated Trucks	1	23	0	-	24	5	1	0	-	6	68	20	0	-	88	118
\% Articulated Trucks	50.0	37.1	-	-	37.5	41.7	100.0	-	-	46.2	26.2	25.6	-	-	26.0	28.4
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	\checkmark	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\cdot

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Beatton River Airport Rd to Buick Site Code: 7
Start Date: 2014/09/17
Page No: 5

Turning Movement Peak Hour Data Plot (07:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Beatton River Airport Rd to Buick Site Code: 7

4/09/17
250-819-2527 paul@peaktraffic.ca
Page No: 6

Start Time	Turning Movement Peak Hour Data (11:00 AM)															
	Alaska Hwy 97					Beatton R. Airport Rd.					Alaska Hwy 97 Northbound					Int. Total
	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	
11:00 AM	0	17	0	0	17	3	1	0	0	4	30	2	0	0	32	53
11:15 AM	2	33	0	0	35	9	3	0	0	12	29	4	0	0	33	80
11:30 AM	0	53	0	0	53	6	0	0	0	6	38	8	0	0	46	105
11:45 AM	3	15	0	0	18	7	0	0	0	7	35	4	0	0	39	64
Total	5	118	0	0	123	25	4	0	0	29	132	18	0	0	150	302
Approach \%	4.1	95.9	0.0	-	-	86.2	13.8	0.0	-	-	88.0	12.0	0.0	-	-	-
Total \%	1.7	39.1	0.0	-	40.7	8.3	1.3	0.0	-	9.6	43.7	6.0	0.0	-	49.7	-
PHF	0.417	0.557	0.000	-	0.580	0.694	0.333	0.000	-	0.604	0.868	0.563	0.000	-	0.815	0.719
Lights	2	56	0	-	58	12	0	0	-	12	76	11	0	\checkmark	87	157
\% Lights	40.0	47.5	-	-	47.2	48.0	0.0	-	-	41.4	57.6	61.1	-	-	58.0	52.0
Mediums	1	12	0	-	13	1	2	0	-	3	17	2	0	-	19	35
\% Mediums	20.0	10.2	-	-	10.6	4.0	50.0	-	-	10.3	12.9	11.1	-	-	12.7	11.6
Articulated Trucks	2	50	0	-	52	12	2	0	-	14	39	5	0	-	44	110
\% Articulated Trucks	40.0	42.4	-	-	42.3	48.0	50.0	-	-	48.3	29.5	27.8	-	-	29.3	36.4
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Beatton River Airport Rd to Buick Site Code: 7
Start Date: 2014/09/17
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Beatton River Airport Rd to Buick Site Code: 7

4/09/17
250-819-2527 paul@peaktraffic.ca
Page No: 8

Start Time	Turning Movement Peak Hour Data (12:00 PM)															
	Alaska Hwy 97					Beatton R. Airport Rd.					Alaska Hwy 97					Int. Total
	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	
12:00 PM	0	30	0	0	30	6	1	0	0	7	20	3	0	0	23	60
12:15 PM	7	23	0	0	30	4	0	0	0	4	30	10	0	0	40	74
12:30 PM	0	38	0	0	38	4	1	0	0	5	19	1	0	0	20	63
12:45 PM	2	35	0	0	37	4	0	0	0	4	27	4	0	0	31	72
Total	9	126	0	0	135	18	2	0	0	20	96	18	0	0	114	269
Approach \%	6.7	93.3	0.0	-	-	90.0	10.0	0.0	-	-	84.2	15.8	0.0	-	-	-
Total \%	3.3	46.8	0.0	-	50.2	6.7	0.7	0.0	-	7.4	35.7	6.7	0.0	-	42.4	-
PHF	0.321	0.829	0.000	-	0.888	0.750	0.500	0.000	-	0.714	0.800	0.450	0.000	-	0.713	0.909
Lights	1	68	0	-	69	12	1	0	-	13	59	10	0	-	69	151
\% Lights	11.1	54.0	-	-	51.1	66.7	50.0	-	-	65.0	61.5	55.6	-	-	60.5	56.1
Mediums	1	15	0	-	16	3	0	0	-	3	8	2	0	-	10	29
\% Mediums	11.1	11.9	-	-	11.9	16.7	0.0	-	-	15.0	8.3	11.1	-	-	8.8	10.8
Articulated Trucks	7	43	0	-	50	3	1	0	-	4	29	6	0	-	35	89
\% Articulated Trucks	77.8	34.1	-	-	37.0	16.7	50.0	-	-	20.0	30.2	33.3	-	-	30.7	33.1
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	\checkmark	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Beatton River Airport Rd to Buick Site Code: 7
Start Date: 2014/09/17
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 50-819-2527 paul@peaktraffic.ca

Count Name: Beatton River Airport Rd to Buick Site Code: 7
ate: 2014/09/17
Page No: 10

Turning Movement Peak Hour Data (06:00 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Beatton River Airport Rd to Buick Site Code: 7
Start ake. 2014/09/17
Page No: 11

Turning Movement Peak Hour Data Plot (06:00 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4
Count Name: Becker Hill Site Code: 5
250-819-2527 paul@peaktraffic.ca

Turning Movement Data

Start Time	Left	Thru	Alaska Hwy 9 Southbound U-Turn	Peds	App. Total	Left	Right	Becker Hill Rd Westbound U-Turn	Peds	App. Total	Thru	Right	Alaska Hwy 97 Northbound U-Turn	Peds	App. Total	Int. Total
05:00 AM	0	4	0	0	4	0	0	0	0	0	23	0	0	0	23	27
05:15 AM	0	4	0	0	4	0	1	0	0	1	27	0	0	0	27	32
05:30 AM	0	5	0	0	5	0	0	0	0	0	44	0	0	0	44	49
05:45 AM	0	11	0	0	11	0	4	0	0	4	29	0	0	0	29	44
Hourly Total	0	24	0	0	24	0	5	0	0	5	123	0	0	0	123	152
06:00 AM	0	10	0	0	10	2	2	0	0	4	37	0	0	0	37	51
06:15 AM	0	5	0	0	5	1	2	0	0	3	52	0	0	0	52	60
06:30 AM	0	7	0	0	7	1	1	0	0	2	44	0	0	0	44	53
06:45 AM	1	17	0	0	18	0	0	0	0	0	41	1	0	0	42	60
Hourly Total	1	39	0	0	40	4	5	0	0	9	174	1	0	0	175	224
07:00 AM	1	10	0	0	11	1	1	0	0	2	58	0	0	0	58	71
07:15 AM	0	18	0	0	18	0	3	0	0	3	87	0	0	0	87	108
07:30 AM	0	21	0	0	21	2	2	0	0	4	56	0	0	0	56	81
07:45 AM	0	12	0	0	12	1	1	0	0	2	55	0	0	0	55	69
Hourly Total	1	61	0	0	62	4	7	0	0	11	256	0	0	0	256	329
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	0	20	0	0	20	0	0	0	0	0	37	1	0	0	38	58
11:15 AM	2	30	0	0	32	0	0	0	0	0	26	0	0	0	26	58
11:30 AM	0	24	0	0	24	1	1	0	0	2	34	1	0	0	35	61
11:45 AM	0	32	0	0	32	1	2	0	0	3	29	2	0	0	31	66
Hourly Total	2	106	0	0	108	2	3	0	0	5	126	4	0	0	130	243
12:00 PM	0	30	0	0	30	0	1	0	0	1	33	1	0	0	34	65
12:15 PM	1	36	0	0	37	1	0	0	0	1	22	1	0	0	23	61
12:30 PM	0	32	0	0	32	0	1	0	0	1	29	0	0	,	29	62
12:45 PM	0	30	0	0	30	1	0	0	0	1	35	0	0	0	35	66
Hourly Total	1	128	0	0	129	2	2	0	0	4	119	2	0	0	121	254
01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:00 PM	1	67	0	0	68	0	0	0	0	0	26	1	0	0	27	95
04:15 PM	2	58	0	0	60	1	0	0	0	1	20	0	0	0	20	81
04:30 PM	0	59	0	0	59	1	1	0	0	2	26	3	0	0	29	90
04:45 PM	3	52	0	0	55	1	0	0	0	1	31	0	0	0	31	87
Hourly Total	6	236	0	0	242	3	1	0	0	4	103	4	0		107	353
05:00 PM	1	64	0	0	65	2	1	0	0	3	32	2	0	0	34	102
05:15 PM	1	40	0	0	41	0	0	0	0	0	32	0	0	0	32	73

05:30 PM	1	41	0	0	42	0	1	0	0	1	41	2	0	0	43	86
05:45 PM	0	55	0	0	55	2	0	0	0	2	29	1	0	0	30	87
Hourly Total	3	200	0	0	203	4	2	0	0	6	134	5	0	0	139	348
06:00 PM	2	60	0	0	62	0	1	0	0	1	21	2	0	0	23	86
06:15 PM	0	75	0	0	75	0	1	0	0	1	25	0	0	0	25	101
06:30 PM	3	55	0	0	58	0	1	0	0	1	21	0	0	0	21	80
06:45 PM	2	73	0	0	75	0	0	0	0	0	19	0	0	0	19	94
Hourly Total	7	263	0	0	270	0	3	0	0	3	86	2	0	0	88	361
07:00 PM	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1
Grand Total	21	1058	0	0	1079	19	28	0	0	47	1121	18	0	0	1139	2265
Approach \%	1.9	98.1	0.0	-	-	40.4	59.6	0.0	-	-	98.4	1.6	0.0	-	-	-
Total \%	0.9	46.7	0.0	-	47.6	0.8	1.2	0.0	-	2.1	49.5	0.8	0.0	-	50.3	-
Lights	17	663	0	-	680	15	23	0	-	38	681	17	0	-	698	1416
\% Lights	81.0	62.7	-	-	63.0	78.9	82.1	-	-	80.9	60.7	94.4	-	-	61.3	62.5
Mediums	4	160	0	-	164	3	3	0	-	6	168	1	0	-	169	339
\% Mediums	19.0	15.1	-	-	15.2	15.8	10.7	-	-	12.8	15.0	5.6	-	-	14.8	15.0
Articulated Trucks	0	235	0	-	235	1	2	0	-	3	269	0	0	-	269	507
\% Articulated Trucks	0.0	22.2	-	-	21.8	5.3	7.1	-	-	6.4	24.0	0.0	-	-	23.6	22.4
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	3	0	0	-	3	3
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.3	0.0	-	-	0.3	0.1
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Becker Hill Site Code: 5
Start Date: 2014/09/22 Page No: 3

Turning Movement Data Plot

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 Count Name: Becker Hill Site Code: 5
Star 2014/09/22
250-819-2527 paul@peaktraffic.ca
Page No: 4

Start Time	Turning Movement Peak Hour Data (07:00 AM)															
	Alaska Hwy 97 Southbound					Becker Hill Rd					Alaska Hwy 97 Northbound					Int. Total
	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	
07:00 AM	1	10	0	0	11	1	1	0	0	2	58	0	0	0	58	71
07:15 AM	0	18	0	0	18	0	3	0	0	3	87	0	0	0	87	108
07:30 AM	0	21	0	0	21	2	2	0	0	4	56	0	0	0	56	81
07:45 AM	0	12	0	0	12	1	1	0	0	2	55	0	0	0	55	69
Total	1	61	0	0	62	4	7	0	0	11	256	0	0	0	256	329
Approach \%	1.6	98.4	0.0	-	-	36.4	63.6	0.0	-	-	100.0	0.0	0.0	-	-	-
Total \%	0.3	18.5	0.0	-	18.8	1.2	2.1	0.0	-	3.3	77.8	0.0	0.0	-	77.8	-
PHF	0.250	0.726	0.000	-	0.738	0.500	0.583	0.000	-	0.688	0.736	0.000	0.000	-	0.736	0.762
Lights	1	44	0	-	45	4	5	0	-	9	147	0	0	-	147	201
\% Lights	100.0	72.1	-	-	72.6	100.0	71.4	-	-	81.8	57.4	-	-	-	57.4	61.1
Mediums	0	3	0	-	3	0	1	0	-	1	64	0	0	-	64	68
\% Mediums	0.0	4.9	-	-	4.8	0.0	14.3	-	-	9.1	25.0	-	-	-	25.0	20.7
Articulated Trucks	0	14	0	-	14	0	1	0	-	1	45	0	0	-	45	60
\% Articulated Trucks	0.0	23.0	-	-	22.6	0.0	14.3	-	-	9.1	17.6	-	-	-	17.6	18.2
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	-	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Becker Hill Site Code: 5
Start Date: 2014/09/22 Page No: 5

Turning Movement Peak Hour Data Plot (07:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 Count Name: Becker Hill Site Code: 5
Ptare: 2014/09/22
250-819-2527 paul@peaktraffic.ca
Page No: 6

Start Time	Turning Movement Peak Hour Data (11:00 AM)															
	Alaska Hwy 97 Southbound					Becker Hill Rd					Alaska Hwy 97 Northbound					Int. Total
	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	
11:00 AM	0	20	0	0	20	0	0	0	0	0	37	1	0	0	38	58
11:15 AM	2	30	0	0	32	0	0	0	0	0	26	0	0	0	26	58
11:30 AM	0	24	0	0	24	1	1	0	0	2	34	1	0	0	35	61
11:45 AM	0	32	0	0	32	1	2	0	0	3	29	2	0	0	31	66
Total	2	106	0	0	108	2	3	0	0	5	126	4	0	0	130	243
Approach \%	1.9	98.1	0.0	-	-	40.0	60.0	0.0	-	-	96.9	3.1	0.0	-	-	-
Total \%	0.8	43.6	0.0	-	44.4	0.8	1.2	0.0	-	2.1	51.9	1.6	0.0	-	53.5	-
PHF	0.250	0.828	0.000	-	0.844	0.500	0.375	0.000	-	0.417	0.851	0.500	0.000	-	0.855	0.920
Lights	2	62	0	-	64	1	3	0	-	4	71	4	0	-	75	143
\% Lights	100.0	58.5	-	-	59.3	50.0	100.0	-	-	80.0	56.3	100.0	-	-	57.7	58.8
Mediums	0	13	0	-	13	1	0	0	-	1	18	0	0	-	18	32
\% Mediums	0.0	12.3	-	-	12.0	50.0	0.0	-	-	20.0	14.3	0.0	-	-	13.8	13.2
Articulated Trucks	0	31	0	-	31	0	0	0	-	0	34	0	0	-	34	65
\% Articulated Trucks	0.0	29.2	-	-	28.7	0.0	0.0	-	-	0.0	27.0	0.0	-	-	26.2	26.7
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	3	0	0	-	3	3
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	2.4	0.0	-	-	2.3	1.2
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Becker Hill Site Code: 5
Start Date: 2014/09/22 Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 Count Name: Becker Hill Site Code: 5

2014/09/22
250-819-2527 paul@peaktraffic.ca
Page No: 8

Start Time	Turning Movement Peak Hour Data (12:00 PM)															
	Alaska Hwy 97					Becker Hill Rd					Alaska Hwy 97					Int. Total
	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	
12:00 PM	0	30	0	0	30	0	1	0	0	1	33	1	0	0	34	65
12:15 PM	1	36	0	0	37	1	0	0	0	1	22	1	0	0	23	61
12:30 PM	0	32	0	0	32	0	1	0	0	1	29	0	0	0	29	62
12:45 PM	0	30	0	0	30	1	0	0	0	1	35	0	0	0	35	66
Total	1	128	0	0	129	2	2	0	0	4	119	2	0	0	121	254
Approach \%	0.8	99.2	0.0	-	-	50.0	50.0	0.0	-	-	98.3	1.7	0.0	-	-	-
Total \%	0.4	50.4	0.0	-	50.8	0.8	0.8	0.0	-	1.6	46.9	0.8	0.0	-	47.6	-
PHF	0.250	0.889	0.000	-	0.872	0.500	0.500	0.000	-	1.000	0.850	0.500	0.000	-	0.864	0.962
Lights	1	70	0	-	71	2	1	0	-	3	70	2	0	-	72	146
\% Lights	100.0	54.7	-	-	55.0	100.0	50.0	-	-	75.0	58.8	100.0	-	-	59.5	57.5
Mediums	0	19	0	-	19	0	1	0	-	1	13	0	0	-	13	33
\% Mediums	0.0	14.8	-	-	14.7	0.0	50.0	-	-	25.0	10.9	0.0	-	-	10.7	13.0
Articulated Trucks	0	39	0	-	39	0	0	0	-	0	36	0	0	-	36	75
\% Articulated Trucks	0.0	30.5	-	-	30.2	0.0	0.0	-	-	0.0	30.3	0.0	-	-	29.8	29.5
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	\checkmark	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	\cdot	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Becker Hill Site Code: 5
Start Date: 2014/09/22 Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Becker Hill Site Code: 5
Start Date: 2014/09/22
250-819-2527 paul@peaktraffic.ca
Page No: 10

Start Time	Turning Movement Peak Hour Data (06:00 PM)															
	Alaska Hwy 97					($\begin{gathered}\text { Becker Hill Rd } \\ \text { Westbound }\end{gathered}$					Alaska Hwy 97 Northbound					Int. Total
	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	
06:00 PM	2	60	0	0	62	0	1	0	0	1	21	2	0	0	23	86
06:15 PM	0	75	0	0	75	0	1	0	0	1	25	0	0	0	25	101
06:30 PM	3	55	0	0	58	0	1	0	0	1	21	0	0	0	21	80
06:45 PM	2	73	0	0	75	0	0	0	0	0	19	0	0	0	19	94
Total	7	263	0	0	270	0	3	0	0	3	86	2	0	0	88	361
Approach \%	2.6	97.4	0.0	-	-	0.0	100.0	0.0	-	-	97.7	2.3	0.0	-	-	-
Total \%	1.9	72.9	0.0	-	74.8	0.0	0.8	0.0	-	0.8	23.8	0.6	0.0	-	24.4	-
PHF	0.583	0.877	0.000	-	0.900	0.000	0.750	0.000	-	0.750	0.860	0.250	0.000	-	0.880	0.894
Lights	3	166	0	-	169	0	3	0	-	3	49	2	0	-	51	223
\% Lights	42.9	63.1	-	-	62.6	-	100.0	-	-	100.0	57.0	100.0	-	-	58.0	61.8
Mediums	4	52	0	-	56	0	0	0	-	0	13	0	0	-	13	69
\% Mediums	57.1	19.8	-	-	20.7	-	0.0	-	-	0.0	15.1	0.0	-	-	14.8	19.1
Articulated Trucks	0	45	0	-	45	0	0	0	-	0	24	0	0	-	24	69
\% Articulated Trucks	0.0	17.1	-	-	16.7	-	0.0	-	-	0.0	27.9	0.0	-	-	27.3	19.1
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	-	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Becker Hill Site Code: 5
Start Date: 2014/09/22 Page No: 11

Turning Movement Peak Hour Data Plot (06:00 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4

Count Name: Bucking Horse Camp \# Site Code: 18
Start Date: 09/17/2014
Page No: 1

Start Time	Alaska Hwy 97 Southbound						Buckinghorse River Wayside Provincial Park access Westbound						Alaska Hwy 97 Northbound						Buckinghorse River Lodge S access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { Appil } \\ & \text { Total } \end{aligned}$	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	
5:00 AM	0	3	0	0	0	3	0	0	0	0	0	0	0	1	0	0	0	1	0	0	1	0	0	1	5
5:15 AM	0	2	0	0	0	2	2	0	0	0	0	2	0	1	0	0	0	1	0	0	0	0	0	0	5
5:30 AM	0	1	0	0	0	1	7	1	0	0	0	8	0	2	1	0	0	3	0	0	1	0	0	1	13
5:45 AM	0	5	0	0	0	5	4	0	0	0	0	4	1	4	0	0	0	5	0	0	1	0	0	1	15
Hourly Total	0	11	0	0	0	11	13	1	0	0	0	14	1	8	1	0	0	10	0	0	3	0	0	3	38
6:00 AM	0	10	0	0	0	10	10	1	0	0	0	11	1	1	0	0	0	2	0	0	2	0	0	2	25
6:15 AM	0	8	0	0	0	8	7	0	0	0	0	7	0	4	0	0	0	4	0	0	1	0	0	1	20
6:30 AM	0	18	0	0	0	18	3	0	0	0	0	3	0	10	0	0	0	10	0	0	4	0	0	4	35
6:45 AM	0	8	0	0	0	8	14	0	0	0	0	14	1	9	2	0	0	12	0	0	2	0	0	2	36
Hourly Total	0	44	0	0	0	44	34	1	0	0	0	35	2	24	2	0	0	28	0	0	9	0	0	9	116
7:00 AM	0	8	0	0	0	8	1	0	0	0	0	1	0	4	2	0	0	6	0	0	0	0	0	0	15
7:15 AM	0	9	0	0	0	9	1	0	0	0	0	1	1	7	0	0	0	8	1	0	0	0	0	1	19
7:30 AM	0	6	2	0	0	8	13	0	0	0	0	13	0	13	1	0	0	14	0	0	0	0	0	0	35
7:45 AM	0	5	0	0	0	5	0	0	0	0	0	0	1	6	1	0	0	8	0	0	3	0	0	3	16
Hourly Total	0	28	2	0	0	30	15	0	0	0	0	15	2	30	4	0	0	36	1	0	3	0	0	4	85
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	0	14	0	0	0	14	0	1	0	0	0	1	0	6	0	0	0	6	0	0	2	0	0	2	23
11:15 AM	0	12	0	0	0	12	0	0	0	0	0	0	1	9	0	0	0	10	0	1	0	0	0	1	23
11:30 AM	0	10	0	0	0	10	0	0	0	0	0	0	0	7	0	0	0	7	0	0	4	0	0	4	21
11:45 AM	0	11	0	0	0	11	0	0	0	0	0	0	1	16	0	0	0	17	0	0	2	0	0	2	30
Hourly Total	0	47	0	0	0	47	0	1	0	0	0	1	2	38	0	0	0	40	0	1	8	0	0	9	97
12:00 PM	0	11	0	0	0	11	0	0	0	0	0	0	2	3	1	0	0	6	0	0	1	0	0	1	18
12:15 PM	0	17	1	0	0	18	0	0	1	0	0	1	0	6	1	0	0	7	0	0	2	0	0	2	28
12:30 PM	0	17	0	0	0	17	0	0	0	0	0	0	2	15	0	0	0	17	0	0	4	0	0	4	38
12:45 PM	0	7	0	0	0	7	0	0	0	0	0	0	2	4	1	0	0	7	0	1	3	0	0	4	18
Hourly Total	0	52	1	0	0	53	0	0	1	0	0	1	6	28	3	0	0	37	0	1	10	0	0	11	102
1:00 PM	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
4:00 PM	0	7	0	0	0	7	0	1	0	0	0	1	0	7	0	0	0	7	0	0	2	0	0	2	17
4:15 PM	0	16	0	0	0	16	0	0	0	0	0	0	1	6	5	0	0	12	0	0	2	0	0	2	30
4:30 PM	0	24	0	0	0	24	0	0	0	0	0	0	1	5	4	0	0	10	0	0	0	0	0	0	34
4:45 PM	0	8	0	0	0	8	0	0	0	0	0	0	0	4	3	0	0	7	0	0	0	0	0	0	15
Hourly Total	0	55	0	0	0	55	0	1	0	0	0	1	2	22	12	0	0	36	0	0	4	0	0	4	96
5:00 PM	2	8	0	0	0	10	5	1	0	1	0	7	0	6	7	0	0	13	0	0	5	0	0	5	35

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Bucking Horse Camp \#1 Site Code: 18
Start Date: 09/17/2014
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Bucking Horse Camp \# Site Code: 18

Date: 09/17/2014
Page No: 4

Start Time	Alaska Hwy 97 Southbound							Tur inghorse		ovem de Provinc ound	ent	eak	Hour	Data	6:00 Alaska North	AM) Hwy 97 ound			Buckinghorse River Lodge S access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	
6:00 AM	0	10	0	0	0	10	10	1	0	0	0	11	1	1	0	0	0	2	0	0	2	0	0	2	25
6:15 AM	0	8	0	0	0	8	7	0	0	0	0	7	0	4	0	0	0	4	0	0	1	0	0	1	20
6:30 AM	0	18	0	0	0	18	3	0	0	0	0	3	0	10	0	0	0	10	0	0	4	0	0	4	35
6:45 AM	0	8	0	0	0	8	14	0	0	0	0	14	1	9	2	0	0	12	0	0	2	0	0	2	36
Total	0	44	0	0	0	44	34	1	0	0	0	35	2	24	2	0	0	28	0	0	9	0	0	9	116
Approach \%	0.0	100.0	0.0	0.0	-	-	97.1	2.9	0.0	0.0	-	-	7.1	85.7	7.1	0.0	-	-	0.0	0.0	100.0	0.0	-	-	-
Total \%	0.0	37.9	0.0	0.0	-	37.9	29.3	0.9	0.0	0.0	-	30.2	1.7	20.7	1.7	0.0	-	24.1	0.0	0.0	7.8	0.0	-	7.8	-
PHF	0.000	0.611	0.000	0.000	-	0.611	0.607	0.250	0.000	0.000	-	0.625	0.500	0.600	0.250	0.000	-	0.583	0.000	0.000	0.563	0.000	-	0.563	0.806
Lights	0	38	0	0	-	38	24	1	0	0	-	25	2	19	2	0	-	23	0	0	5	0	-	5	91
\% Lights	-	86.4	-	-	-	86.4	70.6	100.0	-	-	-	71.4	100.0	79.2	100.0	-	-	82.1	-	-	55.6	-	-	55.6	78.4
Mediums	0	2	0	0	-	2	6	0	0	0	-	6	0	2	0	0	-	2	0	0	0	0	-	0	10
\% Mediums	-	4.5	-	-	-	4.5	17.6	0.0	-	-	-	17.1	0.0	8.3	0.0	-	-	7.1	-	-	0.0	-	-	0.0	8.6
Articulated Trucks	0	4	0	0	-	4	4	0	0	0	-	4	0	3	0	0	-	3	0	0	4	0	-	4	15
\% Articulated Trucks	-	9.1	-	-	-	9.1	11.8	0.0	-	.	-	11.4	0.0	12.5	0.0	-	-	10.7	.	-	44.4	-	-	44.4	12.9
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
\% Bicycles on Road	-	0.0	-	-	-	0.0	0.0	0.0	-	.	-	0.0	0.0	0.0	0.0	-	-	0.0	.	.	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Bucking Horse Camp \#1 Site Code: 18
Start Date: 09/17/2014
Page No: 5

Turning Movement Peak Hour Data Plot (6:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Bucking Horse Camp \# Site Code: 18
Star Date: 09/17/2014
Page No: 6

Start Time	Alaska Hwy 97 Southbound						Turning Movement Peak Hour Data (11:00 AM)												Buckinghorse River Lodge S access Eastbound						
	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { App. } \\ & \text { Total } \end{aligned}$	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { App. } \\ & \text { Total } \end{aligned}$	Int. Total
11:00 AM	0	14	0	0	0	14	0	1	0	0	0	1	0	6	0	0	0	6	0	0	2	0	0	2	23
11:15 AM	0	12	0	0	0	12	0	0	0	0	0	0	1	9	0	0	0	10	0	1	0	0	0	1	23
11:30 AM	0	10	0	0	0	10	0	0	0	0	0	0	0	7	0	0	0	7	0	0	4	0	0	4	21
11:45 AM	0	11	0	0	0	11	0	0	0	0	0	0	1	16	0	0	0	17	0	0	2	0	0	2	30
Total	0	47	0	0	0	47	0	1	0	0	0	1	2	38	0	0	0	40	0	1	8	0	0	9	97
Approach \%	0.0	100.0	0.0	0.0	-	-	0.0	100.0	0.0	0.0	-	-	5.0	95.0	0.0	0.0	-	-	0.0	11.1	88.9	0.0	-	-	-
Total \%	0.0	48.5	0.0	0.0	-	48.5	0.0	1.0	0.0	0.0	-	1.0	2.1	39.2	0.0	0.0	-	41.2	0.0	1.0	8.2	0.0	-	9.3	-
PHF	0.000	0.839	0.000	0.000	-	0.839	0.000	0.250	0.000	0.000	-	0.250	0.500	0.594	0.000	0.000	-	0.588	0.000	0.250	0.500	0.000	-	0.563	0.808
Lights	0	31	0	0	-	31	0	1	0	0	-	1	0	23	0	0	-	23	0	1	7	0	-	8	63
\% Lights	-	66.0	-	-	-	66.0	-	100.0	-	-	-	100.0	0.0	60.5	-	-	-	57.5	-	100.0	87.5	-	-	88.9	64.9
Mediums	0	7	0	0	-	7	0	0	0	0	-	0	0	6	0	0	-	6	0	0	1	0	-	1	14
\% Mediums	-	14.9	-	-	-	14.9	-	0.0	-	-	-	0.0	0.0	15.8	-	-	-	15.0	-	0.0	12.5	-	-	11.1	14.4
Articulated Trucks	0	9	0	0	-	9	0	0	0	0	-	0	2	9	0	0	-	11	0	0	0	0	-	0	20
\% Articulated Trucks	-	19.1	.	-	-	19.1	-	0.0	-	.	-	0.0	100.0	23.7	.	-	-	27.5	-	0.0	0.0	-	-	0.0	20.6
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
\% Bicycles on Road	-	0.0	.	-	-	0.0	-	0.0	-	.	-	0.0	0.0	0.0	-	.	-	0.0	-	0.0	0.0	.	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Bucking Horse Camp \#1 Site Code: 18
Start Date: 09/17/2014
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Bucking Horse Camp \# Site Code: 18
Start Date: 09/17/2014
250-819-2527 paul@peaktraffic.ca
Page No: 8

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Bucking Horse Camp \#1 Site Code: 18
Start Date: 09/17/2014
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Bucking Horse Camp \# Site Code: 18
Start Date: 09/17/2014
250-819-2527 paul@peaktraffic.ca
Page No: 10

Start Time	Alaska Hwy 97 Southbound						Buckinghorse River Wayside Provincial Park access Westbound						Alaska Hwy 97 Northbound						Buckinghorse River Lodge S access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { App. } \\ & \text { Total } \end{aligned}$	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { App. } \\ & \text { Total } \\ & \hline \end{aligned}$	
5:15 PM	1	12	0	0	0	13	4	0	0	0	0	4	1	11	6	0	0	18	0	0	4	0	0	4	39
5:30 PM	1	11	0	0	0	12	0	1	0	0	0	1	0	17	5	0	0	22	0	0	5	0	0	5	40
5:45 PM	1	9	0	0	0	10	0	0	0	0	0	0	2	11	3	0	0	16	1	1	4	0	0	6	32
6:00 PM	0	9	1	0	0	10	1	0	0	0	0	1	4	16	7	0	0	27	0	1	1	0	0	2	40
Total	3	41	1	0	0	45	5	1	0	0	0	6	7	55	21	0	0	83	1	2	14	0	0	17	151
Approach \%	6.7	91.1	2.2	0.0	-	-	83.3	16.7	0.0	0.0	-	-	8.4	66.3	25.3	0.0	-	-	5.9	11.8	82.4	0.0	-	-	-
Total \%	2.0	27.2	0.7	0.0	-	29.8	3.3	0.7	0.0	0.0	-	4.0	4.6	36.4	13.9	0.0	-	55.0	0.7	1.3	9.3	0.0	-	11.3	-
PHF	0.750	0.854	0.250	0.000	-	0.865	0.313	0.250	0.000	0.000	-	0.375	0.438	0.809	0.750	0.000	-	0.769	0.250	0.500	0.700	0.000	-	0.708	0.944
Lights	1	32	0	0	-	33	5	0	0	0	-	5	5	39	17	0	-	61	0	1	7	0	-	8	107
\% Lights	33.3	78.0	0.0	-	-	73.3	100.0	0.0	-	-	-	83.3	71.4	70.9	81.0	-	-	73.5	0.0	50.0	50.0	-	-	47.1	70.9
Mediums	1	1	1	0	-	3	0	1	0	0	-	1	2	3	1	0	-	6	1	1	4	0	-	6	16
\% Mediums	33.3	2.4	100.0	-	-	6.7	0.0	100.0	-	-	-	16.7	28.6	5.5	4.8	-	-	7.2	100.0	50.0	28.6	-	-	35.3	10.6
Articulated Trucks	1	8	0	0	-	9	0	0	0	0	-	0	0	13	3	0	-	16	0	0	3	0	-	3	28
$\begin{aligned} & \text { \% Articulated } \\ & \text { Trucks } \\ & \hline \end{aligned}$	33.3	19.5	0.0	-	-	20.0	0.0	0.0	-	-	-	0.0	0.0	23.6	14.3	.	-	19.3	0.0	0.0	21.4	-	-	17.6	18.5
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
$\begin{gathered} \% \text { Bicycles on } \\ \text { Road } \\ \hline \end{gathered}$	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	$-$	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Bucking Horse Camp \#1 Site Code: 18
Start Date: 09/17/2014
Page No: 11

Turning Movement Peak Hour Data Plot (5:15 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd

Kamloops, British Columbia, Canada V2B 1P4

Count Name: Buckinghorse Camp \#2 Site Code: 19 Start Date: 09/17/2014 Page No: 1

Start Time	Alaska Hwy 97					Turning Movement Data										
						Camp Access					Alaska Hwy 97					
	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Int. Total
5:00 AM	0	3	0	0	3	0	0	0	0	0	1	0	0	0	1	4
5:15 AM	0	2	0	0	2	0	0	0	0	0	1	0	0	0	1	3
5:30 AM	0	1	0	0	1	0	0	0	0	0	2	0	0	0	2	3
5:45 AM	1	4	0	0	5	1	2	0	0	3	3	0	0	0	3	11
Hourly Total	1	10	0	0	11	1	2	0	0	3	7	0	0	0	7	21
6:00 AM	1	4	0	0	5	4	0	0	0	4	2	0	0	0	2	11
6:15 AM	1	9	0	0	10	1	0	0	0	1	2	0	0	0	2	13
6:30 AM	0	3	0	0	3	15	0	0	0	15	9	0	0	0	9	27
6:45 AM	0	3	0	0	3	5	1	0	0	6	11	0	0	0	11	20
Hourly Total	2	19	0	0	21	25	1	0	0	26	24	0	0	0	24	71
7:00 AM	0	7	0	0	7	1	0	0	9	1	4	0	0	0	4	12
7:15 AM	0	8	0	0	8	0	0	0	0	0	6	1	0	0	7	15
7:30 AM	0	7	0	1	7	1	0	0	1	1	14	0	0	0	14	22
7:45 AM	0	5	0	1	5	0	0	0	0	0	5	0	0	0	5	10
Hourly Total	0	27	0	2	27	2	0	0	10	2	29	1	0	0	30	59
8:00 AM	0	1	0	0	1	0	0	0	0	0	1	0	0	0	1	2
${ }_{* * *}$ BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	1	0	0	1	0	0	0	0	0	1	0	0	0	1	2
11:00 AM	0	15	0	0	15	1	1	0	0	2	6	0	0	0	6	23
11:15 AM	0	12	0	0	12	0	0	0	0	0	8	0	0	0	8	20
11:30 AM	0	8	0	0	8	0	0	0	0	0	8	0	0	0	8	16
11:45 AM	0	13	0	0	13	0	0	0	0	0	14	0	0	0	14	27
Hourly Total	0	48	0	0	48	1	1	0	0	2	36	0	0	0	36	86
12:00 PM	0	10	0	0	10	0	0	0	0	0	5	0	0	0	5	15
12:15 PM	0	17	0	0	17	1	0	0	0	1	4	0	0	0	4	22
12:30 PM	0	15	0	1	15	0	1	0	0	1	20	0	0	0	20	36
12:45 PM	1	8	0	0	9	0	0	0	0	0	5	0	0	0	5	14
Hourly Total	1	50	0	1	51	1	1	0	0	2	34	0	0	0	34	87
1:00 PM	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1
${ }_{* * *}$ BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1
4:00 PM	0	7	0	0	7	0	0	0	2	0	6	0	0	2	6	13
4:15 PM	2	17	0	0	19	0	1	0	0	1	7	0	0	0	7	27
4:30 PM	0	24	0	0	24	0	0	0	0	0	3	0	0	0	3	27
4:45 PM	0	10	0	1	10	0	1	0	0	1	6	0	0	0	6	17
Hourly Total	2	58	0	1	60	0	2	0	2	2	22	0	0	2	22	84
5:00 PM	1	9	0	0	10	1	0	0	0	1	6	0	0	0	6	17
5:15 PM	1	13	0	1	14	0	0	0	0	0	10	0	0	0	10	24

5:30 PM	0	10	0	2	10	1	0	0	0	1	11	7	0	0	18	29
5:45 PM	1	9	0	1	10	2	2	0	0	4	11	0	0	0	11	25
Hourly Total	3	41	0	4	44	4	2	0	0	6	38	7	0	0	45	95
6:00 PM	3	9	0	0	12	1	1	0	0	2	14	3	0	0	17	31
6:15 PM	0	5	0	1	5	1	0	0	0	1	9	2	0	0	11	17
6:30 PM	0	7	0	3	7	1	0	0	0	1	10	1	0	0	11	19
6:45 PM	0	11	0	0	11	1	0	0	0	1	7	2	0	0	9	21
Hourly Total	3	32	0	4	35	4	1	0	0	5	40	8	0	0	48	88
7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	12	287	0	12	299	38	10	0	12	48	231	16	0	2	247	594
Approach \%	4.0	96.0	0.0	-	-	79.2	20.8	0.0	-	-	93.5	6.5	0.0	-	-	-
Total \%	2.0	48.3	0.0	-	50.3	6.4	1.7	0.0	-	8.1	38.9	2.7	0.0	-	41.6	-
Lights	7	192	0	-	199	29	9	0	-	38	151	13	0	-	164	401
\% Lights	58.3	66.9	-	-	66.6	76.3	90.0	-	-	79.2	65.4	81.3	-	-	66.4	67.5
Mediums	3	32	0	-	35	4	0	0	-	4	23	3	0	-	26	65
\% Mediums	25.0	11.1	-	-	11.7	10.5	0.0	-	-	8.3	10.0	18.8	-	-	10.5	10.9
Articulated Trucks	2	63	0	-	65	5	1	0	-	6	57	0	0	-	57	128
\% Articulated Trucks	16.7	22.0	-	-	21.7	13.2	10.0	-	-	12.5	24.7	0.0	-	-	23.1	21.5
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	12	-	-	-	-	12	-	-	-	-	2	-	-
\% Pedestrians	-	-	-	100.0	-	-	-	-	100.0	-	-	-	-	100.0	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp \#2 Site Code: 19
Start Date: 09/17/2014
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4

Count Name: Buckinghorse Camp \#2 Site Code: 19
Stan Date: 09/17/2014
Page No: 4

Turning Movement Peak Hour Data (6:30 AM)

Start Time	Left	Thru	Alaska Hwy 97 Southbound U-Turn	Peds	App. Total	Left	Right	Camp Access Westbound U-Turn	Peds	App. Total	Thru	Right	Alaska Hwy 97 Northbound U-Turn	Peds	App. Total	Int. Total
6:30 AM	0	3	0	0	3	15	0	0	0	15	9	0	0	0	9	27
6:45 AM	0	3	0	0	3	5	1	0	0	6	11	0	0	0	11	20
7:00 AM	0	7	0	0	7	1	0	0	9	1	4	0	0	0	4	12
7:15 AM	0	8	0	0	8	0	0	0	0	0	6	1	0	0	7	15
Total	0	21	0	0	21	21	1	0	9	22	30	1	0	0	31	74
Approach \%	0.0	100.0	0.0	-	-	95.5	4.5	0.0	-	-	96.8	3.2	0.0	-	-	-
Total \%	0.0	28.4	0.0	-	28.4	28.4	1.4	0.0	-	29.7	40.5	1.4	0.0	-	41.9	-
PHF	0.000	0.656	0.000	-	0.656	0.350	0.250	0.000	-	0.367	0.682	0.250	0.000	-	0.705	0.685
Lights	0	14	0	-	14	17	1	0	-	18	22	1	0	-	23	55
\% Lights	-	66.7	-	-	66.7	81.0	100.0	-	-	81.8	73.3	100.0	-	-	74.2	74.3
Mediums	0	1	0	-	1	4	0	0	-	4	3	0	0	-	3	8
\% Mediums	-	4.8	-	-	4.8	19.0	0.0	-	-	18.2	10.0	0.0	-	-	9.7	10.8
Articulated Trucks	0	6	0	-	6	0	0	0	-	0	5	0	0	-	5	11
\% Articulated Trucks	-	28.6	-	-	28.6	0.0	0.0	-	-	0.0	16.7	0.0	-	-	16.1	14.9
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	-	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	9	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	100.0	-	-	-	-	-	-	-

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp \#2 Site Code: 19
Start Date: 09/17/2014
Page No: 5

Turning Movement Peak Hour Data Plot (6:30 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4

Count Name: Buckinghorse Camp \#2 Site Code: 19
Start Date: 09/17/2014
Page No: 6

Start Time	Turning Movement Peak Hour Data (11:00 AM)															
	Alaska Hwy 97 Southbound					Camp Access Westbound					Alaska Hwy 97 Northbound					Int. Total
	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	
11:00 AM	0	15	0	0	15	1	1	0	0	2	6	0	0	0	6	23
11:15 AM	0	12	0	0	12	0	0	0	0	0	8	0	0	0	8	20
11:30 AM	0	8	0	0	8	0	0	0	0	0	8	0	0	0	8	16
11:45 AM	0	13	0	0	13	0	0	0	0	0	14	0	0	0	14	27
Total	0	48	0	0	48	1	1	0	0	2	36	0	0	0	36	86
Approach \%	0.0	100.0	0.0	-	-	50.0	50.0	0.0	-	-	100.0	0.0	0.0	-	-	-
Total \%	0.0	55.8	0.0	-	55.8	1.2	1.2	0.0	-	2.3	41.9	0.0	0.0	-	41.9	\cdot
PHF	0.000	0.800	0.000	-	0.800	0.250	0.250	0.000	-	0.250	0.643	0.000	0.000	-	0.643	0.796
Lights	0	31	0	-	31	0	1	0	-	1	23	0	0	-	23	55
\% Lights	-	64.6	-	-	64.6	0.0	100.0	-	-	50.0	63.9	-	-	-	63.9	64.0
Mediums	0	8	0	-	8	0	0	0	-	0	6	0	0	-	6	14
\% Mediums	-	16.7	-	-	16.7	0.0	0.0	-	-	0.0	16.7	-	-	-	16.7	16.3
Articulated Trucks	0	9	0	-	9	1	0	0	-	1	7	0	0	-	7	17
\% Articulated Trucks	-	18.8	-	-	18.8	100.0	0.0	-	-	50.0	19.4	-	-	-	19.4	19.8
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	\checkmark	0	0
\% Bicycles on Road	-	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	-	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp \#2 Site Code: 19
Start Date: 09/17/2014
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 Count Name: Buckinghorse Camp \#2 Site Code: 19

09/17/2014
250-819-2527 paul@peaktraffic.ca
Page No: 8

Start Time	Turning Movement Peak Hour Data (12:00 PM)															
	Alaska Hwy 97 Southbound					Camp AccessWestbound					Alaska Hwy 97 Northbound					Int. Total
	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	
12:00 PM	0	10	0	0	10	0	0	0	0	0	5	0	0	0	5	15
12:15 PM	0	17	0	0	17	1	0	0	0	1	4	0	0	0	4	22
12:30 PM	0	15	0	1	15	0	1	0	0	1	20	0	0	0	20	36
12:45 PM	1	8	0	0	9	0	0	0	0	0	5	0	0	0	5	14
Total	1	50	0	1	51	1	1	0	0	2	34	0	0	0	34	87
Approach \%	2.0	98.0	0.0	-	-	50.0	50.0	0.0	-	-	100.0	0.0	0.0	-	-	-
Total \%	1.1	57.5	0.0	-	58.6	1.1	1.1	0.0	-	2.3	39.1	0.0	0.0	-	39.1	-
PHF	0.250	0.735	0.000	-	0.750	0.250	0.250	0.000	-	0.500	0.425	0.000	0.000	-	0.425	0.604
Lights	0	33	0	-	33	1	1	0	-	2	20	0	0	-	20	55
\% Lights	0.0	66.0	-	-	64.7	100.0	100.0	-	-	100.0	58.8	-	-	-	58.8	63.2
Mediums	0	6	0	-	6	0	0	0	-	0	6	0	0	-	6	12
\% Mediums	0.0	12.0	-	-	11.8	0.0	0.0	-	-	0.0	17.6	-	-	-	17.6	13.8
Articulated Trucks	1	11	0	-	12	0	0	0	-	0	8	0	0	-	8	20
\% Articulated Trucks	100.0	22.0	-	-	23.5	0.0	0.0	-	-	0.0	23.5	-	-	-	23.5	23.0
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	-	-	-	0.0	0.0
Pedestrians	-	-	-	1	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	100.0	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp \#2 Site Code: 19
Start Date: 09/17/2014
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Buckinghorse Camp \#2 Site Code: 19
Start Date: 09
250-819-2527 paul@peaktraffic.ca
Page No: 10

Start Time	Turning Movement Peak Hour Data (5:15 PM)															
	Alaska Hwy 97 Southbound					Camp Access					Alaska Hwy 97 Northbound					Int. Total
	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	
5:15 PM	1	13	0	1	14	0	0	0	0	0	10	0	0	0	10	24
5:30 PM	0	10	0	2	10	1	0	0	0	1	11	7	0	0	18	29
5:45 PM	1	9	0	1	10	2	2	0	0	4	11	0	0	0	11	25
6:00 PM	3	9	0	0	12	1	1	0	0	2	14	3	0	0	17	31
Total	5	41	0	4	46	4	3	0	0	7	46	10	0	0	56	109
Approach \%	10.9	89.1	0.0	-	-	57.1	42.9	0.0	-	-	82.1	17.9	0.0	-	-	-
Total \%	4.6	37.6	0.0	-	42.2	3.7	2.8	0.0	-	6.4	42.2	9.2	0.0	-	51.4	-
PHF	0.417	0.788	0.000	-	0.821	0.500	0.375	0.000	-	0.438	0.821	0.357	0.000	-	0.778	0.879
Lights	3	29	0	-	32	3	3	0	-	6	29	7	0	-	36	74
\% Lights	60.0	70.7	-	-	69.6	75.0	100.0	-	-	85.7	63.0	70.0	-	-	64.3	67.9
Mediums	1	4	0	-	5	0	0	0	-	0	4	3	0	-	7	12
\% Mediums	20.0	9.8	-	-	10.9	0.0	0.0	-	-	0.0	8.7	30.0	-	-	12.5	11.0
Articulated Trucks	1	8	0	-	9	1	0	0	-	1	13	0	0	-	13	23
\% Articulated Trucks	20.0	19.5	-	-	19.6	25.0	0.0	-	-	14.3	28.3	0.0	-	-	23.2	21.1
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	4	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	100.0	\cdot	-	-	-	-	\cdot	\cdot	\cdot	-	\checkmark	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp \#2 Site Code: 19
Start Date: 09/17/2014
Page No: 11

Turning Movement Peak Hour Data Plot (5:15 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse \#3 Site Code: 20

Date: 2014/09/17
Page No: 1

Turning Movement Data

06:15 PM	5	2	0	0	7	0	9	0	0	9	1	0	0	0	1	17
06:30 PM	7	4	0	0	11	0	10	0	0	10	0	1	0	0	1	22
06:45 PM	10	2	0	0	12	0	7	0	0	7	1	0	0	0	1	20
Hourly Total	34	8	0	0	42	0	41	0	0	41	3	1	0	0	4	87
Grand Total	292	55	0	0	347	6	232	0	0	238	12	7	0	0	19	604
Approach \%	84.1	15.9	0.0	-	-	2.5	97.5	0.0	-	-	63.2	36.8	0.0	-	-	-
Total \%	48.3	9.1	0.0	-	57.5	1.0	38.4	0.0	-	39.4	2.0	1.2	0.0	-	3.1	-
Lights	198	40	0	-	238	4	155	0	-	159	7	5	0	-	12	409
\% Lights	67.8	72.7	-	-	68.6	66.7	66.8	-	-	66.8	58.3	71.4	-	-	63.2	67.7
Mediums	27	5	0	-	32	0	20	0	-	20	1	1	0	-	2	54
\% Mediums	9.2	9.1	-	-	9.2	0.0	8.6	-	-	8.4	8.3	14.3	-	-	10.5	8.9
Articulated Trucks	67	10	0	-	77	2	57	0	-	59	4	1	0	-	5	141
\% Articulated Trucks	22.9	18.2	-	-	22.2	33.3	24.6	-	-	24.8	33.3	14.3	-	-	26.3	23.3
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse \#3 Site Code: 20
Start Date: 2014/09/17
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4

Count Name: Buckinghorse \#3 Site Code: 20
Start Date: 2014/09/17
Page No: 4

Turning Movement Peak Hour Data (06:45 AM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse \#3 Site Code: 20
Start Date: 2014/09/17
Page No: 5

Turning Movement Peak Hour Data Plot (06:45 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse \#3 Site Code: 20
Start Date: 2014/09/17
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse \#3 Site Code: 20
Start Date: 2014/09/17
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 Count Name: Buckinghorse \#3 Site Code: 20
Start Date: 2014/09/17
250-819-2527 paul@peaktraffic.ca
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound					Alaska Hwy 97Northbound					Buckinghorse Lodge North Access Eastbound					Int. Total
	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	
12:00 PM	9	4	0	0	13	0	4	0	0	4	1	2	0	0	3	20
12:15 PM	15	5	0	0	20	1	3	0	0	4	0	1	0	0	1	25
12:30 PM	15	2	0	0	17	1	17	0	0	18	0	1	0	0	1	36
12:45 PM	10	2	0	0	12	0	4	0	0	4	1	0	0	0	1	17
Total	49	13	0	0	62	2	28	0	0	30	2	4	0	0	6	98
Approach \%	79.0	21.0	0.0	-	-	6.7	93.3	0.0	-	-	33.3	66.7	0.0	-	-	-
Total \%	50.0	13.3	0.0	-	63.3	2.0	28.6	0.0	-	30.6	2.0	4.1	0.0	-	6.1	-
PHF	0.817	0.650	0.000	-	0.775	0.500	0.412	0.000	-	0.417	0.500	0.500	0.000	-	0.500	0.681
Lights	31	10	0	-	41	1	16	0	-	17	1	3	0	-	4	62
\% Lights	63.3	76.9	-	-	66.1	50.0	57.1	-	-	56.7	50.0	75.0	-	-	66.7	63.3
Mediums	4	1	0	-	5	0	4	0	-	4	0	1	0	-	1	10
\% Mediums	8.2	7.7	-	-	8.1	0.0	14.3	-	-	13.3	0.0	25.0	-	-	16.7	10.2
Articulated Trucks	14	2	0	-	16	1	8	0	-	9	1	0	0	-	1	26
\% Articulated Trucks	28.6	15.4	-	-	25.8	50.0	28.6	-	-	30.0	50.0	0.0	-	-	16.7	26.5
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse \#3 Site Code: 20
Start Ne: 2014/09/17
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 Count Name: Buckinghorse \#3 Site Code: 20
te: 2014/09/17
250-819-2527 paul@peaktraffic.ca
Page No: 10

Turning Movement Peak Hour Data (05:15 PM)

Start Time	Alaska Hwy 97 Southbound					Alaska Hwy 97 Northbound					Buckinghorse Lodge North Access Eastbound					Int. Total
	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	
05:15 PM	14	5	0	0	19	0	10	0	0	10	0	0	0	0	0	29
05:30 PM	10	3	0	0	13	0	11	0	0	11	0	1	0	0	1	25
05:45 PM	9	1	0	0	10	1	12	0	0	13	0	0	0	0	0	23
06:00 PM	12	0	0	0	12	0	15	0	0	15	1	0	0	0	1	28
Total	45	9	0	0	54	1	48	0	0	49	1	1	0	0	2	105
Approach \%	83.3	16.7	0.0	-	-	2.0	98.0	0.0	-	-	50.0	50.0	0.0	-	-	-
Total \%	42.9	8.6	0.0	-	51.4	1.0	45.7	0.0	-	46.7	1.0	1.0	0.0	-	1.9	-
PHF	0.804	0.450	0.000	-	0.711	0.250	0.800	0.000	-	0.817	0.250	0.250	0.000	-	0.500	0.905
Lights	32	6	0	-	38	1	31	0	-	32	1	1	0	-	2	72
\% Lights	71.1	66.7	-	-	70.4	100.0	64.6	-	-	65.3	100.0	100.0	-	-	100.0	68.6
Mediums	4	2	0	-	6	0	3	0	-	3	0	0	0	-	0	9
\% Mediums	8.9	22.2	-	-	11.1	0.0	6.3	-	-	6.1	0.0	0.0	-	-	0.0	8.6
Articulated Trucks	9	1	0	-	10	0	14	0	-	14	0	0	0	-	0	24
\% Articulated Trucks	20.0	11.1	-	-	18.5	0.0	29.2	-	-	28.6	0.0	0.0	-	-	0.0	22.9
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse \#3 Site Code: 20
Start Date. 2014/09/17
Page No: 11

Turning Movement Peak Hour Data Plot (05:15 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Cypress Creek Road Site Code: 11
Start Date: 2014/09/15
Page No: 1

Turning Movement Data

Start Time	Alaska Hwy 97 Southbound					Alaska Hwy 97 Northbound					Cypress Creek Rd \# 187 Eastbound					Int. Total
	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	
05:00 AM	9	0	0	0	9	0	3	0	0	3	0	0	0	0	0	12
05:15 AM	5	1	0	0	6	0	8	0	0	8	0	0	0	0	0	14
05:30 AM	11	0	0	0	11	0	17	0	0	17	1	0	0	0	1	29
05:45 AM	13	0	0	0	13	0	14	0	0	14	0	0	0	0	0	27
Hourly Total	38	1	0	0	39	0	42	0	0	42	1	0	0	0	1	82
06:00 AM	21	0	0	0	21	0	15	0	0	15	0	1	0	0	1	37
06:15 AM	17	2	0	0	19	1	20	0	0	21	0	1	0	0	1	41
06:30 AM	50	0	0	0	50	0	16	0	0	16	0	0	0	0	0	66
06:45 AM	28	0	0	0	28	0	23	0	0	23	0	0	0	0	0	51
Hourly Total	116	2	0	0	118	1	74	0	0	75	0	2	0	0	2	195
07:00 AM	29	1	0	0	30	0	13	0	0	13	0	0	0	0	0	43
07:15 AM	18	0	0	0	18	1	12	0	0	13	0	0	0	0	0	31
07:30 AM	12	1	0	0	13	0	20	0	0	20	2	1	0	1	3	36
07:45 AM	18	0	0	0	18	1	13	0	0	14	1	0	0	0	1	33
Hourly Total	77	2	0	0	79	2	58	0	0	60	3	1	0	1	4	143
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11:00 AM	20	1	0	0	21	0	18	0	0	18	0	0	0	0	0	39
11:15 AM	17	0	0	0	17	0	6	0	0	6	0	0	0	0	0	23
11:30 AM	17	0	0	0	17	0	16	0	0	16	0	0	0	0	0	33
11:45 AM	15	1	0	0	16	0	15	0	0	15	0	0	0	0	0	31
Hourly Total	69	2	0	0	71	0	55	0	0	55	0	0	0	0	0	126
12:00 PM	21	0	0	0	21	0	15	0	0	15	1	1	0	0	2	38
12:15 PM	21	1	0	0	22	1	12	0	0	13	0	0	0	0	0	35
12:30 PM	6	0	0	0	6	2	15	0	0	17	0	1	0	0	1	24
12:45 PM	24	1	0	0	25	1	13	0	0	14	0	0	0	0	0	39
Hourly Total	72	2	0	0	74	4	55	0	0	59	1	2	0	0	3	136
01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:00 PM	22	0	0	0	22	0	7	0	0	7	0	1	0	0	1	30
04:15 PM	8	0	0	0	8	0	12	0	0	12	0	2	0	0	2	22
04:30 PM	17	2	0	0	19	0	5	0	0	5	1	0	0	0	1	25
04:45 PM	18	0	0	0	18	1	40	0	0	41	0	0	0	0	0	59
Hourly Total	65	2	0	0	67	1	64	0	0	65	1	3	0	0	4	136
05:00 PM	11	0	0	0	11	0	22	0	0	22	1	2	0	0	3	36
05:15 PM	33	1	0	0	34	1	44	0	0	45	0	0	0	0	0	79
05:30 PM	27	1	0	0	28	0	51	0	0	51	0	0	0	0	0	79
05:45 PM	24	0	0	0	24	1	47	0	0	48	1	2	0	0	3	75

Hourly Total	95	2	0	0	97	2	164	0	0	166	2	4	0	0	6	269
06:00 PM	19	0	0	0	19	2	53	0	0	55	0	0	0	0	0	74
06:15 PM	15	2	0	0	17	0	36	0	0	36	1	0	0	0	1	54
06:30 PM	10	1	0	0	11	0	27	0	0	27	0	0	0	0	0	38
06:45 PM	19	1	0	0	20	0	18	0	0	18	0	0	0	0	0	38
Hourly Total	63	4	0	0	67	2	134	0	0	136	1	0	0	0	1	204
Grand Total	595	17	0	0	612	12	646	0	0	658	9	12	0	1	21	1291
Approach \%	97.2	2.8	0.0	-	-	1.8	98.2	0.0	-	-	42.9	57.1	0.0	-	-	-
Total \%	46.1	1.3	0.0	-	47.4	0.9	50.0	0.0	-	51.0	0.7	0.9	0.0	-	1.6	-
Lights	395	14	0	-	409	11	412	0	-	423	8	9	0	-	17	849
\% Lights	66.4	82.4	-	-	66.8	91.7	63.8	-	-	64.3	88.9	75.0	-	-	81.0	65.8
Mediums	63	3	0	-	66	0	63	0	-	63	1	2	0	-	3	132
\% Mediums	10.6	17.6	-	-	10.8	0.0	9.8	-	-	9.6	11.1	16.7	-	-	14.3	10.2
Articulated Trucks	137	0	0	\checkmark	137	1	171	0	-	172	0	1	0	-	1	310
\% Articulated Trucks	23.0	0.0	-	-	22.4	8.3	26.5	-	-	26.1	0.0	8.3	-	-	4.8	24.0
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	1	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	\cdots	-	-	-	-	100.0	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Cypress Creek Road Site Code: 11
Start Date: 2014/09/15
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 Count Name: Cypress Creek Road Site Code: 11

14/09/15
250-819-2527 paul@peaktraffic.ca
Page No: 4

Turning Movement Peak Hour Data (06:15 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Cypress Creek Road Site Code: 11
Start Date: 2014/09/15
Page No: 5

Turning Movement Peak Hour Data Plot (06:15 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 Count Name: Cypress Creek Road Site Code: 11
Start Date. 2014/09/15
250-819-2527 paul@peaktraffic.ca
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Turning Movement Peak Hour Data (11:00 AM)															
	Alaska Hwy 97Southbound					Alaska Hwy 97					Cypress Creek Rd \# 187					Int. Total
	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	
11:00 AM	20	1	0	0	21	0	18	0	0	18	0	0	0	0	0	39
11:15 AM	17	0	0	0	17	0	6	0	0	6	0	0	0	0	0	23
11:30 AM	17	0	0	0	17	0	16	0	0	16	0	0	0	0	0	33
11:45 AM	15	1	0	0	16	0	15	0	0	15	0	0	0	0	0	31
Total	69	2	0	0	71	0	55	0	0	55	0	0	0	0	0	126
Approach \%	97.2	2.8	0.0	-	-	0.0	100.0	0.0	-	-	NaN	NaN	NaN	-	-	-
Total \%	54.8	1.6	0.0		56.3	0.0	43.7	0.0	-	43.7	0.0	0.0	0.0	-	0.0	-
PHF	0.863	0.500	0.000	-	0.845	0.000	0.764	0.000	-	0.764	0.000	0.000	0.000	-	0.000	0.808
Lights	40	2	0	-	42	0	30	0	-	30	0	0	0	-	0	72
\% Lights	58.0	100.0	-	-	59.2	-	54.5	-	-	54.5	-	-	-	-	-	57.1
Mediums	9	0	0	-	9	0	5	0	-	5	0	0	0	-	0	14
\% Mediums	13.0	0.0	-	-	12.7	-	9.1	-		9.1	-	-	-	-	-	11.1
Articulated Trucks	20	0	0	-	20	0	20	0	-	20	0	0	0	-	0	40
\% Articulated Trucks	29.0	0.0	-	-	28.2	-	36.4	-	-	36.4	-	-	-	-	-	31.7
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	-	0.0	-	-	0.0	-	-	-	-	-	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Cypress Creek Road Site Code: 11
Start Date: 2014/09/15
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 Count Name: Cypress Creek Road Site Code: 11
Ptar Na: 2014/09/15
250-819-2527 paul@peaktraffic.ca
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound					Alaska Hwy 97 Northbound					Cypress Creek Rd \# 187 Eastbound					Int. Total
	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	
12:00 PM	21	0	0	0	21	0	15	0	0	15	1	1	0	0	2	38
12:15 PM	21	1	0	0	22	1	12	0	0	13	0	0	0	0	0	35
12:30 PM	6	0	0	0	6	2	15	0	0	17	0	1	0	0	1	24
12:45 PM	24	1	0	0	25	1	13	0	0	14	0	0	0	0	0	39
Total	72	2	0	0	74	4	55	0	0	59	1	2	0	0	3	136
Approach \%	97.3	2.7	0.0	-	-	6.8	93.2	0.0	-	-	33.3	66.7	0.0	-	-	-
Total \%	52.9	1.5	0.0	-	54.4	2.9	40.4	0.0	-	43.4	0.7	1.5	0.0	-	2.2	-
PHF	0.750	0.500	0.000	-	0.740	0.500	0.917	0.000	-	0.868	0.250	0.500	0.000	-	0.375	0.872
Lights	41	1	0	-	42	4	31	0	-	35	1	2	0	-	3	80
\% Lights	56.9	50.0	-	-	56.8	100.0	56.4	-	-	59.3	100.0	100.0	-	-	100.0	58.8
Mediums	12	1	0	-	13	0	8	0	-	8	0	0	0	-	0	21
\% Mediums	16.7	50.0	-	-	17.6	0.0	14.5	-	-	13.6	0.0	0.0	-	-	0.0	15.4
Articulated Trucks	19	0	0	-	19	0	16	0	-	16	0	0	0	-	0	35
\% Articulated Trucks	26.4	0.0	-	-	25.7	0.0	29.1	-	-	27.1	0.0	0.0	-	-	0.0	25.7
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Cypress Creek Road Site Code: 11
Start Date: 2014/09/15
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Cypress Creek Road Site Code: 11
Ptate: 2014/09/15
Page No: 10

Turning Movement Peak Hour Data (05:15 PM)

Start Time	Alaska Hwy 97 Southbound					Alaska Hwy 97 Northbound					Cypress Creek Rd \# 187 Eastbound					Int. Total
						Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	
05:15 PM	33	1	0	-	34	1	44	0	0	45	0	0	0	0	0	79
05:30 PM	27	1	0	0	28	0	51	0	0	51	0	0	0	0	0	79
05:45 PM	24	0	0	0	24	1	47	0	0	48	1	2	0	0	3	75
06:00 PM	19	0	0	0	19	2	53	0	0	55	0	0	0	0	0	74
Total	103	2	0	0	105	4	195	0	0	199	1	2	0	0	3	307
Approach \%	98.1	1.9	0.0	-	-	2.0	98.0	0.0	-	-	33.3	66.7	0.0	-	-	-
Total \%	33.6	0.7	0.0	-	34.2	1.3	63.5	0.0	-	64.8	0.3	0.7	0.0	-	1.0	-
PHF	0.780	0.500	0.000	-	0.772	0.500	0.920	0.000	-	0.905	0.250	0.250	0.000	-	0.250	0.972
Lights	64	2	0	-	66	4	149	0	-	153	1	1	0	-	2	221
\% Lights	62.1	100.0	-	-	62.9	100.0	76.4	-	-	76.9	100.0	50.0	-	-	66.7	72.0
Mediums	14	0	0	-	14	0	8	0	-	8	0	0	0	-	0	22
\% Mediums	13.6	0.0	-	-	13.3	0.0	4.1	-	-	4.0	0.0	0.0	-	-	0.0	7.2
Articulated Trucks	25	0	0	-	25	0	38	0	-	38	0	1	0	-	1	64
\% Articulated Trucks	24.3	0.0	-	-	23.8	0.0	19.5	-	-	19.1	0.0	50.0	-	-	33.3	20.8
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Cypress Creek Road Site Code: 11
Start Date. 2014/09/15
Page No: 11

Turning Movement Peak Hour Data Plot (05:15 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4

Count Name: Hwy 97 / Hwy 29 Site Code: 1
Start Date: 2014/09/23
Page No: 1

Start Time	Alaska Hwy 97 Southbound						Park Frontage Rd Access Westbound						Alaska Hwy 97 Northbound						Hwy 29 Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { App. } \\ & \text { Total } \end{aligned}$	
05:00 AM	0	6	1	0	0	7	0	0	0	0	0	0	3	39	0	0	0	42	0	0	1	0	0	1	50
05:15 AM	0	10	0	0	0	10	1	0	1	0	0	2	7	42	0	0	0	49	1	0	5	0	0	6	67
05:30 AM	0	4	1	0	0	5	1	0	1	0	0	2	12	30	0	0	0	42	2	0	6	0	0	8	57
05:45 AM	0	13	0	0	0	13	0	0	1	0	0	1	8	36	0	0	0	44	2	0	9	0	0	11	69
Hourly Total	0	33	2	0	0	35	2	0	3	0	0	5	30	147	0	0	0	177	5	0	21	0	0	26	243
06:00 AM	0	14	2	0	0	16	1	0	0	0	0	1	8	38	0	0	0	46	0	0	12	2	0	14	77
06:15 AM	0	25	1	0	0	26	3	1	1	0	0	5	18	60	0	0	0	78	4	0	19	0	0	23	132
06:30 AM	0	50	2	0	0	52	6	0	0	0	0	6	14	50	1	0	0	65	0	0	32	0	0	32	155
06:45 AM	0	36	2	0	0	38	3	2	0	0	0	5	17	58	3	0	0	78	1	0	29	0	0	30	151
Hourly Total	0	125	7	0	0	132	13	3	1	0	0	17	57	206	4	0	0	267	5	0	92	2	0	99	515
07:00 AM	1	30	1	0	0	32	2	0	1	0	0	3	17	76	1	0	0	94	2	0	24	0	0	26	155
07:15 AM	2	44	1	0	0	47	2	0	0	0	0	2	19	86	1	0	0	106	3	0	25	1	0	29	184
07:30 AM	0	44	2	0	0	46	5	1	0	0	0	6	20	68	2	0	0	90	1	0	33	0	0	34	176
07:45 AM	2	37	3	0	0	42	7	1	0	0	0	8	41	78	2	0	0	121	3	0	21	0	0	24	195
Hourly Total	5	155	7	0	0	167	16	2	1	0	0	19	97	308	6	0	0	411	9	0	103	1	0	113	710
08:00 AM	1	25	4	0	0	30	4	0	18	0	0	22	22	51	2	0	0	75	2	0	37	0	0	39	166
08:15 AM	0	42	1	0	0	43	5	4	23	0	0	32	12	36	2	0	0	50	0	1	38	0	0	39	164
08:30 AM	1	68	4	0	0	73	7	7	19	0	0	33	18	53	6	0	0	77	0	1	32	0	0	33	216
08:45 AM	0	42	1	0	0	43	2	2	15	0	0	19	28	38	4	0	0	70	2	1	20	0	0	23	155
Hourly Total	2	177	10	0	0	189	18	13	75	0	0	106	80	178	14	0	0	272	4	3	127	0	0	134	701
09:00 AM	0	19	0	0	0	19	8	6	20	0	0	34	26	33	5	0	0	64	3	1	27	0	0	31	148
09:15 AM	0	44	2	0	0	46	2	0	17	0	0	19	19	30	2	0	0	51	1	1	18	0	0	20	136
09:30 AM	1	30	0	0	0	31	0	1	18	0	0	19	16	30	4	0	0	50	0	0	16	0	0	16	116
09:45 AM	0	34	4	0	0	38	2	1	19	0	0	22	19	36	2	0	0	57	1	0	17	0	0	18	135
Hourly Total	1	127	6	0	0	134	12	8	74	0	0	94	80	129	13	0	0	222	5	2	78	0	0	85	535
10:00 AM	1	40	0	0	0	41	2	1	18	0	0	21	16	31	1	0	0	48	3	0	19	0	0	22	132
10:15 AM	1	56	5	0	0	62	1	4	20	0	0	25	15	24	4	0	0	43	2	0	18	0	0	20	150
10:30 AM	0	22	1	0	0	23	4	2	20	0	0	26	27	23	0	0	0	50	1	0	15	0	0	16	115
10:45 AM	0	42	1	0	0	43	1	4	11	0	0	16	13	18	2	0	0	33	3	0	14	0	0	17	109
Hourly Total	2	160	7	0	0	169	8	11	69	0	0	88	71	96	7	0	0	174	9	0	66	0	0	75	506
11:00 AM	1	59	3	0	0	63	4	2	14	0	0	20	20	26	1	0	0	47	3	0	22	0	0	25	155
11:15 AM	0	24	3	0	0	27	1	1	17	0	0	19	22	12	2	0	0	36	0	2	16	0	0	18	100
11:30 AM	0	30	4	0	0	34	6	0	9	0	0	15	11	22	0	0	0	33	4	1	29	1	0	35	117
11:45 AM	0	41	1	0	0	42	3	2	17	0	0	22	16	32	1	0	0	49	4	1	17	0	0	22	135
Hourly Total	1	154	11	0	0	166	14	5	57	0	0	76	69	92	4	0	0	165	11	4	84	1	0	100	507
12:00 PM	0	28	1	0	2	29	1	1	12	0	0	14	15	30	2	0	2	47	2	0	28	0	0	30	120
12:15 PM	1	54	2	0	0	57	5	1	14	0	0	20	19	23	3	0	2	45	1	0	15	0	0	16	138

12:30 PM	0	31	1	0	0	32	1	1	22	0	0	24	12	32	6	0	0	50	0	0	22	0	0	22	128
12:45 PM	1	26	1	0	1	28	1	1	14	0	0	16	22	19	3	0	1	44	1	0	16	0	1	17	105
Hourly Total	2	139	5	0	3	146	8	4	62	0	0	74	68	104	14	0	5	186	4	0	81	0	1	85	491
01:00 PM	0	19	2	0	0	21	2	4	12	0	0	18	14	31	1	0	0	46	0	0	7	0	0	7	92
01:15 PM	0	23	1	0	0	24	1	3	14	0	0	18	10	32	4	0	0	46	1	1	18	0	0	20	108
01:30 PM	2	94	4	0	0	100	1	3	12	0	0	16	11	29	1	0	0	41	7	1	18	0	0	26	183
01:45 PM	1	40	1	0	0	42	2	3	10	0	0	15	24	25	3	1	0	53	2	0	13	0	0	15	125
Hourly Total	3	176	8	0	0	187	6	13	48	0	0	67	59	117	9	1	0	186	10	2	56	0	0	68	508
02:00 PM	0	60	1	0	0	61	4	3	8	0	0	15	23	24	4	0	0	51	1	0	18	0	0	19	146
02:15 PM	0	46	0	0	0	46	3	2	10	0	0	15	16	21	1	0	0	38	2	0	26	0	0	28	127
02:30 PM	2	49	2	0	0	53	6	7	13	0	0	26	19	35	1	0	0	55	2	0	28	0	0	30	164
02:45 PM	0	68	3	0	0	71	3	1	2	0	0	6	20	44	1	0	0	65	3	0	22	0	0	25	167
Hourly Total	2	223	6	0	0	231	16	13	33	0	0	62	78	124	7	0	0	209	8	0	94	0	0	102	604
03:00 PM	0	29	3	0	0	32	2	0	1	0	0	3	21	29	1	0	0	51	1	0	21	0	0	22	108
03:15 PM	0	67	3	0	0	70	4	1	3	0	0	8	37	40	3	0	0	80	0	0	19	0	0	19	177
03:30 PM	0	47	4	0	0	51	3	0	3	0	0	6	29	43	4	0	0	76	2	0	30	0	0	32	165
03:45 PM	4	81	7	0	0	92	2	0	1	0	0	3	24	39	8	0	0	71	4	1	20	0	0	25	191
Hourly Total	4	224	17	0	0	245	11	1	8	0	0	20	111	151	16	0	0	278	7	1	90	0	0	98	641
04:00 PM	0	67	0	0	0	67	3	0	2	0	0	5	15	36	5	0	0	56	3	0	25	0	0	28	156
04:15 PM	1	64	1	0	0	66	5	1	1	0	0	7	39	41	2	0	0	82	2	1	21	0	0	24	179
04:30 PM	2	64	3	0	0	69	4	0	0	0	0	4	28	39	3	0	0	70	1	1	27	0	0	29	172
04:45 PM	0	90	4	0	0	94	3	1	1	0	0	5	40	52	3	0	0	95	1	1	21	0	0	23	217
Hourly Total	3	285	8	0	0	296	15	2	4	0	0	21	122	168	13	0	0	303	7	3	94	0	0	104	724
05:00 PM	3	84	2	0	0	89	3	0	3	0	0	6	43	44	10	0	0	97	2	4	66	0	0	72	264
05:15 PM	1	88	2	0	0	91	5	0	4	0	0	9	34	50	6	0	0	90	1	1	28	0	0	30	220
05:30 PM	0	92	3	0	0	95	8	1	2	0	0	11	28	59	2	0	0	89	1	0	28	0	0	29	224
05:45 PM	2	96	2	0	0	100	2	1	0	0	0	3	44	48	5	0	0	97	1	1	38	0	0	40	240
Hourly Total	6	360	9	0	0	375	18	2	9	0	0	29	149	201	23	0	0	373	5	6	160	0	0	171	948
06:00 PM	1	65	2	0	0	68	1	0	0	0	0	1	19	49	1	0	0	69	1	0	30	0	0	31	169
06:15 PM	0	78	4	0	0	82	5	0	1	0	0	6	22	38	7	0	0	67	1	2	24	0	0	27	182
06:30 PM	1	80	2	0	0	83	2	3	0	0	0	5	26	42	4	0	0	72	0	2	18	0	0	20	180
06:45 PM	0	44	3	0	0	47	2	0	0	0	0	2	16	40	6	0	0	62	2	2	27	0	0	31	142
Hourly Total	2	267	11	0	0	280	10	3	1	0	0	14	83	169	18	0	0	270	4	6	99	0	0	109	673
Grand Total	33	2605	114	0	3	2752	167	80	445	0	0	692	1154	2190	148	1	5	3493	93	27	1245	4	1	1369	8306
Approach \%	1.2	94.7	4.1	0.0	-	-	24.1	11.6	64.3	0.0	$-$	-	33.0	62.7	4.2	0.0	$-$	-	6.8	2.0	90.9	0.3	-	-	-
Total \%	0.4	31.4	1.4	0.0	-	33.1	2.0	1.0	5.4	0.0	\checkmark	8.3	13.9	26.4	1.8	0.0	-	42.1	1.1	0.3	15.0	0.0	-	16.5	-
Lights	26	1819	85	0	-	1930	159	26	63	0	\checkmark	248	1048	1756	146	1	-	2951	65	22	1092	4	-	1183	6312
\% Lights	78.8	69.8	74.6	-	-	70.1	95.2	32.5	14.2	-	-	35.8	90.8	80.2	98.6	100.0	-	84.5	69.9	81.5	87.7	100.0	\checkmark	86.4	76.0
Mediums	4	219	12	0	-	235	3	16	93	0	-	112	51	194	1	0	-	246	13	2	62	0	-	77	670
\% Mediums	12.1	8.4	10.5	-	-	8.5	1.8	20.0	20.9	-	-	16.2	4.4	8.9	0.7	0.0	-	7.0	14.0	7.4	5.0	0.0	-	5.6	8.1
Articulated Trucks	3	567	17	0	-	587	4	38	289	0	-	331	53	240	0	0	-	293	15	3	88	0	-	106	1317
\% Articulated Trucks	9.1	21.8	14.9	-	-	21.3	2.4	47.5	64.9	-	-	47.8	4.6	11.0	0.0	0.0	-	8.4	16.1	11.1	7.1	0.0	-	7.7	15.9
Bicycles on Road	0	0	0	0	-	0	1	0	0	0	-	1	2	0	1	0	-	3	0	0	3	0	-	3	7
$\begin{gathered} \text { \% Bicycles on } \\ \text { Road } \\ \hline \end{gathered}$	0.0	0.0	0.0	-	-	0.0	0.6	0.0	0.0	-	-	0.1	0.2	0.0	0.7	0.0	-	0.1	0.0	0.0	0.2	0.0	-	0.2	0.1
Pedestrians	-	-	-	-	3	-	-	-	-	-	0	-	-	-	-	-	5	-	-	-	-	-	1	-	-
\% Pedestrians	-	-	-	\cdot	100.0	\cdot	-	-	-	\cdot	\checkmark	-	-	-	-	-	100.0	-	-	-	-	-	100.0	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Hwy 97 / Hwy 29 Site Code: 1
Start Date: 2014/09/23
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Hwy 97 / Hwy 29 Site Code: 1
Start Date: 2014/09/23
250-819-2527 paul@peaktraffic.ca
Page No: 4

Turning Movement Peak Hour Data (07:45 AM)

Start Time	Alaska Hwy 97 Southbound						Park Frontage Rd Access Westbound						Alaska Hwy 97 Northbound						Hwy 29 Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	
07:45 AM	2	37	3	0	0	42	7	1	0	0	0	8	41	78	2	0	0	121	3	0	21	0	0	24	195
08:00 AM	1	25	4	0	0	30	4	0	18	0	0	22	22	51	2	0	0	75	2	0	37	0	0	39	166
08:15 AM	0	42	1	0	0	43	5	4	23	0	0	32	12	36	2	0	0	50	0	1	38	0	0	39	164
08:30 AM	1	68	4	0	0	73	7	7	19	0	0	33	18	53	6	0	0	77	0	1	32	0	0	33	216
Total	4	172	12	0	0	188	23	12	60	0	0	95	93	218	12	0	0	323	5	2	128	0	0	135	741
Approach \%	2.1	91.5	6.4	0.0	-	-	24.2	12.6	63.2	0.0	-	-	28.8	67.5	3.7	0.0	-	-	3.7	1.5	94.8	0.0	-	-	-
Total \%	0.5	23.2	1.6	0.0	-	25.4	3.1	1.6	8.1	0.0	-	12.8	12.6	29.4	1.6	0.0	-	43.6	0.7	0.3	17.3	0.0	-	18.2	-
PHF	0.500	0.632	0.750	0.000	-	0.644	0.821	0.429	0.652	0.000	-	0.720	0.567	0.699	0.500	0.000	-	0.667	0.417	0.500	0.842	0.000	-	0.865	0.858
Lights	2	138	10	0	-	150	22	3	8	0	-	33	85	183	12	0	-	280	1	1	122	0	-	124	587
\% Lights	50.0	80.2	83.3	-	-	79.8	95.7	25.0	13.3	-	-	34.7	91.4	83.9	100.0	-	-	86.7	20.0	50.0	95.3	-	-	91.9	79.2
Mediums	2	4	1	0	-	7	1	3	13	0	-	17	4	20	0	0	-	24	3	1	3	0	-	7	55
\% Mediums	50.0	2.3	8.3	-	-	3.7	4.3	25.0	21.7	-	-	17.9	4.3	9.2	0.0	-	-	7.4	60.0	50.0	2.3	-	-	5.2	7.4
Articulated Trucks	0	30	1	0	-	31	0	6	39	0	-	45	4	15	0	0	-	19	1	0	3	0	-	4	99
\% Articulated Trucks	0.0	17.4	8.3	-	-	16.5	0.0	50.0	65.0	-	-	47.4	4.3	6.9	0.0	.	-	5.9	20.0	0.0	2.3	-	-	3.0	13.4
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
$\begin{gathered} \text { \% Bicycles on } \\ \text { Road } \end{gathered}$	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Hwy 97 / Hwy 29 Site Code: 1
Start Date: 2014/09/23
Page No: 5

Turning Movement Peak Hour Data Plot (07:45 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Hwy 97 / Hwy 29 Site Code: 1
Start Date: 2014/09/23
Page No: 6

Turning Movement Peak Hour Data (05:00 PM)

Start Time	Alaska Hwy 97 Southbound						Park Frontage Rd Access Westbound						Alaska Hwy 97 Northbound						Hwy 29 Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	
05:00 PM	3	84	2	0	0	89	3	0	3	0	0	6	43	44	10	0	0	97	2	4	66	0	0	72	264
05:15 PM	1	88	2	0	0	91	5	0	4	0	0	9	34	50	6	0	0	90	1		28	0	0	30	220
05:30 PM	0	92	3	0	0	95	8	1	2	0	0	11	28	59	2	0	0	89	1	0	28	0	0	29	224
05:45 PM	2	96	2	0	0	100	2	1	0	0	0	3	44	48	5	0	0	97	1	1	38	0	0	40	240
Total	6	360	9	0	0	375	18	2	9	0	0	29	149	201	23	0		373	5	6	160	0	0	171	948
Approach \%	1.6	96.0	2.4	0.0	-	-	62.1	6.9	31.0	0.0	-	-	39.9	53.9	6.2	0.0	-	-	2.9	3.5	93.6	0.0	-	-	-
Total \%	0.6	38.0	0.9	0.0	-	39.6	1.9	0.2	0.9	0.0	-	3.1	15.7	21.2	2.4	0.0	-	39.3	0.5	0.6	16.9	0.0	-	18.0	-
PHF	0.500	0.938	0.750	0.000	-	0.938	0.563	0.500	0.563	0.000	-	0.659	0.847	0.852	0.575	0.000	-	0.961	0.625	0.375	0.606	0.000	-	0.594	0.898
Lights	6	233	6	0	-	245	18	2	5	0	-	25	136	171	22	0	-	329	4	5	139	0	-	148	747
\% Lights	100.0	64.7	66.7	-	-	65.3	100.0	100.0	55.6	-	-	86.2	91.3	85.1	95.7	-	-	88.2	80.0	83.3	86.9	-	-	86.5	78.8
Mediums	0	43	2	0	-	45	0	0	1	0	-	1	9	9	1	0	-	19	1	1	5	0	-	7	72
\% Mediums	0.0	11.9	22.2	-	-	12.0	0.0	0.0	11.1	-	-	3.4	6.0	4.5	4.3	-	-	5.1	20.0	16.7	3.1	-	\checkmark	4.1	7.6
Articulated Trucks	0	84	1	0	-	85	0	0	3	0	-	3	4	21	0	0	-	25	0	0	16	0	-	16	129
$\begin{gathered} \hline \text { \% Articulated } \\ \text { Trucks } \\ \hline \end{gathered}$	0.0	23.3	11.1	-	-	22.7	0.0	0.0	33.3	-	-	10.3	2.7	10.4	0.0	-	-	6.7	0.0	0.0	10.0	-	-	9.4	13.6
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	.	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-		-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Hwy 97 / Hwy 29 Site Code: 1
Start Date: 2014/09/23
Page No: 7

Turning Movement Peak Hour Data Plot (05:00 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Lower Cache Site Code: 6
Page No: 1 2014/09/17

Turning Movement Data

Start Time	Thru	Right	Alaska Hwy 9 Southbound U-Turn	Peds	App. Total	Left	Thru	Alaska Hwy 97 Northbound U-Turn	Peds	App. Total	Left	Right	wer Cache Eastbound U-Turn	Peds	App. Total	Int. Total
05:00 AM	4	0	0	0	4	0	23	0	0	23	0	0	0	0	0	27
05:15 AM	7	0	0	0	7	0	51	0	0	51	0	0	0	0	0	58
05:30 AM	10	0	0	0	10	1	45	0	0	46	0	0	0	0	0	56
05:45 AM	9	0	0	0	9	0	41	0	0	41	0	2	0	0	2	52
Hourly Total	30	0	0	0	30	1	160	0	0	161	0	2	0	0	2	193
06:00 AM	11	0	0	0	11	1	46	0	0	47	0	1	0	0	1	59
06:15 AM	14	0	0	0	14	1	73	0	0	74	0	0	0	0	0	88
06:30 AM	11	0	0	0	11	1	65	0	0	66	0	0	0	0	0	77
06:45 AM	19	0	0	0	19	0	71	0	0	71	0	0	0	0	0	90
Hourly Total	55	0	0	0	55	3	255	0	0	258	0	1	0	0	1	314
07:00 AM	9	0	0	0	9	1	58	0	0	59	1	1	0	0	2	70
07:15 AM	28	0	0	0	28	0	88	0	0	88	0	0	0	0	0	116
07:30 AM	22	0	0	0	22	0	93	0	0	93	0	0	0	0	0	115
07:45 AM	14	0	0	0	14	1	77	0	0	78	0	0	0	0	0	92
Hourly Total	73	0	0	0	73	2	316	0	0	318	1	1	0	0	2	393
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	15	0	0	0	15	2	35	0	0	37	0	1	0	0	1	53
11:15 AM	32	0	0	0	32	2	34	0	0	36	1	3	0	0	4	72
11:30 AM	34	0	0	0	34	2	45	0	0	47	0	1	0	0	1	82
11:45 AM	62	0	0	0	62	0	35	0	0	35	0	1	0	0	1	98
Hourly Total	143	0	0	0	143	6	149	0	0	155	1	6	0	0	7	305
12:00 PM	38	1	0	0	39	0	23	0	0	23	1	1	0	0	2	64
12:15 PM	24	0	0	0	24	0	41	0	0	41	0	2	0	0	2	67
12:30 PM	28	1	0	0	29	1	22	0	0	23	0	0	0	0	0	52
12:45 PM	43	1	0	0	44	0	25	0	0	25	0	1	0	0	1	70
Hourly Total	133	3	0	0	136	1	111	0	0	112	1	4	0	0	5	253
01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:00 PM	95	0	0	0	95	0	27	0	0	27	0	2	0	0	2	124
04:15 PM	49	0	0	0	49	2	22	0	0	24	0	3	0	0	3	76
04:30 PM	65	1	0	0	66	0	25	0	0	25	0	1	0	0	1	92
04:45 PM	88	0	0	0	88	0	27	0	0	27	0	1	0	0	1	116
Hourly Total	297	1	0	0	298	2	101	0	0	103	0	7	0	0	7	408
05:00 PM	61	1	0	0	62	1	21	0	0	22	1	0	0	0	1	85
05:15 PM	26	0	0	0	26	2	35	0	0	37	0	2	0	0	2	65

05:30 PM	59	1	0	0	60	1	26	0	0	27	1	1	0	0	2	89
05:45 PM	45	0	0	0	45	1	22	0	0	23	0	0	0	0	0	68
Hourly Total	191	2	0	0	193	5	104	0	0	109	2	3	0	0	5	307
06:00 PM	77	0	0	0	77	1	25	0	0	26	0	0	0	0	0	103
06:15 PM	77	1	0	0	78	1	23	0	0	24	0	2	0	0	2	104
06:30 PM	81	0	0	0	81	1	34	0	0	35	0	1	0	0	1	117
06:45 PM	44	0	0	0	44	3	30	0	0	33	0	1	0	0	1	78
Hourly Total	279	1	0	0	280	6	112	0	0	118	0	4	0	0	4	402
Grand Total	1201	7	0	0	1208	26	1308	0	0	1334	5	28	0	0	33	2575
Approach \%	99.4	0.6	0.0	-	-	1.9	98.1	0.0	-	-	15.2	84.8	0.0	-	-	-
Total \%	46.6	0.3	0.0	-	46.9	1.0	50.8	0.0	-	51.8	0.2	1.1	0.0	-	1.3	-
Lights	774	7	0	-	781	23	841	0	-	864	5	25	0	-	30	1675
\% Lights	64.4	100.0	-	-	64.7	88.5	64.3	-	-	64.8	100.0	89.3	-	-	90.9	65.0
Mediums	126	0	0	-	126	1	144	0	-	145	0	1	0	-	1	272
\% Mediums	10.5	0.0	-	-	10.4	3.8	11.0	-	-	10.9	0.0	3.6	-	-	3.0	10.6
Articulated Trucks	301	0	0	-	301	2	323	0	-	325	0	2	0	-	2	628
\% Articulated Trucks	25.1	0.0	-	-	24.9	7.7	24.7	-	-	24.4	0.0	7.1	-	-	6.1	24.4
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	$-$	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Lower Cache Site Code: 6
Start Date: 2014/09/17
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 Count Name: Lower Cache Site Code: 6
Page No: 4 2014/09/17
250-819-2527 paul@peaktraffic.ca
Page No: 4

Start Time	Turning Movement Peak Hour Data (07:00 AM)															
	Alaska Hwy 97					Alaska Hwy 97					Lower Cache Rd Eastbound					Int. Total
	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	
07:00 AM	9	0	0	0	9	1	58	0	0	59	1	1	0	0	2	70
07:15 AM	28	0	0	0	28	0	88	0	0	88	0	0	0	0	0	116
07:30 AM	22	0	0	0	22	0	93	0	0	93	0	0	0	0	0	115
07:45 AM	14	0	0	0	14	1	77	0	0	78	0	0	0	0	0	92
Total	73	0	0	0	73	2	316	0	0	318	1	1	0	0	2	393
Approach \%	100.0	0.0	0.0	-	-	0.6	99.4	0.0	-	-	50.0	50.0	0.0	-	-	-
Total \%	18.6	0.0	0.0	-	18.6	0.5	80.4	0.0	-	80.9	0.3	0.3	0.0	-	0.5	-
PHF	0.652	0.000	0.000	-	0.652	0.500	0.849	0.000	-	0.855	0.250	0.250	0.000	-	0.250	0.847
Lights	48	0	0	-	48	2	199	0	-	201	1	1	0	-	2	251
\% Lights	65.8	-	-	-	65.8	100.0	63.0	-	-	63.2	100.0	100.0	-	-	100.0	63.9
Mediums	4	0	0	-	4	0	36	0	-	36	0	0	0	-	0	40
\% Mediums	5.5	-	-	-	5.5	0.0	11.4	-	-	11.3	0.0	0.0	-	-	0.0	10.2
Articulated Trucks	21	0	0	-	21	0	81	0	-	81	0	0	0	-	0	102
\% Articulated Trucks	28.8	-	-	-	28.8	0.0	25.6	-	-	25.5	0.0	0.0	-	-	0.0	26.0
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	-	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	\cdot	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Lower Cache Site Code: 6
Start Date: 2014/09/17
Page No: 5

Turning Movement Peak Hour Data Plot (07:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4

Count Name: Lower Cache Site Code: 6
Pare No: 6 2014/09/17
Page No: 6

Start Time	Turning Movement Peak Hour Data (11:00 AM)															
	Alaska Hwy 97					Alaska Hwy 97					Lower Cache Rd Eastbound					Int. Total
	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	
11:00 AM	15	0	0	0	15	2	35	0	0	37	0	1	0	0	1	53
11:15 AM	32	0	0	0	32	2	34	0	0	36	1	3	0	0	4	72
11:30 AM	34	0	0	0	34	2	45	0	0	47	0	1	0	0	1	82
11:45 AM	62	0	0	0	62	0	35	0	0	35	0	1	0	0	1	98
Total	143	0	0	0	143	6	149	0	0	155	1	6	0	0	7	305
Approach \%	100.0	0.0	0.0	-	-	3.9	96.1	0.0	-	-	14.3	85.7	0.0	-	-	-
Total \%	46.9	0.0	0.0	-	46.9	2.0	48.9	0.0	-	50.8	0.3	2.0	0.0	-	2.3	-
PHF	0.577	0.000	0.000	-	0.577	0.750	0.828	0.000	-	0.824	0.250	0.500	0.000	-	0.438	0.778
Lights	69	0	0	-	69	4	88	0	-	92	1	4	0	-	5	166
\% Lights	48.3	-	-	-	48.3	66.7	59.1	-	-	59.4	100.0	66.7	-	-	71.4	54.4
Mediums	13	0	0	-	13	1	18	0	-	19	0	1	0	-	1	33
\% Mediums	9.1	-	-	-	9.1	16.7	12.1	-	-	12.3	0.0	16.7	-	-	14.3	10.8
Articulated Trucks	61	0	0	-	61	1	43	0	-	44	0	1	0	-	1	106
\% Articulated Trucks	42.7	-	-	-	42.7	16.7	28.9	-	-	28.4	0.0	16.7	-	-	14.3	34.8
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	-	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	\cdot	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Lower Cache Site Code: 6
Start Date: 2014/09/17 Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 Count Name: Lower Cache Site Code: 6
Star Ne: 2014/09/17
250-819-2527 paul@peaktraffic.ca
Page No: 8

Start Time	Turning Movement Peak Hour Data (12:00 PM)															
	Alaska Hwy 97 Southbound					Alaska Hwy 97Northbound					Lower Cache Rd Eastbound					Int. Total
	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	
12:00 PM	38	1	0	0	39	0	23	0	0	23	1	1	0	0	2	64
12:15 PM	24	0	0	0	24	0	41	0	0	41	0	2	0	0	2	67
12:30 PM	28	1	0	0	29	1	22	0	0	23	0	0	0	0	0	52
12:45 PM	43	1	0	0	44	0	25	0	0	25	0	1	0	0	1	70
Total	133	3	0	0	136	1	111	0	0	112	1	4	0	0	5	253
Approach \%	97.8	2.2	0.0	-	-	0.9	99.1	0.0	-	-	20.0	80.0	0.0	-	-	-
Total \%	52.6	1.2	0.0	-	53.8	0.4	43.9	0.0	-	44.3	0.4	1.6	0.0	-	2.0	-
PHF	0.773	0.750	0.000	-	0.773	0.250	0.677	0.000	-	0.683	0.250	0.500	0.000	-	0.625	0.904
Lights	73	3	0	-	76	0	66	0	-	66	1	3	0	-	4	146
\% Lights	54.9	100.0	-	-	55.9	0.0	59.5	-	-	58.9	100.0	75.0	-	-	80.0	57.7
Mediums	17	0	0	-	17	0	13	0	-	13	0	0	0	-	0	30
\% Mediums	12.8	0.0	-	-	12.5	0.0	11.7	-	-	11.6	0.0	0.0	-	-	0.0	11.9
Articulated Trucks	43	0	0	-	43	1	32	0	-	33	0	1	0	-	1	77
\% Articulated Trucks	32.3	0.0	-	-	31.6	100.0	28.8	-	-	29.5	0.0	25.0	-	-	20.0	30.4
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Lower Cache Site Code: 6
Start Date: 2014/09/17
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 Count Name: Lower Cache Site Code: 6
Start Nate: 2014/09/17
250-819-2527 paul@peaktraffic.ca
Page No: 10

Start Time	Turning Movement Peak Hour Data (04:00 PM)															
	Alaska Hwy 97Southbound					Alaska Hwy 97					Lower Cache Rd					Int. Total
	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	
04:00 PM	95	0	0	0	95	0	27	0	0	27	0	2	0	0	2	124
04:15 PM	49	0	0	0	49	2	22	0	0	24	0	3	0	0	3	76
04:30 PM	65	1	0	0	66	0	25	0	0	25	0	1	0	0	1	92
04:45 PM	88	0	0	0	88	0	27	0	0	27	0	1	0	0	1	116
Total	297	1	0	0	298	2	101	0	0	103	0	7	0	0	7	408
Approach \%	99.7	0.3	0.0	-	-	1.9	98.1	0.0	-	-	0.0	100.0	0.0	-	-	-
Total \%	72.8	0.2	0.0	-	73.0	0.5	24.8	0.0	-	25.2	0.0	1.7	0.0	-	1.7	-
PHF	0.782	0.250	0.000	-	0.784	0.250	0.935	0.000	-	0.954	0.000	0.583	0.000	-	0.583	0.823
Lights	197	1	0	-	198	2	74	0	-	76	0	7	0	-	7	281
\% Lights	66.3	100.0	-	-	66.4	100.0	73.3	-	-	73.8	-	100.0	-	-	100.0	68.9
Mediums	39	0	0	-	39	0	4	0	-	4	0	0	0	-	0	43
\% Mediums	13.1	0.0	-	-	13.1	0.0	4.0	-	-	3.9	-	0.0	-	-	0.0	10.5
Articulated Trucks	61	0	0	-	61	0	23	0	-	23	0	0	0	-	0	84
\% Articulated Trucks	20.5	0.0	-	-	20.5	0.0	22.8	-	-	22.3	-	0.0	-	-	0.0	20.6
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	-	0.0	-	\checkmark	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Lower Cache Site Code: 6
Star Die: 2014/09/17
Page No: 11

Turning Movement Peak Hour Data Plot (04:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4

Count Name: Montney Hwy Site Code: 4
Sla Date: 2014/09/17
Page No: 1

Start Time	Alaska Hwy 97 Southbound						Turning Movement Data $\begin{array}{c}\text { Montney Hwy } \\ \text { Westbound }\end{array}$ $\begin{array}{c}\text { Alaska Hwy } 97 \\ \text { Northbound }\end{array}$												Access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	Appil	
05:00 AM	0	5	0	0	0	5	2	0	1	0	0	3	0	32	1	0	0	33	0	0	0	0	0	0	41
05:15 AM	0	7	0	0	0	7	0	0	4	0	0	4	0	47	1	0	0	48	0	0	0	0	0	0	59
05:30 AM	0	10	0	0	0	10	0	0	0	0	0	0	0	39	0	0	0	39	0	0	0	0	0	0	49
05:45 AM	0	10	0	0	0	10	1	0	1	0	0	2	0	43	1	0	0	44	0	0	0	0	0	0	56
Hourly Total	0	32	0	0	0	32	3	0	6	0	0	9	0	161	3	0	0	164	0	0	0	0	0	0	205
06:00 AM	0	13	0	0	0	13	1	0	2	0	0	3	0	43	0	0	0	43	0	0	0	0	0	0	59
06:15 AM	0	14	0	0	0	14	5	0	7	0	0	12	0	72	2	0	0	74	0	0	0	0	0	0	100
06:30 AM	0	13	0	0	0	13	2	0	2	0	0	4	0	60	2	0	0	62	0	0	1	0	0	1	80
06:45 AM	0	11	0	0	0	11	1	0	1	0	0	2	0	73	0	0	0	73	0	0	0	0	0	0	86
Hourly Total	0	51	0	0	0	51	9	0	12	0	0	21	0	248	4	0	0	252	0	0	1	0	0	1	325
07:00 AM	2	15	0	0	0	17	0	0	0	0	0	0	0	67	2	0	0	69	1	0	0	0	0	1	87
07:15 AM	0	31	0	0	0	31	1	0	4	0	0	5	0	82	0	0	0	82	0	0	0	0	0	0	118
07:30 AM	0	30	0	0	0	30	3	0	4	0	0	7	0	82	1	0	0	83	0	0	0	0	0	0	120
07:45 AM	0	14	0	0	0	14	0	0	2	0	0	2	0	77	1	0	0	78	0	0	0	0	0	0	94
Hourly Total	2	90	0	0	0	92	4	0	10	0	0	14	0	308	4	0	0	312	1	0	0	0	0	1	419
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	2	24	0	0	0	26	0	0	0	0	0	0	0	36	1	0	0	37	0	0	0	0	0	0	63
11:15 AM	0	26	0	0	0	26	1	0	0	0	0	1	0	42	1	0	0	43	0	0	0	0	0	0	70
11:30 AM	0	35	0	0	0	35	0	0	3	0	0	3	0	39	0	0	0	39	0	0	0	0	0	0	77
11:45 AM	1	59	0	0	0	60	2	0	0	0	0	2	0	34	1	0	0	35	0	0	0	0	0	0	97
Hourly Total	3	144	0	0	0	147	3	0	3	0	0	6	0	151	3	0	0	154	0	0	0	0	0	0	307
12:00 PM	0	30	0	0	0	30	0	0	3	0	0	3	0	31	1	0	0	32	0	0	0	0	0	0	65
12:15 PM	1	40	0	0	0	41	1	0	2	0	0	3	0	23	3	0	0	26	0	0	0	0	0	0	70
12:30 PM	0	31	0	0	0	31	0	0	3	0	0	3	0	26	1	0	0	27	0	0	0	0	0	0	61
12:45 PM	1	26	0	0	0	27	0	0	2	0	0	2	0	25	2	0	0	27	0	0	0	0	0	0	56
Hourly Total	2	127	0	0	0	129	1	0	10	0	0	11	0	105	7	0	0	112	0	0	0	0	0	0	252
01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:00 PM	0	89	0	0	0	89	0	0	1	0	0	1	0	21	2	0	0	23	0	0	0	0	0	0	113
04:15 PM	1	57	0	0	0	58	2	0	1	0	0	3	0	27	3	0	0	30	0	0	0	0	0	0	91
04:30 PM	2	55	0	0	0	57	1	0	0	0	0	1	0	18	2	0	0	20	0	0	0	0	0	0	78
04:45 PM	1	58	0	0	0	59	2	0	2	0	0	4	0	28	1	0	0	29	0	0	0	0	0	0	92
Hourly Total	4	259	0	0	0	263	5	0	4	0	0	9	0	94	8	0	0	102	0	0	0	0	0	0	374
05:00 PM	5	80	0	0	0	85	2	0	0	0	0	2	0	30	3	0	0	33	0	0	0	0	0	0	120

05:15 PM	0	42	0	0	0	42	0	0	0	1	0	1	1	37	3	0	0	41	0	0	0	0	0	0	84
05:30 PM	0	57	0	0	0	57	1	0	0	0	0	1	1	25	0	0	0	26	0	0	0	0	0	0	84
05:45 PM	0	35	0	0	0	35	2	0	0	0	0	2	0	26	2	0	0	28	0	0	0	0	0	0	65
Hourly Total	5	214	0	0	0	219	5	0	0	1	0	6	2	118	8	0	0	128	0	0	0	0	0	0	353
06:00 PM	0	72	0	0	0	72	3	0	3	0	0	6	0	26	5	0	0	31	0	0	1	0	0	1	110
06:15 PM	2	61	0	0	0	63	2	1	0	0	0	3	0	19	1	0	0	20	0	0	0	0	0	0	86
06:30 PM	3	86	0	0	0	89	2	0	2	0	0	4	0	44	1	0	0	45	0	0	0	0	0	0	138
06:45 PM	3	56	0	0	0	59	4	0	0	0	0	4	0	18	2	0	0	20	0	0	0	0	0	0	83
Hourly Total	8	275	0	0	0	283	11	1	5	0	0	17	0	107	9	0	0	116	0	0	1	0	0	1	417
07:00 PM	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Grand Total	24	1193	0	0	0	1217	41	1	50	1	0	93	2	1292	46	0	0	1340	1	0	2	0	0	3	2653
Approach \%	2.0	98.0	0.0	0.0	-	-	44.1	1.1	53.8	1.1	-	-	0.1	96.4	3.4	0.0	-	-	33.3	0.0	66.7	0.0	-	-	-
Total \%	0.9	45.0	0.0	0.0	-	45.9	1.5	0.0	1.9	0.0	-	3.5	0.1	48.7	1.7	0.0	-	50.5	0.0	0.0	0.1	0.0	-	0.1	-
Lights	13	771	0	0	-	784	37	1	22	1	-	61	2	847	42	0	-	891	1	0	2	0	-	3	1739
\% Lights	54.2	64.6	-	-	-	64.4	90.2	100.0	44.0	100.0	-	65.6	100.0	65.6	91.3	-	-	66.5	100.0	-	100.0	-	-	100.0	65.5
Mediums	4	129	0	0	-	133	3	0	11	0	-	14	0	124	2	0	-	126	0	0	0	0	-	0	273
\% Mediums	16.7	10.8	-	-	-	10.9	7.3	0.0	22.0	0.0	-	15.1	0.0	9.6	4.3	-	-	9.4	0.0	-	0.0	-	-	0.0	10.3
Articulated Trucks	7	293	0	0	-	300	1	0	17	0	-	18	0	321	2	0	-	323	0	0	0	0	-	0	641
\% Articulated Trucks	29.2	24.6	-	-	-	24.7	2.4	0.0	34.0	0.0	-	19.4	0.0	24.8	4.3	-	-	24.1	0.0	-	0.0	.	-	0.0	24.2
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
$\begin{gathered} \text { \% Bicycles on } \\ \text { Road } \end{gathered}$	0.0	0.0	-	-	-	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	-	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Montney Hwy Site Code: 4
Start Date: 2014/09/17
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Montney Hwy Site Code: 4
Start Date: 2014/09/17
Page No: 4

Start Time	Alaska Hwy 97 Southbound							Turn	ng Mont Wes	ovem y Hwy ound	ent F	ak	our	ata	$\begin{gathered} 7: 00 \\ \text { Alaska } \\ \text { Nort } \end{gathered}$	AM) Hwy 97 ound			Access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { Tpp. } \\ & \text { Tol } \end{aligned}$	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { App. } \\ & \text { Total } \\ & \hline \end{aligned}$	
07:00 AM	2	15	0	0	0	17	0	0	0	0	0	0	0	67	2	0	0	69	1	0	0	0	0	1	87
07:15 AM	0	31	0	0	0	31	1	0	4	0	0	5	0	82	0	0	0	82	0	0	0	0	0	0	118
07:30 AM	0	30	0	0	0	30	3	0	4	0	0	7	0	82	1	0	0	83	0	0	0	0	0	0	120
07:45 AM	0	14	0	0	0	14	0	0	2	0	0	2	0	77	1	0	0	78	0	0	0	0	0	0	94
Total	2	90	0	0	0	92	4	0	10	0	0	14	0	308	4	0		312	1	0	0	0	0	1	419
Approach \%	2.2	97.8	0.0	0.0	-	-	28.6	0.0	71.4	0.0	-	-	0.0	98.7	1.3	0.0	-	-	100.0	0.0	0.0	0.0	-	-	-
Total \%	0.5	21.5	0.0	0.0	-	22.0	1.0	0.0	2.4	0.0	-	3.3	0.0	73.5	1.0	0.0	-	74.5	0.2	0.0	0.0	0.0	-	0.2	-
PHF	0.250	0.726	0.000	0.000	-	0.742	0.333	0.000	0.625	0.000	-	0.500	0.000	0.939	0.500	0.000	-	0.940	0.250	0.000	0.000	0.000	-	0.250	0.873
Lights	1	61	0	0	-	62	4	0	0	0	-	4	0	190	3	0	-	193	1	0	0	0	-	1	260
\% Lights	50.0	67.8	-	-	-	67.4	100.0	-	0.0	-	-	28.6	-	61.7	75.0	-	-	61.9	100.0	-	-	-	-	100.0	62.1
Mediums	0	4	0	0	-	4	0	0	5	0	-	5	0	41	1	0	-	42	0	0	0	0	-	0	51
\% Mediums	0.0	4.4	-	-	-	4.3	0.0	-	50.0	-	-	35.7	-	13.3	25.0	-	-	13.5	0.0	-	-	-	-	0.0	12.2
Articulated Trucks	1	25	0	0	-	26	0	0	5	0	-	5	0	77	0	0	-	77	0	0	0	0	-	0	108
\% Articulated Trucks	50.0	27.8	.	-	-	28.3	0.0	-	50.0	-	-	35.7	-	25.0	0.0	-	-	24.7	0.0	-	.	-	.	0.0	25.8
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	.	-	0.0	0.0	-	0.0	.	-	0.0	-	0.0	0.0	-	-	0.0	0.0	-	-	-	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Montney Hwy Site Code: 4
Start Date: 2014/09/17
Page No: 5

Turning Movement Peak Hour Data Plot (07:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Montney Hwy Site Code: 4
Start Dae: 2014/09/17
Page No: 6

Start Time	Alaska Hwy 97 Southbound							Turn	ng Mont Wes	ovem y Hwy ound	ent l	ak	our	ata	Alaska North	AM) Hwy 97 bound			Access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { Tpp. } \\ & \text { Tol } \end{aligned}$	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { Tpp. } \\ & \text { Tol } \end{aligned}$	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { App. } \\ & \text { Total } \\ & \hline \end{aligned}$	
11:00 AM	2	24	0	0	0	26	0	0	0	0	0	0	0	36	1	0	0	37	0	0	0	0	0	0	63
11:15 AM	0	26	0	0	0	26	1	0	0	0	0	1	0	42	1	0	0	43	0	0	0	0	0	0	70
11:30 AM	0	35	0	0	0	35	0	0	3	0	0	3	0	39	0	0	0	39	0	0	0	0	0	0	77
11:45 AM	1	59	0	0	0	60	2	0	0	0	0	2	0	34	1	0	0	35	0	0	0	0	0	0	97
Total	3	144	0	0	0	147	3	0	3	0	0	6	0	151	3	0	0	154	0	0	0	0	0	0	307
Approach \%	2.0	98.0	0.0	0.0	-	-	50.0	0.0	50.0	0.0	-	-	0.0	98.1	1.9	0.0	-	-	NaN	NaN	NaN	NaN	-	-	-
Total \%	1.0	46.9	0.0	0.0	-	47.9	1.0	0.0	1.0	0.0	-	2.0	0.0	49.2	1.0	0.0	-	50.2	0.0	0.0	0.0	0.0	-	0.0	-
PHF	0.375	0.610	0.000	0.000	-	0.613	0.375	0.000	0.250	0.000	-	0.500	0.000	0.899	0.750	0.000	-	0.895	0.000	0.000	0.000	0.000	-	0.000	0.791
Lights	1	70	0	0	-	71	3	0	1	0	-	4	0	89	3	0	-	92	0	0	0	0	-	0	167
\% Lights	33.3	48.6	-	-	-	48.3	100.0	-	33.3	-	-	66.7	-	58.9	100.0	-	-	59.7	-	-	-	-	-	-	54.4
Mediums	1	14	0	0	-	15	0	0	2	0	-	2	0	18	0	0	-	18	0	0	0	0	-	0	35
\% Mediums	33.3	9.7	-	-	-	10.2	0.0	-	66.7	-	-	33.3	-	11.9	0.0	-	-	11.7	-	-	-	-	-	-	11.4
Articulated Trucks	1	60	0	0	-	61	0	0	0	0	-	0	0	44	0	0	-	44	0	0	0	0	-	0	105
\% Articulated Trucks	33.3	41.7	.	-	.	41.5	0.0	-	0.0	-	-	0.0	-	29.1	0.0	.	-	28.6	-	-	.	-	-	.	34.2
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	-	0.0	0.0	-	0.0	-	-	0.0	-	0.0	0.0	-	-	0.0	.	-	-	-	-	-	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Montney Hwy Site Code: 4
Start Date: 2014/09/17
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Montney Hwy Site Code: 4
Start Ne: 2014/09/17
250-819-2527 paul@peaktraffic.ca
Page No: 8

Start Time	Turning Movement Peak Hour Data (12:00 PM)																								
	Alaska Hwy 97						Montney Hwy						Alaska Hwy 97 Northbound						Access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { App. } \\ & \text { Total } \\ & \hline \end{aligned}$	
12:00 PM	0	30	0	0	0	30	0	0	3	0	0	3	0	31	1	0	0	32	0	0	0	0	0	0	65
12:15 PM	1	40	0	0	0	41	1	0	2	0	0	3	0	23	3	0	0	26	0	0	0	0	0	0	70
12:30 PM	0	31	0	0	0	31	0	0	3	0	0	3	0	26	1	0	0	27	0	0	0	0	0	0	61
12:45 PM	1	26	0	0	0	27	0	0	2	0	0	2	0	25	2	0		27	0	0	0	0	0	0	56
Total	2	127	0	0	0	129	1	0	10	0	0	11	0	105	7	0		112	0	0	0	0	0	0	252
Approach \%	1.6	98.4	0.0	0.0	-	-	9.1	0.0	90.9	0.0	-	-	0.0	93.8	6.3	0.0	-	-	NaN	NaN	NaN	NaN	-	-	-
Total \%	0.8	50.4	0.0	0.0	-	51.2	0.4	0.0	4.0	0.0	-	4.4	0.0	41.7	2.8	0.0	-	44.4	0.0	0.0	0.0	0.0	-	0.0	-
PHF	0.500	0.794	0.000	0.000	-	0.787	0.250	0.000	0.833	0.000	-	0.917	0.000	0.847	0.583	0.000	-	0.875	0.000	0.000	0.000	0.000	-	0.000	0.900
Lights	1	73	0	0	-	74	1	0	2	0	-	3	0	69	7	0	-	76	0	0	0	0	-	0	153
\% Lights	50.0	57.5	-	-	-	57.4	100.0	-	20.0	-	-	27.3	-	65.7	100.0	-	-	67.9	-	-	-	-	-	-	60.7
Mediums	0	15	0	0	-	15	0	0	3	0	-	3	0	4	0	0	-	4	0	0	0	0	-	0	22
\% Mediums	0.0	11.8	-	-	-	11.6	0.0	-	30.0	-	-	27.3	-	3.8	0.0	-	-	3.6	-	-	-	-	-	-	8.7
Articulated Trucks	1	39	0	0	-	40	0	0	5	0	-	5	0	32	0	0	-	32	0	0	0	0	-	0	77
$\begin{gathered} \hline \text { \% Articulated } \\ \text { Trucks } \\ \hline \end{gathered}$	50.0	30.7	-	-	-	31.0	0.0	-	50.0	-	-	45.5	-	30.5	0.0	-	-	28.6	-	-	.	-	-	-	30.6
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	-	0.0	0.0	-	0.0	.	-	0.0	-	0.0	0.0	.	-	0.0	.	.	.	-	-	-	0.0
Pedestrians	-	-	-	-	0	-	-	\checkmark	-	$-$	0	-	-	-	-	-	0	-	$-$	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Montney Hwy Site Code: 4
Start Date: 2014/09/17
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Montney Hwy Site Code: 4
Start Date: 2014/09/17
Page No: 10

Turning Movement Peak Hour Data (06:00 PM)

Start Time	Alaska Hwy 97 Southbound						Turning Movement Peak Hour Data (06:00 PM)																		
							Montney Hwy Westbound						Alaska Hwy 97 Northbound						Access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	
06:00 PM	0	72	0	0	0	72	3	0	3	0	0	6	0	26	5	0	0	31	0	0	1	0	0	1	110
06:15 PM	2	61	0	0	0	63	2	1	0	0	0	3	0	19	1	0	0	20	0	0	0	0	0	0	86
06:30 PM	3	86	0	0	0	89	2	0	2	0	0	4	0	44	1	0	0	45	0	0	0	0	0	0	138
06:45 PM	3	56	0	0	0	59	4	0	0	0	0	4	0	18	2	0		20	0	0	0	0	0	0	83
Total	8	275	0	0	0	283	11	1	5	0	0	17	0	107	9	0	0	116	0	0	1	0	0	1	417
Approach \%	2.8	97.2	0.0	0.0	-	-	64.7	5.9	29.4	0.0	-	-	0.0	92.2	7.8	0.0	-	-	0.0	0.0	100.0	0.0	-	-	-
Total \%	1.9	65.9	0.0	0.0	-	67.9	2.6	0.2	1.2	0.0	-	4.1	0.0	25.7	2.2	0.0	-	27.8	0.0	0.0	0.2	0.0	\cdots	0.2	-
PHF	0.667	0.799	0.000	0.000	-	0.795	0.688	0.250	0.417	0.000	-	0.708	0.000	0.608	0.450	0.000	-	0.644	0.000	0.000	0.250	0.000	-	0.250	0.755
Lights	5	177	0	0	-	182	10	1	4	0	-	15	0	84	7	0	-	91	0	0	1	0	-	1	289
\% Lights	62.5	64.4	-	-	-	64.3	90.9	100.0	80.0	-	-	88.2	-	78.5	77.8	-	-	78.4	-	-	100.0	-	-	100.0	69.3
Mediums	1	39	0	0	-	40	1	0	0	0	-	1	0	3	0	0	-	3	0	0	0	0	-	0	44
\% Mediums	12.5	14.2	-	-	-	14.1	9.1	0.0	0.0	-	-	5.9	-	2.8	0.0	-	-	2.6	-	-	0.0	-	-	0.0	10.6
Articulated Trucks	2	59	0	0	-	61	0	0	1	0	-	1	0	20	2	0	\checkmark	22	0	0	0	0	-	0	84
\% Articulated Trucks	25.0	21.5	-	-	-	21.6	0.0	0.0	20.0	-	-	5.9	-	18.7	22.2	.	-	19.0	.	-	0.0	-	-	0.0	20.1
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	\checkmark	0	0
$\begin{gathered} \text { \% Bicycles on } \\ \text { Road } \\ \hline \end{gathered}$	0.0	0.0	-	-	-	0.0	0.0	0.0	0.0	-	-	0.0	-	0.0	0.0	-	-	0.0	-	-	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Montney Hwy Site Code: 4
Start Dae. 2014/09/17
Page No: 11

Turning Movement Peak Hour Data Plot (06:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4
Count Name: Pink Mountain \#1 Site Code: 12
50-819-2527 paul@peaktraffic.ca
Start Date: 2014/09/15
Page No: 1

Start Time	Alaska Hwy 97 Southbound						Turning Movement Data $\begin{array}{c}\text { Buffalo Inn South Access } \\ \text { Westbound }\end{array}$ $\begin{array}{c}\text { Alaska Hwy } 9 \\ \text { Northbound }\end{array}$												Pink Mountain Campsite / Race Trac Gas South Access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { Appal } \\ & \hline \end{aligned}$	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	
05:00 AM	0	9	0	0	0	9	0	1	0	0	0	1	0	3	0	0	0	3	0	0	0	0	0	0	13
05:15 AM	0	6	0	0	0	6	0	0	0	0	0	0	0	8	0	0	0	8	0	0	0	0	0	0	14
05:30 AM	0	11	0	0	0	11	0	0	0	0	0	0	0	17	0	0	0	17	0	0	0	0	0	0	28
05:45 AM	0	13	0	0	0	13	0	0	0	0	0	0	0	13	0	0	0	13	0	0	0	0	0	0	26
Hourly Total	0	39	0	0	0	39	0	1	0	0	0	1	0	41	0	0	0	41	0	0	0	0	0	0	81
06:00 AM	0	21	0	0	0	21	0	0	0	0	0	0	0	15	0	0	0	15	0	0	0	0	0	0	36
06:15 AM	0	18	0	0	0	18	0	0	0	0	0	0	0	19	0	0	0	19	0	0	0	0	0	0	37
06:30 AM	0	51	0	0	0	51	0	0	0	0	0	0	0	17	0	0	0	17	0	0	1	0	0	1	69
06:45 AM	0	28	0	0	0	28	0	0	0	0	0	0	0	22	0	0	0	22	0	0	0	0	0	0	50
Hourly Total	0	118	0	0	0	118	0	0	0	0	0	0	0	73	0	0	0	73	0	0	1	0	0	1	192
07:00 AM	0	30	0	0	0	30	0	0	0	0	0	0	0	16	0	0	0	16	0	0	0	0	0	0	46
07:15 AM	0	18	0	0	0	18	0	0	0	0	0	0	0	11	0	0	0	11	0	0	0	0	0	0	29
07:30 AM	0	14	0	0	0	14	0	0	0	0	0	0	0	18	0	0	0	18	0	0	0	0	0	0	32
07:45 AM	0	17	0	0	0	17	0	0	0	0	0	0	1	18	0	0	0	19	0	0	0	0	0	0	36
Hourly Total	0	79	0	0	0	79	0	0	0	0	0	0	1	63	0	0	0	64	0	0	0	0	0	0	143
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	0	21	0	0	0	21	0	0	0	0	0	0	0	18	0	0	0	18	0	0	0	0	0	0	39
11:15 AM	0	17	0	0	0	17	0	0	0	0	0	0	0	9	0	0	0	9	0	0	0	0	0	0	26
11:30 AM	0	15	0	0	0	15	0	0	0	0	0	0	0	18	0	0	0	18	0	0	0	0	0	0	33
11:45 AM	0	17	0	0	0	17	0	0	0	0	0	0	0	14	1	0	0	15	0	0	1	0	0	1	33
Hourly Total	0	70	0	0	0	70	0	0	0	0	0	0	0	59	1	0	0	60	0	0	1	0	0	1	131
12:00 PM	0	21	0	0	0	21	0	0	0	0	0	0	0	16	0	0	0	16	0	0	0	0	0	0	37
12:15 PM	0	22	0	0	0	22	0	0	0	0	0	0	0	13	0	0	0	13	0	0	0	0	0	0	35
12:30 PM	0	6	0	0	0	6	0	0	0	0	0	0	0	15	0	0	0	15	0	0	0	0	0	0	21
12:45 PM	0	25	0	0	0	25	0	0	0	0	0	0	0	12	0	0	0	12	0	0	0	0	0	0	37
Hourly Total	0	74	0	0	0	74	0	0	0	0	0	0	0	56	0	0	0	56	0	0	0	0	0	0	130
01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:00 PM	0	22	0	0	0	22	0	0	0	0	0	0	0	9	0	0	0	9	0	0	0	0	0	0	31
04:15 PM	0	8	0	0	0	8	0	0	0	0	0	0	0	12	0	0	0	12	0	0	0	0	0	0	20
04:30 PM	0	18	0	0	0	18	0	0	0	0	0	0	0	6	0	0	0	6	0	0	0	0	0	0	24
04:45 PM	0	19	0	0	0	19	0	0	0	0	0	0	4	36	1	0	0	41	0	0	0	0	0	0	60
Hourly Total	0	67	0	0	0	67	0	0	0	0	0	0	4	63	1	0	0	68	0	0	0	0	0	0	135
05:00 PM	0	11	0	0	0	11	0	0	0	0	0	0	1	22	0	0	0	23	0	0	0	0	0	0	34

05:15 PM	0	32	0	0	0	32	2	0	0	0	0	2	3	40	0	0	0	43	0	0	0	0	0	0	77
05:30 PM	0	26	0	0	0	26	0	0	0	0	0	0	2	47	1	0	0	50	0	0	2	0	0	2	78
05:45 PM	0	21	0	0	0	21	0	0	0	0	0	0	1	47	2	0	0	50	0	0	0	0	0	0	71
Hourly Total	0	90	0	0	0	90	2	0	0	0	0	2	7	156	3	0	0	166	0	0	2	0	0	2	260
06:00 PM	0	23	0	0	0	23	0	0	0	0	0	0	0	52	1	0	0	53	0	0	0	0	0	0	76
06:15 PM	0	13	0	0	0	13	0	0	0	0	0	0	0	36	0	0	0	36	0	0	3	0	0	3	52
06:30 PM	0	10	0	0	0	10	0	0	0	0	0	0	0	25	2	0	0	27	0	0	0	0	0	0	37
06:45 PM	0	20	0	0	0	20	0	0	0	0	0	0	0	19	0	0	0	19	0	1	0	0	0	1	40
Hourly Total	0	66	0	0	0	66	0	0	0	0	0	0	0	132	3	0	0	135	0	1	3	0	0	4	205
07:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	603	0	0	0	603	2	1	0	0	0	3	12	643	8	0	0	663	0	1	7	0	0	8	1277
Approach \%	0.0	100.0	0.0	0.0	-	-	66.7	33.3	0.0	0.0	-	-	1.8	97.0	1.2	0.0	-	-	0.0	12.5	87.5	0.0	-	-	-
Total \%	0.0	47.2	0.0	0.0	-	47.2	0.2	0.1	0.0	0.0	-	0.2	0.9	50.4	0.6	0.0	-	51.9	0.0	0.1	0.5	0.0	\checkmark	0.6	-
Lights	0	395	0	0	-	395	0	1	0	0	-	1	6	412	7	0	-	425	0	0	6	0	-	6	827
\% Lights	-	65.5	-	-	-	65.5	0.0	100.0	-	-	-	33.3	50.0	64.1	87.5	-	-	64.1	-	0.0	85.7	-	-	75.0	64.8
Mediums	0	69	0	0	-	69	0	0	0	0	-	0	3	52	0	0	-	55	0	0	0	0	-	0	124
\% Mediums	-	11.4	-	-	-	11.4	0.0	0.0	-	-	-	0.0	25.0	8.1	0.0	-	-	8.3	-	0.0	0.0	-	-	0.0	9.7
Articulated Trucks	0	139	0	0	-	139	2	0	0	0	-	2	3	179	1	0	-	183	0	1	1	0	-	2	326
\% Articulated Trucks	.	23.1	-	.	-	23.1	100.0	0.0	-	.	-	66.7	25.0	27.8	12.5	.	-	27.6	.	100.0	14.3	-	-	25.0	25.5
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
$\begin{gathered} \text { \% Bicycles on } \\ \text { Road } \\ \hline \end{gathered}$	-	0.0	-	-	-	0.0	0.0	0.0	-	-	-	0.0	0.0	0.0	0.0	-	-	0.0	-	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	$-$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Pink Mountain \#1 Site Code: 12
Start Date: 2014/09/15
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Pink Mountain \# Site Code: 12

2014/09/15
Page No: 4

Turning Movement Peak Hour Data (06:15 AM)

Start Time	Alaska Hwy 97 Southbound						Buffalo Inn South Access Westbound						Alaska Hwy 97 Northbound						Pink Mountain Campsite / Race Trac Gas South Access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	
06:15 AM	0	18	0	0	0	18	0	0	0	0	0	0	0	19	0	0	0	19	0	0	0	0	0	0	37
06:30 AM	0	51	0	0	0	51	0	0	0	0	0	0	0	17	0	0	0	17	0	0	1	0	0	1	69
06:45 AM	0	28	0	0	0	28	0	0	0	0	0	0	0	22	0	0	0	22	0	0	0	0	0	0	50
07:00 AM	0	30	0	0	0	30	0	0	0	0	0	0	0	16	0	0	0	16	0	0	0	0	0	0	46
Total	0	127	0	0	0	127	0	0	0	0	0	0	0	74	0	0	0	74	0	0	1	0	0	1	202
Approach \%	0.0	100.0	0.0	0.0	-	-	NaN	NaN	NaN	NaN	-	-	0.0	100.0	0.0	0.0	-	-	0.0	0.0	100.0	0.0	-	-	-
Total \%	0.0	62.9	0.0	0.0	-	62.9	0.0	0.0	0.0	0.0	-	0.0	0.0	36.6	0.0	0.0	-	36.6	0.0	0.0	0.5	0.0	-	0.5	-
PHF	0.000	0.623	0.000	0.000	-	0.623	0.000	0.000	0.000	0.000	-	0.000	0.000	0.841	0.000	0.000	-	0.841	0.000	0.000	0.250	0.000	-	0.250	0.732
Lights	0	90	0	0	-	90	0	0	0	0	-	0	0	46	0	0	-	46	0	0	1	0	-	1	137
\% Lights	-	70.9	-	-	-	70.9	-	-	-	-	-	-	-	62.2	-	-	-	62.2	-	-	100.0	-	-	100.0	67.8
Mediums	0	20	0	0	-	20	0	0	0	0	-	0	0	6	0	0	-	6	0	0	0	0	-	0	26
\% Mediums	-	15.7	-	-	-	15.7	-	-	-	-	-	-	-	8.1	-	-	-	8.1	-	-	0.0	-	-	0.0	12.9
Articulated Trucks	0	17	0	0	-	17	0	0	0	0	-	0	0	22	0	0	-	22	0	0	0	0	-	0	39
\% Articulated Trucks	-	13.4	-	-	.	13.4	-	-	.	.	-	.	-	29.7	-	.	-	29.7	-	-	0.0	-	-	0.0	19.3
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
$\begin{gathered} \% \text { Bicycles on } \\ \text { Road } \\ \hline \end{gathered}$	-	0.0	-	-	-	0.0	-	-	.	-	-	.	-	0.0	-	-	-	0.0	-	.	0.0	.	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Pink Mountain \#1 Site Code: 12
Start Date: 2014/09/15 Page No: 5

Turning Movement Peak Hour Data Plot (06:15 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Pink Mountain \#1 Site Code: 12

2014/09/15
250-819-2527 paul@peaktraffic.ca
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Alaska Hwy 97 Southbound						Buffalo Inn South Access Westbound						Alaska Hwy 97 Northbound						Pink Mountain Campsite / Race Trac Gas South Access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	
11:00 AM	0	21	0	0	0	21	0	0	0	0	0	0	0	18	0	0	0	18	0	0	0	0	0	0	39
11:15 AM	0	17	0	0	0	17	0	0	0	0	0	0	0	9	0	0	0	9	0	0	0	0	0	0	26
11:30 AM	0	15	0	0	0	15	0	0	0	0	0	0	0	18	0	0	0	18	0	0	0	0	0	0	33
11:45 AM	0	17	0	0	0	17	0	0	0	0	0	0	0	14		0	0	15	0	0	1	0	0	1	33
Total	0	70	0	0	0	70	0	0	0	0	0	0	0	59	1	0	0	60	0	0	1	0	0	1	131
Approach \%	0.0	100.0	0.0	0.0	-	-	NaN	NaN	NaN	NaN	-	-	0.0	98.3	1.7	0.0	-	-	0.0	0.0	100.0	0.0	-	-	-
Total \%	0.0	53.4	0.0	0.0	-	53.4	0.0	0.0	0.0	0.0	-	0.0	0.0	45.0	0.8	0.0	-	45.8	0.0	0.0	0.8	0.0	-	0.8	-
PHF	0.000	0.833	0.000	0.000	-	0.833	0.000	0.000	0.000	0.000	-	0.000	0.000	0.819	0.250	0.000	-	0.833	0.000	0.000	0.250	0.000	-	0.250	0.840
Lights	0	41	0	0	-	41	0	0	0	0	-	0	0	26	0	0	-	26	0	0	1	0	-	1	68
\% Lights	-	58.6	-	-	-	58.6	-	-	-	-	-	-	-	44.1	0.0	-	-	43.3	-	-	100.0	-	\checkmark	100.0	51.9
Mediums	0	6	0	0	-	6	0	0	0	0	-	0	0	8	0	0	-	8	0	0	0	0	-	0	14
\% Mediums	-	8.6	-	-	-	8.6	-	-	-	-	-	-	-	13.6	0.0	-	-	13.3	-	-	0.0	-	-	0.0	10.7
Articulated Trucks	0	23	0	0	-	23	0	0	0	0	-	0	0	25	1	0	-	26	0	0	0	0	-	0	49
\% Articulated Trucks	-	32.9	-	-	-	32.9	-	-	.	-	-	-	-	42.4	100.0	-	-	43.3	.	-	0.0	-	-	0.0	37.4
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
\% Bicycles on Road	-	0.0	-	-	-	0.0	-	-	-	-	-	-	-	0.0	0.0	.	-	0.0	-	.	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	$-$	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	\checkmark	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Pink Mountain \#1 Site Code: 12
Start Date: 2014/09/15
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Pink Mountain \#1 Site Code: 12
Star No: 2014/09/15
250-819-2527 paul@peaktraffic.ca
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound						Buffalo Inn South Access Westbound						Alaska Hwy 97 Northbound						Pink Mountain Campsite / Race Trac Gas South Access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	
12:00 PM	0	21	0	0	0	21	0	0	0	0	0	0	0	16	0	0	0	16	0	0	0	0	0	0	37
12:15 PM	0	22	0	0	0	22	0	0	0	0	0	0	0	13	0	0	0	13	0	0	0	0	0	0	35
12:30 PM	0	6	0	0	0	6	0	0	0	0	0	0	0	15	0	0	0	15	0	0	0	0	0	0	21
12:45 PM	0	25	0	0	0	25	0	0	0	0	0	0	0	12	0	0	0	12	0	0	0	0	0	0	37
Total	0	74	0	0	0	74	0	0	0	0	0	0	0	56	0	0	0	56	0	0	0	0	0	0	130
Approach \%	0.0	100.0	0.0	0.0	-	-	NaN	NaN	NaN	NaN	-	-	0.0	100.0	0.0	0.0	-	-	NaN	NaN	NaN	NaN	-	-	-
Total \%	0.0	56.9	0.0	0.0	-	56.9	0.0	0.0	0.0	0.0	-	0.0	0.0	43.1	0.0	0.0	-	43.1	0.0	0.0	0.0	0.0	-	0.0	-
PHF	0.000	0.740	0.000	0.000	-	0.740	0.000	0.000	0.000	0.000	-	0.000	0.000	0.875	0.000	0.000	-	0.875	0.000	0.000	0.000	0.000	-	0.000	0.878
Lights	0	44	0	0	-	44	0	0	0	0	-	0	0	31	0	0	-	31	0	0	0	0	-	0	75
\% Lights	-	59.5	-	-	-	59.5	-	-	-	-	-	-	-	55.4	-	-	-	55.4	-	-	-	-	-	-	57.7
Mediums	0	9	0	0	-	9	0	0	0	0	-	0	0	9	0	0	-	9	0	0	0	0	-	0	18
\% Mediums	-	12.2	-	-	-	12.2	-	-	-	-	-	-	-	16.1	-	-	-	16.1	-	-	-	-	-	-	13.8
Articulated Trucks	0	21	0	0	-	21	0	0	0	0	-	0	0	16	0	0	-	16	0	0	0	0	-	0	37
\% Articulated Trucks	-	28.4	-	-	-	28.4	-	-	-	-	-	.	-	28.6	-	-	-	28.6	-	.	.	-	-	.	28.5
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	\checkmark	0	0	0	0	0	-	0	0
$\begin{gathered} \text { \% Bicycles on } \\ \text { Road } \end{gathered}$	-	0.0	-	-	-	0.0	-	-	-	-	-	-	-	0.0	-	-	-	0.0	-	-	-	-	-	-	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	$-$	-
\% Pedestrians	-	-	\checkmark	\cdot	-	-	$-$	\checkmark	-	-	-	\checkmark	-	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Pink Mountain \#1 Site Code: 12
Start Date: 2014/09/15 Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Pink Mountain \#1 Site Code: 12
Start Date: 2014/09/15
250-819-2527 paul@peaktraffic.ca
Page No: 10

Turning Movement Peak Hour Data (05:15 PM)

Start Time	Alaska Hwy 97 Southbound						Buffalo Inn South Access Westbound						Alaska Hwy 97 Northbound						Pink Mountain Campsite / Race Trac Gas South Access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	
05:15 PM	0	32	0	0	0	32	2	0	0	0	0	2	3	40	0	0	0	43	0	0	0	0	0	0	77
05:30 PM	0	26	0	0	0	26	0	0	0	0	0	0	2	47	1	0	0	50	0	0	2	0	0	2	78
05:45 PM	0	21	0	0	0	21	0	0	0	0	0	0	1	47	2	0	0	50	0	0	0	0	0	0	71
06:00 PM	0	23	0	0	0	23	0	0	0	0	0	0	0	52	1	0	0	53	0	0	0	0	0	0	76
Total	0	102	0	0	0	102	2	0	0	0	0	2	6	186	4	0	0	196	0	0	2	0	0	2	302
Approach \%	0.0	100.0	0.0	0.0	-	-	100.0	0.0	0.0	0.0	-	-	3.1	94.9	2.0	0.0	-	-	0.0	0.0	100.0	0.0	-	-	-
Total \%	0.0	33.8	0.0	0.0	-	33.8	0.7	0.0	0.0	0.0	-	0.7	2.0	61.6	1.3	0.0	-	64.9	0.0	0.0	0.7	0.0	-	0.7	-
PHF	0.000	0.797	0.000	0.000	-	0.797	0.250	0.000	0.000	0.000	-	0.250	0.500	0.894	0.500	0.000	-	0.925	0.000	0.000	0.250	0.000	-	0.250	0.968
Lights	0	68	0	0	-	68	0	0	0	0	-	0	2	142	4	0	-	148	0	0	1	0	-	1	217
\% Lights	-	66.7	-	-	-	66.7	0.0	-	-	-	-	0.0	33.3	76.3	100.0	-	-	75.5	-	-	50.0	-	-	50.0	71.9
Mediums	0	13	0	0	-	13	0	0	0	0	-	0	2	8	0	0	-	10	0	0	0	0	-	0	23
\% Mediums	-	12.7	-	-	-	12.7	0.0	-	-	-	-	0.0	33.3	4.3	0.0	-	-	5.1	-	-	0.0	-	-	0.0	7.6
Articulated Trucks	0	21	0	0	-	21	2	0	0	0	-	2	2	36	0	0	-	38	0	0	1	0	-	1	62
\% Articulated Trucks	-	20.6	-	-	-	20.6	100.0	-	-	-	-	100.0	33.3	19.4	0.0	-	-	19.4	-	.	50.0	-	-	50.0	20.5
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	\checkmark	0	0	0	0	0	\checkmark	0	0	0	0	0	-	0	0
$\begin{gathered} \text { \% Bicycles on } \\ \text { Road } \end{gathered}$	-	0.0	-	-	-	0.0	0.0	-	-	-	-	0.0	0.0	0.0	0.0	-	-	0.0	-	-	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	\checkmark	\cdot	-	-	-	\checkmark	-	-	-	-	-	-	-	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Pink Mountain \#1 Site Code: 12
Start Nate: 2014/09/15 Page No: 11

Turning Movement Peak Hour Data Plot (05:15 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd

Kamloops, British Columbia, Canada V2B 1P4

Count Name: Pink Mountain \#2 and \#3 Site Code: 13 Ptart Date: 09/15/2014 Page No: 1

Pink Mountain Campsite access (Eastbound)

Start Time	Lights	Mediums	Articulated Trucks	Bicycles on Road	Total
5:00 AM	0	0	0	0	0
5:15 AM	0	0	0	0	0
5:30 AM	1	0	0	0	1
5:45 AM	0	0	0	0	0
6:00 AM	9	0	1	0	10
6:15 AM	6	0	0	0	6
6:30 AM	8	0	1	0	9
6:45 AM	3	0	0	0	3
7:00 AM	3	3	0	0	6
7:15 AM	2	1	0	0	3
7:30 AM	1	0	0	0	1
7:45 AM	0	0	2	0	2
11:00 AM	1	1	2	0	4
11:15 AM	0	0	0	0	0
11:30 AM	1	0	0	0	1
11:45 AM	1	0	0	0	1
12:00 PM	2	1	1	0	4
12:15 PM	4	0	0	0	4
12:30 PM	0	0	0	0	0
12:45 PM	4	1	0	0	5
1:00 PM	0	0	0	0	0
4:00 PM	4	0	1	0	5
4:15 PM	1	0	0	0	1
4:30 PM	7	0	0	0	7
4:45 PM	2	1	0	0	3
5:00 PM	5	0	0	0	5
5:15 PM	11	4	0	0	15
5:30 PM	11	1	4	0	16
5:45 PM	16	0	0	0	16
6:00 PM	7	0	0	0	7
6:15 PM	9	1	1	0	11
6:30 PM	10	0	0	0	10
6:45 PM	8	1	0	0	9
7:00 PM	0	0	0	0	0
Total	137	15	13	0	165
Total \%	83.0	9.1	7.9	0.0	100.0
AM Times	6:00 AM	7:00 AM	6:00 AM	5:00 AM	6:00 AM
AM Peaks	26	4	2	0	28
PM Times	5:15 PM	4:45 PM	4:45 PM	12:00 PM	5:15 PM

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd

Kamloops, British Columbia, Canada V2B 1P4

Count Name: Pink Mountain \#2 and \#3 Site Code: 13

09/15/2014 Page No: 3

Pink Mountain Campsite access (Westbound)

Start Time	Lights	Mediums	Articulated Trucks	Bicycles on Road	Total
5:00 AM	0	0	0	0	0
5:15 AM	2	0	0	0	2
5:30 AM	0	0	0	0	0
5:45 AM	2	0	1	0	3
6:00 AM	3	1	0	0	4
6:15 AM	3	0	0	0	3
6:30 AM	3	0	0	0	3
6:45 AM	3	0	2	0	5
7:00 AM	2	1	0	0	3
7:15 AM	2	0	0	0	2
7:30 AM	3	0	1	0	4
7:45 AM	2	1	1	0	4
11:00 AM	1	0	1	0	2
11:15 AM	0	0	0	0	0
11:30 AM	1	0	0	0	1
11:45 AM	5	0	0	0	5
12:00 PM	3	0	1	0	4
12:15 PM	2	0	0	0	2
12:30 PM	4	1	3	0	8
12:45 PM	2	0	0	0	2
1:00 PM	0	0	0	0	0
4:00 PM	5	0	0	0	5
4:15 PM	5	0	0	0	5
4:30 PM	7	0	0	0	7
4:45 PM	9	3	1	0	13
5:00 PM	7	0	0	0	7
5:15 PM	6	1	0	0	7
5:30 PM	11	0	1	0	12
5:45 PM	11	1	0	0	12
6:00 PM	7	2	0	0	9
6:15 PM	2	0	0	0	2
6:30 PM	8	0	0	0	8
6:45 PM	3	0	0	0	3
7:00 PM	0	0	0	0	0
Total	124	11	12	0	147
Total \%	84.4	7.5	8.2	0.0	100.0
AM Times	6:00 AM	7:00 AM	6:00 AM	5:00 AM	6:00 AM
AM Peaks	12	2	2	0	15
PM Times	5:15 PM	4:45 PM	4:45 PM	12:00 PM	5:15 PM

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Pink Mountain \#2 and \#3 Site Code: 13
Start Date: 09/15/2014
Page No: 5
\square Bicycles on
Road

今心
Chatitirirector (uñegistered) from www .advsofteng.com

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Pink Mountain \#2 and \#3 Site Code: 13
Start Date: 09/15/2014
Page No: 6

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Red Creek Rd, Mile 63.5 Rd Site Code: 3
Page No: 1 2014/09/22

Turning Movement Data

Start Time	Thru	Right	Alaska Hwy 97 Southbound U-Turn	Peds	App. Total	Left	Thru	Alaska Hwy 97 Northbound U-Turn	Peds	App. Total	Left	Right	Eastbound St. Eastbound U-Turn	Peds	App. Total	Int. Total
05:00 AM	6	0	0	0	6	0	21	0	0	21	0	1	0	0	1	28
05:15 AM	3	0	0	0	3	0	29	0	0	29	0	1	0	0	1	33
05:30 AM	7	0	0	0	7	1	38	0	0	39	1	2	0	0	3	49
05:45 AM	5	0	0	0	5	0	31	0	0	31	0	1	0	0	1	37
Hourly Total	21	0	0	0	21	1	119	0	0	120	1	5	0	0	6	147
06:00 AM	17	0	0	0	17	0	34	0	0	34	0	0	0	0	0	51
06:15 AM	24	0	0	0	24	0	54	0	0	54	1	6	0	0	7	85
06:30 AM	14	0	0	0	14	1	37	0	0	38	0	1	0	0	1	53
06:45 AM	15	0	0	0	15	0	57	0	0	57	1	3	0	0	4	76
Hourly Total	70	0	0	0	70	1	182	0	0	183	2	10	0	0	12	265
07:00 AM	9	0	0	0	9	0	53	0	0	53	0	4	0	0	4	66
07:15 AM	24	0	0	0	24	1	76	0	0	77	0	3	0	0	3	104
07:30 AM	29	0	0	0	29	0	62	0	0	62	0	7	0	0	7	98
07:45 AM	18	0	0	0	18	0	53	0	0	53	0	1	0	0	1	72
Hourly Total	80	0	0	0	80		244	0	0	245	0	15	0	0	15	340
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
${ }_{* * *}$ BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	21	0	0	0	21	0	37	0	0	37	0	0	0	0	0	58
11:15 AM	29	0	0	0	29	1	30	0	0	31	2	0	0	0	2	62
11:30 AM	27	0	0	0	27	0	33	0	0	33	0	2	0	0	2	62
11:45 AM	30	0	0	0	30	0	24	0	0	24	0	0	0	0	0	54
Hourly Total	107	0	0	0	107	1	124	0	0	125	2	2	0	0	4	236
12:00 PM	20	0	0	0	20	3	36	0	0	39	0	1	0	0	1	60
12:15 PM	31	0	0	0	31	0	22	0	0	22	0	1	0	0	1	54
12:30 PM	33	1	0	0	34	0	36	0	0	36	0	2	0	0	2	72
12:45 PM	40	0	0	0	40	1	31	0	0	32	0	0	0	0	0	72
Hourly Total	124	1	0	0	125	4	125	0	0	129	0	4	0	0	4	258
01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:00 PM	68	0	0	0	68	2	34	0	0	36	0	1	0	0	1	105
04:15 PM	60	1	0	0	61	3	23	0	0	26	1	1	0	0	2	89
04:30 PM	55	2	0	0	57	2	25	0	0	27	0	1	0	0	1	85
04:45 PM	52	0	0	0	52	4	42	0	0	46	0	3	0	0	3	101
Hourly Total	235	3	0	0	238	11	124	0	0	135	1	6	0	0	7	380
05:00 PM	46	0	0	0	46	2	30	0	0	32	0	0	0	0	0	78
05:15 PM	47	1	0	0	48	3	40	1	0	44	0	0	0	0	0	92

05:30 PM	62	0	0	0	62	3	48	0	0	51	0	2	0	,	2	115
05:45 PM	63	1	0	0	64	4	26	0	0	30	0	1	0	0	1	95
Hourly Total	218	2	0	0	220	12	144	1	0	157	0	3	0	0	3	380
06:00 PM	63	1	0	0	64	1	29	0	0	30	0	3	0	0	3	97
06:15 PM	62	0	0	0	62	2	23	0	0	25	0	3	0	0	3	90
06:30 PM	41	0	0	0	41	1	22	0	0	23	0	1	0	0	1	65
06:45 PM	55	0	0	0	55	4	21	0	0	25	0	0	0	0	0	80
Hourly Total	221	1	0	0	222	8	95	0	0	103	0	7	0	0	7	332
07:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	1076	7	0	0	1083	39	1157	1	0	1197	6	52	0	0	58	2338
Approach \%	99.4	0.6	0.0	-	-	3.3	96.7	0.1	-	-	10.3	89.7	0.0	-	-	-
Total \%	46.0	0.3	0.0	-	46.3	1.7	49.5	0.0	-	51.2	0.3	2.2	0.0	-	2.5	-
Lights	717	6	0	-	723	34	763	1	-	798	6	48	0	-	54	1575
\% Lights	66.6	85.7	-	-	66.8	87.2	65.9	100.0	-	66.7	100.0	92.3	-	-	93.1	67.4
Mediums	131	1	0	-	132	4	131	0	-	135	0	3	0	-	3	270
\% Mediums	12.2	14.3	-	-	12.2	10.3	11.3	0.0	-	11.3	0.0	5.8	-	-	5.2	11.5
Articulated Trucks	228	0	0	-	228	1	263	0	-	264	0	1	0	-	1	493
\% Articulated Trucks	21.2	0.0	-	-	21.1	2.6	22.7	0.0	-	22.1	0.0	1.9	-	-	1.7	21.1
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	\cdot	\cdot	-	-	-	-	\cdot	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Red Creek Rd, Mile 63.5 Rd Site Code: 3
Start Date: 2014/09/22
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Red Creek Rd, Mile 63.5 Rd Site Code: 3

14/09/22
250-819-2527 paul@peaktraffic.ca
Page No: 4

Start Time	Turning Movement Peak Hour Data (06:45 AM)															
	Alaska Hwy 97 Southbound					Alaska Hwy 97					Eastbound St. Eastbound					Int. Total
	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	
06:45 AM	15	0	0	0	15	0	57	0	0	57	1	3	0	0	4	76
07:00 AM	9	0	0	0	9	0	53	0	0	53	0	4	0	0	4	66
07:15 AM	24	0	0	0	24	1	76	0	0	77	0	3	0	0	3	104
07:30 AM	29	0	0	0	29	0	62	0	0	62	0	7	0	0	7	98
Total	77	0	0	0	77	1	248	0	0	249	1	17	0	0	18	344
Approach \%	100.0	0.0	0.0	-	-	0.4	99.6	0.0	-	-	5.6	94.4	0.0	-	-	-
Total \%	22.4	0.0	0.0	-	22.4	0.3	72.1	0.0	-	72.4	0.3	4.9	0.0	-	5.2	-
PHF	0.664	0.000	0.000	-	0.664	0.250	0.816	0.000	-	0.808	0.250	0.607	0.000	-	0.643	0.827
Lights	54	0	0	-	54	0	161	0	-	161	1	16	0	-	17	232
\% Lights	70.1	-	-	-	70.1	0.0	64.9	-	-	64.7	100.0	94.1	-	-	94.4	67.4
Mediums	3	0	0	-	3	1	43	0	-	44	0	1	0	-	1	48
\% Mediums	3.9	-	-	-	3.9	100.0	17.3	-	-	17.7	0.0	5.9	-	-	5.6	14.0
Articulated Trucks	20	0	0	-	20	0	44	0	-	44	0	0	0	-	0	64
\% Articulated Trucks	26.0	-	-	-	26.0	0.0	17.7	-	-	17.7	0.0	0.0	-	-	0.0	18.6
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	-	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Red Creek Rd, Mile 63.5 Rd Site Code: 3
Start Date: 2014/09/22
Page No: 5

Turning Movement Peak Hour Data Plot (06:45 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4

Count Name: Red Creek Rd, Mile 63.5 Rd Site Code: 3
Ptart Na: 2014/09/22
Page No: 6

Start Time	Turning Movement Peak Hour Data (11:00 AM)															
	Alaska Hwy 97					Alaska Hwy 97					Eastbound St. Eastbound					Int. Total
	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	
11:00 AM	21	0	0	0	21	0	37	0	0	37	0	0	0	0	0	58
11:15 AM	29	0	0	0	29	1	30	0	0	31	2	0	0	0	2	62
11:30 AM	27	0	0	0	27	0	33	0	0	33	0	2	0	0	2	62
11:45 AM	30	0	0	0	30	0	24	0	0	24	0	0	0	0	0	54
Total	107	0	0	0	107	1	124	0	0	125	2	2	0	0	4	236
Approach \%	100.0	0.0	0.0	-	-	0.8	99.2	0.0	-	-	50.0	50.0	0.0	-	-	-
Total \%	45.3	0.0	0.0	-	45.3	0.4	52.5	0.0	-	53.0	0.8	0.8	0.0	-	1.7	-
PHF	0.892	0.000	0.000	-	0.892	0.250	0.838	0.000	-	0.845	0.250	0.250	0.000	-	0.500	0.952
Lights	64	0	0	-	64	1	69	0	-	70	2	2	0	-	4	138
\% Lights	59.8	-	-	-	59.8	100.0	55.6	-	-	56.0	100.0	100.0	-	-	100.0	58.5
Mediums	13	0	0	-	13	0	23	0	-	23	0	0	0	-	0	36
\% Mediums	12.1	-	-	-	12.1	0.0	18.5	-	-	18.4	0.0	0.0	-	-	0.0	15.3
Articulated Trucks	30	0	0	-	30	0	32	0	-	32	0	0	0	-	0	62
\% Articulated Trucks	28.0	-	-	-	28.0	0.0	25.8	-	-	25.6	0.0	0.0	-	-	0.0	26.3
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	-	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	\cdot	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Red Creek Rd, Mile 63.5 Rd Site Code: 3
Start Date: 2014/09/22
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 Count Name: Red Creek Rd, Mile 63.5 Rd Site Code: 3
Pta: 2014/09/22
250-819-2527 paul@peaktraffic.ca
Page No: 8

Start Time	Turning Movement Peak Hour Data (12:00 PM)															
	Alaska Hwy 97					Alaska Hwy 97					Eastbound St. Eastbound					Int. Total
	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	
12:00 PM	20	0	0	0	20	3	36	0	0	39	0	1	0	0	1	60
12:15 PM	31	0	0	0	31	0	22	0	0	22	0	1	0	0	1	54
12:30 PM	33	1	0	0	34	0	36	0	0	36	0	2	0	0	2	72
12:45 PM	40	0	0	0	40	1	31	0	0	32	0	0	0	0	0	72
Total	124	1	0	0	125	4	125	0	0	129	0	4	0	0	4	258
Approach \%	99.2	0.8	0.0	-	-	3.1	96.9	0.0	-	-	0.0	100.0	0.0	-	-	-
Total \%	48.1	0.4	0.0	-	48.4	1.6	48.4	0.0	-	50.0	0.0	1.6	0.0	-	1.6	-
PHF	0.775	0.250	0.000	-	0.781	0.333	0.868	0.000	-	0.827	0.000	0.500	0.000	-	0.500	0.896
Lights	79	1	0	-	80	3	84	0	-	87	0	3	0	-	3	170
\% Lights	63.7	100.0	-	-	64.0	75.0	67.2	-	-	67.4	-	75.0	-	-	75.0	65.9
Mediums	12	0	0	-	12	1	5	0	-	6	0	1	0	-	1	19
\% Mediums	9.7	0.0	-	-	9.6	25.0	4.0	-	-	4.7	-	25.0	-	-	25.0	7.4
Articulated Trucks	33	0	0	-	33	0	36	0	-	36	0	0	0	-	0	69
\% Articulated Trucks	26.6	0.0	-	-	26.4	0.0	28.8	-	-	27.9	-	0.0	-	-	0.0	26.7
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	-	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Red Creek Rd, Mile 63.5 Rd Site Code: 3
Start Date: 2014/09/22
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Red Creek Rd, Mile 63.5 Rd Site Code: 3
Start Na: 2014/09/22
250-819-2527 paul@peaktraffic.ca
Page No: 10

Start Time	Turning Movement Peak Hour Data (05:15 PM)															
	Alaska Hwy 97 Southbound					Alaska Hwy 97					Eastbound St. Eastbound					Int. Total
	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	
05:15 PM	47	1	0	0	48	3	40	1	0	44	0	0	0	0	0	92
05:30 PM	62	0	0	0	62	3	48	0	0	51	0	2	0	0	2	115
05:45 PM	63	1	0	0	64	4	26	0	0	30	0	1	0	0	1	95
06:00 PM	63	1	0	0	64	1	29	0	0	30	0	3	0	0	3	97
Total	235	3	0	0	238	11	143	1	0	155	0	6	0	0	6	399
Approach \%	98.7	1.3	0.0	-	-	7.1	92.3	0.6	-	-	0.0	100.0	0.0	-	-	-
Total \%	58.9	0.8	0.0	-	59.6	2.8	35.8	0.3	-	38.8	0.0	1.5	0.0	\checkmark	1.5	-
PHF	0.933	0.750	0.000	-	0.930	0.688	0.745	0.250	-	0.760	0.000	0.500	0.000	-	0.500	0.867
Lights	169	3	0	-	172	9	95	1	-	105	0	6	0	\checkmark	6	283
\% Lights	71.9	100.0	-	-	72.3	81.8	66.4	100.0	-	67.7	-	100.0	-	-	100.0	70.9
Mediums	32	0	0	-	32	2	9	0	-	11	0	0	0	-	0	43
\% Mediums	13.6	0.0	-	-	13.4	18.2	6.3	0.0	-	7.1	-	0.0	-	-	0.0	10.8
Articulated Trucks	34	0	0	-	34	0	39	0	-	39	0	0	0	-	0	73
\% Articulated Trucks	14.5	0.0	-	-	14.3	0.0	27.3	0.0	-	25.2	-	0.0	-	-	0.0	18.3
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	0.0	-	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Red Creek Rd, Mile 63.5 Rd Site Code: 3
Start Date: 2014/09/22
Page No: 11

Turning Movement Peak Hour Data Plot (05:15 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4

Count Name: Sasquatch Crossing \#1 Site Code: 14
Start Date: 09/19/2014
Page No: 1

Turning Movement Data

Start Time	Alaska Hwy 97 Left Thru S-Turn			Peds	App. Total	Sasquatch Crossing Access					Alaska Hwy 97 Northbound					Int. Total	
				Left		Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total			
5:00 AM	0	4	0		0	4	0	0	0	0	0	5	0	0	0	5	9
5:15 AM	1	6	0	0	7	0	0	0	0	0	10	1	0	0	11	18	
5:30 AM	0	5	0	0	5	3	1	0	0	4	9	0	0	0	9	18	
5:45 AM	0	18	0	0	18	4	0	0	0	4	22	1	0	0	23	45	
Hourly Total	1	33	0	0	34	7	1	0	0	8	46	2	0	0	48	90	
6:00 AM	0	10	0	0	10	1	0	0	0	1	23	4	0	0	27	38	
6:15 AM	0	17	0	0	17	6	0	0	0	6	29	1	0	0	30	53	
6:30 AM	0	19	0	0	19	6	0	0	0	6	36	3	0	0	39	64	
6:45 AM	0	22	0	0	22	1	1	0	0	2	21	1	0	0	22	46	
Hourly Total	0	68	0	0	68	14	1	0	0	15	109	9	0	0	118	201	
7:00 AM	0	16	0	0	16	1	1	0	0	2	23	0	0	0	23	41	
7:15 AM	1	11	0	0	12	0	2	0	0	2	19	3	0	0	22	36	
7:30 AM	0	18	0	0	18	1	2	0	0	3	21	1	0	0	22	43	
7:45 AM	1	17	0	0	18	1	0	0	0	1	14	0	0	0	14	33	
Hourly Total	2	62	0	0	64	3	5	0	0	8	77	4	0	0	81	153	
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
11:00 AM	0	17	0	0	17	4	0	0	0	4	22	1	0	0	23	44	
11:15 AM	0	13	0	0	13	1	0	0	0	1	19	0	0	0	19	33	
11:30 AM	0	23	0	0	23	4	0	0	0	4	24	0	0	0	24	51	
11:45 AM	0	17	0	0	17	3	2	0	0	5	13	1	0	0	14	36	
Hourly Total	0	70	0	0	70	12	2	0	0	14	78	2	0	0	80	164	
12:00 PM	0	23	0	0	23	1	0	0	0	1	10	2	0	0	12	36	
12:15 PM	0	24	0	0	24	1	0	0	0	1	16	1	0	0	17	42	
12:30 PM	0	15	0	0	15	0	0	0	0	0	6	1	0	0	7	22	
12:45 PM	0	15	0	0	15	5	0	0	0	5	16	1	0	0	17	37	
Hourly Total	0	77	0	0	77	7	0	0	0	7	48	5	0	0	53	137	
1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
*** BREAK ***	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4:00 PM	1	22	0	0	23	3	1	0	0	4	8	2	0	0	10	37	
4:15 PM	0	33	0	0	33	2	0	0	0	2	20	2	0	0	22	57	
4:30 PM	0	20	0	0	20	5	0	0	0	5	21	2	0	0	23	48	
4:45 PM	0	28	0	0	28	1	0	0	0	1	19	0	0	0	19	48	
Hourly Total	1	103	0	0	104	11	1	0	0	12	68	6	0	0	74	190	
5:00 PM	1	22	0	0	23	1	0	0	0	1	8	1	0	0	9	33	
5:15 PM	1	45	0	0	46	4	0	0	0	4	29	4	0	0	33	83	

5:30 PM	1	26	0	0	27	5	0	0	0	5	30	10	0	0	40	72
5:45 PM	1	42	0	0	43	6	1	0	0	7	41	4	0	0	45	95
Hourly Total	4	135	0	0	139	16	1	0	0	17	108	19	0	0	127	283
6:00 PM	1	26	0	0	27	5	0	0	0	5	18	3	0	0	21	53
6:15 PM	1	28	0	0	29	6	0	0	0	6	26	2	0	0	28	63
6:30 PM	1	21	0	0	22	5	1	0	0	6	17	2	0	0	19	47
6:45 PM	3	26	0	0	29	3	1	0	0	4	18	2	0	0	20	53
Hourly Total	6	101	0	0	107	19	2	0	0	21	79	9	0	0	88	216
Grand Total	14	649	0	0	663	89	13	0	0	102	613	56	0	0	669	1434
Approach \%	2.1	97.9	0.0	-	-	87.3	12.7	0.0	-	-	91.6	8.4	0.0	-	-	-
Total \%	1.0	45.3	0.0	-	46.2	6.2	0.9	0.0	-	7.1	42.7	3.9	0.0	-	46.7	-
Lights	10	449	0	-	459	72	9	0	-	81	406	50	0	-	456	996
\% Lights	71.4	69.2	-	-	69.2	80.9	69.2	-	-	79.4	66.2	89.3	-	-	68.2	69.5
Mediums	3	49	0	-	52	5	2	0	-	7	46	5	0	-	51	110
\% Mediums	21.4	7.6	-	-	7.8	5.6	15.4	-	-	6.9	7.5	8.9	-	-	7.6	7.7
Articulated Trucks	1	151	0	-	152	11	2	0	-	13	161	0	0	-	161	326
\% Articulated Trucks	7.1	23.3	-	-	22.9	12.4	15.4	-	-	12.7	26.3	0.0	-	-	24.1	22.7
Bicycles on Road	0	0	0	-	0	1	0	0	-	1	0	1	0	$-$	1	2
\% Bicycles on Road	0.0	0.0	-	-	0.0	1.1	0.0	-	-	1.0	0.0	1.8	-	-	0.1	0.1
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing \#1 Site Code: 14
Start Date: 09/19/2014
Page No: 3

Turning Movement Data Plot

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Sasquatch Crossing \#1 Site Code: 14
Stan Na: 09/19/2014
250-819-2527 paul@peaktraffic.ca
Page No: 4

Turning Movement Peak Hour Data (6:15 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing \#1 Site Code: 14
Start Date: 09/19/2014
Page No: 5

Turning Movement Peak Hour Data Plot (6:15 AM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4

Count Name: Sasquatch Crossing \#1 Site Code: 14
Stan Date: 09/19/2014
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Alaska Hwy 97 Southbound					Sasquatch Crossing Access Westbound					Alaska Hwy 97 Northbound					Int. Total
	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	
11:00 AM	0	17	0	0	17	4	0	0	0	4	22	1	0	0	23	44
11:15 AM	0	13	0	0	13	1	0	0	0	1	19	0	0	0	19	33
11:30 AM	0	23	0	0	23	4	0	0	0	4	24	0	0	0	24	51
11:45 AM	0	17	0	0	17	3	2	0	0	5	13	1	0	0	14	36
Total	0	70	0	0	70	12	2	0	0	14	78	2	0	0	80	164
Approach \%	0.0	100.0	0.0	-	-	85.7	14.3	0.0	-	-	97.5	2.5	0.0	-	-	-
Total \%	0.0	42.7	0.0	-	42.7	7.3	1.2	0.0	-	8.5	47.6	1.2	0.0	-	48.8	-
PHF	0.000	0.761	0.000	-	0.761	0.750	0.250	0.000	-	0.700	0.813	0.500	0.000	-	0.833	0.804
Lights	0	49	0	-	49	7	2	0	-	9	35	2	0	\checkmark	37	95
\% Lights	-	70.0	-	-	70.0	58.3	100.0	-	-	64.3	44.9	100.0	-	-	46.3	57.9
Mediums	0	5	0	-	5	1	0	0	-	1	6	0	0	-	6	12
\% Mediums	-	7.1	-	-	7.1	8.3	0.0	-	-	7.1	7.7	0.0	-	-	7.5	7.3
Articulated Trucks	0	16	0	-	16	4	0	0	-	4	37	0	0	-	37	57
\% Articulated Trucks	-	22.9	-	-	22.9	33.3	0.0	-	-	28.6	47.4	0.0	-	-	46.3	34.8
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	-	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	$-$	0	-	-	-	$-$	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing \#1 Site Code: 14
Start Date: 09/19/2014
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 Count Name: Sasquatch Crossing \#1 Site Code: 14
Stare: 09/19/2014
250-819-2527 paul@peaktraffic.ca
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound			Peds	App. Total	Sasquatch Crossing Access Westbound		Westbound U-Turn	Peds	App. Total	Thru	Right	Northbound U-Turn	Peds	App. Total	Int. Total
12:00 PM	0	23	0	0	23	1	0	0	0	1	10	2	0	0	12	36
12:15 PM	0	24	0	0	24	1	0	0	0	1	16	1	0	0	17	42
12:30 PM	0	15	0	0	15	0	0	0	0	0	6	1	0	0	7	22
12:45 PM	0	15	0	0	15	5	0	0	0	5	16	1	0	0	17	37
Total	0	77	0	0	77	7	0	0	0	7	48	5	0	0	53	137
Approach \%	0.0	100.0	0.0	-	-	100.0	0.0	0.0	-	-	90.6	9.4	0.0	-	-	-
Total \%	0.0	56.2	0.0	-	56.2	5.1	0.0	0.0	-	5.1	35.0	3.6	0.0	-	38.7	-
PHF	0.000	0.802	0.000	-	0.802	0.350	0.000	0.000	-	0.350	0.750	0.625	0.000	-	0.779	0.815
Lights	0	47	0	-	47	5	0	0	-	5	27	5	0	-	32	84
\% Lights	-	61.0	-	-	61.0	71.4	-	-	-	71.4	56.3	100.0	-	-	60.4	61.3
Mediums	0	6	0	-	6	0	0	0	-	0	7	0	0	-	7	13
\% Mediums	-	7.8	-	-	7.8	0.0	-	-	-	0.0	14.6	0.0	-	-	13.2	9.5
Articulated Trucks	0	24	0	-	24	2	0	0	-	2	14	0	0	-	14	40
\% Articulated Trucks	-	31.2	-	-	31.2	28.6	-	-	-	28.6	29.2	0.0	-	-	26.4	29.2
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	-	0.0	-	-	0.0	0.0	-	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing \#1 Site Code: 14
Start Date: 09/19/2014
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing \#1 Site Code: 14
Star No: 09/19/2014
Page No: 10

Turning Movement Peak Hour Data (5:15 PM)

Start Time	Alaska Hwy 97 Southbound Left Thru U-Turn			Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Int. Total
5:15 PM	1	45	0	0	46	4	0	0	0	4	29	4	0	0	33	83
5:30 PM	1	26	0	0	27	5	0	0	0	5	30	10	0	0	40	72
5:45 PM	1	42	0	0	43	6	1	0	0	7	41	4	0	0	45	95
6:00 PM	1	26	0	0	27	5	0	0	0	5	18	3	0	0	21	53
Total	4	139	0	0	143	20	1	0	0	21	118	21	0	0	139	303
Approach \%	2.8	97.2	0.0	-	-	95.2	4.8	0.0	-	-	84.9	15.1	0.0	-	-	-
Total \%	1.3	45.9	0.0	-	47.2	6.6	0.3	0.0	-	6.9	38.9	6.9	0.0	-	45.9	-
PHF	1.000	0.772	0.000	-	0.777	0.833	0.250	0.000	-	0.750	0.720	0.525	0.000	-	0.772	0.797
Lights	4	105	0	-	109	16	1	0	-	17	81	18	0	-	99	225
\% Lights	100.0	75.5	-	-	76.2	80.0	100.0	-	-	81.0	68.6	85.7	-	-	71.2	74.3
Mediums	0	10	0	-	10	1	0	0	-	1	8	3	0	-	11	22
\% Mediums	0.0	7.2	-	-	7.0	5.0	0.0	-	-	4.8	6.8	14.3	-	-	7.9	7.3
Articulated Trucks	0	24	0	-	24	3	0	0	-	3	29	0	0	-	29	56
\% Articulated Trucks	0.0	17.3	-	-	16.8	15.0	0.0	-	-	14.3	24.6	0.0	-	-	20.9	18.5
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing \#1 Site Code: 14
Start Date: 09/19/2014
Page No: 11

Turning Movement Peak Hour Data Plot (5:15 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd

Kamloops, British Columbia, Canada V2B 1P4

Count Name: Sasquatch Crossing \#2 Site Code: 15
Start Date: 09/22/2014
Page No: 1

Turning Movement Data

Hourly Total	29	91	0	0	120	3	5	0	0	8	90	5	0	0	95	223
6:00 PM	8	32	0	0	40	1	2	0	0	3	27	0	0	0	27	70
6:15 PM	3	33	0	0	36	0	1	0	0	1	9	1	0	0	10	47
6:30 PM	3	25	0	0	28	0	1	0	0	1	22	1	0	0	23	52
6:45 PM	0	19	0	0	19	0	1	0	0	1	27	1	0	0	28	48
Hourly Total	14	109	0	0	123	1	5	0	0	6	85	3	0	0	88	217
7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	93	510	0	0	603	12	65	1	0	78	544	32	1	0	577	1258
Approach \%	15.4	84.6	0.0	-	-	15.4	83.3	1.3	-	-	94.3	5.5	0.2	-	-	-
Total \%	7.4	40.5	0.0	-	47.9	1.0	5.2	0.1	-	6.2	43.2	2.5	0.1	-	45.9	-
Lights	71	338	0	-	409	6	59	1	-	66	364	29	1	-	394	869
\% Lights	76.3	66.3	-	-	67.8	50.0	90.8	100.0	-	84.6	66.9	90.6	100.0	-	68.3	69.1
Mediums	6	59	0	-	65	2	4	0	-	6	52	1	0	-	53	124
\% Mediums	6.5	11.6	-	-	10.8	16.7	6.2	0.0	-	7.7	9.6	3.1	0.0	\cdots	9.2	9.9
Articulated Trucks	15	113	0	-	128	4	2	0	-	6	128	2	0	-	130	264
\% Articulated Trucks	16.1	22.2	-	-	21.2	33.3	3.1	0.0	-	7.7	23.5	6.3	0.0	-	22.5	21.0
Bicycles on Road	1	0	0	-	1	0	0	0	-	0	0	0	0	-	0	1
\% Bicycles on Road	1.1	0.0	-	-	0.2	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.1
Pedestrians	-	-	\checkmark	0	-	-	-	-	0		-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing \#2 Site Code: 15
Start Date: 09/22/2014
Page No: 3

Turning Movement Data Plot

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing \#2 Site Code: 15

9/22/2014
Page No: 4

Turning Movement Peak Hour Data (6:00 AM)

Start Time	Left Thru Alaska Hwy 97 Southbound U-Turn			Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	Int. Total
6:00 AM	0	9	0	0	9	1	5	0	0	6	30	2	1	0	33	48
6:15 AM	4	8	0	0	12	0	6	0	0	6	25	4	0	0	29	47
6:30 AM	1	17	0	0	18	0	5	0	0	5	26	3	0	0	29	52
6:45 AM	2	21	0	0	23	0	3	0	0	3	17	1	0	0	18	44
Total	7	55	0	0	62	1	19	0	0	20	98	10	1	0	109	191
Approach \%	11.3	88.7	0.0	-	-	5.0	95.0	0.0	-	-	89.9	9.2	0.9	-	-	-
Total \%	3.7	28.8	0.0	-	32.5	0.5	9.9	0.0	-	10.5	51.3	5.2	0.5	-	57.1	-
PHF	0.438	0.655	0.000	-	0.674	0.250	0.792	0.000	-	0.833	0.817	0.625	0.250	-	0.826	0.918
Lights	6	33	0	-	39	0	18	0	-	18	71	8	1	-	80	137
\% Lights	85.7	60.0	-	-	62.9	0.0	94.7	-	-	90.0	72.4	80.0	100.0	-	73.4	71.7
Mediums	0	6	0	-	6	1	1	0	-	2	16	0	0	-	16	24
\% Mediums	0.0	10.9	-	-	9.7	100.0	5.3	-	-	10.0	16.3	0.0	0.0	-	14.7	12.6
Articulated Trucks	1	16	0	-	17	0	0	0	-	0	11	2	0	-	13	30
\% Articulated Trucks	14.3	29.1	-	-	27.4	0.0	0.0	-	-	0.0	11.2	20.0	0.0	-	11.9	15.7
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing \#2 Site Code: 15
Start Date: 09/22/2014
Page No: 5

Turning Movement Peak Hour Data Plot (6:00 AM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4

Count Name: Sasquatch Crossing \#2 Site Code: 15

09/22/2014
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Alaska Hwy 97 Southbound					Sasquatch Crossing Access Westbound					Alaska Hwy 97 Northbound					Int. Total
	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	
11:00 AM	2	14	0	0	16	1	1	0	0	2	7	0	0	0	7	25
11:15 AM	4	16	0	0	20	0	2	0	0	2	12	1	0	0	13	35
11:30 AM	4	16	0	0	20	0	0	0	0	0	29	0	0	0	29	49
11:45 AM	3	13	0	0	16	1	0	0	0	1	11	1	0	0	12	29
Total	13	59	0	0	72	2	3	0	0	5	59	2	0	0	61	138
Approach \%	18.1	81.9	0.0	-	-	40.0	60.0	0.0	-	-	96.7	3.3	0.0	-	-	-
Total \%	9.4	42.8	0.0	-	52.2	1.4	2.2	0.0	-	3.6	42.8	1.4	0.0	-	44.2	-
PHF	0.813	0.922	0.000	-	0.900	0.500	0.375	0.000	-	0.625	0.509	0.500	0.000	-	0.526	0.704
Lights	10	38	0	-	48	1	2	0	-	3	32	2	0	\checkmark	34	85
\% Lights	76.9	64.4	-	-	66.7	50.0	66.7	-	-	60.0	54.2	100.0	-	-	55.7	61.6
Mediums	1	5	0	-	6	1	0	0	-	1	10	0	0	-	10	17
\% Mediums	7.7	8.5	-	-	8.3	50.0	0.0	-	-	20.0	16.9	0.0	-	-	16.4	12.3
Articulated Trucks	2	16	0	-	18	0	1	0	-	1	17	0	0	-	17	36
\% Articulated Trucks	15.4	27.1	-	-	25.0	0.0	33.3	-	-	20.0	28.8	0.0	-	-	27.9	26.1
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	$-$	0	-	-	-	$-$	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing \#2 Site Code: 15
Start Date: 09/22/2014
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Sasquatch Crossing \#2 Site Code: 15

9/22/2014
250-819-2527 paul@peaktraffic.ca
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Left	Alaska Hwy 97 Southbound	Southbound U-Turn	Peds	App. Total	Left	Right	Westbound U-Turn	Peds	App. Total	Thru	Right	Northbound U-Turn	Peds	App. Total	Int. Total
12:00 PM	3	9	0	0	12	0	2	0	0	2	11	2	0	0	13	27
12:15 PM	2	19	0	0	21	0	0	0	0	0	13	0	0	0	13	34
12:30 PM	1	21	0	0	22	1	2	0	0	3	8	0	0	0	8	33
12:45 PM	3	19	0	0	22	0	0	0	0	0	16	0	0	0	16	38
Total	9	68	0	0	77	1	4	0	0	5	48	2	0	0	50	132
Approach \%	11.7	88.3	0.0	-	-	20.0	80.0	0.0	-	-	96.0	4.0	0.0	-	-	-
Total \%	6.8	51.5	0.0	-	58.3	0.8	3.0	0.0	-	3.8	36.4	1.5	0.0	-	37.9	-
PHF	0.750	0.810	0.000	-	0.875	0.250	0.500	0.000	-	0.417	0.750	0.250	0.000	-	0.781	0.868
Lights	5	46	0	-	51	1	4	0	-	5	34	2	0	-	36	92
\% Lights	55.6	67.6	-	-	66.2	100.0	100.0	-	-	100.0	70.8	100.0	-	-	72.0	69.7
Mediums	1	5	0	-	6	0	0	0	-	0	2	0	0	-	2	8
\% Mediums	11.1	7.4	-	-	7.8	0.0	0.0	-	-	0.0	4.2	0.0	-	-	4.0	6.1
Articulated Trucks	3	17	0	-	20	0	0	0	-	0	12	0	0	-	12	32
\% Articulated Trucks	33.3	25.0	-	-	26.0	0.0	0.0	-	-	0.0	25.0	0.0	-	-	24.0	24.2
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing \#2 Site Code: 15
Start Date: 09/22/2014
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Sasquatch Crossing \#2 Site Code: 15
Start Date: 09
250-819-2527 paul@peaktraffic.ca
Page No: 10

Start Time	Turning Movement Peak Hour Data (5:15 PM)															
	Alaska Hwy 97 Southbound					Sasquatch Crossing Access					Alaska Hwy 97					Int. Total
						Westbound					Northbound					
	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	
5:15 PM	10	25	0	0	35	1	3	0	0	4	20	1	0	0	21	60
5:30 PM	5	27	0	0	32	0	2	0	0	2	22	3	0	0	25	59
5:45 PM	9	24	0	0	33	2	0	0	0	2	29	0	0	0	29	64
6:00 PM	8	32	0	0	40	1	2	0	0	3	27	0	0	0	27	70
Total	32	108	0	0	140	4	7	0	0	11	98	4	0	0	102	253
Approach \%	22.9	77.1	0.0	-	-	36.4	63.6	0.0	-	-	96.1	3.9	0.0	-	-	-
Total \%	12.6	42.7	0.0	-	55.3	1.6	2.8	0.0	-	4.3	38.7	1.6	0.0	-	40.3	-
PHF	0.800	0.844	0.000	-	0.875	0.500	0.583	0.000	-	0.688	0.845	0.333	0.000	-	0.879	0.904
Lights	25	78	0	-	103	2	6	0	-	8	65	4	0	-	69	180
\% Lights	78.1	72.2	-	-	73.6	50.0	85.7	-	-	72.7	66.3	100.0	-	-	67.6	71.1
Mediums	3	11	0	-	14	0	1	0	-	1	4	0	0	-	4	19
\% Mediums	9.4	10.2	-	-	10.0	0.0	14.3	-	-	9.1	4.1	0.0	-	-	3.9	7.5
Articulated Trucks	4	19	0	-	23	2	0	0	-	2	29	0	0	-	29	54
\% Articulated Trucks	12.5	17.6	-	-	16.4	50.0	0.0	-	-	18.2	29.6	0.0	-	-	28.4	21.3
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing \#2 Site Code: 15
Start De: 09/22/2014
Page No: 11

Turning Movement Peak Hour Data Plot (5:15 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4
Count Name: Sasquatch Crossing \#3 Site Code: 16
Start Date: 09/19/2014
250-819-2527 paul@peaktraffic.ca
Page No: 1

Start Time	Alaska Hwy 97 Southbound						Turning Movement Data Gunga Din R \& B access Westbound												Pink Mountain Road Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	
5:00 AM	0	3	0	0	0	3	0	0	0	0	0	0	0	4	0	0	0	4	0	0	1	0	0	1	8
5:15 AM	0	6	0	0	0	6	1	0	1	0	0	2	0	9	0	0	0	9	1	0	1	0	0	2	19
5:30 AM	0	4	1	0	0	5	0	0	2	0	0	2	1	13	0	0	0	14	0	0	1	0	0	1	22
5:45 AM	0	15	0	0	0	15	0	0	0	0	0	0	2	21	1	0	0	24	2	0	8	0	0	10	49
Hourly Total	0	28	1	0	0	29	1	0	3	0	0	4	3	47	1	0	0	51	3	0	11	0	0	14	98
6:00 AM	0	4	0	0	0	4	0	0	0	0	0	0	5	20	0	0	0	25	1	0	5	0	0	6	35
6:15 AM	0	7	2	0	0	9	0	1	1	0	0	2	2	31	1	0	0	34	6	0	7	0	0	13	58
6:30 AM	0	12	1	0	0	13	0	0	0	0	0	0	2	32	1	0	0	35	1	0	10	0	0	11	59
6:45 AM	0	10	2	0	0	12	2	0	0	0	0	2	3	21	1	0	0	25	5	0	8	0	0	13	52
Hourly Total	0	33	5	0	0	38	2	1	1	0	0	4	12	104	3	0	0	119	13	0	30	0	0	43	204
7:00 AM	0	7	1	0	0	8	2	0	0	0	0	2	1	29	0	0	0	30	1	0	7	0	0	8	48
7:15 AM	0	7	0	0	0	7	0	0	0	0	0	0	2	13	0	0	0	15	1	0	5	0	0	6	28
7:30 AM	0	13	0	0	0	13	0	0	0	0	0	0	2	26	0	0	0	28	0	0	6	0	0	6	47
7:45 AM	0	14	0	0	0	14	0	0	0	0	0	0	1	15	0	0	0	16	1	0	2	0	0	3	33
Hourly Total	0	41	1	0	0	42	2	0	0	0	0	2	6	83	0	0	0	89	3	0	20	0	0	23	156
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	0	14	1	0	0	15	0	0	0	0	0	0	0	22	0	0	0	22	2	0	3	0	0	5	42
11:15 AM	0	12	2	0	0	14	0	0	0	0	0	0	5	13	0	0	0	18	1	0	2	0	0	3	35
11:30 AM	0	19	1	0	0	20	1	0	0	0	0	1	2	20	0	0	0	22	1	0	3	0	0	4	47
11:45 AM	0	16	1	0	0	17	0	0	0	0	0	0	1	14	0	0	0	15	0	0	2	0	0	2	34
Hourly Total	0	61	5	0	0	66	1	0	0	0	0	1	8	69	0	0	0	77	4	0	10	0	0	14	158
12:00 PM	0	22	1	0	0	23	1	0	0	0	0	1	1	10	3	0	0	14	0	0	0	0	0	0	38
12:15 PM	0	19	0	0	0	19	1	0	0	0	0	1	1	12	0	0	0	13	3	0	1	0	0	4	37
12:30 PM	0	20	1	0	0	21	0	0	0	0	0	0	0	8	0	0	0	8	1	0	3	0	0	4	33
12:45 PM	0	14	1	0	0	15	0	0	0	0	0	0	0	20	0	0	1	20	1	0	1	0	0	2	37
Hourly Total	0	75	3	0	0	78	2	0	0	0	0	2	2	50	3	0	1	55	5	0	5	0	0	10	145
1:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	1
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	\cdots	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	1
4:00 PM	0	24	2	0	0	26	1	0	1	0	0	2	1	7	1	0	0	9	0	0	2	0	0	2	39
4:15 PM	0	34	2	0	0	36	0	0	0	0	0	0	2	17	0	0	0	19	0	0	1	0	0	1	56
4:30 PM	0	22	0	0	0	22	0	0	0	0	0	0	3	18	1	0	0	22	1	0	0	0	0	1	45
4:45 PM	1	29	0	0	0	30	0	0	0	0	0	0	3	16	0	0	2	19	2	0	2	0	0	4	53
Hourly Total	1	109	4	0	0	114	1	0	1	0	0	2	9	58	2	0	2	69	3	0	5	0	0	8	193
5:00 PM	1	24	1	0	0	26	0	0	0	0	0	0	1	6	0	0	0	7	2	0	0	0	0	2	35

5:15 PM	1	44	3	0	0	48	2	0	0	0	0	2	5	22	0	0	0	27	1	0	3	0	0	4	81
5:30 PM	0	26	4	0	0	30	1	0	0	0	0	1	15	15	1	0	0	31	2	0	4	0	0	6	68
5:45 PM	1	48	2	0	0	51	0	1	0	0	0	1	10	21	1	0	0	32	1	0	1	0	0	2	86
Hourly Total	3	142	10	0	0	155	3	1	0	0	0	4	31	64	2	0	0	97	6	0	8	0	0	14	270
6:00 PM	1	24	4	0	0	29	0	0	1	0	0	1	5	17	2	0	0	24	1	1	3	0	0	5	59
6:15 PM	1	28	1	0	0	30	2	1	0	0	0	3	1	27	0	0	0	28	1	0	3	0	0	4	65
6:30 PM	0	20	0	0	0	20	0	0	0	0	0	0	6	11	1	0	0	18	1	1	5	0	0	7	45
6:45 PM	1	24	1	0	0	26	3	0	0	0	1	3	3	15	1	0	0	19	3	0	4	0	0	7	55
Hourly Total	3	96	6	0	0	105	5	1	1	0	1	7	15	70	4	0	0	89	6	2	15	0	0	23	224
7:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	7	585	35	0	0	627	17	3	6	0	1	26	86	546	15	0	3	647	43	2	104	0	0	149	1449
Approach \%	1.1	93.3	5.6	0.0	-	-	65.4	11.5	23.1	0.0	$-$		13.3	84.4	2.3	0.0	-	-	28.9	1.3	69.8	0.0	-	-	-
Total \%	0.5	40.4	2.4	0.0	-	43.3	1.2	0.2	0.4	0.0	-	1.8	5.9	37.7	1.0	0.0	-	44.7	3.0	0.1	7.2	0.0	-	10.3	-
Lights	6	398	21	0	-	425	14	2	6	0	-	22	55	342	14	0	-	411	21	1	72	0	-	94	952
\% Lights	85.7	68.0	60.0	-	-	67.8	82.4	66.7	100.0	-	-	84.6	64.0	62.6	93.3	-	-	63.5	48.8	50.0	69.2	-	-	63.1	65.7
Mediums	1	49	8	0	-	58	2	0	0	0	-	2	8	51	1	0	-	60	14	0	8	0	-	22	142
\% Mediums	14.3	8.4	22.9	-	-	9.3	11.8	0.0	0.0	-	-	7.7	9.3	9.3	6.7	-	-	9.3	32.6	0.0	7.7	-	\checkmark	14.8	9.8
Articulated Trucks	0	138	5	0	-	143	1	1	0	0	-	2	23	153	0	0	-	176	8	1	24	0	\checkmark	33	354
$\begin{aligned} & \text { \% Articulated } \\ & \text { Trucks } \\ & \hline \end{aligned}$	0.0	23.6	14.3	-	-	22.8	5.9	33.3	0.0	-	-	7.7	26.7	28.0	0.0	-	-	27.2	18.6	50.0	23.1	-	-	22.1	24.4
Bicycles on Road	0	0	1	0	-	1	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	$-$	0	1
\% Bicycles on Road	0.0	0.0	2.9	-	-	0.2	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.1
Pedestrians	-	-	-	-	0	-	-	-	-	-	1	-	-	-	-	-	3	-	-	\cdot	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	100.0	-	-	-	-	-	100.0	-	-	-	-	-	\checkmark	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing \#3 Site Code: 16
Start Date: 09/19/2014
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Sasquatch Crossing \#3 Site Code: 16
Start Date: 09/19/2014
250-819-2527 paul@peaktraffic.ca
Page No: 4

Turning Movement Peak Hour Data (6:15 AM)

Start Time	Alaska Hwy 97 Southbound						Gunga Din R \& B access Westbound						Alaska Hwy 97 Northbound						Pink Mountain Road Eastbound						
	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	Int. Total
6:15 AM	0	7	2	0	0	9	0	1	1	0	0	2	2	31	1	0	0	34	6	0	7	0	0	13	58
6:30 AM	0	12	1	0	0	13	0	0	0	0	0	0	2	32	1	0	0	35	1	0	10	0	0	11	59
6:45 AM	0	10	2	0	0	12	2	0	0	0	0	2	3	21	1	0	0	25	5	0	8	0	0	13	52
7:00 AM	0	7	1	0	0	8	2	0	0	0	0	2	1	29	0	0	0	30	1	0	7	0	0	8	48
Total	0	36	6	0	0	42	4	1	1	0	0	6	8	113	3	0	0	124	13	0	32	0	0	45	217
Approach \%	0.0	85.7	14.3	0.0	-	-	66.7	16.7	16.7	0.0	-	-	6.5	91.1	2.4	0.0	-	-	28.9	0.0	71.1	0.0	-	-	-
Total \%	0.0	16.6	2.8	0.0	-	19.4	1.8	0.5	0.5	0.0	-	2.8	3.7	52.1	1.4	0.0	-	57.1	6.0	0.0	14.7	0.0	-	20.7	-
PHF	0.000	0.750	0.750	0.000	-	0.808	0.500	0.250	0.250	0.000	-	0.750	0.667	0.883	0.750	0.000	-	0.886	0.542	0.000	0.800	0.000	-	0.865	0.919
Lights	0	26	3	0	-	29	2	0	1	0	-	3	5	70	3	0	-	78	4	0	18	0	-	22	132
\% Lights	-	72.2	50.0	-	-	69.0	50.0	0.0	100.0	-	-	50.0	62.5	61.9	100.0	-	-	62.9	30.8	-	56.3	-	-	48.9	60.8
Mediums	0	2	1	0	-	3	2	0	0	0	-	2	0	16	0	0	-	16	7	0	1	0	-	8	29
\% Mediums	-	5.6	16.7	-	-	7.1	50.0	0.0	0.0	-	-	33.3	0.0	14.2	0.0	-	-	12.9	53.8	-	3.1	-	-	17.8	13.4
Articulated Trucks	0	8	2	0	-	10	0	1	0	0	-	1	3	27	0	0	-	30	2	0	13	0	-	15	56
$\begin{aligned} & \text { \% Articulated } \\ & \text { Trucks } \\ & \hline \end{aligned}$	-	22.2	33.3	-	-	23.8	0.0	100.0	0.0	-	-	16.7	37.5	23.9	0.0	-	-	24.2	15.4	-	40.6	.	-	33.3	25.8
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	\checkmark	0	0	0	0	0	\checkmark	0	0	0	0	0	-	0	0
$\begin{gathered} \text { \% Bicycles on } \\ \text { Road } \end{gathered}$	-	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	-	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	\checkmark	-	-	\checkmark	-	-	\cdot	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-	\checkmark	-	\checkmark	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing \#3 Site Code: 16
Start Dale: 09/19/2014
Page No: 5

Turning Movement Peak Hour Data Plot (6:15 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Sasquatch Crossing \#3 Site Code: 16
Start Date: 09/19/2014
250-819-2527 paul@peaktraffic.ca
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Alaska Hwy 97 Southbound						Gunga Din R \& B access Westbound						Alaska Hwy 97 Northbound						Pink Mountain Road Eastbound						
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	Int. Total
11:00 AM	0	14	1	0	0	15	0	0	0	0	0	0	0	22	0	0	0	22	2	0	3	0	0	5	42
11:15 AM	0	12	2	0	0	14	0	0	0	0	0	0	5	13	0	0	0	18	1	0	2	0	0	3	35
11:30 AM	0	19	1	0	0	20	1	0	0	0	0	1	2	20	0	0	0	22	1	0	3	0	0	4	47
11:45 AM	0	16	1	0	0	17	0	0	0	0	0	0	1	14	0	0	0	15	0	0	2	0	0	2	34
Total	0	61	5	0	0	66	1	0	0	0	0	1	8	69	0	0	0	77	4	0	10	0	0	14	158
Approach \%	0.0	92.4	7.6	0.0	-	-	100.0	0.0	0.0	0.0	-	-	10.4	89.6	0.0	0.0	-	-	28.6	0.0	71.4	0.0	-	-	-
Total \%	0.0	38.6	3.2	0.0	-	41.8	0.6	0.0	0.0	0.0	-	0.6	5.1	43.7	0.0	0.0	-	48.7	2.5	0.0	6.3	0.0	-	8.9	-
PHF	0.000	0.803	0.625	0.000	-	0.825	0.250	0.000	0.000	0.000	-	0.250	0.400	0.784	0.000	0.000	-	0.875	0.500	0.000	0.833	0.000	\checkmark	0.700	0.840
Lights	0	36	3	0	-	39	0	0	0	0	-	0	3	33	0	0	-	36	1	0	6	0	-	7	82
\% Lights	-	59.0	60.0	-	-	59.1	0.0	-	-	-	-	0.0	37.5	47.8	-	-	-	46.8	25.0	-	60.0	-	-	50.0	51.9
Mediums	0	6	2	0	-	8	0	0	0	0	-	0	0	8	0	0	-	8	1	0	1	0	-	2	18
\% Mediums	-	9.8	40.0	-	-	12.1	0.0	-	-	-	-	0.0	0.0	11.6	-	-	-	10.4	25.0	-	10.0	-	-	14.3	11.4
Articulated Trucks	0	19	0	0	-	19	1	0	0	0	-	1	5	28	0	0	-	33	2	0	3	0	-	5	58
\% Articulated Trucks	-	31.1	0.0	-	-	28.8	100.0	-	-	-	-	100.0	62.5	40.6	-	-	-	42.9	50.0	-	30.0	-	-	35.7	36.7
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
$\begin{gathered} \text { \% Bicycles on } \\ \text { Road } \end{gathered}$	-	0.0	0.0	-	-	0.0	0.0	-	-	-	-	0.0	0.0	0.0	-	-	-	0.0	0.0	-	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\cdot	-	\cdot	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing \#3 Site Code: 16
Start Date: 09/19/2014
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Sasquatch Crossing \#3 Site Code: 16
Start Date: 09/19/2014
250-819-2527 paul@peaktraffic.ca
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound						Gunga Din R \& B access Westbound						Alaska Hwy 97 Northbound						Pink Mountain Road Eastbound						
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	Int. Total
12:00 PM	0	22	1	0	0	23	1	0	0	0	0	1	1	10	3	0	0	14	0	0	0	0	0	0	38
12:15 PM	0	19	0	0	0	19	1	0	0	0	0	1	1	12	0	0	0	13	3	0	1	0	0	4	37
12:30 PM	0	20	1	0	0	21	0	0	0	0	0	0	0	8	0	0	0	8	1	0	3	0	0	4	33
12:45 PM	0	14	1	0	0	15	0	0	0	0	0	0	0	20	0	0	1	20	1	0	1	0	0	2	37
Total	0	75	3	0	0	78	2	0	0	0	0	2	2	50	3	0	1	55	5	0	5	0	0	10	145
Approach \%	0.0	96.2	3.8	0.0	-	-	100.0	0.0	0.0	0.0	-	-	3.6	90.9	5.5	0.0	-	-	50.0	0.0	50.0	0.0	-	-	-
Total \%	0.0	51.7	2.1	0.0	-	53.8	1.4	0.0	0.0	0.0	-	1.4	1.4	34.5	2.1	0.0	-	37.9	3.4	0.0	3.4	0.0	-	6.9	-
PHF	0.000	0.852	0.750	0.000	-	0.848	0.500	0.000	0.000	0.000	-	0.500	0.500	0.625	0.250	0.000	-	0.688	0.417	0.000	0.417	0.000	-	0.625	0.954
Lights	0	45	1	0	-	46	2	0	0	0	-	2	1	29	2	0	-	32	3	0	4	0	-	7	87
\% Lights	-	60.0	33.3	-	-	59.0	100.0	-	-	-	-	100.0	50.0	58.0	66.7	-	-	58.2	60.0	-	80.0	-	-	70.0	60.0
Mediums	0	5	2	0	-	7	0	0	0	0	-	0	1	5	1	0	-	7	2	0	1	0	-	3	17
\% Mediums	-	6.7	66.7	-	-	9.0	0.0	-	-	-	-	0.0	50.0	10.0	33.3	-	-	12.7	40.0	-	20.0	-	-	30.0	11.7
Articulated Trucks	0	25	0	0	-	25	0	0	0	0	-	0	0	16	0	0	-	16	0	0	0	0	-	0	41
\% Articulated Trucks	-	33.3	0.0	-	-	32.1	0.0	-	.	-	-	0.0	0.0	32.0	0.0	.	-	29.1	0.0	-	0.0	-	-	0.0	28.3
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	\checkmark	0	0	0	0	0	\checkmark	0	0	0	0	0	-	0	0
$\begin{gathered} \% \text { Bicycles on } \\ \text { Road } \\ \hline \end{gathered}$	-	0.0	0.0	-	-	0.0	0.0	-	.	.	-	0.0	0.0	0.0	0.0	.	-	0.0	0.0	-	0.0	.	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	1	-	-	$-$	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	\checkmark	\checkmark	-	-	-	-	100.0	\checkmark	-	\checkmark	\checkmark	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing \#3 Site Code: 16
Start Date: 09/19/2014
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Sasquatch Crossing \#3 Site Code: 16
Start Date: 09/19/2014
250-819-2527 paul@peaktraffic.ca
Page No: 10

Turning Movement Peak Hour Data (5:15 PM)

Start Time	Alaska Hwy 97 Southbound						Gunga Din R \& B access Westbound						Alaska Hwy 97 Northbound						Pink Mountain Road Eastbound						
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	Int. Total
5:15 PM	1	44	3	0	0	48	2	0	0	0	0	2	5	22	0	0	0	27	1	0	3	0	0	4	81
5:30 PM	0	26	4	0	0	30	1	0	0	0	0	1	15	15	1	0	0	31	2	0	4	0	0	6	68
5:45 PM	1	48	2	0	0	51	0	1	0	0	0	1	10	21	1	0	0	32	1	0	1	0	0	2	86
6:00 PM	1	24	4	0	0	29	0	0	1	0	0	1	5	17	2	0	0	24	1	1	3	0	0	5	59
Total	3	142	13	0	0	158	3	1	1	0	0	5	35	75	4	0	0	114	5	1	11	0	0	17	294
Approach \%	1.9	89.9	8.2	0.0	-	-	60.0	20.0	20.0	0.0	-	-	30.7	65.8	3.5	0.0	-	-	29.4	5.9	64.7	0.0	-	-	-
Total \%	1.0	48.3	4.4	0.0	-	53.7	1.0	0.3	0.3	0.0	-	1.7	11.9	25.5	1.4	0.0	-	38.8	1.7	0.3	3.7	0.0	-	5.8	-
PHF	0.750	0.740	0.813	0.000	-	0.775	0.375	0.250	0.250	0.000	-	0.625	0.583	0.852	0.500	0.000	-	0.891	0.625	0.250	0.688	0.000	-	0.708	0.855
Lights	3	105	8	0	-	116	3	1	1	0	-	5	24	49	4	0	-	77	4	0	10	0	-	14	212
\% Lights	100.0	73.9	61.5	-	-	73.4	100.0	100.0	100.0	-	-	100.0	68.6	65.3	100.0	-	-	67.5	80.0	0.0	90.9	-	-	82.4	72.1
Mediums	0	11	2	0	-	13	0	0	0	0	-	0	2	3	0	0	-	5	1	0	0	0	-	1	19
\% Mediums	0.0	7.7	15.4	-	-	8.2	0.0	0.0	0.0	-	-	0.0	5.7	4.0	0.0	-	-	4.4	20.0	0.0	0.0	-	-	5.9	6.5
Articulated Trucks	0	26	2	0	-	28	0	0	0	0	-	0	9	23	0	0	-	32	0	1	1	0	-	2	62
\% Articulated Trucks	0.0	18.3	15.4	-	-	17.7	0.0	0.0	0.0	-	-	0.0	25.7	30.7	0.0	.	-	28.1	0.0	100.0	9.1	-	-	11.8	21.1
Bicycles on Road	0	0	1	0	-	1	0	0	0	0	\checkmark	0	0	0	0	0	\checkmark	0	0	0	0	0	-	0	1
$\begin{gathered} \text { \% Bicycles on } \\ \text { Road } \end{gathered}$	0.0	0.0	7.7	-	-	0.6	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.3
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-		-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	\cdot	-	\checkmark	\checkmark	-	-	\checkmark	-									

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing \#3 Site Code: 16
Start Date. 09/19/2014
Page No: 11

Turning Movement Peak Hour Data Plot (5:15 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd

Kamloops, British Columbia, Canada V2B 1P4

Count Name: Sasquatch Crossing \#4 Site Code: 17
Start Date: 09/19/2014
Page No: 1

Turning Movement Data

Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	0.0	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	1	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	100.0	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4

Count Name: Sasquatch Crossing \#4 Site Code: 17
Star :09/19/2014
Page No: 4

Turning Movement Peak Hour Data (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing \#4 Site Code: 17
Start Date: 09/19/2014
Page No: 5

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4

Count Name: Sasquatch Crossing \#4 Site Code: 17
Star No: 09/19/2014
Page No: 6

Turning Movement Peak Hour Data (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Turning Movement Peak Hour Data Plot (12:00 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4

Count Name: Sasquatch Crossing \#4 Site Code: 17
Start Date: 09/19/2014
Page No: 8

Turning Movement Peak Hour Data (5:15 PM)

Start Time	Left	Thru	Alaska Hwy 97 Southbound U-Turn	Peds	App. Total	Left	Right	bound Appr Westbound U-Turn	Peds	App. Total	Thru	Right	Alaska Hwy 97 Northbound U-Turn	Peds	App. Total	Int. Total
5:15 PM	1	47	0	0	48	0	0	0	0	0	21	0	0	0	21	69
5:30 PM	0	35	0	0	35	0	0	0	0	0	17	0	0	0	17	52
5:45 PM	0	47	0	0	47	0	0	0	0	0	23	0	0	0	23	70
6:00 PM	1	28	0	0	29	2	1	0	0	3	19	0	0	0	19	51
Total	2	157	0	0	159	2	1	0	0	3	80	0	0	0	80	242
Approach \%	1.3	98.7	0.0	-	-	66.7	33.3	0.0	-	-	100.0	0.0	0.0	-	-	-
Total \%	0.8	64.9	0.0	-	65.7	0.8	0.4	0.0	-	1.2	33.1	0.0	0.0	-	33.1	-
PHF	0.500	0.835	0.000	-	0.828	0.250	0.250	0.000	-	0.250	0.870	0.000	0.000	-	0.870	0.864
Lights	2	117	0	-	119	1	1	0	-	2	52	0	0	-	52	173
\% Lights	100.0	74.5	-	-	74.8	50.0	100.0	-	-	66.7	65.0	-	-	-	65.0	71.5
Mediums	0	10	0	-	10	0	0	0	-	0	4	0	0	-	4	14
\% Mediums	0.0	6.4	-	-	6.3	0.0	0.0	-	-	0.0	5.0	-	-	-	5.0	5.8
Articulated Trucks	0	30	0	-	30	1	0	0	-	1	24	0	0	-	24	55
\% Articulated Trucks	0.0	19.1	-	-	18.9	50.0	0.0	-	-	33.3	30.0	-	-	-	30.0	22.7
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	-	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing \#4 Site Code: 17
Start Date: 09/19/2014
Page No: 9

Turning Movement Peak Hour Data Plot (5:15 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Stoddart Rd Site Code: 2
250-819-2527 paul@peaktraffic.ca

Turning Movement Data

06:15 PM	0	65	0	0	65	2	0	0	0	2	32	2	0	0	34	101
06:30 PM	0	34	0	0	34	4	0	0	0	4	26	5	0	0	31	69
06:45 PM	0	44	0	0	44	1	0	0	0	1	27	6	0	0	33	78
Hourly Total	1	210	0	0	211	10	0	0	0	10	124	15	0	0	139	360
07:00 PM	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1
Grand Total	6	1171	0	0	1177	75	4	0	0	79	1273	66	0	0	1339	2595
Approach \%	0.5	99.5	0.0	-	-	94.9	5.1	0.0	-	-	95.1	4.9	0.0	-	-	-
Total \%	0.2	45.1	0.0	-	45.4	2.9	0.2	0.0	-	3.0	49.1	2.5	0.0	-	51.6	-
Lights	5	809	0	-	814	69	4	0	-	73	852	58	0	\cdots	910	1797
\% Lights	83.3	69.1	-	-	69.2	92.0	100.0	-	-	92.4	66.9	87.9	-	-	68.0	69.2
Mediums	1	176	0	-	177	5	0	0	-	5	180	6	0	-	186	368
\% Mediums	16.7	15.0	-	-	15.0	6.7	0.0	-	-	6.3	14.1	9.1	-	\cdots	13.9	14.2
Articulated Trucks	0	185	0	-	185	1	0	0	-	1	241	2	0	-	243	429
\% Articulated Trucks	0.0	15.8	-	-	15.7	1.3	0.0	-	-	1.3	18.9	3.0	-	-	18.1	16.5
Bicycles on Road	0	1	0	-	1	0	0	0	-	0	0	0	0	-	0	1
\% Bicycles on Road	0.0	0.1	-	-	0.1	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Stoddart Rd Site Code: 2
Start Date: 2014/09/22
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4

Count Name: Stoddart Rd Site Code: 2

14/09/22
Page No: 4

Start Time	Turning Movement Peak Hour Data (07:00 AM)															
	Alaska Hwy 97					Stoddart Rd					Alaska Hwy 97					Int. Total
	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	
07:00 AM	0	15	0	0	15	8	0	0	0	8	62	0	0	0	62	85
07:15 AM	0	30	0	0	30	3	0	0	0	3	79	0	0	0	79	112
07:30 AM	0	35	0	0	35	3	1	0	0	4	59	0	0	0	59	98
07:45 AM	0	33	0	0	33	2	0	0	0	2	60	3	0	0	63	98
Total	0	113	0	0	113	16	1	0	0	17	260	3	0	0	263	393
Approach \%	0.0	100.0	0.0	-	-	94.1	5.9	0.0	-	-	98.9	1.1	0.0	-	-	-
Total \%	0.0	28.8	0.0	-	28.8	4.1	0.3	0.0	-	4.3	66.2	0.8	0.0	-	66.9	-
PHF	0.000	0.807	0.000	-	0.807	0.500	0.250	0.000	-	0.531	0.823	0.250	0.000	-	0.832	0.877
Lights	0	88	0	-	88	14	1	0	-	15	169	1	0	-	170	273
\% Lights	-	77.9	-	-	77.9	87.5	100.0	-	-	88.2	65.0	33.3	-	-	64.6	69.5
Mediums	0	11	0	-	11	1	0	0	-	1	63	2	0	-	65	77
\% Mediums	-	9.7	-	-	9.7	6.3	0.0	-	-	5.9	24.2	66.7	-	-	24.7	19.6
Articulated Trucks	0	14	0	-	14	1	0	0	-	1	28	0	0	-	28	43
\% Articulated Trucks	-	12.4	-	-	12.4	6.3	0.0	-	-	5.9	10.8	0.0	-	-	10.6	10.9
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	-	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Stoddart Rd Site Code: 2
Start Date: 2014/09/22
Page No: 5

Turning Movement Peak Hour Data Plot (07:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4

Count Name: Stoddart Rd Site Code: 2

014/09/22
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Stoddart Rd Site Code: 2
Start Date: 2014/09/22 Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4

Count Name: Stoddart Rd Site Code: 2
Ptage No: 2014/09/22
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Stoddart Rd Site Code: 2
Start Date: 2014/09/22
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Stoddart Rd Site Code: 2
Start Date: 2014/09/22
250-819-2527 paul@peaktraffic.ca
Page No: 10

Start Time	Turning Movement Peak Hour Data (05:00 PM)															
	Alaska Hwy 97 Southbound					Stoddart Rd					Alaska Hwy 97 Northbound					Int. Total
	Left	Thru	U-Turn	Peds	App. Total	Left	Right	U-Turn	Peds	App. Total	Thru	Right	U-Turn	Peds	App. Total	
05:00 PM	1	63	0	0	64	3	1	0	0	4	41	4	0	0	45	113
05:15 PM	0	67	0	0	67	3	1	0	0	4	52	3	0	0	55	126
05:30 PM	1	66	0	0	67	0	0	0	0	0	53	3	0	0	56	123
05:45 PM	0	60	0	0	60	2	0	0	0	2	32	10	0	0	42	104
Total	2	256	0	0	258	8	2	0	0	10	178	20	0	0	198	466
Approach \%	0.8	99.2	0.0	-	-	80.0	20.0	0.0	-	-	89.9	10.1	0.0	-	-	-
Total \%	0.4	54.9	0.0	-	55.4	1.7	0.4	0.0	-	2.1	38.2	4.3	0.0	-	42.5	-
PHF	0.500	0.955	0.000	-	0.963	0.667	0.500	0.000	-	0.625	0.840	0.500	0.000	-	0.884	0.925
Lights	2	184	0	-	186	8	2	0	-	10	129	19	0	-	148	344
\% Lights	100.0	71.9	-	-	72.1	100.0	100.0	-	-	100.0	72.5	95.0	-	-	74.7	73.8
Mediums	0	34	0	-	34	0	0	0	-	0	11	1	0	-	12	46
\% Mediums	0.0	13.3	-	-	13.2	0.0	0.0	-	-	0.0	6.2	5.0	-	-	6.1	9.9
Articulated Trucks	0	38	0	-	38	0	0	0	-	0	38	0	0	-	38	76
\% Articulated Trucks	0.0	14.8	-	-	14.7	0.0	0.0	-	-	0.0	21.3	0.0	-	-	19.2	16.3
Bicycles on Road	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Stoddart Rd Site Code: 2
Start Date: 2014/09/22
Page No: 11

Turning Movement Peak Hour Data Plot (05:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4

Count Name: Wonowon Esso \#1 Site Code: 8
Start Date: 2014/09/15
Page No: 1

Start Time	Alaska Hwy 97 Southbound						Access Westbound						Alaska Hwy 97 Northbound						Blueberry Esso Access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	
05:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	1	10	0	0	0	11	0	0	0	0	0	0	11
05:15 AM	0	3	0	0	0	3	0	0	0	0	0	0	2	17	0	0	0	19	0	0	0	0	0	0	22
05:30 AM	0	1	0	0	0	1	0	0	0	0	0	0	1	24	0	0	0	25	0	0	0	0	0	0	26
05:45 AM	0	7	0	0	0	7	0	0	1	0	0	1	7	32	0	0	0	39	0	0	1	0	0	1	48
Hourly Total	0	11	0	0	0	11	0	0	1	0	0	1	11	83	0	0	0	94	0	0	1	0	0	1	107
06:00 AM	0	5	0	0	0	5	0	0	1	0	0	1	6	23	0	0	0	29	1	0	2	0	0	3	38
06:15 AM	0	5	0	0	0	5	0	0	0	0	0	0	1	21	0	0	0	22	1	0	3	0	0	4	31
06:30 AM	0	3	0	0	0	3	0	0	0	0	0	0	11	21	0	0	0	32	0	0	2	0	0	2	37
06:45 AM	0	8	1	0	0	9	0	0	0	0	0	0	4	23	1	0	0	28	2	1	1	0	0	4	41
Hourly Total	0	21	1	0	0	22	0	0	1	0	0	1	22	88	1	0	0	111	4	1	8	0	0	13	147
07:00 AM	0	11	0	0	0	11	0	0	0	0	0	0	11	27	0	0	0	38	1	0	0	0	0	1	50
07:15 AM	0	14	0	0	0	14	0	1	0	0	0	1	9	27	0	0	0	36	1	0	2	0	0	3	54
07:30 AM	0	12	0	0	0	12	0	0	0	0	0	0	3	26	0	0	0	29	3	0	1	0	0	4	45
07:45 AM	0	13	1	0	0	14	0	0	0	0	0	0	8	23	0	0	0	31	0	0	5	0	0	5	50
Hourly Total	0	50	1	0	0	51	0	1	0	0	0	1	31	103	0	0	0	134	5	0	8	0	0	13	199
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	0	16	0	0	0	16	0	0	0	0	0	0	5	24	0	0	0	29	2	0	3	0	0	5	50
11:15 AM	0	10	0	0	0	10	0	0	0	0	0	0	7	21	0	0	0	28	0	0	4	0	0	4	42
11:30 AM	0	31	0	0	0	31	0	0	0	0	0	0	8	13	0	0	0	21	1	0	3	0	0	4	56
11:45 AM	0	19	0	0	0	19	0	0	0	0	0	0	8	34	0	0	0	42	1	0	6	0	0	7	68
Hourly Total	0	76	0	0	0	76	0	0	0	0	0	0	28	92	0	0	0	120	4	0	16	0	0	20	216
12:00 PM	0	19	0	0	0	19	0	0	0	0	0	0	4	16	0	0	0	20	0	0	7	0	0	7	46
12:15 PM	0	24	0	0	0	24	0	0	0	0	0	0	7	20	0	0	0	27	0	0	8	0	0	8	59
12:30 PM	0	21	0	0	0	21	0	0	0	0	0	0	8	23	0	0	0	31	2	0	2	0	0	4	56
12:45 PM	0	21	1	0	0	22	0	0	0	0	0	0	6	11	0	0	0	17	1	1	4	0	0	6	45
Hourly Total	0	85	1	0	0	86	0	0	0	0	0	0	25	70	0	0	0	95	3	1	21	0	0	25	206
*** BREAK ***	-	-	-	-	-	\checkmark	-	-	-	-	\checkmark	-	-	-	-	-	\cdots	-	-	-	\cdot	-	-	\checkmark	-
04:00 PM	0	5	0	0	0	5	0	0	0	0	0	0	9	57	0	0	0	66	0	0	6	0	0	6	77
04:15 PM	0	109	0	0	0	109	0	1	0	0	0	1	2	14	0	0	0	16	1	1	8	0	0	10	136
04:30 PM	0	5	0	0	0	5	0	0	0	0	0	0	5	77	0	0	0	82	1	0	0	0	1	1	88
04:45 PM	0	61	0	0	0	61	0	0	0	0	0	0	4	48	0	0	0	52	0	0	8	0	0	8	121
Hourly Total	0	180	0	0	0	180	0	1	0	0	0	1	20	196	0	0	0	216	2	1	22	0	1	25	422
05:00 PM	0	45	1	0	0	46	0	0	0	0	0	0	9	84	0	0	0	93	0	0	8	0	0	8	147
05:15 PM	0	52	2	0	0	54	0	0	0	0	0	0	1	11	0	0	0	12	1	0	13	0	0	14	80
05:30 PM	0	23	0	0	0	23	0	0	0	0	0	0	6	14	0	0	0	20	2	0	6	0	0	8	51

05:45 PM	0	27	0	0	0	27	1	0	0	0	0	1	6	13	0	0	0	19	0	0	6	0	0	6	53
Hourly Total	0	147	3	0	0	150	1	0	0	0	0	1	22	122	0	0	0	144	3	0	33	0	0	36	331
06:00 PM	0	39	1	0	0	40	0	0	0	0	0	0	3	16	0	0	0	19	3	0	10	0	0	13	72
06:15 PM	0	34	0	0	0	34	0	0	0	0	0	0	6	16	0	0	0	22	3	0	9	0	0	12	68
06:30 PM	0	14	0	0	0	14	0	0	0	0	0	0	7	13	0	0	0	20	3	0	15	0	0	18	52
06:45 PM	0	38	0	0	0	38	0	0	0	0	0	0	4	13	0	0	0	17	1	0	5	0	0	6	61
Hourly Total	0	125	1	0	0	126	0	0	0	0	0	0	20	58	0	0	0	78	10	0	39	0	0	49	253
07:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	695	7	0	0	702	1	2	2	0	0	5	179	812	1	0	0	992	31	3	148	0	1	182	1881
Approach \%	0.0	99.0	1.0	0.0	-	-	20.0	40.0	40.0	0.0	-	-	18.0	81.9	0.1	0.0	-	-	17.0	1.6	81.3	0.0	-	-	-
Total \%	0.0	36.9	0.4	0.0	-	37.3	0.1	0.1	0.1	0.0	-	0.3	9.5	43.2	0.1	0.0	-	52.7	1.6	0.2	7.9	0.0	$-$	9.7	-
Lights	0	431	5	0	-	436	1	2	2	0	-	5	125	487	1	0	-	613	26	3	97	0	-	126	1180
\% Lights	-	62.0	71.4	-	-	62.1	100.0	100.0	100.0	-	-	100.0	69.8	60.0	100.0	-	-	61.8	83.9	100.0	65.5	-	-	69.2	62.7
Mediums	0	87	2	0	-	89	0	0	0	0	-	0	9	80	0	0	-	89	5	0	17	0	-	22	200
\% Mediums	-	12.5	28.6	-	-	12.7	0.0	0.0	0.0	-	-	0.0	5.0	9.9	0.0	-	-	9.0	16.1	0.0	11.5	-	-	12.1	10.6
Articulated Trucks	0	177	0	0	-	177	0	0	0	0	-	0	45	244	0	0	-	289	0	0	34	0	-	34	500
\% Articulated Trucks	-	25.5	0.0	-	-	25.2	0.0	0.0	0.0	-	-	0.0	25.1	30.0	0.0	.	-	29.1	0.0	0.0	23.0	-	-	18.7	26.6
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	1	0	0	-	1	0	0	0	0	-	0	1
\% Bicycles on Road	-	0.0	0.0	.	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.1	0.0	-	-	0.1	0.0	0.0	0.0	-	.	0.0	0.1
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	1	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100.0	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#1 Site Code: 8
Start Date: 2014/09/15
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Wonowon Esso \#1 Site Code: 8
Start Date: 2014/09/15
250-819-2527 paul@peaktraffic.ca
Page No: 4

Turning Movement Peak Hour Data (07:00 AM)

Start Time	Alaska Hwy 97 Southbound						Access Westbound						Alaska Hwy 97 Northbound						Blueberry Esso Access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	
07:00 AM	0	11	0	0	0	11	0	0	0	0	0	0	11	27	0	0	0	38	1	0	0	0	0	1	50
07:15 AM	0	14	0	0	0	14	0	1	0	0	0	1	9	27	0	0	0	36	1	0	2	0	0	3	54
07:30 AM	0	12	0	0	0	12	0	0	0	0	0	0	3	26	0	0	0	29	3	0	1	0	0	4	45
07:45 AM	0	13	1	0	0	14	0	0	0	0	0	0	8	23	0	0		31	0	0	5	0	0	5	50
Total	0	50	1	0	0	51	0	1	0	0	0	1	31	103	0	0	0	134	5	0	8	0	0	13	199
Approach \%	0.0	98.0	2.0	0.0	-	-	0.0	100.0	0.0	0.0	-	-	23.1	76.9	0.0	0.0	-	-	38.5	0.0	61.5	0.0	-	-	-
Total \%	0.0	25.1	0.5	0.0	-	25.6	0.0	0.5	0.0	0.0	-	0.5	15.6	51.8	0.0	0.0	-	67.3	2.5	0.0	4.0	0.0	-	6.5	-
PHF	0.000	0.893	0.250	0.000	-	0.911	0.000	0.250	0.000	0.000	-	0.250	0.705	0.954	0.000	0.000	-	0.882	0.417	0.000	0.400	0.000	-	0.650	0.921
Lights	0	28	1	0	-	29	0	1	0	0	-	1	15	66	0	0	-	81	3	0	6	0	-	9	120
\% Lights	-	56.0	100.0	-	-	56.9	-	100.0	-	-	-	100.0	48.4	64.1	-	-	-	60.4	60.0	-	75.0	-	-	69.2	60.3
Mediums	0	6	0	0	-	6	0	0	0	0	-	0	4	11	0	0	-	15	2	0	1	0	-	3	24
\% Mediums	-	12.0	0.0	-	-	11.8	-	0.0	-	-	-	0.0	12.9	10.7	-	-	-	11.2	40.0	-	12.5	-	-	23.1	12.1
Articulated Trucks	0	16	0	0	-	16	0	0	0	0	-	0	12	26	0	0	-	38	0	0	1	0	-	1	55
\% Articulated Trucks	-	32.0	0.0	-	-	31.4	-	0.0	-	-	-	0.0	38.7	25.2	-	.	-	28.4	0.0	-	12.5	.	-	7.7	27.6
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	\checkmark	0	0
$\begin{gathered} \text { \% Bicycles on } \\ \text { Road } \\ \hline \end{gathered}$	-	0.0	0.0	-	-	0.0	-	0.0	-	-	-	0.0	0.0	0.0	-	-	-	0.0	0.0	-	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	\cdot	-	-	-	-	-	-	\checkmark	-	-	-	-	-	$-$	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#1 Site Code: 8
Start Date: 2014/09/15
Page No: 5

Turning Movement Peak Hour Data Plot (07:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#1 Site Code: 8
Start Date: 2014/09/15
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Alaska Hwy 97 Southbound						Access Westbound						Alaska Hwy 97 Northbound						Blueberry Esso Access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	
11:00 AM	0	16	0	0	0	16	0	0	0	0	0	0	5	24	0	0	0	29	2	0	3	0	0	5	50
11:15 AM	0	10	0	0	0	10	0	0	0	0	0	0	7	21	0	0	0	28	0	0	4	0	0	4	42
11:30 AM	0	31	0	0	0	31	0	0	0	0	0	0	8	13	0	0	0	21	1	0	3	0	0	4	56
11:45 AM	0	19	0	0	0	19	0	0	0	0	0	0	8	34	0	0	0	42	1	0	6	0	0	7	68
Total	0	76	0	0	0	76	0	0	0	0	0	0	28	92	0	0	0	120	4	0	16	0	0	20	216
Approach \%	0.0	100.0	0.0	0.0	-	-	NaN	NaN	NaN	NaN	-	-	23.3	76.7	0.0	0.0	-	-	20.0	0.0	80.0	0.0	-	-	-
Total \%	0.0	35.2	0.0	0.0	-	35.2	0.0	0.0	0.0	0.0	-	0.0	13.0	42.6	0.0	0.0	-	55.6	1.9	0.0	7.4	0.0	-	9.3	-
PHF	0.000	0.613	0.000	0.000	-	0.613	0.000	0.000	0.000	0.000	-	0.000	0.875	0.676	0.000	0.000	-	0.714	0.500	0.000	0.667	0.000	-	0.714	0.794
Lights	0	29	0	0	-	29	0	0	0	0	-	0	20	52	0	0	-	72	4	0	9	0	-	13	114
\% Lights	-	38.2	-	-	-	38.2	-	-	-	-	-	-	71.4	56.5	-	-	-	60.0	100.0	-	56.3	-	-	65.0	52.8
Mediums	0	12	0	0	-	12	0	0	0	0	-	0	2	12	0	0	-	14	0	0	1	0	-	1	27
\% Mediums	-	15.8	-	-	-	15.8	-	-	-	-	-	-	7.1	13.0	-	-	-	11.7	0.0	-	6.3	-	-	5.0	12.5
Articulated Trucks	0	35	0	0	-	35	0	0	0	0	-	0	6	28	0	0	-	34	0	0	6	0	-	6	75
\% Articulated Trucks	-	46.1	-	-	-	46.1	-	-	-	-	-	.	21.4	30.4	-	.	-	28.3	0.0	-	37.5	-	-	30.0	34.7
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
\% Bicycles on Road	-	0.0	-	.	-	0.0	-	-	.	.	-	.	0.0	0.0	.	.	-	0.0	0.0	-	0.0	.	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#1 Site Code: 8
Start Date: 2014/09/15
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Wonowon Esso \#1 Site Code: 8
Start Date: 2014/09/15
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound						Access Westbound						Alaska Hwy 97 Northbound						Blueberry Esso Access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { App. } \\ & \text { Total } \end{aligned}$	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	
12:00 PM	0	19	0	0	0	19	0	0	0	0	0	0	4	16	0	0	0	20	0	0	7	0	0	7	46
12:15 PM	0	24	0	0	0	24	0	0	0	0	0	0	7	20	0	0	0	27	0	0	8	0	0	8	59
12:30 PM	0	21	0	0	0	21	0	0	0	0	0	0	8	23	0	0	0	31	2	0	2	0	0	4	56
12:45 PM	0	21	1	0	0	22	0	0	0	0	0	0	6	11	0	0	0	17	1	1	4	0	0	6	45
Total	0	85	1	0	0	86	0	0	0	0	0	0	25	70	0	0	0	95	3	1	21	0	0	25	206
Approach \%	0.0	98.8	1.2	0.0	-	-	NaN	NaN	NaN	NaN	-	-	26.3	73.7	0.0	0.0	-	-	12.0	4.0	84.0	0.0	-	-	-
Total \%	0.0	41.3	0.5	0.0	-	41.7	0.0	0.0	0.0	0.0	-	0.0	12.1	34.0	0.0	0.0	-	46.1	1.5	0.5	10.2	0.0	-	12.1	-
PHF	0.000	0.885	0.250	0.000	-	0.896	0.000	0.000	0.000	0.000	-	0.000	0.781	0.761	0.000	0.000	-	0.766	0.375	0.250	0.656	0.000	-	0.781	0.873
Lights	0	53	1	0	-	54	0	0	0	0	-	0	17	44	0	0	-	61	3	1	10	0	-	14	129
\% Lights	-	62.4	100.0	-	-	62.8	-	-	-	-	-	-	68.0	62.9	-	-	-	64.2	100.0	100.0	47.6	-	-	56.0	62.6
Mediums	0	5	0	0	-	5	0	0	0	0	-	0	1	4	0	0	-	5	0	0	3	0	-	3	13
\% Mediums	-	5.9	0.0	-	-	5.8	-	-	-	-	-	-	4.0	5.7	-	-	-	5.3	0.0	0.0	14.3	-	-	12.0	6.3
Articulated Trucks	0	27	0	0	-	27	0	0	0	0	-	0	7	21	0	0	-	28	0	0	8	0	-	8	63
\% Articulated Trucks	-	31.8	0.0	-	-	31.4	.	-	-	-	-	.	28.0	30.0	-	.	-	29.5	0.0	0.0	38.1	.	.	32.0	30.6
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	1	0	0	-	1	0	0	0	0	-	0	1
$\begin{gathered} \text { \% Bicycles on } \\ \text { Road } \end{gathered}$	-	0.0	0.0	-	-	0.0	-	-	-	-	-	-	0.0	1.4	-	-	-	1.1	0.0	0.0	0.0	-	-	0.0	0.5
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	\checkmark	-	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#1 Site Code: 8
Start Date: 2014/09/15
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4

Count Name: Wonowon Esso \#1 Site Code: 8
Start Date: 2014/09/15
Page No: 10

Turning Movement Peak Hour Data (04:15 PM)

Start Time	Alaska Hwy 97 Southbound						Access Westbound						Alaska Hwy 97 Northbound						Blueberry Esso Access Eastbound						
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	Int. Total
04:15 PM	0	109	0	0	0	109	0	1	0	0	0	1	2	14	0	0	0	16	1	1	8	0	0	10	136
04:30 PM	0	5	0	0	0	5	0	0	0	0	0	0	5	77	0	0	0	82	1	0	0	0	1	1	88
04:45 PM	0	61	0	0	0	61	0	0	0	0	0	0	4	48	0	0	0	52	0	0	8	0	0	8	121
05:00 PM	0	45	1	0	0	46	0	0	0	0	0	0	9	84	0	0	0	93	0	0	8	0	0	8	147
Total	0	220	1	0	0	221	0	1	0	0	0	1	20	223	0	0	0	243	2	1	24	0	1	27	492
Approach \%	0.0	99.5	0.5	0.0	-	-	0.0	100.0	0.0	0.0	-	-	8.2	91.8	0.0	0.0	-	-	7.4	3.7	88.9	0.0	-	-	-
Total \%	0.0	44.7	0.2	0.0	-	44.9	0.0	0.2	0.0	0.0	-	0.2	4.1	45.3	0.0	0.0	-	49.4	0.4	0.2	4.9	0.0	-	5.5	-
PHF	0.000	0.505	0.250	0.000	-	0.507	0.000	0.250	0.000	0.000	-	0.250	0.556	0.664	0.000	0.000	-	0.653	0.500	0.250	0.750	0.000	-	0.675	0.837
Lights	0	135	0	0	-	135	0	1	0	0	-	1	17	123	0	0	-	140	2	1	16	0	-	19	295
\% Lights	-	61.4	0.0	-	-	61.1	-	100.0	-	-	-	100.0	85.0	55.2	-	-	-	57.6	100.0	100.0	66.7	-	-	70.4	60.0
Mediums	0	31	1	0	-	32	0	0	0	0	-	0	0	14	0	0	-	14	0	0	5	0	-	5	51
\% Mediums	-	14.1	100.0	-	-	14.5	-	0.0	-	-	-	0.0	0.0	6.3	-	-	-	5.8	0.0	0.0	20.8	-	-	18.5	10.4
Articulated Trucks	0	54	0	0	-	54	0	0	0	0	-	0	3	86	0	0	-	89	0	0	3	0	-	3	146
\% Articulated Trucks	-	24.5	0.0	-	-	24.4	-	0.0	-	.	-	0.0	15.0	38.6	.	.	-	36.6	0.0	0.0	12.5	.	-	11.1	29.7
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
\% Bicycles on Road	-	0.0	0.0	-	-	0.0	-	0.0	-	-	-	0.0	0.0	0.0	-	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	1	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	\cdot	-	\cdot	-	-	-	-	-	\checkmark	-	-	\checkmark	-	100.0	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#1 Site Code: 8
Start ake. 2014/09/15
Page No: 11

Turning Movement Peak Hour Data Plot (04:15 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#1 Site Code: 8
Start Date: 2014/09/15
Page No: 12

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4
Count Name: Wonowon Esso \#2 Site Code: 9
Start Date: 2014/09/15
250-819-2527 paul@peaktraffic.ca
Page No: 1

Start Time	Alaska Hwy 97 Southbound						Turning Movement Data $\begin{array}{c}\text { Wonowon Lodge Access } \\ \text { Westbound }\end{array}$ $\begin{array}{c}\text { Alaska Hwy } 97 \\ \text { Northbound }\end{array}$												Blueberry Esso \#2 Access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	
05:00 AM	0	0	0	0	0	0	0	1	2	0	0	3	0	10	0	0	0	10	2	0	0	0	0	2	15
05:15 AM	1	2	0	0	0	3	1	0	0	0	0	1	0	16	0	0	0	16	2	0	0	0	0	2	22
05:30 AM	0	2	0	0	0	2	0	0	0	0	0	0	0	26	0	0	0	26	1	0	0	0	0	1	29
05:45 AM	0	8	1	0	0	9	0	0	5	0	0	5	0	29	0	0	0	29	4	0	0	0	0	4	47
Hourly Total	1	12	1	0	0	14	1	1	7	0	0	9	0	81	0	0	0	81	9	0	0	0	0	9	113
06:00 AM	0	3	2	0	0	5	1	0	3	0	0	4	0	25	0	0	0	25	7	0	1	0	0	8	42
06:15 AM	0	3	1	0	0	4	1	0	0	0	0	1	0	24	0	0	0	24	3	0	1	0	0	4	33
06:30 AM	0	2	3	0	0	5	0	0	0	0	0	0	0	18	0	0	0	18	3	0	0	0	0	3	26
06:45 AM	0	9	1	0	0	10	1	0	1	0	0	2	0	26	0	0	0	26	9	0	0	0	0	9	47
Hourly Total	0	17	7	0	0	24	3	0	4	0	0	7	0	93	0	0	0	93	22	0	2	0	0	24	148
07:00 AM	1	11	1	0	2	13	0	0	0	0	0	0	1	25	2	0	0	28	10	0	0	0	0	10	51
07:15 AM	1	14	2	0	0	17	0	0	0	0	0	0	0	20	2	0	0	22	7	0	0	0	0	7	46
07:30 AM	1	10	0	0	0	11	1	1	5	0	0	7	2	34	1	0	0	37	7	0	0	0	0	7	62
07:45 AM	1	14	4	0	0	19	0	1	6	0	0	7	1	20	0	0	0	21	6	0	0	0	0	6	53
Hourly Total	4	49	7	0	2	60	1	2	11	0	0	14	4	99	5	0	0	108	30	0	0	0	0	30	212
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	0	2
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	0	2
11:00 AM	0	15	3	0	0	18	1	0	0	0	0	1	1	30	0	0	0	31	2	0	0	0	0	2	52
11:15 AM	0	10	3	0	1	13	0	0	1	0	0	1	0	21	0	0	0	21	7	0	0	0	0	7	42
11:30 AM	0	27	2	0	1	29	0	0	0	0	0	0	0	14	0	0	0	14	3	0	0	0	0	3	46
11:45 AM	0	21	6	0	0	27	1	0	0	0	0	1	1	30	0	0	0	31	9	0	1	0	0	10	69
Hourly Total	0	73	14	0	2	87	2	0	1	0	0	3	2	95	0	0	0	97	21	0	1	0	0	22	209
12:00 PM	0	17	5	0	0	22	1	0	0	0	0	1	0	19	0	0	0	19	6	0	0	0	0	6	48
12:15 PM	0	24	7	0	0	31	0	0	0	0	0	0	1	21	0	0	0	22	6	0	0	0	0	6	59
12:30 PM	1	19	1	0	0	21	0	0	0	0	0	0	0	23	1	0	0	24	5	0	0	0	0	5	50
12:45 PM	1	21	12	0	0	34	0	0	1	0	0	1	0	10	0	0	0	10	5	0	2	0	0	7	52
Hourly Total	2	81	25	0	0	108	1	0	1	0	0	2	1	73	1	0	0	75	22	0	2	0	0	24	209
01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:00 PM	0	1	0	0	2	1	0	0	1	0	0	1	1	58	1	0	0	60	3	1	3	0	0	7	69
04:15 PM	0	101	2	0	0	103	2	1	0	0	1	3	0	10	0	0	1	10	4	0	2	0	0	6	122
04:30 PM	0	12	3	0	3	15	1	1	0	0	0	2	1	82	0	0	0	83	8	1	0	0	0	9	109
04:45 PM	0	63	4	0	3	67	0	2	1	0	1	3	2	38	1	0	0	41	4	3	1	0	0	8	119
Hourly Total	0	177	9	0	8	186	3	4	2	0	2	9	4	188	2	0	1	194	19	5	6	0	0	30	419
05:00 PM	0	31	2	0	3	33	1	0	2	0	0	3	0	87	3	0	0	90	9	0	0	0	0	9	135

05:15 PM	1	57	11	0	0	69	2	1	1	0	2	4	0	13	2	0	0	15	5	1	1	0	0	7	95
05:30 PM	3	21	8	0	0	32	1	0	0	0	0	1	0	15	1	0	0	16	5	1	1	0	0	7	56
05:45 PM	0	26	4	0	0	30	0	1	1	0	0	2	0	10	5	0	0	15	5	1	0	0	0	6	53
Hourly Total	4	135	25	0	3	164	4	2	4	0	2	10	0	125	11	0	0	136	24	3	2	0	0	29	339
06:00 PM	2	42	19	0	0	63	0	0	1	0	0	1	0	15	1	0	0	16	1	1	0	0	0	2	82
06:15 PM	1	31	9	0	0	41	1	0	0	0	0	1	0	17	4	0	0	21	3	0	1	0	0	4	67
06:30 PM	3	15	5	0	0	23	1	0	1	0	0	2	0	18	0	0	0	18	8	0	0	0	0	8	51
06:45 PM	1	37	10	0	0	48	1	1	1	0	0	3	0	12	1	0	0	13	1	4	1	0	0	6	70
Hourly Total	7	125	43	0	0	175	3	1	3	0	0	7	0	62	6	0	0	68	13	5	2	0	0	20	270
07:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	18	669	131	0	15	818	18	10	33	0	4	61	11	818	25	0	1	854	160	13	15	0	0	188	1921
Approach \%	2.2	81.8	16.0	0.0	-	-	29.5	16.4	54.1	0.0	-	-	1.3	95.8	2.9	0.0	-	-	85.1	6.9	8.0	0.0	-	-	-
Total \%	0.9	34.8	6.8	0.0	-	42.6	0.9	0.5	1.7	0.0	-	3.2	0.6	42.6	1.3	0.0	-	44.5	8.3	0.7	0.8	0.0	-	9.8	-
Lights	15	399	98	0	-	512	13	10	24	0	-	47	5	511	21	0	-	537	113	12	6	0	-	131	1227
\% Lights	83.3	59.6	74.8	-	-	62.6	72.2	100.0	72.7	-	-	77.0	45.5	62.5	84.0	-	-	62.9	70.6	92.3	40.0	-	-	69.7	63.9
Mediums	2	99	16	0	-	117	3	0	3	0	-	6	0	72	1	0	-	73	10	1	2	0	-	13	209
\% Mediums	11.1	14.8	12.2	-	-	14.3	16.7	0.0	9.1	-	-	9.8	0.0	8.8	4.0	-	-	8.5	6.3	7.7	13.3	-	-	6.9	10.9
Articulated Trucks	1	171	17	0	-	189	2	0	6	0	-	8	6	234	3	0	-	243	37	0	7	0	-	44	484
\% Articulated Trucks	5.6	25.6	13.0	-	-	23.1	11.1	0.0	18.2	-	-	13.1	54.5	28.6	12.0	-	-	28.5	23.1	0.0	46.7	-	-	23.4	25.2
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	1	0	0	-	1	0	0	0	0	-	0	1
$\begin{gathered} \% \text { Bicycles on } \\ \text { Road } \\ \hline \end{gathered}$	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.1	0.0	-	-	0.1	0.0	0.0	0.0	-	-	0.0	0.1
Pedestrians	-	-	-	-	15	-	-	-	-	-	4	-	-	-	-	-	1	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	100.0	-	-	-	-	-	100.0	-	-	-	-	-	100.0	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#2 Site Code: 9
Start Date: 2014/09/15
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Wonowon Esso \#2 Site Code: 9

Date: 2014/09/15
Page No: 4

Turning Movement Peak Hour Data (07:00 AM)

Start Time	Alaska Hwy 97 Southbound						Wonowon Lodge Access Westbound						Alaska Hwy 97 Northbound						Blueberry Esso \#2 Access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	
07:00 AM	1	11	1	0	2	13	0	0	0	0	0	0	1	25	2	0	0	28	10	0	0	0	0	10	51
07:15 AM	1	14	2	0	0	17	0	0	0	0	0	0	0	20	2	0	0	22	7	0	0	0	0	7	46
07:30 AM	1	10	0	0	0	11	1	1	5	0	0	7	2	34	1	0	0	37	7	0	0	0	0	7	62
07:45 AM	1	14	4	0	0	19	0	1	6	0	0	7	1	20	0	0	0	21	6	0	0	0	0	6	53
Total	4	49	7	0	2	60	1	2	11	0	0	14	4	99	5	0	0	108	30	0	0	0	0	30	212
Approach \%	6.7	81.7	11.7	0.0	-	-	7.1	14.3	78.6	0.0	-	-	3.7	91.7	4.6	0.0	-	-	100.0	0.0	0.0	0.0	-	-	-
Total \%	1.9	23.1	3.3	0.0	-	28.3	0.5	0.9	5.2	0.0	-	6.6	1.9	46.7	2.4	0.0	-	50.9	14.2	0.0	0.0	0.0	-	14.2	-
PHF	1.000	0.875	0.438	0.000	-	0.789	0.250	0.500	0.458	0.000	-	0.500	0.500	0.728	0.625	0.000	-	0.730	0.750	0.000	0.000	0.000	-	0.750	0.855
Lights	3	29	6	0	-	38	1	2	10	0	-	13	1	64	5	0	-	70	11	0	0	0	-	11	132
\% Lights	75.0	59.2	85.7	-	-	63.3	100.0	100.0	90.9	-	-	92.9	25.0	64.6	100.0	-	-	64.8	36.7	-	-	-	-	36.7	62.3
Mediums	1	7	1	0	-	9	0	0	1	0	-	1	0	10	0	0	-	10	4	0	0	0	-	4	24
\% Mediums	25.0	14.3	14.3	-	-	15.0	0.0	0.0	9.1	-	-	7.1	0.0	10.1	0.0	-	-	9.3	13.3	-	-	-	-	13.3	11.3
Articulated Trucks	0	13	0	0	-	13	0	0	0	0	-	0	3	25	0	0	-	28	15	0	0	0	-	15	56
\% Articulated Trucks	0.0	26.5	0.0	-	-	21.7	0.0	0.0	0.0	-	-	0.0	75.0	25.3	0.0	-	-	25.9	50.0	-	.	.	-	50.0	26.4
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	\checkmark	0	0
$\begin{gathered} \text { \% Bicycles on } \\ \text { Road } \end{gathered}$	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	-	-	-	-	0.0	0.0
Pedestrians	-	-	-	-	2	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	100.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#2 Site Code: 9
Start Date: 2014/09/15
Page No: 5

Turning Movement Peak Hour Data Plot (07:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4

Count Name: Wonowon Esso \#2 Site Code: 9

2014/09/15
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Alaska Hwy 97 Southbound						Wonowon Lodge Access Westbound						Alaska Hwy 97 Northbound						Blueberry Esso \#2 Access Eastbound						
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Int. Total
11:00 AM	0	15	3	0	0	18	1	0	0	0	0	1	1	30	0	0	0	31	2	0	0	0	0	2	52
11:15 AM	0	10	3	0	1	13	0	0	1	0	0	1	0	21	0	0	0	21	7	0	0	0	0	7	42
11:30 AM	0	27	2	0	1	29	0	0	0	0	0	0	0	14	0	0	0	14	3	0	0	0	0	3	46
11:45 AM	0	21	6	0	0	27	1	0	0	0	0	1	1	30	0	0	0	31	9	0	1	0	0	10	69
Total	0	73	14	0	2	87	2	0	1	0	0	3	2	95	0	0	0	97	21	0	1	0	0	22	209
Approach \%	0.0	83.9	16.1	0.0	-	-	66.7	0.0	33.3	0.0	-	-	2.1	97.9	0.0	0.0	-	-	95.5	0.0	4.5	0.0	-	-	-
Total \%	0.0	34.9	6.7	0.0	-	41.6	1.0	0.0	0.5	0.0	-	1.4	1.0	45.5	0.0	0.0	-	46.4	10.0	0.0	0.5	0.0	-	10.5	-
PHF	0.000	0.676	0.583	0.000	-	0.750	0.500	0.000	0.250	0.000	-	0.750	0.500	0.792	0.000	0.000	-	0.782	0.583	0.000	0.250	0.000	-	0.550	0.757
Lights	0	27	9	0	-	36	1	0	1	0	-	2	1	61	0	0	-	62	18	0	1	0	-	19	119
\% Lights	-	37.0	64.3	-	-	41.4	50.0	-	100.0	-	-	66.7	50.0	64.2	-	-	-	63.9	85.7	-	100.0	-	-	86.4	56.9
Mediums	0	4	1	0	-	5	1	0	0	0	-	1	0	13	0	0	-	13	1	0	0	0	-	1	20
\% Mediums	-	5.5	7.1	-	-	5.7	50.0	-	0.0	-	-	33.3	0.0	13.7	-	-	-	13.4	4.8	-	0.0	-	-	4.5	9.6
Articulated Trucks	0	42	4	0	-	46	0	0	0	0	-	0	1	21	0	0	-	22	2	0	0	0	-	2	70
$\begin{gathered} \hline \text { \% Articulated } \\ \text { Trucks } \\ \hline \end{gathered}$	-	57.5	28.6	-	-	52.9	0.0	-	0.0	-	-	0.0	50.0	22.1	-	-	-	22.7	9.5	-	0.0	-	-	9.1	33.5
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
\% Bicycles on Road	-	0.0	0.0	.	-	0.0	0.0	-	0.0	-	-	0.0	0.0	0.0	.	.	-	0.0	0.0	.	0.0	.	-	0.0	0.0
Pedestrians	-	-	-	-	2	-	-	-	-	$-$	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	100.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#2 Site Code: 9
Start Date: 2014/09/15
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Wonowon Esso \#2 Site Code: 9
Start Date: 2014/09/15
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound						Wonowon Lodge Access Westbound						Alaska Hwy 97 Northbound						Blueberry Esso \#2 Access Eastbound						
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Int. Total
12:00 PM	0	17	5	0	0	22	1	0	0	0	0	1	0	19	0	0	0	19	6	0	0	0	0	6	48
12:15 PM	0	24	7	0	0	31	0	0	0	0	0	0	1	21	0	0	0	22	6	0	0	0	0	6	59
12:30 PM	1	19	1	0	0	21	0	0	0	0	0	0	0	23	1	0	0	24	5	0	0	0	0	5	50
12:45 PM	1	21	12	0	0	34	0	0	1	0	0	1	0	10	0	0	0	10	5	0	2	0	0	7	52
Total	2	81	25	0	0	108	1	0	1	0	0	2	1	73	1	0	0	75	22	0	2	0	0	24	209
Approach \%	1.9	75.0	23.1	0.0	-	-	50.0	0.0	50.0	0.0	-	-	1.3	97.3	1.3	0.0	-	-	91.7	0.0	8.3	0.0	-	-	-
Total \%	1.0	38.8	12.0	0.0	-	51.7	0.5	0.0	0.5	0.0	-	1.0	0.5	34.9	0.5	0.0	-	35.9	10.5	0.0	1.0	0.0	-	11.5	-
PHF	0.500	0.844	0.521	0.000	-	0.794	0.250	0.000	0.250	0.000	-	0.500	0.250	0.793	0.250	0.000	-	0.781	0.917	0.000	0.250	0.000	-	0.857	0.886
Lights	2	49	19	0	-	70	1	0	1	0	-	2	0	49	1	0	-	50	18	0	0	0	-	18	140
\% Lights	100.0	60.5	76.0	-	-	64.8	100.0	-	100.0	-	-	100.0	0.0	67.1	100.0	-	-	66.7	81.8	-	0.0	-	-	75.0	67.0
Mediums	0	10	2	0	-	12	0	0	0	0	-	0	0	8	0	0	-	8	0	0	0	0	-	0	20
\% Mediums	0.0	12.3	8.0	-	-	11.1	0.0	-	0.0	-	-	0.0	0.0	11.0	0.0	-	-	10.7	0.0	-	0.0	-	-	0.0	9.6
Articulated Trucks	0	22	4	0	-	26	0	0	0	0	-	0	1	16	0	0	-	17	4	0	2	0	-	6	49
\% Articulated Trucks	0.0	27.2	16.0	.	-	24.1	0.0	-	0.0	.	-	0.0	100.0	21.9	0.0	.	-	22.7	18.2	-	100.0	-	.	25.0	23.4
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	0.0	.	-	0.0	0.0	.	0.0	.	-	0.0	0.0	0.0	0.0	.	-	0.0	0.0	.	0.0	.	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#2 Site Code: 9
Start Date: 2014/09/15
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4
Count Name: Wonowon Esso \#2 Site Code: 9
Start Date: 2014/09/15
Page No: 10

Turning Movement Peak Hour Data (04:15 PM)

Start Time	Alaska Hwy 97 Southbound						Wonowon Lodge Access Westbound						Alaska Hwy 97 Northbound						Blueberry Esso \#2 Access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	Left	Thru	Right	U-Turn	Peds	App.	
04:15 PM	0	101	2	0	0	103	2	1	0	0	1	3	0	10	0	0	1	10	4	0	2	0	0	6	122
04:30 PM	0	12	3	0	3	15	1	1	0	0	0	2	1	82	0	0	0	83	8	1	0	0	0	9	109
04:45 PM	0	63	4	0	3	67	0	2	1	0	1	3	2	38	1	0	0	41	4	3	1	0	0	8	119
05:00 PM	0	31	2	0	3	33	1	0	2	0	0	3	0	87	3	0	0	90	9	0	0	0	0	9	135
Total	0	207	11	0	9	218	4	4	3	0	2	11	3	217	4	0	1	224	25	4	3	0	0	32	485
Approach \%	0.0	95.0	5.0	0.0	-	-	36.4	36.4	27.3	0.0	-	-	1.3	96.9	1.8	0.0	-	-	78.1	12.5	9.4	0.0	-	-	-
Total \%	0.0	42.7	2.3	0.0	-	44.9	0.8	0.8	0.6	0.0	-	2.3	0.6	44.7	0.8	0.0	-	46.2	5.2	0.8	0.6	0.0	-	6.6	-
PHF	0.000	0.512	0.688	0.000	-	0.529	0.500	0.500	0.375	0.000	-	0.917	0.375	0.624	0.333	0.000	-	0.622	0.694	0.333	0.375	0.000	-	0.889	0.898
Lights	0	119	4	0	-	123	3	4	1	0	-	8	3	115	2	0	-	120	18	3	0	0	-	21	272
\% Lights	-	57.5	36.4	-	-	56.4	75.0	100.0	33.3	-	-	72.7	100.0	53.0	50.0	-	-	53.6	72.0	75.0	0.0	-	-	65.6	56.1
Mediums	0	39	5	0	-	44	1	0	0	0	-	1	0	19	0	0	-	19	3	1	0	0	-	4	68
\% Mediums	-	18.8	45.5	-	-	20.2	25.0	0.0	0.0	-	-	9.1	0.0	8.8	0.0	-	-	8.5	12.0	25.0	0.0	-	-	12.5	14.0
Articulated Trucks	0	49	2	0	-	51	0	0	2	0	-	2	0	82	2	0	-	84	4	0	3	0	-	7	144
$\begin{aligned} & \hline \text { \% Articulated } \\ & \text { Trucks } \\ & \hline \end{aligned}$	-	23.7	18.2	-	-	23.4	0.0	0.0	66.7	-	-	18.2	0.0	37.8	50.0	-	-	37.5	16.0	0.0	100.0	-	-	21.9	29.7
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	1	0	0	-	1	0	0	0	0	-	0	1
\% Bicycles on Road	-	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	0.5	0.0	-	-	0.4	0.0	0.0	0.0	.	-	0.0	0.2
Pedestrians	-	-	-	$-$	9	-	-	-	-	$-$	2	-	-	-	-	-	1	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	100.0	-	-	-	-	-	100.0	-	-	-	-	-	100.0	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#2 Site Code: 9
Start ate: 2014/09/15
Page No: 11

Turning Movement Peak Hour Data Plot (04:15 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#2 Site Code: 9
Start Date: 2014/09/15
Page No: 12

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Wonowon Esso \#3 Site Code: 10
Start Date: 2014/09/15
50-819-2527 paul@peaktraffic.ca
Page No: 1

Start Time	Alaska Hwy 97 Southbound						Turning Movement Data$\begin{gathered}\text { anowon Lodge Access (closed) } \\ \text { Westbound }\end{gathered}$$\begin{gathered}\text { Alaska Hwy 9 } \\ \text { Northbound }\end{gathered}$												Frontage Rd, Business, Equestrian Ctr. access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	
05:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	14	0	0	0	14	0	0	0	0	0	0	14
05:15 AM	0	3	0	0	0	3	0	0	0	0	0	0	0	18	0	0	0	18	0	0	0	0	0	0	21
05:30 AM	0	3	0	0	0	3	0	0	0	0	0	0	0	27	0	0	0	27	0	0	0	0	0	0	30
05:45 AM	0	8	1	0	0	9	0	0	0	0	0	0	0	37	0	0	0	37	0	0	0	0	0	0	46
Hourly Total	0	14	1	0	0	15	0	0	0	0	0	0	0	96	0	0	0	96	0	0	0	0	0	0	111
06:00 AM	0	5	2	0	0	7	0	0	0	0	0	0	0	37	0	0	0	37	0	0	0	0	0	0	44
06:15 AM	0	4	0	0	0	4	0	0	0	0	0	0	0	26	0	0	0	26	0	0	0	0	0	0	30
06:30 AM	0	6	1	0	0	7	0	0	0	0	0	0	0	22	0	0	0	22	0	0	0	0	0	0	29
06:45 AM	0	10	0	0	0	10	0	0	0	0	0	0	0	35	0	0	0	35	2	0	0	0	0	2	47
Hourly Total	0	25	3	0	0	28	0	0	0	0	0	0	0	120	0	0	0	120	2	0	0	0	0	2	150
07:00 AM	1	13	0	1	0	15	0	1	1	0	0	2	0	35	1	0	2	36	2	0	0	1	2	3	56
07:15 AM	0	17	1	0	0	18	0	0	0	0	0	0	0	30	0	0	0	30	1	0	0	0	0	1	49
07:30 AM	0	13	0	0	0	13	0	0	0	0	0	0	1	40	0	0	0	41	0	0	0	0	0	0	54
07:45 AM	0	19	1	0	0	20	0	0	0	0	0	0	0	34	0	0	0	34	1	0	0	0	0	1	55
Hourly Total	1	62	2	1	0	66	0	1	1	0	0	2	1	139	1	0	2	141	4	0	0	1	2	5	214
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	0	18	1	0	0	19	0	0	0	0	0	0	1	28	0	0	0	29	2	0	0	0	0	2	50
11:15 AM	0	13	1	0	0	14	0	0	0	0	0	0	1	28	0	0	0	29	1	0	0	0	0	1	44
11:30 AM	0	34	4	0	0	38	0	0	0	0	0	0	0	17	0	0	0	17	0	0	0	0	0	0	55
11:45 AM	0	22	4	0	0	26	0	0	0	0	0	0	1	41	0	0	0	42	2	0	1	0	0	3	71
Hourly Total	0	87	10	0	0	97	0	0	0	0	0	0	3	114	0	0	0	117	5	0	1	0	0	6	220
12:00 PM	0	23	3	0	0	26	0	0	0	0	0	0	0	23	0	0	0	23	3	0	0	0	0	3	52
12:15 PM	0	31	0	0	0	31	0	0	0	0	0	0	1	25	0	0	0	26	0	0	0	0	0	0	57
12:30 PM	0	20	2	0	0	22	0	0	0	0	0	0	0	29	0	0	0	29	1	0	0	0	0	1	52
12:45 PM	0	35	0	0	0	35	0	0	0	0	0	0	1	14	0	0	0	15	0	0	0	0	0	0	50
Hourly Total	0	109	5	0	0	114	0	0	0	0	0	0	2	91	0	0	0	93	4	0	0	0	0	4	211
01:00 PM	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	63	0	0	0	63	1	0	0	0	0	1	64
04:15 PM	0	108	5	0	0	113	0	0	0	0	0	0	0	12	0	0	0	12	1	0	0	0	0	1	126
04:30 PM	0	13	4	0	0	17	0	0	0	0	0	0	0	95	0	0	0	95	0	0	0	0	0	0	112
04:45 PM	0	69	10	0	0	79	0	0	0	0	0	0	0	45	0	0	0	45	0	0	0	0	0	0	124
Hourly Total	0	190	19	0	0	209	0	0	0	0	0	0	0	215	0	0	0	215	2	0	0	0	0	2	426
05:00 PM	0	37	3	0	1	40	0	0	0	0	0	0	0	97	0	0	0	97	0	0	0	0	0	0	137

05:15 PM	0	60	4	0	2	64	0	0	0	0	0	0	1	16	0	0	0	17	3	0	0	0	0	3	84
05:30 PM	0	30	3	0	0	33	0	0	0	0	0	0	0	20	0	0	0	20	1	0	2	0	0	3	56
05:45 PM	0	31	0	0	0	31	0	0	0	0	0	0	0	16	0	0	0	16	3	0	1	0	0	4	51
Hourly Total	0	158	10	0	3	168	0	0	0	0	0	0	1	149	0	0	0	150	7	0	3	0	0	10	328
06:00 PM	0	60	2	0	0	62	0	0	0	0	0	0	0	19	0	0	0	19	2	0	0	0	0	2	83
06:15 PM	0	41	6	0	0	47	0	0	0	0	0	0	0	19	0	0	0	19	1	0	0	0	0	1	67
06:30 PM	0	24	3	0	0	27	0	0	0	0	0	0	0	25	0	0	0	25	1	0	0	0	0	1	53
06:45 PM	0	46	6	0	0	52	0	0	0	0	0	0	0	15	0	0	0	15	0	0	0	0	0	0	67
Hourly Total	0	171	17	0	0	188	0	0	0	0	0	0	0	78	0	0	0	78	4	0	0	0	0	4	270
07:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	1	817	67	1	3	886	0	1	1	0	0	2	7	1002	1	0	2	1010	28	0	4	1	2	33	1931
Approach \%	0.1	92.2	7.6	0.1	-	-	0.0	50.0	50.0	0.0	-	-	0.7	99.2	0.1	0.0	-	-	84.8	0.0	12.1	3.0	-	-	-
Total \%	0.1	42.3	3.5	0.1	-	45.9	0.0	0.1	0.1	0.0	-	0.1	0.4	51.9	0.1	0.0	-	52.3	1.5	0.0	0.2	0.1	-	1.7	-
Lights	1	550	47	1	-	599	0	1	1	0	-	2	7	640	1	0	-	648	20	0	4	1	-	25	1274
\% Lights	100.0	67.3	70.1	100.0	-	67.6	-	100.0	100.0	-	-	100.0	100.0	63.9	100.0	-	-	64.2	71.4	-	100.0	100.0	-	75.8	66.0
Mediums	0	106	10	0	-	116	0	0	0	0	-	0	0	101	0	0	-	101	2	0	0	0	-	2	219
\% Mediums	0.0	13.0	14.9	0.0	-	13.1	-	0.0	0.0	-	$-$	0.0	0.0	10.1	0.0	-	-	10.0	7.1	-	0.0	0.0	-	6.1	11.3
Articulated Trucks	0	135	6	0	-	141	0	0	0	0	-	0	0	261	0	0	-	261	6	0	0	0	-	6	408
\% Articulated Trucks	0.0	16.5	9.0	0.0	-	15.9	-	0.0	0.0	-	-	0.0	0.0	26.0	0.0	-	-	25.8	21.4	-	0.0	0.0	-	18.2	21.1
Bicycles on Road	0	26	4	0	-	30	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	30
$\begin{gathered} \text { \% Bicycles on } \\ \text { Road } \end{gathered}$	0.0	3.2	6.0	0.0	-	3.4	-	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	-	0.0	0.0	-	0.0	1.6
Pedestrians	-	-	-	-	3	-	-	-	-	-	0	-	-	-	-	-	2	-	-	-	-	-	2	-	-
\% Pedestrians	-	-	-	-	100.0	-	-	-	-	-	-	-	-	-	-	-	100.0	-	-	-	-	-	100.0	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#3 Site Code: 10
Start Date: 2014/09/15
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Wonowon Esso \#3 Site Code: 10

2014/09/15
250-819-2527 paul@peaktraffic.ca
Page No: 4

Turning Movement Peak Hour Data (07:00 AM)

Start Time	Alaska Hwy 97 Southbound						Wonowon Lodge Access (closed) Westbound						Alaska Hwy 97 Northbound						Frontage Rd, Business, Equestrian Ctr. access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { Tpp. } \\ & \text { Tot } \end{aligned}$	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { App. } \\ & \text { Total } \end{aligned}$	
07:00 AM	1	13	0	1	0	15	0	1	1	0	0	2	0	35	1	0	2	36	2	0	0	1	2	3	56
07:15 AM	0	17	1	0	0	18	0	0	0	0	0	0	0	30	0	0	0	30	1	0	0	0	0	1	49
07:30 AM	0	13	0	0	0	13	0	0	0	0	0	0	1	40	0	0	0	41	0	0	0	0	0	0	54
07:45 AM	0	19	1	0	0	20	0	0	0	0	0	0	0	34	0	0	0	34	1	0	0	0	0	1	55
Total	1	62	2	1	0	66	0	1	1	0	0	2	1	139	1	0	2	141	4	0	0	1	2	5	214
Approach \%	1.5	93.9	3.0	1.5	-	-	0.0	50.0	50.0	0.0	-	-	0.7	98.6	0.7	0.0	-	-	80.0	0.0	0.0	20.0	-	-	-
Total \%	0.5	29.0	0.9	0.5	-	30.8	0.0	0.5	0.5	0.0	-	0.9	0.5	65.0	0.5	0.0	-	65.9	1.9	0.0	0.0	0.5	-	2.3	-
PHF	0.250	0.816	0.500	0.250	-	0.825	0.000	0.250	0.250	0.000	-	0.250	0.250	0.869	0.250	0.000	-	0.860	0.500	0.000	0.000	0.250	-	0.417	0.955
Lights	1	38	2	1	-	42	0	1	1	0	-	2	1	89	1	0	-	91	2	0	0	1	-	3	138
\% Lights	100.0	61.3	100.0	100.0	-	63.6	-	100.0	100.0	-	-	100.0	100.0	64.0	100.0	-	-	64.5	50.0	-	-	100.0	-	60.0	64.5
Mediums	0	7	0	0	-	7	0	0	0	0	-	0	0	16	0	0	-	16	0	0	0	0	-	0	23
\% Mediums	0.0	11.3	0.0	0.0	-	10.6	-	0.0	0.0	-	-	0.0	0.0	11.5	0.0	-	-	11.3	0.0	-	-	0.0	-	0.0	10.7
Articulated Trucks	0	17	0	0	-	17	0	0	0	0	-	0	0	34	0	0	-	34	2	0	0	0	-	2	53
$\begin{aligned} & \hline \text { \% Articulated } \\ & \text { Trucks } \\ & \hline \end{aligned}$	0.0	27.4	0.0	0.0	-	25.8	-	0.0	0.0	-	-	0.0	0.0	24.5	0.0	-	-	24.1	50.0	-	-	0.0	-	40.0	24.8
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
\% Bicycles on Road	0.0	0.0	0.0	0.0	-	0.0	-	0.0	0.0	-	-	0.0	0.0	0.0	0.0	-	-	0.0	0.0	-	.	0.0	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	2	-	-	-	-	-	2	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100.0	-	-	-	-	-	100.0	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#3 Site Code: 10
Start Date: 2014/09/15
Page No: 5

Turning Movement Peak Hour Data Plot (07:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Wonowon Esso \#3 Site Code: 10
Star Date: 2014/09/15
250-819-2527 paul@peaktraffic.ca
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Alaska Hwy 97 Southbound						Wonowon Lodge Access (closed) Westbound						Alaska Hwy 97 Northbound						Frontage Rd, Business, Equestrian Ctr. access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { Tpp. } \\ & \text { Tol } \end{aligned}$	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { Tpp. } \\ & \text { Tol } \end{aligned}$	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { App. } \\ & \text { Total } \\ & \hline \end{aligned}$	
11:00 AM	0	18	1	0	0	19	0	0	0	0	0	0	1	28	0	0	0	29	2	0	0	0	0	2	50
11:15 AM	0	13	1	0	0	14	0	0	0	0	0	0	1	28	0	0	0	29	1	0	0	0	0	1	44
11:30 AM	0	34	4	0	0	38	0	0	0	0	0	0	0	17	0	0	0	17	0	0	0	0	0	0	55
11:45 AM	0	22	4	0	0	26	0	0	0	0	0	0	1	41	0	0	0	42	2	0	1	0	0	3	71
Total	0	87	10	0	0	97	0	0	0	0	0	0	3	114	0	0	0	117	5	0	1	0	0	6	220
Approach \%	0.0	89.7	10.3	0.0	-	-	NaN	NaN	NaN	NaN	-	-	2.6	97.4	0.0	0.0	-	-	83.3	0.0	16.7	0.0	-	-	-
Total \%	0.0	39.5	4.5	0.0	-	44.1	0.0	0.0	0.0	0.0	-	0.0	1.4	51.8	0.0	0.0	-	53.2	2.3	0.0	0.5	0.0	-	2.7	-
PHF	0.000	0.640	0.625	0.000	-	0.638	0.000	0.000	0.000	0.000	-	0.000	0.750	0.695	0.000	0.000	-	0.696	0.625	0.000	0.250	0.000	-	0.500	0.775
Lights	0	37	4	0	-	41	0	0	0	0	-	0	3	78	0	0	-	81	4	0	1	0	-	5	127
\% Lights	-	42.5	40.0	-	-	42.3	-	-	-	-	-	-	100.0	68.4	-	-	-	69.2	80.0	-	100.0	-	-	83.3	57.7
Mediums	0	23	2	0	-	25	0	0	0	0	-	0	0	7	0	0	-	7	0	0	0	0	$-$	0	32
\% Mediums	-	26.4	20.0	-	-	25.8	-	-	-	-	-	-	0.0	6.1	-	-	-	6.0	0.0	-	0.0	-	-	0.0	14.5
Articulated Trucks	0	1	0	0	-	1	0	0	0	0	-	0	0	29	0	0	-	29	1	0	0	0	-	1	31
$\begin{aligned} & \text { \% Articulated } \\ & \hline \text { Trucks } \\ & \hline \end{aligned}$	-	1.1	0.0	-	-	1.0	-	-	-	-	-	-	0.0	25.4	-	.	-	24.8	20.0	-	0.0	-	-	16.7	14.1
Bicycles on Road	0	26	4	0	-	30	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	30
\% Bicycles on Road	-	29.9	40.0	-	-	30.9	-	-	-	-	-	-	0.0	0.0	-	-	-	0.0	0.0	-	0.0	-	-	0.0	13.6
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	$-$	-	-	0	-	-
\% Pedestrians	-	-	-	-	$-$	-	-	-	-	-	$-$	-	-	-	-	-	-	-	-	-	-	-	$-$	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#3 Site Code: 10
Start Date: 2014/09/15
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Wonowon Esso \#3 Site Code: 10
Star Na: 2014/09/15
250-819-2527 paul@peaktraffic.ca
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound						Wonowon Lodge Access (closed) Westbound						Alaska Hwy 97 Northbound						Frontage Rd, Business, Equestrian Ctr. access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	$\begin{aligned} & \text { App. } \\ & \text { Total } \\ & \hline \end{aligned}$	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	
12:00 PM	0	23	3	0	0	26	0	0	0	0	0	0	0	23	0	0		23	3	0	0	0	0	3	52
12:15 PM	0	31	0	0	0	31	0	0	0	0	0	0	1	25	0	0	0	26	0	0	0	0	0	0	57
12:30 PM	0	20	2	0	0	22	0	0	0	0	0	0	0	29	0	0	0	29	1	0	0	0	0	1	52
12:45 PM	0	35	0	0	0	35	0	0	0	0	0	0	1	14	0	0	0	15	0	0	0	0	0	0	50
Total	0	109	5	0	0	114	0	0	0	0	0	0	2	91	0	0	0	93	4	0	0	0	0	4	211
Approach \%	0.0	95.6	4.4	0.0	-	-	NaN	NaN	NaN	NaN	-	-	2.2	97.8	0.0	0.0	-	-	100.0	0.0	0.0	0.0	-	-	-
Total \%	0.0	51.7	2.4	0.0	-	54.0	0.0	0.0	0.0	0.0	-	0.0	0.9	43.1	0.0	0.0	-	44.1	1.9	0.0	0.0	0.0	-	1.9	-
PHF	0.000	0.779	0.417	0.000	-	0.814	0.000	0.000	0.000	0.000	-	0.000	0.500	0.784	0.000	0.000	-	0.802	0.333	0.000	0.000	0.000	-	0.333	0.925
Lights	0	73	1	0	-	74	0	0	0	0	-	0	2	62	0	0	-	64	1	0	0	0	-	1	139
\% Lights	-	67.0	20.0	-	-	64.9	-	-	-	-	-	-	100.0	68.1	-	-	-	68.8	25.0	-	-	-	-	25.0	65.9
Mediums	0	5	0	0	-	5	0	0	0	0	-	0	0	5	0	0	-	5	1	0	0	0	-	1	11
\% Mediums	-	4.6	0.0	-	-	4.4	-	-	-	-	-	-	0.0	5.5	-	-	-	5.4	25.0	-	-	-	-	25.0	5.2
Articulated Trucks	0	31	4	0	-	35	0	0	0	0	-	0	0	24	0	0	-	24	2	0	0	0	-	2	61
\% Articulated	-	28.4	80.0	.	-	30.7	-	-	-	-	-	-	0.0	26.4	-	.	-	25.8	50.0	-	-	.	-	50.0	28.9
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
\% Bicycles on Road	-	0.0	0.0	-	-	0.0	-	-	-	.	-	-	0.0	0.0	-	.	-	0.0	0.0	.	.	.	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	$-$	-	-	-	-	0	-	-	-	-	\checkmark	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#3 Site Code: 10
Start Date: 2014/09/15
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Wonowon Esso \#3 Site Code: 10
ate: 2014/09/15
Page No: 10

Turning Movement Peak Hour Data (04:15 PM)

Start Time	Alaska Hwy 97 Southbound						Wonowon Lodge Access (closed) Westbound						Alaska Hwy 97 Northbound						Frontage Rd, Business, Equestrian Ctr. access Eastbound						Int. Total
	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	Left	Thru	Right	U-Turn	Peds	App. Total	
04:15 PM	0	108	5	0	0	113	0	0	0	0	0	0	0	12	0	0	0	12	1	0	0	0	0	1	126
04:30 PM	0	13	4	0	0	17	0	0	0	0	0	0	0	95	0	0	0	95	0	0	0	0	0	0	112
04:45 PM	0	69	10	0	0	79	0	0	0	0	0	0	0	45	0	0	0	45	0	0	0	0	0	0	124
05:00 PM	0	37	3	0	1	40	0	0	0	0	0	0	0	97	0	0	0	97	0	0	0	0	0	0	137
Total	0	227	22	0	1	249	0	0	0	0	0	0	0	249	0	0	0	249	1	0	0	0	0	1	499
Approach \%	0.0	91.2	8.8	0.0	-	-	NaN	NaN	NaN	NaN	-	-	0.0	100.0	0.0	0.0	-	-	100.0	0.0	0.0	0.0	-	-	-
Total \%	0.0	45.5	4.4	0.0	-	49.9	0.0	0.0	0.0	0.0	-	0.0	0.0	49.9	0.0	0.0	-	49.9	0.2	0.0	0.0	0.0	-	0.2	-
PHF	0.000	0.525	0.550	0.000	-	0.551	0.000	0.000	0.000	0.000	-	0.000	0.000	0.642	0.000	0.000	-	0.642	0.250	0.000	0.000	0.000	-	0.250	0.911
Lights	0	140	16	0	-	156	0	0	0	0	-	0	0	139	0	0	-	139	0	0	0	0	-	0	295
\% Lights	-	61.7	72.7	-	-	62.7	-	-	-	-	-	-	-	55.8	-	-	-	55.8	0.0	-	-	-	-	0.0	59.1
Mediums	0	39	6	0	-	45	0	0	0	0	-	0	0	21	0	0	-	21	0	0	0	0	-	0	66
\% Mediums	-	17.2	27.3	-	-	18.1	-	-	-	-	-	-	-	8.4	-	-	-	8.4	0.0	-	-	-	-	0.0	13.2
Articulated Trucks	0	48	0	0	-	48	0	0	0	0	-	0	0	89	0	0	-	89	1	0	0	0	-	1	138
$\begin{aligned} & \text { \% Articulated } \\ & \begin{array}{c} \text { Trucks } \end{array} \\ & \hline \end{aligned}$	-	21.1	0.0	-	-	19.3	-	.	-	-	-	-	-	35.7	-	-	-	35.7	100.0	.	.	-	-	100.0	27.7
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
\% Bicycles on Road	.	0.0	0.0	-	-	0.0	-	-	-	-	-	.	.	0.0	.	.	-	0.0	0.0	.	.	.	-	0.0	0.0
Pedestrians	-	-	-	-	1	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	100.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#3 Site Code: 10
Start Date: 2014/09/15
Page No: 11

Turning Movement Peak Hour Data Plot (04:15 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#3 Site Code: 10
Start Date: 2014/09/15
Page No: 12

Appendix B: MoTI Permanent Count Station Data

BC Ministry of Transportation and Infrastructure

Annual Day of Week Summary for 2013

$\begin{array}{ll}\text { Site Names: } & \text { Inga Lake P-44-1NS - NY } \\ \text { County: } & \text { N/A }\end{array}$
County: N/A
Funct. Class:
Seasonal Factro Group: Seasonal Daily Factor Group: Seasonal
Axle Factor Group:
Location: Route 97, 2.4 km south of Inga Lake Compressor Road, south of WonorGrowth Factor Group:

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	MADT	MAWDT	MAWET	\% POS
Jan	1,640	2,352	2,141	2,463	2,473	2,514	1,905	2,212	2,357	1,772	51
Feb	1,709	2,391	2,687	2,796	2,706	2,623	1,963	2,410	2,645	1,836	50
Mar	1,749	2,724	2,867	2,890	2,779	2,724	2,118	2,550	2,815	1,933	50
Apr	1,223	1,510	1,740	1,818	1,682	1,539	1,229	1,534	1,687	1,226	51
May	1,298	1,664	1,703	1,820	1,754	1,773	1,411	1,632	1,735	1,354	53
Jun	1,767	2,379	2,434	2,442	2,441	2,401	1,870	2,248	2,424	1,819	53
Jul	2,224	2,850	3,264	3,392	3,485	3,238	2,503	2,994	3,248	2,363	51
Aug	2,633	3,251	3,580	3,550	3,486	3,531	2,823	3,265	3,467	2,728	50
Sep	2,700	3,388	3,682	3,913	3,868	3,837	3,049	3,491	3,713	2,874	49
Oct	2,410	3,131	3,514	3,661	3,640	3,753	3,102	3,316	3,486	2,756	49
Nov	2,355	3,244	3,532	3,776	3,685	3,507	2,789	3,270	3,559	2,572	50
Dec	2,261	2,992	3,109	3,042	3,027	3,309	2,831	2,939	3,042	2,546	50

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	AADT	AAWDT	AAWET	\% POS
2013	1,997	2,656	2,854	2,964	2,919	2,896	2,299	2,655	2,848	2,148	50
2012	1,657	2,177	2,332	2,454	2,382	2,300	1,824	2,161	2,336	1,741	50
2011											
2010											
2009	1,345	1,717	1,871	1,976	1,882	1,876	1,442	1,730	1,861	1,394	52
2008	1,525	1,902	2,052	2,159	2,127	2,105	1,664	1,933	2,060	1,595	51
2007											
2006											
2005											
2004											

BC Ministry of Transportation and Infrastructure

Annual Day of Week Summary for 2013

Site Names:	Sikanni P-44-2NS - NY	Seasonal Factro Group: Seasonal
County:	N/A	Daily Factor Group:

Location: Route 97, 8.0 km north of the Sikanni River Bridge, north of Fort St. JolGrowth Factor Group:

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	MADT	MAWDT	MAWET	\% POS
Jan	703	691	688	762	795	826	756	746	734	729	53
Feb	787	907	979	1,044	995	1,000	881	942	981	834	51
Mar	836	888	975	1,049	1,058	997	922	961	993	879	50
Apr	686	725	799	809	745	732	665	737	769	675	53
May	663	789	763	850	869	853	685	782	817	674	56
Jun	1,031	1,092	1,181	1,193	1,243	1,170	1,027	1,134	1,177	1,029	55
Jul	1,110	1,193	1,301	1,305	1,300	1,273	1,184	1,238	1,275	1,147	53
Aug	1,238	1,323	1,326	1,287	1,360	1,408	1,240	1,312	1,324	1,239	50
Sep	1,274	1,348	1,379	1,442	1,476	1,505	1,332	1,394	1,411	1,303	48
Oct	924	1,051	1,145	1,099	1,167	1,188	1,014	1,084	1,115	969	48
Nov	794	904	948	1,035	1,012	958	854	929	975	824	50
Dec	701	792	847	804	789	858	891	812	808	796	49

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	AADT	AAWDT	AAWET	\% POS
2013	895	975	1,028	1,057	1,067	1,064	954	1,006	1,032	925	51
2012	804	915	983	1,032	1,024	996	886	949	989	845	51
2011	828	882	982	1,024	1,009	988	893	944	974	860	52
2010	867	926	994	1,058	1,049	1,008	911	973	1,007	889	52
2009	770	839	916	949	927	935	821	880	908	795	52
2008	794	851	929	972	969	967	870	907	930	832	52
2007											
2006											
2005											
2004											

Appendix C: January 2015 Traffic Volume Count Data

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 151 Beatton River Airport Road winter
Site Code: 7
Start Date: 2015/01/23
Page No: 1

Turning Movement Data

Start Time	Alaska Hwy 97 Southbound				Urn	OVer	Data Airport Rd d		Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
05:00 AM	0	5	0	5	0	0	0	0	13	2	0	15	20
05:15 AM	0	1	0	1	2	1	0	3	20	1	0	21	25
05:30 AM	0	4	0	4	2	2	0	4	18	2	0	20	28
05:45 AM	0	6	0	6	1	0	0	1	28	2	0	30	37
Hourly Total	0	16	0	16	5	3	0	8	79	7	0	86	110
06:00 AM	0	8	0	8	0	2	0	2	31	4	0	35	45
06:15 AM	1	5	0	6	0	2	0	2	25	4	0	29	37
06:30 AM	1	6	0	7	1	2	0	3	33	5	0	38	48
06:45 AM	0	6	0	6	2	1	0	3	33	11	0	44	53
Hourly Total	2	25	0	27	3	7	0	10	122	24	0	146	183
07:00 AM	0	8	0	8	4	0	0	4	21	5	0	26	38
07:15 AM	0	11	0	11	1	0	0	1	43	8	0	51	63
07:30 AM	0	5	0	5	0	0	0	0	36	16	0	52	57
07:45 AM	0	14	0	14	5	0	0	5	59	12	0	71	90
Hourly Total	0	38	0	38	10	0	0	10	159	41	0	200	248
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	2	17	0	19	7	3	0	10	23	4	0	27	56
11:15 AM	1	16	0	17	10	3	0	13	23	8	0	31	61
11:30 AM	2	21	0	23	7	2	0	9	25	4	0	29	61
11:45 AM	4	15	0	19	9	2	0	11	30	2	0	32	62
Hourly Total	9	69	0	78	33	10	0	43	101	18	0	119	240
12:00 PM	1	29	0	30	13	2	0	15	18	5	0	23	68
12:15 PM	0	11	0	11	5	0	0	5	33	5	0	38	54
12:30 PM	3	40	0	43	9	2	0	11	22	4	0	26	80
12:45 PM	0	30	0	30	3	0	0	3	21	3	0	24	57
Hourly Total	4	110	0	114	30	4	0	34	94	17	0	111	259
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
04:00 PM	3	47	0	50	11	0	0	11	18	1	0	19	80
04:15 PM	1	39	0	40	15	0	0	15	26	3	0	29	84
04:30 PM	1	34	0	35	9	0	0	9	13	3	0	16	60
04:45 PM	2	48	0	50	5	0	0	5	9	6	0	15	70
Hourly Total	7	168	0	175	40	0	0	40	66	13	0	79	294
05:00 PM	2	37	0	39	5	1	0	6	17	1	0	18	63
05:15 PM	2	50	0	52	6	0	0	6	17	6	0	23	81
05:30 PM	0	48	0	48	7	0	0	7	15	5	0	20	75
05:45 PM	1	42	0	43	8	2	0	10	21	6	0	27	80

Hourly Total	5	177	0	182	26	3	0	29	70	18	0	88	299
06:00 PM	0	49	0	49	5	1	0	6	9	3	0	12	67
06:15 PM	2	56	0	58	7	1	0	8	15	5	0	20	86
06:30 PM	0	41	0	41	5	1	0	6	16	4	0	20	67
06:45 PM	0	39	0	39	12	0	0	12	13	5	0	18	69
Hourly Total	2	185	0	187	29	3	0	32	53	17	0	70	289
Grand Total	29	788	0	817	176	30	0	206	744	155	0	899	1922
Approach \%	3.5	96.5	0.0	-	85.4	14.6	0.0	-	82.8	17.2	0.0	-	-
Total \%	1.5	41.0	0.0	42.5	9.2	1.6	0.0	10.7	38.7	8.1	0.0	46.8	-
Lights	12	479	0	491	92	9	0	101	451	95	0	546	1138
\% Lights	41.4	60.8	-	60.1	52.3	30.0	-	49.0	60.6	61.3	-	60.7	59.2
Mediums	1	102	0	103	16	3	0	19	98	9	0	107	229
\% Mediums	3.4	12.9	-	12.6	9.1	10.0	-	9.2	13.2	5.8	-	11.9	11.9
Articulated Trucks	16	207	0	223	68	18	0	86	195	51	0	246	555
\% Articulated Trucks	55.2	26.3	-	27.3	38.6	60.0	-	41.7	26.2	32.9	-	27.4	28.9

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 151 Beatton River Airport Road, winter
Site Code: 7
Start Date: 2015/01/23
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: 151 Beatton River Airport Road, winter
Site Code: 7
Start Date: 2015/01/23
Page No: 4

Turning Movement Peak Hour Data (07:00 AM)

Start Time	Turning Movement Peak Hour Data (07:00 AM)												
	Alaska Hwy 97 Southbound				151 Beatton River Airport Rd Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
07:00 AM	0	8	0	8	4	0	0	4	21	5	0	26	38
07:15 AM	0	11	0	11	1	0	0	1	43	8	0	51	63
07:30 AM	0	5	0	5	0	0	0	0	36	16	0	52	57
07:45 AM	0	14	0	14	5	0	0	5	59	12	0	71	90
Total	0	38	0	38	10	0	0	10	159	41	0	200	248
Approach \%	0.0	100.0	0.0	-	100.0	0.0	0.0	-	79.5	20.5	0.0	-	-
Total \%	0.0	15.3	0.0	15.3	4.0	0.0	0.0	4.0	64.1	16.5	0.0	80.6	-
PHF	0.000	0.679	0.000	0.679	0.500	0.000	0.000	0.500	0.674	0.641	0.000	0.704	0.689
Lights	0	20	0	20	4	0	0	4	106	26	0	132	156
\% Lights	-	52.6	-	52.6	40.0	-	-	40.0	66.7	63.4	-	66.0	62.9
Mediums	0	4	0	4	1	0	0	1	26	4	0	30	35
\% Mediums	-	10.5	-	10.5	10.0	-	-	10.0	16.4	9.8	-	15.0	14.1
Articulated Trucks	0	14	0	14	5	0	0	5	27	11	0	38	57
\% Articulated Trucks	-	36.8	-	36.8	50.0	-	-	50.0	17.0	26.8	-	19.0	23.0

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 151 Beatton River Airport Road, winter
Site Code: 7
Start Date: 2015/01/23
Page No: 5

Turning Movement Peak Hour Data Plot (07:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: 151 Beatton River Airport Road, winter
Site Code: 7
Start Date: 2015/01/23
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Turning Movement Peak Hour Data (11.00 AM)												
	Alaska Hwy 97 Southbound				151 Beatton River Airport Rd Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
11:00 AM	2	17	0	19	7	3	0	10	23	4	0	27	56
11:15 AM	1	16	0	17	10	3	0	13	23	8	0	31	61
11:30 AM	2	21	0	23	7	2	0	9	25	4	0	29	61
11:45 AM	4	15	0	19	9	2	0	11	30	2	0	32	62
Total	9	69	0	78	33	10	0	43	101	18	0	119	240
Approach \%	11.5	88.5	0.0	-	76.7	23.3	0.0	-	84.9	15.1	0.0	-	-
Total \%	3.8	28.8	0.0	32.5	13.8	4.2	0.0	17.9	42.1	7.5	0.0	49.6	-
PHF	0.563	0.821	0.000	0.848	0.825	0.833	0.000	0.827	0.842	0.563	0.000	0.930	0.968
Lights	1	37	0	38	15	1	0	16	46	5	0	51	105
\% Lights	11.1	53.6	-	48.7	45.5	10.0	-	37.2	45.5	27.8	-	42.9	43.8
Mediums	1	7	0	8	5	0	0	5	9	2	0	11	24
\% Mediums	11.1	10.1	-	10.3	15.2	0.0	-	11.6	8.9	11.1	-	9.2	10.0
Articulated Trucks	7	25	0	32	13	9	0	22	46	11	0	57	111
\% Articulated Trucks	77.8	36.2	-	41.0	39.4	90.0	-	51.2	45.5	61.1	-	47.9	46.3

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 151 Beatton River Airport Road, winter
Site Code: 7
Start Date: 2015/01/23
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: 151 Beatton River Airport Road, winter
Site Code: 7
Start Date: 2015/01/23
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound				151 Beatton River Airport Rd Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
12:00 PM	1	29	0	30	13	2	0	15	18	5	0	23	68
12:15 PM	0	11	0	11	5	0	0	5	33	5	0	38	54
12:30 PM	3	40	0	43	9	2	0	11	22	4	0	26	80
12:45 PM	0	30	0	30	3	0	0	3	21	3	0	24	57
Total	4	110	0	114	30	4	0	34	94	17	0	111	259
Approach \%	3.5	96.5	0.0	-	88.2	11.8	0.0	-	84.7	15.3	0.0	-	-
Total \%	1.5	42.5	0.0	44.0	11.6	1.5	0.0	13.1	36.3	6.6	0.0	42.9	-
PHF	0.333	0.688	0.000	0.663	0.577	0.500	0.000	0.567	0.712	0.850	0.000	0.730	0.809
Lights	1	55	0	56	9	1	0	10	42	10	0	52	118
\% Lights	25.0	50.0	-	49.1	30.0	25.0	-	29.4	44.7	58.8	-	46.8	45.6
Mediums	0	12	0	12	3	2	0	5	14	2	0	16	33
\% Mediums	0.0	10.9	-	10.5	10.0	50.0	-	14.7	14.9	11.8	-	14.4	12.7
Articulated Trucks	3	43	0	46	18	1	0	19	38	5	0	43	108
\% Articulated Trucks	75.0	39.1	-	40.4	60.0	25.0	-	55.9	40.4	29.4	-	38.7	41.7

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 151 Beatton River Airport Road, winter
Site Code: 7
Start Date: 2015/01/23
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: 151 Beatton River Airport Road, winter
Site Code: 7
Start Date: 2015/01/23
Page No: 10

Turning Movement Peak Hour Data (05:30 PM)

Start Time	Alaska Hwy 97 Southbound				151 Beatton River Airport Rd Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
05:30 PM	0	48	0	48	7	0	0	7	15	5	0	20	75
05:45 PM	1	42	0	43	8	2	0	10	21	6	0	27	80
06:00 PM	0	49	0	49	5	1	0	6	9	3	0	12	67
06:15 PM	2	56	0	58	7	1	0	8	15	5	0	20	86
Total	3	195	0	198	27	4	0	31	60	19	0	79	308
Approach \%	1.5	98.5	0.0	-	87.1	12.9	0.0	-	75.9	24.1	0.0	-	-
Total \%	1.0	63.3	0.0	64.3	8.8	1.3	0.0	10.1	19.5	6.2	0.0	25.6	-
PHF	0.375	0.871	0.000	0.853	0.844	0.500	0.000	0.775	0.714	0.792	0.000	0.731	0.895
Lights	1	144	0	145	17	3	0	20	47	10	0	57	222
\% Lights	33.3	73.8	-	73.2	63.0	75.0	-	64.5	78.3	52.6	-	72.2	72.1
Mediums	0	21	0	21	2	1	0	3	5	0	0	5	29
\% Mediums	0.0	10.8	-	10.6	7.4	25.0	-	9.7	8.3	0.0	-	6.3	9.4
Articulated Trucks	2	30	0	32	8	0	0	8	8	9	0	17	57
\% Articulated Trucks	66.7	15.4	-	16.2	29.6	0.0	-	25.8	13.3	47.4	-	21.5	18.5

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 151 Beatton River Airport Road, winter
Site Code: 7
Start Date: 2015/01/23
Page No: 11

Turning Movement Peak Hour Data Plot (05:30 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 256B Becker Hill, winter Site Code: 5
Start Date: 2015/01/28
Page No: 1

Turning Movement Data

Start Time	Alaska Hwy 97 Southbound				Turning Movement Data 256B Becker Hill Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
05:00 AM	0	2	0	2	0	0	0	0	10	0	0	10	12
05:15 AM	0	2	0	2	0	0	0	0	18	0	0	18	20
05:30 AM	0	6	0	6	0	1	0	1	15	1	0	16	23
05:45 AM	0	5	0	5	0	1	0	1	23	0	0	23	29
Hourly Total	0	15	0	15	0	2	0	2	66	1	0	67	84
06:00 AM	1	14	0	15	1	2	0	3	29	0	0	29	47
06:15 AM	0	13	0	13	1	3	0	4	44	0	0	44	61
06:30 AM	0	9	0	9	1	0	0	1	30	0	0	30	40
06:45 AM	1	17	0	18	0	0	0	0	28	1	0	29	47
Hourly Total	2	53	0	55	3	5	0	8	131	1	0	132	195
07:00 AM	0	12	0	12	1	1	0	2	42	0	0	42	56
07:15 AM	0	18	0	18	0	3	0	3	57	0	0	57	78
07:30 AM	0	13	0	13	2	1	0	3	76	1	0	77	93
07:45 AM	0	17	0	17	0	1	0	1	54	0	0	54	72
Hourly Total	0	60	0	60	3	6	0	9	229	1	0	230	299
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
11:00 AM	0	20	0	20	0	0	0	0	27	0	0	27	47
11:15 AM	1	18	0	19	0	1	0	1	35	1	0	36	56
11:30 AM	0	19	0	19	0	0	0	0	31	0	0	31	50
11:45 AM	0	33	0	33	0	0	0	0	29	0	0	29	62
Hourly Total	1	90	0	91	0	1	0	1	122	1	0	123	215
12:00 PM	0	35	0	35	0	0	0	0	27	0	0	27	62
12:15 PM	0	20	0	20	0	0	0	0	23	0	0	23	43
12:30 PM	2	33	0	35	1	0	0	1	29	0	0	29	65
12:45 PM	0	27	0	27	1	0	0	1	17	0	0	17	45
Hourly Total	2	115	0	117	2	0	0	2	96	0	0	96	215
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
04:00 PM	0	54	0	54	1	1	0	2	27	3	0	30	86
04:15 PM	0	50	0	50	0	0	0	0	31	0	0	31	81
04:30 PM	2	43	0	45	1	1	0	2	22	0	0	22	69
04:45 PM	1	42	0	43	1	0	0	1	16	2	0	18	62
Hourly Total	3	189	0	192	3	2	0	5	96	5	0	101	298
05:00 PM	0	53	0	53	0	0	0	0	31	0	0	31	84
05:15 PM	1	47	0	48	0	0	0	0	28	1	0	29	77
05:30 PM	1	50	0	51	0	0	0	0	16	0	0	16	67
05:45 PM	6	67	0	73	0	0	0	0	16	5	0	21	94
Hourly Total	8	217	0	225	0	0	0	0	91	6	0	97	322
06:00 PM	0	57	0	57	0	0	0	0	13	0	0	13	70

06:15 PM	3	56	0	59	0	2	0	2	20	1	0	21	82
06:30 PM	4	56	0	60	0	1	0	1	17	1	0	18	79
06:45 PM	1	42	0	43	0	0	0	0	14	1	0	15	58
Hourly Total	8	211	0	219	0	3	0	3	64	3	0	67	289
Grand Total	24	950	0	974	11	19	0	30	895	18	0	913	1917
Approach \%	2.5	97.5	0.0	-	36.7	63.3	0.0	-	98.0	2.0	0.0	-	-
Total \%	1.3	49.6	0.0	50.8	0.6	1.0	0.0	1.6	46.7	0.9	0.0	47.6	-
Lights	21	617	0	638	11	17	0	28	628	16	0	644	1310
\% Lights	87.5	64.9	-	65.5	100.0	89.5	-	93.3	70.2	88.9	-	70.5	68.3
Mediums	1	104	0	105	0	1	0	1	111	2	0	113	219
\% Mediums	4.2	10.9	-	10.8	0.0	5.3	-	3.3	12.4	11.1	-	12.4	11.4
Articulated Trucks	2	229	0	231	0	1	0	1	156	0	0	156	388
\% Articulated Trucks	8.3	24.1	-	23.7	0.0	5.3	-	3.3	17.4	0.0	-	17.1	20.2

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 256B Becker Hill, winter Site Code: 5
Start Date: 2015/01/28
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: 256B Becker Hill, winter Site Code: 5
Start Date: 2015/01/28
250-819-2527 paul@peaktraffic.ca
Page No: 4

Turning Movement Peak Hour Data (07:00 AM)

Start Time	Turning Movement Peak Hour Data (07:00 AM)												
	Alaska Hwy 97 Southbound				256B Becker Hill Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
07:00 AM	0	12	0	12	1	1	0	2	42	0	0	42	56
07:15 AM	0	18	0	18	0	3	0	3	57	0	0	57	78
07:30 AM	0	13	0	13	2	1	0	3	76	1	0	77	93
07:45 AM	0	17	0	17	0	1	0	1	54	0	0	54	72
Total	0	60	0	60	3	6	0	9	229	1	0	230	299
Approach \%	0.0	100.0	0.0	-	33.3	66.7	0.0	-	99.6	0.4	0.0	-	-
Total \%	0.0	20.1	0.0	20.1	1.0	2.0	0.0	3.0	76.6	0.3	0.0	76.9	-
PHF	0.000	0.833	0.000	0.833	0.375	0.500	0.000	0.750	0.753	0.250	0.000	0.747	0.804
Lights	0	35	0	35	3	6	0	9	178	1	0	179	223
\% Lights	-	58.3	-	58.3	100.0	100.0	-	100.0	77.7	100.0	-	77.8	74.6
Mediums	0	4	0	4	0	0	0	0	46	0	0	46	50
\% Mediums	-	6.7	-	6.7	0.0	0.0	-	0.0	20.1	0.0	-	20.0	16.7
Articulated Trucks	0	21	0	21	0	0	0	0	5	0	0	5	26
\% Articulated Trucks	-	35.0	-	35.0	0.0	0.0	-	0.0	2.2	0.0	-	2.2	8.7

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 256B Becker Hill, winter Site Code: 5
Start Date: 2015/01/28
Page No: 5

Turning Movement Peak Hour Data Plot (07:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: 256B Becker Hill, winter Site Code: 5
Start Date: 2015/01/28
250-819-2527 paul@peaktraffic.ca
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Turning Movement Peak Hour Data (11:00 AM)												
	Alaska Hwy 97 Southbound				256B Becker Hill Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
11:00 AM	0	20	0	20	0	0	0	0	27	0	0	27	47
11:15 AM	1	18	0	19	0	1	0	1	35	1	0	36	56
11:30 AM	0	19	0	19	0	0	0	0	31	0	0	31	50
11:45 AM	0	33	0	33	0	0	0	0	29	0	0	29	62
Total	1	90	0	91	0	1	0	1	122	1	0	123	215
Approach \%	1.1	98.9	0.0	-	0.0	100.0	0.0	-	99.2	0.8	0.0	-	-
Total \%	0.5	41.9	0.0	42.3	0.0	0.5	0.0	0.5	56.7	0.5	0.0	57.2	-
PHF	0.250	0.682	0.000	0.689	0.000	0.250	0.000	0.250	0.871	0.250	0.000	0.854	0.867
Lights	0	40	0	40	0	0	0	0	67	1	0	68	108
\% Lights	0.0	44.4	-	44.0	-	0.0	-	0.0	54.9	100.0	-	55.3	50.2
Mediums	1	13	0	14	0	1	0	1	12	0	0	12	27
\% Mediums	100.0	14.4	-	15.4	-	100.0	-	100.0	9.8	0.0	-	9.8	12.6
Articulated Trucks	0	37	0	37	0	0	0	0	43	0	0	43	80
\% Articulated Trucks	0.0	41.1	-	40.7	-	0.0	-	0.0	35.2	0.0	-	35.0	37.2

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 256B Becker Hill, winter Site Code: 5
Start Date: 2015/01/28
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: 256B Becker Hill, winter Site Code: 5
Star Date: 2015/01/28
250-819-2527 paul@peaktraffic.ca
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Turning Movement Peak Hour Data (12:00 PM)												
	Alaska Hwy 97 Southbound				256B Becker Hill Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
12:00 PM	0	35	0	35	0	0	0	0	27	0	0	27	62
12:15 PM	0	20	0	20	0	0	0	0	23	0	0	23	43
12:30 PM	2	33	0	35	1	0	0	1	29	0	0	29	65
12:45 PM	0	27	0	27	1	0	0	1	17	0	0	17	45
Total	2	115	0	117	2	0	0	2	96	0	0	96	215
Approach \%	1.7	98.3	0.0	-	100.0	0.0	0.0	-	100.0	0.0	0.0	-	-
Total \%	0.9	53.5	0.0	54.4	0.9	0.0	0.0	0.9	44.7	0.0	0.0	44.7	-
PHF	0.250	0.821	0.000	0.836	0.500	0.000	0.000	0.500	0.828	0.000	0.000	0.828	0.827
Lights	1	62	0	63	2	0	0	2	57	0	0	57	122
\% Lights	50.0	53.9	-	53.8	100.0	-	-	100.0	59.4	-	-	59.4	56.7
Mediums	0	10	0	10	0	0	0	0	10	0	0	10	20
\% Mediums	0.0	8.7	-	8.5	0.0	-	-	0.0	10.4	-	-	10.4	9.3
Articulated Trucks	1	43	0	44	0	0	0	0	29	0	0	29	73
\% Articulated Trucks	50.0	37.4	-	37.6	0.0	-	-	0.0	30.2	-	-	30.2	34.0

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 256B Becker Hill, winter Site Code: 5
Start Date: 2015/01/28
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: 256B Becker Hill, winter Site Code: 5
Start Date: 2015/01/28
250-819-2527 paul@peaktraffic.ca
Page No: 10

Turning Movement Peak Hour Data (05:45 PM)

Start Time	Turning Movement Peak Hour Data (05:45 PM)												
	Alaska Hwy 97 Southbound				256B Becker Hill Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
05:45 PM	6	67	0	73	0	0	0	0	16	5	0	21	94
06:00 PM	0	57	0	57	0	0	0	0	13	0	0	13	70
06:15 PM	3	56	0	59	0	2	0	2	20	1	0	21	82
06:30 PM	4	56	0	60	0	1	0	1	17	1	0	18	79
Total	13	236	0	249	0	3	0	3	66	7	0	73	325
Approach \%	5.2	94.8	0.0	-	0.0	100.0	0.0	-	90.4	9.6	0.0	-	-
Total \%	4.0	72.6	0.0	76.6	0.0	0.9	0.0	0.9	20.3	2.2	0.0	22.5	-
PHF	0.542	0.881	0.000	0.853	0.000	0.375	0.000	0.375	0.825	0.350	0.000	0.869	0.864
Lights	13	184	0	197	0	3	0	3	52	7	0	59	259
\% Lights	100.0	78.0	-	79.1	-	100.0	-	100.0	78.8	100.0	-	80.8	79.7
Mediums	0	25	0	25	0	0	0	0	4	0	0	4	29
\% Mediums	0.0	10.6	-	10.0	-	0.0	-	0.0	6.1	0.0	-	5.5	8.9
Articulated Trucks	0	27	0	27	0	0	0	0	10	0	0	10	37
\% Articulated Trucks	0.0	11.4	-	10.8	-	0.0	-	0.0	15.2	0.0	-	13.7	11.4

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 256B Becker Hill, winter Site Code: 5
Start Date: 2015/01/28
Page No: 11

Turning Movement Peak Hour Data Plot (05:45 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4
Count Name: Buckinghorse Camp \#1, winter Site Code: 18
Ptart Date: 2015/01/21
250-819-2527 paul@peaktraffic.ca
Page No: 1

Start Time	Turning Movement Data																				
	Alaska Hwy 97 Southbound					Mile 171 Rd Westbound					Alaska Hwy 97 Northbound					Buckinghorse Camp south access Eastbound					Int. Total
	Left	Thru	Right	U-Turn	App. Total	Left	Thru	$\begin{gathered} \text { Westbound } \\ \text { Right } \\ \hline \end{gathered}$	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	$\begin{aligned} & \text { Eastboun } \\ & \text { Right } \\ & \hline \end{aligned}$	U-Turn	App. Total	
05:00 AM	0	1	0	0	1	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	4
05:15 AM	0	4	0	0	4	0	0	0	0	0	0	1	1	0	2	0	0	0	0	0	6
05:30 AM	0	5	0	0	5	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	6
05:45 AM	0	7	0	0	7	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	11
Hourly Total	0	17	0	0	17	0	0	0	0	0	0	9	1	0	10	0	0	0	0	0	27
06:00 AM	0	9	0	0	9	0	0	0	0	0	0	4	0	0	4	0	0	1	0	1	14
06:15 AM	0	9	0	0	9	1	1	0	0	2	0	1	1	0	2	0	0	0	0	0	13
06:30 AM	0	28	0	0	28	1	0	0	0	1	0	8	0	0	8	1	0	0	0	1	38
06:45 AM	0	4	0	0	4	4	0	0	0	4	0	5	0	0	5	0	0	0	0	0	13
Hourly Total	0	50	0	0	50	6	1	0	0	7	0	18	1	0	19	1	0	1	0	2	78
07:00 AM	0	1	0	0	1	1	0	0	0	1	0	9	0	0	9	1	0	0	0	1	12
07:15 AM	0	5	0	0	5	0	0	0	0	0	1	9	0	0	10	0	0	1	0	1	16
07:30 AM	0	4	0	0	4	0	0	0	0	0	0	5	0	0	5	0	0	0	0	0	9
07:45 AM	0	11	0	0	11	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	15
Hourly Total	0	21	0	0	21	1	0	0	0	1	1	27	0	0	28	1	0	1	0	2	52
***BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11:00 AM	0	5	0	0	5	0	0	0	0	0	0	8	0	0	8	0	0	1	0	1	14
11:15 AM	0	7	0	0	7	0	0	0	0	0	0	8	0	0	8	0	0	0	0	0	15
11:30 AM	0	8	0	0	8	0	0	0	0	0	2	7	0	0	9	0	0	0	0	0	17
11:45 AM	0	2	0	0	2	0	0	1	0	1	3	4	0	0	7	0	0	1	0	1	11
Hourly Total	0	22	0	0	22	0	0	1	0	1	5	27	0	0	32	0	0	2	0	2	57
12:00 PM	0	8	0	0	8	0	0	0	0	0	3	11	0	0	14	0	0	2	0	2	24
12:15 PM	0	4	0	0	4	0	0	0	0	0	0	10	0	0	10	0	0	3	0	3	17
12:30 PM	0	11	0	0	11	0	0	0	0	0	2	7	0	0	9	0	0	1	0	1	21
12:45 PM	0	6	0	0	6	0	0	0	0	0	2	6	0	0	8	0	0	0	0	0	14
Hourly Total	0	29	0	0	29	0	0	0	0	0	7	34	0	0	41	0	0	6	0	6	76
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
04:00 PM	0	6	0	0	6	0	0	0	0	0	3	4	0	0	7	0	0	2	0	2	15
04:15 PM	0	3	0	0	3	0	0	0	0	0	0	10	0	0	10	0	0	1	0	1	14
04:30 PM	0	4	0	0	4	0	0	0	0	0	0	5	0	0	5	0	0	0	0	0	9
04:45 PM	0	1	0	0	1	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	5
Hourly Total	0	14	0	0	14	0	0	0	0	0	3	23	0	0	26	0	0	3	0	3	43
05:00 PM	0	10	0	0	10	1	0	0	0	1	1	8	0	0	9	0	0	2	0	2	22
05:15 PM	0	3	0	0	3	0	0	0	0	0	3	10	1	0	14	0	0	1	0	1	18
05:30 PM	0	12	0	0	12	0	0	0	0	0	0	11	2	0	13	1	1	0	0	2	27
05:45 PM	0	9	0	0	9	0	0	0	0	0	1	14	1	0	16	1	0	0	0	1	26
Hourly Total	0	34	0	0	34	1	0	0	0	1	5	43	4	0	52	2	1	3	0	6	93
06:00 PM	1	10	0	0	11	0	0	0	0	0	2	14	0	0	16	0	0	0	0	0	27

06:15 PM	1	5	0	0	6	0	0	0	0	0	0	10	1	0	11	0	1	0	0	1	18
06:30 PM	2	8	0	0	10	0	0	0	0	0	0	6	0	0	6	0	0	1	0	1	17
06:45 PM	0	3	0	0	3	0	0	0	0	0	1	4	1	0	6	0	0	0	0	0	9
Hourly Total	4	26	0	0	30	0	0	0	0	0	3	34	2	0	39	0	1	1	0	2	71
Grand Total	4	213	0	0	217	8	1	1	0	10	24	215	8	0	247	4	2	17	0	23	497
Approach \%	1.8	98.2	0.0	0.0	-	80.0	10.0	10.0	0.0	-	9.7	87.0	3.2	0.0	-	17.4	8.7	73.9	0.0	-	-
Total \%	0.8	42.9	0.0	0.0	43.7	1.6	0.2	0.2	0.0	2.0	4.8	43.3	1.6	0.0	49.7	0.8	0.4	3.4	0.0	4.6	-
Lights	0	137	0	0	137	8	1	1	0	10	20	141	7	0	168	2	1	13	0	16	331
\% Lights	0.0	64.3	-	-	63.1	100.0	100.0	100.0	-	100.0	83.3	65.6	87.5	-	68.0	50.0	50.0	76.5	-	69.6	66.6
Mediums	0	27	0	0	27	0	0	0	0	0	0	24	1	0	25	2	0	0	0	2	54
\% Mediums	0.0	12.7	-	-	12.4	0.0	0.0	0.0	-	0.0	0.0	11.2	12.5	-	10.1	50.0	0.0	0.0	-	8.7	10.9
Articulated Trucks	4	49	0	0	53	0	0	0	0	0	4	50	0	0	54	0	1	4	0	5	112
\% Articulated Trucks	100.0	23.0	-	-	24.4	0.0	0.0	0.0	-	0.0	16.7	23.3	0.0	-	21.9	0.0	50.0	23.5	-	21.7	22.5

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp \#1, winter Site Code: 18
Start Date: 2015/01/21
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 Count Name: Buckinghorse Camp \#1, winter Site Code: 18
Start Date: 2015/01/21
250-819-2527 paul@peaktraffic.ca
Page No: 4

Turning Movement Peak Hour Data (06:30 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp \#1, winter Site Code: 18
Start Date: 2015/01/21
Page No: 5

Turning Movement Peak Hour Data Plot (06:30 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Buckinghorse Camp \#1, winter Site Code: 18
ate: 2015/01/21
250-819-2527 paul@peaktraffic.ca
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Turning Movement Peak Hour Data (11:00 AM)																									
	Alaska Hwy 97 Southbound					Mile 171 RdWestbound					Alaska Hwy 97					Buckinghorse Camp south access Eastbound										
								orthbound																		
	Left	Thru	Right	U-Turn	App. Total						Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Int. Total
11:00 AM	0	5	0	0	5	0	0	0	0	0	0	8	0	0	8	0	0	1	0	1	14					
11:15 AM	0	7	0	0	7	0	0	0	0	0	0	8	0	0	8	0	0	0	0	0	15					
11:30 AM	0	8	0	0	8	0	0	0	0	0	2	7	0	0	9	0	0	0	0	0	17					
11:45 AM	0	2	0	0	2	0	0	1	0	1	3	4	0	0	7	0	0	1	0	1	11					
Total	0	22	0	0	22	0	0	1	0	1	5	27	0	0	32	0	0	2	0	2	57					
Approach \%	0.0	100.0	0.0	0.0	-	0.0	0.0	100.0	0.0	-	15.6	84.4	0.0	0.0	-	0.0	0.0	100.0	0.0	-	-					
Total \%	0.0	38.6	0.0	0.0	38.6	0.0	0.0	1.8	0.0	1.8	8.8	47.4	0.0	0.0	56.1	0.0	0.0	3.5	0.0	3.5	-					
PHF	0.000	0.688	0.000	0.000	0.688	0.000	0.000	0.250	0.000	0.250	0.417	0.844	0.000	0.000	0.889	0.000	0.000	0.500	0.000	0.500	0.838					
Lights	0	9	0	0	9	0	0	1	0	1	4	18	0	0	22	0	0	2	0	2	34					
\% Lights	-	40.9	-	-	40.9	-	-	100.0	-	100.0	80.0	66.7	-	-	68.8	-	-	100.0	-	100.0	59.6					
Mediums	0	4	0	0	4	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	5					
\% Mediums	-	18.2	-	-	18.2	-	-	0.0	-	0.0	0.0	3.7	-	-	3.1	-	-	0.0	-	0.0	8.8					
Articulated Trucks	0	9	0	0	9	0	0	0	0	0	1	8	0	0	9	0	0	0	0	0	18					
\% Articulated Trucks	-	40.9	-	-	40.9	-	-	0.0	-	0.0	20.0	29.6	-	-	28.1	-	-	0.0	-	0.0	31.6					

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp \#1, winter Site Code: 18
Start Date: 2015/01/21
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 Count Name: Buckinghorse Camp \#1, winter Site Code: 18
Start Date: 2015/01/21
250-819-2527 paul@peaktraffic.ca
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound					Turning Movement Peak Hour Data (12:00 PM)										Buckinghorse Camp south access Eastbound					Int. Total
						Mile 171 RdWestbound					Alaska Hwy 97 Northbound										
	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	
12:00 PM	0	8	0	0	8	0	0	0	0	0	3	11	0	0	14	0	0	2	0	2	24
12:15 PM	0	4	0	0	4	0	0	0	0	0	0	10	0	0	10	0	0	3	0	3	17
12:30 PM	0	11	0	0	11	0	0	0	0	0	2	7	0	0	9	0	0	1	0	1	21
12:45 PM	0	6	0	0	6	0	0	0	0	0	2	6	0	0	8	0	0	0	0	0	14
Total	0	29	0	0	29	0	0	0	0	0	7	34	0	0	41	0	0	6	0	6	76
Approach \%	0.0	100.0	0.0	0.0	-	NaN	NaN	NaN	NaN	-	17.1	82.9	0.0	0.0	-	0.0	0.0	100.0	0.0	-	-
Total \%	0.0	38.2	0.0	0.0	38.2	0.0	0.0	0.0	0.0	0.0	9.2	44.7	0.0	0.0	53.9	0.0	0.0	7.9	0.0	7.9	-
PHF	0.000	0.659	0.000	0.000	0.659	0.000	0.000	0.000	0.000	0.000	0.583	0.773	0.000	0.000	0.732	0.000	0.000	0.500	0.000	0.500	0.792
Lights	0	20	0	0	20	0	0	0	0	0	5	22	0	0	27	0	0	5	0	5	52
\% Lights	-	69.0	-	-	69.0	-	-	-	-	-	71.4	64.7	-	-	65.9	-	-	83.3	-	83.3	68.4
Mediums	0	1	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	2
\% Mediums	-	3.4	-	-	3.4	-	-	-	-	-	0.0	2.9	-	-	2.4	-	-	0.0	-	0.0	2.6
Articulated Trucks	0	8	0	0	8	0	0	0	0	0	2	11	0	0	13	0	0	1	0	1	22
\% Articulated Trucks	-	27.6	-		27.6		-		-	-	28.6	32.4	-		31.7		-	16.7		16.7	28.9

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp \#1, winter Site Code: 18
Start Date: 2015/01/21
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Buckinghorse Camp \#1, winter Site Code: 18
Start Date: 2015/01/21
Page No: 10

Turning Movement Peak Hour Data (05:15 PM)

Start Time	Alaska Hwy 97 Southbound					Mile 171 RdWestbound					Alaska Hwy 97Northbound					Buckinghorse Camp south access Eastbound					Int. Total
	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	
05:15 PM	0	3	0	0	3	0	0	0	0	0	3	10	1	0	14	0	0	1	0	1	18
05:30 PM	0	12	0	0	12	0	0	0	0	0	0	11	2	0	13	1	1	0	0	2	27
05:45 PM	0	9	0	0	9	0	0	0	0	0	1	14	1	0	16	1	0	0	0	1	26
06:00 PM	1	10	0	0	11	0	0	0	0	0	2	14	0	0	16	0	0	0	0	0	27
Total	1	34	0	0	35	0	0	0	0	0	6	49	4	0	59	2	1	1	0	4	98
Approach \%	2.9	97.1	0.0	0.0	-	NaN	NaN	NaN	NaN	-	10.2	83.1	6.8	0.0	-	50.0	25.0	25.0	0.0	-	-
Total \%	1.0	34.7	0.0	0.0	35.7	0.0	0.0	0.0	0.0	0.0	6.1	50.0	4.1	0.0	60.2	2.0	1.0	1.0	0.0	4.1	-
PHF	0.250	0.708	0.000	0.000	0.729	0.000	0.000	0.000	0.000	0.000	0.500	0.875	0.500	0.000	0.922	0.500	0.250	0.250	0.000	0.500	0.907
Lights	0	21	0	0	21	0	0	0	0	0	6	39	4	0	49	1	0	1	0	2	72
\% Lights	0.0	61.8	-	-	60.0	-	-	-	-	-	100.0	79.6	100.0	-	83.1	50.0	0.0	100.0	-	50.0	73.5
Mediums	0	2	0	0	2	0	0	0	0	0	0	3	0	0	3	1	0	0	0	1	6
\% Mediums	0.0	5.9	-	-	5.7	-	-	-	-	-	0.0	6.1	0.0	-	5.1	50.0	0.0	0.0	-	25.0	6.1
Articulated Trucks	1	11	0	0	12	0	0	0	0	0	0	7	0	0	7	0	1	0	0	1	20
\% Articulated Trucks	100.0	32.4	-	-	34.3	-	-	-	-	-	0.0	14.3	0.0	-	11.9	0.0	100.0	0.0	-	25.0	20.4

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp \#1, winter Site Code: 18
Start Date: 2015/01/21
Page No: 11

Turning Movement Peak Hour Data Plot (05:15 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp \#1, winter Site Code: 18
Start Date: 2015/01/21
Page No: 12

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Turning Movement Data

Start Time	Alaska Hwy 97 Southbound				Buckinghorse River Lodge north access Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
05:00 AM	0	1	0	1	0	0	0	0	3	0	0	3	4
05:15 AM	0	4	0	4	0	0	0	0	1	0	0	1	5
05:30 AM	0	4	0	4	0	0	0	0	1	0	0	1	5
05:45 AM	0	8	0	8	0	0	0	0	3	0	0	3	11
Hourly Total	0	17	0	17	0	0	0	0	8	0	0	8	25
06:00 AM	0	5	0	5	3	1	0	4	5	0	0	5	14
06:15 AM	0	9	0	9	1	0	0	1	1	0	0	1	11
06:30 AM	0	26	0	26	2	0	0	2	8	0	0	8	36
06:45 AM	0	1	0	1	3	1	0	4	4	1	0	5	10
Hourly Total	0	41	0	41	9	2	0	11	18	1	0	19	71
07:00 AM	0	1	0	1	0	5	0	5	10	0	0	10	16
07:15 AM	0	5	0	5	0	1	0	1	9	0	0	9	15
07:30 AM	1	3	0	4	1	0	0	1	6	0	0	6	11
07:45 AM	0	11	0	11	0	0	0	0	4	0	0	4	15
Hourly Total	1	20	0	21	1	6	0	7	29	0	0	29	57
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
11:00 AM	0	5	0	5	0	0	0	0	9	0	0	9	14
11:15 AM	0	7	0	7	0	0	0	0	7	1	0	8	15
11:30 AM	0	7	0	7	0	1	0	1	6	0	0	6	14
11:45 AM	1	3	0	4	0	0	0	0	6	0	0	6	10
Hourly Total	1	22	0	23	0	1	0	1	28	1	0	29	53
12:00 PM	0	7	0	7	0	0	0	0	9	1	0	10	17
12:15 PM	0	5	0	5	0	0	0	0	10	0	0	10	15
12:30 PM	0	11	0	11	0	0	0	0	7	0	0	7	18
12:45 PM	0	7	0	7	0	1	0	1	6	0	0	6	14
Hourly Total	0	30	0	30	0	1	0	1	32	1	0	33	64
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
04:00 PM	1	6	0	7	0	1	0	1	4	0	0	4	12
04:15 PM	1	3	0	4	0	0	0	0	11	0	0	11	15
04:30 PM	2	4	0	6	0	0	0	0	4	0	0	4	10
04:45 PM	0	1	0	1	0	1	0	1	6	0	0	6	8
Hourly Total	4	14	0	18	0	2	0	2	25	0	0	25	45
05:00 PM	0	9	0	9	0	0	0	0	7	0	0	7	16
05:15 PM	2	5	0	7	0	1	0	1	11	0	0	11	19
05:30 PM	1	11	0	12	0	0	0	0	11	1	0	12	24
05:45 PM	0	10	0	10	0	0	0	0	15	0	0	15	25
Hourly Total	3	35	0	38	0	1	0	1	44	1	0	45	84
06:00 PM	3	11	0	14	0	0	0	0	10	1	0	11	25

06:15 PM	0	6	0	6	0	2	0	2	13	0	0	13	21
06:30 PM	0	10	0	10	0	0	0	0	4	1	0	5	15
06:45 PM	1	2	0	3	1	0	0	1	4	0	0	4	8
Hourly Total	4	29	0	33	1	2	0	3	31	2	0	33	69
Grand Total	13	208	0	221	11	15	0	26	215	6	0	221	468
Approach \%	5.9	94.1	0.0	-	42.3	57.7	0.0	-	97.3	2.7	0.0	-	-
Total \%	2.8	44.4	0.0	47.2	2.4	3.2	0.0	5.6	45.9	1.3	0.0	47.2	-
Lights	10	111	0	121	8	13	0	21	128	5	0	133	275
\% Lights	76.9	53.4	-	54.8	72.7	86.7	-	80.8	59.5	83.3	-	60.2	58.8
Mediums	1	16	0	17	2	1	0	3	18	0	0	18	38
\% Mediums	7.7	7.7	-	7.7	18.2	6.7	-	11.5	8.4	0.0	-	8.1	8.1
Articulated Trucks	2	81	0	83	1	1	0	2	69	1	0	70	155
\% Articulated Trucks	15.4	38.9	-	37.6	9.1	6.7	-	7.7	32.1	16.7	-	31.7	33.1

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp access \#2 winter
Site Code: 19
Start Date: 2015/01/21
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp access \#2 winter
Site Code: 19
Start Date: 2015/01/21
Page No: 4

Turning Movement Peak Hour Data (06:30 AM)

Start Time	Turning Movement Peak Hour Data (06.30 AM)												
	Alaska Hwy 97 Southbound				Buckinghorse River Lodge north access Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
06:30 AM	0	26	0	26	2	0	0	2	8	0	0	8	36
06:45 AM	0	1	0	1	3	1	0	4	4	1	0	5	10
07:00 AM	0	1	0	1	0	5	0	5	10	0	0	10	16
07:15 AM	0	5	0	5	0	1	0	1	9	0	0	9	15
Total	0	33	0	33	5	7	0	12	31	1	0	32	77
Approach \%	0.0	100.0	0.0	-	41.7	58.3	0.0	-	96.9	3.1	0.0	-	-
Total \%	0.0	42.9	0.0	42.9	6.5	9.1	0.0	15.6	40.3	1.3	0.0	41.6	-
PHF	0.000	0.317	0.000	0.317	0.417	0.350	0.000	0.600	0.775	0.250	0.000	0.800	0.535
Lights	0	29	0	29	4	6	0	10	12	1	0	13	52
\% Lights	-	87.9	-	87.9	80.0	85.7	-	83.3	38.7	100.0	-	40.6	67.5
Mediums	0	1	0	1	1	1	0	2	5	0	0	5	8
\% Mediums	-	3.0	-	3.0	20.0	14.3	-	16.7	16.1	0.0	-	15.6	10.4
Articulated Trucks	0	3	0	3	0	0	0	0	14	0	0	14	17
\% Articulated Trucks	-	9.1	-	9.1	0.0	0.0	-	0.0	45.2	0.0	-	43.8	22.1

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp access \#2 winter
Site Code: 19
Start Date: 2015/01/21
Page No: 5

Turning Movement Peak Hour Data Plot (06:30 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp access \#2 winter
Site Code: 19
Start Date: 2015/01/21
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Turning Movement Peak Hour Data (11:00 AM)												
	Alaska Hwy 97 Southbound				Buckinghorse River Lodge north access Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
11:00 AM	0	5	0	5	0	0	0	0	9	0	0	9	14
11:15 AM	0	7	0	7	0	0	0	0	7	1	0	8	15
11:30 AM	0	7	0	7	0	1	0	1	6	0	0	6	14
11:45 AM	1	3	0	4	0	0	0	0	6	0	0	6	10
Total	1	22	0	23	0	1	0	1	28	1	0	29	53
Approach \%	4.3	95.7	0.0	-	0.0	100.0	0.0	-	96.6	3.4	0.0	-	-
Total \%	1.9	41.5	0.0	43.4	0.0	1.9	0.0	1.9	52.8	1.9	0.0	54.7	\checkmark
PHF	0.250	0.786	0.000	0.821	0.000	0.250	0.000	0.250	0.778	0.250	0.000	0.806	0.883
Lights	1	7	0	8	0	1	0	1	18	1	0	19	28
\% Lights	100.0	31.8	-	34.8	-	100.0	-	100.0	64.3	100.0	-	65.5	52.8
Mediums	0	1	0	1	0	0	0	0	1	0	0	1	2
\% Mediums	0.0	4.5		4.3	-	0.0	-	0.0	3.6	0.0	-	3.4	3.8
Articulated Trucks	0	14	0	14	0	0	0	0	9	0	0	9	23
\% Articulated Trucks	0.0	63.6	-	60.9	-	0.0	-	0.0	32.1	0.0	-	31.0	43.4

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp access \#2 winter
Site Code: 19
Start Date: 2015/01/21
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Buckinghorse Camp access \#2 winter
Site Code: 19
Start Date: 2015/01/21
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound				Buckinghorse River Lodge north access Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
12:00 PM	0	7	0	7	0	0	0	0	9	1	0	10	17
12:15 PM	0	5	0	5	0	0	0	0	10	0	0	10	15
12:30 PM	0	11	0	11	0	0	0	0	7	0	0	7	18
12:45 PM	0	7	0	7	0	1	0	1	6	0	0	6	14
Total	0	30	0	30	0	1	0	1	32	1	0	33	64
Approach \%	0.0	100.0	0.0	-	0.0	100.0	0.0	-	97.0	3.0	0.0	-	-
Total \%	0.0	46.9	0.0	46.9	0.0	1.6	0.0	1.6	50.0	1.6	0.0	51.6	-
PHF	0.000	0.682	0.000	0.682	0.000	0.250	0.000	0.250	0.800	0.250	0.000	0.825	0.889
Lights	0	18	0	18	0	1	0	1	17	1	0	18	37
\% Lights	-	60.0	-	60.0	-	100.0	-	100.0	53.1	100.0	-	54.5	57.8
Mediums	0	2	0	2	0	0	0	0	1	0	0	1	3
\% Mediums	-	6.7	-	6.7	-	0.0	-	0.0	3.1	0.0	-	3.0	4.7
Articulated Trucks	0	10	0	10	0	0	0	0	14	0	0	14	24
\% Articulated Trucks	-	33.3	-	33.3	-	0.0	-	0.0	43.8	0.0	-	42.4	37.5

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp access \#2 winter
Site Code: 19
Start Date: 2015/01/21
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Buckinghorse Camp access \#2, winter
Site Code: 19
Start Date: 2015/01/21
250-819-2527 paul@peaktraffic.ca
Page No: 10

Turning Movement Peak Hour Data (05:30 PM)

Start Time	Alaska Hwy 97 Southbound				Buckinghorse River Lodge north access Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
05:30 PM	1	11	0	12	0	0	0	0	11	1	0	12	24
05:45 PM	0	10	0	10	0	0	0	0	15	0	0	15	25
06:00 PM	3	11	0	14	0	0	0	0	10	1	0	11	25
06:15 PM	0	6	0	6	0	2	0	2	13	0	0	13	21
Total	4	38	0	42	0	2	0	2	49	2	0	51	95
Approach \%	9.5	90.5	0.0	-	0.0	100.0	0.0	-	96.1	3.9	0.0	-	-
Total \%	4.2	40.0	0.0	44.2	0.0	2.1	0.0	2.1	51.6	2.1	0.0	53.7	-
PHF	0.333	0.864	0.000	0.750	0.000	0.250	0.000	0.250	0.817	0.500	0.000	0.850	0.950
Lights	4	17	0	21	0	2	0	2	36	1	0	37	60
\% Lights	100.0	44.7	-	50.0	-	100.0	-	100.0	73.5	50.0	-	72.5	63.2
Mediums	0	1	0	1	0	0	0	0	2	0	0	2	3
\% Mediums	0.0	2.6	-	2.4	-	0.0	-	0.0	4.1	0.0	-	3.9	3.2
Articulated Trucks	0	20	0	20	0	0	0	0	11	1	0	12	32
\% Articulated Trucks	0.0	52.6	-	47.6	-	0.0	-	0.0	22.4	50.0	-	23.5	33.7

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp access \#2 winter
Site Code: 19
Start Date: 2015/01/21
Page No: 11

Turning Movement Peak Hour Data Plot (05:30 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp north access \#3, winter
Site Code: 2015/01/21
Start Date: 2015/0 Page No: 1

Turning Movement Data

Start Time	Alaska Hwy 97 Southbound				Alaska Hwy 97 Northbound				Buckinghorse Camp north access \#3 Eastbound				Int. Total
	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	
05:00 AM	1	0	0	1	0	3	0	3	0	0	0	0	4
05:15 AM	4	0	0	4	0	1	0	1	0	0	0	0	5
05:30 AM	6	0	0	6	0	1	0	1	0	0	0	0	7
05:45 AM	7	0	0	7	0	4	0	4	0	0	0	0	11
Hourly Total	18	0	0	18	0	9	0	9	0	0	0	0	27
06:00 AM	4	0	0	4	1	4	0	5	0	1	0	1	10
06:15 AM	8	0	0	8	0	2	0	2	1	0	0	1	11
06:30 AM	25	0	0	25	0	8	0	8	0	1	0	1	34
06:45 AM	1	0	0	1	0	5	0	5	0	0	0	0	6
Hourly Total	38	0	0	38	1	19	0	20	1	2	0	3	61
07:00 AM	2	0	0	2	0	15	0	15	0	0	0	0	17
07:15 AM	4	1	0	5	0	9	0	9	2	0	0	2	16
07:30 AM	4	0	0	4	0	5	0	5	0	0	0	0	9
07:45 AM	12	1	0	13	0	4	0	4	0	0	0	0	17
Hourly Total	22	2	0	24	0	33	0	33	2	0	0	2	59
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	5	0	0	5	0	6	0	6	0	0	0	0	11
11:15 AM	7	1	0	8	0	8	0	8	0	0	0	0	16
11:30 AM	8	3	0	11	0	5	0	5	1	0	0	1	17
11:45 AM	4	2	0	6	0	6	0	6	0	1	0	1	13
Hourly Total	24	6	0	30	0	25	0	25	1	1	0	2	57
12:00 PM	6	2	0	8	0	7	0	7	1	0	0	1	16
12:15 PM	4	0	0	4	0	10	0	10	1	0	0	1	15
12:30 PM	12	0	0	12	0	10	0	10	4	0	0	4	26
12:45 PM	7	0	0	7	0	4	0	4	0	0	0	0	11
Hourly Total	29	2	0	31	0	31	0	31	6	0	0	6	68
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
04:00 PM	7	1	0	8	0	5	0	5	3	0	0	3	16
04:15 PM	5	1	0	6	0	12	0	12	2	0	0	2	20
04:30 PM	5	0	0	5	0	4	0	4	0	0	0	0	9
04:45 PM	1	1	0	2	0	7	0	7	0	0	0	0	9
Hourly Total	18	3	0	21	0	28	0	28	5	0	0	5	54
05:00 PM	10	0	0	10	0	7	0	7	0	0	0	0	17
05:15 PM	7	3	0	10	1	13	0	14	1	0	0	1	25
05:30 PM	13	3	1	17	0	11	0	11	1	0	0	1	29
05:45 PM	8	0	0	8	0	11	0	11	1	0	0	1	20

Hourly Total	38	6	1	45	1	42	0	43	3	0	0	3	91
06:00 PM	13	0	0	13	0	13	0	13	0	2	0	2	28
06:15 PM	5	2	0	7	1	11	0	12	0	0	0	0	19
06:30 PM	10	3	0	13	0	4	0	4	0	0	0	0	17
06:45 PM	4	2	0	6	1	3	0	4	2	0	0	2	12
Hourly Total	32	7	0	39	2	31	0	33	2	2	0	4	76
Grand Total	219	26	1	246	4	218	0	222	20	5	0	25	493
Approach \%	89.0	10.6	0.4	-	1.8	98.2	0.0	-	80.0	20.0	0.0	-	-
Total \%	44.4	5.3	0.2	49.9	0.8	44.2	0.0	45.0	4.1	1.0	0.0	5.1	-
Lights	127	12	1	140	3	148	0	151	15	4	0	19	310
\% Lights	58.0	46.2	100.0	56.9	75.0	67.9	-	68.0	75.0	80.0	-	76.0	62.9
Mediums	15	2	0	17	0	11	0	11	0	0	0	0	28
\% Mediums	6.8	7.7	0.0	6.9	0.0	5.0	-	5.0	0.0	0.0	-	0.0	5.7
Articulated Trucks	77	12	0	89	1	59	0	60	5	1	0	6	155
\% Articulated Trucks	35.2	46.2	0.0	36.2	25.0	27.1	-	27.0	25.0	20.0	-	24.0	31.4

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp north access \#3, winter
Site Code: 20
Start Date: 2015/01/21
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp north access \#3, winter
Site Code: 20
Page No: 4

Turning Movement Peak Hour Data (06:30 AM)

Start Time	Alaska Hwy 97 Southbound				Alaska Hwy 97 Northbound				Buckinghorse Camp north access \#3 Eastbound				Int. Total
	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	
06:30 AM	25	0	0	25	0	8	0	8	0	1	0	1	34
06:45 AM	1	0	0	1	0	5	0	5	0	0	0	0	6
07:00 AM	2	0	0	2	0	15	0	15	0	0	0	0	17
07:15 AM	4	1	0	5	0	9	0	9	2	0	0	2	16
Total	32	1	0	33	0	37	0	37	2	1	0	3	73
Approach \%	97.0	3.0	0.0	-	0.0	100.0	0.0	-	66.7	33.3	0.0	-	-
Total \%	43.8	1.4	0.0	45.2	0.0	50.7	0.0	50.7	2.7	1.4	0.0	4.1	-
PHF	0.320	0.250	0.000	0.330	0.000	0.617	0.000	0.617	0.250	0.250	0.000	0.375	0.537
Lights	29	0	0	29	0	24	0	24	0	1	0	1	54
\% Lights	90.6	0.0	-	87.9	-	64.9	-	64.9	0.0	100.0	-	33.3	74.0
Mediums	1	0	0	1	0	2	0	2	0	0	0	0	3
\% Mediums	3.1	0.0	-	3.0	-	5.4	-	5.4	0.0	0.0	-	0.0	4.1
Articulated Trucks	2	1	0	3	0	11	0	11	2	0	0	2	16
\% Articulated Trucks	6.3	100.0	-	9.1	-	29.7	-	29.7	100.0	0.0	-	66.7	21.9

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp north access \#3, winter
Site Code: 20
Start Date: 2015/01/21
Page No: 5

Turning Movement Peak Hour Data Plot (06:30 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp north access \#3, winter
Site Code: 20
Start Date: 2015/01/21
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Alaska Hwy 97 Southbound				Alaska Hwy 97 Northbound				Buckinghorse Camp north access \#3 Eastbound				Int. Total
	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	
11:00 AM	5	0	0	5	0	6	0	6	0	0	0	0	11
11:15 AM	7	1	0	8	0	8	0	8	0	0	0	0	16
11:30 AM	8	3	0	11	0	5	0	5	1	0	0	1	17
11:45 AM	4	2	0	6	0	6	0	6	0	1	0	1	13
Total	24	6	0	30	0	25	0	25	1	1	0	2	57
Approach \%	80.0	20.0	0.0	-	0.0	100.0	0.0	-	50.0	50.0	0.0	-	-
Total \%	42.1	10.5	0.0	52.6	0.0	43.9	0.0	43.9	1.8	1.8	0.0	3.5	-
PHF	0.750	0.500	0.000	0.682	0.000	0.781	0.000	0.781	0.250	0.250	0.000	0.500	0.838
Lights	9	4	0	13	0	15	0	15	1	1	0	2	30
\% Lights	37.5	66.7	-	43.3	-	60.0	-	60.0	100.0	100.0	-	100.0	52.6
Mediums	0	0	0	0	0	2	0	2	0	0	0	0	2
\% Mediums	0.0	0.0	-	0.0	-	8.0	-	8.0	0.0	0.0	-	0.0	3.5
Articulated Trucks	15	2	0	17	0	8	0	8	0	0	0	0	25
\% Articulated Trucks	62.5	33.3	-	56.7	-	32.0	-	32.0	0.0	0.0	-	0.0	43.9

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp north access \#3, winter
Site Code: 20
Start Date: 2015/01/21
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp north access \#3, winter
Site Code: 20
Start Date: 2015/01/21
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound				Alaska Hwy 97 Northbound				Buckinghorse Camp north access \#3 Eastbound				Int. Total
	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	
12:00 PM	6	2	0	8	0	7	0	7	1	0	0	1	16
12:15 PM	4	0	0	4	0	10	0	10	1	0	0	1	15
12:30 PM	12	0	0	12	0	10	0	10	4	0	0	4	26
12:45 PM	7	0	0	7	0	4	0	4	0	0	0	0	11
Total	29	2	0	31	0	31	0	31	6	0	0	6	68
Approach \%	93.5	6.5	0.0	-	0.0	100.0	0.0	-	100.0	0.0	0.0	-	-
Total \%	42.6	2.9	0.0	45.6	0.0	45.6	0.0	45.6	8.8	0.0	0.0	8.8	-
PHF	0.604	0.250	0.000	0.646	0.000	0.775	0.000	0.775	0.375	0.000	0.000	0.375	0.654
Lights	17	2	0	19	0	17	0	17	5	0	0	5	41
\% Lights	58.6	100.0	-	61.3	-	54.8	-	54.8	83.3	-	-	83.3	60.3
Mediums	2	0	0	2	0	1	0	1	0	0	0	0	3
\% Mediums	6.9	0.0	-	6.5	-	3.2	-	3.2	0.0	-	-	0.0	4.4
Articulated Trucks	10	0	0	10	0	13	0	13	1	0	0	1	24
\% Articulated Trucks	34.5	0.0	-	32.3	-	41.9	-	41.9	16.7	-	-	16.7	35.3

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp north access \#3, winter
Site Code: 20
Start Date: 2015/01/21
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp north access \#3, winter
Site Code: 20
Start Date: 2015/01/21
Page No: 10

Turning Movement Peak Hour Data (05:15 PM)

Start Time	Alaska Hwy 97 Southbound				Alaska Hwy 97 Northbound				Buckinghorse Camp north access \#3 Eastbound				Int. Total
	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	
05:15 PM	7	3	0	10	1	13	0	14	1	0	0	1	25
05:30 PM	13	3	1	17	0	11	0	11		0	0	1	29
05:45 PM	8	0	0	8	0	11	0	11		0	0	1	20
06:00 PM	13	0	0	13	0	13	0	13	0	2	0	2	28
Total	41	6	1	48	1	48	0	49	3	2	0	5	102
Approach \%	85.4	12.5	2.1	-	2.0	98.0	0.0	-	60.0	40.0	0.0	-	-
Total \%	40.2	5.9	1.0	47.1	1.0	47.1	0.0	48.0	2.9	2.0	0.0	4.9	-
PHF	0.788	0.500	0.250	0.706	0.250	0.923	0.000	0.875	0.750	0.250	0.000	0.625	0.879
Lights	21	0	1	22	0	38	0	38	3	1	0	4	64
\% Lights	51.2	0.0	100.0	45.8	0.0	79.2	-	77.6	100.0	50.0	-	80.0	62.7
Mediums	2	1	0	3	0	1	0	1	0	0	0	0	4
\% Mediums	4.9	16.7	0.0	6.3	0.0	2.1	-	2.0	0.0	0.0	-	0.0	3.9
Articulated Trucks	18	5	0	23	1	9	0	10	0	1	0	1	34
\% Articulated Trucks	43.9	83.3	0.0	47.9	100.0	18.8	-	20.4	0.0	50.0	-	20.0	33.3

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Buckinghorse Camp north access \#3, winter
Site Code: 20
Start Date: 2015/01/21
Page No: 11

Turning Movement Peak Hour Data Plot (05:15 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4
250-819-2527 paul@peaktraffic.ca
Count Name: 187 Cypress Creek Road, winter Site Code: 11
Start Date: 2015/01/23

Turning Movement Data

Start Time	Alaska Hwy 97 Southbound				Alaska Hwy 97 Northbound				187 Cypress Creek Rd Eastbound				Int. Total
	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	
05:00 AM	0	0	0	0	0	5	0	5	0	0	0	0	5
05:15 AM	6	0	0	6	0	0	0	0	0	0	0	0	6
05:30 AM	3	0	0	3	0	5	0	5	0	0	0	0	8
05:45 AM	5	0	0	5	0	6	0	6	1	0	0	1	12
Hourly Total	14	0	0	14	0	16	0	16	1	0	0	1	31
06:00 AM	10	0	0	10	0	4	0	4	1	0	0	1	15
06:15 AM	7	0	0	7	0	9	0	9	0	0	0	0	16
06:30 AM	15	0	0	15	0	14	0	14	0	1	0	1	30
06:45 AM	16	0	0	16	0	12	0	12	1	0	0	1	29
Hourly Total	48	0	0	48	0	39	0	39	2	1	0	3	90
07:00 AM	32	1	0	33	1	12	0	13	0	1	0	1	47
07:15 AM	17	1	0	18	0	8	0	8	0	0	0	0	26
07:30 AM	14	0	0	14	0	9	0	9	1	0	0	1	24
07:45 AM	9	0	0	9	1	2	0	3	1	0	0	1	13
Hourly Total	72	2	0	74	2	31	0	33	2	1	0	3	110
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
11:00 AM	5	0	0	5	0	5	0	5	1	1	0	2	12
11:15 AM	22	0	0	22	0	19	0	19	0	1	0	1	42
11:30 AM	17	0	0	17	0	13	0	13	0	1	0	1	31
11:45 AM	11	0	0	11	1	11	0	12	1	0	0	1	24
Hourly Total	55	0	0	55	1	48	0	49	2	3	0	5	109
12:00 PM	12	0	0	12	1	16	0	17	0	0	0	0	29
12:15 PM	15	1	0	16	1	16	0	17	1	0	0	1	34
12:30 PM	20	0	0	20	0	16	0	16	0	1	0	1	37
12:45 PM	21	1	0	22	0	12	0	12	0	1	0	1	35
Hourly Total	68	2	0	70	2	60	0	62	1	2	0	3	135
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
04:00 PM	22	0	0	22	1	16	0	17	0	1	0	1	40
04:15 PM	17	0	0	17	1	8	0	9	0	0	0	0	26
04:30 PM	15	1	0	16	1	8	0	9	0	2	0	2	27
04:45 PM	13	0	0	13	0	13	0	13	0	0	0	0	26
Hourly Total	67		0	68	3	45	0	48	0	3	0	3	119
05:00 PM	17	0	0	17	0	7	0	7	0	0	0	0	24
05:15 PM	5	0	0	5	0	10	0	10	0	1	0	1	16
05:30 PM	18	1	0	19	0	25	0	25	0	0	0	0	44
05:45 PM	18	0	0	18	0	41	0	41	0	0	0	0	59
Hourly Total	58	1	0	59	0	83	0	83	0	1	0	1	143
06:00 PM	13	2	0	15	0	25	0	25	0	0	0	0	40

06:15 PM	13	0	0	13	0	20	0	20	1	0	0	1	34
06:30 PM	21	0	0	21	0	29	0	29	1	0	0	1	51
06:45 PM	15	0	0	15	1	10	0	11	0	0	0	0	26
Hourly Total	62	2	0	64	1	84	0	85	2	0	0	2	151
07:00 PM	0	0	0	0	0	1	0	1	0	0	0	0	1
Grand Total	444	8	0	452	9	407	0	416	10	11	0	21	889
Approach \%	98.2	1.8	0.0	-	2.2	97.8	0.0	-	47.6	52.4	0.0	-	-
Total \%	49.9	0.9	0.0	50.8	1.0	45.8	0.0	46.8	1.1	1.2	0.0	2.4	-
Lights	296	6	0	302	7	269	0	276	8	8	0	16	594
\% Lights	66.7	75.0	-	66.8	77.8	66.1	-	66.3	80.0	72.7	-	76.2	66.8
Mediums	37	1	0	38	0	37	0	37	1	0	0	1	76
\% Mediums	8.3	12.5	-	8.4	0.0	9.1	-	8.9	10.0	0.0	-	4.8	8.5
Articulated Trucks	111	1	0	112	2	101	0	103	1	3	0	4	219
\% Articulated Trucks	25.0	12.5	-	24.8	22.2	24.8	-	24.8	10.0	27.3	-	19.0	24.6

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 187 Cypress Creek Road, winter Site Code: 11
Start Date: 2015/01/23
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd

Kamloops, British Columbia, Canada V2B 1P4
Count Name: 187 Cypress Creek Road, winter Site Code: 1

2015/01/23
250-819-2527 paul@peaktraffic.ca
Page No: 4

Turning Movement Peak Hour Data (06:30 AM)

Start Time	Alaska Hwy 97 Southbound				Alaska Hwy 97 Northbound				187 Cypress Creek Rd Eastbound				Int. Total
	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	
06:30 AM	15	0	0	15	0	14	0	14	0	1	0	1	30
06:45 AM	16	0	0	16	0	12	0	12	1	0	0	1	29
07:00 AM	32	1	0	33	1	12	0	13	0	1	0	1	47
07:15 AM	17	1	0	18	0	8	0	8	0	0	0	0	26
Total	80	2	0	82	1	46	0	47	1	2	0	3	132
Approach \%	97.6	2.4	0.0	-	2.1	97.9	0.0	-	33.3	66.7	0.0	-	-
Total \%	60.6	1.5	0.0	62.1	0.8	34.8	0.0	35.6	0.8	1.5	0.0	2.3	\checkmark
PHF	0.625	0.500	0.000	0.621	0.250	0.821	0.000	0.839	0.250	0.500	0.000	0.750	0.702
Lights	71	2	0	73	0	33	0	33	1	2	0	3	109
\% Lights	88.8	100.0	-	89.0	0.0	71.7	-	70.2	100.0	100.0	-	100.0	82.6
Mediums	0	0	0	0	0	3	0	3	0	0	0	0	3
\% Mediums	0.0	0.0	-	0.0	0.0	6.5	-	6.4	0.0	0.0	-	0.0	2.3
Articulated Trucks	9	0	0	9	1	10	0	11	0	0	0	0	20
\% Articulated Trucks	11.3	0.0	-	11.0	100.0	21.7	-	23.4	0.0	0.0	-	0.0	15.2

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 187 Cypress Creek Road, winter Site Code: 11
Start Date: 2015/01/23
Page No: 5

Turning Movement Peak Hour Data Plot (06:30 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: 187 Cypress Creek Road, winter Site Code: 1
Start Date: 2015/01/23
250-819-2527 paul@peaktraffic.ca
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Turning Movement Peak Hour Data (11:00 AM)												
	Alaska Hwy 97 Southbound				Alaska Hwy 97 Northbound				187 Cypress Creek Rd Eastbound				Int. Total
	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	
11:00 AM	5	0	0	5	0	5	0	5	1	1	0	2	12
11:15 AM	22	0	0	22	0	19	0	19	0	1	0	1	42
11:30 AM	17	0	0	17	0	13	0	13	0	1	0	1	31
11:45 AM	11	0	0	11	1	11	0	12	1	0	0	1	24
Total	55	0	0	55	1	48	0	49	2	3	0	5	109
Approach \%	100.0	0.0	0.0	-	2.0	98.0	0.0	-	40.0	60.0	0.0	-	-
Total \%	50.5	0.0	0.0	50.5	0.9	44.0	0.0	45.0	1.8	2.8	0.0	4.6	-
PHF	0.625	0.000	0.000	0.625	0.250	0.632	0.000	0.645	0.500	0.750	0.000	0.625	0.649
Lights	23	0	0	23	1	18	0	19	1	3	0	4	46
\% Lights	41.8	-	-	41.8	100.0	37.5	-	38.8	50.0	100.0	-	80.0	42.2
Mediums	4	0	0	4	0	11	0	11	0	0	0	0	15
\% Mediums	7.3	-	-	7.3	0.0	22.9	-	22.4	0.0	0.0	-	0.0	13.8
Articulated Trucks	28	0	0	28	0	19	0	19	1	0	0	1	48
\% Articulated Trucks	50.9	-	-	50.9	0.0	39.6	-	38.8	50.0	0.0	-	20.0	44.0

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 187 Cypress Creek Road, winter Site Code: 11
Start Date: 2015/01/23
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd

Kamloops, British Columbia, Canada V2B 1P4
Count Name: 187 Cypress Creek Road, winter Site Code: 1
Start Date: 2015/01/23
250-819-2527 paul@peaktraffic.ca
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound				Alaska Hwy 97 Northbound				187 Cypress Creek Rd Eastbound				Int. Total
	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	
12:00 PM	12	0	0	12	1	16	0	17	0	0	0	0	29
12:15 PM	15	1	0	16	1	16	0	17	1	0	0	1	34
12:30 PM	20	0	0	20	0	16	0	16	0	1	0	1	37
12:45 PM	21	1	0	22	0	12	0	12	0	1	0	1	35
Total	68	2	0	70	2	60	0	62	1	2	0	3	135
Approach \%	97.1	2.9	0.0	-	3.2	96.8	0.0	-	33.3	66.7	0.0	-	-
Total \%	50.4	1.5	0.0	51.9	1.5	44.4	0.0	45.9	0.7	1.5	0.0	2.2	-
PHF	0.810	0.500	0.000	0.795	0.500	0.938	0.000	0.912	0.250	0.500	0.000	0.750	0.912
Lights	49	0	0	49	1	34	0	35	0	1	0	1	85
\% Lights	72.1	0.0	-	70.0	50.0	56.7	-	56.5	0.0	50.0	-	33.3	63.0
Mediums	3	1	0	4	0	6	0	6	1	0	0	1	11
\% Mediums	4.4	50.0	-	5.7	0.0	10.0	-	9.7	100.0	0.0	-	33.3	8.1
Articulated Trucks	16	1	0	17	1	20	0	21	0	1	0	1	39
\% Articulated Trucks	23.5	50.0	-	24.3	50.0	33.3	-	33.9	0.0	50.0	-	33.3	28.9

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 187 Cypress Creek Road, winter Site Code: 11
Start Date: 2015/01/23
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd

Kamloops, British Columbia, Canada V2B 1P4
Count Name: 187 Cypress Creek Road, winter Site Code: 1
Start Date: 2015/01/23
250-819-2527 paul@peaktraffic.ca
Page No: 10

Turning Movement Peak Hour Data (05:45 PM)

Start Time	Alaska Hwy 97 Southbound				Alaska Hwy 97 Northbound				187 Cypress Creek Rd Eastbound				Int. Total
	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	
05:45 PM	18	0	0	18	0	41	0	41	0	0	0	0	59
06:00 PM	13	2	0	15	0	25	0	25	0	0	0	0	40
06:15 PM	13	0	0	13	0	20	0	20	1	0	0	1	34
06:30 PM	21	0	0	21	0	29	0	29	1	0	0	1	51
Total	65	2	0	67	0	115	0	115	2	0	0	2	184
Approach \%	97.0	3.0	0.0	-	0.0	100.0	0.0	-	100.0	0.0	0.0	-	-
Total \%	35.3	1.1	0.0	36.4	0.0	62.5	0.0	62.5	1.1	0.0	0.0	1.1	\checkmark
PHF	0.774	0.250	0.000	0.798	0.000	0.701	0.000	0.701	0.500	0.000	0.000	0.500	0.780
Lights	38	2	0	40	0	97	0	97	2	0	0	2	139
\% Lights	58.5	100.0	-	59.7	-	84.3	-	84.3	100.0	-	-	100.0	75.5
Mediums	3	0	0	3	0	5	0	5	0	0	0	0	8
\% Mediums	4.6	0.0	-	4.5	-	4.3	-	4.3	0.0	-	-	0.0	4.3
Articulated Trucks	24	0	0	24	0	13	0	13	0	0	0	0	37
\% Articulated Trucks	36.9	0.0	-	35.8	-	11.3	-	11.3	0.0	-	-	0.0	20.1

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 187 Cypress Creek Road, winter Site Code: 11
Start Date: 2015/01/23
Page No: 11

Turning Movement Peak Hour Data Plot (05:45 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: 97N at 29N and Charlie Lk Prov Pk access, winter
Site Code: 1
Start Date: 2015/01/21
250-819-2527 paul@peaktraffic.ca
Page No: 1

06:15 PM	2	65	0	0	67	3	1	2	0	6	28	29	3	0	60	0	2	18	0	20	153
06:30 PM	0	52	2	0	54	1	0	1	0	2	16	20	2	1	39	0	0	18	0	18	113
06:45 PM	1	48	4	0	53	2	1	1	0	4	26	28	4	0	58	2	0	10	0	12	127
Hourly Total	5	231	8	0	244	6	2	4	0	12	90	115	10	1	216	3	3	56	0	62	534
Grand Total	15	1224	51	0	1290	55	53	239	0	347	580	966	58	1	1605	39	5	612	0	656	3898
Approach \%	1.2	94.9	4.0	0.0	-	15.9	15.3	68.9	0.0	-	36.1	60.2	3.6	0.1	-	5.9	0.8	93.3	0.0	-	-
Total \%	0.4	31.4	1.3	0.0	33.1	1.4	1.4	6.1	0.0	8.9	14.9	24.8	1.5	0.0	41.2	1.0	0.1	15.7	0.0	16.8	-
Lights	12	918	42	0	972	50	12	42	0	104	542	888	58	1	1489	27	3	552	0	582	3147
\% Lights	80.0	75.0	82.4	-	75.3	90.9	22.6	17.6	-	30.0	93.4	91.9	100.0	100.0	92.8	69.2	60.0	90.2	-	88.7	80.7
Mediums	2	76	2	0	80	4	10	30	0	44	22	46	0	0	68	5	2	16	0	23	215
\% Mediums	13.3	6.2	3.9	-	6.2	7.3	18.9	12.6	-	12.7	3.8	4.8	0.0	0.0	4.2	12.8	40.0	2.6	-	3.5	5.5
Articulated Trucks	1	230	7	0	238	1	31	167	0	199	16	32	0	0	48	7	0	44	0	51	536
\% Articulated Trucks	6.7	18.8	13.7	-	18.4	1.8	58.5	69.9	-	57.3	2.8	3.3	0.0	0.0	3.0	17.9	0.0	7.2	-	7.8	13.8

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 97 N at 29 N and Charlie Lk Prov Pk access, winter
Site Code: 1
Start Date: 2015/01/21
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 Count Name: 97 N
Pk access, winter
Site Code: 1
Site Code: 1
Start Date: 2015/01/21
Page No: 4
$\underset{\text { Scale, Park and frntrd access }}{\text { Turning Movement Peak Hour Data (07:00 AM) }} \underset{\text { Alaska Hwy } 97}{(0)}$

Start Time	Alaska Hwy 97 Southbound					Scale, Park and frrt rd accessWestbound					Alaska Hwy 97 Northbound					Hwy 29 Eastbound					Int. Total
	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	
07:00 AM	0	29	1	0	30	1	7	19	0	27	15	42	0	0	57	3	0	26	0	29	143
07:15 AM	0	37	1	0	38	3	3	13	0	19	12	56	0	0	68	4	0	17	0	21	146
07:30 AM	0	47	0	0	47	3	3	13	0	19	16	46	0	0	62	5	0	53	0	58	186
07:45 AM	1	28	5	0	34	1	1	16	0	18	33	49	0	0	82	1	0	30	0	31	165
Total	1	141	7	0	149	8	14	61	0	83	76	193	0	0	269	13	0	126	0	139	640
Approach \%	0.7	94.6	4.7	0.0	-	9.6	16.9	73.5	0.0	-	28.3	71.7	0.0	0.0	-	9.4	0.0	90.6	0.0	-	-
Total \%	0.2	22.0	1.1	0.0	23.3	1.3	2.2	9.5	0.0	13.0	11.9	30.2	0.0	0.0	42.0	2.0	0.0	19.7	0.0	21.7	
PHF	0.250	0.750	0.350	0.000	0.793	0.667	0.500	0.803	0.000	0.769	0.576	0.862	0.000	0.000	0.820	0.650	0.000	0.594	0.000	0.599	0.860
Lights	1	110	6	0	117	8	5	9	0	22	72	176	0	0	248	9	0	113	0	122	509
\% Lights	100.0	78.0	85.7	-	78.5	100.0	35.7	14.8	-	26.5	94.7	91.2	-	-	92.2	69.2	-	89.7	-	87.8	79.5
Mediums	0	9	0	0	9	0	2	8	0	10	4	15	0	0	19	2	0	6	0	8	46
\% Mediums	0.0	6.4	0.0	-	6.0	0.0	14.3	13.1	-	12.0	5.3	7.8	-	-	7.1	15.4	-	4.8	-	5.8	7.2
Articulated Trucks	0	22	1	0	23	0	7	44	0	51	0	2	0	0	2	2	0	7	0	9	85
\% Articulated Trucks	0.0	15.6	14.3	-	15.4	0.0	50.0	72.1	-	61.4	0.0	1.0	-	-	0.7	15.4	-	5.6	-	6.5	13.3

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 97 N at 29 N and Charlie Lk Prov Pk access, winter
Site Code: 1
Start Date: 2015/01/21
Page No: 5

Turning Movement Peak Hour Data Plot (07:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 97 N at 29 N and Charlie Lk Prov Pk access, winter
Site Code: 1
Start Date: 2015/01/21
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Alaska Hwy 97 Southbound					Scale, Park and frrt rd accessWestbound					Alaska Hwy 97 Northbound					Hwy 29 Eastbound					Int. Total
	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	
11:00 AM	0	30	0	0	30	3	4	14	0	21	16	22	1	0	39	3	0	23	0	26	116
11:15 AM	1	23	1	0	25	0	2	12	0	14	12	25	1	0	38	0	0	28	0	28	105
11:30 AM	0	38	0	0	38	3	2	15	0	20	15	17	0	0	32	1	0	26	0	27	117
11:45 AM	0	35	2	0	37	3	1	11	0	15	12	14	2	0	28	1	0	24	0	25	105
Total	1	126	3	0	130	9	9	52	0	70	55	78	4	0	137	5	0	101	0	106	443
Approach \%	0.8	96.9	2.3	0.0	-	12.9	12.9	74.3	0.0	-	40.1	56.9	2.9	0.0	-	4.7	0.0	95.3	0.0	-	-
Total \%	0.2	28.4	0.7	0.0	29.3	2.0	2.0	11.7	0.0	15.8	12.4	17.6	0.9	0.0	30.9	1.1	0.0	22.8	0.0	23.9	-
PHF	0.250	0.829	0.375	0.000	0.855	0.750	0.563	0.867	0.000	0.833	0.859	0.780	0.500	0.000	0.878	0.417	0.000	0.902	0.000	0.946	0.947
Lights	1	85	3	0	89	8	2	17	0	27	55	76	4	0	135	2	0	92	0	94	345
\% Lights	100.0	67.5	100.0	-	68.5	88.9	22.2	32.7	-	38.6	100.0	97.4	100.0	-	98.5	40.0	-	91.1	-	88.7	77.9
Mediums	0	11	0	0	11	1	0	2	0	3	0	2	0	0	2	0	0	1	0	1	17
\% Mediums	0.0	8.7	0.0	-	8.5	11.1	0.0	3.8	-	4.3	0.0	2.6	0.0	-	1.5	0.0	-	1.0	-	0.9	3.8
Articulated Trucks	0	30	0	0	30	0	7	33	0	40	0	0	0	0	0	3	0	8	0	11	81
\% Articulated Trucks	0.0	23.8	0.0	-	23.1	0.0	77.8	63.5	-	57.1	0.0	0.0	0.0	-	0.0	60.0	-	7.9	-	10.4	18.3

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 97 N at 29 N and Charlie Lk Prov Pk access, winter
Site Code: 1
Start Date: 2015/01/21
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 Count Name: 97 N
Pk access, winter
Site Code: 1
Site Code: 1
Start Date: 2015/01/21
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound					Scale, Park and frrt rd accessWestbound					Alaska Hwy 97					Hwy 29					Int. Total
	Left	Thru	Right	U-Turn	App. Total	Left		Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	
12:00 PM	2	30	1	0	33	0	3	11	0	14	17	30	3	0	50	0	0	13	0	13	110
12:15 PM	0	41	1	0	42	0	0	9	0	9	18	28	0	0	46	0	0	13	0	13	110
12:30 PM	0	34	1	0	35	4	4	12	0	20	16	19	1	0	36	0	0	12	0	12	103
12:45 PM	1	29	1	0	31	5	0	6	0	11	14	20	1	0	35	0	0	20	0	20	97
Total	3	134	4	0	141	9	7	38	0	54	65	97	5	0	167	0	0	58	0	58	420
Approach \%	2.1	95.0	2.8	0.0	-	16.7	13.0	70.4	0.0	-	38.9	58.1	3.0	0.0	-	0.0	0.0	100.0	0.0	-	-
Total \%	0.7	31.9	1.0	0.0	33.6	2.1	1.7	9.0	0.0	12.9	15.5	23.1	1.2	0.0	39.8	0.0	0.0	13.8	0.0	13.8	-
PHF	0.375	0.817	1.000	0.000	0.839	0.450	0.438	0.792	0.000	0.675	0.903	0.808	0.417	0.000	0.835	0.000	0.000	0.725	0.000	0.725	0.955
Lights	3	91	4	0	98	6	1	7	0	14	63	88	5	0	156	0	0	51	0	51	319
\% Lights	100.0	67.9	100.0	-	69.5	66.7	14.3	18.4	-	25.9	96.9	90.7	100.0	-	93.4	-	-	87.9	-	87.9	76.0
Mediums	0	8	0	0	8	3	1	4	0	8	1	4	0	0	5	0	0	0	0	0	21
\% Mediums	0.0	6.0	0.0	-	5.7	33.3	14.3	10.5	-	14.8	1.5	4.1	0.0	-	3.0	-	-	0.0	-	0.0	5.0
Articulated Trucks	0	35	0	0	35	0	5	27	0	32	1	5	0	0	6	0	0	7	0	7	80
\% Articulated Trucks	0.0	26.1	0.0	-	24.8	0.0	71.4	71.1	-	59.3	1.5	5.2	0.0	-	3.6	-	-	12.1	-	12.1	19.0

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 97 N at 29 N and Charlie Lk Prov Pk access, winter
Site Code: 1
Start Date: 2015/01/21
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: 97 N at 29 N and Charlie Lk Prov Pk access, winter
Site Code: 1
2015/01/21
Page No: 10

Turning Movement Peak Hour Data (05:00 PM)

Start Time	Alaska Hwy 97 Southbound					Scale, Park and frnt rd accessWestbound					Alaska Hwy 97 Northbound					Hwy 29 Eastbound					Int. Total
	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	
05:00 PM	1	66	2	0	69	3	0	3	0	6	42	38	9	0	89	2	0	36	0	38	202
05:15 PM	1	47	0	0	48	3	0	4	0	7	37	50	5	0	92	0	1	24	0	25	172
05:30 PM	0	64	3	0	67	2	3	0	0	5	32	29	4	0	65	4	0	17	0	21	158
05:45 PM	1	66	0	0	67	1	1	5	0	7	23	39	4	0	66	0	0	14	0	14	154
Total	3	243	5	0	251	9	4	12	0	25	134	156	22	0	312	6	1	91	0	98	686
Approach \%	1.2	96.8	2.0	0.0	-	36.0	16.0	48.0	0.0	-	42.9	50.0	7.1	0.0	-	6.1	1.0	92.9	0.0	-	-
Total \%	0.4	35.4	0.7	0.0	36.6	1.3	0.6	1.7	0.0	3.6	19.5	22.7	3.2	0.0	45.5	0.9	0.1	13.3	0.0	14.3	-
PHF	0.750	0.920	0.417	0.000	0.909	0.750	0.333	0.600	0.000	0.893	0.798	0.780	0.611	0.000	0.848	0.375	0.250	0.632	0.000	0.645	0.849
Lights	1	181	4	0	186	8	1	1	0	10	129	146	22	0	297	5	1	84	0	90	583
\% Lights	33.3	74.5	80.0	-	74.1	88.9	25.0	8.3	-	40.0	96.3	93.6	100.0	-	95.2	83.3	100.0	92.3	-	91.8	85.0
Mediums	2	14	0	0	16	0	2	6	0	8	4	5	0	0	9	0	0	5	0	5	38
\% Mediums	66.7	5.8	0.0	-	6.4	0.0	50.0	50.0	-	32.0	3.0	3.2	0.0	-	2.9	0.0	0.0	5.5	-	5.1	5.5
Articulated Trucks	0	48	1	0	49	1	1	5	0	7	1	5	0	0	6	1	0	2	0	3	65
\% Articulated Trucks	0.0	19.8	20.0	-	19.5	11.1	25.0	41.7	-	28.0	0.7	3.2	0.0	-	1.9	16.7	0.0	2.2	-	3.1	9.5

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 97 N at 29 N and Charlie Lk Prov Pk access, winter
Site Code: 1
Start Date: 2015/01/21
Page No: 11

Turning Movement Peak Hour Data Plot (05:00 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4
250-819-2527 paul@peaktraffic.ca
Count Name: 116 Lower Cache, winter Site Code: 6
Start Date: 2015/01/26
Page No:

Turning Movement Data

Start Time	Turning Movement Data												
	Alaska Hwy 97 Southbound				Alaska Hwy 97Northbound				116 Lower Cache Rd Eastbound				Int. Total
	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	
05:00 AM	4	0	0	4	0	17	0	17	0	0	0	0	21
05:15 AM	2	0	0	2	0	24	0	24	0	0	0	0	26
05:30 AM	6	0	0	6	0	15	0	15	0	0	0	0	21
05:45 AM	5	0	0	5	0	23	0	23	0	0	0	0	28
Hourly Total	17	0	0	17	0	79	0	79	0	0	0	0	96
06:00 AM	7	0	0	7	0	37	0	37	0	0	0	0	44
06:15 AM	17	0	0	17	0	53	0	53	0	0	0	0	70
06:30 AM	8	0	0	8	0	47	0	47	0	1	0	1	56
06:45 AM	17	0	0	17	0	34	0	34	0	2	0	2	53
Hourly Total	49	0	0	49	0	171	0	171	0	3	0	3	223
07:00 AM	14	0	0	14	0	45	0	45	0	1	0	1	60
07:15 AM	20	0	0	20	0	68	0	68	0	0	0	0	88
07:30 AM	7	0	0	7	0	70	0	70	0	0	0	0	77
07:45 AM	10	0	0	10	1	50	0	51	0	0	0	0	61
Hourly Total	51	0	0	51	1	233	0	234	0	1	0	1	286
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
11:00 AM	23	0	0	23	0	32	0	32	0	0	0	0	55
11:15 AM	24	0	0	24	0	32	0	32	0	1	0	1	57
11:30 AM	31	0	0	31	0	36	0	36	1	1	0	2	69
11:45 AM	33	0	0	33	1	26	0	27	0	0	0	0	60
Hourly Total	111	0	0	111	1	126	0	127	1	2	0	3	241
12:00 PM	30	0	0	30	0	22	0	22	0	1	0	1	53
12:15 PM	21	0	0	21	0	20	0	20	0	0	0	0	41
12:30 PM	35	0	0	35	0	25	0	25	0	1	0	1	61
12:45 PM	32	0	0	32	0	19	0	19	0	0	0	0	51
Hourly Total	118	0	0	118	0	86	0	86	0	2	0	2	206
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
04:00 PM	43	0	0	43	1	16	0	17	0	2	0	2	62
04:15 PM	45	0	0	45	0	41	0	41	0	2	0	2	88
04:30 PM	51	0	0	51	0	18	0	18	0	0	0	0	69
04:45 PM	44	0	0	44	1	25	0	26	0	1	0	1	71
Hourly Total	183	0	0	183	2	100	0	102	0	5	0	5	290
05:00 PM	40	0	0	40	0	18	0	18	0	0	0	0	58
05:15 PM	39	0	0	39	1	24	0	25	0	0	0	0	64
05:30 PM	60	0	0	60	1	22	0	23	0	0	0	0	83
05:45 PM	61	1	0	62	2	19	0	21	0	0	0	0	83
Hourly Total	200	1	0	201	4	83	0	87	0	0	0	0	288
06:00 PM	67	0	0	67	0	17	0	17	0	0	0	0	84

06:15 PM	43	1	0	44	1	25	0	26	0	0	0	0	70
06:30 PM	38	0	0	38	0	18	0	18	0	0	0	0	56
06:45 PM	40	0	0	40	0	13	0	13	0	0	0	0	53
Hourly Total	188	1	0	189	1	73	0	74	0	0	0	0	263
07:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	917	2	0	919	9	951	0	960	1	13	0	14	1893
Approach \%	99.8	0.2	0.0	-	0.9	99.1	0.0	-	7.1	92.9	0.0	-	-
Total \%	48.4	0.1	0.0	48.5	0.5	50.2	0.0	50.7	0.1	0.7	0.0	0.7	-
Lights	629	1	0	630	9	653	0	662	0	11	0	11	1303
\% Lights	68.6	50.0	-	68.6	100.0	68.7	-	69.0	0.0	84.6	-	78.6	68.8
Mediums	78	0	0	78	0	85	0	85	0	1	0	1	164
\% Mediums	8.5	0.0	-	8.5	0.0	8.9	-	8.9	0.0	7.7	-	7.1	8.7
Articulated Trucks	210	1	0	211	0	213	0	213	1	1	0	2	426
\% Articulated Trucks	22.9	50.0	-	23.0	0.0	22.4	-	22.2	100.0	7.7	-	14.3	22.5

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 116 Lower Cache, winter Site Code: 6
Start Date: 2015/01/26
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: 116 Lower Cache, winter Site Code: 6
Start Date: 2015/01/26
250-819-2527 paul@peaktraffic.ca
Page No: 4

Turning Movement Peak Hour Data (07:00 AM)

Start Time	Alaska Hwy 97 Southbound				Alaska Hwy 97 Northbound				116 Lower Cache Rd Eastbound				Int. Total
	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	
07:00 AM	14	0	0	14	0	45	0	45	0	1	0	1	60
07:15 AM	20	0	0	20	0	68	0	68	0	0	0	0	88
07:30 AM	7	0	0	7	0	70	0	70	0	0	0	0	77
07:45 AM	10	0	0	10	1	50	0	51	0	0	0	0	61
Total	51	0	0	51	1	233	0	234	0	1	0	1	286
Approach \%	100.0	0.0	0.0	-	0.4	99.6	0.0	-	0.0	100.0	0.0	-	-
Total \%	17.8	0.0	0.0	17.8	0.3	81.5	0.0	81.8	0.0	0.3	0.0	0.3	-
PHF	0.638	0.000	0.000	0.638	0.250	0.832	0.000	0.836	0.000	0.250	0.000	0.250	0.813
Lights	38	0	0	38	1	194	0	195	0	1	0	1	234
\% Lights	74.5	-	-	74.5	100.0	83.3	-	83.3	-	100.0	-	100.0	81.8
Mediums	6	0	0	6	0	7	0	7	0	0	0	0	13
\% Mediums	11.8	-	-	11.8	0.0	3.0	-	3.0	-	0.0	-	0.0	4.5
Articulated Trucks	7	0	0	7	0	32	0	32	0	0	0	0	39
\% Articulated Trucks	13.7	-	-	13.7	0.0	13.7	-	13.7	-	0.0	-	0.0	13.6

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 116 Lower Cache, winter Site Code: 6
Start Date: 2015/01/26
Page No: 5

Turning Movement Peak Hour Data Plot (07:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: 116 Lower Cache, winter Site Code: 6
Start Date: 2015/01/26
250-819-2527 paul@peaktraffic.ca
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Turning Movement Peak Hour Data (11:00 AM)												
	Alaska Hwy 97 Southbound				Alaska Hwy 97 Northbound				116 Lower Cache Rd Eastbound				Int. Total
	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	
11:00 AM	23	0	0	23	0	32	0	32	0	0	0	0	55
11:15 AM	24	0	0	24	0	32	0	32	0	1	0	1	57
11:30 AM	31	0	0	31	0	36	0	36	,	1	0	2	69
11:45 AM	33	0	0	33	1	26	0	27	0	0	0	0	60
Total	111	0	0	111	1	126	0	127	1	2	0	3	241
Approach \%	100.0	0.0	0.0	-	0.8	99.2	0.0	-	33.3	66.7	0.0	-	-
Total \%	46.1	0.0	0.0	46.1	0.4	52.3	0.0	52.7	0.4	0.8	0.0	1.2	-
PHF	0.841	0.000	0.000	0.841	0.250	0.875	0.000	0.882	0.250	0.500	0.000	0.375	0.873
Lights	50	0	0	50	1	66	0	67	0	1	0	1	118
\% Lights	45.0	-	-	45.0	100.0	52.4	-	52.8	0.0	50.0	-	33.3	49.0
Mediums	15	0	0	15	0	9	0	9	0	1	0	1	25
\% Mediums	13.5	-	-	13.5	0.0	7.1	-	7.1	0.0	50.0	-	33.3	10.4
Articulated Trucks	46	0	0	46	0	51	0	51	1	0	0	1	98
\% Articulated Trucks	41.4	-	-	41.4	0.0	40.5	-	40.2	100.0	0.0	-	33.3	40.7

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 116 Lower Cache, winter Site Code: 6
Start Date: 2015/01/26
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd

Kamloops, British Columbia, Canada V2B 1P4
Count Name: 116 Lower Cache, winter Site Code: 6
Start Date: 2015/01/26
250-819-2527 paul@peaktraffic.ca
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound				Alaska Hwy 97 Northbound				116 Lower Cache Rd Eastbound				Int. Total
	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	
12:00 PM	30	0	0	30	0	22	0	22	0	1	0	1	53
12:15 PM	21	0	0	21	0	20	0	20	0	0	0	0	41
12:30 PM	35	0	0	35	0	25	0	25	0	1	0	1	61
12:45 PM	32	0	0	32	0	19	0	19	0	0	0	0	51
Total	118	0	0	118	0	86	0	86	0	2	0	2	206
Approach \%	100.0	0.0	0.0	-	0.0	100.0	0.0	-	0.0	100.0	0.0	-	-
Total \%	57.3	0.0	0.0	57.3	0.0	41.7	0.0	41.7	0.0	1.0	0.0	1.0	-
PHF	0.843	0.000	0.000	0.843	0.000	0.860	0.000	0.860	0.000	0.500	0.000	0.500	0.844
Lights	65	0	0	65	0	48	0	48	0	1	0	1	114
\% Lights	55.1	-	-	55.1	-	55.8	-	55.8	-	50.0	-	50.0	55.3
Mediums	10	0	0	10	0	8	0	8	0	0	0	0	18
\% Mediums	8.5	-	-	8.5	-	9.3	-	9.3	-	0.0	-	0.0	8.7
Articulated Trucks	43	0	0	43	0	30	0	30	0	1	0	1	74
\% Articulated Trucks	36.4	-	-	36.4	-	34.9	-	34.9	-	50.0	-	50.0	35.9

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 116 Lower Cache, winter Site Code: 6
Start Date: 2015/01/26
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd

Kamloops, British Columbia, Canada V2B 1P4
Count Name: 116 Lower Cache, winter Site Code: 6
Start Date: 2015/01/26
250-819-2527 paul@peaktraffic.ca
Page No: 10

Turning Movement Peak Hour Data (05:30 PM)

Start Time	Alaska Hwy 97 Southbound				Alaska Hwy 97 Northbound				116 Lower Cache Rd Eastbound				Int. Total
	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	
05:30 PM	60	0	0	60	1	22	0	23	0	0	0	0	83
05:45 PM	61	1	0	62	2	19	0	21	0	0	0	0	83
06:00 PM	67	0	0	67	0	17	0	17	0	0	0	0	84
06:15 PM	43	1	0	44	1	25	0	26	0	0	0	0	70
Total	231	2	0	233	4	83	0	87	0	0	0	0	320
Approach \%	99.1	0.9	0.0	-	4.6	95.4	0.0	-	NaN	NaN	NaN	-	-
Total \%	72.2	0.6	0.0	72.8	1.3	25.9	0.0	27.2	0.0	0.0	0.0	0.0	-
PHF	0.862	0.500	0.000	0.869	0.500	0.830	0.000	0.837	0.000	0.000	0.000	0.000	0.952
Lights	184	1	0	185	4	53	0	57	0	0	0	0	242
\% Lights	79.7	50.0	-	79.4	100.0	63.9	-	65.5	-	-	-	-	75.6
Mediums	11	0	0	11	0	10	0	10	0	0	0	0	21
\% Mediums	4.8	0.0	-	4.7	0.0	12.0	-	11.5	-	-	-	-	6.6
Articulated Trucks	36	1	0	37	0	20	0	20	0	0	0	0	57
\% Articulated Trucks	15.6	50.0	-	15.9	0.0	24.1	-	23.0	-	-	-	-	17.8

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 116 Lower Cache, winter Site Code: 6
Start Date: 2015/01/26
Page No: 11

Turning Movement Peak Hour Data Plot (05:30 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd

Kamloops, British Columbia, Canada V2B 1P4

Count Name: 114 Montney Hwy, winter Site Code: 4
Start Date: 2015/01/28
Page No: 1

Start Time	Turning Movement Data																				
	Alaska Hwy 97 Southbound					114 Montney Hwy Westbound					Alaska Hwy 97 Northbound					Access Eastbound					Int. Total
	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	
05:00 AM	0	2	0	0	2	3	0	0	0	3	0	11	0	0	11	0	0	0	0	0	16
05:15 AM	0	2	0	0	2	0	0	1	0	1	0	16	0	0	16	0	0	0	0	0	19
05:30 AM	0	4	0	0	4	0	0	0	0	0	0	16	0	0	16	0	0	0	0	0	20
05:45 AM	0	5	0	0	5	0	0	1	0	1	0	25	1	0	26	0	0	0	0	0	32
Hourly Total	0	13	0	0	13	3	0	2	0	5	0	68	1	0	69	0	0	0	0	0	87
06:00 AM	0	16	0	0	16	1	0	0	0	1	0	26	0	0	26	0	0	0	0	0	43
06:15 AM	0	13	0	0	13	2	0	2	0	4	0	44	2	0	46	0	0	0	0	0	63
06:30 AM	0	13	0	0	13	4	0	3	0	7	0	27	1	0	28	0	0	0	0	0	48
06:45 AM	0	12	0	0	12	2	0	2	0	4	0	29	2	0	31	0	0	0	0	0	47
Hourly Total	0	54	0	0	54	9	0	7	0	16	0	126	5	0	131	0	0	0	0	0	201
07:00 AM	0	11	0	0	11	0	0	2	0	2	0	43	0	0	43	0	0	0	0	0	56
07:15 AM	0	23	0	0	23	4	0	3	0	7	0	57	0	0	57	0	0	1	0	1	88
07:30 AM	0	16	0	0	16	3	0	4	0	7	0	72	1	0	73	0	0	0	0	0	96
07:45 AM	1	18	0	0	19	3	0	4	0	7	0	47	1	0	48	0	0	0	0	0	74
Hourly Total	1	68	0	0	69	10	0	13	0	23	0	219	2	0	221	0	0	1	0	1	314
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11:00 AM	1	19	0	0	20	0	0	1	0	1	0	27	0	0	27	0	0	0	0	0	48
11:15 AM	1	15	0	0	16	3	0	2	0	5	0	36	1	0	37	0	0	0	0	0	58
11:30 AM	0	21	0	0	21	0	0	0	0	0	1	30	1	0	32	0	0	0	0	0	53
11:45 AM	1	25	0	0	26	0	0	1	0	1	0	27	1	0	28	0	0	0	0	0	55
Hourly Total	3	80	0	0	83	3	0	4	0	7	1	120	3	0	124	0	0	0	0	0	214
12:00 PM	2	36	0	0	38	0	0	1	0	1	0	27	1	0	28	0	0	0	0	0	67
12:15 PM	0	28	0	0	28	0	0	0	0	0	0	22	1	0	23	0	0	0	0	0	51
12:30 PM	0	27	0	0	27	2	0	2	0	4	0	27	1	0	28	0	0	0	0	0	59
12:45 PM	0	36	0	0	36	1	0	1	0	2	0	18	1	0	19	0	0	0	0	0	57
Hourly Total	2	127	0	0	129	3	0	4	0	7	0	94	4	0	98	0	0	0	0	0	234
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
04:00 PM	3	49	0	0	52	1	0	0	0	1	0	32	2	0	34	0	0	0	0	0	87
04:15 PM	0	46	0	0	46	0	0	0	0	0	0	29	3	0	32	0	0	0	0	0	78
04:30 PM	2	48	0	0	50	2	0	1	0	3	0	22	1	0	23	0	0	0	0	0	76
04:45 PM	2	43	0	0	45	0	0	1	0	1	0	18	0	0	18	0	0	0	0	0	64
Hourly Total	7	186	0	0	193	3	0	2	0	5	0	101	6	0	107	0	0	0	0	0	305
05:00 PM	2	41	0	0	43	1	0	0	0	1	0	30	1	0	31	0	0	0	0	0	75
05:15 PM	1	57	0	0	58	1	0	0	0	1	1	29	3	0	33	0	0	0	0	0	92
05:30 PM	1	48	0	0	49	1	0	0	0	1	0	15	5	0	20	0	0	0	0	0	70
05:45 PM	1	42	0	0	43	1	0	1	1	3	0	22	3	0	25	0	0	0	0	0	71
Hourly Total	5	188	0	0	193	4	0	1	1	6	1	96	12	0	109	0	0	0	0	0	308
06:00 PM	2	69	0	0	71	0	0	1	0	1	0	11	4	0	15	0	0	0	0	0	87

06:15 PM	0	72	0	0	72	0	0	0	0	0	0	22	2	0	24	0	0	0	0	0	96
06:30 PM	0	58	0	0	58	1	0	1	0	2	0	21	4	0	25	0	0	0	0	0	85
06:45 PM	3	29	0	0	32	2	0	1	0	3	0	18	1	0	19	0	0	0	0	0	54
Hourly Total	5	228	0	0	233	3	0	3	0	6	0	72	11	0	83	0	0	0	0	0	322
Grand Total	23	944	0	0	967	38	0	36	1	75	2	896	44	0	942	0	0	1	0	1	1985
Approach \%	2.4	97.6	0.0	0.0	-	50.7	0.0	48.0	1.3	-	0.2	95.1	4.7	0.0	-	0.0	0.0	100.0	0.0	-	-
Total \%	1.2	47.6	0.0	0.0	48.7	1.9	0.0	1.8	0.1	3.8	0.1	45.1	2.2	0.0	47.5	0.0	0.0	0.1	0.0	0.1	-
Lights	12	632	0	0	644	32	0	16	1	49	2	628	35	0	665	0	0	0	0	0	1358
\% Lights	52.2	66.9	-	-	66.6	84.2	-	44.4	100.0	65.3	100.0	70.1	79.5	-	70.6	-	-	0.0	-	0.0	68.4
Mediums	4	109	0	0	113	3	0	9	0	12	0	74	5	0	79	0	0	0	0	0	204
\% Mediums	17.4	11.5	-	-	11.7	7.9	-	25.0	0.0	16.0	0.0	8.3	11.4	-	8.4	-	-	0.0	-	0.0	10.3
Articulated Trucks	7	203	0	0	210	3	0	11	0	14	0	194	4	0	198	0	0	1	0	1	423
\% Articulated Trucks	30.4	21.5	-	-	21.7	7.9	-	30.6	0.0	18.7	0.0	21.7	9.1	-	21.0	-	-	100.0	-	100.0	21.3

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 114 Montney Hwy, winter Site Code: 4
Start Date: 2015/01/28
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4

Count Name: 114 Montney Hwy, winter Site Code: 4
Start Date: 2015/01/28
Page No: 4

Turning Movement Peak Hour Data (07:00 AM)

Start Time	Alaska Hwy 97 Southbound					114 Montney Hwy Westbound					Alaska Hwy 97 Northbound					Access Eastbound					Int. Total
	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	
07:00 AM	0	11	0	0	11	0	0	2	0	2	0	43	0	0	43	0	0	0	0	0	56
07:15 AM	0	23	0	0	23	4	0	3	0	7	0	57	0	0	57	0	0	1	0	1	88
07:30 AM	0	16	0	0	16	3	0	4	0	7	0	72	1	0	73	0	0	0	0	0	96
07:45 AM	1	18	0	0	19	3	0	4	0	7	0	47	1	0	48	0	0	0	0	0	74
Total	1	68	0	0	69	10	0	13	0	23	0	219	2	0	221	0	0	1	0	1	314
Approach \%	1.4	98.6	0.0	0.0	-	43.5	0.0	56.5	0.0	-	0.0	99.1	0.9	0.0	-	0.0	0.0	100.0	0.0	-	.
Total \%	0.3	21.7	0.0	0.0	22.0	3.2	0.0	4.1	0.0	7.3	0.0	69.7	0.6	0.0	70.4	0.0	0.0	0.3	0.0	0.3	
PHF	0.250	0.739	0.000	0.000	0.750	0.625	0.000	0.813	0.000	0.821	0.000	0.760	0.500	0.000	0.757	0.000	0.000	0.250	0.000	0.250	0.818
Lights	1	43	0	0	44	9	0	6	0	15	0	172	1	0	173	0	0	0	0	0	232
\% Lights	100.0	63.2	-	-	63.8	90.0	-	46.2	-	65.2	-	78.5	50.0	-	78.3	-	-	0.0	-	0.0	73.9
Mediums	0	3	0	0	3	1	0	4	0	5	0	15	1	0	16	0	0	0	0	0	24
\% Mediums	0.0	4.4	-	-	4.3	10.0	-	30.8	-	21.7	-	6.8	50.0	-	7.2	-	-	0.0	-	0.0	7.6
Articulated Trucks	0	22	0	0	22	0	0	3	0	3	0	32	0	0	32	0	0	1	0	1	58
\% Articulated Trucks	0.0	32.4	-	-	31.9	0.0	-	23.1	-	13.0	-	14.6	0.0	-	14.5	-	-	100.0	-	100.0	18.5

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 114 Montney Hwy, winter Site Code: 4
Start Date: 2015/01/28
Page No: 5

Turning Movement Peak Hour Data Plot (07:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4

Count Name: 114 Montney Hwy, winter Site Code: 4
Start Date: 2015/01/28
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Alaska Hwy 97 Southbound					114 Montney Hwy Westbound					Alaska Hwy 97 Northbound					Access Eastbound					Int. Total
	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	
11:00 AM	1	19	0	0	20	0	0	1	0	1	0	27	0	0	27	0	0	0	0	0	48
11:15 AM	1	15	0	0	16	3	0	2	0	5	0	36	1	0	37	0	0	0	0	0	58
11:30 AM	0	21	0	0	21	0	0	0	0	0	1	30	1	0	32	0	0	0	0	0	53
11:45 AM	1	25	0	0	26	0	0	1	0	1	0	27	1	0	28	0	0	0	0	0	55
Total	3	80	0	0	83	3	0	4	0	7	1	120	3	0	124	0	0	0	0	0	214
Approach \%	3.6	96.4	0.0	0.0	-	42.9	0.0	57.1	0.0	-	0.8	96.8	2.4	0.0	-	NaN	NaN	NaN	NaN	-	-
Total \%	1.4	37.4	0.0	0.0	38.8	1.4	0.0	1.9	0.0	3.3	0.5	56.1	1.4	0.0	57.9	0.0	0.0	0.0	0.0	0.0	-
PHF	0.750	0.800	0.000	0.000	0.798	0.250	0.000	0.500	0.000	0.350	0.250	0.833	0.750	0.000	0.838	0.000	0.000	0.000	0.000	0.000	0.922
Lights	1	40	0	0	41	2	0	1	0	3	1	67	3	0	71	0	0	0	,	0	115
\% Lights	33.3	50.0	-	-	49.4	66.7	-	25.0	-	42.9	100.0	55.8	100.0	-	57.3	-	-	-	-	-	53.7
Mediums	1	21	0	0	22	0	0	0	0	0	0	12	0	0	12	0	0	0	0	0	34
\% Mediums	33.3	26.3	-	-	26.5	0.0	-	0.0	-	0.0	0.0	10.0	0.0	-	9.7	-	-	-	-	-	15.9
Articulated Trucks	1	19	0	0	20	1	0	3	0	4	0	41	0	0	41	0	0	0	0	0	65
\% Articulated Trucks	33.3	23.8	-	-	24.1	33.3	-	75.0	-	57.1	0.0	34.2	0.0	-	33.1	-	-	-	-	-	30.4

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 114 Montney Hwy, winter Site Code: 4
Start Date: 2015/01/28
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4

Count Name: 114 Montney Hwy, winter Site Code: 4
Start Date: 2015/01/28
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound					114 Montney Hwy Westbound					Alaska Hwy 97Northbound					Access					Int. Total
	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	
12:00 PM	2	36	0	0	38	0	0	1	0	1	0	27	1	0	28	0	0	0	0	0	67
12:15 PM	0	28	0	0	28	0	0	0	0	0	0	22	1	0	23	0	0	0	0	0	51
12:30 PM	0	27	0	0	27	2	0	2	0	4	0	27	1	0	28	0	0	0	0	0	59
12:45 PM	0	36	0	0	36	1	0	1	0	2	0	18	1	0	19	0	0	0	0	0	57
Total	2	127	0	0	129	3	0	4	0	7	0	94	4	0	98	0	0	0	0	0	234
Approach \%	1.6	98.4	0.0	0.0	-	42.9	0.0	57.1	0.0	-	0.0	95.9	4.1	0.0	-	NaN	NaN	NaN	NaN	-	-
Total \%	0.9	54.3	0.0	0.0	55.1	1.3	0.0	1.7	0.0	3.0	0.0	40.2	1.7	0.0	41.9	0.0	0.0	0.0	0.0	0.0	-
PHF	0.250	0.882	0.000	0.000	0.849	0.375	0.000	0.500	0.000	0.438	0.000	0.870	1.000	0.000	0.875	0.000	0.000	0.000	0.000	0.000	0.873
Lights	2	66	0	0	68	3	0	1	0	4	0	58	3	0	61	0	0	0	0	0	133
\% Lights	100.0	52.0	-	-	52.7	100.0	-	25.0	-	57.1	-	61.7	75.0	-	62.2	-	-	-	-	-	56.8
Mediums	0	14	0	0	14	0	0	1	0	1	0	10	0	0	10	0	0	0	0	0	25
\% Mediums	0.0	11.0	-	-	10.9	0.0	-	25.0	-	14.3	-	10.6	0.0	-	10.2	-	-	-	-	-	10.7
Articulated Trucks	0	47	0	0	47	0	0	2	0	2	0	26	1	0	27	0	0	0	0	0	76
\% Articulated Trucks	0.0	37.0	-	-	36.4	0.0	-	50.0	-	28.6	-	27.7	25.0	-	27.6	-	-	-	-	-	32.5

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 114 Montney Hwy, winter Site Code: 4
Start Date: 2015/01/28
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: 114 Montney Hwy, winter Site Code: 4
Start Date: 2015/01/28
250-819-2527 paul@peaktraffic.ca
Page No: 10

Turning Movement Peak Hour Data (05:45 PM)

Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Int. Total
05:45 PM	1	42	0	0	43	1	0	1	1	3	0	22	3	0	25	0	0	0	0	0	71
06:00 PM	2	69	0	0	71	0	0	1	0	1	0	11	4	0	15	0	0	0	0	0	87
06:15 PM	0	72	0	0	72	0	0	0	0	0	0	22	2	0	24	0	0	0	0	0	96
06:30 PM	0	58	0	0	58	1	0	1	0	2	0	21	4	0	25	0	0	0	0	0	85
Total	3	241	0	0	244	2	0	3	1	6	0	76	13	0	89	0	0	0	0	0	339
Approach \%	1.2	98.8	0.0	0.0	-	33.3	0.0	50.0	16.7	-	0.0	85.4	14.6	0.0	-	NaN	NaN	NaN	NaN	-	-
Total \%	0.9	71.1	0.0	0.0	72.0	0.6	0.0	0.9	0.3	1.8	0.0	22.4	3.8	0.0	26.3	0.0	0.0	0.0	0.0	0.0	-
PHF	0.375	0.837	0.000	0.000	0.847	0.500	0.000	0.750	0.250	0.500	0.000	0.864	0.813	0.000	0.890	0.000	0.000	0.000	0.000	0.000	0.883
Lights	3	192	0	0	195	1	0	2	1	4	0	59	8	0	67	0	0	0	0	0	266
\% Lights	100.0	79.7	-	-	79.9	50.0	-	66.7	100.0	66.7	-	77.6	61.5	-	75.3	-	-	-	-	-	78.5
Mediums	0	20	0	0	20	1	0	1	0	2	0	7	2	0	9	0	0	0	0	0	31
\% Mediums	0.0	8.3	-	-	8.2	50.0	-	33.3	0.0	33.3	-	9.2	15.4	-	10.1	-	-	-	-	-	9.1
Articulated Trucks	0	29	0	0	29	0	0	0	0	0	0	10	3	0	13	0	0	0	0	0	42
\% Articulated Trucks	0.0	12.0	-	-	11.9	0.0	-	0.0	0.0	0.0	-	13.2	23.1	-	14.6	-	-	-	-	-	12.4

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: 114 Montney Hwy, winter Site Code: 4
Start Date: 2015/01/28
Page No: 11

Turning Movement Peak Hour Data Plot (05:45 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Pink Mountain \#1, winte Site Code: 12
Start Date: 2015/01/23
Page No: 1

05:30 PM	0	18	0	0	18	0	0	0	0	0	0	24	0	0	24	0	0	0	0	0	42
05:45 PM	0	19	0	0	19	0	0	0	0	0	3	38	1	0	42	0	1	0	0	1	62
Hourly Total	0	59	0	0	59	0	0	0	0	0	3	80	1	0	84	0	1	0	0	1	144
06:00 PM	0	15	0	0	15	0	0	0	0	0	0	23	2	0	25	0	0	0	0	0	40
06:15 PM	0	13	1	0	14	0	0	0	0	0	3	18	0	0	21	0	0	0	0	0	35
06:30 PM	0	21	0	0	21	0	0	0	0	0	0	27	2	0	29	0	0	0	0	0	50
06:45 PM	0	13	0	0	13	0	0	0	0	0	0	11	0	0	11	0	0	1	0	1	25
Hourly Total	0	62	1	0	63	0	0	0	0	0	3	79	4	0	86	0	0	1	0	1	150
07:00 PM	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Grand Total	1	451	1	0	453	1	1	2	0	4	7	404	6	0	417	0	1	2	0	3	877
Approach \%	0.2	99.6	0.2	0.0	-	25.0	25.0	50.0	0.0	-	1.7	96.9	1.4	0.0	-	0.0	33.3	66.7	0.0	-	-
Total \%	0.1	51.4	0.1	0.0	51.7	0.1	0.1	0.2	0.0	0.5	0.8	46.1	0.7	0.0	47.5	0.0	0.1	0.2	0.0	0.3	-
Lights	0	296	1	0	297	1	0	1	0	2	5	249	6	0	260	0	1	2	0	3	562
\% Lights	0.0	65.6	100.0	-	65.6	100.0	0.0	50.0	-	50.0	71.4	61.6	100.0	-	62.4	-	100.0	100.0	-	100.0	64.1
Mediums	0	35	0	0	35	0	1	1	0	2	2	34	0	0	36	0	0	0	0	0	73
\% Mediums	0.0	7.8	0.0	-	7.7	0.0	100.0	50.0	-	50.0	28.6	8.4	0.0	-	8.6	-	0.0	0.0	-	0.0	8.3
Articulated Trucks	1	120	0	0	121	0	0	0	0	0	0	121	0	0	121	0	0	0	0	0	242
\% Articulated Trucks	100.0	26.6	0.0	-	26.7	0.0	0.0	0.0	-	0.0	0.0	30.0	0.0	-	29.0	-	0.0	0.0	-	0.0	27.6

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Pink Mountain \#1, winter Site Code: 12
Start Date: 2015/01/23
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4
Count Name: Pink Mountain \#1, winter Site Code: 12

2015/01/23
250-819-2527 paul@peaktraffic.ca
Page No: 4

Turning Movement Peak Hour Data (06:30 AM)

Start Time	Alaska Hwy 97Southbound					Pink Mountain \#1 accessWestbound					Alaska Hwy 97 Northbound					Pink Mountain \#1 access					Int. Total
	Left	Thru	$\begin{aligned} & \text { outhbour } \\ & \text { Right } \\ & \hline \end{aligned}$	U-Turn	App. Total	Left	Thru	$\begin{aligned} & \text { lestboun } \\ & \text { Right } \\ & \hline \end{aligned}$	U-Turn	App. Total	Left	Thru	$\begin{aligned} & \text { orthbour } \\ & \text { Right } \\ & \hline \end{aligned}$	U-Turn	App. Total	Left		$\begin{aligned} & \text { Eastboun } \\ & \text { Right } \\ & \hline \end{aligned}$	U-Turn	App. Total	
06:30 AM	0	16	0	0	16	0	0	0	0	0	0	12	1	0	13	0	0	0	0	0	29
06:45 AM	0	17	0	0	17	0	0	0	0	0	0	12	0	0	12	0	0	0	0	0	29
07:00 AM	0	33	0	0	33	0	0	0	0	0	0	13	0	0	13	0	0	0	0	0	46
07:15 AM	0	18	0	0	18	0	0	0	0	0	0	7	0	0	7	0	0	0	0	0	25
Total	0	84	0	0	84	0	0	0	0	0	0	44	1	0	45	0	0	0	0	0	129
Approach \%	0.0	100.0	0.0	0.0	-	NaN	NaN	NaN	NaN	-	0.0	97.8	2.2	0.0	-	NaN	NaN	NaN	NaN	-	-
Total \%	0.0	65.1	0.0	0.0	65.1	0.0	0.0	0.0	0.0	0.0	0.0	34.1	0.8	0.0	34.9	0.0	0.0	0.0	0.0	0.0	-
PHF	0.000	0.636	0.000	0.000	0.636	0.000	0.000	0.000	0.000	0.000	0.000	0.846	0.250	0.000	0.865	0.000	0.000	0.000	0.000	0.000	0.701
Lights	0	77	0	0	77	0	0	0	0	0	0	20	1	0	21	0	0	0	0	0	98
\% Lights	-	91.7	-	-	91.7	-	-	-	-	-	-	45.5	100.0	-	46.7	-	-	-	-	-	76.0
Mediums	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	2
\% Mediums	-	0.0	-	-	0.0	-	-	-	-	-	-	4.5	0.0	-	4.4	-	-	-	-	-	1.6
Articulated Trucks	0	7	0	0	7	0	0	0	0	0	0	22	0	0	22	0	0	0	0	0	29
\% Articulated Trucks	-	8.3	-	-	8.3	-	-	-	-	-	-	50.0	0.0	-	48.9	-	-	-	-	-	22.5

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Pink Mountain \#1, winter Site Code: 12
Start Date: 2015/01/23
Page No: 5

Turning Movement Peak Hour Data Plot (06:30 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4
Count Name: Pink Mountain \#1, winter Site Code: 12
: 2015/01/23
250-819-2527 paul@peaktraffic.ca
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Alaska Hwy 97 Southbound					Pink Mountain \#1 access Westbound					Alaska Hwy 97 Northbound					Pink Mountain \#1 access Eastbound					Int. Total
	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	
11:00 AM	0	4	0	0	4	1	0	0	0	1	1	5	0	0	6	0	0	0	0	0	11
11:15 AM	0	21	0	0	21	0	0	0	0	0	0	20	0	0	20	0	0	0	0	0	41
11:30 AM	0	18	0	0	18	0	0	0	0	0	0	13	0	0	13	0	0	0	0	0	31
11:45 AM	0	12	0	0	12	0	0	0	0	0	0	12	0	0	12	0	0	0	0	0	24
Total	0	55	0	0	55	1	0	0	0	1	1	50	0	0	51	0	0	0	0	0	107
Approach \%	0.0	100.0	0.0	0.0	-	100.0	0.0	0.0	0.0	-	2.0	98.0	0.0	0.0	-	NaN	NaN	NaN	NaN	-	-
Total \%	0.0	51.4	0.0	0.0	51.4	0.9	0.0	0.0	0.0	0.9	0.9	46.7	0.0	0.0	47.7	0.0	0.0	0.0	0.0	0.0	\checkmark
PHF	0.000	0.655	0.000	0.000	0.655	0.250	0.000	0.000	0.000	0.250	0.250	0.625	0.000	0.000	0.638	0.000	0.000	0.000	0.000	0.000	0.652
Lights	0	23	0	0	23	1	0	0	0	1	1	15	0	0	16	0	0	0	0	0	40
\% Lights	-	41.8	-	-	41.8	100.0	-	-	-	100.0	100.0	30.0	-	-	31.4	-	-	-	-	-	37.4
Mediums	0	3	0	0	3	0	0	0	0	0	0	7	0	0	7	0	0	0	0	0	10
\% Mediums	-	5.5	-	-	5.5	0.0	-	-	-	0.0	0.0	14.0	-	-	13.7	-	-	-	-	-	9.3
Articulated Trucks	0	29	0	0	29	0	0	0	0	0	0	28	0	0	28	0	0	0	0	0	57
\% Articulated Trucks	-	52.7	-	-	52.7	0.0	-	-	-	0.0	0.0	56.0	-	-	54.9	-	-	-	-	-	53.3

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Pink Mountain \#1, winter Site Code: 12
Start Date: 2015/01/23
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Pink Mountain \#1, winter Site Code: 12
Start Date: 2015/01/23
250-819-2527 paul@peaktraffic.ca
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97Southbound					Pink Mountain \#1 accessWestbound					Alaska Hwy 97 Northbound					Pink Mountain \#1 access					Int. Total
	Left	Thru	$\begin{gathered} \text { outhbour } \\ \text { Right } \\ \hline \end{gathered}$	U-Turn	App. Total	Left	Thru	$\begin{aligned} & \text { lestboun } \\ & \text { Right } \\ & \hline \end{aligned}$	U-Turn	App. Total	Left	Thru	$\begin{aligned} & \text { orthbour } \\ & \text { Right } \\ & \hline \end{aligned}$	U-Turn	App. Total	Left		$\begin{aligned} & \text { Eastboun } \\ & \text { Right } \\ & \hline \end{aligned}$	U-Turn	App. Total	
12:00 PM	0	12	0	0	12	0	0	0	0	0	0	16	0	0	16	0	0	0	0	0	28
12:15 PM	1	15	0	0	16	0	1	1	0	2	0	17	0	0	17	0	0	0	0	0	35
12:30 PM	0	21	0	0	21	0	0	0	0	0	0	16	0	0	16	0	0	0	0	0	37
12:45 PM	0	21	0	0	21	0	0	0	0	0	0	11	0	0	11	0	0	0	0	0	32
Total	1	69	0	0	70	0	1	1	0	2	0	60	0	0	60	0	0	0	0	0	132
Approach \%	1.4	98.6	0.0	0.0	-	0.0	50.0	50.0	0.0	-	0.0	100.0	0.0	0.0	-	NaN	NaN	NaN	NaN	-	-
Total \%	0.8	52.3	0.0	0.0	53.0	0.0	0.8	0.8	0.0	1.5	0.0	45.5	0.0	0.0	45.5	0.0	0.0	0.0	0.0	0.0	-
PHF	0.250	0.821	0.000	0.000	0.833	0.000	0.250	0.250	0.000	0.250	0.000	0.882	0.000	0.000	0.882	0.000	0.000	0.000	0.000	0.000	0.892
Lights	0	47	0	0	47	0	0	1	0	1	0	30	0	0	30	0	0	0	0	0	78
\% Lights	0.0	68.1	-	-	67.1	-	0.0	100.0	-	50.0	-	50.0	-	-	50.0	-	-	-	-	-	59.1
Mediums	0	5	0	0	5	0	1	0	0	1	0	9	0	0	9	0	0	0	0	0	15
\% Mediums	0.0	7.2	-	-	7.1	-	100.0	0.0	-	50.0	-	15.0	-	-	15.0	-	-	-	-	-	11.4
Articulated Trucks	1	17	0	0	18	0	0	0	0	0	0	21	0	0	21	0	0	0	0	0	39
\% Articulated Trucks	100.0	24.6	-	-	25.7	-	0.0	0.0	-	0.0	-	35.0	-	-	35.0	-	-	-	-	-	29.5

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Pink Mountain \#1, winter Site Code: 12
Start Date: 2015/01/23
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Pink Mountain \#1, winter Site Code: 12
Start Date: 2015/01/23
Page No: 10

Turning Movement Peak Hour Data (05:45 PM)

Start Time	Alaska Hwy 97Southbound					Pink Mountain \#1 accessWestbound					Alaska Hwy 97 Northbound					Pink Mountain \#1 access					Int. Total
	Left	Thru	$\begin{gathered} \text { outhbour } \\ \text { Right } \\ \hline \end{gathered}$	U-Turn	App. Total	Left	Thru	$\begin{aligned} & \text { lestboun } \\ & \text { Right } \\ & \hline \end{aligned}$	U-Turn	App. Total	Left	Thru	$\begin{aligned} & \text { orthbour } \\ & \text { Right } \\ & \hline \end{aligned}$	U-Turn	App. Total	Left	Thru	$\begin{array}{r} \text { Eastboun } \\ \text { Right } \\ \hline \end{array}$	U-Turn	App. Total	
05:45 PM	0	19	0	0	19	0	0	0	0	0	3	38	1	0	42	0	1	0	0	1	62
06:00 PM	0	15	0	0	15	0	0	0	0	0	0	23	2	0	25	0	0	0	0	0	40
06:15 PM	0	13	1	0	14	0	0	0	0	0	3	18	0	0	21	0	0	0	0	0	35
06:30 PM	0	21	0	0	21	0	0	0	0	0	0	27	2	0	29	0	0	0	0	0	50
Total	0	68	1	0	69	0	0	0	0	0	6	106	5	0	117	0	1	0	0	1	187
Approach \%	0.0	98.6	1.4	0.0	-	NaN	NaN	NaN	NaN	-	5.1	90.6	4.3	0.0	-	0.0	100.0	0.0	0.0	-	-
Total \%	0.0	36.4	0.5	0.0	36.9	0.0	0.0	0.0	0.0	0.0	3.2	56.7	2.7	0.0	62.6	0.0	0.5	0.0	0.0	0.5	-
PHF	0.000	0.810	0.250	0.000	0.821	0.000	0.000	0.000	0.000	0.000	0.500	0.697	0.625	0.000	0.696	0.000	0.250	0.000	0.000	0.250	0.754
Lights	0	45	1	0	46	0	0	0	0	0	4	91	5	0	100	0	1	0	0	1	147
\% Lights	-	66.2	100.0	-	66.7	-	-	-	-	-	66.7	85.8	100.0	-	85.5	-	100.0	-	-	100.0	78.6
Mediums	0	0	0	0	0	0	0	0	0	0	2	3	0	0	5	0	0	0	0	0	5
\% Mediums	-	0.0	0.0	-	0.0	-	-	-	-	-	33.3	2.8	0.0	-	4.3	-	0.0	-	-	0.0	2.7
Articulated Trucks	0	23	0	0	23	0	0	0	0	0	0	12	0	0	12	0	0	0	0	0	35
\% Articulated Trucks	-	33.8	0.0	-	33.3	-	-	-	-	-	0.0	11.3	0.0	-	10.3	-	0.0	-	-	0.0	18.7

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Pink Mountain \#1, winter Site Code: 12
Start Date: 2015/01/23
Page No: 11

Turning Movement Peak Hour Data Plot (05:45 PM)

Report Summary

Time Period	Southbound									Westbound					Northbound									Eastbound					Southeastbound								
	Class.	L	T	R	HR	U	I	0	L	T	BR	R	U	1	0	L	BL	T	R	U	1	0	HL	L	T	R	U	1	0	HL	BL	BR	HR	U	1	0	Total
Peak 1	Lights	0	60	6	10	0	76	41	8	1	0	0	0	9	1	1	0	26	0	0	27	78	0	1	1	9	0	11	8	14	0	1	0	0	15	10	138
Specified Period	\%	0\%	90\%	100\%	100\%	0\%	92\%	68\%	100\%	100\%	\%	\%	0\%	100\%	100\%	100\%	\%	58\%	\%	\%	59\%	92\%	\%	100\%	100\%	100\%	0\%	100\%	100\%	100\%	0\%	100\%	\%	\%	100\%	100\%	84\%
05:00 AM - 08:15 AM	Mediums	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
One Hour Peak	\%	0\%	\%	\%	\%	0\%	0\%	7\%	0\%	\%	\%	\%	0\%	\%	\%	\%	\%	9\%	\%	\%\%	9\%	\%	\%\%	0\%	\%	0\%	0\%	0\%	\%	\%	\%	\%	0\%	0\%	\%	\%	${ }^{2 \%}$
06:30 AM - 07:30 AM	ticulated Truc	0	7	0	0	0	7	15	0	0	-	0	0	0	0	0	0	15	0	0	15	7	0	0	0	0	-	0	0	0	0	0	0	0	0	0	22
	\%	0\%	10\%	\%	\%	0\%	8%	25\%	0\%	\%	0\%	\%	0\%	\%	\%	\%	\%	33\%	\%	\%	33\%	8%	0\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	0\%	\%	\%	\%	13\%
	Total	0	67	6	10	0	83	60	8	1	0	0	0	9	1	1	0	45	0	0	46	85	0	1	1	9	0	11	8	14	0	1	0	0	15	10	164
	PHF	0	0.6	0.38	0.5	0	0.72	0.83	0.5	0.25	0	0	0	0.45	0.25	0.25	0	0.87	0	0	0.88	0.64	0	0.25	0.25	0.56	0	0.55	0.5	0.7	0	0.25	0	0	0.75	0.5	0.82
	Approach \%						51\%	37\%						5\%	1\%						28\%	52\%						7\%	5\%						9\%	6\%	
Peak 2	Lights	1	21	0	3	0	25	17	0	1	0	0	0	1	4	1	0	15	2	0	18	28	0	0	1	6	0	7	2	2	0	1	0	0	3	3	54
Specified Period	\%	100\%	46\%	\%	100\%	0\%	50\%	35\%	0\%	100\%	\%	\%	0\%	50\%	100\%	50\%	\%	33\%	100\%	\%	37\%	51\%	0\%	\%	100\%	100\%	\%	88\%	67\%	100\%	\%	50\%	0\%	0\%	75\%	100\%	48\%
11:00 AM - 12:00 PM	Mediums	0	10	0	0	0	10	8	0	0	0	0	0	0	0	0	0	7	0	0	7	10	0	1	0	0	0	1	0	0	0	0	0	0	0	0	18
One Hour Peak	\%	\%	22\%	\%	\%	0\%	20\%	17\%	0\%	\%	\%	\%	\%	\%	\%	\%	\%	16\%	\%	0\%	14\%	18\%	\%	100\%	\%	\%	\%	13\%	\%	\%	\%	\%	0\%	\%	\%	\%	16\%
11:00 AM - 12:00 PM	ticulated Truc	0	15	0	0	0	15	23	1	0	0	0	0	1	0	1	0	23	0	0	24	17	0	0	0	0	0	0	1	0	0	1	0	0	1	0	41
	\%	0\%	33\%	\%	\%	0\%	30\%	48\%	100\%	\%	0\%	\%	0\%	50\%	\%	50\%	\%	51\%	\%	0\%	49\%	31\%	0\%	\%	\%	\%	0\%	0\%	33\%	\%	\%	50\%	0\%	\%	25\%	\%	36\%
	Total	1	46	0	3	0	50	48	1	1	0	0	0	2	4	2	0	45	2	0	49	55	0	1	1	6	0	8	3	2	0	2	0	0	4	3	113
	PHF	0.25	0.57	0	0.38	0	0.62	0.57	0.25	0.25	0	0	0	0.5	0.5	0.25	0	0.56	0.5	0	0.61	0.62	0	0.25	0.25	0.5	0	0.67	0.38	0.5	0	0.5	0	0	0.5	0.38	0.66
	Approach \%						44\%	42\%						2\%	4\%						43\%	49\%						7\%	3\%						4\%	3\%	
Peak 3	Lights	1	36	0	11	0	48	27	0	1	0	0	0	1	3	9	1	22	2	0	34	46	0	0	0	10	0	10	10	5	0	0	0	0	5	12	98
Specified Period	\%	100\%	67\%	\%\%	92\%	0\%	${ }^{72 \%}$	48\%	0\%	100\%	0\%	0\%	0\%	100\%	75\%	100\%	100\%	45\%	67\%	0\%	55\%	68\%	0\%	0\%	\%	71\%	0\%	67\%	100\%	83\%	0\%	\%	0\%	\%	83\%	92\%	65\%
12:00 PM - 01:15 PM	Mediums	0	2	0	0	0	2	15	0	0	0	0	0	0	0	0	0	13	0	0	13	4	0	1	0	2	0	3	0	1	0	-	0	0	1	0	19
One Hour Peak	\%	0\%	4\%	\%	\%	0\%	3\%	27\%	0\%	\%	\%	\%	0\%	\%	\%	\%	\%	27\%	\%	\%\%	21\%	6\%	0\%	100\%	0\%	14\%	0\%	20\%	0\%	17\%	\%	\%	0\%	0\%	17\%	0\%	13\%
12:00 PM - 01:00 PM	ticulated Truc	0	16	0	1	0	17	14	0	0	0	0	0	0	1	0	0	14	1	0	15	18	0	0	0	2	0	2	0	0	0	0	0	0	0	1	34
	\%	0\%	30\%	\%	8\%	0\%	25\%	25\%	0\%	\%	\%\%	\%	0\%	\%	25\%	\%	\%	29\%	33\%	\%	24\%	26\%	0\%	\%	\%	${ }^{14 \%}$	\%	13\%	0\%	\%	0\%	\%	0\%	0\%	\%	${ }^{8 \%}$	23\%
	Total	1	54	0	12	0	67	56	0	1	0	0	0	1	4	9	1	49	3	0	62	68	0	1	0	14	0	15	10	6	0	0	0	0	6	13	151
	PHF	0.25	0.71	0	0.6	0	0.76	0.74	0	0.25	0	0	0	0.25	0.5	0.75	0.25	0.77	0.38	0	0.82	0.81	0	0.25	0	0.58	0	0.62	0.62	0.75	0	0	0	0	0.75	0.54	0.84
	Approach \%						44\%	37\%						1\%	3\%						41%	45\%						10\%	7\%						4\%	\%	
Peak 4	Lights	9	28	0	19	0	56	78	3	5	0	0	0	8	23	24	0	59	8	0	91	44	0	5	5	7	0	17	29	14	1	6	0	0	21	19	193
Specified Period	\%	100\%	54\%	\%	95\%	0\%	69\%	83\%	100\%	100\%	\%	\%	\%	80\%	96\%	96\%	0\%	${ }^{82 \%}$	100\%	0\%	${ }^{87 \%}$	${ }^{64 \%}$	0\%	100\%	100\%	88\%	0\%	94\%	97\%	93\%	50\%	100\%	0\%	\%	91\%	95\%	${ }^{81 \%}$
04:00 PM - 07:15 PM	Mediums	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	1	1	1	,	0	0		0	3
One Hour Peak	\%	0\%	\%	\%	\%	0\%	0\%	1\%	0\%	\%	\%	0\%	0\%	\%	4\%	4\%	\%	\%	0\%	\%	1\%	\%	\%	\%	0\%	\%	0\%	0\%	3\%	7\%	50\%	\%	0\%	0\%	9\%	\%	1\%
05:45 PM - 06:45 PM	ticulated Truc	0	24	0	1	0	25	15	0	0	0	2	0	2	0	0	0	13	0	0	13	25	0	0	0	1	0	1	0	0	0	0	0	0	0	1	41
	\%	0\%	46\%	\%	5\%	\%	31\%	16\%	0\%	\%	\%\%	100\%	0\%	20\%	0\%	\%\%	\%	18\%	\%	0\%	12\%	36\%	0\%	0\%	\%	13\%	0\%	6\%	0\%	\%	\%	\%	0\%	0\%	0\%	5\%	17\%
	Total	9	52	0	20	0	81	94	3	5	0	2	0	10	24	25	0	72	8	0	105	69	0	5		8	0	18	30	15	2	6	0	0	23	20	237
	PHF	0.45	0.87	0	0.62	0	0.88	0.76	0.25	0.62	0	0.5	0	0.5	0.6	0.57	0	0.69	0.4	0	0.69	0.82	0	0.62	0.62	0.67	0	0.75	0.58	0.75	0.25	0.5	0	0	0.57	0.62	0.8
	Approach \%							40\%							10\%							29\%						8\%	13\%						10\%	8\%	

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Mile 63.5 (Red Creek) Road winter
Site Code: 3
Date: 2015/01/28
Page No: 1

Turning Movement Data

Start Time	Alaska Hwy 97 Southbound				Alaska Hwy 97 Northbound				Mile 63.5 (Red Creek) Road Eastbound				Int. Total
	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	
05:00 AM	5	0	0	5	0	11	0	11	0	1	0	1	17
05:15 AM	2	0	0	2	0	16	0	16	0	2	0	2	20
05:30 AM	3	0	0	3	0	15	0	15	0	1	0	1	19
05:45 AM	6	0	0	6	0	26	0	26	0	3	0	3	35
Hourly Total	16	0	0	16	0	68	0	68	0	7	0	7	91
06:00 AM	15	0	0	15	1	28	0	29	0	1	0	1	45
06:15 AM	17	0	0	17	0	44	0	44	0	3	0	3	64
06:30 AM	17	0	0	17	0	26	0	26	1	3	0	4	47
06:45 AM	14	1	0	15	1	28	0	29	0	1	0	1	45
Hourly Total	63	1	0	64	2	126	0	128	1	8	0	9	201
07:00 AM	11	0	0	11	0	39	0	39	2	4	0	6	56
07:15 AM	26	0	0	26	1	59	0	60	2	2	0	4	90
07:30 AM	19	0	0	19	0	68	0	68	1	3	0	4	91
07:45 AM	21	0	0	21	0	48	0	48	0	1	0	1	70
Hourly Total	77	0	0	77	1	214	0	215	5	10	0	15	307
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
11:00 AM	17	0	0	17	0	28	0	28	0	0	0	0	45
11:15 AM	17	0	0	17	0	36	0	36	0	0	0	0	53
11:30 AM	24	0	0	24	1	30	0	31	1	1	0	2	57
11:45 AM	23	0	0	23	0	28	0	28	0	1	0	1	52
Hourly Total	81	0	0	81	1	122	0	123	1	2	0	3	207
12:00 PM	36	0	0	36	0	30	0	30	0	0	0	0	66
12:15 PM	30	0	0	30	0	25	0	25	0	2	0	2	57
12:30 PM	22	0	0	22	0	25	0	25	0	2	0	2	49
12:45 PM	42	0	0	42	0	20	0	20	0	2	0	2	64
Hourly Total	130	0	0	130	0	100	0	100	0	6	0	6	236
01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0
04:00 PM	43	1	0	44	3	34	0	37	0	2	0	2	83
04:15 PM	48	0	0	48	0	32	0	32	0	0	0	0	80
04:30 PM	51	1	0	52	0	23	0	23	0	1	0	1	76
04:45 PM	36	2	0	38	2	19	0	21	0	1	0	1	60
Hourly Total	178	4	0	182	5	108	0	113	0	4	0	4	299
05:00 PM	39	0	0	39	2	31	0	33	0	0	0	0	72
05:15 PM	69	0	0	69	2	33	0	35	0	0	0	0	104
05:30 PM	44	2	0	46	6	22	0	28	0	1	0	1	75
05:45 PM	44	2	0	46	4	24	0	28	0	3	0	3	77

Hourly Total	196	4	0	200	14	110	0	124	0	4	0	4	328
06:00 PM	61	2	0	63	3	15	0	18	0	5	0	5	86
06:15 PM	76	1	0	77	2	21	0	23		1	0	2	102
06:30 PM	59	0	0	59	2	24	0	26	0	2	0	2	87
06:45 PM	33	0	0	33	3	17	0	20	0	2	0	2	55
Hourly Total	229	3	0	232	10	77	0	87	1	10	0	11	330
Grand Total	970	12	0	982	33	925	0	958	8	51	0	59	1999
Approach \%	98.8	1.2	0.0	-	3.4	96.6	0.0	-	13.6	86.4	0.0	-	-
Total \%	48.5	0.6	0.0	49.1	1.7	46.3	0.0	47.9	0.4	2.6	0.0	3.0	-
Lights	656	11	0	667	30	689	0	719	8	49	0	57	1443
\% Lights	67.6	91.7	-	67.9	90.9	74.5	-	75.1	100.0	96.1	-	96.6	72.2
Mediums	75	1	0	76	2	80	0	82	0	2	0	2	160
\% Mediums	7.7	8.3	-	7.7	6.1	8.6	-	8.6	0.0	3.9	-	3.4	8.0
Articulated Trucks	239	0	0	239	1	156	0	157	0	0	0	0	396
\% Articulated Trucks	24.6	0.0	-	24.3	3.0	16.9	-	16.4	0.0	0.0	-	0.0	19.8

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Mile 63.5 (Red Creek) Road, winter
Site Code: 3
Start Date: 2015/01/28
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Mile 63.5 (Red Creek) Road winter
Site Code: 3
Start Date: 2015/01/28
Page No: 4

Turning Movement Peak Hour Data (07:00 AM)

Start Time	Alaska Hwy 97 Southbound				Alaska Hwy 97 Northbound				Mile 63.5 (Red Creek) Road Eastbound				Int. Total
	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	
07:00 AM	11	0	0	11	0	39	0	39	2	4	0	6	56
07:15 AM	26	0	0	26	1	59	0	60	2	2	0	4	90
07:30 AM	19	0	0	19	0	68	0	68	1	3	0	4	91
07:45 AM	21	0	0	21	0	48	0	48	0	1	0	1	70
Total	77	0	0	77	1	214	0	215	5	10	0	15	307
Approach \%	100.0	0.0	0.0	-	0.5	99.5	0.0	-	33.3	66.7	0.0	-	-
Total \%	25.1	0.0	0.0	25.1	0.3	69.7	0.0	70.0	1.6	3.3	0.0	4.9	-
PHF	0.740	0.000	0.000	0.740	0.250	0.787	0.000	0.790	0.625	0.625	0.000	0.625	0.843
Lights	50	0	0	50	0	172	0	172	5	9	0	14	236
\% Lights	64.9	-	-	64.9	0.0	80.4	-	80.0	100.0	90.0	-	93.3	76.9
Mediums	5	0	0	5	1	24	0	25	0	1	0	1	31
\% Mediums	6.5	-	-	6.5	100.0	11.2	-	11.6	0.0	10.0	-	6.7	10.1
Articulated Trucks	22	0	0	22	0	18	0	18	0	0	0	0	40
\% Articulated Trucks	28.6	-	-	28.6	0.0	8.4	-	8.4	0.0	0.0	-	0.0	13.0

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Mile 63.5 (Red Creek) Road, winter
Site Code: 3
Start Date: 2015/01/28
Page No: 5

Turning Movement Peak Hour Data Plot (07:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Mile 63.5 (Red Creek) Road winter
Site Code: 3
Start Date: 2015/01/28
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Alaska Hwy 97 Southbound				Alaska Hwy 97 Northbound				Mile 63.5 (Red Creek) Road Eastbound				Int. Total
	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	
11:00 AM	17	0	0	17	0	28	0	28	0	0	0	0	45
11:15 AM	17	0	0	17	0	36	0	36	0	0	0	0	53
11:30 AM	24	0	0	24	1	30	0	31	1	1	0	2	57
11:45 AM	23	0	0	23	0	28	0	28	0	1	0	1	52
Total	81	0	0	81	1	122	0	123	1	2	0	3	207
Approach \%	100.0	0.0	0.0	-	0.8	99.2	0.0	-	33.3	66.7	0.0	-	-
Total \%	39.1	0.0	0.0	39.1	0.5	58.9	0.0	59.4	0.5	1.0	0.0	1.4	-
PHF	0.844	0.000	0.000	0.844	0.250	0.847	0.000	0.854	0.250	0.500	0.000	0.375	0.908
Lights	39	0	0	39	1	75	0	76	1	2	0	3	118
\% Lights	48.1	-	-	48.1	100.0	61.5	-	61.8	100.0	100.0	-	100.0	57.0
Mediums	12	0	0	12	0	8	0	8	0	0	0	0	20
\% Mediums	14.8	-	-	14.8	0.0	6.6	-	6.5	0.0	0.0	-	0.0	9.7
Articulated Trucks	30	0	0	30	0	39	0	39	0	0	0	0	69
\% Articulated Trucks	37.0	-	-	37.0	0.0	32.0	-	31.7	0.0	0.0	-	0.0	33.3

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Mile 63.5 (Red Creek) Road, winter
Site Code: 3
Start Date: 2015/01/28
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Mile 63.5 (Red Creek) Road winter
Site Code: 3
Start Date: 2015/01/28
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound				Alaska Hwy 97 Northbound				Mile 63.5 (Red Creek) Road Eastbound				Int. Total
	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	
12:00 PM	36	0	0	36	0	30	0	30	0	0	0	0	66
12:15 PM	30	0	0	30	0	25	0	25	0	2	0	2	57
12:30 PM	22	0	0	22	0	25	0	25	0	2	0	2	49
12:45 PM	42	0	0	42	0	20	0	20	0	2	0	2	64
Total	130	0	0	130	0	100	0	100	0	6	0	6	236
Approach \%	100.0	0.0	0.0	-	0.0	100.0	0.0	-	0.0	100.0	0.0	-	-
Total \%	55.1	0.0	0.0	55.1	0.0	42.4	0.0	42.4	0.0	2.5	0.0	2.5	-
PHF	0.774	0.000	0.000	0.774	0.000	0.833	0.000	0.833	0.000	0.750	0.000	0.750	0.894
Lights	72	0	0	72	0	64	0	64	0	6	0	6	142
\% Lights	55.4	-	-	55.4	-	64.0	-	64.0	-	100.0	-	100.0	60.2
Mediums	7	0	0	7	0	11	0	11	0	0	0	0	18
\% Mediums	5.4	-	-	5.4	-	11.0	-	11.0	-	0.0	-	0.0	7.6
Articulated Trucks	51	0	0	51	0	25	0	25	0	0	0	0	76
\% Articulated Trucks	39.2	-	-	39.2	-	25.0	-	25.0	-	0.0	-	0.0	32.2

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Mile 63.5 (Red Creek) Road, winter
Site Code: 3
Start Date: 2015/01/28
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 winter
Winter Code:
Start Date: 2015/01/28
Page No: 10

Turning Movement Peak Hour Data (05:45 PM)

Start Time	Alaska Hwy 97 Southbound				Alaska Hwy 97 Northbound				Mile 63.5 (Red Creek) Road Eastbound				Int. Total
	Thru	Right	U-Turn	App. Total	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	
05:45 PM	44	2	0	46	4	24	0	28	0	3	0	3	77
06:00 PM	61	2	0	63	3	15	0	18	0	5	0	5	86
06:15 PM	76	1	0	77	2	21	0	23	,	1	0	2	102
06:30 PM	59	0	0	59	2	24	0	26	0	2	0	2	87
Total	240	5	0	245	11	84	0	95	1	11	0	12	352
Approach \%	98.0	2.0	0.0	-	11.6	88.4	0.0	-	8.3	91.7	0.0	-	-
Total \%	68.2	1.4	0.0	69.6	3.1	23.9	0.0	27.0	0.3	3.1	0.0	3.4	-
PHF	0.789	0.625	0.000	0.795	0.688	0.875	0.000	0.848	0.250	0.550	0.000	0.600	0.863
Lights	196	5	0	201	11	64	0	75	1	11	0	12	288
\% Lights	81.7	100.0	-	82.0	100.0	76.2	-	78.9	100.0	100.0	-	100.0	81.8
Mediums	12	0	0	12	0	8	0	8	0	0	0	0	20
\% Mediums	5.0	0.0	-	4.9	0.0	9.5	-	8.4	0.0	0.0	-	0.0	5.7
Articulated Trucks	32	0	0	32	0	12	0	12	0	0	0	0	44
\% Articulated Trucks	13.3	0.0	-	13.1	0.0	14.3	-	12.6	0.0	0.0	-	0.0	12.5

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Mile 63.5 (Red Creek) Road, winter
Site Code: 3
Start Date: 2015/01/28
Page No: 11

Turning Movement Peak Hour Data Plot (05:45 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
Count Name: Sasquatch Crossing access \#1 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca winter
Site Code: 1
Start Date: 2015/01/19
Page No: 1

Turning Movement Data

Start Time	Alaska Hwy 97 Southbound				Sasquatch Crossing access \#1 Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
05:00 AM	0	1	0	1	1	0	0	1	5	0	0	5	7
05:15 AM	0	0	0	0	0	0	0	0	5	0	0	5	5
05:30 AM	0	1	0	1	1	1	0	2	11	0	1	12	15
05:45 AM	0	1	0	1	4	0	0	4	15	0	0	15	20
Hourly Total	0	3	0	3	6	1	0	7	36	0	1	37	47
06:00 AM	0	6	0	6	3	0	0	3	19	2	0	21	30
06:15 AM	0	7	0	7	5	1	0	6	23	2	0	25	38
06:30 AM	0	9	0	9	0	1	0	1	20	3	0	23	33
06:45 AM	0	15	0	15	5	2	0	7	32	1	0	33	55
Hourly Total	0	37	0	37	13	4	0	17	94	8	0	102	156
07:00 AM	0	10	0	10	3	2	0	5	16	2	0	18	33
07:15 AM	0	7	0	7	3	2	0	5	8	0	0	8	20
07:30 AM	0	9	0	9	2	2	0	4	4	1	1	6	19
07:45 AM	0	3	0	3	1	0	0	1	10	1	0	11	15
Hourly Total	0	29	0	29	9	6	0	15	38	4	1	43	87
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	0	8	0	8	2	0	0	2	16	0	0	16	26
11:15 AM	0	10	0	10	3	0	0	3	3	1	0	4	17
11:30 AM	0	10	0	10	3	0	0	3	9	0	0	9	22
11:45 AM	0	9	0	9	1	0	0	1	13	1	0	14	24
Hourly Total	0	37	0	37	9	0	0	9	41	2	0	43	89
12:00 PM	0	7	0	7	4	1	0	5	12	2	0	14	26
12:15 PM	0	15	0	15	1	0	0	1	11	0	0	11	27
12:30 PM	0	10	0	10	1	0	0	1	14	1	0	15	26
12:45 PM	0	10	0	10	1	0	0	1	14	0	0	14	25
Hourly Total	0	42	0	42	7	1	0	8	51	3	0	54	104
01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0
04:00 PM	0	15	0	15	2	0	0	2	13	1	0	14	31
04:15 PM	0	14	0	14	1	0	0	1	7	0	0	7	22
04:30 PM	0	14	0	14	1	0	0	1	10	1	0	11	26
04:45 PM	0	10	0	10	2	1	0	3	10	2	0	12	25
Hourly Total	0	53	0	53	6	1	0	7	40	4	0	44	104
05:00 PM	0	8	0	8	2	0	0	2	3	1	0	4	14
05:15 PM	0	12	0	12	2	0	0	2	21	2	0	23	37

05:30 PM	1	20	0	21	1	0	0	1	23	3	0	26	48
05:45 PM	0	21	0	21	4	0	0	4	17	3	0	20	45
Hourly Total	1	61	0	62	9	0	0	9	64	9	0	73	144
06:00 PM	0	21	0	21	4	1	0	5	9	6	0	15	41
06:15 PM	0	22	0	22	4	1	0	5	18	4	0	22	49
06:30 PM	0	24	0	24	4	2	0	6	4	3	0	7	37
06:45 PM	0	19	0	19	7	1	0	8	5	5	0	10	37
Hourly Total	0	86	0	86	19	5	0	24	36	18	0	54	164
07:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	1	348	0	349	78	18	0	96	400	48	2	450	895
Approach \%	0.3	99.7	0.0	-	81.3	18.8	0.0	-	88.9	10.7	0.4	-	-
Total \%	0.1	38.9	0.0	39.0	8.7	2.0	0.0	10.7	44.7	5.4	0.2	50.3	-
Lights	1	265	0	266	69	12	0	81	297	42	2	341	688
\% Lights	100.0	76.1	-	76.2	88.5	66.7	-	84.4	74.3	87.5	100.0	75.8	76.9
Mediums	0	51	0	51	2	2	0	4	29	1	0	30	85
\% Mediums	0.0	14.7	-	14.6	2.6	11.1	-	4.2	7.3	2.1	0.0	6.7	9.5
Articulated Trucks	0	32	0	32	7	4	0	11	74	5	0	79	122
\% Articulated Trucks	0.0	9.2	-	9.2	9.0	22.2	-	11.5	18.5	10.4	0.0	17.6	13.6

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#1, winter
Site Code: 14
Start Date: 2015/01/19
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Sasquatch Crossing access \#1 winter
Site Code: 14
Start Date: 2015/01/19
Page No: 4

Turning Movement Peak Hour Data (06:15 AM)

Start Time	Turning Movement Peak Hour Data (06:15 AM)												
	Alaska Hwy 97 Southbound				Sasquatch Crossing access \#1 Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
06:15 AM	0	7	0	7	5	1	0	6	23	2	0	25	38
06:30 AM	0	9	0	9	0	1	0	1	20	3	0	23	33
06:45 AM	0	15	0	15	5	2	0	7	32	1	0	33	55
07:00 AM	0	10	0	10	3	2	0	5	16	2	0	18	33
Total	0	41	0	41	13	6	0	19	91	8	0	99	159
Approach \%	0.0	100.0	0.0	-	68.4	31.6	0.0	-	91.9	8.1	0.0	-	-
Total \%	0.0	25.8	0.0	25.8	8.2	3.8	0.0	11.9	57.2	5.0	0.0	62.3	-
PHF	0.000	0.683	0.000	0.683	0.650	0.750	0.000	0.679	0.711	0.667	0.000	0.750	0.723
Lights	0	38	0	38	13	3	0	16	75	7	0	82	136
\% Lights	-	92.7	-	92.7	100.0	50.0	-	84.2	82.4	87.5	-	82.8	85.5
Mediums	0	2	0	2	0	0	0	0	2	0	0	2	4
\% Mediums	-	4.9	-	4.9	0.0	0.0	-	0.0	2.2	0.0	-	2.0	2.5
Articulated Trucks	0	1	0	1	0	3	0	3	14	1	0	15	19
\% Articulated Trucks	-	2.4	-	2.4	0.0	50.0	-	15.8	15.4	12.5	-	15.2	11.9

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#1 winter
Site Code: 14
Start Date: 2015/01/19
Page No: 5

Turning Movement Peak Hour Data Plot (06:15 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Sasquatch Crossing access \#1 winter
Site Code: 14
Start Date: 2015/01/19
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Alaska Hwy 97 Southbound				Sasquatch Crossing access \#1 Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
11:00 AM	0	8	0	8	2	0	0	2	16	0	0	16	26
11:15 AM	0	10	0	10	3	0	0	3	3	1	0	4	17
11:30 AM	0	10	0	10	3	0	0	3	9	0	0	9	22
11:45 AM	0	9	0	9	1	0	0	1	13	1	0	14	24
Total	0	37	0	37	9	0	0	9	41	2	0	43	89
Approach \%	0.0	100.0	0.0	\checkmark	100.0	0.0	0.0	-	95.3	4.7	0.0	-	-
Total \%	0.0	41.6	0.0	41.6	10.1	0.0	0.0	10.1	46.1	2.2	0.0	48.3	-
PHF	0.000	0.925	0.000	0.925	0.750	0.000	0.000	0.750	0.641	0.500	0.000	0.672	0.856
Lights	0	29	0	29	5	0	0	5	24	2	0	26	60
\% Lights	-	78.4	-	78.4	55.6	-	-	55.6	58.5	100.0	-	60.5	67.4
Mediums	0	3	0	3	0	0	0	0	6	0	0	6	9
\% Mediums	-	8.1	-	8.1	0.0	-	-	0.0	14.6	0.0	-	14.0	10.1
Articulated Trucks	0	5	0	5	4	0	0	4	11	0	0	11	20
\% Articulated Trucks	-	13.5	-	13.5	44.4	-	-	44.4	26.8	0.0	-	25.6	22.5

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#1 winter
Site Code: 14
Start Date: 2015/01/19
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Sasquatch Crossing access \#1 winter
Site Code: 14
Start Date: 2015/01/19
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound				Sasquatch Crossing access \#1 Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
12:00 PM	0	7	0	7	4	1	0	5	12	2	0	14	26
12:15 PM	0	15	0	15	1	0	0	1	11	0	0	11	27
12:30 PM	0	10	0	10	1	0	0	1	14	1	0	15	26
12:45 PM	0	10	0	10	1	0	0	1	14	0	0	14	25
Total	0	42	0	42	7	1	0	8	51	3	0	54	104
Approach \%	0.0	100.0	0.0	-	87.5	12.5	0.0	-	94.4	5.6	0.0	-	-
Total \%	0.0	40.4	0.0	40.4	6.7	1.0	0.0	7.7	49.0	2.9	0.0	51.9	-
PHF	0.000	0.700	0.000	0.700	0.438	0.250	0.000	0.400	0.911	0.375	0.000	0.900	0.963
Lights	0	25	0	25	5	1	0	6	32	2	0	34	65
\% Lights	-	59.5	-	59.5	71.4	100.0	-	75.0	62.7	66.7	-	63.0	62.5
Mediums	0	16	0	16	0	0	0	0	3	0	0	3	19
\% Mediums	-	38.1	-	38.1	0.0	0.0	-	0.0	5.9	0.0	-	5.6	18.3
Articulated Trucks	0	1	0	1	2	0	0	2	16	1	0	17	20
\% Articulated Trucks	-	2.4	-	2.4	28.6	0.0	-	25.0	31.4	33.3	-	31.5	19.2

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#1 winter
Site Code: 14
Start Date: 2015/01/19
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Sasquatch Crossing access \#1, winter
Site Code: 14
Start Date: 2015/01/19
250-819-2527 paul@peaktraffic.ca
Page No: 10

Turning Movement Peak Hour Data (05:30 PM)

Start Time	Alaska Hwy 97 Southbound				Sasquatch Crossing access \#1 Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
05:30 PM	1	20	0	21	1	0	0	1	23	3	0	26	48
05:45 PM	0	21	0	21	4	0	0	4	17	3	0	20	45
06:00 PM	0	21	0	21	4	1	0	5	9	6	0	15	41
06:15 PM	0	22	0	22	4	1	0	5	18	4	0	22	49
Total	1	84	0	85	13	2	0	15	67	16	0	83	183
Approach \%	1.2	98.8	0.0	-	86.7	13.3	0.0	-	80.7	19.3	0.0	-	-
Total \%	0.5	45.9	0.0	46.4	7.1	1.1	0.0	8.2	36.6	8.7	0.0	45.4	-
PHF	0.250	0.955	0.000	0.966	0.813	0.500	0.000	0.750	0.728	0.667	0.000	0.798	0.934
Lights	1	71	0	72	13	2	0	15	54	16	0	70	157
\% Lights	100.0	84.5	-	84.7	100.0	100.0	-	100.0	80.6	100.0	-	84.3	85.8
Mediums	0	12	0	12	0	0	0	0	5	0	0	5	17
\% Mediums	0.0	14.3	-	14.1	0.0	0.0	-	0.0	7.5	0.0	-	6.0	9.3
Articulated Trucks	0	1	0	1	0	0	0	0	8	0	0	8	9
\% Articulated Trucks	0.0	1.2	-	1.2	0.0	0.0	-	0.0	11.9	0.0	-	9.6	4.9

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#1, winter
Site Code: 14
Start Date: 2015/01/19
Page No: 11

Turning Movement Peak Hour Data Plot (05:30 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#2 winter
Site Code: 1
ate: 2015/01/19
Page No: 1

Turning Movement Data

Start Time	Alaska Hwy 97 Southbound				Sasquatch Crossing access \#2 Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
05:00 AM	0	1	0	1	0	1	0	1	3	2	0	5	7
05:15 AM	0	0	0	0	0	2	0	2	3	2	0	5	7
05:30 AM	0	1	0	1	0	1	0	1	12	0	0	12	14
05:45 AM	1	1	0	2	0	3	0	3	10	5	0	15	20
Hourly Total	1	3	0	4	0	7	0	7	28	9	0	37	48
06:00 AM	0	5	0	5	0	1	0	1	17	2	0	19	25
06:15 AM	0	7	0	7	0	3	0	3	22	2	0	24	34
06:30 AM	3	10	0	13	0	4	0	4	20	1	0	21	38
06:45 AM	1	15	0	16	0	8	0	8	31	2	0	33	57
Hourly Total	4	37	0	41	0	16	0	16	90	7	0	97	154
07:00 AM	2	7	0	9	2	2	0	4	18	0	0	18	31
07:15 AM	0	7	0	7	0	1	0	1	8	3	0	11	19
07:30 AM	2	8	0	10	0	2	0	2	6	0	0	6	18
07:45 AM	1	3	0	4	0	3	0	3	8	2	0	10	17
Hourly Total	5	25	0	30	2	8	0	10	40	5	0	45	85
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	4	8	0	12	0	0	0	0	15	1	0	16	28
11:15 AM	1	10	0	11	0	1	0	1	3	0	0	3	15
11:30 AM	4	11	0	15	0	1	0	1	9	0	0	9	25
11:45 AM	1	7	0	8	1	0	0	1	13	0	0	13	22
Hourly Total	10	36	0	46	1	2	0	3	40	1	0	41	90
12:00 PM	2	7	0	9	1	1	0	2	10	2	0	12	23
12:15 PM	0	13	0	13	0	1	0	1	12	0	0	12	26
12:30 PM	0	11	0	11	0	0	0	0	14	0	0	14	25
12:45 PM	0	9	0	9	0	0	0	0	14	0	0	14	23
Hourly Total	2	40	0	42	1	2	0	3	50	2	0	52	97
01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0
04:00 PM	0	17	0	17	0	0	0	0	12	0	0	12	29
04:15 PM	0	12	0	12	0	0	0	0	8	0	0	8	20
04:30 PM	1	14	0	15	1	0	0	1	9	0	0	9	25
04:45 PM	0	8	0	8	0	0	0	0	8	3	0	11	19
Hourly Total	1	51	0	52	1	0	0	1	37	3	0	40	93
05:00 PM	1	9	0	10	0	1	0	1	3	0	0	3	14
05:15 PM	3	14	0	17	0	3	0	3	22	0	0	22	42

05:30 PM	6	22	0	28	0	2	0	2	22	2	0	24	54
05:45 PM	4	21	0	25	0	1	0	1	16	2	0	18	44
Hourly Total	14	66	0	80	0	7	0	7	63	4	0	67	154
06:00 PM	11	21	0	32	0	1	0	1	9	0	0	9	42
06:15 PM	2	24	0	26	0	1	0	1	18	1	0	19	46
06:30 PM	4	25	0	29	0	1	0	1	4	1	0	5	35
06:45 PM	4	18	0	22	0	1	0	1	6	0	0	6	29
Hourly Total	21	88	0	109	0	4	0	4	37	2	0	39	152
07:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	58	346	0	404	5	46	0	51	385	33	0	418	873
Approach \%	14.4	85.6	0.0	-	9.8	90.2	0.0	-	92.1	7.9	0.0	-	-
Total \%	6.6	39.6	0.0	46.3	0.6	5.3	0.0	5.8	44.1	3.8	0.0	47.9	-
Lights	47	254	0	301	5	35	0	40	277	25	0	302	643
\% Lights	81.0	73.4	-	74.5	100.0	76.1	-	78.4	71.9	75.8	-	72.2	73.7
Mediums	5	31	0	36	0	2	0	2	24	3	0	27	65
\% Mediums	8.6	9.0	-	8.9	0.0	4.3	-	3.9	6.2	9.1	\cdot	6.5	7.4
Articulated Trucks	6	61	0	67	0	9	0	9	84	5	0	89	165
\% Articulated Trucks	10.3	17.6	-	16.6	0.0	19.6	-	17.6	21.8	15.2	-	21.3	18.9

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#2 winter
Site Code: 15
Start Date: 2015/01/19
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Sasquatch Crossing access \#2, winter
Site Code: 15
Start Date: 2015/01/19
Page No: 4

Turning Movement Peak Hour Data (06:15 AM)

Start Time	Turning Movement Peak Hour Data (06:15 AM)												
	Alaska Hwy 97 Southbound				Sasquatch Crossing access \#2 Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
06:15 AM	0	7	0	7	0	3	0	3	22	2	0	24	34
06:30 AM	3	10	0	13	0	4	0	4	20	1	0	21	38
06:45 AM	1	15	0	16	0	8	0	8	31	2	0	33	57
07:00 AM	2	7	0	9	2	2	0	4	18	0	0	18	31
Total	6	39	0	45	2	17	0	19	91	5	0	96	160
Approach \%	13.3	86.7	0.0	-	10.5	89.5	0.0	-	94.8	5.2	0.0	-	-
Total \%	3.8	24.4	0.0	28.1	1.3	10.6	0.0	11.9	56.9	3.1	0.0	60.0	-
PHF	0.500	0.650	0.000	0.703	0.250	0.531	0.000	0.594	0.734	0.625	0.000	0.727	0.702
Lights	5	30	0	35	2	14	0	16	74	2	0	76	127
\% Lights	83.3	76.9	-	77.8	100.0	82.4	-	84.2	81.3	40.0	-	79.2	79.4
Mediums	1	9	0	10	0	0	0	0	3	1	0	4	14
\% Mediums	16.7	23.1	-	22.2	0.0	0.0	-	0.0	3.3	20.0	-	4.2	8.8
Articulated Trucks	0	0	0	0	0	3	0	3	14	2	0	16	19
\% Articulated Trucks	0.0	0.0	-	0.0	0.0	17.6	-	15.8	15.4	40.0	-	16.7	11.9

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#2 winter
Site Code: 15
Start Date: 2015/01/19
Page No: 5

Turning Movement Peak Hour Data Plot (06:15 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Sasquatch Crossing access \#2, winter
Site Code: 15
Start Date: 2015/01/19
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Alaska Hwy 97 Southbound				Sasquatch Crossing access \#2 Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
11:00 AM	4	8	0	12	0	0	0	0	15	1	0	16	28
11:15 AM	1	10	0	11	0	1	0	1	3	0	0	3	15
11:30 AM	4	11	0	15	0	1	0	1	9	0	0	9	25
11:45 AM	1	7	0	8	1	0	0	1	13	0	0	13	22
Total	10	36	0	46	1	2	0	3	40	1	0	41	90
Approach \%	21.7	78.3	0.0	-	33.3	66.7	0.0	-	97.6	2.4	0.0	-	-
Total \%	11.1	40.0	0.0	51.1	1.1	2.2	0.0	3.3	44.4	1.1	0.0	45.6	-
PHF	0.625	0.818	0.000	0.767	0.250	0.500	0.000	0.750	0.667	0.250	0.000	0.641	0.804
Lights	5	29	0	34	1	2	0	3	19	1	0	20	57
\% Lights	50.0	80.6	-	73.9	100.0	100.0	-	100.0	47.5	100.0	-	48.8	63.3
Mediums	0	1	0	1	0	0	0	0	10	0	0	10	11
\% Mediums	0.0	2.8	-	2.2	0.0	0.0	-	0.0	25.0	0.0	-	24.4	12.2
Articulated Trucks	5	6	0	11	0	0	0	0	11	0	0	11	22
\% Articulated Trucks	50.0	16.7	-	23.9	0.0	0.0	-	0.0	27.5	0.0	-	26.8	24.4

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#2 winter
Site Code: 15
Start Date: 2015/01/19
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Sasquatch Crossing access \#2, winter
Site Code: 15
Start Date: 2015/01/19
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound				Sasquatch Crossing access \#2 Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
12:00 PM	2	7	0	9	1	1	0	2	10	2	0	12	23
12:15 PM	0	13	0	13	0	1	0	1	12	0	0	12	26
12:30 PM	0	11	0	11	0	0	0	0	14	0	0	14	25
12:45 PM	0	9	0	9	0	0	0	0	14	0	0	14	23
Total	2	40	0	42	1	2	0	3	50	2	0	52	97
Approach \%	4.8	95.2	0.0	-	33.3	66.7	0.0	-	96.2	3.8	0.0	-	-
Total \%	2.1	41.2	0.0	43.3	1.0	2.1	0.0	3.1	51.5	2.1	0.0	53.6	-
PHF	0.250	0.769	0.000	0.808	0.250	0.500	0.000	0.375	0.893	0.250	0.000	0.929	0.933
Lights	1	21	0	22	1	1	0	2	33	1	0	34	58
\% Lights	50.0	52.5	-	52.4	100.0	50.0	-	66.7	66.0	50.0	-	65.4	59.8
Mediums	0	6	0	6	0	0	0	0	3	0	0	3	9
\% Mediums	0.0	15.0	-	14.3	0.0	0.0	-	0.0	6.0	0.0	-	5.8	9.3
Articulated Trucks	1	13	0	14	0	1	0	1	14	1	0	15	30
\% Articulated Trucks	50.0	32.5	-	33.3	0.0	50.0	-	33.3	28.0	50.0	-	28.8	30.9

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#2 winter
Site Code: 15
Start Date: 2015/01/19
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Sasquatch Crossing access \#2, winter
Site Code: 15
Start Date: 2015/01/19
250-819-2527 paul@peaktraffic.ca
Page No: 10

Turning Movement Peak Hour Data (05:30 PM)

Start Time	Alaska Hwy 97 Southbound				Sasquatch Crossing access \#2 Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
05:30 PM	6	22	0	28	0	2	0	2	22	2	0	24	54
05:45 PM	4	21	0	25	0	1	0		16	2	0	18	44
06:00 PM	11	21	0	32	0	1	0	1	9	0	0	9	42
06:15 PM	2	24	0	26	0	1	0	1	18	1	0	19	46
Total	23	88	0	111	0	5	0	5	65	5	0	70	186
Approach \%	20.7	79.3	0.0	-	0.0	100.0	0.0	-	92.9	7.1	0.0	-	-
Total \%	12.4	47.3	0.0	59.7	0.0	2.7	0.0	2.7	34.9	2.7	0.0	37.6	-
PHF	0.523	0.917	0.000	0.867	0.000	0.625	0.000	0.625	0.739	0.625	0.000	0.729	0.861
Lights	23	73	0	96	0	5	0	5	49	4	0	53	154
\% Lights	100.0	83.0	-	86.5	-	100.0	-	100.0	75.4	80.0	-	75.7	82.8
Mediums	0	5	0	5	0	0	0	0	2	0	0	2	7
\% Mediums	0.0	5.7	-	4.5	-	0.0	-	0.0	3.1	0.0	-	2.9	3.8
Articulated Trucks	0	10	0	10	0	0	0	0	14	1	0	15	25
\% Articulated Trucks	0.0	11.4	-	9.0	-	0.0	-	0.0	21.5	20.0	-	21.4	13.4

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#2 winter
Site Code: 15
Start Date: 2015/01/19
Page No: 11

Turning Movement Peak Hour Data Plot (05:30 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
Count Name: Sasquatch Crossing access \#3 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Site Code: 16
Start Date: 2015/01/19
Page No: 1

Start Time	Alaska Hwy 97 Southbound					Turning Movement Data Alaska Hwy 97 Westbound Northbound										Pink Mountain Road Eastbound					Int. Total
	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	
05:00 AM	0	1	0	0	1	0	0	0	0	0	1	3	0	0	4	0	0	0	0	0	5
05:15 AM	0	0	0	0	0	0	0	0	0	0	0	5	0	0	5	0	0	0	0	0	5
05:30 AM	0	1	0	0	1	0	0	0	0	0	0	12	0	0	12	0	0	0	0	0	13
05:45 AM	0	2	0	0	2	0	0	0	0	0	1	12	0	0	13	1	0	1	0	2	17
Hourly Total	0	4	0	0	4	0	0	0	0	0	2	32	0	0	34	1	0	1	0	2	40
06:00 AM	0	6	0	0	6	0	0	0	0	0	0	18	0	0	18	0	0	0	0	0	24
06:15 AM	0	3	0	0	3	1	0	0	0	1	2	22	0	0	24	2	0	2	0	4	32
06:30 AM	0	7	0	0	7	0	0	0	0	0	1	25	0	0	26	6	0	6	0	12	45
06:45 AM	0	15	0	0	15	0	0	0	0	0	0	37	0	0	37	6	0	1	0	7	59
Hourly Total	0	31	0	0	31	1	0	0	0	1	3	102	0	0	105	14	0	9	0	23	160
07:00 AM	0	8	0	0	8	0	0	0	0	0	1	20	0	0	21	0	0	1	0	1	30
07:15 AM	0	7	0	0	7	0	0	0	0	0	0	9	0	0	9	2	0	0	0	2	18
07:30 AM	0	9	0	0	9	0	0	0	0	0	0	8	0	0	8	0	0	1	0	1	18
07:45 AM	0	5	1	0	6	0	0	0	0	0	1	10	0	0	11	0	0	0	0	0	17
Hourly Total	0	29	1	0	30	0	0	0	0	0	2	47	0	0	49	2	0	2	0	4	83
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	0	12	0	0	12	0	0	0	0	0	3	12	0	0	15	2	0	0	0	2	29
11:15 AM	0	8	1	0	9	0	0	0	0	0	0	4	0	0	4	0	0	3	0	3	16
11:30 AM	0	13	0	0	13	0	0	0	0	0	0	10	0	0	10	0	0	2	0	2	25
11:45 AM	1	6	0	0	7	2	0	0	0	2	2	10	1	0	13	1	0	0	0	1	23
Hourly Total	1	39	1	0	41	2	0	0	0	2	5	36	1	0	42	3	0	5	0	8	93
12:00 PM	0	9	0	0	9	0	0	0	0	0	1	9	0	0	10	0	0	0	0	0	19
12:15 PM	0	12	0	0	12	0	0	0	0	0	1	11	1	0	13	1	0	1	0	2	27
12:30 PM	0	9	0	0	9	0	0	0	0	0	0	14	0	0	14	0	0	2	0	2	25
12:45 PM	0	10	0	0	10	0	0	0	0	0	0	14	0	0	14	0	0	0	0	0	24
Hourly Total	0	40	0	0	40	0	0	0	0	0	2	48	1	0	51	1	0	3	0	4	95
01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04:00 PM	0	17	1	0	18	0	0	0	0	0	1	11	0	0	12	0	0	0	0	0	30
04:15 PM	0	13	2	0	15	0	0	0	0	0	1	7	0	0	8	2	0	1	0	3	26
04:30 PM	0	14	0	0	14	0	0	1	0	1	0	8	1	0	9	0	0	2	0	2	26
04:45 PM	0	8	1	0	9	0	0	0	0	0	2	5	0	0	7	0	0	0	0	0	16
Hourly Total	0	52	4	0	56	0	0	1	0	1	4	31	1	0	36	2	0	3	0	5	98
05:00 PM	0	11	0	0	11	0	0	0	0	0	1	3	0	0	4	0	0	0	0	0	15
05:15 PM	0	14	1	0	15	0	0	0	0	0	2	23	0	0	25	0	0	1	0	1	41

05:30 PM	0	28	6	0	34	0	0	0	0	0	2	20	0	0	22	0	0	1	0	1	57
05:45 PM	0	23	5	0	28	0	0	0	0	0	3	14	0	0	17	0	0	1	0	1	46
Hourly Total	0	76	12	0	88	0	0	0	0	0	8	60	0	0	68	0	0	3	0	3	159
06:00 PM	0	34	1	0	35	0	0	0	0	0	2	9	0	0	11	0	0	1	0	1	47
06:15 PM	0	23	1	0	24	0	0	0	0	0	5	14	0	0	19	1	0	2	0	3	46
06:30 PM	0	25	1	0	26	0	0	0	0	0	0	5	0	0	5	0	1	3	0	4	35
06:45 PM	0	20	2	0	22	2	0	0	0	2	0	6	1	0	7	0	0	0	0	0	31
Hourly Total	0	102	5	0	107	2	0	0	0	2	7	34	1	0	42	1	1	6	0	8	159
07:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	1	373	23	0	397	5	0	1	0	6	33	390	4	0	427	24	1	32	0	57	887
Approach \%	0.3	94.0	5.8	0.0	-	83.3	0.0	16.7	0.0	-	7.7	91.3	0.9	0.0	-	42.1	1.8	56.1	0.0	-	-
Total \%	0.1	42.1	2.6	0.0	44.8	0.6	0.0	0.1	0.0	0.7	3.7	44.0	0.5	0.0	48.1	2.7	0.1	3.6	0.0	6.4	-
Lights	1	288	11	0	300	3	0	1	0	4	28	278	3	0	309	14	0	28	0	42	655
\% Lights	100.0	77.2	47.8	-	75.6	60.0	-	100.0	-	66.7	84.8	71.3	75.0	-	72.4	58.3	0.0	87.5	-	73.7	73.8
Mediums	0	20	4	0	24	1	0	0	0	1	4	22	1	0	27	3	1	3	0	7	59
\% Mediums	0.0	5.4	17.4	-	6.0	20.0	-	0.0	-	16.7	12.1	5.6	25.0	-	6.3	12.5	100.0	9.4	-	12.3	6.7
Articulated Trucks	0	65	8	0	73	1	0	0	0	1	1	90	0	0	91	7	0	1	0	8	173
\% Articulated Trucks	0.0	17.4	34.8	-	18.4	20.0	-	0.0	-	16.7	3.0	23.1	0.0	-	21.3	29.2	0.0	3.1	-	14.0	19.5

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#3, winter
Site Code: 16
Start Date: 2015/01/19
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#3 winter
Site Code: 16
Start Date: 2015/01/19
Page No: 4

Turning Movement Peak Hour Data (06:15 AM)

Start Time	Alaska Hwy 97Southbound					Gunga-Din south accessWestbound					Alaska Hwy 97Northbound					Pink Mountain Road Eastbound					Int. Total
	Left	Thru	outhbound Right	U-Turn	pp. Total	Left	Thru	estbound Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru		U-Turn	App. Total	
06:15 AM	0	3	0	0	3	1	0	0	0	1	2	22	0	0	24	2	0	2	0	4	32
06:30 AM	0	7	0	0	7	0	0	0	0	0	1	25	0	0	26	6	0	6	0	12	45
06:45 AM	0	15	0	0	15	0	0	0	0	0	0	37	0	0	37	6	0	1	0	7	59
07:00 AM	0	8	0	0	8	0	0	0	0	0	1	20	0	0	21	0	0	1	0	1	30
Total	0	33	0	0	33	1	0	0	0	1	4	104	0	0	108	14	0	10	0	24	166
Approach \%	0.0	100.0	0.0	0.0	-	100.0	0.0	0.0	0.0	-	3.7	96.3	0.0	0.0	-	58.3	0.0	41.7	0.0	-	-
Total \%	0.0	19.9	0.0	0.0	19.9	0.6	0.0	0.0	0.0	0.6	2.4	62.7	0.0	0.0	65.1	8.4	0.0	6.0	0.0	14.5	-
PHF	0.000	0.550	0.000	0.000	0.550	0.250	0.000	0.000	0.000	0.250	0.500	0.703	0.000	0.000	0.730	0.583	0.000	0.417	0.000	0.500	0.703
Lights	0	32	0	0	32	0	0	0	0	0	2	85	0	0	87	8	0	9	0	17	136
\% Lights	-	97.0	-	-	97.0	0.0	-	-	-	0.0	50.0	81.7	-	-	80.6	57.1	-	90.0	-	70.8	81.9
Mediums	0	0	0	0	0	0	0	0	0	0	1	3	0	0	4	0	0	1	0	1	5
\% Mediums	-	0.0	-	-	0.0	0.0	-	-	-	0.0	25.0	2.9	-	-	3.7	0.0	-	10.0	-	4.2	3.0
Articulated Trucks	0	1	0	0	1	1	0	0	0	1	1	16	0	0	17	6	0	0	0	6	25
\% Articulated Trucks	-	3.0	-	-	3.0	100.0	-	-	-	100.0	25.0	15.4	-	-	15.7	42.9	-	0.0	-	25.0	15.1

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#3, winter
Site Code: 16
Start Date: 2015/01/19
Page No: 5

Turning Movement Peak Hour Data Plot (06:15 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#3 winter
Site Code: 16
Start Date: 2015/01/19
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Alaska Hwy 97Southbound					Gunga-Din south accessWestbound					Alaska Hwy 97 Northbound					Pink Mountain Road					Int. Total
	Left	Thru	$\begin{aligned} & \text { buthboun } \\ & \text { Right } \end{aligned}$	U-Turn	App. Total	Left	Thru	Restbound	U-Turn	App. Total	Left	Thru	$\begin{aligned} & \text { orthbour } \\ & \text { Right } \end{aligned}$	U-Turn	App. Total	Left	Thru	$\begin{aligned} & \text { Eastboun } \\ & \text { Right } \end{aligned}$	U-Turn	App. Total	
11:00 AM	0	12	0	0	12	0	0	0	0	0	3	12	0	0	15	2	0	0	0	2	29
11:15 AM	0	8	1	0	9	0	0	0	0	0	0	4	0	0	4	0	0	3	0	3	16
11:30 AM	0	13	0	0	13	0	0	0	0	0	0	10	0	0	10	0	0	2	0	2	25
11:45 AM	1	6	0	0	7	2	0	0	0	2	2	10	1	0	13	1	0	0	0	1	23
Total	1	39	1	0	41	2	0	0	0	2	5	36	1	0	42	3	0	5	0	8	93
Approach \%	2.4	95.1	2.4	0.0	-	100.0	0.0	0.0	0.0	-	11.9	85.7	2.4	0.0	-	37.5	0.0	62.5	0.0	-	-
Total \%	1.1	41.9	1.1	0.0	44.1	2.2	0.0	0.0	0.0	2.2	5.4	38.7	1.1	0.0	45.2	3.2	0.0	5.4	0.0	8.6	-
PHF	0.250	0.750	0.250	0.000	0.788	0.250	0.000	0.000	0.000	0.250	0.417	0.750	0.250	0.000	0.700	0.375	0.000	0.417	0.000	0.667	0.802
Lights	1	27	0	0	28	2	0	0	0	2	3	19	0	0	22	1	0	4	0	5	57
\% Lights	100.0	69.2	0.0	-	68.3	100.0	-	-	-	100.0	60.0	52.8	0.0	-	52.4	33.3	-	80.0	-	62.5	61.3
Mediums	0	0	0	0	0	0	0	0	0	0	2	6	1	0	9	1	0	1	0	2	11
\% Mediums	0.0	0.0	0.0	-	0.0	0.0	-	-	-	0.0	40.0	16.7	100.0	-	21.4	33.3	-	20.0	-	25.0	11.8
Articulated Trucks	0	12	1	0	13	0	0	0	0	0	0	11	0	0	11	1	0	0	0	1	25
\% Articulated Trucks	0.0	30.8	100.0	-	31.7	0.0	-	-	-	0.0	0.0	30.6	0.0	-	26.2	33.3	-	0.0	-	12.5	26.9

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#3, winter
Site Code: 16
Start Date: 2015/01/19
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 winter winter
Site Code: 16
Start Date: 2015/01/19
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound					Gunga-Din south access					Alaska Hwy 97 Northbound					Pink Mountain Road Eastbound					Int. Total
	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	
12:00 PM	0	9	0	0	9	0	0	0	0	0	1	9	0	0	10	0	0	0	0	0	19
12:15 PM	0	12	0	0	12	0	0	0	0	0	1	11	1	0	13	1	0	1	0	2	27
12:30 PM	0	9	0	0	9	0	0	0	0	0	0	14	0	0	14	0	0	2	0	2	25
12:45 PM	0	10	0	0	10	0	0	0	0	0	0	14	0	0	14	0	0	0	0	0	24
Total	0	40	0	0	40	0	0	0	0	0	2	48	1	0	51	1	0	3	0	4	95
Approach \%	0.0	100.0	0.0	0.0	-	NaN	NaN	NaN	NaN	-	3.9	94.1	2.0	0.0	-	25.0	0.0	75.0	0.0	-	-
Total \%	0.0	42.1	0.0	0.0	42.1	0.0	0.0	0.0	0.0	0.0	2.1	50.5	1.1	0.0	53.7	1.1	0.0	3.2	0.0	4.2	-
PHF	0.000	0.833	0.000	0.000	0.833	0.000	0.000	0.000	0.000	0.000	0.500	0.857	0.250	0.000	0.911	0.250	0.000	0.375	0.000	0.500	0.880
Lights	0	21	0	0	21	0	0	0	0	0	2	30	1	0	33	1	0	2	0	3	57
\% Lights	-	52.5	-	-	52.5	-	-	-	-	-	100.0	62.5	100.0	-	64.7	100.0	-	66.7	-	75.0	60.0
Mediums	0	6	0	0	6	0	0	0	0	0	0	3	0	0	3	0	0	1	0	1	10
\% Mediums	-	15.0	-	-	15.0	-	-	-	-	-	0.0	6.3	0.0	-	5.9	0.0	-	33.3	-	25.0	10.5
Articulated Trucks	0	13	0	0	13	0	0	0	0	0	0	15	0	0	15	0	0	0	0	0	28
\% Articulated Trucks	-	32.5	-	-	32.5	-	-	-	-	-	0.0	31.3	0.0	-	29.4	0.0	-	0.0	-	0.0	29.5

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#3, winter
Site Code: 16
Start Date: 2015/01/19
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#3 winter
Site Code: 16
Start Date: 2015/01/19
Page No: 10

Turning Movement Peak Hour Data (05:30 PM)

Start Time	Alaska Hwy 97 Southbound					Gunga-Din south access					Alaska Hwy 97 Northbound					Pink Mountain Road Eastbound					Int. Total
	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	
05:30 PM	0	28	6	0	34	0	0	0	0	0	2	20	0	0	22	0	0	1	0	1	57
05:45 PM	0	23	5	0	28	0	0	0	0	0	3	14	0	0	17	0	0	1	0	1	46
06:00 PM	0	34	1	0	35	0	0	0	0	0	2	9	0	0	11	0	0	1	0	1	47
06:15 PM	0	23	1	0	24	0	0	0	0	0	5	14	0	0	19	1	0	2	0	3	46
Total	0	108	13	0	121	0	0	0	0	0	12	57	0	0	69	1	0	5	0	6	196
Approach \%	0.0	89.3	10.7	0.0	-	NaN	NaN	NaN	NaN	-	17.4	82.6	0.0	0.0	-	16.7	0.0	83.3	0.0	-	-
Total \%	0.0	55.1	6.6	0.0	61.7	0.0	0.0	0.0	0.0	0.0	6.1	29.1	0.0	0.0	35.2	0.5	0.0	2.6	0.0	3.1	-
PHF	0.000	0.794	0.542	0.000	0.864	0.000	0.000	0.000	0.000	0.000	0.600	0.713	0.000	0.000	0.784	0.250	0.000	0.625	0.000	0.500	0.860
Lights	0	96	6	0	102	0	0	0	0	0	12	41	0	0	53	1	0	5	0	6	161
\% Lights	-	88.9	46.2	-	84.3	-	-	-	-	-	100.0	71.9	-	-	76.8	100.0	-	100.0	-	100.0	82.1
Mediums	0	5	1	0	6	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	9
\% Mediums	-	4.6	7.7	-	5.0	-	-	-	-	-	0.0	5.3	-	-	4.3	0.0	-	0.0	-	0.0	4.6
Articulated Trucks	0	7	6	0	13	0	0	0	0	0	0	13	0	0	13	0	0	0	0	0	26
\% Articulated Trucks	-	6.5	46.2	-	10.7	-	-	-	-	-	0.0	22.8	-	-	18.8	0.0	-	0.0	-	0.0	13.3

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#3, winter
Site Code: 16
Start Date: 2015/01/19
Page No: 11

Turning Movement Peak Hour Data Plot (05:30 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#4, winter
Site Code: 17
Start Date: 2015/01/19
Page No: 1

Turning Movement Data

Start Time	Alaska Hwy 97 Southbound				urn	Over	Data access		Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
05:00 AM	0	1	0	1	0	0	0	0	3	0	0	3	4
05:15 AM	0	0	0	0	0	0	0	0	4	0	0	4	4
05:30 AM	0	1	0	1	0	0	0	0	14	0	0	14	15
05:45 AM	0	1	0	1	0	0	0	0	13	0	0	13	14
Hourly Total	0	3	0	3	0	0	0	0	34	0	0	34	37
06:00 AM	0	6	0	6	0	0	0	0	16	0	0	16	22
06:15 AM	0	4	0	4	0	0	0	0	26	0	0	26	30
06:30 AM	0	7	0	7	0	0	0	0	29	0	0	29	36
06:45 AM	0	15	0	15	0	0	0	0	42	0	0	42	57
Hourly Total	0	32	0	32	0	0	0	0	113	0	0	113	145
07:00 AM	0	8	0	8	0	0	0	0	22	0	0	22	30
07:15 AM	0	7	0	7	0	0	0	0	12	0	0	12	19
07:30 AM	0	9	0	9	0	0	0	0	8	0	0	8	17
07:45 AM	0	5	0	5	0	0	0	0	9	1	0	10	15
Hourly Total	0	29	0	29	0	0	0	0	51	1	0	52	81
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	0	12	0	12	0	0	0	0	13	0	0	13	25
11:15 AM	0	9	0	9	0	1	0	1	6	0	0	6	16
11:30 AM	1	13	0	14	0	0	0	0	9	0	0	9	23
11:45 AM	0	7	0	7	0	1	0	1	12	0	0	12	20
Hourly Total	1	41	0	42	0	2	0	2	40	0	0	40	84
12:00 PM	0	9	0	9	0	0	0	0	9	0	0	9	18
12:15 PM	0	11	0	11	1	1	0	2	13	0	0	13	26
12:30 PM	0	9	0	9	0	0	0	0	13	0	0	13	22
12:45 PM	0	9	0	9	0	0	0	0	15	0	0	15	24
Hourly Total	0	38	0	38	1	1	0	2	50	0	0	50	90
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
04:00 PM	0	17	0	17	0	0	0	0	11	0	0	11	28
04:15 PM	0	16	0	16	0	0	0	0	10	0	0	10	26
04:30 PM	0	11	0	11	0	0	0	0	9	0	0	9	20
04:45 PM	0	10	0	10	0	0	0	0	4	0	0	4	14
Hourly Total	0	54	0	54	0	0	0	0	34	0	0	34	88
05:00 PM	0	9	0	9	0	0	0	0	4	0	0	4	13
05:15 PM	0	16	0	16	0	0	0	0	20	0	0	20	36
05:30 PM	0	33	0	33	0	0	0	0	22	0	0	22	55
05:45 PM	0	29	0	29	0	0	0	0	15	0	0	15	44

Hourly Total	0	87	0	87	0	0	0	0	61	0	0	61	148
06:00 PM	0	32	0	32	0	0	0	0	10	0	0	10	42
06:15 PM	0	26	0	26	0	0	0	0	15	0	0	15	41
06:30 PM	0	27	0	27	0	0	0	0	4	0	0	4	31
06:45 PM	1	22	0	23	0	0	0	0	5	0	0	5	28
Hourly Total	1	107	0	108	0	0	0	0	34	0	0	34	142
Grand Total	2	391	0	393	1	3	0	4	417	1	0	418	815
Approach \%	0.5	99.5	0.0	-	25.0	75.0	0.0	-	99.8	0.2	0.0	-	-
Total \%	0.2	48.0	0.0	48.2	0.1	0.4	0.0	0.5	51.2	0.1	0.0	51.3	-
Lights	2	292	0	294	0	1	0	1	299	0	0	299	594
\% Lights	100.0	74.7	-	74.8	0.0	33.3	-	25.0	71.7	0.0	-	71.5	72.9
Mediums	0	20	0	20	0	1	0	1	41	1	0	42	63
\% Mediums	0.0	5.1	-	5.1	0.0	33.3	-	25.0	9.8	100.0	-	10.0	7.7
Articulated Trucks	0	79	0	79	1	1	0	2	77	0	0	77	158
\% Articulated Trucks	0.0	20.2	-	20.1	100.0	33.3	-	50.0	18.5	0.0	-	18.4	19.4

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#4, winter
Site Code: 17
Start Date: 2015/01/19
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Sasquatch Crossing access \#4, winter
Site Code: 17
Start Date: 2015/01/19
Page No: 4

Turning Movement Peak Hour Data (06:15 AM)

Start Time	Alaska Hwy 97 Southbound				Gunga-Din north access Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
06:15 AM	0	4	0	4	0	0	0	0	26	0	0	26	30
06:30 AM	0	7	0	7	0	0	0	0	29	0	0	29	36
06:45 AM	0	15	0	15	0	0	0	0	42	0	0	42	57
07:00 AM	0	8	0	8	0	0	0	0	22	0	0	22	30
Total	0	34	0	34	0	0	0	0	119	0	0	119	153
Approach \%	0.0	100.0	0.0	-	NaN	NaN	NaN	-	100.0	0.0	0.0	-	-
Total \%	0.0	22.2	0.0	22.2	0.0	0.0	0.0	0.0	77.8	0.0	0.0	77.8	-
PHF	0.000	0.567	0.000	0.567	0.000	0.000	0.000	0.000	0.708	0.000	0.000	0.708	0.671
Lights	0	33	0	33	0	0	0	0	101	0	0	101	134
\% Lights	-	97.1	-	97.1	-	-	-	-	84.9	-	-	84.9	87.6
Mediums	0	0	0	0	0	0	0	0	14	0	0	14	14
\% Mediums	-	0.0	-	0.0	-	-	-	-	11.8	-	-	11.8	9.2
Articulated Trucks	0	1	0	1	0	0	0	0	4	0	0	4	5
\% Articulated Trucks	-	2.9	-	2.9	-	-	-	-	3.4	-	-	3.4	3.3

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#4, winter
Site Code: 17
Start Date: 2015/01/19
Page No: 5

Turning Movement Peak Hour Data Plot (06:15 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Sasquatch Crossing access \#4, winter
Site Code: 17
Start Date: 2015/01/19
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Alaska Hwy 97 Southbound				Gunga-Din north access Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
11:00 AM	0	12	0	12	0	0	0	0	13	0	0	13	25
11:15 AM	0	9	0	9	0	1	0	1	6	0	0	6	16
11:30 AM	1	13	0	14	0	0	0	0	9	0	0	9	23
11:45 AM	0	7	0	7	0	1	0	1	12	0	0	12	20
Total	1	41	0	42	0	2	0	2	40	0	0	40	84
Approach \%	2.4	97.6	0.0	-	0.0	100.0	0.0	-	100.0	0.0	0.0	-	-
Total \%	1.2	48.8	0.0	50.0	0.0	2.4	0.0	2.4	47.6	0.0	0.0	47.6	\checkmark
PHF	0.250	0.788	0.000	0.750	0.000	0.500	0.000	0.500	0.769	0.000	0.000	0.769	0.840
Lights	1	27	0	28	0	0	0	0	17	0	0	17	45
\% Lights	100.0	65.9	-	66.7	-	0.0	-	0.0	42.5	-	-	42.5	53.6
Mediums	0	1	0	1	0	1	0	1	10	0	0	10	12
\% Mediums	0.0	2.4	-	2.4	-	50.0	-	50.0	25.0	-	-	25.0	14.3
Articulated Trucks	0	13	0	13	0	1	0	1	13	0	0	13	27
\% Articulated Trucks	0.0	31.7	-	31.0	-	50.0	-	50.0	32.5	-	-	32.5	32.1

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#4, winter
Site Code: 17
Start Date: 2015/01/19
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Sasquatch Crossing access \#4, winter
Site Code: 17
Start Date: 2015/01/19
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound				Gunga-Din north access Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
12:00 PM	0	9	0	9	0	0	0	0	9	0	0	9	18
12:15 PM	0	11	0	11	1	1	0	2	13	0	0	13	26
12:30 PM	0	9	0	9	0	0	0	0	13	0	0	13	22
12:45 PM	0	9	0	9	0	0	0	0	15	0	0	15	24
Total	0	38	0	38	1	1	0	2	50	0	0	50	90
Approach \%	0.0	100.0	0.0	-	50.0	50.0	0.0	-	100.0	0.0	0.0	-	-
Total \%	0.0	42.2	0.0	42.2	1.1	1.1	0.0	2.2	55.6	0.0	0.0	55.6	-
PHF	0.000	0.864	0.000	0.864	0.250	0.250	0.000	0.250	0.833	0.000	0.000	0.833	0.865
Lights	0	20	0	20	0	1	0	1	31	0	0	31	52
\% Lights	-	52.6	-	52.6	0.0	100.0	-	50.0	62.0	-	-	62.0	57.8
Mediums	0	3	0	3	0	0	0	0	5	0	0	5	8
\% Mediums	-	7.9	-	7.9	0.0	0.0	-	0.0	10.0	-	-	10.0	8.9
Articulated Trucks	0	15	0	15	1	0	0	1	14	0	0	14	30
\% Articulated Trucks	-	39.5	-	39.5	100.0	0.0	-	50.0	28.0	-	-	28.0	33.3

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#4, winter
Site Code: 17
Start Date: 2015/01/19
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Sasquatch Crossing access \#4, winter
Site Code: 17
Start Date: 2015/01/19
250-819-2527 paul@peaktraffic.ca
Page No: 10

Turning Movement Peak Hour Data (05:30 PM)

Start Time	Alaska Hwy 97 Southbound				Gunga-Din north access Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
05:30 PM	0	33	0	33	0	0	0	0	22	0	0	22	55
05:45 PM	0	29	0	29	0	0	0	0	15	0	0	15	44
06:00 PM	0	32	0	32	0	0	0	0	10	0	0	10	42
06:15 PM	0	26	0	26	0	0	0	0	15	0	0	15	41
Total	0	120	0	120	0	0	0	0	62	0	0	62	182
Approach \%	0.0	100.0	0.0	-	NaN	NaN	NaN	-	100.0	0.0	0.0	-	-
Total \%	0.0	65.9	0.0	65.9	0.0	0.0	0.0	0.0	34.1	0.0	0.0	34.1	-
PHF	0.000	0.909	0.000	0.909	0.000	0.000	0.000	0.000	0.705	0.000	0.000	0.705	0.827
Lights	0	99	0	99	0	0	0	0	43	0	0	43	142
\% Lights	-	82.5	-	82.5	-	-	-	-	69.4	-	-	69.4	78.0
Mediums	0	5	0	5	0	0	0	0	4	0	0	4	9
\% Mediums	-	4.2	-	4.2	-	-	-	-	6.5	-	-	6.5	4.9
Articulated Trucks	0	16	0	16	0	0	0	0	15	0	0	15	31
\% Articulated Trucks	-	13.3	-	13.3	-	-	-	-	24.2	-	-	24.2	17.0

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Sasquatch Crossing access \#4, winter
Site Code: 17
Start Date: 2015/01/19
Page No: 11

Turning Movement Peak Hour Data Plot (05:30 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.c

Count Name: Stoddart Rd, winter
Site Code: 2
Start Date: 2015/01/28
Page No: 1

Turning Movement Data

Start Time	Alaska Hwy 97 Southbound				Stoddart Rd. Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
05:00 AM	0	6	0	6	0	0	0	0	15	0	0	15	21
05:15 AM	0	5	0	5	0	1	0	1	10	0	0	10	16
05:30 AM	0	2	0	2	0	1	0	1	19	0	0	19	22
05:45 AM	0	9	0	9	1	0	0	1	26	0	0	26	36
Hourly Total	0	22	0	22	1	2	0	3	70	0	0	70	95
06:00 AM	1	20	0	21	0	0	0	0	34	0	0	34	55
06:15 AM	0	16	0	16	3	0	0	3	37	0	0	37	56
06:30 AM	0	31	0	31	4	0	0	4	22	0	0	22	57
06:45 AM	0	23	0	23	1	0	0	1	36	0	0	36	60
Hourly Total	1	90	0	91	8	0	0	8	129	0	0	129	228
07:00 AM	0	19	0	19	2	0	0	2	46	1	0	47	68
07:15 AM	0	23	0	23	9	0	0	9	63	0	0	63	95
07:30 AM	0	33	0	33	4	0	0	4	66	1	0	67	104
07:45 AM	0	31	0	31	3	0	0	3	44	1	0	45	79
Hourly Total	0	106	0	106	18	0	0	18	219	3	0	222	346
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
11:00 AM	2	20	0	22	1	0	0	1	32	3	0	35	58
11:15 AM	0	17	0	17	2	0	0	2	33	2	0	35	54
11:30 AM	0	27	0	27	2	0	0	2	36	1	0	37	66
11:45 AM	0	21	0	21	3	0	0	3	29	1	0	30	54
Hourly Total	2	85	0	87	8	0	0	8	130	7	0	137	232
12:00 PM	1	38	0	39	1	0	0	1	31	0	0	31	71
12:15 PM	0	34	0	34	1	0	0	1	21	1	0	22	57
12:30 PM	0	28	0	28	1	1	0	2	24	0	0	24	54
12:45 PM	0	38	0	38	4	0	0	4	26	2	0	28	70
Hourly Total	1	138	0	139	7	1	0	8	102	3	0	105	252
01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0
04:00 PM	0	42	0	42	1	0	0	1	28	2	0	30	73
04:15 PM	0	48	1	49	0	0	0	0	31	1	0	32	81
04:30 PM	0	54	0	54	1	0	0	1	33	2	0	35	90
04:45 PM	0	53	0	53	1	0	0	1	21	6	0	27	81
Hourly Total	0	197	1	198	3	0	0	3	113	11	0	124	325
05:00 PM	0	32	0	32	2	0	0	2	49	6	0	55	89
05:15 PM	0	61	0	61	3	0	0	3	39	10	0	49	113
05:30 PM	0	51	0	51	3	0	0	3	29	6	0	35	89
05:45 PM	1	50	0	51	1	0	0	1	29	6	0	35	87

Hourly Total	1	194	0	195	9	0	0	9	146	28	0	174	378
06:00 PM	0	67	0	67	0	0	0	0	25	4	0	29	96
06:15 PM	0	78	0	78	2	0	0	2	26	5	0	31	111
06:30 PM	0	47	0	47	1	0	0	1	27	2	0	29	77
06:45 PM	0	45	0	45	0	0	0	0	23	7	0	30	75
Hourly Total	0	237	0	237	3	0	0	3	101	18	0	119	359
Grand Total	5	1069	1	1075	57	3	0	60	1010	70	0	1080	2215
Approach \%	0.5	99.4	0.1	-	95.0	5.0	0.0	-	93.5	6.5	0.0	-	-
Total \%	0.2	48.3	0.0	48.5	2.6	0.1	0.0	2.7	45.6	3.2	0.0	48.8	-
Lights	5	755	0	760	51	3	0	54	740	66	0	806	1620
\% Lights	100.0	70.6	0.0	70.7	89.5	100.0	-	90.0	73.3	94.3	-	74.6	73.1
Mediums	0	97	1	98	6	0	0	6	119	3	0	122	226
\% Mediums	0.0	9.1	100.0	9.1	10.5	0.0	-	10.0	11.8	4.3	-	11.3	10.2
Articulated Trucks	0	217	0	217	0	0	0	0	151	1	0	152	369
\% Articulated Trucks	0.0	20.3	0.0	20.2	0.0	0.0	-	0.0	15.0	1.4	-	14.1	16.7

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Stoddart Rd, winter Site Code: 2
Start Date: 2015/01/28
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 Count Name: Stoddart Rd, winter Site Code: 2
Start Na: 2015/01/28
250-819-2527 paul@peaktraffic.ca
Page No: 4

Turning Movement Peak Hour Data (07:00 AM)

Start Time	Turning Movement Peak Hour Data (07:00 AM)												
	Alaska Hwy 97 Southbound				Stoddart Rd. Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
07:00 AM	0	19	0	19	2	0	0	2	46	1	0	47	68
07:15 AM	0	23	0	23	9	0	0	9	63	0	0	63	95
07:30 AM	0	33	0	33	4	0	0	4	66	1	0	67	104
07:45 AM	0	31	0	31	3	0	0	3	44	1	0	45	79
Total	0	106	0	106	18	0	0	18	219	3	0	222	346
Approach \%	0.0	100.0	0.0	-	100.0	0.0	0.0	-	98.6	1.4	0.0	-	-
Total \%	0.0	30.6	0.0	30.6	5.2	0.0	0.0	5.2	63.3	0.9	0.0	64.2	-
PHF	0.000	0.803	0.000	0.803	0.500	0.000	0.000	0.500	0.830	0.750	0.000	0.828	0.832
Lights	0	76	0	76	16	0	0	16	174	3	0	177	269
\% Lights	-	71.7	-	71.7	88.9	-	-	88.9	79.5	100.0	-	79.7	77.7
Mediums	0	5	0	5	2	0	0	2	19	0	0	19	26
\% Mediums	-	4.7	-	4.7	11.1	-	-	11.1	8.7	0.0	-	8.6	7.5
Articulated Trucks	0	25	0	25	0	0	0	0	26	0	0	26	51
\% Articulated Trucks	-	23.6	-	23.6	0.0	-	-	0.0	11.9	0.0	-	11.7	14.7

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Stoddart Rd, winter Site Code: 2
Start Date: 2015/01/28
Page No: 5

Turning Movement Peak Hour Data Plot (07:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 Count Name: Stoddart Rd, winter Site Code: 2
Start Date: 2015/01/28
250-819-2527 paul@peaktraffic.ca
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Turning Movement Peak Hour Data (11:00 AM)												
	Alaska Hwy 97 Southbound				Stoddart Rd. Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
11:00 AM	2	20	0	22	1	0	0	1	32	3	0	35	58
11:15 AM	0	17	0	17	2	0	0	2	33	2	0	35	54
11:30 AM	0	27	0	27	2	0	0	2	36	1	0	37	66
11:45 AM	0	21	0	21	3	0	0	3	29	1	0	30	54
Total	2	85	0	87	8	0	0	8	130	7	0	137	232
Approach \%	2.3	97.7	0.0	-	100.0	0.0	0.0	-	94.9	5.1	0.0	-	-
Total \%	0.9	36.6	0.0	37.5	3.4	0.0	0.0	3.4	56.0	3.0	0.0	59.1	-
PHF	0.250	0.787	0.000	0.806	0.667	0.000	0.000	0.667	0.903	0.583	0.000	0.926	0.879
Lights	2	41	0	43	7	0	0	7	79	6	0	85	135
\% Lights	100.0	48.2	-	49.4	87.5	-	-	87.5	60.8	85.7	-	62.0	58.2
Mediums	0	13	0	13	1	0	0	1	13	1	0	14	28
\% Mediums	0.0	15.3	-	14.9	12.5	-	-	12.5	10.0	14.3	-	10.2	12.1
Articulated Trucks	0	31	0	31	0	0	0	0	38	0	0	38	69
\% Articulated Trucks	0.0	36.5	-	35.6	0.0	-	-	0.0	29.2	0.0	-	27.7	29.7

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Stoddart Rd, winter Site Code: 2
Start Date: 2015/01/28
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4 Count Name: Stoddart Rd, winter Site Code: 2
Start No: 2015/01/28
250-819-2527 paul@peaktraffic.ca
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound				Stoddart Rd. Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
12:00 PM	1	38	0	39	1	0	0	1	31	0	0	31	71
12:15 PM	0	34	0	34	1	0	0	1	21	1	0	22	57
12:30 PM	0	28	0	28	1	1	0	2	24	0	0	24	54
12:45 PM	0	38	0	38	4	0	0	4	26	2	0	28	70
Total	1	138	0	139	7	1	0	8	102	3	0	105	252
Approach \%	0.7	99.3	0.0	-	87.5	12.5	0.0	-	97.1	2.9	0.0	-	-
Total \%	0.4	54.8	0.0	55.2	2.8	0.4	0.0	3.2	40.5	1.2	0.0	41.7	-
PHF	0.250	0.908	0.000	0.891	0.438	0.250	0.000	0.500	0.823	0.375	0.000	0.847	0.887
Lights	1	82	0	83	7	1	0	8	62	3	0	65	156
\% Lights	100.0	59.4	-	59.7	100.0	100.0	-	100.0	60.8	100.0	-	61.9	61.9
Mediums	0	8	0	8	0	0	0	0	16	0	0	16	24
\% Mediums	0.0	5.8	-	5.8	0.0	0.0	-	0.0	15.7	0.0	-	15.2	9.5
Articulated Trucks	0	48	0	48	0	0	0	0	24	0	0	24	72
\% Articulated Trucks	0.0	34.8	-	34.5	0.0	0.0	-	0.0	23.5	0.0	-	22.9	28.6

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Stoddart Rd, winter Site Code: 2
Start Date: 2015/01/28
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd 665 Brentwood Ave

Kamloops, British Columbia, Canada V2B 1P4
Count Name: Stoddart Rd, winter Site Code: 2
Start Date: 2015/01/28
250-819-2527 paul@peaktraffic.ca
Page No: 10

Turning Movement Peak Hour Data (05:15 PM)

Start Time	Alaska Hwy 97 Southbound				Stoddart Rd. Westbound				Alaska Hwy 97 Northbound				Int. Total
	Left	Thru	U-Turn	App. Total	Left	Right	U-Turn	App. Total	Thru	Right	U-Turn	App. Total	
05:15 PM	0	61	0	61	3	0	0	3	39	10	0	49	113
05:30 PM	0	51	0	51	3	0	0	3	29	6	0	35	89
05:45 PM	1	50	0	51	1	0	0	1	29	6	0	35	87
06:00 PM	0	67	0	67	0	0	0	0	25	4	0	29	96
Total	1	229	0	230	7	0	0	7	122	26	0	148	385
Approach \%	0.4	99.6	0.0	-	100.0	0.0	0.0	-	82.4	17.6	0.0	-	-
Total \%	0.3	59.5	0.0	59.7	1.8	0.0	0.0	1.8	31.7	6.8	0.0	38.4	-
PHF	0.250	0.854	0.000	0.858	0.583	0.000	0.000	0.583	0.782	0.650	0.000	0.755	0.852
Lights	1	162	0	163	5	0	0	5	109	26	0	135	303
\% Lights	100.0	70.7	-	70.9	71.4	-	-	71.4	89.3	100.0	-	91.2	78.7
Mediums	0	19	0	19	2	0	0	2	7	0	0	7	28
\% Mediums	0.0	8.3	-	8.3	28.6	-	-	28.6	5.7	0.0	-	4.7	7.3
Articulated Trucks	0	48	0	48	0	0	0	0	6	0	0	6	54
\% Articulated Trucks	0.0	21.0	-	20.9	0.0	-	-	0.0	4.9	0.0	-	4.1	14.0

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Stoddart Rd, winter Site Code: 2
Start Date: 2015/01/28
Page No: 11

Turning Movement Peak Hour Data Plot (05:15 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd

Kamloops, British Columbia, Canada V2B 1P4

Count Name: Wonowon Esso \#1, winter Site Code: 8
Start Date: 2015/01/26
Page No: 1

Start Time	Turning Movement Data															Wonowon Esso \#1 Eastbound					Int. Total
	Alaska Hwy 97 Southbound					Access Westbound					Alaska Hwy 97 Northbound										
	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	
05:00 AM	0	4	0	0	4	0	0	0	0	0	0	11	0	0	11	0	0	1	0	1	16
05:15 AM 05:30 AM	0	2	0	0	2	0	0	0	0	0	1	8	0	0	9	0	0	0	0	0	11
	0	6	0	0	6	0	0	0	0	0	1	14	0	0	15	0	0	0	0	0	21
05:45 AM	0	10	0	0	10	0	0	0	0	0	3	22	0	0	25	0	0	0	0	0	35
Hourly Total	0	22	0	0	22	0	0	0	0	0	5	55	0	0	60	0	0	1	0	1	83
06:00 AM 06:15 AM 06:30 AM 06:45 AM	0	3	0	0	3	0	0	0	0	0	1	18	0	0	19	0	0	0	0	0	22
	0	9	0	0	9	0	0	0	0	0	4	17	0	0	21	0	0	1	0	1	31
	0	7	0	0	7	0	0	0	0	0	3	22	0	0	25	2	0	0	0	2	34
	0	17	0	0	17	0	0	0	0	0	5	30	0	0	35	2	0	1	0	3	55
Hourly Total	0	36	0	0	36	0	0	0	0	0	13	87	0	0	100	4	0	2	0	6	142
$\begin{aligned} & \text { 07:00 AM } \\ & \text { 07:15 AM } \\ & \text { 07:30 AM } \\ & \text { 07:45 AM } \\ & \hline \end{aligned}$	0	5	0	0	5	0	0	1	0	1	9	26	0	0	35	1	0	0	0	1	42
	0	10	0	0	10	0	0	0	0	0	3	25	0	0	28	0	0	0	0	0	38
	0	9	0	0	9	0	0	0	0	0	10	20	0	0	30	3	0	2	0	5	44
	0	12	0	0	12	0	1	0	0	1	13	34	0	0	47	1	0	0	0	1	61
Hourly Total	0	36	0	0	36	0	1	1	0	2	35	105	0	0	140	5	0	2	0	7	185
$\begin{gathered} \text { 08:00 AM } \\ \text { *** BREAK *** } \\ \hline \end{gathered}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{aligned} & \hline 11: 00 \mathrm{AM} \\ & \text { 11:15 AM } \\ & \text { 11:30 AM } \\ & \text { 11:45 AM } \\ & \hline \end{aligned}$	0	22	0	0	22	0	0	0	0	0	2	25	0	0	27	2	0	2	0	4	53
	0	18	0	0	18	0	0	0	0	0	4	29	0	0	33	0	0	4	0	4	55
	0	17	0	0	17	0	0	0	0	0	4	14	0	0	18	1	0	5	0	6	41
	0	16	0	0	16	0	0	0	0	0	5	15	0	0	20	1	0	4	0	5	41
Hourly Total	0	73	0	0	73	0	0	0	0	0	15	83	0	0	98	4	0	15	0	19	190
$\begin{aligned} & \text { 12:00 PM } \\ & \text { 12:15 PM } \\ & \text { 12:30 PM } \\ & \text { 12:45 PM } \end{aligned}$	0	23	3	0	26	0	0	0	0	0	7	22	0	0	29	1	0	4	0	5	60
	0	15	0	0	15	0	0	0	0	0	5	18	0	0	23	1	0	4	0	5	43
	0	17	0	0	17	0	0	0	0	0	5	14	0	0	19	1	0	6	0	7	43
	0	15	0	0	15	0	0	0	0	0	5	18	0	0	23	3	0	4	0	7	45
Hourly Total	0	70	3	0	73	0	0	0	0	0	22	72	0	0	94	6	0	18	0	24	191
$\begin{gathered} \text { 01:00 PM } \\ \text { *** BREAK *** } \end{gathered}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{aligned} & \text { 04:00 PM } \\ & \text { 04:15 PM } \\ & \text { 04:30 PM } \\ & \text { 04:45 PM } \\ & \hline \end{aligned}$	0	28	0	0	28	0	0	0	0	0	6	14	0	0	20	3	0	6	0	9	57
	0	22	0	0	22	0	0	0	0	0	8	22	0	0	30	2	0	6	0	8	60
	0	26	0	0	26	0	0	0	0	0	3	11	0	0	14	2	0	5	0	7	47
	0	21	1	0	22	0	1	0	0	1	2	10	0	0	12	1	0	4	0	5	40
Hourly Total	0	97	1	0	98	0	1	0	0	1	19	57	0	0	76	8	0	21	0	29	204
05:00 PM 05:15 PM	1	42	0	0	43	0	0	0	0	0	2	20	0	0	22	1	0	3	0	4	69
	0	47	0	0	47	0	1	0	0	1	4	17	1	0	22	0	1	7	0	8	78

05:30 PM	0	44	0	0	44	0	0	0	0	0	4	10	0	0	14	3	0	9	0	12	70
05:45 PM	0	41	1	0	42	1	0	0	0	1	2	20	0	0	22	3	0	6	0	9	74
Hourly Total	1	174	1	0	176	1	1	0	0	2	12	67	1	0	80	7	1	25	0	33	291
06:00 PM	0	14	0	0	14	0	0	0	0	0	2	8	0	0	10	3	0	2	0	5	29
06:15 PM	0	25	0	0	25	0	0	0	0	0	6	11	0	0	17	3	0	6	0	9	51
06:30 PM	0	16	1	0	17	0	0	0	0	0	4	17	0	0	21	2	0	9	0	11	49
06:45 PM	0	23	0	0	23	0	0	0	0	0	8	8	0	0	16	2	0	1	0	3	42
Hourly Total	0	78	1	0	79	0	0	0	0	0	20	44	0	0	64	10	0	18	0	28	171
07:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	1	586	6	0	593	1	3	1	0	5	141	570	1	0	712	44	1	102	0	147	1457
Approach \%	0.2	98.8	1.0	0.0	-	20.0	60.0	20.0	0.0	-	19.8	80.1	0.1	0.0	-	29.9	0.7	69.4	0.0	-	-
Total \%	0.1	40.2	0.4	0.0	40.7	0.1	0.2	0.1	0.0	0.3	9.7	39.1	0.1	0.0	48.9	3.0	0.1	7.0	0.0	10.1	-
Lights	1	341	5	0	347	1	3	1	0	5	85	358	1	0	444	38	0	74	0	112	908
\% Lights	100.0	58.2	83.3	-	58.5	100.0	100.0	100.0	-	100.0	60.3	62.8	100.0	-	62.4	86.4	0.0	72.5	-	76.2	62.3
Mediums	0	53	1	0	54	0	0	0	0	0	21	43	0	0	64	5	1	8	0	14	132
\% Mediums	0.0	9.0	16.7	-	9.1	0.0	0.0	0.0	-	0.0	14.9	7.5	0.0	-	9.0	11.4	100.0	7.8	-	9.5	9.1
Articulated Trucks	0	192	0	0	192	0	0	0	0	0	35	169	0	0	204	1	0	20	0	21	417
\% Articulated Trucks	0.0	32.8	0.0	-	32.4	0.0	0.0	0.0	-	0.0	24.8	29.6	0.0	-	28.7	2.3	0.0	19.6	-	14.3	28.6

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#1, winter Site Code: 8
Start Date: 2015/01/26
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4

Count Name: Wonowon Esso \#1, winter Site Code: 8
Start Date: 2015/01/26
Page No: 4

Turning Movement Peak Hour Data (07:00 AM)

Start Time	Alaska Hwy 97 Southbound					Access Westbound					Alaska Hwy 97Northbound					Wonowon Esso \#1					Int. Total
	Left	Thru	$\begin{aligned} & \text { outhbour } \\ & \text { Right } \end{aligned}$	U-Turn	App. Total	Left	Thru	$\begin{aligned} & \text { estboun } \\ & \text { Right } \end{aligned}$	U-Turn	App. Total	Left	Thru	$\begin{gathered} \text { orthbou } \\ \text { Right } \\ \hline \end{gathered}$	U-Turn	App. Total	Left	Thru	$\begin{aligned} & \text { Eastboun } \\ & \text { Right } \\ & \hline \end{aligned}$	U-Turn	App. Total	
07:00 AM	0	5	0	0	5	0	0	1	0	1	9	26	0	0	35	1	0	0	0	1	42
07:15 AM	0	10	0	0	10	0	0	0	0	0	3	25	0	0	28	0	0	0	0	0	38
07:30 AM	0	9	0	0	9	0	0	0	0	0	10	20	0	0	30	3	0	2	0	5	44
07:45 AM	0	12	0	0	12	0	1	0	0	1	13	34	0	0	47	1	0	0	0	1	61
Total	0	36	0	0	36	0	1	1	0	2	35	105	0	0	140	5	0	2	0	7	185
Approach \%	0.0	100.0	0.0	0.0	-	0.0	50.0	50.0	0.0	-	25.0	75.0	0.0	0.0	-	71.4	0.0	28.6	0.0	-	-
Total \%	0.0	19.5	0.0	0.0	19.5	0.0	0.5	0.5	0.0	1.1	18.9	56.8	0.0	0.0	75.7	2.7	0.0	1.1	0.0	3.8	-
PHF	0.000	0.750	0.000	0.000	0.750	0.000	0.250	0.250	0.000	0.500	0.673	0.772	0.000	0.000	0.745	0.417	0.000	0.250	0.000	0.350	0.758
Lights	0	15	0	0	15	0	1	1	0	2	23	67	0	0	90	5	0	2	0	7	114
\% Lights	-	41.7	-	-	41.7	-	100.0	100.0	-	100.0	65.7	63.8	-	-	64.3	100.0	-	100.0	-	100.0	61.6
Mediums	0	3	0	0	3	0	0	0	0	0	6	7	0	0	13	0	0	0	0	0	16
\% Mediums	-	8.3	-	-	8.3	-	0.0	0.0	-	0.0	17.1	6.7	-	-	9.3	0.0	-	0.0	-	0.0	8.6
Articulated Trucks	0	18	0	0	18	0	0	0	0	0	6	31	0	0	37	0	0	0	0	0	55
\% Articulated Trucks	-	50.0	-	-	50.0	-	0.0	0.0	-	0.0	17.1	29.5	-	-	26.4	0.0	-	0.0	-	0.0	29.7

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#1, winter Site Code: 8
Start Date: 2015/01/26
Page No: 5

Turning Movement Peak Hour Data Plot (07:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4

Count Name: Wonowon Esso \#1, winter Site Code: 8
Start Date: 2015/01/26
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Alaska Hwy 97 Southbound					Access Westbound					Alaska Hwy 97 Northbound					Wonowon Esso \#1					Int. Total
	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	
11:00 AM	0	22	0	0	22	0	0	0	0	0	2	25	0	0	27	2	0	2	0	4	53
11:15 AM	0	18	0	0	18	0	0	0	0	0	4	29	0	0	33	0	0	4	0	4	55
11:30 AM	0	17	0	0	17	0	0	0	0	0	4	14	0	0	18	1	0	5	0	6	41
11:45 AM	0	16	0	0	16	0	0	0	0	0	5	15	0	0	20	1	0	4	0	5	41
Total	0	73	0	0	73	0	0	0	0	0	15	83	0	0	98	4	0	15	0	19	190
Approach \%	0.0	100.0	0.0	0.0	-	NaN	NaN	NaN	NaN	-	15.3	84.7	0.0	0.0	-	21.1	0.0	78.9	0.0	-	-
Total \%	0.0	38.4	0.0	0.0	38.4	0.0	0.0	0.0	0.0	0.0	7.9	43.7	0.0	0.0	51.6	2.1	0.0	7.9	0.0	10.0	-
PHF	0.000	0.830	0.000	0.000	0.830	0.000	0.000	0.000	0.000	0.000	0.750	0.716	0.000	0.000	0.742	0.500	0.000	0.750	0.000	0.792	0.864
Lights	0	32	0	0	32	0	0	0	0	0	10	49	0	0	59	4	0	8	0	12	103
\% Lights	-	43.8	-	-	43.8	-	-	-	-	-	66.7	59.0	-	-	60.2	100.0	-	53.3	-	63.2	54.2
Mediums	0	5	0	0	5	0	0	0	0	0	1	6	0	0	7	0	0	0	0	0	12
\% Mediums	-	6.8	-	-	6.8	-	-	-	-	-	6.7	7.2	-	-	7.1	0.0	-	0.0	-	0.0	6.3
Articulated Trucks	0	36	0	0	36	0	0	0	0	0	4	28	0	0	32	0	0	7	0	7	75
\% Articulated Trucks	-	49.3	-	-	49.3	-	-	-	-	-	26.7	33.7	-	-	32.7	0.0	-	46.7	-	36.8	39.5

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#1, winter Site Code: 8
Start Date: 2015/01/26
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4

Count Name: Wonowon Esso \#1, winter Site Code: 8
Start Date: 2015/01/26
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97Southbound					AccessWestbound					Alaska Hwy 97					Wonowon Esso \#1					Int. Total
	Left	Thru	$\begin{aligned} & \text { outhbour } \\ & \text { Right } \end{aligned}$	U-Turn	App. Total	Left	Thru	$\begin{aligned} & \text { lestboun } \\ & \text { Right } \end{aligned}$	U-Turn	App. Total	Left	Thru	$\begin{aligned} & \text { orthbour } \\ & \text { Right } \end{aligned}$	U-Turn	App. Total	Left	Thru	$\begin{aligned} & \text { Eastboun } \\ & \text { Right } \\ & \hline \end{aligned}$	U-Turn	App. Total	
12:00 PM	0	23	3	0	26	0	0	0	0	0	7	22	0	0	29	1	0	4	0	5	60
12:15 PM	0	15	0	0	15	0	0	0	0	0	5	18	0	0	23	1	0	4	0	5	43
12:30 PM	0	17	0	0	17	0	0	0	0	0	5	14	0	0	19	1	0	6	0	7	43
12:45 PM	0	15	0	0	15	0	0	0	0	0	5	18	0	0	23	3	0	4	0	7	45
Total	0	70	3	0	73	0	0	0	0	0	22	72	0	0	94	6	0	18	0	24	191
Approach \%	0.0	95.9	4.1	0.0	-	NaN	NaN	NaN	NaN	-	23.4	76.6	0.0	0.0	-	25.0	0.0	75.0	0.0	-	-
Total \%	0.0	36.6	1.6	0.0	38.2	0.0	0.0	0.0	0.0	0.0	11.5	37.7	0.0	0.0	49.2	3.1	0.0	9.4	0.0	12.6	-
PHF	0.000	0.761	0.250	0.000	0.702	0.000	0.000	0.000	0.000	0.000	0.786	0.818	0.000	0.000	0.810	0.500	0.000	0.750	0.000	0.857	0.796
Lights	0	32	3	0	35	0	0	0	0	0	10	37	0	0	47	6	0	12	0	18	100
\% Lights	-	45.7	100.0	-	47.9	-	-	-	-	-	45.5	51.4	-	-	50.0	100.0	-	66.7	-	75.0	52.4
Mediums	0	8	0	0	8	0	0	0	0	0	5	8	0	0	13	0	0	2	0	2	23
\% Mediums	-	11.4	0.0	-	11.0	-	-	-	-	-	22.7	11.1	-	-	13.8	0.0	-	11.1	-	8.3	12.0
Articulated Trucks	0	30	0	0	30	0	0	0	0	0	7	27	0	0	34	0	0	4	0	4	68
\% Articulated Trucks	-	42.9	0.0	-	41.1	-	-	-	-	-	31.8	37.5	-	-	36.2	0.0	-	22.2	-	16.7	35.6

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#1, winter Site Code: 8
Start Date: 2015/01/26
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4

Count Name: Wonowon Esso \#1, winter Site Code: 8
Start Date: 2015/01/26
Page No: 10

Turning Movement Peak Hour Data (05:00 PM)

Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	$\begin{gathered} \text { Eastboun } \\ \text { Right } \\ \hline \end{gathered}$	U-Turn	App. Total	Int. Total
05:00 PM	1	42	0	0	43	0	0	0	0	0	2	20	0	0	22	1	0	3	0	4	69
05:15 PM	0	47	0	0	47	0	1	0	0	1	4	17	1	0	22	0	1	7	0	8	78
05:30 PM	0	44	0	0	44	0	0	0	0	0	4	10	0	0	14	3	0	9	0	12	70
05:45 PM	0	41	1	0	42	1	0	0	0	1	2	20	0	0	22	3	0	6	0	9	74
Total	1	174	1	0	176	1	1	0	0	2	12	67	1	0	80	7	1	25	0	33	291
Approach \%	0.6	98.9	0.6	0.0	-	50.0	50.0	0.0	0.0	-	15.0	83.8	1.3	0.0	-	21.2	3.0	75.8	0.0	-	-
Total \%	0.3	59.8	0.3	0.0	60.5	0.3	0.3	0.0	0.0	0.7	4.1	23.0	0.3	0.0	27.5	2.4	0.3	8.6	0.0	11.3	-
PHF	0.250	0.926	0.250	0.000	0.936	0.250	0.250	0.000	0.000	0.500	0.750	0.838	0.250	0.000	0.909	0.583	0.250	0.694	0.000	0.688	0.933
Lights	1	119	1	0	121	1	1	0	0	2	9	51	1	0	61	5	0	21	0	26	210
\% Lights	100.0	68.4	100.0	-	68.8	100.0	100.0	-	-	100.0	75.0	76.1	100.0	-	76.3	71.4	0.0	84.0	-	78.8	72.2
Mediums	0	13	0	0	13	0	0	0	0	0	1	3	0	0	4	2	1	3	0	6	23
\% Mediums	0.0	7.5	0.0	-	7.4	0.0	0.0	-	-	0.0	8.3	4.5	0.0	-	5.0	28.6	100.0	12.0	-	18.2	7.9
Articulated Trucks	0	42	0	0	42	0	0	0	0	0	2	13	0	0	15	0	0	1	0	1	58
\% Articulated Trucks	0.0	24.1	0.0	-	23.9	0.0	0.0	-	-	0.0	16.7	19.4	0.0	-	18.8	0.0	0.0	4.0	-	3.0	19.9

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#1, winter Site Code: 8
Start Date: 2015/01/26
Page No: 11

Turning Movement Peak Hour Data Plot (05:00 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd

Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#2, winter Site Code: 9
Start Date: 2015/01/26
Page No: 1

Start Time	Alaska Hwy 97 Southbound					Turning Movement Data$\begin{gathered}\text { Wonowon Lodge Camp Access } \\ \text { Westbound }\end{gathered}$$\begin{gathered}\text { Alaska Hwy } 97 \\ \text { Northbound }\end{gathered}$										Wonowon (Blueberry) Esso \#2 Eastbound					
	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Int. Total
05:00 AM	0	3	0	0	3	0	0	,	0	2	0	11	0	0	11	2	-	0	0	2	18
05:15 AM	0	1	0	0	1	0	0	1	0	1	0	8	0	0	8	0	0	1	0	1	11
05:30 AM	0	6	0	0	6	0	0	0	0	0	0	14	0	0	14	1	0	0	0	1	21
05:45 AM	0	11	0	0	11	0	0	0	0	0	1	20	0	0	21	4	0	0	0	4	36
Hourly Total	0	21	0	0	21	0	0	3	0	3	1	53	0	0	54	7	0	1	0	8	86
06:00 AM	1	3	0	0	4	0	0	1	0	1	0	18	0	0	18	2	0	0	0	2	25
06:15 AM	0	10	2	0	12	0	1	2	0	3	0	16	2	0	18	2	1	0	0	3	36
06:30 AM	1	7	0	0	8	0	1	2	0	3	0	20	5	0	25	2	0	0	0	2	38
06:45 AM	1	11	0	0	12	6	4	5	0	15	1	29	2	0	32	5	0	0	0	5	64
Hourly Total	3	31	2	0	36	6	6	10	0	22	1	83	9	0	93	11	1	0	0	12	163
07:00 AM	2	4	0	0	6	1	1	5	0	7	0	26	1	0	27	9	0	0	0	9	49
07:15 AM	1	9	2	0	12	0	0	0	0	0	0	26	2	0	28	3	0	1	0	4	44
07:30 AM	3	7	2	0	12	2	1	2	0	5	0	23	0	0	23	7	0	0	0	7	47
07:45 AM	0	10	1	0	11	1	1	0	0	2	0	33	1	0	34	9	0	1	0	10	57
Hourly Total	6	30	5	0	41	4	3	7	0	14	0	108	4	0	112	28	0	2	0	30	197
08:00 AM	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
11:00 AM	0	23	2	0	25	0	0	0	0	0	1	26	0	0	27	2	0	0	0	2	54
11:15 AM	0	15	3	0	18	2	0	0	0	2	0	29	0	0	29	1	0	1	0	2	51
11:30 AM	0	13	4	0	17	2	0	0	0	2	1	15	1	0	17	4	0	0	0	4	40
11:45 AM	0	17	4	0	21	0	0	0	0	0	1	14	1	0	16	7	0	0	0	7	44
Hourly Total	0	68	13	0	81	4	0	0	0	4	3	84	2	0	89	14	0	1	0	15	189
12:00 PM	1	23	4	0	28	2	0	0	0	2	0	22	1	0	23	4	0	0	0	4	57
12:15 PM	1	14	7	0	22	0	0	1	0	1	0	19	0	0	19	4	0	0	0	4	46
12:30 PM	1	15	3	0	19	0	0	0	0	0	0	14	1	0	15	12	0	0	0	12	46
12:45 PM	1	14	6	0	21	0	1	0	0	1	0	19	1	0	20	4	0	0	0	4	46
Hourly Total	4	66	20	0	90	2	1	1	0	4	0	74	3	0	77	24	0	0	0	24	195
01:00 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
04:00 PM	0	27	1	0	28	0	0	1	0	1	0	15	1	0	16	1	0	1	0	2	47
04:15 PM	1	19	8	0	28	1	1	0	0	2	0	22	3	0	25	5	0	2	0	7	62
04:30 PM	0	26	2	0	28	0	1	0	0	1	0	11	2	0	13	3	1	0	0	4	46
04:45 PM	0	22	3	0	25	0	0	0	0	0	0	11	0	0	11	4	2	0	0	6	42
Hourly Total	1	94	14	0	109	1	2	1	0	4	0	59	6	0	65	13	3	3	0	19	197
05:00 PM	0	47	4	0	51	0	0	1	0	1	0	17	4	0	21	6	0	0	0	6	79
05:15 PM	1	46	10	0	57	1	2	0	0	3	0	10	6	0	16	1	0	0	0	1	77

05:30 PM	1	45	12	0	58	1	0	1	0	2	0	10	4	0	14	3	1	0	0	4	78
05:45 PM	3	42	7	0	52	0	1	0	0	1	0	21	2	0	23	2	1	0	0	3	79
Hourly Total	5	180	33	0	218	2	3	2	0	7	0	58	16	0	74	12	2	0	0	14	313
06:00 PM	3	12	8	0	23	1	3	1	0	5	0	8	4	0	12	2	1	1	0	4	44
06:15 PM	5	26	14	0	45	0	1	0	0	1	0	11	3	0	14	8	1	0	0	9	69
06:30 PM	2	15	5	0	22	1	0	2	0	3	0	18	1	0	19	4	0	0	0	4	48
06:45 PM	5	22	5	0	32	0	0	1	0	1	0	9	1	0	10	5	0	1	0	6	49
Hourly Total	15	75	32	0	122	2	4	4	0	10	0	46	9	0	55	19	2	2	0	23	210
07:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	34	565	119	0	718	21	19	28	0	68	5	567	49	0	621	128	8	9	0	145	1552
Approach \%	4.7	78.7	16.6	0.0	-	30.9	27.9	41.2	0.0	-	0.8	91.3	7.9	0.0	-	88.3	5.5	6.2	0.0	-	-
Total \%	2.2	36.4	7.7	0.0	46.3	1.4	1.2	1.8	0.0	4.4	0.3	36.5	3.2	0.0	40.0	8.2	0.5	0.6	0.0	9.3	$-$
Lights	25	342	98	0	465	17	18	25	0	60	3	369	44	0	416	88	8	7	0	103	1044
\% Lights	73.5	60.5	82.4	-	64.8	81.0	94.7	89.3	-	88.2	60.0	65.1	89.8	-	67.0	68.8	100.0	77.8	-	71.0	67.3
Mediums	6	40	9	0	55	4	1	2	0	7	0	31	3	0	34	12	0	0	0	12	108
\% Mediums	17.6	7.1	7.6	-	7.7	19.0	5.3	7.1	-	10.3	0.0	5.5	6.1	-	5.5	9.4	0.0	0.0	-	8.3	7.0
Articulated Trucks	3	183	12	0	198	0	0	1	0	1	2	167	2	0	171	28	0	2	0	30	400
\% Articulated Trucks	8.8	32.4	10.1	-	27.6	0.0	0.0	3.6	-	1.5	40.0	29.5	4.1	-	27.5	21.9	0.0	22.2	-	20.7	25.8

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#2, winter Site Code: 9
Start Date: 2015/01/26
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4

Count Name: Wonowon Esso \#2, winter Site Code: 9
Start Date: 2015/01/26
Page No: 4

Turning Movement Peak Hour Data (06:45 AM)

Start Time	Alaska Hwy 97 Southbound					Wonowon Lodge Camp Access Westbound					Alaska Hwy 97 Northbound					Wonowon (Blueberry) Esso \#2 Eastbound					Int. Total
	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	
06:45 AM	1	11	0	0	12	6	4	5	0	15	1	29	2	0	32	5	0	0	0	5	64
07:00 AM	2	4	0	0	6	1	1	5	0	7	0	26	1	0	27	9	0	0	0	9	49
07:15 AM	1	9	2	0	12	0	0	0	0	0	0	26	2	0	28	3	0	1	0	4	44
07:30 AM	3	7	2	0	12	2	1	2	0	5	0	23	0	0	23	7	0	0	0	7	47
Total	7	31	4	0	42	9	6	12	0	27	1	104	5	0	110	24	0	1	0	25	204
Approach \%	16.7	73.8	9.5	0.0	-	33.3	22.2	44.4	0.0	-	0.9	94.5	4.5	0.0	-	96.0	0.0	4.0	0.0	-	-
Total \%	3.4	15.2	2.0	0.0	20.6	4.4	2.9	5.9	0.0	13.2	0.5	51.0	2.5	0.0	53.9	11.8	0.0	0.5	0.0	12.3	-
PHF	0.583	0.705	0.500	0.000	0.875	0.375	0.375	0.600	0.000	0.450	0.250	0.897	0.625	0.000	0.859	0.667	0.000	0.250	0.000	0.694	0.797
Lights	6	15	4	0	25	7	6	11	0	24	0	77	5	0	82	17	0	1	0	18	149
\% Lights	85.7	48.4	100.0	-	59.5	77.8	100.0	91.7	-	88.9	0.0	74.0	100.0	-	74.5	70.8	-	100.0	-	72.0	73.0
Mediums	1	1	0	0	2	2	0	1	0	3	0	4	0	0	4	3	0	0	0	3	12
\% Mediums	14.3	3.2	0.0	-	4.8	22.2	0.0	8.3	-	11.1	0.0	3.8	0.0	-	3.6	12.5	-	0.0	-	12.0	5.9
Articulated Trucks	0	15	0	0	15	0	0	0	0	0	1	23	0	0	24	4	0	0	0	4	43
\% Articulated Trucks	0.0	48.4	0.0	-	35.7	0.0	0.0	0.0	-	0.0	100.0	22.1	0.0	-	21.8	16.7	-	0.0	-	16.0	21.1

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#2, winter Site Code: 9
Start Date: 2015/01/26
Page No: 5

Turning Movement Peak Hour Data Plot (06:45 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4

Count Name: Wonowon Esso \#2, winter Site Code: 9
Start Date: 2015/01/26
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Alaska Hwy 97 Southbound					Wonowon Lodge Camp Access Westbound					Alaska Hwy 97 Northbound					Wonowon (Blueberry) Esso \#2 Eastbound					Int. Total
	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	
11:00 AM	0	23	2	0	25	0	0	0	0	0	1	26	0	0	27	2	0	0	0	2	54
11:15 AM	0	15	3	0	18	2	0	0	0	2	0	29	0	0	29	1	0	1	0	2	51
11:30 AM	0	13	4	0	17	2	0	0	0	2	1	15	1	0	17	4	0	0	0	4	40
11:45 AM	0	17	4	0	21	0	0	0	0	0	1	14	1	0	16	7	0	0	0	7	44
Total	0	68	13	0	81	4	0	0	0	4	3	84	2	0	89	14	0	1	0	15	189
Approach \%	0.0	84.0	16.0	0.0	-	100.0	0.0	0.0	0.0	-	3.4	94.4	2.2	0.0	-	93.3	0.0	6.7	0.0	-	-
Total \%	0.0	36.0	6.9	0.0	42.9	2.1	0.0	0.0	0.0	2.1	1.6	44.4	1.1	0.0	47.1	7.4	0.0	0.5	0.0	7.9	-
PHF	0.000	0.739	0.813	0.000	0.810	0.500	0.000	0.000	0.000	0.500	0.750	0.724	0.500	0.000	0.767	0.500	0.000	0.250	0.000	0.536	0.875
Lights	0	28	7	0	35	3	0	0	0	3	2	52	1	0	55	9	0	1	0	10	103
\% Lights	-	41.2	53.8	-	43.2	75.0	-	-	-	75.0	66.7	61.9	50.0	-	61.8	64.3	-	100.0	-	66.7	54.5
Mediums	0	5	1	0	6	1	0	0	0	1	0	7	0	0	7	2	0	0	0	2	16
\% Mediums	-	7.4	7.7	-	7.4	25.0	-	-	-	25.0	0.0	8.3	0.0	-	7.9	14.3	-	0.0	-	13.3	8.5
Articulated Trucks	0	35	5	0	40	0	0	0	0	0	1	25	1	0	27	3	0	0	0	3	70
\% Articulated Trucks	-	51.5	38.5	-	49.4	0.0	-	-	-	0.0	33.3	29.8	50.0	-	30.3	21.4	-	0.0	-	20.0	37.0

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#2, winter Site Code: 9
Start Date: 2015/01/26
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4

Count Name: Wonowon Esso \#2, winter Site Code: 9
Start Date: 2015/01/26
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97 Southbound					Wonowon Lodge Camp Access Westbound					Alaska Hwy 97 Northbound					Wonowon (Blueberry) Esso \#2 Eastbound					Int. Total
	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	
12:00 PM	1	23	4	0	28	2	0	0	0	2	0	22	1	0	23	4	0	0	0	4	57
12:15 PM	1	14	7	0	22	0	0	1	0	1	0	19	0	0	19	4	0	0	0	4	46
12:30 PM	1	15	3	0	19	0	0	0	0	0	0	14	1	0	15	12	0	0	0	12	46
12:45 PM	1	14	6	0	21	0	1	0	0	1	0	19	1	0	20	4	0	0	0	4	46
Total	4	66	20	0	90	2	1	1	0	4	0	74	3	0	77	24	0	0	0	24	195
Approach \%	4.4	73.3	22.2	0.0	-	50.0	25.0	25.0	0.0	-	0.0	96.1	3.9	0.0	-	100.0	0.0	0.0	0.0	-	-
Total \%	2.1	33.8	10.3	0.0	46.2	1.0	0.5	0.5	0.0	2.1	0.0	37.9	1.5	0.0	39.5	12.3	0.0	0.0	0.0	12.3	-
PHF	1.000	0.717	0.714	0.000	0.804	0.250	0.250	0.250	0.000	0.500	0.000	0.841	0.750	0.000	0.837	0.500	0.000	0.000	0.000	0.500	0.855
Lights	1	31	15	0	47	1	0	1	0	2	0	43	2	0	45	15	0	0	0	15	109
\% Lights	25.0	47.0	75.0	-	52.2	50.0	0.0	100.0	-	50.0	-	58.1	66.7	-	58.4	62.5	-	-	-	62.5	55.9
Mediums	2	4	3	0	9	1	1	0	0	2	0	2	1	0	3	3	0	0	0	3	17
\% Mediums	50.0	6.1	15.0	-	10.0	50.0	100.0	0.0	-	50.0	-	2.7	33.3	-	3.9	12.5	-	-	-	12.5	8.7
Articulated Trucks	1	31	2	0	34	0	0	0	0	0	0	29	0	0	29	6	0	0	0	6	69
\% Articulated Trucks	25.0	47.0	10.0	-	37.8	0.0	0.0	0.0	-	0.0	-	39.2	0.0	-	37.7	25.0	-	-	-	25.0	35.4

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#2, winter Site Code: 9
Start Date: 2015/01/26
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4
Count Name: Wonowon Esso \#2, winter Site Code: 9
Start Date: 2015/01/26
Page No: 10

Turning Movement Peak Hour Data (05:00 PM)

Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Int. Total
05:00 PM	0	47	4	0	51	0	0	1	0	1	0	17	4	0	21	6	0	0	0	6	79
05:15 PM	1	46	10	0	57	1	2	0	0	3	0	10	6	0	16	1	0	0	0	1	77
05:30 PM	1	45	12	0	58	1	0	1	0	2	0	10	4	0	14	3	1	0	0	4	78
05:45 PM	3	42	7	0	52	0	1	0	0	1	0	21	2	0	23	2	1	0	0	3	79
Total	5	180	33	0	218	2	3	2	0	7	0	58	16	0	74	12	2	0	0	14	313
Approach \%	2.3	82.6	15.1	0.0	-	28.6	42.9	28.6	0.0	-	0.0	78.4	21.6	0.0	-	85.7	14.3	0.0	0.0	-	-
Total \%	1.6	57.5	10.5	0.0	69.6	0.6	1.0	0.6	0.0	2.2	0.0	18.5	5.1	0.0	23.6	3.8	0.6	0.0	0.0	4.5	-
PHF	0.417	0.957	0.688	0.000	0.940	0.500	0.375	0.500	0.000	0.583	0.000	0.690	0.667	0.000	0.804	0.500	0.500	0.000	0.000	0.583	0.991
Lights	4	130	29	0	163	2	3	2	0	7	0	43	16	0	59	9	2	0	0	11	240
\% Lights	80.0	72.2	87.9	-	74.8	100.0	100.0	100.0	-	100.0	-	74.1	100.0	-	79.7	75.0	100.0	-	-	78.6	76.7
Mediums	0	16	3	0	19	0	0	0	0	0	0	3	0	0	3	1	0	0	0	1	23
\% Mediums	0.0	8.9	9.1	-	8.7	0.0	0.0	0.0	-	0.0	-	5.2	0.0	-	4.1	8.3	0.0	-	-	7.1	7.3
Articulated Trucks	1	34	1	0	36	0	0	0	0	0	0	12	0	0	12	2	0	0	0	2	50
\% Articulated Trucks	20.0	18.9	3.0	-	16.5	0.0	0.0	0.0	-	0.0	-	20.7	0.0	-	16.2	16.7	0.0	-	-	14.3	16.0

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#2, winter Site Code: 9
Start Date: 2015/01/26
Page No: 11

Turning Movement Peak Hour Data Plot (05:00 PM)

Peak Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4
Count Name: Wonowon Esso \#3, winter Site Code: 10
Start Date: 2015/01/26
250-819-2527 paul@peaktraffic.ca
Page No: 1

Start Time	Alaska Hwy 97 Southbound					Turning Movement Data onowon Lodge Access Alaska Hwy 97										Wonowon (Blueberry) Esso \#3 Eastbound					Int. Total
	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	
05:00 AM	0	3	0	0	3	0	0	1	0	1	0	15	0	0	15	0	0	0	0	0	19
05:15 AM	0	0	0	0	0	0	0	0	0	0	0	9	0	0	9	0	0	0	0	0	9
05:30 AM	0	4	0	0	4	0	0	0	0	0	0	15	0	0	15	0	0	0	0	0	19
05:45 AM	0	10	0	0	10	0	0	0	0	0	0	24	0	0	24	1	0	0	0	1	35
Hourly Total	0	17	0	0	17	0	0	1	0	1	0	63	0	0	63	1	0	0	0	1	82
06:00 AM	0	4	2	0	6	0	0	0	0	0	0	21	0	0	21	0	0	0	0	0	27
06:15 AM	0	12	0	0	12	0	0	0	0	0	0	20	0	0	20	0	0	0	0	0	32
06:30 AM	0	9	0	0	9	0	0	0	0	0	0	24	0	0	24	2	0	0	0	2	35
06:45 AM	0	11	2	0	13	0	0	0	0	0	1	39	0	0	40	0	0	0	0	0	53
Hourly Total	0	36	4	0	40	0	0	0	0	0	1	104	0	0	105	2	0	0	0	2	147
07:00 AM	0	6	0	0	6	0	0	0	0	0	0	41	0	0	41	0	0	0	0	0	47
07:15 AM	0	12	0	0	12	0	0	0	0	0	0	28	0	0	28	1	0	0	0	1	41
07:30 AM	0	13	0	0	13	0	0	0	0	0	0	32	0	0	32	0	0	0	0	0	45
07:45 AM	0	10	1	0	11	0	0	0	0	0	1	42	0	0	43	0	0	0	0	0	54
Hourly Total	0	41	1	0	42	0	0	0	0	0	1	143	0	0	144	1	0	0	0	1	187
***BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11:00 AM	0	25	1	0	26	0	0	0	0	0	0	27	0	0	27	0	0	0	0	0	53
11:15 AM	0	17	3	0	20	0	0	0	0	0	0	31	0	0	31	0	0	0	0	0	51
11:30 AM	0	16	0	0	16	0	0	0	0	0	0	19	0	0	19	0	0	0	0	0	35
11:45 AM	0	23	0	0	23	0	0	0	0	0	0	21	0	0	21	0	0	0	0	0	44
Hourly Total	0	81	4	0	85	0	0	0	0	0	0	98	0	0	98	0	0	0	0	0	183
12:00 PM	0	25	3	0	28	0	0	0	0	0	0	26	0	0	26	0	0	0	0	0	54
12:15 PM	0	22	3	0	25	0	0	0	0	0	0	23	0	0	23	2	0	1	0	3	51
12:30 PM	0	19	2	0	21	0	0	0	0	0	0	25	0	0	25	0	0	0	0	0	46
12:45 PM	0	21	2	0	23	0	0	0	0	0	0	23	0	0	23	0	0	0	0	0	46
Hourly Total	0	87	10	0	97	0	0	0	0	0	0	97	0	0	97	2	0	1	0	3	197
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
04:00 PM	0	28	2	0	30	0	0	0	0	0	0	18	0	0	18	0	0	1	0	1	49
04:15 PM	0	27	3	0	30	0	0	0	0	0	0	26	0	0	26	1	0	0	0	1	57
04:30 PM	0	28	0	0	28	0	0	0	0	0	0	14	0	0	14	0	0	0	0	0	42
04:45 PM	0	25	1	0	26	0	0	0	0	0	1	14	0	0	15	0	0	0	0	0	41
Hourly Total	0	108	6	0	114	0	0	0	0	0	1	72	0	0	73	1	0	1	0	2	189
05:00 PM	0	51	0	0	51	0	0	0	0	0	0	24	0	0	24	0	0	0	0	0	75
05:15 PM	0	55	2	0	57	0	0	0	0	0	0	12	0	0	12	1	0	1	0	2	71
05:30 PM	0	58	1	0	59	0	0	0	0	0	0	14	0	0	14	0	0	0	0	0	73
05:45 PM	0	52	0	0	52	0	0	0	0	0	0	23	0	0	23	1	0	0	0	1	76
Hourly Total	0	216	3	0	219	0	0	0	0	0	0	73	0	0	73	2	0	1	0	3	295
06:00 PM	0	24	0	0	24	0	0	0	0	0	0	11	0	0	11	0	0	0	0	0	35

06:15 PM	0	44	0	0	44	0	0	0	0	0	0	19	0	0	19	3	0	0	0	3	66
06:30 PM	0	22	2	0	24	0	0	0	0	0	0	24	0	0	24	0	0	0	0	0	48
06:45 PM	0	34	0	0	34	0	0	0	0	0	0	14	0	0	14	0	0	1	0	1	49
Hourly Total	0	124	2	0	126	0	0	0	0	0	0	68	0	0	68	3	0	1	0	4	198
07:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	0	710	30	0	740	0	0	1	0	1	3	718	0	0	721	12	0	4	0	16	1478
Approach \%	0.0	95.9	4.1	0.0	-	0.0	0.0	100.0	0.0	-	0.4	99.6	0.0	0.0	-	75.0	0.0	25.0	0.0	-	-
Total \%	0.0	48.0	2.0	0.0	50.1	0.0	0.0	0.1	0.0	0.1	0.2	48.6	0.0	0.0	48.8	0.8	0.0	0.3	0.0	1.1	-
Lights	0	458	13	0	471	0	0	1	0	1	3	478	0	0	481	9	0	4	0	13	966
\% Lights	-	64.5	43.3	-	63.6	-	-	100.0	-	100.0	100.0	66.6	-	-	66.7	75.0	-	100.0	-	81.3	65.4
Mediums	0	54	7	0	61	0	0	0	0	0	0	55	0	0	55	2	0	0	0	2	118
\% Mediums	-	7.6	23.3	-	8.2	-	-	0.0	-	0.0	0.0	7.7	-	-	7.6	16.7	-	0.0	-	12.5	8.0
Articulated Trucks	0	198	10	0	208	0	0	0	0	0	0	185	0	0	185	1	0	0	0	1	394
\% Articulated Trucks	-	27.9	33.3	-	28.1	-	-	0.0	-	0.0	0.0	25.8	-	-	25.7	8.3	-	0.0	-	6.3	26.7

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#3, winter Site Code: 10
Start Date: 2015/01/26
Page No: 3

Turning Movement Data Plot

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4
Count Name: Wonowon Esso \#3, winter Site Code: 10
ate: 2015/01/26
Page No: 4

Turning Movement Peak Hour Data (07:00 AM)

Start Time	Left	Thru	Right	U-Turn	App. Total	Left	Thru	$\begin{aligned} & \text { Vestboun } \\ & \text { Right } \\ & \hline \end{aligned}$	U-Turn	App. Total	Left	Thru	$\begin{aligned} & \text { Jorthboun } \\ & \text { Right } \\ & \hline \end{aligned}$	U-Turn	App. Total	Left	Thru	$\begin{aligned} & \text { Eastboun } \\ & \text { Right } \\ & \hline \end{aligned}$	U-Turn	App. Total	Int. Total
07:00 AM	0	6	0	0	6	0	0	0	0	0	0	41	0	0	41	0	0	0	0	0	47
07:15 AM	0	12	0	0	12	0	0	0	0	0	0	28	0	0	28	1	0	0	0	1	41
07:30 AM	0	13	0	0	13	0	0	0	0	0	0	32	0	0	32	0	0	0	0	0	45
07:45 AM	0	10	1	0	11	0	0	0	0	0	1	42	0	0	43	0	0	0	0	0	54
Total	0	41	1	0	42	0	0	0	0	0	1	143	0	0	144	1	0	0	0	1	187
Approach \%	0.0	97.6	2.4	0.0	-	NaN	NaN	NaN	NaN	-	0.7	99.3	0.0	0.0	-	100.0	0.0	0.0	0.0	-	-
Total \%	0.0	21.9	0.5	0.0	22.5	0.0	0.0	0.0	0.0	0.0	0.5	76.5	0.0	0.0	77.0	0.5	0.0	0.0	0.0	0.5	-
PHF	0.000	0.788	0.250	0.000	0.808	0.000	0.000	0.000	0.000	0.000	0.250	0.851	0.000	0.000	0.837	0.250	0.000	0.000	0.000	0.250	0.866
Lights	0	22	0	0	22	0	0	0	0	0	1	98	0	0	99	0	0	0	0	0	121
\% Lights	-	53.7	0.0	-	52.4	-	-	-	-	-	100.0	68.5	-	-	68.8	0.0	-	-	-	0.0	64.7
Mediums	0	1	0	0	1	0	0	0	0	0	0	13	0	0	13	0	0	0	0	0	14
\% Mediums	-	2.4	0.0	-	2.4	-	-	-	-	-	0.0	9.1	-	-	9.0	0.0	-	-	-	0.0	7.5
Articulated Trucks	0	18	1	0	19	0	0	0	0	0	0	32	0	0	32	1	0	0	0	1	52
\% Articulated Trucks	-	43.9	100.0	-	45.2	-	-	-	-	-	0.0	22.4	-	-	22.2	100.0	-	-	-	100.0	27.8

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#3, winter Site Code: 10
Start Date: 2015/01/26
Page No: 5

Turning Movement Peak Hour Data Plot (07:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4
Count Name: Wonowon Esso \#3, winter Site Code: 10

Date: 2015/01/26
Page No: 6

Turning Movement Peak Hour Data (11:00 AM)

Start Time	Alaska Hwy 97Southbound					Wonowon Lodge AccessWestbound					Alaska Hwy 97 Northbound					Wonowon (Blueberry) Esso \#3 Eastbound					Int. Total
	Left	Thru	uthbou Right	U-Turn	App. Total	Left	Thru	estbound Right	U-Turn	App. Total	Left	Thru	orthboun Right	U-Turn	App. Total	Left	Thru	Eastboun Right	U-Turn	App. Total	
11:00 AM	0	25	1	0	26	0	0	0	0	0	0	27	0	0	27	0	0	0	0	0	53
11:15 AM	0	17	3	0	20	0	0	0	0	0	0	31	0	0	31	0	0	0	0	0	51
11:30 AM	0	16	0	0	16	0	0	0	0	0	0	19	0	0	19	0	0	0	0	0	35
11:45 AM	0	23	0	0	23	0	0	0	0	0	0	21	0	0	21	0	0	0	0	0	44
Total	0	81	4	0	85	0	0	0	0	0	0	98	0	0	98	0	0	0	0	0	183
Approach \%	0.0	95.3	4.7	0.0	-	NaN	NaN	NaN	NaN	-	0.0	100.0	0.0	0.0	-	NaN	NaN	NaN	NaN	-	-
Total \%	0.0	44.3	2.2	0.0	46.4	0.0	0.0	0.0	0.0	0.0	0.0	53.6	0.0	0.0	53.6	0.0	0.0	0.0	0.0	0.0	-
PHF	0.000	0.810	0.333	0.000	0.817	0.000	0.000	0.000	0.000	0.000	0.000	0.790	0.000	0.000	0.790	0.000	0.000	0.000	0.000	0.000	0.863
Lights	0	34	1	0	35	0	0	0	0	0	0	61	0	0	61	0	0	0	0	0	96
\% Lights	-	42.0	25.0	-	41.2	-	-	-	-	-	-	62.2	-	-	62.2	-	-	-	-	-	52.5
Mediums	0	8	0	0	8	0	0	0	0	0	0	8	0	0	8	0	0	0	0	0	16
\% Mediums	-	9.9	0.0	-	9.4	-	-	-	-	-	-	8.2	-	-	8.2	-	-	-	-	-	8.7
Articulated Trucks	0	39	3	0	42	0	0	0	0	0	0	29	0	0	29	0	0	0	0	0	71
\% Articulated Trucks	-	48.1	75.0	-	49.4	-	-	-	-	-	-	29.6	-	-	29.6	-	-	-	-	-	38.8

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#3, winter Site Code: 10
Start Date: 2015/01/26
Page No: 7

Turning Movement Peak Hour Data Plot (11:00 AM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4
Count Name: Wonowon Esso \#3, winter Site Code: 10

Dade: 10 2015/01/26
Page No: 8

Turning Movement Peak Hour Data (12:00 PM)

Start Time	Alaska Hwy 97Southbound					Wonowon Lodge AccessWestbound					Alaska Hwy 97 Northbound					Wonowon (Blueberry) Esso \#3 Eastbound					Int. Total
	Left	Thru	$\begin{aligned} & \text { outhbour } \\ & \text { Right } \end{aligned}$	U-Turn	App. Total	Left	Thru	$\begin{aligned} & \text { lestboun } \\ & \text { Right } \end{aligned}$	U-Turn	App. Total	Left	Thru	$\begin{aligned} & \text { orthbour } \\ & \text { Right } \end{aligned}$	U-Turn	App. Total	Left			U-Turn	App. Total	
12:00 PM	0	25	3	0	28	0	0	0	0	0	0	26	0	0	26	0	0	0	0	0	54
12:15 PM	0	22	3	0	25	0	0	0	0	0	0	23	0	0	23	2	0	1	0	3	51
12:30 PM	0	19	2	0	21	0	0	0	0	0	0	25	0	0	25	0	0	0	0	0	46
12:45 PM	0	21	2	0	23	0	0	0	0	0	0	23	0	0	23	0	0	0	0	0	46
Total	0	87	10	0	97	0	0	0	0	0	0	97	0	0	97	2	0	1	0	3	197
Approach \%	0.0	89.7	10.3	0.0	-	NaN	NaN	NaN	NaN	-	0.0	100.0	0.0	0.0	-	66.7	0.0	33.3	0.0	-	-
Total \%	0.0	44.2	5.1	0.0	49.2	0.0	0.0	0.0	0.0	0.0	0.0	49.2	0.0	0.0	49.2	1.0	0.0	0.5	0.0	1.5	-
PHF	0.000	0.870	0.833	0.000	0.866	0.000	0.000	0.000	0.000	0.000	0.000	0.933	0.000	0.000	0.933	0.250	0.000	0.250	0.000	0.250	0.912
Lights	0	48	6	0	54	0	0	0	0	0	0	58	0	0	58	2	0	1	0	3	115
\% Lights	-	55.2	60.0	-	55.7	-	-	-	-	-	-	59.8	-	-	59.8	100.0	-	100.0	-	100.0	58.4
Mediums	0	7	4	0	11	0	0	0	0	0	0	10	0	0	10	0	0	0	0	0	21
\% Mediums	-	8.0	40.0	-	11.3	-	-	-	-	-	-	10.3	-	-	10.3	0.0	-	0.0	-	0.0	10.7
Articulated Trucks	0	32	0	0	32	0	0	0	0	0	0	29	0	0	29	0	0	0	0	0	61
\% Articulated Trucks	-	36.8	0.0	-	33.0	-	-	-	-	-	-	29.9	-	-	29.9	0.0	-	0.0	-	0.0	31.0

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#3, winter Site Code: 10
Start Date: 2015/01/26
Page No: 9

Turning Movement Peak Hour Data Plot (12:00 PM)

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4
Count Name: Wonowon Esso \#3, winter Site Code: 10
Start Date: 2015/01/26
Page No: 10

Turning Movement Peak Hour Data (05:00 PM)

Start Time	Alaska Hwy 97 Southbound					Wonowon Lodge Access Westbound					Alaska Hwy 97 Northbound					Wonowon (Blueberry) Esso \#3 Eastbound					Int. Total
	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	Left	Thru	Right	U-Turn	App. Total	
05:00 PM	0	51	0	0	51	0	0	0	0	0	0	24	0	0	24	0	0	0	0	0	75
05:15 PM	0	55	2	0	57	0	0	0	0	0	0	12	0	0	12	1	0	1	0	2	71
05:30 PM	0	58	1	0	59	0	0	0	0	0	0	14	0	0	14	0	0	0	0	0	73
05:45 PM	0	52	0	0	52	0	0	0	0	0	0	23	0	0	23	1	0	0	0	1	76
Total	0	216	3	0	219	0	0	0	0	0	0	73	0	0	73	2	0	1	0	3	295
Approach \%	0.0	98.6	1.4	0.0	-	NaN	NaN	NaN	NaN	-	0.0	100.0	0.0	0.0	-	66.7	0.0	33.3	0.0	-	-
Total \%	0.0	73.2	1.0	0.0	74.2	0.0	0.0	0.0	0.0	0.0	0.0	24.7	0.0	0.0	24.7	0.7	0.0	0.3	0.0	1.0	-
PHF	0.000	0.931	0.375	0.000	0.928	0.000	0.000	0.000	0.000	0.000	0.000	0.760	0.000	0.000	0.760	0.500	0.000	0.250	0.000	0.375	0.970
Lights	0	162	1	0	163	0	0	0	0	0	0	55	0	0	55	2	0	1	0	3	221
\% Lights	-	75.0	33.3	-	74.4	-	-	-	-	-	-	75.3	-	-	75.3	100.0	-	100.0	-	100.0	74.9
Mediums	0	14	2	0	16	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	20
\% Mediums	-	6.5	66.7	-	7.3	-	-	-	-	-	-	5.5	-	-	5.5	0.0	-	0.0	-	0.0	6.8
Articulated Trucks	0	40	0	0	40	0	0	0	0	0	0	14	0	0	14	0	0	0	0	0	54
\% Articulated Trucks	-	18.5	0.0	-	18.3	-	-	-	-	-	-	19.2	-	-	19.2	0.0	-	0.0	-	0.0	18.3

PeaK Traffic Technology Ltd.

PeaK Traffic Technology Ltd
665 Brentwood Ave
Kamloops, British Columbia, Canada V2B 1P4 250-819-2527 paul@peaktraffic.ca

Count Name: Wonowon Esso \#3, winter Site Code: 10
Start Date: 2015/01/26
Page No: 11

Turning Movement Peak Hour Data Plot (05:00 PM)

Appendix D: Detailed Synchro Reports

HCM Unsignalized Intersection Capacity Analysis
1: Highway 29 \& Highway 97

	4	\rightarrow	\checkmark	7		4	4	\dagger	p	(1	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	F		\uparrow	「	${ }^{7}$	中 \uparrow		${ }^{7}$	4	F'
Volume (veh/h)	5	2	128	23	12	60	93	218	12	4	172	12
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Hourly flow rate (vph)	6	2	149	27	14	70	108	253	14	5	200	14
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)			3			3						
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	559	693	200	687	700	134	214			267		
vC 1 , stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	559	693	200	687	700	134	214			267		
tC, single (s)	7.8	6.8	7.2	7.8	6.8	7.2	4.4			4.4		
tC, 2 stage (s)												
tF (s)	3.6	4.1	3.4	3.6	4.1	3.4	2.3			2.3		
p0 queue free \%	98	99	81	89	96	92	92			100		
cM capacity (veh/h)	322	314	774	234	311	857	1277			1217		
Direction, Lane \#	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	157	110	108	169	98	5	200	14				
Volume Left	6	27	108	0	0	5	0	0				
Volume Right	149	70	0	0	14	0	0	14				
cSH	817	707	1277	1700	1700	1217	1700	1700				
Volume to Capacity	0.19	0.16	0.08	0.10	0.06	0.00	0.12	0.01				
Queue Length 95th (m)	5.4	4.2	2.1	0.0	0.0	0.1	0.0	0.0				
Control Delay (s)	11.1	13.9	8.1	0.0	0.0	8.0	0.0	0.0				
Lane LOS	B	B	A			A						
Approach Delay (s)	11.1	13.9	2.3			0.2						
Approach LOS	B	B										
Intersection Summary												
Average Delay			4.9									
Intersection Capacity Utilization			32.8\%		CU Level	Service			A			
Analysis Period (min)			15									

	4	\rightarrow	\geqslant	\dagger		4	4	4	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\dagger			\$	
Volume (veh/h)	5	1	8	1	1	1	31	103	1	1	50	1
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	5	1	9	1	1	1	34	112	1	1	54	1

Pedestrians

Lane Width (m)
Walking Speed (m / s)
Percent Blockage
Right turn flare (veh)

Median typeMedian storage veh)							None	None
	Median storage veh)							
Upstream signal (m)								
pX, platoon unblocked								
vC , conflicting volume	239	238	55	246	238	112	55	

$\mathrm{vC1}$, stage 1 conf vol

vCu, unblocked vol	239	238	55	246	238	112	55	113
tC, single (s)	7.4	6.8	6.5	7.4	6.8	6.5	4.4	4.4
tC, 2 stage (s)								
tF (s)	3.8	4.3	3.6	3.8	4.3	3.6	2.5	2.5
p0 queue free \%	99	100	99	100	100	100	98	100
cM capacity (veh/h)	650	605	943	637	605	875	1399	1329

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	15	3	147	57
Volume Left	5	1	34	1
Volume Right	9	1	1	1
CSH	785	687	1399	1329
Volume to Capacity	0.02	0.00	0.02	0.00
Queue Length 95th (m)	0.5	0.1	0.6	0.0
Control Delay (s)	9.7	10.3	1.9	0.2
Lane LOS	A	B	A	A
Approach Delay (s)	9.7	10.3	1.9	0.2
Approach LOS	A	B		

Approach LOS
A B

Intersection Summary

Average Delay	2.1		
Intersection Capacity Utilization	23.9%	ICU Level of Service	A
Analysis Period (min)	15		

	4	\rightarrow	\geqslant	\checkmark	4	4	4	\dagger	p	*	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\uparrow			\$			¢	
Volume (veh/h)	30	1	1	1	2	11	4	99	5	4	49	7
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Hourly flow rate (vph)	35	1	1	1	2	13	5	116	6	5	58	8

Pedestrians
Lane Width (m)
Walking Speed (m / s)
Percent Blockage
Right turn flare (veh) None None
Median type

Median storage veh)
Upstream signal (m)

pX, platoon unblocked								
VC , conflicting volume	214	203	62	202	204	119	66	122
$\mathrm{vC1}$, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	214	203	62	202	204	119	66	122
tC , single (s)	7.4	6.8	6.5	7.4	6.8	6.5	4.4	4.4
$\mathrm{tC}, 2$ stage (s)								
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4	2.4
p0 queue free \%	95	100	100	100	100	99	100	100
cM capacity (veh/h)	678	648	940	702	647	871	1396	1329

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	38	16	127	71
Volume Left	35	1	5	5
Volume Right	1	13	6	8
cSH	683	817	1396	1329
Volume to Capacity	0.06	0.02	0.00	0.00
Queue Length 95th (m)	1.3	0.5	0.1	0.1
Control Delay (s)	10.6	9.5	0.3	0.5
Lane LOS	B	A	A	A
Approach Delay (s)	10.6	9.5	0.3	0.5
Approach LOS	B	A		

Intersection Summary

Average Delay	2.5
Intersection Capacity Utilization	21.7%

2.5 ICU Level of Service A

Analysis Period (min) 15

	4	\rightarrow	7	7	\leftarrow	4	4	\uparrow	7	\downarrow	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			¢			\$	
Volume (veh/h)	4	1	1	1	1	1	1	139	1	1	62	2
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	4	1	1	1	1	1	1	145	1	1	65	2

Pedestrians
 Lane Width (m)

Walking Speed (m / s)
Percent Blockage

Right turn flare (veh)									
Median type									None
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
VC , conflicting volume	217	216	66	217	216	145	67	146	
$\mathrm{vC1}$, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	217	216	66	217	216	145	67	146	
tC , single (s)	7.3	6.8	6.5	7.3	6.8	6.5	4.3	4.3	
$\mathrm{tC}, 2$ stage (s)									
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4	2.4	
p0 queue free \%	99	100	100	100	100	100	100	100	
cM capacity (veh/h)	691	643	937	691	642	845	1401	1307	

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	6	3	147	68
Volume Left	4	1	1	1
Volume Right	1	1	1	2
cSH	713	716	1401	1307
Volume to Capacity	0.01	0.00	0.00	0.00
Queue Length 95th (m)	0.2	0.1	0.0	0.0
Control Delay (s)	10.1	10.0	0.1	0.1
Lane LOS	B	B	A	A
Approach Delay (s)	10.1	10.0	0.1	0.1
Approach LOS	B	B		

Intersection Summary

Average Delay	0.5		
Intersection Capacity Utilization	17.9%	ICU Level of Service	A
Analysis Period (min)	15		

Pedestrians

Lane Width (m)
Walking Speed (m / s)
Percent Blockage

Right turn flare (veh)									
Median type									None
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
VC , conflicting volume	284	283	175	284	283	102	175	103	
$\mathrm{vC1}$, stage 1 conf vol									
$\mathrm{vC2}$, stage 2 conf vol									
vCu, unblocked vol	284	283	175	284	283	102	175	103	
tC, single (s)	7.3	6.7	6.4	7.3	6.7	6.4	4.3	4.3	
$\mathrm{tC}, 2$ stage (s)									
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4	2.4	
p0 queue free \%	100	100	100	100	100	100	100	100	
cM capacity (veh/h)	632	597	827	632	597	909	1305	1389	

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	4	4	104	177
Volume Left	1	1	1	1
Volume Right	1	1	1	1
CSH	672	689	1305	1389
Volume to Capacity	0.01	0.01	0.00	0.00
Queue Length 95th (m)	0.1	0.1	0.0	0.0
Control Delay (s)	10.4	10.3	0.1	0.1
Lane LOS	B	B	A	A
Approach Delay (s)	10.4	10.3	0.1	0.1
Approach LOS	B	B		

Intersection Summary

Average Delay	0.4		
Intersection Capacity Utilization	17.3%	ICU Level of Service	A
Analysis Period (min)	15		

	4	\rightarrow	7	7	4	4	4	\uparrow	7	,	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			\uparrow			¢	
Volume (veh/h)	6	1	17	12	1	8	10	64	3	2	98	2
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74
Hourly flow rate (vph)	8	1	23	16	1	11	14	86	4	3	132	3

Pedestrians

Lane Width (m)
Walking Speed (m / s)
Percent Blockage

Right turn flare (veh)									
Median type									None
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
VC , conflicting volume	266	257	134	278	256	89	135	91	
vC1, stage 1 conf vol									
$\mathrm{vC2}$, stage 2 conf vol									
vCu, unblocked vol	266	257	134	278	256	89	135	91	
tC, single (s)	7.3	6.7	6.4	7.3	6.7	6.4	4.3	4.3	
$\mathrm{tC}, 2$ stage (s)									
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4	2.4	
p0 queue free \%	99	100	97	97	100	99	99	100	
cM capacity (veh/h)	640	613	874	619	614	927	1356	1410	

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	32	28	104	138
Volume Left	8	16	14	3
Volume Right	23	11	4	3
cSH	788	709	1356	1410
Volume to Capacity	0.04	0.04	0.01	0.00
Queue Length 95th (m)	1.0	0.9	0.2	0.0
Control Delay (s)	9.8	10.3	1.1	0.2
Lane LOS	A	B	A	A
Approach Delay (s)	9.8	10.3	1.1	0.2
Approach LOS	A	B		

Intersection Summary

Average Delay	2.5
Intersection Capacity Utilization	19.1%

9.1\% ICU Level of Service A

Analysis Period (min)
15

	4	\rightarrow	\%	7		4	4	4	P		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			¢			¢			${ }_{*}$	
Volume (veh/h)	13	1	32	4	1	1	8	113	3	1	36	6
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	14	1	35	4	1	1	9	123	3	1	39	7

Pedestrians

Lane Width (m)
Walking Speed (m / s)
Percent Blockage

Right turn flare (veh)									
Median type									None
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
VC , conflicting volume	188	188	42	222	190	124	46	126	
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	188	188	42	222	190	124	46	126	
tC , single (s)	7.4	6.8	6.5	7.4	6.8	6.5	4.4	4.4	
$\mathrm{tC}, 2$ stage (s)									
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4	2.4	
p0 queue free \%	98	100	96	99	100	100	99	100	
cM capacity (veh/h)	717	661	964	657	660	866	1421	1324	

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	50	7	135	47
Volume Left	14	4	9	1
Volume Right	35	1	3	7
cSH	870	685	1421	1324
Volume to Capacity	0.06	0.01	0.01	0.00
Queue Length 95th (m)	1.4	0.2	0.1	0.0
Control Delay (s)	9.4	10.3	0.5	0.2
Lane LOS	A	B	A	A
Approach Delay (s)	9.4	10.3	0.5	0.2
Approach LOS	A	B		

Intersection Summary

Average Delay	2.6		
Intersection Capacity Utilization	20.1%	ICU Level of Service	A
Analysis Period (min)	15		

	$\stackrel{ }{ }$			7			4	\uparrow	/		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\$			¢			\$	
Volume (veh/h)	1	1	9	34	1	1	2	24	2	1	44	1
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Hourly flow rate (vph)	1	1	11	42	1	1	2	30	2	1	54	1
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
VC , conflicting volume	95	94	55	105	94	31	56			32		
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	95	94	55	105	94	31	56			32		
tC , single (s)	7.2	6.6	6.3	7.2	6.6	6.3	4.2			4.2		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.6	4.1	3.4	3.6	4.1	3.4	2.3			2.3		
p0 queue free \%	100	100	99	95	100	100	100			100		
cM capacity (veh/h)	858	773	982	837	774	1013	1482			1512		
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	14	44	35	57								
Volume Left	1	42	2	1								
Volume Right	11	1	2	1								
cSH	946	839	1482	1512								
Volume to Capacity	0.01	0.05	0.00	0.00								
Queue Length 95th (m)	0.3	1.3	0.0	0.0								
Control Delay (s)	8.9	9.5	0.5	0.2								
Lane LOS	A	A	A	A								
Approach Delay (s)	8.9	9.5	0.5	0.2								
Approach LOS	A	A										
Intersection Summary												
Average Delay			3.8									
Intersection Capacity Utilization			18.7\%		CU Level	Service			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
1：Highway 29 \＆Highway 97

	$\stackrel{ }{*}$			7			4	4	7	\％	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		\uparrow	「	${ }^{7}$	性		${ }^{7}$	\uparrow	「
Volume（veh／h）	7	1	82	10	5	65	62	117	12	1	154	5
Sign Control		Stop			Stop			Free			Free	
Grade		0\％			0\％			0\％			0\％	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate（vph）	7	1	87	11	5	69	66	124	13	1	164	5
Pedestrians												
Lane Width（m）												
Walking Speed（ m / s ）												
Percent Blockage												
Right turn flare（veh）			3			3						
Median type								None			None	
Median storage veh）												
Upstream signal（ m ）												
pX，platoon unblocked												
vC，conflicting volume	363	435	164	429	434	69	169			137		
$\mathrm{vC1}$ ，stage 1 conf vol												
$\mathrm{vC2}$ ，stage 2 conf vol												
vCu ，unblocked vol	363	435	164	429	434	69	169			137		
tC ，single（s）	7.8	6.8	7.2	7.8	6.8	7.2	4.4			4.4		
$\mathrm{tC}, 2$ stage（s）												
$t \mathrm{~F}$（s）	3.7	4.2	3.5	3.7	4.2	3.5	2.4			2.4		
p0 queue free \％	98	100	89	97	99	93	95			100		
cM capacity（veh／h）	470	456	807	407	457	934	1303			1341		
Direction，Lane \＃	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	96	85	66	83	54	1	164	5				
Volume Left	7	11	66	0	0	1	0	0				
Volume Right	87	69	0	0	13	0	0	5				
cSH	885	1149	1303	1700	1700	1341	1700	1700				
Volume to Capacity	0.11	0.07	0.05	0.05	0.03	0.00	0.10	0.00				
Queue Length 95th（m）	2.8	1.8	1.2	0.0	0.0	0.0	0.0	0.0				
Control Delay（s）	10.3	10.0	7.9	0.0	0.0	7.7	0.0	0.0				
Lane LOS	B	B	A			A						
Approach Delay（s）	10.3	10.0	2.6			0.0						
Approach LOS	B	B										
Intersection Summary												
Average Delay			4.3									
Intersection Capacity Utilization			29．0\％		CU Level	Service			A			
Analysis Period（min）			15									

	\rangle	\rightarrow	\geqslant	\dagger		4	4	\uparrow	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\$			¢			\$	
Volume (veh/h)	2	1	24	1	1	1	27	83	1	1	93	1
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Hourly flow rate (vph)	,	1	29	1	1	1	32	99	1	1	111	1

Pedestrians
Lane Width (m)
Walking Speed (m / s)
Percent Blockage

Right turn flare (veh)									
Median type									None
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
VC , conflicting volume	279	278	111	307	278	99	112	100	
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	279	278	111	307	278	99	112	100	
tC , single (s)	7.4	6.8	6.5	7.4	6.8	6.5	4.4	4.4	
tC, 2 stage (s)									
tF (s)	3.8	4.3	3.6	3.8	4.3	3.6	2.5	2.5	
p0 queue free \%	100	100	97	100	100	100	98	100	
cM capacity (veh/h)	600	565	862	556	565	876	1301	1315	

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	32	4	132	113
Volume Left	2	1	32	1
Volume Right	29	1	1	1
CSH	819	637	1301	1315
Volume to Capacity	0.04	0.01	0.02	0.00
Queue Length 95th (m)	0.9	0.1	0.6	0.0
Control Delay (s)	9.6	10.7	2.1	0.1
Lane LOS	A	B	A	A
Approach Delay (s)	9.6	10.7	2.1	0.1
Approach LOS	A	B		

Approach LOS
A B

Intersection Summary

Average Delay	2.2
Intersection Capacity Utilization	22.6%

ICU Level of Service A
Analysis Period (min) 15

	4	\rightarrow	\geqslant	\checkmark		4	4	\uparrow	p	*	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\uparrow			\$			¢	
Volume (veh/h)	26	1	1	2	1	1	2	93	1	1	81	19
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	32	1	1	2	1	1	2	113	1	1	99	23

Pedestrians
Lane Width (m)
Walking Speed (m / s)
Percent Blockage
Right turn flare (veh) None None
Median type
Median storage veh)
Upstream signal (m)

pX, platoon unblocked								
VC , conflicting volume	234	232	110	234	243	114	122	115
$\mathrm{vC1}$, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	234	232	110	234	243	114	122	115
tC , single (s)	7.4	6.8	6.5	7.4	6.8	6.5	4.4	4.4
$\mathrm{tC}, 2$ stage (s)								
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4	2.4
p0 queue free \%	95	100	100	100	100	100	100	100
cM capacity (veh/h)	668	625	879	668	616	875	1324	1333

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	34	5	117	123
Volume Left	32	2	2	1
Volume Right	1	1	1	23
CSH	672	695	1324	1333
Volume to Capacity	0.05	0.01	0.00	0.00
Queue Length 95th (m)	1.2	0.2	0.0	0.0
Control Delay (s)	10.6	10.2	0.2	0.1
Lane LOS	B	B	A	A
Approach Delay (s)	10.6	10.2	0.2	0.1
Approach LOS	B	B		

Approach LOS B B

Intersection Summary

Average Delay	1.6
Intersection Capacity Utilization	16.2%

Analysis Period (min) 15

	\rangle	\rightarrow		7			4	\dagger	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			$\$$			\uparrow			\uparrow	
Volume (veh/h)	5	1	1	1	1	1	2	106	1	1	110	11
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Hourly flow rate (vph)	6	1	1	1	1	1	2	128	1	1	133	13
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	277	275	139	277	281	128	146			129		
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	277	275	139	277	281	128	146			129		
tC , single (s)	7.3	6.7	6.4	7.3	6.7	6.4	4.3			4.3		
$\mathrm{tC}, 2$ stage (s)												
$t \mathrm{~F}$ (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4			2.4		
p0 queue free \%	99	100	100	100	100	100	100			100		
cM capacity (veh/h)	636	600	861	636	595	873	1328			1347		
Direction, Lane\#	EB 1	WB 1	NB 1	SB 1								
Volume Total	8	4	131	147								
Volume Left	6	1	2	1								
Volume Right	1	1	1	13								
cSH	655	682	1328	1347								
Volume to Capacity	0.01	0.01	0.00	0.00								
Queue Length 95th (m)	0.3	0.1	0.0	0.0								
Control Delay (s)	10.6	10.3	0.2	0.1								
Lane LOS	B	B	A	A								
Approach Delay (s)	10.6	10.3	0.2	0.1								
Approach LOS	B	B										
Intersection Summary												
Average Delay			0.5									
Intersection Capacity Utilization			17.0\%		CU Level	f Service			A			
Analysis Period (min)			15									

	$\stackrel{ }{*}$	\rightarrow	\geqslant	t	\leftarrow	4	4	\dagger	7	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			${ }_{\$}$			\$	
Volume (veh/h)	1	1	1	1	1	1	1	61	1	1	75	1
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	1	1	1	1	1	1	1	66	1	1	81	1

Pedestrians
 Lane Width (m)

Walking Speed (m / s)
Percent Blockage

Right turn flare (veh)									
Median type									None
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
VC , conflicting volume	153	152	81	153	152	66	82	67	
$\mathrm{vC1}$, stage 1 conf vol									
$\mathrm{vC2}$, stage 2 conf vol									
vCu, unblocked vol	153	152	81	153	152	66	82	67	
tC , single (s)	7.4	6.8	6.5	7.4	6.8	6.5	4.4	4.4	
$\mathrm{tC}, 2$ stage (s)									
tF (s)	3.8	4.3	3.6	3.8	4.3	3.6	2.5	2.5	
p0 queue free \%	100	100	100	100	100	100	100	100	
cM capacity (veh/h)	752	690	906	752	690	925	1356	1374	

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	3	3	68	83
Volume Left	1	1	1	1
Volume Right	1	1	1	1
cSH	773	777	1356	1374
Volume to Capacity	0.00	0.00	0.00	0.00
Queue Length 95th (m)	0.1	0.1	0.0	0.0
Control Delay (s)	9.7	9.7	0.1	0.1
Lane LOS	A	A	A	A
Approach Delay (s)	9.7	9.7	0.1	0.1
Approach LOS	A	A		

Intersection Summary

Average Delay	0.5		
Intersection Capacity Utilization	14.6%	ICU Level of Service	A
Analysis Period (min)	15		

	4	\rightarrow	7	\checkmark	\leftarrow	4	4	\uparrow	>		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			\$			${ }_{\$}$	
Volume (veh/h)	2	1	7	4	2	5	8	51	2	4	63	1
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	2	1	7	4	2	5	9	54	2	4	67	1

Pedestrians
Lane Width (m)
Walking Speed (m / s)
Percent Blockage

Right turn flare (veh)									
Median type									None
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
VC , conflicting volume	155	149	68	156	149	55	68	56	
$\mathrm{vC1}$, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	155	149	68	156	149	55	68	56	
tC, single (s)	7.3	6.7	6.4	7.3	6.7	6.4	4.3	4.3	
$\mathrm{tC}, 2$ stage (s)									
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4	2.4	
p0 queue free \%	100	100	99	99	100	99	99	100	
cM capacity (veh/h)	759	702	945	757	703	960	1421	1435	

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	11	12	65	72
Volume Left	2	4	9	4
Volume Right	7	5	2	1
cSH	872	825	1421	1435
Volume to Capacity	0.01	0.01	0.01	0.00
Queue Length 95th (m)	0.3	0.3	0.1	0.1
Control Delay (s)	9.2	9.4	1.0	0.5
Lane LOS	A	A	A	A
Approach Delay (s)	9.2	9.4	1.0	0.5
Approach LOS	A	A		

Intersection Summary

Average Delay	1.9		
Intersection Capacity Utilization	15.5%	ICU Level of Service	A
Analysis Period (min)	15		

	4	\rightarrow	\%	7		4	4	4	P		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			¢			*			\uparrow	
Volume (veh/h)	4	1	10	1	1	1	1	69	1	1	61	5
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Hourly flow rate (vph)	5	1	12	1	1	1	1	82	1	1	73	6

Pedestrians
Lane Width (m)
Walking Speed (m / s)
Percent Blockage

Right turn flare (veh)									
Median type									None
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
VC , conflicting volume	165	164	76	176	166	83	79	83	
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	165	164	76	176	166	83	79	83	
tC , single (s)	7.5	6.9	6.6	7.5	6.9	6.6	4.5	4.5	
tC, 2 stage (s)									
tF (s)	3.8	4.3	3.6	3.8	4.3	3.6	2.5	2.5	
p0 queue free \%	99	100	99	100	100	100	100	100	
cM capacity (veh/h)	724	669	897	704	666	888	1325	1319	

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	18	4	85	80
Volume Left	5	1	1	1
Volume Right	12	1	1	6
cSH	825	741	1325	1319
Volume to Capacity	0.02	0.00	0.00	0.00
Queue Length 95th (m)	0.5	0.1	0.0	0.0
Control Delay (s)	9.5	9.9	0.1	0.1
Lane LOS	A	A	A	A
Approach Delay (s)	9.5	9.9	0.1	0.1
Approach LOS	A	A		

Intersection Summary

Average Delay	1.2
Intersection Capacity Utilization	14.2%

$$
14.2 \%
$$

ICU Level of Service
A
Analysis Period (min)
15

	$\stackrel{ }{ }$			7			4	\dagger	/		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\$			\$			\$	
Volume (veh/h)	1	1	9	1	1	1	5	40	2	1	56	1
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Hourly flow rate (vph)	1	1	12	1	1	1	7	53	3	1	75	1
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	148	147	75	159	147	55	76			56		
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	148	147	75	159	147	55	76			56		
tC , single (s)	7.3	6.7	6.4	7.3	6.7	6.4	4.3			4.3		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4			2.4		
p0 queue free \%	100	100	99	100	100	100	100			100		
cM capacity (veh/h)	767	702	928	746	702	954	1395			1419		
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	15	4	63	77								
Volume Left	1	1	7	1								
Volume Right	12	1	3	1								
cSH	885	787	1395	1419								
Volume to Capacity	0.02	0.01	0.00	0.00								
Queue Length 95th (m)	0.4	0.1	0.1	0.0								
Control Delay (s)	9.1	9.6	0.8	0.1								
Lane LOS	A	A	A	A								
Approach Delay (s)	9.1	9.6	0.8	0.1								
Approach LOS	A	A										
Intersection Summary												
Average Delay			1.5									
Intersection Capacity Utilization			15.1\%		CU Level	Service			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
1: Highway 29 \& Highway 97

	4	\rightarrow	\checkmark	7		4	4	\dagger	\%	(1	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	7		\uparrow	「'	${ }^{7}$	中 \uparrow		${ }^{7}$	4	F'
Volume (veh/h)	5	6	160	18	2	9	149	201	23	6	360	9
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	6	7	178	20	2	10	166	223	26	7	400	10
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)			3			3						
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	857	993	400	984	991	124	410			249		
vC 1 , stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	857	993	400	984	991	124	410			249		
tC, single (s)	7.8	6.8	7.2	7.8	6.8	7.2	4.4			4.4		
tC, 2 stage (s)												
tF (s)	3.6	4.1	3.4	3.6	4.1	3.4	2.3			2.3		
p0 queue free \%	97	96	69	82	99	99	84			99		
cM capacity (veh/h)	199	189	567	109	189	866	1064			1231		
Direction, Lane \#	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	190	32	166	149	100	7	400	10				
Volume Left	6	20	166	0	0	7	0	0				
Volume Right	178	10	0	0	26	0	0	10				
cSH	606	170	1064	1700	1700	1231	1700	1700				
Volume to Capacity	0.31	0.19	0.16	0.09	0.06	0.01	0.24	0.01				
Queue Length 95th (m)	10.2	5.1	4.2	0.0	0.0	0.1	0.0	0.0				
Control Delay (s)	14.9	32.4	9.0	0.0	0.0	7.9	0.0	0.0				
Lane LOS	B	D	A			A						
Approach Delay (s)	14.9	32.4	3.6			0.1						
Approach LOS	B	D										
Intersection Summary												
Average Delay			5.1									
Intersection Capacity Utilization			45.0\%		CU Level	Service			A			
Analysis Period (min)			15									

	4	\rightarrow	\geqslant	7	4	4	4	\uparrow	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\$			¢			\$	
Volume (veh/h)	6	1	35	1	1	1	16	54	1	1	141	3
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Hourly flow rate (vph)	8	1	44	1	1	1	20	68	1	1	176	4

Pedestrians
 Lane Width (m)

Walking Speed (m / s)
Percent Blockage

Right turn flare (veh)									
Median type None None Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
VC , conflicting volume	291	289	178	333	291	68	180	69	
$\mathrm{vC1}$, stage 1 conf vol									
$\mathrm{vC2}$, stage 2 conf vol									
vCu, unblocked vol	291	289	178	333	291	68	180	69	
tC , single (s)	7.4	6.8	6.5	7.4	6.8	6.5	4.4	4.4	
$\mathrm{tC}, 2$ stage (s)									
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4	2.4	
p0 queue free \%	99	100	95	100	100	100	98	100	
cM capacity (veh/h)	607	573	807	538	572	932	1263	1393	

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	52	4	89	181
Volume Left	8	1	20	1
Volume Right	44	1	1	4
cSH	763	641	1263	1393
Volume to Capacity	0.07	0.01	0.02	0.00
Queue Length 95th (m)	1.7	0.1	0.4	0.0
Control Delay (s)	10.1	10.6	1.9	0.1
Lane LOS	B	B	A	A
Approach Delay (s)	10.1	10.6	1.9	0.1
Approach LOS	B	B		

Approach LOS B B

Intersection Summary

Average Delay	2.3
Intersection Capacity Utilization	24.8%

A
Analysis Period (min) 15

HCM Unsignalized Intersection Capacity Analysis
9: Highway 97 \& Wonowon Esso 2

	4	\rightarrow	7	\dagger	4	4	4	\uparrow	7	*	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			¢			\$	
Volume (veh/h)	16	4	2	3	2	3	1	53	9	6	146	42
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Hourly flow rate (vph)	21	5	3	4	3	4	1	71	12	8	195	56

Pedestrians

Lane Width (m)
Walking Speed (m / s)
Percent Blockage
Right turn flare (veh)

$\mathrm{vC1}$, stage 1 conf vol
$\mathrm{vC2}$, stage 2 conf vol

vCu, unblocked vol	323	324	223	323	346	77	251	83
tC, single (s)	7.4	6.8	6.5	7.4	6.8	6.5	4.4	4.4
tC, 2 stage (s)								
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4	9.4
p0 queue free \%	96	99	100	99	100	100	100	99
cM capacity (veh/h)	578	553	761	577	537	922	1187	1376

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	29	11	84	259
Volume Left	21	4	1	8
Volume Right	3	4	12	56
cSH	586	657	1187	1376
Volume to Capacity	0.05	0.02	0.00	0.01
Queue Length 95th (m)	1.2	0.4	0.0	0.1
Control Delay (s)	11.5	10.6	0.1	0.3
Lane LOS	B	B	A	A
Approach Delay (s)	11.5	10.6	0.1	0.3
Approach LOS	B	B		

Approach LOS B B

Intersection Summary

Average Delay	1.4		
Intersection Capacity Utilization	23.7%	ICU Level of Service	A
Analysis Period (min)	15		

	\rangle	\rightarrow	\geqslant	7	\leftarrow	4	4	\uparrow	$>$		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\uparrow			\uparrow			\dagger	
Volume (veh/h)	9	1	3	1	1	1	1	71	1	1	181	9
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	11	1	4	1	1	1	1	87	1	1	221	11

Pedestrians

Lane Width (m)
Walking Speed (m / s)
Percent Blockage

Right turn flare (veh)									
Median type									None
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
VC , conflicting volume	320	319	226	323	324	87	232	88	
$\mathrm{vC1}$, stage 1 conf vol									
$\mathrm{vC2}$, stage 2 conf vol									
vCu, unblocked vol	320	319	226	323	324	87	232	88	
tC , single (s)	7.3	6.7	6.4	7.3	6.7	6.4	4.3	4.3	
$\mathrm{tC}, 2$ stage (s)									
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4	2.4	
p0 queue free \%	98	100	100	100	100	100	100	100	
cM capacity (veh/h)	597	568	770	592	565	924	1237	1402	

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	16	4	89	233
Volume Left	11	1	1	1
Volume Right	4	1	1	11
cSH	627	661	1237	1402
Volume to Capacity	0.03	0.01	0.00	0.00
Queue Length 95th (m)	0.6	0.1	0.0	0.0
Control Delay (s)	10.9	10.5	0.1	0.0
Lane LOS	B	B	A	A
Approach Delay (s)	10.9	10.5	0.1	0.0
Approach LOS	B	B		

Intersection Summary

Average Delay	0.7
Intersection Capacity Utilization	20.6%

ICU Level of Service A
Analysis Period (min) 15

	$\stackrel{ }{*}$	\rightarrow	7	7	4		4	\dagger	7		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow			*			*	
Volume (veh/h)	1	1	2	2	1	1	6	186	4	1	102	1
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate (vph)	1	1	2	2	1	1	6	192	4	1	105	1

Pedestrians
Lane Width (m)
Walking Speed (m / s)
Percent Blockage

Right turn flare (veh)									
Median type									None
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
VC , conflicting volume	315	316	106	316	314	194	106	196	
$\mathrm{vC1}$, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	315	316	106	316	314	194	106	196	
tC, single (s)	7.3	6.7	6.4	7.3	6.7	6.4	4.3	4.3	
$\mathrm{tC}, 2$ stage (s)									
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4	2.4	
p0 queue free \%	100	100	100	100	100	100	100	100	
cM capacity (veh/h)	598	567	899	596	568	801	1374	1271	

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	4	4	202	107
Volume Left	1	2	6	1
Volume Right	2	1	4	1
cSH	707	629	1374	1271
Volume to Capacity	0.01	0.01	0.00	0.00
Queue Length 95th (m)	0.1	0.2	0.1	0.0
Control Delay (s)	10.1	10.8	0.3	0.1
Lane LOS	B	B	A	A
Approach Delay (s)	10.1	10.8	0.3	0.1
Approach LOS	B	B		

Intersection Summary

Average Delay	0.5		
Intersection Capacity Utilization	23.8%	ICU Level of Service	A
Analysis Period (min)	15		

	\rangle	\rightarrow	7	7	\leftarrow	4	4	\uparrow	7		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			¢			¢	
Volume (veh/h)	27	6	21	5	5	1	31	147	9	7	76	4
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	31	7	24	6	6	1	35	167	10	8	86	5

Pedestrians
Lane Width (m)
Walking Speed (m / s)
Percent Blockage

Right turn flare (veh)									
Median type									None
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
VC , conflicting volume	351	352	89	374	349	172	91	177	
vC1, stage 1 conf vol									
$\mathrm{vC2}$, stage 2 conf vol									
vCu, unblocked vol	351	352	89	374	349	172	91	177	
tC, single (s)	7.3	6.7	6.4	7.3	6.7	6.4	4.3	4.3	
$\mathrm{tC}, 2$ stage (s)									
tF (s)	3.6	4.1	3.4	3.6	4.1	3.4	2.3	2.3	
p0 queue free \%	95	99	97	99	99	100	98	99	
cM capacity (veh/h)	559	534	932	526	536	836	1420	1318	

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	61	12	212	99
Volume Left	31	6	35	8
Volume Right	24	1	10	5
CSH	658	549	1420	1318
Volume to Capacity	0.09	0.02	0.02	0.01
Queue Length 95th (m)	2.3	0.5	0.6	0.1
Control Delay (s)	11.0	11.7	1.4	0.7
Lane LOS	B	B	A	A
Approach Delay (s)	11.0	11.7	1.4	0.7
Approach LOS	B	B		

Intersection Summary

Average Delay	3.1		
Intersection Capacity Utilization	27.4%	ICU Level of Service	A
Analysis Period (min)	15		

	4	\rightarrow	\%	7	\leftarrow	4	4	\uparrow	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\$			¢			\dagger	
Volume (veh/h)	5	1	11	3	1	1	35	75	4	3	142	13
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Hourly flow rate (vph)	6	1	13	4	1	1	41	88	5	4	167	15

Pedestrians

Lane Width (m)
Walking Speed (m / s)
Percent Blockage
Right turn flare (veh) None None
Median type
Median storage veh)
Upstream signal (m)

pX, platoon unblocked								
VC , conflicting volume	356	357	175	368	362	91	182	93
$\mathrm{vC1}$, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	356	357	175	368	362	91	182	93
tC , single (s)	7.3	6.7	6.4	7.3	6.7	6.4	4.3	4.3
tC, 2 stage (s)								
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4	2.4
p0 queue free \%	99	100	98	99	100	100	97	100
cM capacity (veh/h)	548	521	822	531	518	917	1286	1390

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	20	6	134	186
Volume Left	6	4	41	4
Volume Right	13	1	5	15
cSH	696	576	1286	1390
Volume to Capacity	0.03	0.01	0.03	0.00
Queue Length 95th (m)	0.7	0.2	0.8	0.1
Control Delay (s)	10.3	11.3	2.6	0.2
Lane LOS	B	B	A	A
Approach Delay (s)	10.3	11.3	2.6	0.2
Approach LOS	B	B		

Intersection Summary

Average Delay	1.9		
Intersection Capacity Utilization	27.9%	ICU Level of Service	A
Analysis Period (min)	15		

	4	\rightarrow	\geqslant	7	4	4	4	\uparrow	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			¢			¢			\$	
Volume (veh/h)	1	2	14	5	1	1	7	55	21	3	41	1
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	1	,	15	5	1	1	7	59	22	3	44	1

Pedestrians

Lane Width (m)
Walking Speed (m / s)
Percent Blockage

Right turn flare (veh)									
Median type									None
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
VC , conflicting volume	137	146	44	151	136	70	45	81	
$\mathrm{vC1}$, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	137	146	44	151	136	70	45	81	
tC, single (s)	7.3	6.7	6.4	7.3	6.7	6.4	4.3	4.3	
$\mathrm{tC}, 2$ stage (s)									
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4	2.4	
p0 queue free \%	100	100	98	99	100	100	99	100	
cM capacity (veh/h)	790	710	980	761	720	948	1461	1416	

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	18	7	88	48
Volume Left	1	5	7	3
Volume Right	15	1	22	1
cSH	925	777	1461	1416
Volume to Capacity	0.02	0.01	0.01	0.00
Queue Length 95th (m)	0.5	0.2	0.1	0.1
Control Delay (s)	9.0	9.7	0.7	0.5
Lane LOS	A	A	A	A
Approach Delay (s)	9.0	9.7	0.7	0.5
Approach LOS	A	A		

Intersection Summary

Average Delay	2.0
Intersection Capacity Utilization	16.3%

ICU Level of Service A
Analysis Period (min) 15

HCM Unsignalized Intersection Capacity Analysis
1: Highway 29 \& Highway 97

	4	\rightarrow	\checkmark	7		4	4	\dagger	\%	(1	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	$\stackrel{7}{ }$		\uparrow	「'	${ }^{7}$	中 \uparrow		${ }^{7}$	4	F
Volume (veh/h)	9	4	224	41	21	105	163	382	21	7	301	21
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Hourly flow rate (vph)	10	5	260	48	24	122	190	444	24	8	350	24
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)			3			3						
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	980	1214	350	1204	1226	234	374			469		
vC 1 , stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	980	1214	350	1204	1226	234	374			469		
tC, single (s)	7.8	6.8	7.2	7.8	6.8	7.2	4.4			4.4		
tC, 2 stage (s)												
tF (s)	3.6	4.1	3.4	3.6	4.1	3.4	2.3			2.3		
p0 queue free \%	91	97	58	23	82	83	83			99		
cM capacity (veh/h)	117	136	615	62	133	735	1106			1015		
Direction, Lane \#	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	276	194	190	296	172	8	350	24				
Volume Left	10	48	190	0	0	8	0	0				
Volume Right	260	122	0	0	24	0	0	24				
cSH	651	218	1106	1700	1700	1015	1700	1700				
Volume to Capacity	0.42	0.89	0.17	0.17	0.10	0.01	0.21	0.01				
Queue Length 95th (m)	16.0	54.7	4.7	0.0	0.0	0.2	0.0	0.0				
Control Delay (s)	16.4	82.4	8.9	0.0	0.0	8.6	0.0	0.0				
Lane LOS	C	F	A			A						
Approach Delay (s)	16.4	82.4	2.6			0.2						
Approach LOS	C	F										
Intersection Summary												
Average Delay			14.7									
Intersection Capacity Utilization			44.9\%		CU Level	Service			A			
Analysis Period (min)			15									

	7		\uparrow	p		\downarrow	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	M		\uparrow	「	\%	\uparrow	
Volume (veh/h)	21	2	455	137	4	109	
Sign Control	Stop		Free			Free	
Grade	0\%		0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	23	2	495	149	4	118	
Pedestrians							
Lane Width (m)							
Walking Speed (m / s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC , conflicting volume	622	495			643		
$\mathrm{vC1}$, stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu , unblocked vol	622	495			643		
tC , single (s)	6.7	6.5			4.4		
$\mathrm{tC}, 2$ stage (s)							
tF (s)	3.8	3.6			2.5		
p0 queue free \%	94	100			99		
cM capacity (veh/h)	409	526			829		
Direction, Lane \#	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	25	495	149	4	118		
Volume Left	23	0	0	4	0		
Volume Right	2	0	149	0	0		
cSH	417	1700	1700	829	1700		
Volume to Capacity	0.06	0.29	0.09	0.01	0.07		
Queue Length 95th (m)	1.4	0.0	0.0	0.1	0.0		
Control Delay (s)	14.2	0.0	0.0	9.4	0.0		
Lane LOS	B			A			
Approach Delay (s)	14.2	0.0		0.3			
Approach LOS	B						
Intersection Summary							
Average Delay			0.5				
Intersection Capacity Utilization			33.9\%	ICU Level of Service			A
Analysis Period (min)			15				

	\rangle	\rightarrow	\geqslant	\checkmark		4	4	4	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			¢			4	
Volume (veh/h)	9	2	14	2	2	2	55	181	2	2	88	2
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	10	2	15	2	2	2	60	197	2	2	96	2

Pedestrians

Lane Width (m)
Walking Speed (m / s)
Percent Blockage
Right turn flare (veh)

Median type								None		None
Median storage veh $)$										
Upstream signal (m)										
pX, platoon unblocked										
VC, conflicting volume	422	420	97	435	420	198	98		199	

vC 1 , stage 1 conf vol
$\mathrm{vC2}$, stage 2 conf vol

vCu, unblocked vol	422	420	97	435	420	198	98	199
tC, single (s)	7.4	6.8	6.5	7.4	6.8	6.5	4.4	4.4
tC, 2 stage (s)								
tF (s)	3.8	4.3	3.6	3.8	4.3	3.6	2.5	2.5
p0 queue free \%	98	100	98	100	100	100	96	100
CM capacity (veh/h)	479	465	893	462	465	781	1347	1232

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	27	7	259	100
Volume Left	10	2	60	2
Volume Right	15	2	2	2
CSH	645	536	1347	1232
Volume to Capacity	0.04	0.01	0.04	0.00
Queue Length 95th (m)	1.0	0.3	1.1	0.0
Control Delay (s)	10.8	11.8	2.1	0.2
Lane LOS	B	B	A	A
Approach Delay (s)	10.8	11.8	2.1	0.2
Approach LOS	B	B		

Intersection Summary

Average Delay	2.4		
Intersection Capacity Utilization	29.4%	ICU Level of Service	A
Analysis Period (min)	15		

	4			\checkmark			4	4	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$			\$			*	
Volume (veh/h)	53	2	2	2	4	20	7	174	9	7	86	13
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Hourly flow rate (vph)	62	2	2	2	5	24	8	205	11	8	101	15
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX , platoon unblocked												
vC , conflicting volume	378	357	109	355	359	210	116			215		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	378	357	109	355	359	210	116			215		
tC, single (s)	7.4	6.8	6.5	7.4	6.8	6.5	4.4			4.4		
tC, 2 stage (s)												
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4			2.4		
p0 queue free \%	88	100	100	100	99	97	99			99		
cM capacity (veh/h)	513	526	884	549	524	773	1336			1225		
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	67	31	224	125								
Volume Left	62	2	8	8								
Volume Right	2	24	11	15								
cSH	521	700	1336	1225								
Volume to Capacity	0.13	0.04	0.01	0.01								
Queue Length 95th (m)	3.3	1.0	0.1	0.2								
Control Delay (s)	12.9	10.4	0.3	0.6								
Lane LOS	B	B	A	A								
Approach Delay (s)	12.9	10.4	0.3	0.6								
Approach LOS	B	B										
Intersection Summary												
Average Delay			3.0									
Intersection Capacity Utilization			28.2\%		CU Level	f Service			A			
Analysis Period (min)			15									

	4						4	\dagger	7	*	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\$			¢			\$	
Volume (veh/h)	7	2	2	2	2	2	2	244	2	2	109	4
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	7	2	2	2	2	2	2	254	2	2	114	4
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	382	380	116	382	381	255	118			256		
$\mathrm{vC1}$, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	382	380	116	382	381	255	118			256		
tC, single (s)	7.3	6.8	6.5	7.3	6.8	6.5	4.3			4.3		
tC, 2 stage (s$)$												
$t \mathrm{~F}$ (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4			2.4		
p0 queue free \%	99	100	100	100	100	100	100			100		
cM capacity (veh/h)	532	516	878	532	515	731	1339			1186		
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	11	6	258	120								
Volume Left	7	2	2	2								
Volume Right	2	2	2	4								
cSH	569	578	1339	1186								
Volume to Capacity	0.02	0.01	0.00	0.00								
Queue Length 95th (m)	0.5	0.2	0.0	0.0								
Control Delay (s)	11.5	11.3	0.1	0.2								
Lane LOS	B	B	A	A								
Approach Delay (s)	11.5	11.3	0.1	0.2								
Approach LOS	B	B										
Intersection Summary												
Average Delay			0.6									
Intersection Capacity Utilization			24.0\%		CU Level of	f Service			A			
Analysis Period (min)			15									

	\rangle	\rightarrow	7	7	$\stackrel{-}{4}$	4	4	\uparrow	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			¢			${ }_{4}$			¢	
Volume (veh/h)	2	2	2	2	2	2	2	130	2	2	223	2
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73
Hourly flow rate (vph)	3	3	3	3	3	3	3	178	3	3	305	3

Pedestrians

Lane Width (m)
Walking Speed (m / s)
Percent Blockage

Right turn flare (veh)									
Median type									None
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
VC , conflicting volume	501	499	307	501	499	179	308	181	
$\mathrm{vC1}$, stage 1 conf vol									
$\mathrm{vC2}$, stage 2 conf vol									
vCu, unblocked vol	501	499	307	501	499	179	308	181	
tC , single (s)	7.3	6.7	6.4	7.3	6.7	6.4	4.3	4.3	
$\mathrm{tC}, 2$ stage (s)									
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4	2.4	
p0 queue free \%	99	99	100	99	99	100	100	100	
cM capacity (veh/h)	449	448	695	448	448	821	1162	1298	

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	8	8	184	311
Volume Left	3	3	3	3
Volume Right	3	3	3	3
cSH	508	528	1162	1298
Volume to Capacity	0.02	0.02	0.00	0.00
Queue Length 95th (m)	0.4	0.4	0.1	0.0
Control Delay (s)	12.2	11.9	0.1	0.1
Lane LOS	B	B	A	A
Approach Delay (s)	12.2	11.9	0.1	0.1
Approach LOS	B	B		

Intersection Summary

Average Delay	0.5		
Intersection Capacity Utilization	23.0%	ICU Level of Service	A
Analysis Period (min)	15		

	4	\rightarrow	7	7	4	4	4	\dagger	7		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			¢			¢			*	
Volume (veh/h)	11	2	30	21	2	14	18	112	6	4	172	4
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74
Hourly flow rate (vph)	15	3	41	28	3	19	24	151	8	5	232	5

Pedestrians

Lane Width (m)
Walking Speed (m / s)
Percent Blockage
Right turn flare (veh) None None
Median type
Median storage veh)
Upstream signal (m)

pX, platoon unblocked								
VC , conflicting volume	470	454	235	492	453	155	238	159
$\mathrm{vC1}$, stage 1 conf vol								
$\mathrm{vC2}$, stage 2 conf vol								
vCu, unblocked vol	470	454	235	492	453	155	238	159
tC, single (s)	7.3	6.7	6.4	7.3	6.7	6.4	4.3	4.3
$\mathrm{tC}, 2$ stage (s)								
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4	2.4
p0 queue free \%	97	99	95	93	99	98	98	100
cM capacity (veh/h)	457	467	766	428	468	850	1241	1328

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	58	50	184	243
Volume Left	15	28	24	5
Volume Right	41	19	8	5
CSH	637	530	1241	1328
Volume to Capacity	0.09	0.09	0.02	0.00
Queue Length 95th (m)	2.3	2.4	0.5	0.1
Control Delay (s)	11.2	12.5	1.2	0.2
Lane LOS	B	B	A	A
Approach Delay (s)	11.2	12.5	1.2	0.2
Approach LOS	B	B		

Approach LOS B B

Intersection Summary

Average Delay	2.9
Intersection Capacity Utilization	26.9%

ICU Level of Service A
Analysis Period (min) 15

	4	\rightarrow	\geqslant	\checkmark		4	4	\uparrow	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			¢			¢			\uparrow	
Volume (veh/h)	23	2	56	7	2	2	14	198	6	2	63	11
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	25	,	61	8	2	2	15	215	7	2	68	12

Lane Width (m)
Walking Speed (m / s)
Percent Blockage

Percent Blockage

Right turn flare (veh)									
Median type None None Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
VC , conflicting volume	331	331	74	390	334	218	80	222	
$\mathrm{vC1}$, stage 1 conf vol									
$\mathrm{vC2}$, stage 2 conf vol									
vCu, unblocked vol	331	331	74	390	334	218	80	222	
$t \mathrm{C}$, single (s)	7.4	6.8	6.5	7.4	6.8	6.5	4.4	4.4	
$\mathrm{tC}, 2$ stage (s)									
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4	2.4	
p0 queue free \%	96	100	93	98	100	100	99	100	
cM capacity (veh/h)	570	544	924	487	542	765	1379	1218	

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	88	12	237	83
Volume Left	25	8	15	2
Volume Right	61	2	7	12
cSH	774	532	1379	1218
Volume to Capacity	0.11	0.02	0.01	0.00
Queue Length 95th (m)	2.9	0.5	0.3	0.0
Control Delay (s)	10.2	11.9	0.6	0.2
Lane LOS	B	B	A	A
Approach Delay (s)	10.2	11.9	0.6	0.2
Approach LOS	B	B		

Intersection Summary

Average Delay	2.9		
Intersection Capacity Utilization	29.0%	ICU Level of Service	A
Analysis Period (min)	15		

	$\stackrel{ }{*}$			7			4	\dagger	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\$			\$			\$	
Volume (veh/h)	2	2	16	60	,	2	4	42	4	2	77	2
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Hourly flow rate (vph)	2	2	20	74	2	2	5	52	5	2	95	2
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
VC , conflicting volume	169	168	96	186	167	54	98			57		
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	169	168	96	186	167	54	98			57		
tC , single (s)	7.2	6.6	6.3	7.2	6.6	6.3	4.2			4.2		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.6	4.1	3.4	3.6	4.1	3.4	2.3			2.3		
p0 queue free \%	100	100	98	90	100	100	100			100		
cM capacity (veh/h)	764	702	931	730	703	982	1429			1480		
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	25	79	62	100								
Volume Left	2	74	5	2								
Volume Right	20	2	5	2								
cSH	883	735	1429	1480								
Volume to Capacity	0.03	0.11	0.00	0.00								
Queue Length 95th (m)	0.7	2.7	0.1	0.0								
Control Delay (s)	9.2	10.5	0.6	0.2								
Lane LOS	A	B	A	A								
Approach Delay (s)	9.2	10.5	0.6	0.2								
Approach LOS	A	B										
Intersection Summary												
Average Delay			4.2									
Intersection Capacity Utilization			21.5\%		CU Level	Service			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
1: Highway 29 \& Highway 97

	4	\rightarrow	\checkmark	7		4	4	\dagger	\%	(1	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	$\stackrel{7}{ }$		\uparrow	「'	${ }^{7}$	中 \uparrow		${ }^{7}$	4	F'
Volume (veh/h)	13	2	144	18	9	114	109	205	21	2	270	9
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	14	2	153	19	10	121	116	218	22	2	287	10
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)			3			3						
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	637	764	287	754	762	120	297			240		
vC 1 , stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	637	764	287	754	762	120	297			240		
tC, single (s)	7.8	6.8	7.2	7.8	6.8	7.2	4.4			4.4		
tC, 2 stage (s)												
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4			2.4		
p0 queue free \%	95	99	77	90	97	86	90			100		
cM capacity (veh/h)	257	274	667	192	274	863	1160			1221		
Direction, Lane \#	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	169	150	116	145	95	2	287	10				
Volume Left	14	19	116	0	0	2	0	0				
Volume Right	153	121	0	0	22	0	0	10				
cSH	736	1067	1160	1700	1700	1221	1700	1700				
Volume to Capacity	0.23	0.14	0.10	0.09	0.06	0.00	0.17	0.01				
Queue Length 95th (m)	6.7	3.7	2.5	0.0	0.0	0.0	0.0	0.0				
Control Delay (s)	12.7	12.5	8.4	0.0	0.0	8.0	0.0	0.0				
Lane LOS	B	B	A			A						
Approach Delay (s)	12.7	12.5	2.7			0.1						
Approach LOS	B	B										
Intersection Summary												
Average Delay			5.2									
Intersection Capacity Utilization			38.4\%		CU Level	Service			A			
Analysis Period (min)			15									

	4	\rightarrow	\geqslant	7	4	4	4	\uparrow	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\$			¢			\$	
Volume (veh/h)	4	2	42	2	2	2	48	146	2	2	163	2
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Hourly flow rate (vph)	5	2	50	2	2	2	57	174	2	2	194	2

Lane Width (m)
Walking Speed (m / s)
Percent Blockage
Right turn flare (veh)

Median type								None
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC , conflicting volume	493	490	195	540	490	175	196	

$\mathrm{vC1}$, stage 1 conf vol
$\mathrm{vC2}$, stage 2 conf vol

vCu, unblocked vol	493	490	195	540	490	175	196	176
tC, single (s)	7.4	6.8	6.5	7.4	6.8	6.5	4.4	4.4
tC, 2 stage (s)								
tF (s)	3.8	4.3	3.6	3.8	4.3	3.6	2.5	2.5
p0 queue free \%	99	99	94	99	99	100	95	100
CM capacity (veh/h)	419	414	771	364	414	792	1206	1228

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	57	7	233	199
Volume Left	5	2	57	2
Volume Right	50	2	2	2
CSH	697	467	1206	1228
Volume to Capacity	0.08	0.02	0.05	0.00
Queue Length 95th (m)	2.0	0.4	1.1	0.0
Control Delay (s)	10.6	12.8	2.3	0.1
Lane LOS	B	B	A	A
Approach Delay (s)	10.6	12.8	2.3	0.1
Approach LOS	B	B		

Intersection Summary

Average Delay	2.5
Intersection Capacity Utilization	32.6%

Analysis Period (min) 15

	4	\rightarrow	\checkmark	7		4	4	4	\%		\downarrow	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\$			\&			*	
Volume (veh/h)	46	2	2	2	2	2	4	163	2	2	142	34
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	56	2	2	2	2	2	5	199	2	2	173	41
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	412	410	194	412	429	200	215			201		
vC 1 , stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	412	410	194	412	429	200	215			201		
tC , single (s)	7.4	6.8	6.5	7.4	6.8	6.5	4.4			4.4		
tC, 2 stage (s)												
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4			2.4		
p0 queue free \%	89	100	100	100	99	100	100			100		
cM capacity (veh/h)	503	492	788	503	479	781	1220			1235		
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	61	7	206	217								
Volume Left	56	2	5	2								
Volume Right	2	2	2	41								
	510	560	1220	1235								
Volume to Capacity	0.12	0.01	0.00	0.00								
Queue Length 95th (m)	3.1	0.3	0.1	0.0								
	13.0	11.5	0.2	0.1								
Control Delay (s)	B	B	A	A								
Approach Delay (s)	13.0	11.5	0.2	0.1								
Approach LOS	B	B										
Intersection Summary												
Average Delay			1.9									
Intersection Capacity Utilization			24.3\%		U Level	Service			A			
Analysis Period (min)			15									

	$\stackrel{ }{*}$	\rightarrow	7	\checkmark	4		4	\uparrow	7		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			¢			\dagger			*	
Volume (veh/h)	2	2	2	2	2	2	2	107	2	2	132	2
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	2	2	2	2	2	2	2	115	2	2	142	2

Pedestrians
Lane Width (m)
Walking Speed (m / s)
Percent Blockage

Right turn flare (veh)									
Median type									None
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
VC , conflicting volume	271	269	143	271	269	116	144	117	
$\mathrm{vC1}$, stage 1 conf vol									
$\mathrm{vC2}$, stage 2 conf vol									
vCu, unblocked vol	271	269	143	271	269	116	144	117	
tC, single (s)	7.4	6.8	6.5	7.4	6.8	6.5	4.4	4.4	
$\mathrm{tC}, 2$ stage (s)									
tF (s)	3.8	4.3	3.6	3.8	4.3	3.6	2.5	2.5	
p0 queue free \%	100	100	100	100	100	100	100	100	
cM capacity (veh/h)	624	591	835	623	591	866	1284	1314	

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	6	6	119	146
Volume Left	2	2	2	2
Volume Right	2	2	2	2
cSH	668	674	1284	1314
Volume to Capacity	0.01	0.01	0.00	0.00
Queue Length 95th (m)	0.2	0.2	0.0	0.0
Control Delay (s)	10.4	10.4	0.2	0.1
Lane LOS	B	B	A	A
Approach Delay (s)	10.4	10.4	0.2	0.1
Approach LOS	B	B		

Intersection Summary

Average Delay	0.6		
Intersection Capacity Utilization	18.1%	ICU Level of Service	A
Analysis Period (min)	15		

	$\stackrel{ }{*}$	\rightarrow	7	7	4	4	4	\uparrow	7		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\uparrow			*			*	
Volume (veh/h)	4	2	13	7	4	9	14	90	4	7	111	2
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	4	2	14	7	4	10	15	96	4	7	118	2

Pedestrians
 Lane Width (m)

Walking Speed (m / s)
Percent Blockage

Right turn flare (veh)									
Median type None None Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
VC , conflicting volume	273	264	119	277	263	98	120	100	
$\mathrm{vC1}$, stage 1 conf vol									
$\mathrm{vC2}$, stage 2 conf vol									
vCu, unblocked vol	273	264	119	277	263	98	120	100	
tC , single (s)	7.3	6.7	6.4	7.3	6.7	6.4	4.3	4.3	
$\mathrm{tC}, 2$ stage (s)									
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4	2.4	
p0 queue free \%	99	100	98	99	99	99	99	99	
cM capacity (veh/h)	624	600	884	620	601	909	1358	1382	

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	20	21	115	128
Volume Left	4	7	15	7
Volume Right	14	10	4	2
CSH	777	718	1358	1382
Volume to Capacity	0.03	0.03	0.01	0.01
Queue Length 95th (m)	0.6	0.7	0.3	0.1
Control Delay (s)	9.8	10.2	1.1	0.5
Lane LOS	A	B	A	A
Approach Delay (s)	9.8	10.2	1.1	0.5
Approach LOS	A	B		

Approach LOS
A B

Intersection Summary

Average Delay	2.1
Intersection Capacity Utilization	19.7%

ICU Level of Service A
Analysis Period (min)
15

	\rangle	\rightarrow	7	7	\leftarrow	4	4	\dagger	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\$			¢			¢	
Volume (veh/h)	7	2	18	2	2	2	14	121	2	2	107	9
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Hourly flow rate (vph)	8	2	21	2	2	2	17	144	2	2	127	11

Lane Width (m)
Walking Speed (m / s)
Percent Blockage

Percent Blockage

Right turn flare (veh)									
Median type									None
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
VC , conflicting volume	320	317	133	339	321	145	138	146	
$\mathrm{vC1}$, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	320	317	133	339	321	145	138	146	
tC , single (s)	7.5	6.9	6.6	7.5	6.9	6.6	4.5	4.5	
$\mathrm{tC}, 2$ stage (s)									
tF (s)	3.8	4.3	3.6	3.8	4.3	3.6	2.5	2.5	
p0 queue free \%	99	100	97	100	100	100	99	100	
cM capacity (veh/h)	561	537	831	532	534	817	1256	1247	

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	32	7	163	140
Volume Left	8	2	17	2
Volume Right	21	2	2	11
cSH	713	603	1256	1247
Volume to Capacity	0.05	0.01	0.01	0.00
Queue Length 95th (m)	1.1	0.3	0.3	0.0
Control Delay (s)	10.3	11.0	0.9	0.1
Lane LOS	B	B	A	A
Approach Delay (s)	10.3	11.0	0.9	0.1
Approach LOS	B	B		

Intersection Summary

Average Delay	1.7		
Intersection Capacity Utilization	23.9%	ICU Level of Service	A
Analysis Period (min)	15		

	\rangle	\rightarrow	7	7	\leftarrow	4	4	\dagger	+		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			$\$$	
Volume (veh/h)	2	2	16	2	2	2	9	70	4	2	98	2
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Hourly flow rate (vph)	3	3	21	3	3	3	12	93	5	3	131	3

Pedestrians

Lane Width (m)
Walking Speed (m / s)
Percent Blockage
Right turn flare (veh)

Median type						None	None		
Median storage veh)									
Upstream signal (m)									

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	27	8	111	136
Volume Left	3	3	12	3
Volume Right	21	3	5	3
cSH	799	680	1326	1367
Volume to Capacity	0.03	0.01	0.01	0.00
Queue Length 95th (m)	0.8	0.3	0.2	0.0
Control Delay (s)	9.7	10.4	0.9	0.2
Lane LOS	A	B	A	A
Approach Delay (s)	9.7	10.4	0.9	0.2
Approach LOS	A	B		

Intersection Summary

Average Delay	1.6		
Intersection Capacity Utilization	18.9%	ICU Level of Service	A
Analysis Period (min)	15		

HCM Unsignalized Intersection Capacity Analysis
1: Highway 29 \& Highway 97

	4	\rightarrow	\checkmark	7		4	4	\dagger	p	(1	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	7		\uparrow	「	${ }^{7}$	中 \uparrow		${ }^{7}$	4	F'
Volume (veh/h)	9	11	280	32	4	16	261	352	41	11	630	16
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	10	12	311	36	4	18	290	391	46	12	700	18
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)			3			3						
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	1502	1741	700	1724	1736	218	718			437		
vC 1 , stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	1502	1741	700	1724	1736	218	718			437		
tC, single (s)	7.8	6.8	7.2	7.8	6.8	7.2	4.4			4.4		
tC, 2 stage (s)												
tF (s)	3.6	4.1	3.4	3.6	4.1	3.4	2.3			2.3		
p0 queue free \%	79	74	12	0	91	98	64			99		
cM capacity (veh/h)	49	48	355	4	48	750	804			1039		
Direction, Lane \#	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	333	58	290	261	176	12	700	18				
Volume Left	10	36	290	0	0	12	0	0				
Volume Right	311	18	0	0	46	0	0	18				
cSH	381	7	804	1700	1700	1039	1700	1700				
Volume to Capacity	0.88	8.85	0.36	0.15	0.10	0.01	0.41	0.01				
Queue Length 95th (m)	65.4	Err	12.5	0.0	0.0	0.3	0.0	0.0				
Control Delay (s)	61.3	Err	12.0	0.0	0.0	8.5	0.0	0.0				
Lane LOS	F	F	B			A						
Approach Delay (s)	61.3	Err	4.8			0.1						
Approach LOS	F	F										
Intersection Summary												
Average Delay			325.7									
Intersection Capacity Utilization			66.3\%		CU Level	Service			C			
Analysis Period (min)			15									

	4	\rightarrow	\geqslant	\checkmark	\leftarrow		4	\dagger	1		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\uparrow			\uparrow			\uparrow	
Volume (veh/h)	11	2	62	2	2	2	28	95	2	2	247	6
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Hourly flow rate (vph)	14	2	78	2	2	2	35	119	2	2	309	8

Pedestrians

Lane Width (m)
Walking Speed (m / s)
Percent Blockage
Right turn flare (veh)

Median type								None		None
Median storage veh										
Upstream signal (m)										
pX, platoon unblocked										
vC, conflicting volume	511	509	312	586	511	120	316			

$\mathrm{vC1}$, stage 1 conf vol
$\mathrm{vC2}$, stage 2 conf vol

vCu, unblocked vol	511	509	312	586	511	120	316	121
tC, single (s)	7.4	6.8	6.5	7.4	6.8	6.5	4.4	4.4
tC, 2 stage (s)								
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4	2.4
p0 queue free \%	97	99	89	99	99	100	97	100
cM capacity (veh/h)	423	420	675	333	419	871	1120	1330

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	94	8	156	319
Volume Left	14	2	35	2
Volume Right	78	2	2	8
CSH	612	459	1120	1330
Volume to Capacity	0.15	0.02	0.03	0.00
Queue Length 95th (m)	4.1	0.4	0.7	0.0
Control Delay (s)	11.9	13.0	2.1	0.1
Lane LOS	B	B	A	A
Approach Delay (s)	11.9	13.0	2.1	0.1
Approach LOS	B	B		

Approach LOS B B

Intersection Summary

Average Delay	2.7		
Intersection Capacity Utilization	35.1%	ICU Level of Service	A
Analysis Period (min)	15		

	4	\rightarrow	t	7		4	4	\uparrow	P	\downarrow	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\uparrow			\dagger			¢	
Volume (veh/h)	28	7	4	6	4	6	2	93	16	11	256	74
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Hourly flow rate (vph)	37		5	8	5	8	3	124	21	15	341	99

Pedestrians

Lane Width (m)
Walking Speed (m / s)
Percent Blockage
Right turn flare (veh)

Median type								None	None
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
VC , conflicting volume	571	571	391	570	609	135	440	145	
$\mathrm{vC1}$, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	571	571	391	570	609	135	440	145	
tC , single (s)	7.4	6.8	6.5	7.4	6.8	6.5	4.4	4.4	
$\mathrm{tC}, 2$ stage (s)									
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4	2.4	
p0 queue free \%	90	98	99	98	99	99	100	99	
cM capacity (veh/h)	386	394	608	383	374	854	1004	1302	

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	52	21	148	455
Volume Left	37	8	3	15
Volume Right	5	8	21	99
CSH	402	480	1004	1302
Volume to Capacity	0.13	0.04	0.00	0.01
Queue Length 95th (m)	3.4	1.1	0.1	0.3
Control Delay (s)	15.3	12.9	0.2	0.4
Lane LOS	C	B	A	A
Approach Delay (s)	15.3	12.9	0.2	0.4
Approach LOS	C	B		

Intersection Summary

Average Delay	1.9
Intersection Capacity Utilization	34.6%

ICU Level of Service A
Analysis Period (min) 15

	$\stackrel{ }{*}$	\rightarrow		7			4	\uparrow	/		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			¢			¢			¢	
Volume (veh/h)	16	2	6	2	2	2	2	125	2	2	317	16
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	20	2	7	2	2	2	2	152	2	2	387	20
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	563	561	396	568	570	154	406			155		
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	563	561	396	568	570	154	406			155		
tC , single (s)	7.3	6.7	6.4	7.3	6.7	6.4	4.3			4.3		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4			2.4		
p0 queue free \%	95	99	99	99	99	100	100			100		
cM capacity (veh/h)	406	411	616	399	406	847	1062			1323		
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	29	7	157	409								
Volume Left	20	2	2	2								
Volume Right	7	2	2	20								
cSH	444	488	1062	1323								
Volume to Capacity	0.07	0.01	0.00	0.00								
Queue Length 95th (m)	1.6	0.3	0.1	0.0								
Control Delay (s)	13.7	12.5	0.2	0.1								
Lane LOS	B	B	A	A								
Approach Delay (s)	13.7	12.5	0.2	0.1								
Approach LOS	B	B										
Intersection Summary												
Average Delay			0.9									
Intersection Capacity Utilization			28.7\%		CU Level	Service			A			
Analysis Period (min)			15									

	4	\rightarrow	\geqslant	\checkmark	4	4	4	\uparrow	p		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			¢			${ }_{*}$	
Volume (veh/h)	2	2	4	4	2	2	11	326	7	2	179	2
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate (vph)	2	2	4	4	2	2	11	336	7	2	185	2

Pedestrians
Lane Width (m)
Walking Speed (m / s)
Percent Blockage

Right turn flare (veh)									
Median type									None
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
VC , conflicting volume	555	556	186	557	553	340	187	343	
$\mathrm{vC1}$, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	555	556	186	557	553	340	187	343	
tC, single (s)	7.3	6.7	6.4	7.3	6.7	6.4	4.3	4.3	
$\mathrm{tC}, 2$ stage (s)									
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4	2.4	
p0 queue free \%	99	99	99	99	99	100	99	100	
cM capacity (veh/h)	408	410	810	406	411	661	1281	1117	

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	8	8	355	189
Volume Left	2	4	11	2
Volume Right	4	2	7	2
CSH	544	451	1281	1117
Volume to Capacity	0.02	0.02	0.01	0.00
Queue Length 95th (m)	0.4	0.4	0.2	0.0
Control Delay (s)	11.7	13.1	0.3	0.1
Lane LOS	B	B	A	A
Approach Delay (s)	11.7	13.1	0.3	0.1
Approach LOS	B	B		

Approach LOS B B

Intersection Summary

Average Delay	0.6		
Intersection Capacity Utilization	34.3%	ICU Level of Service	A
Analysis Period (min)	15		

	\rangle	\rightarrow	7	\checkmark	\checkmark	4	4	\uparrow	>		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\$			¢			¢	
Volume (veh/h)	48	11	37	9	9	2	55	258	16	13	133	7
Sign Control		Yield			Yield			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	55	12	42	10	10	2	62	293	18	15	151	8

Lane Width (m)
Walking Speed (m / s)
Percent Blockage

Percent Blockage

Right turn flare (veh)									
Median type									None
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
VC , conflicting volume	619	621	155	660	616	302	159	311	
$\mathrm{vC1}$, stage 1 conf vol									
$\mathrm{vC2}$, stage 2 conf vol									
vCu, unblocked vol	619	621	155	660	616	302	159	311	
tC , single (s)	7.3	6.7	6.4	7.3	6.7	6.4	4.3	4.3	
$\mathrm{tC}, 2$ stage (s)									
tF (s)	3.6	4.1	3.4	3.6	4.1	3.4	2.3	2.3	
p0 queue free \%	85	97	95	97	97	100	95	99	
cM capacity (veh/h)	355	363	855	316	365	706	1339	1174	

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	109	23	374	174
Volume Left	55	10	62	15
Volume Right	42	2	18	8
CSH	460	358	1339	1174
Volume to Capacity	0.24	0.06	0.05	0.01
Queue Length 95th (m)	6.9	1.5	1.1	0.3
Control Delay (s)	15.2	15.7	1.7	0.8
Lane LOS	C	C	A	A
Approach Delay (s)	15.2	15.7	1.7	0.8
Approach LOS	C	C		

Approach LOS C C

Intersection Summary

Average Delay	4.1		
Intersection Capacity Utilization	43.0%	ICU Level of Service	A
Analysis Period (min)	15		

	\rangle		7	7	4	4	4	\uparrow	7	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			${ }_{4}$			${ }_{4}$	
Volume (veh/h)	9	2	20	6	2	2	62	132	7	6	249	23
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Hourly flow rate (vph)	11	2	24	7	2	2	73	155	8	7	293	27

Lane Width (m)
Walking Speed (m / s)
Percent Blockage

Percent Blockage

Right turn flare (veh)									
Median type None None Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked									
VC , conflicting volume	629	630	306	651	639	159	320	164	
$\mathrm{vC1}$, stage 1 conf vol									
$\mathrm{vC2}$, stage 2 conf vol									
vCu, unblocked vol	629	630	306	651	639	159	320	164	
$t \mathrm{C}$, single (s)	7.3	6.7	6.4	7.3	6.7	6.4	4.3	4.3	
$\mathrm{tC}, 2$ stage (s)									
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4	2.4	
p0 queue free \%	97	99	97	98	99	100	94	99	
cM capacity (veh/h)	347	349	691	325	344	838	1140	1307	

Direction, Lane \#	EB 1	WB 1	NB 1	SB 1
Volume Total	36	12	236	327
Volume Left	11	7	73	7
Volume Right	24	2	8	27
CSH	511	375	1140	1307
Volume to Capacity	0.07	0.03	0.06	0.01
Queue Length 95th (m)	1.7	0.7	1.6	0.1
Control Delay (s)	12.6	14.9	3.0	0.2
Lane LOS	B	B	A	A
Approach Delay (s)	12.6	14.9	3.0	0.2
Approach LOS	B	B		

Intersection Summary

Average Delay	2.3
Intersection Capacity Utilization	39.0%

ICU Level of Service A
Analysis Period (min)
15

	$\stackrel{ }{*}$			7			4	\dagger	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\$			\$			\$	
Volume (veh/h)	2	4	25	9	,	2	13	97	37	6	72	2
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	2	4	27	10	2	2	14	103	39	6	77	2
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
VC , conflicting volume	244	261	78	270	242	123	79			143		
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	244	261	78	270	242	123	79			143		
tC , single (s)	7.3	6.7	6.4	7.3	6.7	6.4	4.3			4.3		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.7	4.2	3.5	3.7	4.2	3.5	2.4			2.4		
p0 queue free \%	100	99	97	98	100	100	99			100		
cM capacity (veh/h)	665	607	938	621	622	884	1419			1342		
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	33	14	156	85								
Volume Left	2	10	14	6								
Volume Right	27	2	39	2								
cSH	855	651	1419	1342								
Volume to Capacity	0.04	0.02	0.01	0.00								
Queue Length 95th (m)	0.9	0.5	0.2	0.1								
Control Delay (s)	9.4	10.7	0.7	0.6								
Lane LOS	A	B	A	A								
Approach Delay (s)	9.4	10.7	0.7	0.6								
Approach LOS	A	B										
Intersection Summary												
Average Delay			2.2									
Intersection Capacity Utilization			21.7\%		CU Level	Service			A			
Analysis Period (min)			15									

Appendix E: HCS Roadway Analysis Reports

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 1 (12.52-20.35)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.7			1.8		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.923			0.912		
Grade adjustment factor, (note-1) fg	0.80			0.75		
Directional flow rate, (note-2) vi	279	pc / h		178		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	28.5	\%			
Adjustment for no-passing zones, fnp		50.4				
Percent time-spent-following, PTSFd		59.3	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.19	
Peak 15-min vehicle-miles of travel, VMT15	252	veh-mi
Peak-hour vehicle-miles of travel, VMT60	887	veh-mi
Peak 15-min total travel time, TT15	4.7	veh-h
Capacity from ATS, CdATS	1062	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1210	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1062	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 205.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.49
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 1 (12.52-20.35)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	12	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	4.9	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	4	\%
Grade: Length	-	mi	\% No-passing zones	69	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	107	veh/h		
Opposing direction vol	lume	181	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.912	0.923	
Grade adjustment factor, (note-1) fg	0.75	0.80	
Directional flow rate, (note-2) vi	178	pc/h	279
Base percent time-spent-following, (note-4)	BPTSFd	21.1	$\%$
Adjustment for no-passing zones, fnp		51.5	
Percent time-spent-following, PTSFd		41.2	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.12	
Peak 15-min vehicle-miles of travel, VMT15	149	veh-mi
Peak-hour vehicle-miles of travel, VMT60	524	veh-mi
Peak 15-min total travel time, TT15	2.7	veh-h
Capacity from ATS, CdATS	1212	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1317	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1212	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	4.9 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	54.3
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	41.2	B
Level of service, LOSd (from above)		

_Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 121.6
Effective width of outside lane, We 32.37
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 2.87
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 2 (20.35-29.46)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.868	0.854	
Grade adjustment factor, (note-1) fg	0.77	0.73	
Directional flow rate, (note-2) vi	236	pc/h	149
Base percent time-spent-following, (note-4)	BPTSFd	24.8	\%
Adjustment for no-passing zones, fnp		49.7	
Percent time-spent-following, PTSFd		55.3	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.17	
Peak 15-min vehicle-miles of travel, VMT15	225	veh-mi
Peak-hour vehicle-miles of travel, VMT60	792	veh-mi
Peak 15-min total travel time, TT15	4.1	veh-h
Capacity from ATS, CdATS	939	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1122	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	939	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	5.7	mi
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	$-\quad \mathrm{mi}$	
Average travel speed, ATSd (from above)	54.5	mi
Percent time-spent-following, PTSFd (from above)	55.3	
Level of service, LOSd (from above)	C	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 158.0
Effective width of outside lane, We 29.49
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 7.52
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 2 (20.35-29.46)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)		Opposing		
PCE for trucks, ET	1.9		1.8		
PCE for RVs, ER	1.0		1.0		
Heavy-vehicle adjustment factor, fHV	0.854		0.868		
Grade adjustment factor, (note-1) fg	0.73		0.77		
Directional flow rate, (note-2) vi	149	pc / h	236		pc / h
Base percent time-spent-following, (not	Ee-4) BPTSFd	d 17.0	\%		
Adjustment for no-passing zones, fnp		47.1			
Percent time-spent-following, PTSFd		35.2	\%		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.11	
Peak 15-min vehicle-miles of travel, VMT15	133	veh-mi
Peak-hour vehicle-miles of travel, VMT60	467	veh-mi
Peak 15-min total travel time, TT15	2.4	veh-h
Capacity from ATS, CdATS	1079	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1230	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1079	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 93.2
Effective width of outside lane, We 34.62
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.61
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 3 (29.46-32.86)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.87	
Shoulder width	6.0	ft	\% Trucks and buses	22	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	2.1	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	37	\%
Up/down	-	\%	Access point density	3	/mi
Analysis direction vol	lume	128	veh/h		
Opposing direction vol	lume	76	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.850	0.835	
Grade adjustment factor, (note-1) fg	0.76	0.73	
Directional flow rate, (note-2) vi	228	pc/h	143
Base percent time-spent-following, (note-4)	BPTSFd	24.1	$\%$
Adjustment for no-passing zones, fnp		41.3	
Percent time-spent-following, PTSFd	49.5	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.16	
Peak 15-min vehicle-miles of travel, VMT15	77	$\mathrm{veh}-\mathrm{mi}$
Peak-hour vehicle-miles of travel, VMT60	269	$\mathrm{veh}-\mathrm{mi}$
Peak 15-min total travel time, TT15	1.4	$\mathrm{veh}-\mathrm{h}$
Capacity from ATS, CdATS	895	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1099	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	895	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 147.1
Effective width of outside lane, We 30.48
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.06
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 3 (29.46-32.86)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.11	
Peak 15-min vehicle-miles of travel, VMT15	46	veh-mi
Peak-hour vehicle-miles of travel, VMT60	160	veh-mi
Peak 15-min total travel time, TT15	0.8	veh-h
Capacity from ATS, CdATS	1035	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1193	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1035	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 87.4
Effective width of outside lane, We 35.16
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 7.25
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 26 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 4 (32.86-36.28)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.8	1.9		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.850	0.835		
Grade adjustment factor, (note-1) fg	0.77	0.73		
Directional flow rate, (note-2) vi	237	pc/h	151	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	24.9	$\%$	
Adjustment for no-passing zones, fnp		48.4		
Percent time-spent-following, PTSFd		54.5	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.17	
Peak 15-min vehicle-miles of travel, VMT15	82	veh-mi
Peak-hour vehicle-miles of travel, VMT60	277	veh-mi
Peak 15-min total travel time, TT15	1.5	veh-h
Capacity from ATS, CdATS	908	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1113	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	908	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	2.1	mi
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	$-\quad \mathrm{mi}$	
Average travel speed, ATSd (from above)	54.9	mi
Percent time-spent-following, PTSFd (from above)	54.5	
Level of service, LOSd (from above)	C	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 155.3
Effective width of outside lane, We 30.12
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.19
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 26 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 4 (32.86-36.28)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.11	
Peak 15-min vehicle-miles of travel, VMT15	48	veh-mi
Peak-hour vehicle-miles of travel, VMT60	164	veh-mi
Peak 15-min total travel time, TT15	0.9	veh-h
Capacity from ATS, CdATS	1049	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1208	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1049	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 91.8
Effective width of outside lane, We 34.98
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 7.34
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 5 (36.28-41.52)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.822	0.805	
Grade adjustment factor, (note-1) fg	0.77	0.73	
Directional flow rate, (note-2) vi	246	pc/h	157
Base percent time-spent-following, (note-4)	BPTSFd	25.7	$\%$
Adjustment for no-passing zones, fnp		37.0	
Percent time-spent-following, PTSFd	48.3	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.18	
Peak 15-min vehicle-miles of travel, VMT15	128	$\mathrm{veh}-\mathrm{mi}$
Peak-hour vehicle-miles of travel, VMT60	452	$\mathrm{veh}-\mathrm{mi}$
Peak 15-min total travel time, TT15	2.3	$\mathrm{veh}-\mathrm{h}$
Capacity from ATS, CdATS	871	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1076	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	871	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	3.3 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	55.3 mi
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	48.3	
Level of service, LOSd (from above)	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 155.7
Effective width of outside lane, We 29.67
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.85
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 5 (36.28-41.52)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.12	
Peak 15-min vehicle-miles of travel, VMT15	76	veh-mi
Peak-hour vehicle-miles of travel, VMT60	267	veh-mi
Peak 15-min total travel time, TT15	1.4	veh-h
Capacity from ATS, CdATS	1014	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1172	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1014	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	3.3 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	56.3 mi
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	33.2	A
Level of service, LOSd (from above)		

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 92.0
Effective width of outside lane, We 34.71
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.96
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	AM Peak Hr	
Highway	97	
From/To	NB - Segment 6 (41.52-43.89)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	27	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	54	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	137	veh/h		
Opposing direction vol	lume	81	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.822	0.805	
Grade adjustment factor, (note-1) fg	0.76	0.73	
Directional flow rate, (note-2) vi	238	pc/h	150
Base percent time-spent-following, (note-4)	BPTSFd	25.0	$\%$
Adjustment for no-passing zones, fnp		48.9	
Percent time-spent-following, PTSFd	55.0	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.17	
Peak 15-min vehicle-miles of travel, VMT15	56	veh-mi
Peak-hour vehicle-miles of travel, VMT60	206	veh-mi
Peak 15-min total travel time, TT15	1.0	veh-h
Capacity from ATS, CdATS	859	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1063	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	859	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.5	mi
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	54.7	mi / h
Percent time-spent-following, PTSFd (from above)	55.0	
Level of service, LOSd (from above)	C	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 148.9
Effective width of outside lane, We 29.67
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.83
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	AM Peak Hr	
Highway	97	
From/To	SB - Segment 6 (41.52-43.89)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.9			1.8		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.805			0.822		
Grade adjustment factor, (note-1) fg	0.73			0.76		
Directional flow rate, (note-2) vi	150	pc / h		238		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	18.1	\%			
Adjustment for no-passing zones, fnp		51.4				
Percent time-spent-following, PTSFd		38.0	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.11	
Peak 15-min vehicle-miles of travel, VMT15	33	veh-mi
Peak-hour vehicle-miles of travel, VMT60	122	veh-mi
Peak 15-min total travel time, TT15	0.6	veh-h
Capacity from ATS, CdATS	1001	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1172	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1001	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	1.5	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	34.5	mi / h
Percent time-spent-following, PTSFd (from above)	38.0	
Level of service, LOSd (from above)	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 88.0
Effective width of outside lane, We 34.71
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.94
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 7 (43.89-53.44)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.16	
Peak 15-min vehicle-miles of travel, VMT15	202	veh-mi
Peak-hour vehicle-miles of travel, VMT60	744	veh-mi
Peak 15-min total travel time, TT15	3.7	veh-h
Capacity from ATS, CdATS	822	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1056	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	822	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 134.8
Effective width of outside lane, We 30.84
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 13.19
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 7 (43.89-53.44)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.10	
Peak 15-min vehicle-miles of travel, VMT15	119	veh-mi
Peak-hour vehicle-miles of travel, VMT60	438	veh-mi
Peak 15-min total travel time, TT15	2.2	veh-h
Capacity from ATS, CdATS	959	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1151	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	959	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 79.3
Effective width of outside lane, We 35.43
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.40
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 8 (53.44-71.94)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.8	1.9		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.817	0.799		
Grade adjustment factor, (note-1) fg	0.74	0.73		
Directional flow rate, (note-2) vi	191	pc/h	117	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	20.7	$\%$	
Adjustment for no-passing zones, fnp		47.3		
Percent time-spent-following, PTSFd		50.0	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.14	
Peak 15-min vehicle-miles of travel, VMT15	334	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1230	veh-mi
Peak 15-min total travel time, TT15	6.0	veh-h
Capacity from ATS, CdATS	799	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1028	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	799	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 115.2
Effective width of outside lane, We 32.46
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.60
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 8 (53.44-71.94)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	28	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	11.6	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	49	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	63	veh/h		
Opposing direction vol	lume	106	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.09	
Peak 15-min vehicle-miles of travel, VMT15	199	veh-mi
Peak-hour vehicle-miles of travel, VMT60	731	veh-mi
Peak 15-min total travel time, TT15	3.6	veh-h
Capacity from ATS, CdATS	922	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1097	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	922	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 68.5
Effective width of outside lane, We 36.33
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.00
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
E-Mail:

Fax:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	MCElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 9 (71.94-87.9)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.12	
Peak 15-min vehicle-miles of travel, VMT15	221	veh-mi
Peak-hour vehicle-miles of travel, VMT60	850	veh-mi
Peak 15-min total travel time, TT15	3.9	veh-h
Capacity from ATS, CdATS	772	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	991	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	772	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	10.0	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	56.8
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	47.0	
Level of service, LOSd (from above)	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 88.5
Effective width of outside lane, We 34.35
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.84
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
E-Mail:

Fax:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	MCElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 9 (71.94-87.9)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.07	
Peak 15-min vehicle-miles of travel, VMT15	130	veh-mi
Peak-hour vehicle-miles of travel, VMT60	500	veh-mi
Peak 15-min total travel time, TT15	2.3	veh-h
Capacity from ATS, CdATS	850	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1069	$\mathrm{veh} / \mathrm{h}$
Directional capacity	850	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 52.1
Effective width of outside lane, We 37.50
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.43
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 25 / 2015$	
Analysis Time Period	AM Peak Hr	
Highway	97	
From/To	NB - Segment 10a (1183 0-21.1)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.12	
Peak 15-min vehicle-miles of travel, VMT15	307	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1082	veh-mi
Peak 15-min total travel time, TT15	5.4	veh-h
Capacity from ATS, CdATS	789	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1006	$\mathrm{veh} / \mathrm{h}$
Directional capacity	789	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 93.2
Effective width of outside lane, We 34.62
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.25
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 25 / 2015$	
Analysis Time Period	AM Peak Hr	
Highway	97	
From/To	SB - Segment 10a (1183 0-21.1)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.9			1.9		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.810			0. 810		
Grade adjustment factor, (note-1) fg	0.73			0.73		
Directional flow rate, (note-2) vi	92	pc / h		158		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	10.8	\%			
Adjustment for no-passing zones, fnp		50.4				
Percent time-spent-following, PTSFd		29.3	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.07	
Peak 15-min vehicle-miles of travel, VMT15	180	veh-mi
Peak-hour vehicle-miles of travel, VMT60	634	veh-mi
Peak 15-min total travel time, TT15	3.2	veh-h
Capacity from ATS, CdATS	880	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1084	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	880	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt		13.2 mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	5.5	mi / h	
Percent time-spent-following, PTSFd (from above)	29.3 A		
Level of service, LoSd (from above)	A		

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 54.5
Effective width of outside lane, We 37.68
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 8.88
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 10b (21.1-38.33)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.810	0.810	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	158	pc/h	92

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.12	
Peak 15-min vehicle-miles of travel, VMT15	252	veh-mi
Peak-hour vehicle-miles of travel, VMT60	886	veh-mi
Peak 15-min total travel time, TT15	4.4	veh-h
Capacity from ATS, CdATS	789	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1006	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	789	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	10.8	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	57.0	mi / h	
Percent time-spent-following, PTSFd (from above)	4.8 .8		
Level of service, LoSd (from above)	B		

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 93.2
Effective width of outside lane, We 34.62
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.25
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 10b (21.1-38.33)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.07	
Peak 15-min vehicle-miles of travel, VMT15	147	veh-mi
Peak-hour vehicle-miles of travel, VMT60	518	veh-mi
Peak 15-min total travel time, TT15	2.6	veh-h
Capacity from ATS, CdATS	880	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1084	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	880	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	10.8	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	56.0	mi / h
Percent time-spent-following, PTSFd (from above)	27.1	A

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 54.5
Effective width of outside lane, We 37.68
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 8.88
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 11 (38.33-52.6)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.828	0.810	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	175	pc/h	106
Base percent time-spent-following, (note-4)	BPTSFd	19.2	$\%$
Adjustment for no-passing zones, fnp		45.1	
Percent time-spent-following, PTSFd	47.3	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.13	
Peak 15-min vehicle-miles of travel, VMT15	235	veh-mi
Peak-hour vehicle-miles of travel, VMT60	828	veh-mi
Peak 15-min total travel time, TT15	4.2	veh-h
Capacity from ATS, CdATS	789	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1027	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	789	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	8.9 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad-\quad \mathrm{mi}$	
Length of passing lane including tapers, Lpl	mi	
Average travel speed, ATSd (from above)	56.6	mi / h
Percent time-spent-following, PTSFd (from above)	47.3	
Level of service, LOSd (from above)	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 105.7
Effective width of outside lane, We 33.63
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.66
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 11 (38.33-52.6)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.810	0.828	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	106	pc/h	175
Base percent time-spent-following, (note-4)	BPTSFd	12.3	$\%$
Adjustment for no-passing zones, fnp		47.0	
Percent time-spent-following, PTSFd		30.0	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.08	
Peak 15-min vehicle-miles of travel, VMT15	139	veh-mi
Peak-hour vehicle-miles of travel, VMT60	489	veh-mi
Peak 15-min total travel time, TT15	2.5	veh-h
Capacity from ATS, CdATS	910	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1098	$\mathrm{veh} / \mathrm{h}$
Directional capacity	910	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 62.5
Effective width of outside lane, We 37.05
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.18
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	MCElhanney
Date Performed	$2 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 12 (52.6-61.1)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.8	1.9		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.828	0.810		
Grade adjustment factor, (note-1) fg	0.74		0.73	
Directional flow rate, (note-2) vi	184	pc/h	111	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	20.0	$\%$	
Adjustment for no-passing zones, fnp		50.8		
Percent time-spent-following, PTSFd		51.7	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.14	
Peak 15-min vehicle-miles of travel, VMT15	149	veh-mi
Peak-hour vehicle-miles of travel, VMT60	525	veh-mi
Peak 15-min total travel time, TT15	2.7	veh-h
Capacity from ATS, CdATS	801	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1041	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	801	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 112.5
Effective width of outside lane, We 33.09
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.87
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	MCElhanney
Date Performed	$2 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 12 (52.6-61.1)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	26	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	5.3	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	62	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	58	veh/h		
Opposing direction vol	lume	99	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.810	0.828	
Grade adjustment factor, (note-1) fg	0.73	0.74	
Directional flow rate, (note-2) vi	111	pc/h	184
Base percent time-spent-following, (note-4)	BPTSFd	12.8	\%
Adjustment for no-passing zones, fnp		50.8	
Percent time-spent-following, PTSFd		31.9	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.08	
Peak 15-min vehicle-miles of travel, VMT15	87	veh-mi
Peak-hour vehicle-miles of travel, VMT60	307	veh-mi
Peak 15-min total travel time, TT15	1.6	veh-h
Capacity from ATS, CdATS	922	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1112	$\mathrm{veh} / \mathrm{h}$
Directional capacity	922	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 65.9
Effective width of outside lane, We 36.78
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.31
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 13 (61.1-63.93)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.850	0.835	
Grade adjustment factor, (note-1) fg	0.76	0.73	
Directional flow rate, (note-2) vi	214	pc/h	134
Base percent time-spent-following, (note-4)	BPTSFd	22.8	\%
Adjustment for no-passing zones, fnp		49.8	
Percent time-spent-following, PTSFd		53.4	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.15	
Peak 15-min vehicle-miles of travel, VMT15	62	veh-mi
Peak-hour vehicle-miles of travel, VMT60	189	veh-mi
Peak 15-min total travel time, TT15	1.1	veh-h
Capacity from ATS, CdATS	881	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1084	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	881	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 138.2
Effective width of outside lane, We 32.55
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 8.37
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 13 (61.1-63.93)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.76	
Shoulder width	6.0	ft	\% Trucks and buses	22	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	1.8	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	57	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	62	veh/h		
Opposing direction vol	lume	105	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.10	
Peak 15-min vehicle-miles of travel, VMT15	37	veh-mi
Peak-hour vehicle-miles of travel, VMT60	112	veh-mi
Peak 15-min total travel time, TT15	0.7	veh-h
Capacity from ATS, CdATS	1005	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1193	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1005	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 81.6
Effective width of outside lane, We 36.42
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 6.77
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 14 (63.93-70.68)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing		
PCE for trucks, ET	1.8		1.9		
PCE for RVs, ER	1.0		1.0		
Heavy-vehicle adjustment factor, fHV	0.862		0.847		
Grade adjustment factor, (note-1) fg	0.74		0.73		
Directional flow rate, (note-2) vi	182	pc / h	111		pc / h
Base percent time-spent-following, (note-4)	e-4) BPTSFd	19.9	\%		
Adjustment for no-passing zones, fnp		46.1			
Percent time-spent-following, PTSFd		48.5	\%		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.13	
Peak 15-min vehicle-miles of travel, VMT15	122	veh-mi
Peak-hour vehicle-miles of travel, VMT60	449	veh-mi
Peak 15-min total travel time, TT15	2.2	veh-h
Capacity from ATS, CdATS	862	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1084	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	862	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	4.2	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	56.3 mi
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	48.5	
Level of service, LOSd (from above)	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 116.3
Effective width of outside lane, We 32.37
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 7.08
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 14 (63.93-70.68)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.9	1.8		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.847	0.862		
Grade adjustment factor, (note-1) fg	0.73	0.74		
Directional flow rate, (note-2) vi	111	pc/h	182	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	12.8	$\%$	
Adjustment for no-passing zones, fnp		43.8		
Percent time-spent-following, PTSFd		29.4	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.08	
Peak 15-min vehicle-miles of travel, VMT15	72	veh-mi
Peak-hour vehicle-miles of travel, VMT60	265	veh-mi
Peak 15-min total travel time, TT15	1.3	veh-h
Capacity from ATS, CdATS	982	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1158	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	982	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 68.5
Effective width of outside lane, We 36.33
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.45
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 15 (70.68-94.27)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	22	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	14.7	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	38	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	35	veh/h		
Opposing direction vol	lume	21	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.835	0.835	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	62	pc/h	37
Base percent time-spent-following, (note-4)	BPTSFd	7.5	$\%$
Adjustment for no-passing zones, fnp		39.2	
Percent time-spent-following, PTSFd	32.0	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.05	
Peak 15-min vehicle-miles of travel, VMT15	140	veh-mi
Peak-hour vehicle-miles of travel, VMT60	514	veh-mi
Peak 15-min total travel time, TT15	2.4	veh-h
Capacity from ATS, CdATS	829	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1036	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	829	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt		14.7	mi
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	59.2	mi / h	
Percent time-spent-following, PTSFd (from above)	32.0	A	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 38.0
Effective width of outside lane, We 38.85
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.47
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 15 (70.68-94.27)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.03	
Peak 15-min vehicle-miles of travel, VMT15	84	veh-mi
Peak-hour vehicle-miles of travel, VMT60	309	veh-mi
Peak 15-min total travel time, TT15	1.4	veh-h
Capacity from ATS, CdATS	829	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1036	$\mathrm{veh} / \mathrm{h}$
Directional capacity	829	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	14.7	mi	
Length of two-lane highway upstream of the passing lane,	Lu	1.6	mi
Length of passing lane including tapers, Lpl	2.9	mi	
Average travel speed, ATSd (from above)	$60.2 \mathrm{mi} / \mathrm{h}$		
Percent time-spent-following, PTSFd (from above)	9.7		
Level of service, LoSd (from above)	A		

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 13.00 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -2.80 mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl \%
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15
veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 22.8
Effective width of outside lane, We 40.11
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.72
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 16 (94.27-96.11)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	22	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	1.2	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	8	\%
Up/down	-	\%	Access point density	0	/mi
Analysis direction vol	lume	34	veh/h		
Opposing direction vol	lume	20	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.835	0.835	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	61	pc/h	36
Base percent time-spent-following, (note-4)	BPTSFd	7.4	\%
Adjustment for no-passing zones, fnp		18.3	
Percent time-spent-following, PTSFd	18.9	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.04	
Peak 15-min vehicle-miles of travel, VMT15	11	veh-mi
Peak-hour vehicle-miles of travel, VMT60	41	veh-mi
Peak 15-min total travel time, TT15	0.2	veh-h
Capacity from ATS, CdATS	829	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1036	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	829	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.2	mi	
Length of two-lane highway upstream of the passing lane,	Lu	0.1	mi
Length of passing lane including tapers, Lpl	1.1	mi	
Average travel speed, ATSd (from above)	60.7	mi / h	
Percent time-spent-following, PTSFd (from above)	18.9	A	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld

Adj. | factor for the effect of passing lane |
| :--- |

on average speed, fpl
Average travel speed including passing lane, ATSpl

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 13.00 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -13.00 mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl \%
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15
veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 37.0
Effective width of outside lane, We 38.94
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.42
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 16 (94.27-96.11)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.03	
Peak 15-min vehicle-miles of travel, VMT15	7	veh-mi
Peak-hour vehicle-miles of travel, VMT60	24	veh-mi
Peak 15-min total travel time, TT15	0.1	veh-h
Capacity from ATS, CdATS	829	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1036	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	829	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt		1.2	mi
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	57.8	mi / h	
Percent time-spent-following, PTSFd (from above)	23.9	A	

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 21.7
Effective width of outside lane, We 40.20
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.66
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 17 (96.11-116.3)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.81	
Shoulder width	6.0	ft	\% Trucks and buses	17	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	12.6	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	45	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	37	veh/h		
Opposing direction vol	lume	22	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.867	0.867	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	72	pc/h	43
Base percent time-spent-following, (note-4)	BPTSFd	8.6	$\%$
Adjustment for no-passing zones, fnp		42.7	
Percent time-spent-following, PTSFd		35.3	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.05	
Peak 15-min vehicle-miles of travel, VMT15	144	veh-mi
Peak-hour vehicle-miles of travel, VMT60	466	veh-mi
Peak 15-min total travel time, TT15	2.4	veh-h
Capacity from ATS, CdATS	884	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1076	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	884	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	12.6 mi		
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	3.1	mi / h	
Percent time-spent-following, PTSFd (from above)	35.3	B	

_Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 45.7
Effective width of outside lane, We 38.67
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 2.63
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 17 (96.11-116.3)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.81	
Shoulder width	6.0	ft	\% Trucks and buses	17	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	12.6	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	44	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	22	veh/h		
Opposing direction vol	lume	37	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.03	
Peak 15-min vehicle-miles of travel, VMT15	86	veh-mi
Peak-hour vehicle-miles of travel, VMT60	277	veh-mi
Peak 15-min total travel time, TT15	1.5	veh-h
Capacity from ATS, CdATS	884	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1076	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	884	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt		12.6 mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	59.1	mi / h	
Percent time-spent-following, PTSFd (from above)	21.1	A	

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 27.2
Effective width of outside lane, We 40.02
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 1.83
Bicycle LOS B
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	NB - Segment 1 (12.52-20.35)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.97	
Shoulder width	6.0	ft	\% Trucks and buses	21	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	4.9	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	59	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	124	veh/h		
Opposing direction vol	lume	141	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.856	0.856	
Grade adjustment factor, (note-1) fg	0.75	0.76	
Directional flow rate, (note-2) vi	199	pc/h	223
Base percent time-spent-following, (note-4)	BPTSFd	22.2	$\%$
Adjustment for no-passing zones, fnp		57.9	
Percent time-spent-following, PTSFd	49.5	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.14	
Peak 15-min vehicle-miles of travel, VMT15	157	veh-mi
Peak-hour vehicle-miles of travel, VMT60	608	veh-mi
Peak 15-min total travel time, TT15	2.9	veh-h
Capacity from ATS, CdATS	1029	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1201	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1029	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	4.9 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	54.2
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	49.5	B
Level of service, LOSd (from above)		

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 127.8
Effective width of outside lane, We 30.84
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 8.23
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	SB - Segment 1 (12.52-20.35)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.8			1.8		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.856			0. 856		
Grade adjustment factor, (note-1) fg	0.76			0.75		
Directional flow rate, (note-2) vi	223	pc / h		199		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	23.6	\%			
Adjustment for no-passing zones, fnp		59.2				
Percent time-spent-following, PTSFd		54.9	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.16	
Peak 15-min vehicle-miles of travel, VMT15	178	veh-mi
Peak-hour vehicle-miles of travel, VMT60	691	veh-mi
Peak 15-min total travel time, TT15	3.3	veh-h
Capacity from ATS, CdATS	998	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1164	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	998	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 145.4
Effective width of outside lane, We 29.31
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 8.76
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	NB - Segment 2 (20.35-29.46)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.97	
Shoulder width	6.0	ft	\% Trucks and buses	29	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	5.7	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	56	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vo	lume	96	veh/h		
Opposing direction vo	lume	108	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.793	0.812	
Grade adjustment factor, (note-1) fg	0.73	0.74	
Directional flow rate, (note-2) vi	171	pc/h	185
Base percent time-spent-following, (note-4)	BPTSFd	18.8	$\%$
Adjustment for no-passing zones, fnp		55.6	
Percent time-spent-following, PTSFd		45.5	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.13	
Peak 15-min vehicle-miles of travel, VMT15	141	$\mathrm{veh}-\mathrm{mi}$
Peak-hour vehicle-miles of travel, VMT60	547	$\mathrm{veh}-\mathrm{mi}$
Peak 15-min total travel time, TT15	2.6	$\mathrm{veh}-\mathrm{h}$
Capacity from ATS, CdATS	894	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1090	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	894	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 99.0
Effective width of outside lane, We 33.36
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 13.01
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	SB - Segment 2 (20.35-29.46)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.97	
Shoulder width	6.0	ft	\% Trucks and buses	29	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	5.7	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	50	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	108	veh/h		
Opposing direction vol	lume	96	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.8	1.9		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.812	0.793		
Grade adjustment factor, (note-1) fg	0.74	0.73		
Directional flow rate, (note-2) vi	185	pc/h	171	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	20.1	$\%$	
Adjustment for no-passing zones, fnp		53.3		
Percent time-spent-following, PTSFd		47.8	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.14	
Peak 15-min vehicle-miles of travel, VMT15	159	veh-mi
Peak-hour vehicle-miles of travel, VMT60	616	veh-mi
Peak 15-min total travel time, TT15	2.9	veh-h
Capacity from ATS, CdATS	882	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1076	$\mathrm{veh} / \mathrm{h}$
Directional capacity	882	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 111.3
Effective width of outside lane, We 32.28
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 13.42
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	NB - Segment 3 (29.46-32.86)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

Direction Ana	Analysis(d)		Opposing (o)	
PCE for trucks, ET	2.7		2.7	
PCE for RVs, ER	1.1		1.1	
Heavy-vehicle adj. factor, (note-5) fHV	0.6		0.634	
Grade adj. factor, (note-1) fg	0.6		0.67	
Directional flow rate, (note-2) vi	216	pc / h	245	pc / h
Free-Flow Speed from Field Measurement:				
Field measured speed, (note-3) S FM		-	mi/h	
Observed total demand, (note-3) V		-	veh/h	
Estimated Free-Flow Speed:				
Base free-flow speed, (note-3) BFFS		62.5	mi/h	
Adj. for lane and shoulder width, (note-3)	fLS	0.0	mi/h	
Adj. for access point density, (note-3) fA		0.8	mi/h	
Free-flow speed, FFSd		61.8	mi/h	
Adjustment for no-passing zones, fnp		2.7	mi/h	
Average travel speed, ATSd		55.5	mi/h	
Percent Free Flow Speed, PFFS		89.9	\%	

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.9	1.8		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.766	0.786		
Grade adjustment factor, (note-1) fg	0.73	0.73		
Directional flow rate, (note-2) vi	164	pc/h	182	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	18.1	$\%$	
Adjustment for no-passing zones, fnp		47.1		
Percent time-spent-following, PTSFd		40.4	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.13	
Peak 15-min vehicle-miles of travel, VMT15	48	veh-mi
Peak-hour vehicle-miles of travel, VMT60	185	veh-mi
Peak 15-min total travel time, TT15	0.9	veh-h
Capacity from ATS, CdATS	853	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1056	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	853	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 91.7
Effective width of outside lane, We 34.08
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 16.98
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	SB - Segment 3 (29.46-32.86)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.786	0.766	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	182	pc/h	164
Base percent time-spent-following, (note-4)	BPTSFd	19.9	$\%$
Adjustment for no-passing zones, fnp		53.1	
Percent time-spent-following, PTSFd		47.8	\%

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.14	
Peak 15-min vehicle-miles of travel, VMT15	55	veh-mi
Peak-hour vehicle-miles of travel, VMT60	210	veh-mi
Peak 15-min total travel time, TT15	1.0	veh-h
Capacity from ATS, CdATS	830	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1029	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	830	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	2.1	mi
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	$-\quad \mathrm{mi}$	
Average travel speed, ATSd (from above)	54.6	mi
Percent time-spent-following, PTSFd (from above)	47.8	
Level of service, LOSd (from above)	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 104.2
Effective width of outside lane, We 33.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 17.40
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 26 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	NB - Segment 4 (32.86-36.28)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.771	0.791	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	168	pc/h	184
Base percent time-spent-following, (note-4)	BPTSFd	18.5	$\%$
Adjustment for no-passing zones, fnp		54.4	
Percent time-spent-following, PTSFd		44.5	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.13	
Peak 15-min vehicle-miles of travel, VMT15	50	veh-mi
Peak-hour vehicle-miles of travel, VMT60	191	veh-mi
Peak 15-min total travel time, TT15	0.9	veh-h
Capacity from ATS, CdATS	860	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1063	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	860	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 94.8
Effective width of outside lane, We 33.81
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 16.20
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 26 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	SB - Segment 4 (32.86-36.28)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.791	0.771	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	184	pc/h	168
Base percent time-spent-following, (note-4)	BPTSFd	20.0	$\%$
Adjustment for no-passing zones, fnp		50.2	
Percent time-spent-following, PTSFd	46.2	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.15	
Peak 15-min vehicle-miles of travel, VMT15	56	veh-mi
Peak-hour vehicle-miles of travel, VMT60	214	veh-mi
Peak 15-min total travel time, TT15	1.0	veh-h
Capacity from ATS, CdATS	837	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1049	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	837	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 106.3
Effective width of outside lane, We 32.82
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 16.58
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	NB - Segment 5 (36.28-41.52)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.16	
Peak 15-min vehicle-miles of travel, VMT15	96	veh-mi
Peak-hour vehicle-miles of travel, VMT60	310	veh-mi
Peak 15-min total travel time, TT15	1.7	veh-h
Capacity from ATS, CdATS	907	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1094	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	907	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 116.0
Effective width of outside lane, We 33.54
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 20.07
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	Mid-Day Peak Hr	
Highway	97	
From/To	SB - Segment 5 (36.28-41.52)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.772	0.772	
Grade adjustment factor, (note-1) fg	0.75	0.74	
Directional flow rate, (note-2) vi	228	pc/h	203
Base percent time-spent-following, (note-4)	BPTSFd	24.0	$\%$
Adjustment for no-passing zones, fnp		43.1	
Percent time-spent-following, PTSFd	46.8	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.18	
Peak 15-min vehicle-miles of travel, VMT15	109	veh-mi
Peak-hour vehicle-miles of travel, VMT60	353	veh-mi
Peak 15-min total travel time, TT15	2.0	veh-h
Capacity from ATS, CdATS	861	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1080	$\mathrm{veh} / \mathrm{h}$
Directional capacity	861	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 132.1
Effective width of outside lane, We 32.37
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 20.52
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	NB - Segment 6 (41.52-43.89)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Highway class Class	1		Peak hour factor, PHF	0.74	
Shoulder width	6.0	ft	\% Trucks and buses	37	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	1.5	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	54	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	94	veh/h		
Opposing direction vol	lume	107	veh/h		

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing		(0)	
PCE for trucks, ET	1.8			1.8		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.772			0.772		
Grade adjustment factor, (note-1) fg	0.75			0.76		
Directional flow rate, (note-2) vi	220	pc / h		247		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	24.8	\%			
Adjustment for no-passing zones, fnp		54.6				
Percent time-spent-following, PTSFd		50.5	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.17	
Peak 15-min vehicle-miles of travel, VMT15	48	veh-mi
Peak-hour vehicle-miles of travel, VMT60	141	veh-mi
Peak 15-min total travel time, TT15	0.9	veh-h
Capacity from ATS, CdATS	931	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1107	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	931	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 127.0
Effective width of outside lane, We 33.54
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 20.12
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	SB - Segment 6 (41.52-43.89)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.19	
Peak 15-min vehicle-miles of travel, VMT15	54	veh-mi
Peak-hour vehicle-miles of travel, VMT60	161	veh-mi
Peak 15-min total travel time, TT15	1.0	veh-h
Capacity from ATS, CdATS	884	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1094	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	884	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.5 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	53.6
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	56.7	
Level of service, LOSd (from above)	C	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 144.6
Effective width of outside lane, We 32.37
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 20.57
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	NB - Segment 7 (43.89-53.44)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.14	
Peak 15-min vehicle-miles of travel, VMT15	145	veh-mi
Peak-hour vehicle-miles of travel, VMT60	510	veh-mi
Peak 15-min total travel time, TT15	2.6	veh-h
Capacity from ATS, CdATS	849	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1036	$\mathrm{veh} / \mathrm{h}$
Directional capacity	849	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	6.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	54.9
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	47.5	
Level of service, LOSd (from above)	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 96.6
Effective width of outside lane, We 34.35
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 19.71
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	SB - Segment 7 (43.89-53.44)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction	Analysis(d)		Opposing		
PCE for trucks, ET	1.8		1.9		
PCE for RVs, ER	1.0		1.0		
Heavy-vehicle adjustment factor, fHV	0.772		0.750		
Grade adjustment factor, (note-1) fg	0.74		0.73		
Directional flow rate, (note-2) vi	191	pc / h	176		pc / h
Base percent time-spent-following, (n	Ee-4) BPTSFd	20.7	\%		
Adjustment for no-passing zones, fnp		59.1			
Percent time-spent-following, PTSFd		51.5	\%		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.15	
Peak 15-min vehicle-miles of travel, VMT15	164	veh-mi
Peak-hour vehicle-miles of travel, VMT60	576	veh-mi
Peak 15-min total travel time, TT15	3.0	veh-h
Capacity from ATS, CdATS	818	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1023	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	818	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	6.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad$ mi	
Length of passing lane including tapers, Lpl	$-\quad 54.7$	mi
Average travel speed, ATSd (from above)	51.5	
Percent time-spent-following, PTSFd (from above)	C	
Level of service, LOSd (from above)		

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 109.1
Effective width of outside lane, We 33.36
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 20.10
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 25 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	NB - Segment 8 (53.44-71.94)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.9	1.9		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.750	0.750		
Grade adjustment factor, (note-1) fg	0.73	0.73		
Directional flow rate, (note-2) vi	151	pc/h	172	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	16.9	$\%$	
Adjustment for no-passing zones, fnp		52.5		
Percent time-spent-following, PTSFd		41.4	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.12	
Peak 15-min vehicle-miles of travel, VMT15	241	veh-mi
Peak-hour vehicle-miles of travel, VMT60	847	veh-mi
Peak 15-min total travel time, TT15	4.4	veh-h
Capacity from ATS, CdATS	818	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1023	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	818	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 83.0
Effective width of outside lane, We 35.43
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 19.25
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 25 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	SB - Segment 8 (53.44-71.94)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.750	0.750	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	172	pc/h	151
Base percent time-spent-following, (note-4)	BPTSFd	18.9	$\%$
Adjustment for no-passing zones, fnp		51.3	
Percent time-spent-following, PTSFd	46.2	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.14	
Peak 15-min vehicle-miles of travel, VMT15	274	veh-mi
Peak-hour vehicle-miles of travel, VMT60	963	veh-mi
Peak 15-min total travel time, TT15	5.0	veh-h
Capacity from ATS, CdATS	776	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1010	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	776	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 94.3
Effective width of outside lane, We 34.53
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 19.63
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	Mid-Day Peak Hr
Highway	97
From/To	NB - Segment 9 (71.94-87.9)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.755	0.755	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	125	pc/h	143
Base percent time-spent-following, (note-4)	BPTSFd	14.2	$\%$
Adjustment for no-passing zones, fnp		50.8	
Percent time-spent-following, PTSFd		37.9	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.10	
Peak 15-min vehicle-miles of travel, VMT15	173	veh-mi
Peak-hour vehicle-miles of travel, VMT60	580	veh-mi
Peak 15-min total travel time, TT15	3.1	veh-h
Capacity from ATS, CdATS	772	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1003	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	772	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	10.0 mi		
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	$5.6 \mathrm{mi} / \mathrm{h}$		
Percent time-spent-following, PTSFd (from above)	37.9	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 69.0
Effective width of outside lane, We 36.78
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 17.72
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	SB - Segment 9 (71.94-87.9)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.84	
Shoulder width	6.0	ft	\% Trucks and buses	36	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	10.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	56	\%
Up/down	-	\%	Access point density	3	/mi
Analysis direction vol	lume	66	veh/h		
Opposing direction vol	lume	58	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.9	1.9		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.755	0.755		
Grade adjustment factor, (note-1) fg	0.73	0.73		
Directional flow rate, (note-2) vi	143	pc/h	125	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	16.1	$\%$	
Adjustment for no-passing zones, fnp		51.5		
Percent time-spent-following, PTSFd		43.6	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.11	
Peak 15-min vehicle-miles of travel, VMT15	196	veh-mi
Peak-hour vehicle-miles of travel, VMT60	660	veh-mi
Peak 15-min total travel time, TT15	3.5	veh-h
Capacity from ATS, CdATS	745	veh/h
Capacity from PTSF, CdPTSF	990	veh/h
Directional Capacity	745	veh/h

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 78.6
Effective width of outside lane, We 36.06
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 18.05
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 25 / 2015$	
Analysis Time Period	Mid-Day Peak Hr	
Highway	97	
From/To	NB - Segment 10a (1183 0-21.1)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	27	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	13.2	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	60	\%
Up/down	-	\%	Access point density	3	/mi
Analysis direction vol	lume	56	veh/h		
Opposing direction vol	lume	63	veh/h		

Average Travel Speed

\qquad

Direction Analysis(d)			Opposing (o)	
PCE for trucks, ET	1.9		1.9	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	0.805		0.805	
Grade adjustment factor, (note-1) fg	0.73		0.73	
Directional flow rate, (note-2) vi	108	pc / h	122	pc / h
Base percent time-spent-following, (note-4)	te-4) BPTSFd	d 12.5	\%	
Adjustment for no-passing zones, fnp		51.3		
Percent time-spent-following, PTSFd		36.6	\%	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.08	
Peak 15-min vehicle-miles of travel, VMT15	210	veh-mi
Peak-hour vehicle-miles of travel, VMT60	739	veh-mi
Peak 15-min total travel time, TT15	3.7	veh-h
Capacity from ATS, CdATS	819	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1049	$\mathrm{veh} / \mathrm{h}$
Directional capacity	819	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 63.6
Effective width of outside lane, We 36.96
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.97
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 25 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	SB - Segment 10a (1183 0-21.1)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	27	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	13.2	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	60	\%
Up/down	-	\%	Access point density	3	/mi
Analysis direction vol	lume	63	veh/h		
Opposing direction vol	lume	56	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.9	1.9		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.805	0.805		
Grade adjustment factor, (note-1) fg	0.73		0.73	
Directional flow rate, (note-2) vi	122	pc/h	108	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	13.9	$\%$	
Adjustment for no-passing zones, fnp		51.3		
Percent time-spent-following, PTSFd		41.1	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.09	
Peak 15-min vehicle-miles of travel, VMT15	236	veh-mi
Peak-hour vehicle-miles of travel, VMT60	832	veh-mi
Peak 15-min total travel time, TT15	4.2	veh-h
Capacity from ATS, CdATS	792	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1035	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	792	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	13.2 mi		
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	5.4	mi / h	
Percent time-spent-following, PTSFd (from above)	41.1		
Level of service, LoSd (from above)	B		

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 71.6
Effective width of outside lane, We 36.33
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.26
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	Mid-Day Peak Hr
Highway	97
From/To	NB - Segment 10b (21.1-38.33)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction Analysis(d)			Opposing (o)	
PCE for trucks, ET	1.9		1.9	
PCE for RVs, ER	1.0		1.0	
Heavy-vehicle adjustment factor, fHV	0.805		0.805	
Grade adjustment factor, (note-1) fg	0.73		0.73	
Directional flow rate, (note-2) vi	108	pc / h	122	pc / h
Base percent time-spent-following, (note-4)	te-4) BPTSFd	12.5	\%	
Adjustment for no-passing zones, fnp		45.8		
Percent time-spent-following, PTSFd		34.0	\%	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.08	
Peak 15-min vehicle-miles of travel, VMT15	172	veh-mi
Peak-hour vehicle-miles of travel, VMT60	605	veh-mi
Peak 15-min total travel time, TT15	3.0	veh-h
Capacity from ATS, CdATS	819	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1049	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	819	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	10.8	mi
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	56.8	mi / m
Percent time-spent-following, PTSFd (from above)	34.0	A
Level of service, LoSd (from above)		

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 63.6
Effective width of outside lane, We 36.96
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.97
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	SB - Segment 10b (21.1-38.33)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	27	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	10.8	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	47	\%
Up/down	-	\%	Access point density	3	/mi
Analysis direction vol	lume	63	veh/h		
Opposing direction vol	lume	56	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.805	0.805	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	122	pc/h	108
Base percent time-spent-following, (note-4)	BPTSFd	13.9	$\%$
Adjustment for no-passing zones, fnp		46.6	
Percent time-spent-following, PTSFd	38.6	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.09	
Peak 15-min vehicle-miles of travel, VMT15	193	veh-mi
Peak-hour vehicle-miles of travel, VMT60	680	veh-mi
Peak 15-min total travel time, TT15	3.4	veh-h
Capacity from ATS, CdATS	792	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1035	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	792	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	10.8	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	56.9	mi / h	
Percent time-spent-following, PTSFd (from above)	38.6	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 71.6
Effective width of outside lane, We 36.33
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.26
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	NB - Segment 11 (38.33-52.6)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.9	1.9		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.805	0.805		
Grade adjustment factor, (note-1) fg	0.73	0.73		
Directional flow rate, (note-2) vi	124	pc/h	141	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	14.1	$\%$	
Adjustment for no-passing zones, fnp		48.4		
Percent time-spent-following, PTSFd		36.7	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.09	
Peak 15-min vehicle-miles of travel, VMT15	162	veh-mi
Peak-hour vehicle-miles of travel, VMT60	570	veh-mi
Peak 15-min total travel time, TT15	2.9	veh-h
Capacity from ATS, CdATS	847	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1063	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	847	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	8.9 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad-\quad \mathrm{mi}$	
Length of passing lane including tapers, Lpl	mi	
Average travel speed, ATSd (from above)	56.2	mi / h
Percent time-spent-following, PTSFd (from above)	36.7	
Level of service, LOSd (from above)	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 72.7
Effective width of outside lane, We 36.24
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.30
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	Mid-Day Peak Hr
Highway	97
From/To	SB - Segment 11 (38.33-52.6)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.805	0.805	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	141	pc/h	124
Base percent time-spent-following, (note-4)	BPTSFd	15.9	$\%$
Adjustment for no-passing zones, fnp		49.9	
Percent time-spent-following, PTSFd		42.5	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.11	
Peak 15-min vehicle-miles of travel, VMT15	185	veh-mi
Peak-hour vehicle-miles of travel, VMT60	650	veh-mi
Peak 15-min total travel time, TT15	3.3	veh-h
Capacity from ATS, CdATS	819	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1049	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	819	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	8.9 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad-\quad \mathrm{mi}$	
Length of passing lane including tapers, Lpl	mi	
Average travel speed, ATSd (from above)	56.4	mi / h
Percent time-spent-following, PTSFd (from above)	42.5	
Level of service, LOSd (from above)	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 83.0
Effective width of outside lane, We 35.43
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.66
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$2 / 27 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	NB - Segment 12 (52.6-61.1)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	27	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	5.3	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	62	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	68	veh/h		
Opposing direction vol	lume	77	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.805	0.805	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	132	pc/h	149
Base percent time-spent-following, (note-4)	BPTSFd	15.0	$\%$
Adjustment for no-passing zones, fnp		53.8	
Percent time-spent-following, PTSFd	40.3	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.10	
Peak 15-min vehicle-miles of travel, VMT15	102	veh-mi
Peak-hour vehicle-miles of travel, VMT60	360	veh-mi
Peak 15-min total travel time, TT15	1.8	veh-h
Capacity from ATS, CdATS	859	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1063	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	859	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	5.3 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad$ mi	
Length of passing lane including tapers, Lpl	$-\quad 55.8$	mi
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	40.3	
Level of service, LOSd (from above)	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 77.3
Effective width of outside lane, We 35.88
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.46
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$2 / 27 / 2015$
Analysis Time Period	Mid-Day Peak Hr
Highway	97
From/To	SB - Segment 12 (52.6-61.1)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)		Opposing		
PCE for trucks, ET	1.9		1.9		
PCE for RVs, ER	1.0		1.0		
Heavy-vehicle adjustment factor, fHV	0.805		0.805		
Grade adjustment factor, (note-1) fg	0.73		0.73		
Directional flow rate, (note-2) vi	149	pc / h	132		pc / h
Base percent time-spent-following, (n	Ee-4) BPTSFd	d 16.7	\%		
Adjustment for no-passing zones, fnp		53.8			
Percent time-spent-following, PTSFd		45.2	\%		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.11	
Peak 15-min vehicle-miles of travel, VMT15	116	veh-mi
Peak-hour vehicle-miles of travel, VMT60	408	veh-mi
Peak 15-min total travel time, TT15	2.1	veh-h
Capacity from ATS, CdATS	831	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1049	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	831	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

| Total length of analysis segment, Lt | 5.3 mi |
| :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | $-\quad$ mi |
| Length of passing lane including tapers, Lpl | $-\quad 56.0 \mathrm{mi}$ |
| Average travel speed, ATSd (from above) | mi / h |
| Percent time-spent-following, PTSFd (from above) | 45.2 |
| Level of service, LOSd (from above) | B |

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 87.5
Effective width of outside lane, We 35.07
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.81
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	$\mathrm{NB}-$ Segment 13 (61.1-63.93)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.805	0.805	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	136	pc/h	153
Base percent time-spent-following, (note-4)	BPTSFd	15.4	\%
Adjustment for no-passing zones, fnp		52.9	
Percent time-spent-following, PTSFd		40.3	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.10	
Peak 15-min vehicle-miles of travel, VMT15	36	$\mathrm{veh}-\mathrm{mi}$
Peak-hour vehicle-miles of travel, VMT60	130	$\mathrm{veh}-\mathrm{mi}$
Peak 15-min total travel time, TT15	0.6	$\mathrm{veh}-\mathrm{h}$
Capacity from ATS, CdATS	859	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1076	$\mathrm{veh} / \mathrm{h}$
Directional Capacity		

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.8	mi
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	55.5	mi / m
Percent time-spent-following, PTSFd (from above)	40.3	
Level of service, LOSd (from above)	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 80.0
Effective width of outside lane, We 35.52
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.61
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	SB - Segment 13 (61.1-63.93)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.12	
Peak 15-min vehicle-miles of travel, VMT15	41	veh-mi
Peak-hour vehicle-miles of travel, VMT60	146	veh-mi
Peak 15-min total travel time, TT15	0.7	veh-h
Capacity from ATS, CdATS	831	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1063	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	831	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 90.0
Effective width of outside lane, We 34.71
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.95
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	NB - Segment 14 (63.93-70.68)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.9	1.9		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.799	0.799		
Grade adjustment factor, (note-1) fg	0.73	0.73		
Directional flow rate, (note-2) vi	133	pc/h	151	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	15.1	$\%$	
Adjustment for no-passing zones, fnp		50.0		
Percent time-spent-following, PTSFd		38.5	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.10	
Peak 15-min vehicle-miles of travel, VMT15	82	veh-mi
Peak-hour vehicle-miles of travel, VMT60	307	veh-mi
Peak 15-min total travel time, TT15	1.5	$\mathrm{veh}-\mathrm{h}$
Capacity from ATS, CdATS	850	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1069	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	850	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 77.7
Effective width of outside lane, We 35.43
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.39
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	SB - Segment 14 (63.93-70.68)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.9			1.9		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.799			0.799		
Grade adjustment factor, (note-1) fg	0.73			0.73		
Directional flow rate, (note-2) vi	151	pc / h		133		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	d 16.9	\%			
Adjustment for no-passing zones, fnp		48.1				
Percent time-spent-following, PTSFd		42.5	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.11	
Peak 15-min vehicle-miles of travel, VMT15	93	veh-mi
Peak-hour vehicle-miles of travel, VMT60	349	veh-mi
Peak 15-min total travel time, TT15	1.7	veh-h
Capacity from ATS, CdATS	822	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1042	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	822	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	4.2	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	56.3 mi
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	42.5	
Level of service, LOSd (from above)	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 88.3
Effective width of outside lane, We 34.53
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.77
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	Mid-Day Peak Hr	
Highway	97	
From/To	NB - Segment 15 (86.75-94.27)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | A | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.04 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 32 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 113 | veh-mi |
| Peak 15-min total travel time, TT15 | 0.5 | veh-h |
| Capacity from ATS, CdATS | 746 | veh/h |
| Capacity from PTSF, CdPTSF | 970 | veh/h |
| Directional Capacity | 746 | $\mathrm{veh} / \mathrm{h}$ |

Passing Lane Analysis

Total length of analysis segment, Lt	4.7	mi
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	$-\quad \mathrm{mi}$	
Average travel speed, ATSd (from above)	mi	
Percent time-spent-following, PTSFd (from above)	29.4	mi / h
Level of service, LOSd (from above)	A	

__Average Travel speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 27.6
Effective width of outside lane, We 39.84
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.64
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 25 / 2015$	
Analysis Time Period	Mid-Day Peak Hr	
Highway	97	
From/To	NB - Segment 15 (70.68-94.27)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.782	0.782	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	48	pc/h	54
Base percent time-spent-following, (note-4)	BPTSFd	5.9	$\%$
Adjustment for no-passing zones, fnp		41.4	
Percent time-spent-following, PTSFd	25.4	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.04	
Peak 15-min vehicle-miles of travel, VMT15	101	veh-mi
Peak-hour vehicle-miles of travel, VMT60	353	veh-mi
Peak 15-min total travel time, TT15	1.7	veh-h
Capacity from ATS, CdATS	746	veh/h
Capacity from PTSF, CdPTSF	970	$\mathrm{veh} / \mathrm{h}$
Directional capacity	746	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	14.7	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	59.2	mi / h
Percent time-spent-following, PTSFd (from above)	25.4	A

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 27.6
Effective width of outside lane, We 39.84
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.64
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 25 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	SB - Segment 15 (70.68-94.27)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Highway class Class	1		Peak hour factor, PHF	0.87	
Shoulder width	6.0	ft	\% Trucks and buses	31	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	14.7	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	3	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	27	veh/h		
Opposing direction vol	lume	24	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | A | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.04 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 114 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 397 | veh-mi |
| Peak 15-min total travel time, TT15 | 1.9 | veh-h |
| Capacity from ATS, CdATS | 746 | veh/h |
| Capacity from PTSF, CdPTSF | 970 | veh/h |
| Directional Capacity | 746 | veh/h |

Passing Lane Analysis

Total length of analysis segment, Lt	14.7	mi	
Length of two-lane highway upstream of the passing lane,	Lu	1.6	mi
Length of passing lane including tapers, Lpl	2.9	mi	
Average travel speed, ATSd (from above)	60.1	mi / h	
Percent time-spent-following, PTSFd (from above)	13.3	A	

_Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 31.0
Effective width of outside lane, We 39.57
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.80
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	SB - Segment 16 (94.27-96.11)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Highway class Class	1		Peak hour factor, PHF	0.87	
Shoulder width	6.0	ft	\% Trucks and buses	31	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	1.2	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	100	\%
Up/down	-	\%	Access point density	3	/mi
Analysis direction vol	lume	26	veh/h		
Opposing direction vol	lume	23	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.04	
Peak 15-min vehicle-miles of travel, VMT15	9	veh-mi
Peak-hour vehicle-miles of travel, VMT60	31	veh-mi
Peak 15-min total travel time, TT15	0.2	veh-h
Capacity from ATS, CdATS	746	veh/h
Capacity from PTSF, CdPTSF	970	veh/h
Directional Capacity	746	veh/h

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.2	mi
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	57.8	mi / m
Percent time-spent-following, PTSFd (from above)	34.4	
Level of service, LOSd (from above)	A	

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 29.9
Effective width of outside lane, We 39.66
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.74
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	NB - Segment 17 (96.11-116.3)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.77	
Shoulder width	6.0	ft	\% Trucks and buses	23	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	12.6	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	45	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	25	veh/h		
Opposing direction vol	lume	28	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.829	0.829	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	54	pc/h	60
Base percent time-spent-following, (note-4)	BPTSFd	6.6	$\%$
Adjustment for no-passing zones, fnp		44.5	
Percent time-spent-following, PTSFd	27.7	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.04	
Peak 15-min vehicle-miles of travel, VMT15	102	veh-mi
Peak-hour vehicle-miles of travel, VMT60	315	veh-mi
Peak 15-min total travel time, TT15	1.7	veh-h
Capacity from ATS, CdATS	819	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1028	$\mathrm{veh} / \mathrm{h}$
Directional capacity	819	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	12.6 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	59.0	mi / h
Percent time-spent-following, PTSFd (from above)	27.7	

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 32.5
Effective width of outside lane, We 39.75
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.69
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	SB - Segment 17 (96.11-116.3)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.77	
Shoulder width	6.0	ft	\% Trucks and buses	23	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	12.6	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	44	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	28	veh/h		
Opposing direction vol	lume	25	veh/h		

Average Travel Speed

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.829	0.829	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	60	pc/h	54
Base percent time-spent-following, (note-4)	BPTSFd	7.2	$\%$
Adjustment for no-passing zones, fnp		44.2	
Percent time-spent-following, PTSFd		30.5	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.04	
Peak 15-min vehicle-miles of travel, VMT15	115	veh-mi
Peak-hour vehicle-miles of travel, VMT60	353	veh-mi
Peak 15-min total travel time, TT15	1.9	veh-h
Capacity from ATS, CdATS	819	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1028	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	819	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	12.6 mi	
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	mi	
Average travel speed, ATSd (from above)	$-\quad 59.1$	mi
Percent time-spent-following, PTSFd (from above)	30.5	
Level of service, LOSd (from above)	A	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 36.4
Effective width of outside lane, We 39.48
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.86
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 1 (12.52-20.35)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	15	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	4.9	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	59	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	164	veh/h		
Opposing direction vol	lume	225	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.17	
Peak 15-min vehicle-miles of travel, VMT15	218	veh-mi
Peak-hour vehicle-miles of travel, VMT60	804	veh-mi
Peak 15-min total travel time, TT15	4.1	veh-h
Capacity from ATS, CdATS	1240	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1357	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1240	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 178.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 6.85
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 1 (12.52-20.35)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	15	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	4.9	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	4	\%
Grade: Length	-	mi	\% No-passing zones	69	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	225	veh/h		
Opposing direction vol	lume	164	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.905	0.893	
Grade adjustment factor, (note-1) fg	0.82	0.78	
Directional flow rate, (note-2) vi	330	pc/h	256
Base percent time-spent-following, (note-4)	BPTSFd	34.0	$\%$
Adjustment for no-passing zones, fnp		52.6	
Percent time-spent-following, PTSFd	63.6	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.21	
Peak 15-min vehicle-miles of travel, VMT15	300	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1103	veh-mi
Peak 15-min total travel time, TT15	5.7	veh-h
Capacity from ATS, CdATS	1135	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1277	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1135	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 244.6
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 7.01
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 2 (20.35-29.46)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	18	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	5.7	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	56	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	126	veh/h		
Opposing direction vol	lume	173	veh/h		

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.8			1.8		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.874			0.874		
Grade adjustment factor, (note-1) fg	0.76			0.79		
Directional flow rate, (note-2) vi	206	pc / h		272		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	24.1	\%			
Adjustment for no-passing zones, fnp		52.2				
Percent time-spent-following, PTSFd		46.6	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.15	
Peak 15-min vehicle-miles of travel, VMT15	195	veh-mi
Peak-hour vehicle-miles of travel, VMT60	718	veh-mi
Peak 15-min total travel time, TT15	3.6	veh-h
Capacity from ATS, CdATS	1132	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1268	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1132	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	5.7	mi
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	$-\quad \mathrm{mi}$	
Average travel speed, ATSd (from above)	54.1	mi
Percent time-spent-following, PTSFd (from above)	46.6	
Level of service, LOSd (from above)	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 137.0
Effective width of outside lane, We 30.66
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 6.52
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 2 (20.35-29.46)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)		Opposing		
PCE for trucks, ET	1.8		1.8		
PCE for RVs, ER	1.0		1.0		
Heavy-vehicle adjustment factor, fHV	0.874		0.874		
Grade adjustment factor, (note-1) fg	0.79		0.76		
Directional flow rate, (note-2) vi	272	pc / h	206		pc / h
Base percent time-spent-following, (not	Ee-4) BPTSFd	27.7	\%		
Adjustment for no-passing zones, fnp		49.9			
Percent time-spent-following, PTSFd		56.1	\%		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.18	
Peak 15-min vehicle-miles of travel, VMT15	268	veh-mi
Peak-hour vehicle-miles of travel, VMT60	986	veh-mi
Peak 15-min total travel time, TT15	5.0	veh-h
Capacity from ATS, CdATS	1033	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1208	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1033	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	5.7	mi
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	54.0	mi / m
Percent time-spent-following, PTSFd (from above)	56.1	
Level of service, LOSd (from above)	C	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 188.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 8.50
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 3 (29.46-32.86)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.89	
Shoulder width	6.0	ft	\% Trucks and buses	20	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	2.1	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	37	\%
Up/down	-	\%	Access point density	3	/mi
Analysis direction vol	lume	116	veh/h		
Opposing direction vol	lume	160	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.15	
Peak 15-min vehicle-miles of travel, VMT15	68	veh-mi
Peak-hour vehicle-miles of travel, VMT60	244	veh-mi
Peak 15-min total travel time, TT15	1.2	veh-h
Capacity from ATS, CdATS	1096	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1238	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1096	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 130.3
Effective width of outside lane, We 31.56
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 7.39
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 3 (29.46-32.86)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.89	
Shoulder width	6.0	ft	\% Trucks and buses	20	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	2.1	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	51	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	160	veh/h		
Opposing direction vol	lume	116	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.862	0.862	
Grade adjustment factor, (note-1) fg	0.79	0.75	pch
Directional flow rate, (note-2) vi	264	pc/h	202

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.19	
Peak 15-min vehicle-miles of travel, VMT15	94	veh-mi
Peak-hour vehicle-miles of travel, VMT60	336	veh-mi
Peak 15-min total travel time, TT15	1.7	veh-h
Capacity from ATS, CdATS	1012	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1193	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1012	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 179.8
Effective width of outside lane, We 27.60
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 8.73
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 26 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 4 (32.86-36.28)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.89	
Shoulder width	6.0	ft	\% Trucks and buses	20	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	2.1	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	53	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	120	veh/h		
Opposing direction vol	lume	164	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.862	0.862	
Grade adjustment factor, (note-1) fg	0.75	0.79	pch
Directional flow rate, (note-2) vi	209	pc/h	271
Base percent time-spent-following, (note-4)	BPTSFd	24.4	$\%$
Adjustment for no-passing zones, fnp		51.1	
Percent time-spent-following, PTSFd	46.6	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.15	
Peak 15-min vehicle-miles of travel, VMT15	71	veh-mi
Peak-hour vehicle-miles of travel, VMT60	252	veh-mi
Peak 15-min total travel time, TT15	1.3	veh-h
Capacity from ATS, CdATS	1110	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1253	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1110	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 134.8
Effective width of outside lane, We 31.20
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 7.53
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 26 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 4 (32.86-36.28)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.89	
Shoulder width	6.0	ft	\% Trucks and buses	20	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	2.1	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	42	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	164	veh/h		
Opposing direction vol	lume	120	veh/h		

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.8			1.8		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.862			0.862		
Grade adjustment factor, (note-1) fg	0.79			0.75		
Directional flow rate, (note-2) vi	271	pc / h		209		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	27.6	\%			
Adjustment for no-passing zones, fnp		46.9				
Percent time-spent-following, PTSFd		54.1	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.19	
Peak 15-min vehicle-miles of travel, VMT15	97	veh-mi
Peak-hour vehicle-miles of travel, VMT60	344	veh-mi
Peak 15-min total travel time, TT15	1.8	veh-h
Capacity from ATS, CdATS	1026	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1193	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1026	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	2.1	mi
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	$-\quad \mathrm{mi}$	
Average travel speed, ATSd (from above)	54.7	mi
Percent time-spent-following, PTSFd (from above)	54.1	
Level of service, LOSd (from above)	C	

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 184.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.67
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	$\mathrm{NB}-$ Segment 5 (36.28-41.52)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.82	
Shoulder width	6.0	ft	\% Trucks and buses	22	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	3.3	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	26	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	125	veh/h		
Opposing direction vol	lume	171	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.17	
Peak 15-min vehicle-miles of travel, VMT15	126	veh-mi
Peak-hour vehicle-miles of travel, VMT60	412	veh-mi
Peak 15-min total travel time, TT15	2.3	veh-h
Capacity from ATS, CdATS	1136	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1277	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1136	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	3.3 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	54.7
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	44.4	
Level of service, LOSd (from above)	B	

_Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 152.4
Effective width of outside lane, We 30.75
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 8.99
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 5 (36.28-41.52)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.7			1.8		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.867			0.850		
Grade adjustment factor, (note-1) fg	0.80			0.77		
Directional flow rate, (note-2) vi	301	pc / h		233		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	30.9	\%			
Adjustment for no-passing zones, fnp		40.1				
Percent time-spent-following, PTSFd		53.5	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.21	
Peak 15-min vehicle-miles of travel, VMT15	172	veh-mi
Peak-hour vehicle-miles of travel, VMT60	564	veh-mi
Peak 15-min total travel time, TT15	3.1	veh-h
Capacity from ATS, CdATS	1049	veh/h
Capacity from PTSF, CdPTSF	1208	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1049	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	3.3 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	55.2
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	53.5	
Level of service, LOSd (from above)	C	

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 208.5
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.00
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	PM Peak Hr	
Highway	97	
From/To	NB - Segment 6 (41.52-43.89)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Highway class Class	1		Peak hour factor, PHF	0.83	
Shoulder width	6.0	ft	\% Trucks and buses	22	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	54	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	125	veh/h		
Opposing direction vol	lume	171	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.850	0.867	
Grade adjustment factor, (note-1) fg	0.77	0.80	
Directional flow rate, (note-2) vi	230	pc/h	297
Base percent time-spent-following, (note-4)	BPTSFd	26.9	$\%$
Adjustment for no-passing zones, fnp		50.7	
Percent time-spent-following, PTSFd	49.0	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.17	
Peak 15-min vehicle-miles of travel, VMT15	56	veh-mi
Peak-hour vehicle-miles of travel, VMT60	188	veh-mi
Peak 15-min total travel time, TT15	1.0	veh-h
Capacity from ATS, CdATS	1136	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1252	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1136	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 150.6
Effective width of outside lane, We 30.75
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 8.99
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	PM Peak Hr	
Highway	97	
From/To	SB - Segment 6 (41.52-43.89)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction Analysis			Opposing (o)		
PCE for trucks, ET	1.7		1.8		
PCE for RVs, ER	1.0		1.0		
Heavy-vehicle adjustment factor, fHV	0.867		0.850		
Grade adjustment factor, (note-1) fg	0.80		0.77		
Directional flow rate, (note-2) vi	297	pc / h	230		pc / h
Base percent time-spent-following, (note-4)	te-4) BPTSFd	30.6	\%		
Adjustment for no-passing zones, fnp		52.9			
Percent time-spent-following, PTSFd		60.4	\%		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.21	
Peak 15-min vehicle-miles of travel, VMT15	77	veh-mi
Peak-hour vehicle-miles of travel, VMT60	257	veh-mi
Peak 15-min total travel time, TT15	1.4	veh-h
Capacity from ATS, CdATS	1035	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1193	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1035	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 206.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.99
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 7 (43.89-53.44)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	23	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	6.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	72	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	112	veh/h		
Opposing direction vol	lume	154	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.845	0.845	
Grade adjustment factor, (note-1) fg	0.75	0.78	
Directional flow rate, (note-2) vi	201	pc/h	266
Base percent time-spent-following, (note-4)	BPTSFd	23.7	\%
Adjustment for no-passing zones, fnp		55.0	
Percent time-spent-following, PTSFd		47.4	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.15	
Peak 15-min vehicle-miles of travel, VMT15	191	veh-mi
Peak-hour vehicle-miles of travel, VMT60	672	veh-mi
Peak 15-min total travel time, TT15	3.5	veh-h
Capacity from ATS, CdATS	1066	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1215	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1066	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	6.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad-\quad \mathrm{mi}$	
Length of passing lane including tapers, Lpl	mi	
Average travel speed, ATSd (from above)	54.6	mi / h
Percent time-spent-following, PTSFd (from above)	47.4	
Level of service, LOSd (from above)	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 127.3
Effective width of outside lane, We 31.92
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.20
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 7 (43.89-53.44)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	23	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	6.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	76	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	154	veh/h		
Opposing direction vol	lume	112	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.19	
Peak 15-min vehicle-miles of travel, VMT15	263	veh-mi
Peak-hour vehicle-miles of travel, VMT60	924	veh-mi
Peak 15-min total travel time, TT15	4.9	veh-h
Capacity from ATS, CdATS	982	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1171	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	982	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 175.0
Effective width of outside lane, We 28.14
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.49
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 8 (53.44-71.94)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	23	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	11.6	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	52	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	96	veh/h		
Opposing direction vol	lume	132	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.845	0.845	
Grade adjustment factor, (note-1) fg	0.74	0.76	
Directional flow rate, (note-2) vi	175	pc/h	234
Base percent time-spent-following, (note-4)	BPTSFd	19.7	\%
Adjustment for no-passing zones, fnp		51.7	
Percent time-spent-following, PTSFd		41.8	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.13	
Peak 15-min vehicle-miles of travel, VMT15	316	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1114	veh-mi
Peak 15-min total travel time, TT15	5.7	veh-h
Capacity from ATS, CdATS	1040	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1201	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1040	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	11.6 mi		
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	5.0	mi / h	
Percent time-spent-following, PTSFd (from above)	41.8	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 109.1
Effective width of outside lane, We 33.36
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 8.65
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 8 (53.44-71.96)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.845	0.845	
Grade adjustment factor, (note-1) fg	0.76	0.74	
Directional flow rate, (note-2) vi	234	pc/h	175
Base percent time-spent-following, (note-4)	BPTSFd	24.6	$\%$
Adjustment for no-passing zones, fnp		52.5	
Percent time-spent-following, PTSFd	54.6	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.17	
Peak 15-min vehicle-miles of travel, VMT15	375	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1320	veh-mi
Peak 15-min total travel time, TT15	6.9	veh-h
Capacity from ATS, CdATS	938	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1120	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	938	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 150.0
Effective width of outside lane, We 30.12
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.84
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	MCElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 9 (71.94-87.9)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.810	0.828	
Grade adjustment factor, (note-1) fg	0.73	0.75	
Directional flow rate, (note-2) vi	159	pc/h	208
Base percent time-spent-following, (note-4)	BPTSFd	17.5	\%
Adjustment for no-passing zones, fnp		51.8	
Percent time-spent-following, PTSFd		39.9	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.12	
Peak 15-min vehicle-miles of travel, VMT15	235	veh-mi
Peak-hour vehicle-miles of travel, VMT60	770	veh-mi
Peak 15-min total travel time, TT15	4.3	veh-h
Capacity from ATS, CdATS	965	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1151	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	965	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	10.0 mi	
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	$-\quad \mathrm{mi}$	
Average travel speed, ATSd (from above)	mi	
Percent time-spent-following, PTSFd (from above)	$3.9 \mathrm{mi} / \mathrm{h}$	
Level of service, LoSd (from above)	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 93.9
Effective width of outside lane, We 35.07
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.10
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	MCElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 9 (71.94-87.9)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.828	0.810	
Grade adjustment factor, (note-1) fg	0.75	0.73	
Directional flow rate, (note-2) vi	208	pc/h	159
Base percent time-spent-following, (note-4)	BPTSFd	22.3	$\%$
Adjustment for no-passing zones, fnp		52.7	
Percent time-spent-following, PTSFd	52.2	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.16	
Peak 15-min vehicle-miles of travel, VMT15	323	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1060	veh-mi
Peak 15-min total travel time, TT15	5.9	veh-h
Capacity from ATS, CdATS	880	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1084	$\mathrm{veh} / \mathrm{h}$
Directional capacity	880	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 129.3
Effective width of outside lane, We 32.46
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.14
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 25 / 2015$	
Analysis Time Period	PM Peak Hr	
Highway	97	
From/To	NB - Segment 10a (1183 0-21.1)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.822	0.839	
Grade adjustment factor, (note-1) fg	0.73	0.74	
Directional flow rate, (note-2) vi	140	pc/h	187
Base percent time-spent-following, (note-4)	BPTSFd	15.8	$\%$
Adjustment for no-passing zones, fnp		53.5	
Percent time-spent-following, PTSFd	38.7	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.10	
Peak 15-min vehicle-miles of travel, VMT15	277	veh-mi
Peak-hour vehicle-miles of travel, VMT60	977	veh-mi
Peak 15-min total travel time, TT15	5.0	veh-h
Capacity from ATS, CdATS	942	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1127	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	942	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	13.2 mi		
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	$55.0 \mathrm{mi} / \mathrm{h}$		
Percent time-spent-following, PTSFd (from above)	38.7	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 84.1
Effective width of outside lane, We 35.34
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 8.52
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 25 / 2015$	
Analysis Time Period	PM Peak Hr	
Highway	97	
From/To	SB - Segment 10a (1183 0-21.1)	
Jurisdiction	BC	
Analysis Year	2014	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.839	0.822	
Grade adjustment factor, (note-1) fg	0.74	0.73	
Directional flow rate, (note-2) vi	187	pc/h	140
Base percent time-spent-following, (note-4)	BPTSFd	20.3	$\%$
Adjustment for no-passing zones, fnp		53.5	
Percent time-spent-following, PTSFd	50.9	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.14	
Peak 15-min vehicle-miles of travel, VMT15	382	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1346	veh-mi
Peak 15-min total travel time, TT15	6.9	veh-h
Capacity from ATS, CdATS	875	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1084	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	875	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	13.2 mi	
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	55.0	mi / m
Percent time-spent-following, PTSFd (from above)	50.9	C
Level of service, LoSd (from above)		

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 115.9
Effective width of outside lane, We 32.82
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.54
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 10b (21.1-38.33)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.822	0.839	
Grade adjustment factor, (note-1) fg	0.73	0.74	
Directional flow rate, (note-2) vi	140	pc/h	187
Base percent time-spent-following, (note-4)	BPTSFd	15.8	\%
Adjustment for no-passing zones, fnp		47.0	
Percent time-spent-following, PTSFd		35.9	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.10	
Peak 15-min vehicle-miles of travel, VMT15	227	veh-mi
Peak-hour vehicle-miles of travel, VMT60	799	veh-mi
Peak 15-min total travel time, TT15	4.1	veh-h
Capacity from ATS, CdATS	942	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1127	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	942	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	10.8	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	55.5	mi / h	
Percent time-spent-following, PTSFd (from above)	35.9	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 84.1
Effective width of outside lane, We 35.34
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 8.52
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 10b (21.1-38.33)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.839	0.822	
Grade adjustment factor, (note-1) fg	0.74	0.73	
Directional flow rate, (note-2) vi	187	pc/h	140
Base percent time-spent-following, (note-4)	BPTSFd	20.3	$\%$
Adjustment for no-passing zones, fnp		47.9	
Percent time-spent-following, PTSFd	47.7	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.14	
Peak 15-min vehicle-miles of travel, VMT15	313	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1102	veh-mi
Peak 15-min total travel time, TT15	5.6	veh-h
Capacity from ATS, CdATS	875	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1084	$\mathrm{veh} / \mathrm{h}$
Directional capacity	875	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	10.8	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	55.5	mi / h	
Percent time-spent-following, PTSFd (from above)	47.7	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 115.9
Effective width of outside lane, We 32.82
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.54
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 11 (38.33-52.6)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)		Opposing		
PCE for trucks, ET	1.9		1.8		
PCE for RVs, ER	1.0		1.0		
Heavy-vehicle adjustment factor, fHV	0.822		0.839		
Grade adjustment factor, (note-1) fg	0.73		0.75		
Directional flow rate, (note-2) vi	161	pc / h	210		pc / h
Base percent time-spent-following, (not	Ee-4) BPTSFd	d 17.6	\%		
Adjustment for no-passing zones, fnp		49.6			
Percent time-spent-following, PTSFd		39.1	\%		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.12	
Peak 15-min vehicle-miles of travel, VMT15	215	veh-mi
Peak-hour vehicle-miles of travel, VMT60	756	veh-mi
Peak 15-min total travel time, TT15	3.9	veh-h
Capacity from ATS, CdATS	985	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1179	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	985	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	8.9 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad-\quad \mathrm{mi}$	
Length of passing lane including tapers, Lpl	mi	
Average travel speed, ATSd (from above)	55.4	mi / h
Percent time-spent-following, PTSFd (from above)	39.1	
Level of service, LOSd (from above)	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 96.6
Effective width of outside lane, We 34.35
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 8.94
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 11 (38.33-52.6)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.15	
Peak 15-min vehicle-miles of travel, VMT15	293	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1032	veh-mi
Peak 15-min total travel time, TT15	5.3	veh-h
Capacity from ATS, CdATS	900	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1098	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	900	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	8.9 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad$ mi	
Length of passing lane including tapers, Lpl	$-\quad 54.9$	mi
Average travel speed, ATSd (from above)	51.5	
Percent time-spent-following, PTSFd (from above)	C	
Level of service, LOSd (from above)		

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 131.8
Effective width of outside lane, We 31.56
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.01
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	MCElhanney
Date Performed	$2 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 12 (52.6-61.1)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	24	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	5.3	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	62	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	90	veh/h		
Opposing direction vol	lume	123	veh/h		

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.8			1.8		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.839			0.839		
Grade adjustment factor, (note-1) fg	0.73			0.76		
Directional flow rate, (note-2) vi	167	pc / h		219		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	19.2	\%			
Adjustment for no-passing zones, fnp		55.1				
Percent time-spent-following, PTSFd		43.0	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.13	
Peak 15-min vehicle-miles of travel, VMT15	136	veh-mi
Peak-hour vehicle-miles of travel, VMT60	477	veh-mi
Peak 15-min total travel time, TT15	2.5	veh-h
Capacity from ATS, CdATS	997	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1179	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	997	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 102.3
Effective width of outside lane, We 33.90
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.12
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	MCElhanney
Date Performed	$2 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 12 (52.6-61.1)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.8	1.8		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.839	0.839		
Grade adjustment factor, (note-1) fg	0.76	0.73		
Directional flow rate, (note-2) vi	219	pc/h	167	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	23.3	$\%$	
Adjustment for no-passing zones, fnp		55.1		
Percent time-spent-following, PTSFd		54.6	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.16	
Peak 15-min vehicle-miles of travel, VMT15	185	veh-mi
Peak-hour vehicle-miles of travel, VMT60	652	veh-mi
Peak 15-min total travel time, TT15	3.4	veh-h
Capacity from ATS, CdATS	917	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1112	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	917	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 139.8
Effective width of outside lane, We 30.93
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.24
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 13 (61.1-63.93)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.97	
Shoulder width	6.0	ft	\% Trucks and buses	28	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	1.8	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	57	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	95	veh/h		
Opposing direction vol	lume	130	veh/h		

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.9			1.8		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.799			0.817		
Grade adjustment factor, (note-1) fg	0.73			0.75		
Directional flow rate, (note-2) vi	168	pc / h		219		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	d 19.3	\%			
Adjustment for no-passing zones, fnp		53.7				
Percent time-spent-following, PTSFd		42.6	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.13	
Peak 15-min vehicle-miles of travel, VMT15	44	veh-mi
Peak-hour vehicle-miles of travel, VMT60	171	veh-mi
Peak 15-min total travel time, TT15	0.8	veh-h
Capacity from ATS, CdATS	959	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1151	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	959	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.8	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	$4.9 \mathrm{mi} / \mathrm{h}$		
Percent time-spent-following, PTSFd (from above)	42.6	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 97.9
Effective width of outside lane, We 33.45
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.19
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 13 (61.1-63.93)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.817	0.799	
Grade adjustment factor, (note-1) fg	0.75	0.73	
Directional flow rate, (note-2) vi	219	pc/h	168
Base percent time-spent-following, (note-4)	BPTSFd	23.3	$\%$
Adjustment for no-passing zones, fnp		53.7	
Percent time-spent-following, PTSFd	53.7	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.16	
Peak 15-min vehicle-miles of travel, VMT15	60	veh-mi
Peak-hour vehicle-miles of travel, VMT60	234	veh-mi
Peak 15-min total travel time, TT15	1.1	veh-h
Capacity from ATS, CdATS	879	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1083	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	879	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 134.0
Effective width of outside lane, We 30.30
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 13.35
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 14 (63.93-70.68)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing		(0)	
PCE for trucks, ET	1.9			1.8		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.847			0.862		
Grade adjustment factor, (note-1) fg	0.73			0.76		
Directional flow rate, (note-2) vi	162	pc / h		209		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	17.8	\%			
Adjustment for no-passing zones, fnp		50.3				
Percent time-spent-following, PTSFd		39.8	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.12	
Peak 15-min vehicle-miles of travel, VMT15	105	veh-mi
Peak-hour vehicle-miles of travel, VMT60	407	veh-mi
Peak 15-min total travel time, TT15	1.9	veh-h
Capacity from ATS, CdATS	1026	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1193	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1026	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	4.2	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	55.1	mi / h
Percent time-spent-following, PTSFd (from above)	39.8	
Level of service, LOSd (from above)	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 100.0
Effective width of outside lane, We 33.27
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 6.71
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 14 (63.93-70.68)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.862	0.862	
Grade adjustment factor, (note-1) fg	0.76	0.74	
Directional flow rate, (note-2) vi	226	pc/h	169
Base percent time-spent-following, (note-4)	BPTSFd	23.9	$\%$
Adjustment for no-passing zones, fnp		48.8	
Percent time-spent-following, PTSFd	51.8	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.16	
Peak 15-min vehicle-miles of travel, VMT15	155	veh-mi
Peak-hour vehicle-miles of travel, VMT60	559	veh-mi
Peak 15-min total travel time, TT15	2.8	veh-h
Capacity from ATS, CdATS	969	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1143	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	969	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	4.2	mi
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	55.1	mi / h
Percent time-spent-following, PTSFd (from above)	51.8	
Level of service, LOSd (from above)	C	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 147.8
Effective width of outside lane, We 30.03
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 7.93
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 15 (70.68-94.27)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.90	
Shoulder width	6.0	ft	\% Trucks and buses	21	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	14.7	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	38	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	32	veh/h		
Opposing direction vol	lume	44	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.841	0.841	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	58	pc/h	80
Base percent time-spent-following, (note-4)	BPTSFd	7.0	$\%$
Adjustment for no-passing zones, fnp		40.4	
Percent time-spent-following, PTSFd	24.0	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.04	
Peak 15-min vehicle-miles of travel, VMT15	131	veh-mi
Peak-hour vehicle-miles of travel, VMT60	470	veh-mi
Peak 15-min total travel time, TT15	2.2	veh-h
Capacity from ATS, CdATS	839	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1044	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	839	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt		14.7	mi
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	58.9	mi / h	
Percent time-spent-following, PTSFd (from above)	24.0	A	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 35.6
Effective width of outside lane, We 39.12
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.69
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 15 (70.68-94.27)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.9	1.9		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.841	0.841		
Grade adjustment factor, (note-1) fg	0.73	0.73		
Directional flow rate, (note-2) vi	80	pc/h	58	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	9.5	$\%$	
Adjustment for no-passing zones, fnp		13.5		
Percent time-spent-following, PTSFd	17.3	$\%$		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.06	
Peak 15-min vehicle-miles of travel, VMT15	180	veh-mi
Peak-hour vehicle-miles of travel, VMT60	647	veh-mi
Peak 15-min total travel time, TT15	3.0	veh-h
Capacity from ATS, CdATS	839	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1044	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	839	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt		14.7	mi
Length of two-lane highway upstream of the passing lane,	Lu	1.6	mi
Length of passing lane including tapers, Lpl	2.9	mi	
Average travel speed, ATSd (from above)	59.8	mi / h	
Percent time-spent-following, PTSFd (from above)	17.3	A	

_Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 48.9
Effective width of outside lane, We 38.04
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.27
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 16 (94.27-96.11)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.90	
Shoulder width	6.0	ft	\% Trucks and buses	21	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	1.2	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	8	\%
Up/down	-	\%	Access point density	0	/mi
Analysis direction vol	lume	31	veh/h		
Opposing direction vol	lume	42	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.9	1.9		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.841	0.841		
Grade adjustment factor, (note-1) fg	0.73	0.73		
Directional flow rate, (note-2) vi	56	pc/h	76	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	6.8	$\%$	
Adjustment for no-passing zones, fnp		18.4		
Percent time-spent-following, PTSFd		14.6	$\%$	

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | A | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.04 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 10 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 37 | veh-mi |
| Peak 15-min total travel time, TT15 | 0.2 | veh-h |
| Capacity from ATS, CdATS | 839 | $\mathrm{veh} / \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1044 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 839 | $\mathrm{veh} / \mathrm{h}$ |

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.2	mi	
Length of two-lane highway upstream of the passing lane,	Lu	0.1	mi
Length of passing lane including tapers, Lpl	1.1	mi	
Average travel speed, ATSd (from above)	60.3	mi / h	
Percent time-spent-following, PTSFd (from above)	14.6	A	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld

Adj. | factor for the effect of passing lane |
| :--- |

on average speed, fpl
Average travel speed including passing lane, ATSpl

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 13.00 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -13.00 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl \%
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15
veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 34.4
Effective width of outside lane, We 39.21
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.63
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 16 (94.27-96.11)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.841	0.841	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	76	pc/h	56
Base percent time-spent-following, (note-4)	BPTSFd	9.0	$\%$
Adjustment for no-passing zones, fnp		53.3	
Percent time-spent-following, PTSFd		39.7	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.06	
Peak 15-min vehicle-miles of travel, VMT15	14	veh-mi
Peak-hour vehicle-miles of travel, VMT60	50	veh-mi
Peak 15-min total travel time, TT15	0.2	veh-h
Capacity from ATS, CdATS	839	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1044	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	839	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.2	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	$57.5 \mathrm{mi} / \mathrm{h}$	
Percent time-spent-following, PTSFd (from above)	39.7	
Level of service, LOSd (from above)	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 46.7
Effective width of outside lane, We 38.22
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.18
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 17 (96.11-116.3)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.94	
Shoulder width	6.0	ft	\% Trucks and buses	21	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	12.6	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	45	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	33	veh/h		
Opposing direction vol	lume	45	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.841	0.841	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	57	pc/h	78
Base percent time-spent-following, (note-4)	BPTSFd	6.9	$\%$
Adjustment for no-passing zones, fnp		43.9	
Percent time-spent-following, PTSFd	25.4	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.04	
Peak 15-min vehicle-miles of travel, VMT15	111	veh-mi
Peak-hour vehicle-miles of travel, VMT60	416	veh-mi
Peak 15-min total travel time, TT15	1.9	veh-h
Capacity from ATS, CdATS	839	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1044	$\mathrm{veh} / \mathrm{h}$
Directional capacity	839	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	12.6 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	58.8	mi / h
Percent time-spent-following, PTSFd (from above)	25.4	A

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 35.1
Effective width of outside lane, We 39.03
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 4.71
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 17 (96.11-116.3)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.94	
Shoulder width	6.0	ft	\% Trucks and buses	21	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	12.6	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	44	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	45	veh/h		
Opposing direction vol	lume	33	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.841	0.841	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	78	pc/h	57
Base percent time-spent-following, (note-4)	BPTSFd	9.3	$\%$
Adjustment for no-passing zones, fnp		43.4	
Percent time-spent-following, PTSFd		34.4	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.06	
Peak 15-min vehicle-miles of travel, VMT15	151	veh-mi
Peak-hour vehicle-miles of travel, VMT60	567	veh-mi
Peak 15-min total travel time, TT15	2.6	veh-h
Capacity from ATS, CdATS	839	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1044	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	839	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 47.9
Effective width of outside lane, We 37.95
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.29
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 1 (12.52-20.35)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.6	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.933	0.923	
Grade adjustment factor, (note-1) fg	0.88	0.81	
Directional flow rate, (note-2) vi	439	pc/h	284
Base percent time-spent-following, (note-4)	BPTSFd	42.7	\%
Adjustment for no-passing zones, fnp		41.4	
Percent time-spent-following, PTSFd		67.8	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.27	
Peak 15-min vehicle-miles of travel, VMT15	441	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1553	veh-mi
Peak 15-min total travel time, TT15	8.4	veh-h
Capacity from ATS, CdATS	1231	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1317	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1231	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	4.9 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad-\quad \mathrm{mi}$	
Length of passing lane including tapers, Lpl	mi	
Average travel speed, ATSd (from above)	52.4	mi / h
Percent time-spent-following, PTSFd (from above)	67.8	
Level of service, LOSd (from above)	D	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 360.2
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.78
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 1 (12.52-20.35)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	12	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	4.9	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	4	\%
Grade: Length	-	mi	\% No-passing zones	69	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	187	veh/h		
Opposing direction vol	lume	317	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.6	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.923	0.933	
Grade adjustment factor, (note-1) fg	0.81	0.88	
Directional flow rate, (note-2) vi	284	pc/h	439
Base percent time-spent-following, (note-4)	BPTSFd	34.1	$\%$
Adjustment for no-passing zones, fnp		42.3	
Percent time-spent-following, PTSFd	50.7	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.19	
Peak 15-min vehicle-miles of travel, VMT15	260	veh-mi
Peak-hour vehicle-miles of travel, VMT60	916	veh-mi
Peak 15-min total travel time, TT15	4.9	veh-h
Capacity from ATS, CdATS	1406	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1492	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1406	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	4.9 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	53.0
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	50.7	
Level of service, LOSd (from above)	C	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 212.5
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.51
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 2 (20.35-29.46)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.883	0.868	
Grade adjustment factor, (note-1) fg	0.84	0.77	
Directional flow rate, (note-2) vi	374	pc/h	243
Base percent time-spent-following, (note-4)	BPTSFd	38.0	$\%$
Adjustment for no-passing zones, fnp		46.5	
Percent time-spent-following, PTSFd	66.2	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.24	
Peak 15-min vehicle-miles of travel, VMT15	395	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1391	veh-mi
Peak 15-min total travel time, TT15	7.5	veh-h
Capacity from ATS, CdATS	1079	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1230	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1079	$\mathrm{veh} / \mathrm{h}$

_Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde 1.70 mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld -1.70 mi
Adj. factor for the effect of passing lane
on average speed, fpl 1.10
Average travel speed including passing lane, ATSpl 54.1
Percent free flow speed including passing lane, PFFSpl 87.9 \%
Percent Time-Spent-Following with Passing Lane__
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde
Length of two-lane highway downstream of effective length of
the passing lane for percent time-spent-following, Ld
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl
___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl C
Peak 15-min total travel time, TT15 7.3 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 277.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.28
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 2 (20.35-29.46)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.868	0.883	
Grade adjustment factor, (note-1) fg	0.77	0.84	
Directional flow rate, (note-2) vi	243	pc/h	374
Base percent time-spent-following, (note-4)	BPTSFd	29.2	$\%$
Adjustment for no-passing zones, fnp		44.5	
Percent time-spent-following, PTSFd	46.7	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.17	
Peak 15-min vehicle-miles of travel, VMT15	232	veh-mi
Peak-hour vehicle-miles of travel, VMT60	815	veh-mi
Peak 15-min total travel time, TT15	4.3	veh-h
Capacity from ATS, CdATS	1257	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1358	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1257	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 162.5
Effective width of outside lane, We 29.13
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 7.64
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 3 (29.46-32.86)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.87	
Shoulder width	6.0	ft	\% Trucks and buses	22	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	2.1	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	37	\%
Up/down	-	\%	Access point density	3	/mi
Analysis direction vol	lume	225	veh/h		
Opposing direction vol	lume	132	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.24	
Peak 15-min vehicle-miles of travel, VMT15	136	veh-mi
Peak-hour vehicle-miles of travel, VMT60	472	veh-mi
Peak 15-min total travel time, TT15	2.5	veh-h
Capacity from ATS, CdATS	1049	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1208	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1049	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 258.6
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.11
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 3 (29.46-32.86)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.87	
Shoulder width	6.0	ft	\% Trucks and buses	22	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	2.1	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	51	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	132	veh/h		
Opposing direction vol	lume	225	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.850	0.867	
Grade adjustment factor, (note-1) fg	0.77	0.83	
Directional flow rate, (note-2) vi	232	pc/h	360
Base percent time-spent-following, (note-4)	BPTSFd	27.5	$\%$
Adjustment for no-passing zones, fnp		45.9	
Percent time-spent-following, PTSFd	45.5	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.17	
Peak 15-min vehicle-miles of travel, VMT15	80	veh-mi
Peak-hour vehicle-miles of travel, VMT60	277	veh-mi
Peak 15-min total travel time, TT15	1.5	veh-h
Capacity from ATS, CdATS	1213	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1322	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1213	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	2.1	mi
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	$-\quad \mathrm{mi}$	
Average travel speed, ATSd (from above)	mi	
Percent time-spent-following, PTSFd (from above)	45.5	mi / h
Level of service, LOSd (from above)	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 151.7
Effective width of outside lane, We 30.12
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.18
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 26 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 4 (32.86-36.28)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.85	
Shoulder width	6.0	ft	\% Trucks and buses	22	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	2.1	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	53	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	231	veh/h		
Opposing direction vol	lume	136	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.867	0.850	
Grade adjustment factor, (note-1) fg	0.84	0.77	
Directional flow rate, (note-2) vi	373	pc/h	244
Base percent time-spent-following, (note-4)	BPTSFd	37.9	$\%$
Adjustment for no-passing zones, fnp		45.6	
Percent time-spent-following, PTSFd	65.5	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.25	
Peak 15-min vehicle-miles of travel, VMT15	143	veh-mi
Peak-hour vehicle-miles of travel, VMT60	485	veh-mi
Peak 15-min total travel time, TT15	2.7	veh-h
Capacity from ATS, CdATS	1062	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1208	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1062	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 271.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.13
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 26 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 4 (32.86-36.28)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.85	
Shoulder width	6.0	ft	\% Trucks and buses	22	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	2.1	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	42	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	136	veh/h		
Opposing direction vol	lume	231	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.850	0.867	
Grade adjustment factor, (note-1) fg	0.77	0.84	
Directional flow rate, (note-2) vi	244	pc/h	373
Base percent time-spent-following, (note-4)	BPTSFd	29.4	$\%$
Adjustment for no-passing zones, fnp		41.9	
Percent time-spent-following, PTSFd	46.0	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.17	
Peak 15-min vehicle-miles of travel, VMT15	84	veh-mi
Peak-hour vehicle-miles of travel, VMT60	286	veh-mi
Peak 15-min total travel time, TT15	1.5	veh-h
Capacity from ATS, CdATS	1227	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1337	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1227	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	2.1	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	54.3
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	46.0	
Level of service, LOSd (from above)	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 160.0
Effective width of outside lane, We 29.76
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.32
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 5 (36.28-41.52)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	27	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	3.3	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	26	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	240	veh/h		
Opposing direction vol	lume	142	veh/h		

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing		(0)	
PCE for trucks, ET	1.7			1.8		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.841			0.822		
Grade adjustment factor, (note-1) fg	0.84			0.77		
Directional flow rate, (note-2) vi	386	pc / h		255		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	38.4	\%			
Adjustment for no-passing zones, fnp		35.5				
Percent time-spent-following, PTSFd		59.8	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.26	
Peak 15-min vehicle-miles of travel, VMT15	225	veh-mi
Peak-hour vehicle-miles of travel, VMT60	792	veh-mi
Peak 15-min total travel time, TT15	4.2	veh-h
Capacity from ATS, CdATS	1014	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1187	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1014	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 272.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 14.66
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 5 (36.28-41.52)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing		
PCE for trucks, ET	1.8		1.7		
PCE for RVs, ER	1.0		1.0		
Heavy-vehicle adjustment factor, fHV	0.822		0.841		
Grade adjustment factor, (note-1) fg	0.77		0.84		
Directional flow rate, (note-2) vi	255	pc / h	386		pc / h
Base percent time-spent-following, (note-4)	-4) BPTSFd	29.9	\%		
Adjustment for no-passing zones, fnp		35.8			
Percent time-spent-following, PTSFd		44.1	\%		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.19	
Peak 15-min vehicle-miles of travel, VMT15	133	veh-mi
Peak-hour vehicle-miles of travel, VMT60	469	veh-mi
Peak 15-min total travel time, TT15	2.4	veh-h
Capacity from ATS, CdATS	1191	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1302	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1191	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	3.3 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	54.7
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	44.1	
Level of service, LOSd (from above)	B	

_Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 161.4
Effective width of outside lane, We 29.22
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 13.00
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	AM Peak Hr	
Highway	97	
From/To	NB - Segment 6 (41.52-43.89)	
Jurisdiction	BC	
Analysis Year	2039	
Description Alaska Highway Corridor Study		

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	27	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	54	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	240	veh/h		
Opposing direction vol	lume	142	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.25	
Peak 15-min vehicle-miles of travel, VMT15	98	$\mathrm{veh}-\mathrm{mi}$
Peak-hour vehicle-miles of travel, VMT60	360	$\mathrm{veh}-\mathrm{mi}$
Peak 15-min total travel time, TT15	1.8	$\mathrm{veh}-\mathrm{h}$
Capacity from ATS, CdATS	1014	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1172	$\mathrm{veh} / \mathrm{h}$
Directional capacity		

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 260.9
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 14.63
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	AM Peak Hr	
Highway	97	
From/To	SB - Segment 6 (41.52-43.89)	
Jurisdiction	BC	
Analysis Year	2039	
Description Alaska Highway Corridor Study		

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	27	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	60	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	142	veh/h		
Opposing direction vol	lume	240	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.822	0.841	
Grade adjustment factor, (note-1) fg	0.77	0.83	
Directional flow rate, (note-2) vi	244	pc/h	374
Base percent time-spent-following, (note-4)	BPTSFd	29.3	$\%$
Adjustment for no-passing zones, fnp		48.0	
Percent time-spent-following, PTSFd	48.3	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.18	
Peak 15-min vehicle-miles of travel, VMT15	58	veh-mi
Peak-hour vehicle-miles of travel, VMT60	213	veh-mi
Peak 15-min total travel time, TT15	1.1	veh-h
Capacity from ATS, CdATS	1177	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1302	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1177	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 154.3
Effective width of outside lane, We 29.22
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.98
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 7 (43.89-53.44)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	28	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	6.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	72	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	216	veh/h		
Opposing direction vol	lume	127	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.24	
Peak 15-min vehicle-miles of travel, VMT15	352	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1296	veh-mi
Peak 15-min total travel time, TT15	6.6	veh-h
Capacity from ATS, CdATS	959	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1151	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	959	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

| Total length of analysis segment, Lt | 6.0 mi |
| :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | $-\quad-\quad \mathrm{mi}$ |
| Length of passing lane including tapers, Lpl | mi |
| Average travel speed, ATSd (from above) | $53.5 \mathrm{mi} / \mathrm{h}$ |
| Percent time-spent-following, PTSFd (from above) | 65.1 |
| Level of service, LOSd (from above) | D |

_Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 234.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 15.35
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 7 (43.89-53.44)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	28	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	6.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	76	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	127	veh/h		
Opposing direction vol	lume	216	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.16	
Peak 15-min vehicle-miles of travel, VMT15	207	veh-mi
Peak-hour vehicle-miles of travel, VMT60	762	veh-mi
Peak 15-min total travel time, TT15	3.8	veh-h
Capacity from ATS, CdATS	1118	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1266	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1118	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 138.0
Effective width of outside lane, We 30.57
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 13.29
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 8 (53.44-71.94)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	28	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	11.6	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	52	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	186	veh/h		
Opposing direction vol	lume	110	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.836	0.817	
Grade adjustment factor, (note-1) fg	0.80	0.74	
Directional flow rate, (note-2) vi	302	pc/h	198
Base percent time-spent-following, (note-4)	BPTSFd	30.4	$\%$
Adjustment for no-passing zones, fnp		47.2	
Percent time-spent-following, PTSFd	58.9	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.22	
Peak 15-min vehicle-miles of travel, VMT15	586	veh-mi
Peak-hour vehicle-miles of travel, VMT60	2158	veh-mi
Peak 15-min total travel time, TT15	10.9	veh-h
Capacity from ATS, CdATS	935	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1111	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	935	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	11.6 mi	
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	mi	
Average travel speed, ATSd (from above)	$-\quad 54.0$	mi
Percent time-spent-following, PTSFd (from above)	58.9	
Level of service, LOSd (from above)	C	

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 202.2
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 15.27
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 8 (53.44-71.94)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	28	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	11.6	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	49	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	110	veh/h		
Opposing direction vol	lume	186	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.817	0.836	
Grade adjustment factor, (note-1) fg	0.74	0.80	
Directional flow rate, (note-2) vi	198	pc/h	302

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.15	
Peak 15-min vehicle-miles of travel, VMT15	347	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1276	veh-mi
Peak 15-min total travel time, TT15	6.3	veh-h
Capacity from ATS, CdATS	1079	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1237	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1079	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	11.6 mi		
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	54.7	mi / h	
Percent time-spent-following, PTSFd (from above)	41.9	B	

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 119.6
Effective width of outside lane, We 32.10
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.73
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	MCElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 9 (71.94-87.9)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.817	0.799	
Grade adjustment factor, (note-1) fg	0.77	0.73	
Directional flow rate, (note-2) vi	247	pc/h	157
Base percent time-spent-following, (note-4)	BPTSFd	25.8	\%
Adjustment for no-passing zones, fnp		48.9	
Percent time-spent-following, PTSFd		55.7	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.18	
Peak 15-min vehicle-miles of travel, VMT15	388	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1490	veh-mi
Peak 15-min total travel time, TT15	7.2	veh-h
Capacity from ATS, CdATS	862	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1069	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	862	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 155.2
Effective width of outside lane, We 28.59
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 13.93
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
E-Mail:

Fax:
\qquad Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	MCElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 9 (71.94-87.9)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.799	0.817	
Grade adjustment factor, (note-1) fg	0.73	0.77	
Directional flow rate, (note-2) vi	157	pc/h	247
Base percent time-spent-following, (note-4)	BPTSFd	18.6	$\%$
Adjustment for no-passing zones, fnp		49.7	
Percent time-spent-following, PTSFd		37.9	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.12	
Peak 15-min vehicle-miles of travel, VMT15	229	veh-mi
Peak-hour vehicle-miles of travel, VMT60	880	veh-mi
Peak 15-min total travel time, TT15	4.2	veh-h
Capacity from ATS, CdATS	1006	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1166	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1006	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 91.7
Effective width of outside lane, We 34.08
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.95
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	MCElhanney	
Date Performed	$3 / 25 / 2015$	
Analysis Time Period	AM Peak Hr	
Highway	97	
From/To	NB - Segment 10a (1183 0-21.1)	
Jurisdiction	BC	
Analysis Year	2039	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.828	0.810	
Grade adjustment factor, (note-1) fg	0.77	0.73	
Directional flow rate, (note-2) vi	255	pc/h	161
Base percent time-spent-following, (note-4)	BPTSFd	26.5	\%
Adjustment for no-passing zones, fnp		51.2	
Percent time-spent-following, PTSFd	57.9	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.18	
Peak 15-min vehicle-miles of travel, VMT15	536	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1888	veh-mi
Peak 15-min total travel time, TT15	9.9	veh-h
Capacity from ATS, CdATS	880	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1084	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	880	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	13.2 mi	
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	54.0	mi / h
Percent time-spent-following, PTSFd (from above)	57.9	C
Level of service, LoSd (from above)		

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 162.5
Effective width of outside lane, We 29.13
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.29
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 25 / 2015$	
Analysis Time Period	AM Peak Hr	
Highway	97	
From/To	SB - Segment 10a (1183 0-21.1)	
Jurisdiction	BC	
Analysis Year	2039	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.12	
Peak 15-min vehicle-miles of travel, VMT15	315	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1109	veh-mi
Peak 15-min total travel time, TT15	5.8	veh-h
Capacity from ATS, CdATS	1023	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1194	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1023	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 95.5
Effective width of outside lane, We 34.44
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.33
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 10b (21.1-38.33)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.8	1.9		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.828	0.810		
Grade adjustment factor, (note-1) fg	0.77	0.73		
Directional flow rate, (note-2) vi	255	pc/h	161	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	26.5	$\%$	
Adjustment for no-passing zones, fnp		45.0		
Percent time-spent-following, PTSFd		54.1	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.18	
Peak 15-min vehicle-miles of travel, VMT15	439	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1544	veh-mi
Peak 15-min total travel time, TT15	8.0	veh-h
Capacity from ATS, CdATS	880	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1084	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	880	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 162.5
Effective width of outside lane, We 29.13
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.29
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 10b (21.1-38.33)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	26	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	5.0	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	47	\%
Up/down	-	\%	Access point density	3	/mi
Analysis direction vo	lume	84	veh/h		
Opposing direction vol	lume	143	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.12	
Peak 15-min vehicle-miles of travel, VMT15	119	veh-mi
Peak-hour vehicle-miles of travel, VMT60	420	veh-mi
Peak 15-min total travel time, TT15	2.2	veh-h
Capacity from ATS, CdATS	1023	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1194	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1023	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	5.0 mi		
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	$5.0 \mathrm{mi} / \mathrm{h}$		
Percent time-spent-following, PTSFd (from above)	36.6	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 95.5
Effective width of outside lane, We 34.44
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.33
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 11 (38.33-52.6)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.828	0.828	
Grade adjustment factor, (note-1) fg	0.79	0.74	
Directional flow rate, (note-2) vi	283	pc/h	178
Base percent time-spent-following, (note-4)	BPTSFd	28.8	$\%$
Adjustment for no-passing zones, fnp		45.9	
Percent time-spent-following, PTSFd	57.0	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.20	
Peak 15-min vehicle-miles of travel, VMT15	412	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1451	veh-mi
Peak 15-min total travel time, TT15	7.6	veh-h
Capacity from ATS, CdATS	910	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1098	$\mathrm{veh} / \mathrm{h}$
Directional capacity	910	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 185.2
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 13.71
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 11 (38.33-52.6)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	26	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	8.9	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	52	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	96	veh/h		
Opposing direction vol	lume	163	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.828	0.828	
Grade adjustment factor, (note-1) fg	0.74	0.79	
Directional flow rate, (note-2) vi	178	pc/h	283
Base percent time-spent-following, (note-4)	BPTSFd	21.0	$\%$
Adjustment for no-passing zones, fnp		47.5	
Percent time-spent-following, PTSFd	39.3	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.14	
Peak 15-min vehicle-miles of travel, VMT15	243	veh-mi
Peak-hour vehicle-miles of travel, VMT60	854	veh-mi
Peak 15-min total travel time, TT15	4.4	veh-h
Capacity from ATS, CdATS	1085	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1208	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1085	$\mathrm{veh} / \mathrm{h}$

_Average Travel Speed with Passing Lane \qquad
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde - mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld - mi
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl 0.0 \%
Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 109.1
Effective width of outside lane, We 33.36
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.76
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	MCElhanney
Date Performed	$2 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 12 (52.6-61.1)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.828	0.828	
Grade adjustment factor, (note-1) fg	0.80	0.74	
Directional flow rate, (note-2) vi	297	pc/h	189
Base percent time-spent-following, (note-4)	BPTSFd	30.0	$\%$
Adjustment for no-passing zones, fnp		50.6	
Percent time-spent-following, PTSFd	60.9	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.21	
Peak 15-min vehicle-miles of travel, VMT15	260	veh-mi
Peak-hour vehicle-miles of travel, VMT60	917	veh-mi
Peak 15-min total travel time, TT15	4.8	veh-h
Capacity from ATS, CdATS	940	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1112	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	940	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 196.6
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 13.75
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	MCElhanney
Date Performed	$2 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 12 (52.6-61.1)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.828	0.828	
Grade adjustment factor, (note-1) fg	0.74	0.80	
Directional flow rate, (note-2) vi	189	pc/h	297
Base percent time-spent-following, (note-4)	BPTSFd	22.9	$\%$
Adjustment for no-passing zones, fnp		50.6	
Percent time-spent-following, PTSFd	42.6	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.14	
Peak 15-min vehicle-miles of travel, VMT15	154	veh-mi
Peak-hour vehicle-miles of travel, VMT60	541	veh-mi
Peak 15-min total travel time, TT15	2.8	veh-h
Capacity from ATS, CdATS	1098	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1223	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1098	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 115.9
Effective width of outside lane, We 32.82
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.97
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 13 (61.1-63.93)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.867	0.850	
Grade adjustment factor, (note-1) fg	0.82	0.76	pch/h
Directional flow rate, (note-2) vi	339	pc/h	220
Base percent time-spent-following, (note-4)	BPTSFd	34.4	$\%$
Adjustment for no-passing zones, fnp		48.4	
Percent time-spent-following, PTSFd	63.8	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.23	
Peak 15-min vehicle-miles of travel, VMT15	108	veh-mi
Peak-hour vehicle-miles of travel, VMT60	329	veh-mi
Peak 15-min total travel time, TT15	2.0	veh-h
Capacity from ATS, CdATS	1018	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1193	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1018	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 240.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.07
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 13 (61.1-63.93)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.850	0.867	
Grade adjustment factor, (note-1) fg	0.76	0.82	
Directional flow rate, (note-2) vi	220	pc/h	339
Base percent time-spent-following, (note-4)	BPTSFd	27.0	$\%$
Adjustment for no-passing zones, fnp		48.4	
Percent time-spent-following, PTSFd	46.0	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.16	
Peak 15-min vehicle-miles of travel, VMT15	64	veh-mi
Peak-hour vehicle-miles of travel, VMT60	194	veh-mi
Peak 15-min total travel time, TT15	1.2	veh-h
Capacity from ATS, CdATS	1177	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1307	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1177	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.8	mi
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	54.5	mi / m
Percent time-spent-following, PTSFd (from above)	46.0	
Level of service, LOSd (from above)	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 142.1
Effective width of outside lane, We 32.28
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 8.47
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 14 (63.93-70.68)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	20	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	4.2	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	50	\%
Up/down	-	\%	Access point density	3	/mi
Analysis direction vol	lume	187	veh/h		
Opposing direction vol	lume	110	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.877	0.862	
Grade adjustment factor, (note-1) fg	0.80	0.74	
Directional flow rate, (note-2) vi	290	pc/h	187
Base percent time-spent-following, (note-4)	BPTSFd	29.4	$\%$
Adjustment for no-passing zones, fnp		46.5	
Percent time-spent-following, PTSFd	57.7	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.20	
Peak 15-min vehicle-miles of travel, VMT15	213	veh-mi
Peak-hour vehicle-miles of travel, VMT60	785	veh-mi
Peak 15-min total travel time, TT15	3.9	veh-h
Capacity from ATS, CdATS	982	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1158	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	982	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	4.2	mi
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	$-\quad \mathrm{mi}$	
Average travel speed, ATSd (from above)	54.1	mi
Percent time-spent-following, PTSFd (from above)	57.7	
Level of service, LOSd (from above)	C	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 203.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.72
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 14 (63.93-70.68)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	20	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	4.2	mi	Truck crawl speed	0.0	$\mathrm{mi} / \mathrm{hr}$
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	45	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	110	veh/h		
Opposing direction vol	lume	187	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.862	0.877	
Grade adjustment factor, (note-1) fg	0.74	0.80	
Directional flow rate, (note-2) vi	187	pc/h	290

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.13	
Peak 15-min vehicle-miles of travel, VMT15	126	veh-mi
Peak-hour vehicle-miles of travel, VMT60	462	veh-mi
Peak 15-min total travel time, TT15	2.3	veh-h
Capacity from ATS, CdATS	1143	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1268	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1143	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

_Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 119.6
Effective width of outside lane, We 32.10
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 7.18
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 15 (70.68-94.27)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	22	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	14.7	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	38	\%
Up/down	-	\%	Access point density	2	/mi
$\begin{array}{ll}\text { Analysis direction volume, Vd } & 62 \\ \text { Opposing direction volume, Vo } & 36\end{array}$			veh/hveh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.835	0.835	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	111	pc/h	64
Base percent time-spent-following, (note-4)	BPTSFd	12.8	$\%$
Adjustment for no-passing zones, fnp		39.0	
Percent time-spent-following, PTSFd		37.5	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.08	
Peak 15-min vehicle-miles of travel, VMT15	248	veh-mi
Peak-hour vehicle-miles of travel, VMT60	911	veh-mi
Peak 15-min total travel time, TT15	4.2	veh-h
Capacity from ATS, CdATS	829	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1036	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	829	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt		14.7	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	58.5	mi / h	
Percent time-spent-following, PTSFd (from above)	37.5	B	

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 67.4
Effective width of outside lane, We 36.42
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 6.67
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 15 (70.68-94.27)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.9	1.9		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.835	0.835		
Grade adjustment factor, (note-1) fg	0.73	0.73		
Directional flow rate, (note-2) vi	64	pc/h	111	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	7.7	$\%$	
Adjustment for no-passing zones, fnp		13.5		
Percent time-spent-following, PTSFd	12.6	$\%$		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.05	
Peak 15-min vehicle-miles of travel, VMT15	144	veh-mi
Peak-hour vehicle-miles of travel, VMT60	529	veh-mi
Peak 15-min total travel time, TT15	2.4	veh-h
Capacity from ATS, CdATS	842	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1070	$\mathrm{veh} / \mathrm{h}$
Directional capacity	842	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	14.7	mi	
Length of two-lane highway upstream of the passing lane,	Lu	1.6	mi
Length of passing lane including tapers, Lpl	2.9	mi	
Average travel speed, ATSd (from above)	59.2	mi / h	
Percent time-spent-following, PTSFd (from above)	12.6	A	

_Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 39.1
Effective width of outside lane, We 38.76
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.52
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 16 (94.27-96.11)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	22	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	1.2	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	8	\%
Up/down	-	\%	Access point density	0	/mi
Analysis direction vol	lume	59	veh/h		
Opposing direction vol	lume	35	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.08	
Peak 15-min vehicle-miles of travel, VMT15	19	veh-mi
Peak-hour vehicle-miles of travel, VMT60	71	veh-mi
Peak 15-min total travel time, TT15	0.3	veh-h
Capacity from ATS, CdATS	829	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1036	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	829	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.2	mi	
Length of two-lane highway upstream of the passing lane,	Lu	0.1	mi
Length of passing lane including tapers, Lpl	1.1	mi	
Average travel speed, ATSd (from above)	60.0	mi / h	
Percent time-spent-following, PTSFd (from above)	23.8	A	

_Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl A
Peak 15-min total travel time, TT15 0.3 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 64.1
Effective width of outside lane, We 36.69
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 6.55
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 16 (94.27-96.11)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction Anal	Analysis(d)		Opposing			
PCE for trucks, ET	1.9			1.9		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.835			0. 835		
Grade adjustment factor, (note-1) fg	0.73			0.73		
Directional flow rate, (note-2) vi	62	pc / h		105		pc / h
Base percent time-spent-following, (note-4)	Le-4) BPTSFd	d 7.5	\%			
Adjustment for no-passing zones, fnp		52.3				
Percent time-spent-following, PTSFd		26.9	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.05	
Peak 15-min vehicle-miles of travel, VMT15	11	veh-mi
Peak-hour vehicle-miles of travel, VMT60	42	veh-mi
Peak 15-min total travel time, TT15	0.2	veh-h
Capacity from ATS, CdATS	829	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1055	$\mathrm{veh} / \mathrm{h}$
Directional capacity	829	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt		1.2	mi
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	5.8	mi / h	
Percent time-spent-following, PTSFd (from above)	26.9	A	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 38.0
Effective width of outside lane, We 38.85
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.47
Bicycle LOS E
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 17 (96.11-116.3)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.867	0.867	
Grade adjustment factor, (note-1) fg	0.73		0.73
Directional flow rate, (note-2) vi	125	pc/h	74
Base percent time-spent-following, (note-4)	BPTSFd	14.2	$\%$
Adjustment for no-passing zones, fnp		42.7	
Percent time-spent-following, PTSFd		41.0	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.09	
Peak 15-min vehicle-miles of travel, VMT15	249	veh-mi
Peak-hour vehicle-miles of travel, VMT60	806	veh-mi
Peak 15-min total travel time, TT15	4.3	veh-h
Capacity from ATS, CdATS	884	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1076	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	884	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 79.0
Effective width of outside lane, We 36.24
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 3.81
Bicycle LOS D
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	SB - Segment 17 (96.11-116.3)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.05	
Peak 15-min vehicle-miles of travel, VMT15	172	veh-mi
Peak-hour vehicle-miles of travel, VMT60	559	veh-mi
Peak 15-min total travel time, TT15	3.0	veh-h
Capacity from ATS, CdATS	922	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1122	$\mathrm{veh} / \mathrm{h}$
Directional capacity	922	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt		14.7	mi
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	57.7	mi / h	
Percent time-spent-following, PTSFd (from above)	24.5	A	

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 46.9
Effective width of outside lane, We 38.58
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 2.67
Bicycle LOS C
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	NB - Segment 1 (12.52-20.35)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.97	
Shoulder width	6.0	ft	\% Trucks and buses	21	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	4.9	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	59	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	218	veh/h		
Opposing direction vol	lume	246	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.7	
PCE for RVs, ER	1.0	0	
Heavy-vehicle adjustment factor, fHV	0.872	0.872	
Grade adjustment factor, (note-1) fg	0.81	0.83	
Directional flow rate, (note-2) vi	318	pc/h	350
Base percent time-spent-following, (note-4)	BPTSFd	35.4	$\%$
Adjustment for no-passing zones, fnp		48.8	
Percent time-spent-following, PTSFd	58.6	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.21	
Peak 15-min vehicle-miles of travel, VMT15	275	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1068	veh-mi
Peak 15-min total travel time, TT15	5.2	veh-h
Capacity from ATS, CdATS	1222	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1329	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1222	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	4.9 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	53.0
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	58.6	
Level of service, LOSd (from above)	C	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 224.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.39
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	SB - Segment 1 (12.52-20.35)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.7	
PCE for RVs, ER	1.0	0	
Heavy-vehicle adjustment factor, fHV	0.872	0.872	
Grade adjustment factor, (note-1) fg	0.83	0.81	
Directional flow rate, (note-2) vi	350	pc/h	318
Base percent time-spent-following, (note-4)	BPTSFd	37.9	$\%$
Adjustment for no-passing zones, fnp		49.8	
Percent time-spent-following, PTSFd	64.0	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.24	
Peak 15-min vehicle-miles of travel, VMT15	311	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1205	veh-mi
Peak 15-min total travel time, TT15	5.9	veh-h
Capacity from ATS, CdATS	1157	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1298	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1157	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 253.6
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.46
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	NB - Segment 2 (20.35-29.46)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.812	0.812	
Grade adjustment factor, (note-1) fg	0.78	0.80	
Directional flow rate, (note-2) vi	272	pc/h	300
Base percent time-spent-following, (note-4)	BPTSFd	30.6	$\%$
Adjustment for no-passing zones, fnp		52.2	
Percent time-spent-following, PTSFd	55.4	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.20	
Peak 15-min vehicle-miles of travel, VMT15	245	veh-mi
Peak-hour vehicle-miles of travel, VMT60	952	veh-mi
Peak 15-min total travel time, TT15	4.6	veh-h
Capacity from ATS, CdATS	1070	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1201	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1070	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	5.7	mi	
Length of two-lane highway upstream of the passing lane,	Lu	4.4	mi
Length of passing lane including tapers, Lpl	1.3	mi	
Average travel speed, ATSd (from above)	53.4	mi / h	
Percent time-spent-following, PTSFd (from above)	55.4		
Level of service, LOSd (from above)	C		

Downstream length of two-lane highway within effective		
Length of two-lane highway downstream of effective length of the passing lane for average travel speed, Ld	-1.70	mi
Adj. factor for the effect of passing lane on average speed, fpl	1.10	
Average travel speed including passing lane, ATSpl	54.6	
Percent free flow speed including passing lane, PFFSpl	88.7	\%

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 11.99 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -11.99 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.59
Percent time-spent-following including passing lane, PTSFpl 50.2 \%
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl C
Peak 15-min total travel time, TT15 4.5 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 172.2
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 15.98
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	SB - Segment 2 (20.35-29.46)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.97	
Shoulder width	6.0	ft	\% Trucks and buses	29	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	5.7	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	50	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	189	veh/h		
Opposing direction vol	lume	167	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.8	1.8		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.812	0.812		
Grade adjustment factor, (note-1) fg	0.80	0.78		
Directional flow rate, (note-2) vi	300	pc/h	272	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	32.6	$\%$	
Adjustment for no-passing zones, fnp		50.4		
Percent time-spent-following, PTSFd		59.0	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.21	
Peak 15-min vehicle-miles of travel, VMT15	278	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1077	veh-mi
Peak 15-min total travel time, TT15	5.2	veh-h
Capacity from ATS, CdATS	1022	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1187	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1022	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	5.7	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	53.5	mi / h
Percent time-spent-following, PTSFd (from above)	59.0	
Level of service, LOSd (from above)	C	

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 194.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 16.04
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	NB - Segment 3 (29.46-32.86)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.96	
Shoulder width	6.0	ft	\% Trucks and buses	34	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	2.1	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	37	\%
Up/down	-	\%	Access point density	3	/mi
Analysis direction vol	lume	154	veh/h		
Opposing direction vol	lume	175	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.20	
Peak 15-min vehicle-miles of travel, VMT15	84	veh-mi
Peak-hour vehicle-miles of travel, VMT60	323	veh-mi
Peak 15-min total travel time, TT15	1.6	veh-h
Capacity from ATS, CdATS	1027	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1167	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1027	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	2.1	mi
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	$-\quad \mathrm{mi}$	
Average travel speed, ATSd (from above)	54.1	mi
Percent time-spent-following, PTSFd (from above)	52.1	
Level of service, LOSd (from above)	C	

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 160.4
Effective width of outside lane, We 28.14
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 19.11
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	SB - Segment 3 (29.46-32.86)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.96	
Shoulder width	6.0	ft	\% Trucks and buses	34	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	2.1	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	51	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	175	veh/h		
Opposing direction vol	lume	154	veh/h		

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.8			1.8		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.786			0.786		
Grade adjustment factor, (note-1) fg	0.79			0.77		
Directional flow rate, (note-2) vi	294	pc / h		265		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	32.4	\%			
Adjustment for no-passing zones, fnp		51.0				
Percent time-spent-following, PTSFd		59.2	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.21	
Peak 15-min vehicle-miles of travel, VMT15	96	veh-mi
Peak-hour vehicle-miles of travel, VMT60	367	veh-mi
Peak 15-min total travel time, TT15	1.8	veh-h
Capacity from ATS, CdATS	966	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1140	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	966	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 182.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 20.25
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 26 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	NB - Segment 4 (32.86-36.28)	
Jurisdiction	BC	
Analysis Year	2039	
Description Alaska Highway Corridor Study		

Highway class Class	1		Peak hour factor, PHF	0.96	
Shoulder width	6.0	ft	\% Trucks and buses	33	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	2.1	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	53	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	158	veh/h		
Opposing direction vol	lume	179	veh/h		

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing		(0)	
PCE for trucks, ET	1.8			1.8		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.791			0.791		
Grade adjustment factor, (note-1) fg	0.78			0.79		
Directional flow rate, (note-2) vi	267	pc / h		298		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	30.2	\%			
Adjustment for no-passing zones, fnp		51.5				
Percent time-spent-following, PTSFd		54.5	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.20	
Peak 15-min vehicle-miles of travel, VMT15	86	veh-mi
Peak-hour vehicle-miles of travel, VMT60	332	veh-mi
Peak 15-min total travel time, TT15	1.6	veh-h
Capacity from ATS, CdATS	1036	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1174	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1036	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 164.6
Effective width of outside lane, We 27.78
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 18.33
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 26 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	SB - Segment 4 (32.86-36.28)	
Jurisdiction	BC	
Analysis Year	2039	
Description Alaska Highway Corridor Study		

Highway class Class	1		Peak hour factor, PHF	0.96	
Shoulder width	6.0	ft	\% Trucks and buses	33	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	2.1	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	42	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	179	veh/h		
Opposing direction vol	lume	158	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.791	0.791	
Grade adjustment factor, (note-1) fg	0.79	0.78	
Directional flow rate, (note-2) vi	298	pc/h	267
Base percent time-spent-following, (note-4)	BPTSFd	32.6	$\%$
Adjustment for no-passing zones, fnp		48.1	
Percent time-spent-following, PTSFd	58.0	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.22	
Peak 15-min vehicle-miles of travel, VMT15	98	veh-mi
Peak-hour vehicle-miles of travel, VMT60	376	veh-mi
Peak 15-min total travel time, TT15	1.8	veh-h
Capacity from ATS, CdATS	974	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1146	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	974	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	2.1	mi
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	$-\quad \mathrm{mi}$	
Average travel speed, ATSd (from above)	54.1	mi
Percent time-spent-following, PTSFd (from above)	58.0	
Level of service, LOSd (from above)	C	

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 186.5
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 19.37
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	$\mathrm{NB}-$ Segment 5 (36.28-41.52)	
Jurisdiction	BC	
Analysis Year	2039	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.7			1.7		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.794			0.794		
Grade adjustment factor, (note-1) fg	0.80			0.82		
Directional flow rate, (note-2) vi	321	pc / h		354		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	35.5	\%			
Adjustment for no-passing zones, fnp		38.0				
Percent time-spent-following, PTSFd		53.6	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.24	
Peak 15-min vehicle-miles of travel, VMT15	168	veh-mi
Peak-hour vehicle-miles of travel, VMT60	544	veh-mi
Peak 15-min total travel time, TT15	3.1	veh-h
Capacity from ATS, CdATS	1080	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1224	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1080	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	3.3 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	53.4
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	53.6	
Level of service, LOSd (from above)	C	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 203.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 23.10
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	Mid-Day Peak Hr
Highway	97
From/To	SB - Segment 5 (36.28-41.52)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.81	
Shoulder width	6.0	ft	\% Trucks and buses	37	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	3.3	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	27	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	187	veh/h		
Opposing direction vol	lume	165	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.26	
Peak 15-min vehicle-miles of travel, VMT15	190	veh-mi
Peak-hour vehicle-miles of travel, VMT60	617	veh-mi
Peak 15-min total travel time, TT15	3.5	veh-h
Capacity from ATS, CdATS	1015	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1196	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1015	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	3.3 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	54.1
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	58.3	
Level of service, LOSd (from above)	C	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 230.9
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 23.17
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	NB - Segment 6 (41.52-43.89)	
Jurisdiction	BC	
Analysis Year	2039	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.25	
Peak 15-min vehicle-miles of travel, VMT15	84	veh-mi
Peak-hour vehicle-miles of travel, VMT60	248	veh-mi
Peak 15-min total travel time, TT15	1.6	veh-h
Capacity from ATS, CdATS	1104	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1238	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1104	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 223.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 23.15
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	SB - Segment 6 (41.52-43.89)	
Jurisdiction	BC	
Analysis Year	2039	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.7			1.7		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.794			0.794		
Grade adjustment factor, (note-1) fg	0.83			0.81		
Directional flow rate, (note-2) vi	383	pc / h		347		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	40.8	\%			
Adjustment for no-passing zones, fnp		45.9				
Percent time-spent-following, PTSFd		64.9	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.27	
Peak 15-min vehicle-miles of travel, VMT15	95	veh-mi
Peak-hour vehicle-miles of travel, VMT60	281	veh-mi
Peak 15-min total travel time, TT15	1.8	veh-h
Capacity from ATS, CdATS	1039	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1210	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1039	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	1.5 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	52.2
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	64.9	C
Level of service, LOSd (from above)		

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 252.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 23.21
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	NB - Segment 7 (43.89-53.44)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.772	0.772	
Grade adjustment factor, (note-1) fg	0.78	0.79	pch
Directional flow rate, (note-2) vi	281	pc/h	313
Base percent time-spent-following, (note-4)	BPTSFd	32.4	$\%$
Adjustment for no-passing zones, fnp		53.9	
Percent time-spent-following, PTSFd	57.9	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.21	
Peak 15-min vehicle-miles of travel, VMT15	254	veh-mi
Peak-hour vehicle-miles of travel, VMT60	894	veh-mi
Peak 15-min total travel time, TT15	4.7	veh-h
Capacity from ATS, CdATS	1015	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1196	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1015	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 169.3
Effective width of outside lane, We 28.59
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 21.80
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	SB - Segment 7 (43.89-53.44)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.772	0.772	
Grade adjustment factor, (note-1) fg	0.79	0.78	
Directional flow rate, (note-2) vi	313	pc/h	281
Base percent time-spent-following, (note-4)	BPTSFd	33.4	$\%$
Adjustment for no-passing zones, fnp		54.3	
Percent time-spent-following, PTSFd	62.0	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.22	
Peak 15-min vehicle-miles of travel, VMT15	286	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1008	veh-mi
Peak 15-min total travel time, TT15	5.3	veh-h
Capacity from ATS, CdATS	979	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1134	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	979	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	6.0 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	53.5
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	62.0	
Level of service, LOSd (from above)	C	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 190.9
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 23.07
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	NB - Segment 8 (53.44-71.94)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.772	0.772	
Grade adjustment factor, (note-1) fg	0.76	0.78	
Directional flow rate, (note-2) vi	248	pc/h	274
Base percent time-spent-following, (note-4)	BPTSFd	27.9	$\%$
Adjustment for no-passing zones, fnp		52.4	
Percent time-spent-following, PTSFd	52.8	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.19	
Peak 15-min vehicle-miles of travel, VMT15	422	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1485	veh-mi
Peak 15-min total travel time, TT15	7.8	veh-h
Capacity from ATS, CdATS	954	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1134	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	954	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	11.6 mi		
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	54.1	mi
Average travel speed, ATSd (from above)	52.8		
Percent time-spent-following, PTSFd (from above)	C		
Level of service, LOSd (from above)			

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 145.5
Effective width of outside lane, We 30.48
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 21.17
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	SB - Segment 8 (53.44-71.94)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	37	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	11.6	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	49	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	145	veh/h		
Opposing direction vol	lume	128	veh/h		

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.8			1.8		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.772			0.772		
Grade adjustment factor, (note-1) fg	0.78			0.76		
Directional flow rate, (note-2) vi	274	pc / h		248		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	29.7	\%			
Adjustment for no-passing zones, fnp		51.4				
Percent time-spent-following, PTSFd		56.7	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.20	
Peak 15-min vehicle-miles of travel, VMT15	478	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1682	veh-mi
Peak 15-min total travel time, TT15	8.8	veh-h
Capacity from ATS, CdATS	931	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1107	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	931	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	11.6 mi		
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	54.1	mi
Average travel speed, ATSd (from above)	56.7		
Percent time-spent-following, PTSFd (from above)	C		
Level of service, LOSd (from above)			

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 164.8
Effective width of outside lane, We 28.95
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 21.69
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	MCElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	Mid-Day Peak Hr
Highway	97
From/To	NB - Segment 9 (71.94-87.9)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.776	0.776	
Grade adjustment factor, (note-1) fg	0.74	0.76	
Directional flow rate, (note-2) vi	211	pc/h	234
Base percent time-spent-following, (note-4)	BPTSFd	23.1	$\%$
Adjustment for no-passing zones, fnp		55.3	
Percent time-spent-following, PTSFd	49.3	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.16	
Peak 15-min vehicle-miles of travel, VMT15	304	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1020	veh-mi
Peak 15-min total travel time, TT15	5.6	veh-h
Capacity from ATS, CdATS	926	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1113	$\mathrm{veh} / \mathrm{h}$
Directional capacity	926	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 121.4
Effective width of outside lane, We 32.82
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 19.38
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	MCElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	SB - Segment 9 (71.94-87.9)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.8			1.8		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.776			0.776		
Grade adjustment factor, (note-1) fg	0.76			0.74		
Directional flow rate, (note-2) vi	234	pc / h		211		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	24.3	\%			
Adjustment for no-passing zones, fnp		56.0				
Percent time-spent-following, PTSFd		53.7	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.18	
Peak 15-min vehicle-miles of travel, VMT15	345	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1160	veh-mi
Peak 15-min total travel time, TT15	6.4	veh-h
Capacity from ATS, CdATS	880	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1100	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	880	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 138.1
Effective width of outside lane, We 31.56
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 19.85
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	MCElhanney	
Date Performed	$3 / 25 / 2015$	
Analysis Time Period	Mid-Day Peak Hr	
Highway	97	
From/To	NB - Segment 10a (1183 0-21.1)	
Jurisdiction	BC	
Analysis Year	2039	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.14	
Peak 15-min vehicle-miles of travel, VMT15	367	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1294	veh-mi
Peak 15-min total travel time, TT15	6.7	veh-h
Capacity from ATS, CdATS	944	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1144	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	944	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	13.2 mi		
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	54.5	mi / h	
Percent time-spent-following, PTSFd (from above)	47.5	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 111.4
Effective width of outside lane, We 33.18
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.58
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 25 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	SB - Segment 10a (1183 0-21.1)	
Jurisdiction	BC	
Analysis Year	2039	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.822	0.822	
Grade adjustment factor, (note-1) fg	0.75	0.74	
Directional flow rate, (note-2) vi	205	pc/h	183
Base percent time-spent-following, (note-4)	BPTSFd	22.0	$\%$
Adjustment for no-passing zones, fnp		58.5	
Percent time-spent-following, PTSFd	52.9	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.15	
Peak 15-min vehicle-miles of travel, VMT15	416	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1465	veh-mi
Peak 15-min total travel time, TT15	7.7	veh-h
Capacity from ATS, CdATS	913	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1104	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	913	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 126.1
Effective width of outside lane, We 32.01
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.02
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	Mid-Day Peak Hr
Highway	97
From/To	NB - Segment 10b (21.1-38.33)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.8			1.8		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.822			0.822		
Grade adjustment factor, (note-1) fg	0.74			0.75		
Directional flow rate, (note-2) vi	183	pc / h		205		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	19.9	\%			
Adjustment for no-passing zones, fnp		52.7				
Percent time-spent-following, PTSFd		44.8	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.14	
Peak 15-min vehicle-miles of travel, VMT15	301	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1058	veh-mi
Peak 15-min total travel time, TT15	5.5	veh-h
Capacity from ATS, CdATS	944	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1144	$\mathrm{veh} / \mathrm{h}$
Directional capacity	944	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	10.8	mi	
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	55.0	mi / h	
Percent time-spent-following, PTSFd (from above)	4.8 .8		
Level of service, LoSd (from above)	B		

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 111.4
Effective width of outside lane, We 33.18
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.58
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	SB - Segment 10b (21.1-38.33)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.822	0.822	
Grade adjustment factor, (note-1) fg	0.75	0.74	
Directional flow rate, (note-2) vi	205	pc/h	183
Base percent time-spent-following, (note-4)	BPTSFd	22.0	$\%$
Adjustment for no-passing zones, fnp		53.5	
Percent time-spent-following, PTSFd	50.3	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.15	
Peak 15-min vehicle-miles of travel, VMT15	341	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1199	veh-mi
Peak 15-min total travel time, TT15	6.2	veh-h
Capacity from ATS, CdATS	913	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1104	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	913	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 126.1
Effective width of outside lane, We 32.01
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.02
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	NB - Segment 11 (38.33-52.6)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	27	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	8.9	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	48	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	112	veh/h		
Opposing direction vol	lume	127	veh/h		

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.8			1.8		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.822			0.822		
Grade adjustment factor, (note-1) fg	0.75			0.76		
Directional flow rate, (note-2) vi	206	pc / h		231		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	22.6	\%			
Adjustment for no-passing zones, fnp		53.4				
Percent time-spent-following, PTSFd		47.8	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.15	
Peak 15-min vehicle-miles of travel, VMT15	283	veh-mi
Peak-hour vehicle-miles of travel, VMT60	997	veh-mi
Peak 15-min total travel time, TT15	5.2	veh-h
Capacity from ATS, CdATS	988	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1172	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	988	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 127.3
Effective width of outside lane, We 31.92
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.05
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	Mid-Day Peak Hr
Highway	97
From/To	SB - Segment 11 (38.33-52.6)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.8			1.8		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.822			0.822		
Grade adjustment factor, (note-1) fg	0.76			0.75		
Directional flow rate, (note-2) vi	231	pc / h		206		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	24.1	\%			
Adjustment for no-passing zones, fnp		54.9				
Percent time-spent-following, PTSFd		53.1	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.17	
Peak 15-min vehicle-miles of travel, VMT15	321	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1130	veh-mi
Peak 15-min total travel time, TT15	5.9	veh-h
Capacity from ATS, CdATS	944	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1144	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	944	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	8.9	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	54.6
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	53.1	
Level of service, LoSd (from above)	C	

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 144.3
Effective width of outside lane, We 30.57
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.54
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$2 / 27 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	NB - Segment 12 (52.6-61.1)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.8			1.8		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.822			0.822		
Grade adjustment factor, (note-1) fg	0.75			0.77		
Directional flow rate, (note-2) vi	219	pc / h		242		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	d 24.8	\%			
Adjustment for no-passing zones, fnp		57.2				
Percent time-spent-following, PTSFd		52.0	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.16	
Peak 15-min vehicle-miles of travel, VMT15	179	veh-mi
Peak-hour vehicle-miles of travel, VMT60	631	veh-mi
Peak 15-min total travel time, TT15	3.3	veh-h
Capacity from ATS, CdATS	1001	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1172	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1001	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	5.3 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad$ mi	
Length of passing lane including tapers, Lpl	$-\quad 54.6$	mi
Average travel speed, ATSd (from above)	52.0	
Percent time-spent-following, PTSFd (from above)	C	
Level of service, LOSd (from above)		

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 135.2
Effective width of outside lane, We 31.29
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.28
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$2 / 27 / 2015$
Analysis Time Period	Mid-Day Peak Hr
Highway	97
From/To	SB - Segment 12 (52.6-61.1)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.8			1.8		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.822			0.822		
Grade adjustment factor, (note-1) fg	0.77			0.75		
Directional flow rate, (note-2) vi	242	pc / h		219		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	26.3	\%			
Adjustment for no-passing zones, fnp		57.2				
Percent time-spent-following, PTSFd		56.3	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.18	
Peak 15-min vehicle-miles of travel, VMT15	203	veh-mi
Peak-hour vehicle-miles of travel, VMT60	716	veh-mi
Peak 15-min total travel time, TT15	3.7	veh-h
Capacity from ATS, CdATS	969	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1158	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	969	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 153.4
Effective width of outside lane, We 29.85
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.79
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	$\mathrm{NB}-$ Segment 13 (61.1-63.93)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.90	
Shoulder width	6.0	ft	\% Trucks and buses	27	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	1.8	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	57	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	126	veh/h		
Opposing direction vol	lume	142	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.17	
Peak 15-min vehicle-miles of travel, VMT15	63	veh-mi
Peak-hour vehicle-miles of travel, VMT60	227	veh-mi
Peak 15-min total travel time, TT15	1.2	veh-h
Capacity from ATS, CdATS	1014	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1172	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1014	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 140.0
Effective width of outside lane, We 30.66
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.50
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	SB - Segment 13 (61.1-63.93)	
Jurisdiction	BC	
Analysis Year	2039	
Description Alaska Highway Corridor Study		

Highway class Class	1		Peak hour factor, PHF	0.90	
Shoulder width	6.0	ft	\% Trucks and buses	27	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	1.8	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	57	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	142	veh/h		
Opposing direction vol	lume	126	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.18	
Peak 15-min vehicle-miles of travel, VMT15	71	veh-mi
Peak-hour vehicle-miles of travel, VMT60	256	veh-mi
Peak 15-min total travel time, TT15	1.3	veh-h
Capacity from ATS, CdATS	969	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1158	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	969	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.8	mi
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	54.5	mi / m
Percent time-spent-following, PTSFd (from above)	56.1	
Level of service, LOSd (from above)	C	

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 157.8
Effective width of outside lane, We 29.22
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.99
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	NB - Segment 14 (63.93-70.68)	
Jurisdiction	BC	
Analysis Year	2039	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.8			1.8		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.817			0.817		
Grade adjustment factor, (note-1) fg	0.76			0.77		
Directional flow rate, (note-2) vi	219	pc / h		245		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	24.8	\%			
Adjustment for no-passing zones, fnp		53.4				
Percent time-spent-following, PTSFd		50.0	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.17	
Peak 15-min vehicle-miles of travel, VMT15	143	veh-mi
Peak-hour vehicle-miles of travel, VMT60	538	veh-mi
Peak 15-min total travel time, TT15	2.6	veh-h
Capacity from ATS, CdATS	1006	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1166	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1006	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	4.2	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	54.3
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	50.0	
Level of service, LOSd (from above)	B	

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 136.2
Effective width of outside lane, We 30.48
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 13.31
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	SB - Segment 14 (63.93-70.68)	
Jurisdiction	BC	
Analysis Year	2039	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.8			1.8		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.817			0.817		
Grade adjustment factor, (note-1) fg	0.77			0.76		
Directional flow rate, (note-2) vi	245	pc / h		219		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	26.5	\%			
Adjustment for no-passing zones, fnp		51.6				
Percent time-spent-following, PTSFd		53.7	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.18	
Peak 15-min vehicle-miles of travel, VMT15	162	veh-mi
Peak-hour vehicle-miles of travel, VMT60	609	veh-mi
Peak 15-min total travel time, TT15	3.0	veh-h
Capacity from ATS, CdATS	959	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1151	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	959	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	4.2	mi
Length of two-lane highway upstream of the passing lane, Lu	$-\quad$ mi	
Length of passing lane including tapers, Lpl	$-\quad 54.6$	mi
Average travel speed, ATSd (from above)	53.7	
Percent time-spent-following, PTSFd (from above)	C	
Level of service, LOSd (from above)		

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 154.3
Effective width of outside lane, We 28.95
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 13.82
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

| Analyst | MR |
| :--- | :--- | :--- |
| Agency/Co. | McElhanney |
| Date Performed | $3 / 25 / 2015$ |
| Analysis Time Period | Mid-Day Peak Hr |
| Highway | 97 |
| From/To | NB - Segment 15 (70.68-94.27) |
| Jurisdiction | BC |
| Analysis Year | 2039 |
| Description Alaska Highway Corridor Study | |

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.06	
Peak 15-min vehicle-miles of travel, VMT15	177	veh-mi
Peak-hour vehicle-miles of travel, VMT60	617	veh-mi
Peak 15-min total travel time, TT15	3.1	veh-h
Capacity from ATS, CdATS	746	veh/h
Capacity from PTSF, CdPTSF	970	veh/h
Directional Capacity	746	veh/h

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	14.7	mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi	
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	57.5	mi / h	
Percent time-spent-following, PTSFd (from above)	33.4	A	

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 48.3
Effective width of outside lane, We 38.22
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.54
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 25 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	SB - Segment 15 (70.68-94.27)	
Jurisdiction	BC	
Analysis Year	2039	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.07	
Peak 15-min vehicle-miles of travel, VMT15	203	veh-mi
Peak-hour vehicle-miles of travel, VMT60	706	veh-mi
Peak 15-min total travel time, TT15	3.4	veh-h
Capacity from ATS, CdATS	746	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	970	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	746	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	14.7	mi	
Length of two-lane highway upstream of the passing lane,	Lu	1.6	mi
Length of passing lane including tapers, Lpl	2.9	mi	
Average travel speed, ATSd (from above)	59.2	mi / h	
Percent time-spent-following, PTSFd (from above)	18.1	A	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 13.00 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -2.80 mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl \%
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl A
Peak 15-min total travel time, TT15 3.4 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 55.2
Effective width of outside lane, We 37.68
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.82
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	Mid-Day Peak Hr	
Highway	97	
From/To	NB - Segment 16 (94.27-96.11)	
Jurisdiction	BC	
Analysis Year	2039	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.06	
Peak 15-min vehicle-miles of travel, VMT15	14	veh-mi
Peak-hour vehicle-miles of travel, VMT60	49	veh-mi
Peak 15-min total travel time, TT15	0.2	veh-h
Capacity from ATS, CdATS	746	veh/h
Capacity from PTSF, CdPTSF	970	veh/h
Directional Capacity	746	veh/h

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.2	mi	
Length of two-lane highway upstream of the passing lane,	Lu	0.1	mi
Length of passing lane including tapers, Lpl	1.1	mi	
Average travel speed, ATSd (from above)	59.6	mi / h	
Percent time-spent-following, PTSFd (from above)	18.1	A	

__Average Travel Speed with Passing Lane___
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 13.00 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -13.00 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl \%
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl A
Peak 15-min total travel time, TT15 0.2 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 47.1
Effective width of outside lane, We 38.31
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.50
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 27 / 2015$	
Analysis Time Period	Mid Day Peak Hr	
Highway	97	
From/To	SB - Segment 16 (94.27-96.11)	
Jurisdiction	BC	
Analysis Year	2039	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.07	
Peak 15-min vehicle-miles of travel, VMT15	16	veh-mi
Peak-hour vehicle-miles of travel, VMT60	55	veh-mi
Peak 15-min total travel time, TT15	0.3	veh-h
Capacity from ATS, CdATS	746	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	970	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	746	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.2	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	56.9
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	38.9	B
Level of service, LOSd (from above)		

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 52.9
Effective width of outside lane, We 37.86
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.73
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	NB - Segment 17 (96.11-116.3)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.829	0.829	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	94	pc/h	107
Base percent time-spent-following, (note-4)	BPTSFd	11.0	$\%$
Adjustment for no-passing zones, fnp		44.5	
Percent time-spent-following, PTSFd	31.8	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.07	
Peak 15-min vehicle-miles of travel, VMT15	180	veh-mi
Peak-hour vehicle-miles of travel, VMT60	554	veh-mi
Peak 15-min total travel time, TT15	3.1	veh-h
Capacity from ATS, CdATS	831	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1048	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	831	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	12.6 mi		
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi	
Average travel speed, ATSd (from above)	57.8	mi / h	
Percent time-spent-following, PTSFd (from above)	31.8	A	

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 57.1
Effective width of outside lane, We 38.04
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 6.65
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	Mid Day Peak Hr
Highway	97
From/To	SB - Segment 17 (96.11-116.3)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.9	1.9		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.829	0.829		
Grade adjustment factor, (note-1) fg	0.73	0.73		
Directional flow rate, (note-2) vi	107	pc/h	94	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	12.4	$\%$	
Adjustment for no-passing zones, fnp		44.1		
Percent time-spent-following, PTSFd		35.9	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.08	
Peak 15-min vehicle-miles of travel, VMT15	205	veh-mi
Peak-hour vehicle-miles of travel, VMT60	630	veh-mi
Peak 15-min total travel time, TT15	3.5	veh-h
Capacity from ATS, CdATS	819	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1028	$\mathrm{veh} / \mathrm{h}$
Directional capacity	819	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

_Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 64.9
Effective width of outside lane, We 37.50
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 6.92
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 1 (12.52-20.35)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	15	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	4.9	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	59	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	287	veh/h		
Opposing direction vol	lume	394	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.6	1.4	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.917	0.943	
Grade adjustment factor, (note-1) fg	0.86	0.92	
Directional flow rate, (note-2) vi	395	pc/h	493
Base percent time-spent-following, (note-4)	BPTSFd	44.0	$\%$
Adjustment for no-passing zones, fnp		37.4	
Percent time-spent-following, PTSFd	60.6	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.25	
Peak 15-min vehicle-miles of travel, VMT15	382	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1406	veh-mi
Peak 15-min total travel time, TT15	7.3	veh-h
Capacity from ATS, CdATS	1442	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1540	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1442	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	4.9 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	52.1
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	60.6	
Level of service, LOSd (from above)	C	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 312.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 7.14
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 1 (12.52-20.35)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	15	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	4.9	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	4	\%
Grade: Length	-	mi	\% No-passing zones	69	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	394	veh/h		
Opposing direction vol	lume	287	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.4	1.6	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.943	0.917	
Grade adjustment factor, (note-1) fg	0.92	0.86	
Directional flow rate, (note-2) vi	493	pc/h	395
Base percent time-spent-following, (note-4)	BPTSFd	49.2	$\%$
Adjustment for no-passing zones, fnp		38.2	
Percent time-spent-following, PTSFd		70.4	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.31	
Peak 15-min vehicle-miles of travel, VMT15	525	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1931	veh-mi
Peak 15-min total travel time, TT15	10.2	veh-h
Capacity from ATS, CdATS	1327	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1404	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1327	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	4.9 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	51.5
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	70.4	
Level of service, LOSd (from above)	D	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 428.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 7.30
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 2 (20.35-29.46)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	18	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	5.7	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	56	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	221	veh/h		
Opposing direction vol	lume	303	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.6	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.888	0.903	
Grade adjustment factor, (note-1) fg	0.82	0.86	
Directional flow rate, (note-2) vi	330	pc/h	424
Base percent time-spent-following, (note-4)	BPTSFd	37.4	\%
Adjustment for no-passing zones, fnp		41.4	
Percent time-spent-following, PTSFd		55.5	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.22	
Peak 15-min vehicle-miles of travel, VMT15	342	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1260	veh-mi
Peak 15-min total travel time, TT15	6.5	veh-h
Capacity from ATS, CdATS	1310	veh/h
Capacity from PTSF, CdPTSF	1443	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1310	$\mathrm{veh} / \mathrm{h}$

Total length of analysis segment, Lt	5.7	mi
Length of two-lane highway upstream of the passing lane, Lu	4.4	mi
Length of passing lane including tapers, Lpl	1.3	mi
Average travel speed, ATSd (from above)	52.8	mi/h
Percent time-spent-following, PTSFd (from above)	55.5	
Level of service, LOSd (from above)	C	
_Average Travel Speed with Passing Lane		
Downstream length of two-lane highway within effective	1.70	
length of passing lane for average travel speed, Lde Length of two-lane highway downstream of effective	1.70	m
length of the passing lane for average travel speed, Ld	-1.70	mi
Adj. factor for the effect of passing lane on average speed, fpl	1.10	
Average travel speed including passing lane, ATSpl	53.9	
Percent free flow speed including passing lane, PFFSpl	87.7	\%

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 10.55 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -10.55 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.60
Percent time-spent-following including passing lane, PTSFpl 50.4 \%
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl C
Peak 15-min total travel time, TT15 6.3 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 240.2
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 8.62
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 2 (20.35-29.46)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.27	
Peak 15-min vehicle-miles of travel, VMT15	469	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1727	veh-mi
Peak 15-min total travel time, TT15	8.9	veh-h
Capacity from ATS, CdATS	1207	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1335	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1207	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 329.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 8.78
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 3 (29.46-32.86)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.89	
Shoulder width	6.0	ft	\% Trucks and buses	20	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	2.1	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	37	\%
Up/down	-	\%	Access point density	3	/mi
Analysis direction vol	lume	204	veh/h		
Opposing direction vol	lume	279	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.6	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.877	0.893	
Grade adjustment factor, (note-1) fg	0.81	0.86	
Directional flow rate, (note-2) vi	323	pc/h	408
Base percent time-spent-following, (note-4)	BPTSFd	36.2	$\%$
Adjustment for no-passing zones, fnp		37.4	
Percent time-spent-following, PTSFd	52.7	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.22	
Peak 15-min vehicle-miles of travel, VMT15	120	veh-mi
Peak-hour vehicle-miles of travel, VMT60	428	veh-mi
Peak 15-min total travel time, TT15	2.2	veh-h
Capacity from ATS, CdATS	1274	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1417	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1274	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	2.1	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	$53.5 \mathrm{mi} / \mathrm{h}$	
Percent time-spent-following, PTSFd (from above)	52.7	
Level of service, LOSd (from above)	C	

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 229.2
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.78
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 3 (29.46-32.86)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.89	
Shoulder width	6.0	ft	\% Trucks and buses	20	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	2.1	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	51	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	279	veh/h		
Opposing direction vol	lume	204	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.6	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.893	0.877	
Grade adjustment factor, (note-1) fg	0.86		0.81
Directional flow rate, (note-2) vi	408	pc/h	323
Base percent time-spent-following, (note-4)	BPTSFd	42.1	$\%$
Adjustment for no-passing zones, fnp		41.4	
Percent time-spent-following, PTSFd		65.2	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.27	
Peak 15-min vehicle-miles of travel, VMT15	165	veh-mi
Peak-hour vehicle-miles of travel, VMT60	586	veh-mi
Peak 15-min total travel time, TT15	3.1	veh-h
Capacity from ATS, CdATS	1185	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1305	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1185	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

_Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 313.5
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.94
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 26 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 4 (32.86-36.28)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.89	
Shoulder width	6.0	ft	\% Trucks and buses	20	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	2.1	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	53	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	209	veh/h		
Opposing direction vol	lume	287	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.6	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.877	0.893	
Grade adjustment factor, (note-1) fg	0.82	0.86	
Directional flow rate, (note-2) vi	326	pc/h	420
Base percent time-spent-following, (note-4)	BPTSFd	37.3	$\%$
Adjustment for no-passing zones, fnp		41.1	
Percent time-spent-following, PTSFd	55.3	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.22	
Peak 15-min vehicle-miles of travel, VMT15	123	veh-mi
Peak-hour vehicle-miles of travel, VMT60	439	veh-mi
Peak 15-min total travel time, TT15	2.3	veh-h
Capacity from ATS, CdATS	1289	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1432	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1289	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 234.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.79
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 26 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 4 (32.86-36.28)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.89	
Shoulder width	6.0	ft	\% Trucks and buses	20	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	2.1	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	42	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	287	veh/h		
Opposing direction vol	lume	209	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.6	1.7		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.893	0.877		
Grade adjustment factor, (note-1) fg	0.86	0.82		
Directional flow rate, (note-2) vi	420	pc/h	326	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	43.0	$\%$	
Adjustment for no-passing zones, fnp		38.1		
Percent time-spent-following, PTSFd		64.5	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.27	
Peak 15-min vehicle-miles of travel, VMT15	169	veh-mi
Peak-hour vehicle-miles of travel, VMT60	603	veh-mi
Peak 15-min total travel time, TT15	3.2	veh-h
Capacity from ATS, CdATS	1185	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1305	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1185	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	2.1	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	53.2
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	64.5	
Level of service, LOSd (from above)	C	

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 322.5
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.95
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 5 (36.28-41.52)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.82	
Shoulder width	6.0	ft	\% Trucks and buses	22	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	3.3	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	26	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	218	veh/h		
Opposing direction vol	lume	299	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.6	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.867	0.883	
Grade adjustment factor, (note-1) fg	0.83	0.88	
Directional flow rate, (note-2) vi	370	pc/h	469
Base percent time-spent-following, (note-4)	BPTSFd	42.2	$\%$
Adjustment for no-passing zones, fnp		30.4	
Percent time-spent-following, PTSFd	55.6	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.25	
Peak 15-min vehicle-miles of travel, VMT15	219	veh-mi
Peak-hour vehicle-miles of travel, VMT60	719	veh-mi
Peak 15-min total travel time, TT15	4.1	veh-h
Capacity from ATS, CdATS	1320	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1469	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1320	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	3.3 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	52.9
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	55.6	
Level of service, LOSd (from above)	C	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 265.9
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.12
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 5 (36.28-41.52)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.82	
Shoulder width	6.0	ft	\% Trucks and buses	22	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	3.3	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	27	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	299	veh/h		
Opposing direction vol	lume	218	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.6	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.883	0.867	
Grade adjustment factor, (note-1) fg	0.88	0.83	
Directional flow rate, (note-2) vi	469	pc/h	370
Base percent time-spent-following, (note-4)	BPTSFd	47.3	$\%$
Adjustment for no-passing zones, fnp		30.6	
Percent time-spent-following, PTSFd	64.4	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.30	
Peak 15-min vehicle-miles of travel, VMT15	301	veh-mi
Peak-hour vehicle-miles of travel, VMT60	987	veh-mi
Peak 15-min total travel time, TT15	5.6	veh-h
Capacity from ATS, CdATS	1227	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1322	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1227	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	3.3 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	53.4
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	64.4	
Level of service, LOSd (from above)	C	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 364.6
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.28
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 6 (41.52-43.89)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.6	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.867	0.883	
Grade adjustment factor, (note-1) fg	0.83	0.88	
Directional flow rate, (note-2) vi	365	pc/h	463
Base percent time-spent-following, (note-4)	BPTSFd	40.8	\%
Adjustment for no-passing zones, fnp		37.7	
Percent time-spent-following, PTSFd		57.4	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.24	
Peak 15-min vehicle-miles of travel, VMT15	98	veh-mi
Peak-hour vehicle-miles of travel, VMT60	327	veh-mi
Peak 15-min total travel time, TT15	1.9	veh-h
Capacity from ATS, CdATS	1320	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1469	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1320	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	1.5 mi	
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	52.9
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	57.4	
Level of service, LOSd (from above)	C	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 262.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.12
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 6 (41.52-43.89)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.83	
Shoulder width	6.0	ft	\% Trucks and buses	22	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	1.5	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	60	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	299	veh/h		
Opposing direction vol	lume	218	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.6	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.883	0.867	
Grade adjustment factor, (note-1) fg	0.88	0.83	
Directional flow rate, (note-2) vi	463	pc/h	365
Base percent time-spent-following, (note-4)	BPTSFd	47.3	$\%$
Adjustment for no-passing zones, fnp		39.1	
Percent time-spent-following, PTSFd	69.2	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.30	
Peak 15-min vehicle-miles of travel, VMT15	135	veh-mi
Peak-hour vehicle-miles of travel, VMT60	449	veh-mi
Peak 15-min total travel time, TT15	2.6	veh-h
Capacity from ATS, CdATS	1227	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1322	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1227	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 360.2
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.27
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 7 (43.89-53.44)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	23	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	6.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	72	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	196	veh/h		
Opposing direction vol	lume	269	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.6	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.861	0.879	
Grade adjustment factor, (note-1) fg	0.81	0.85	
Directional flow rate, (note-2) vi	319	pc/h	409
Base percent time-spent-following, (note-4)	BPTSFd	35.9	$\%$
Adjustment for no-passing zones, fnp		44.8	
Percent time-spent-following, PTSFd	55.5	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.22	
Peak 15-min vehicle-miles of travel, VMT15	334	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1176	veh-mi
Peak 15-min total travel time, TT15	6.3	veh-h
Capacity from ATS, CdATS	1244	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1417	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1244	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 222.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.70
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 7 (43.89-53.44)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	23	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	6.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	76	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	269	veh/h		
Opposing direction vol	lume	196	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.27	
Peak 15-min vehicle-miles of travel, VMT15	459	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1614	veh-mi
Peak 15-min total travel time, TT15	8.7	veh-h
Capacity from ATS, CdATS	1140	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1285	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1140	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 305.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.86
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 8 (53.44-71.94)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	23	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	11.6	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	52	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	169	veh/h		
Opposing direction vol	lume	231	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.845	0.861	
Grade adjustment factor, (note-1) fg	0.79	0.83	
Directional flow rate, (note-2) vi	288	pc/h	367
Base percent time-spent-following, (note-4)	BPTSFd	33.6	$\%$
Adjustment for no-passing zones, fnp		45.9	
Percent time-spent-following, PTSFd	53.8	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.20	
Peak 15-min vehicle-miles of travel, VMT15	557	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1960	veh-mi
Peak 15-min total travel time, TT15	10.3	veh-h
Capacity from ATS, CdATS	1216	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1315	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1216	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	11.6 mi		
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	53.8	mi
Average travel speed, ATSd (from above)	53.8		
Percent time-spent-following, PTSFd (from above)	C		
Level of service, LOSd (from above)			

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 192.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.62
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 24 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 8 (53.44-71.94)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	23	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	11.6	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	49	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	231	veh/h		
Opposing direction vol	lume	169	veh/h		

Average Travel Speed

\qquad

Direction Analysis(d)			Opposing (o)		
PCE for trucks, ET	1.7		1.8		
PCE for RVs, ER	1.0		1.0		
Heavy-vehicle adjustment factor, fHV	0.861		0.845		
Grade adjustment factor, (note-1) fg	0.83		0.79		
Directional flow rate, (note-2) vi	367	pc / h	288		pc / h
Base percent time-spent-following, (note-4	Ee-4) BPTSFd	39.0	\%		
Adjustment for no-passing zones, fnp		44.9			
Percent time-spent-following, PTSFd		64.2	\%		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.25	
Peak 15-min vehicle-miles of travel, VMT15	761	veh-mi
Peak-hour vehicle-miles of travel, VMT60	2680	veh-mi
Peak 15-min total travel time, TT15	14.2	veh-h
Capacity from ATS, CdATS	1112	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1230	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1112	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	11.6 mi		
Length of two-lane highway upstream of the passing lane,	Lu	-	mi
Length of passing lane including tapers, Lpl	-	53.5	mi
Average travel speed, ATSd (from above)	64.2	C	
Percent time-spent-following, PTSFd (from above)			

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 262.5
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.78
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	MCElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 9 (71.94-87.9)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.82	
Shoulder width	6.0	ft	\% Trucks and buses	26	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	10.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	54	\%
Up/down	-	\%	Access point density	3	/mi
Analysis direction vol	lume	135	veh/h		
Opposing direction vol	lume	185	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.828	0.846	
Grade adjustment factor, (note-1) fg	0.78	0.81	
Directional flow rate, (note-2) vi	255	pc/h	329
Base percent time-spent-following, (note-4)	BPTSFd	29.5	$\%$
Adjustment for no-passing zones, fnp		49.8	
Percent time-spent-following, PTSFd		51.2	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.18	
Peak 15-min vehicle-miles of travel, VMT15	412	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1350	veh-mi
Peak 15-min total travel time, TT15	7.7	veh-h
Capacity from ATS, CdATS	1124	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1265	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1124	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 164.6
Effective width of outside lane, We 29.85
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.08
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	MCElhanney
Date Performed	$3 / 24 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 9 (71.94-87.9)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.82	
Shoulder width	6.0	ft	\% Trucks and buses	26	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	10.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	56	\%
Up/down	-	\%	Access point density	3	/mi
Analysis direction vol	lume	185	veh/h		
Opposing direction vol	lume	135	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.7	1.8		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.846	0.828		
Grade adjustment factor, (note-1) fg	0.81	0.78		
Directional flow rate, (note-2) vi	329	pc/h	255	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	34.0	$\%$	
Adjustment for no-passing zones, fnp		50.5		
Percent time-spent-following, PTSFd		62.4	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.23	
Peak 15-min vehicle-miles of travel, VMT15	564	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1850	veh-mi
Peak 15-min total travel time, TT15	10.6	veh-h
Capacity from ATS, CdATS	1023	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1194	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1023	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 225.6
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 13.82
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	MCElhanney	
Date Performed	$3 / 25 / 2015$	
Analysis Time Period	PM Peak Hr	
Highway	97	
From/To	NB - Segment 10a (1183 0-21.1)	
Jurisdiction	BC	
Analysis Year	2039	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.17	
Peak 15-min vehicle-miles of travel, VMT15	487	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1716	veh-mi
Peak 15-min total travel time, TT15	9.0	veh-h
Capacity from ATS, CdATS	1116	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1237	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1116	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	13.2 mi	
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	54.0	mi / m
Percent time-spent-following, PTSFd (from above)	50.4	
Level of service, LoSd (from above)	C	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 147.7
Effective width of outside lane, We 30.30
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.46
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 25 / 2015$	
Analysis Time Period	PM Peak Hr	
Highway	97	
From/To	SB - Segment 10s (1183 0-21.1)	
Jurisdiction	BC	
Analysis Year	2039	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.21	
Peak 15-min vehicle-miles of travel, VMT15	667	veh-mi
Peak-hour vehicle-miles of travel, VMT60	2350	veh-mi
Peak 15-min total travel time, TT15	12.5	veh-h
Capacity from ATS, CdATS	1029	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1193	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1029	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	13.2	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	53.5	mi / h
Percent time-spent-following, PTSFd (from above)	60.0	
Level of service, LOSd (from above)	C	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl - \%
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 202.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.33
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 10b (21.1-38.33)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	24	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	10.8	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	45	\%
Up/down	-	\%	Access point density	3	/mi
Analysis direction vol	lume	130	veh/h		
Opposing direction vol	lume	178	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.839	0.856	
Grade adjustment factor, (note-1) fg	0.76	0.80	
Directional flow rate, (note-2) vi	232	pc/h	295
Base percent time-spent-following, (note-4)	BPTSFd	27.1	$\%$
Adjustment for no-passing zones, fnp		47.4	
Percent time-spent-following, PTSFd	48.0	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.17	
Peak 15-min vehicle-miles of travel, VMT15	399	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1404	veh-mi
Peak 15-min total travel time, TT15	7.3	veh-h
Capacity from ATS, CdATS	1116	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1237	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1116	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 147.7
Effective width of outside lane, We 30.30
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.46
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 10b (21.1-38.33)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.21	
Peak 15-min vehicle-miles of travel, VMT15	546	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1922	veh-mi
Peak 15-min total travel time, TT15	10.1	veh-h
Capacity from ATS, CdATS	1029	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1193	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1029	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	10.8	mi
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	53.9	mi / m
Percent time-spent-following, PTSFd (from above)	57.3	
Level of service, LOSd (from above)	C	

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 202.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.33
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 11 (38.33-52.6)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.839	0.856	
Grade adjustment factor, (note-1) fg	0.78	0.82	
Directional flow rate, (note-2) vi	257	pc/h	329

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.18	
Peak 15-min vehicle-miles of travel, VMT15	374	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1317	veh-mi
Peak 15-min total travel time, TT15	6.9	veh-h
Capacity from ATS, CdATS	1143	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1278	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1143	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	8.9 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad-\quad \mathrm{mi}$	
Length of passing lane including tapers, Lpl	mi	
Average travel speed, ATSd (from above)	54.2	mi / h
Percent time-spent-following, PTSFd (from above)	50.6	
Level of service, LOSd (from above)	C	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 168.2
Effective width of outside lane, We 28.68
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.00
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 11 (38.33-52.6)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.7	1.8		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.856	0.839		
Grade adjustment factor, (note-1) fg	0.82	0.78		
Directional flow rate, (note-2) vi	329	pc/h	257	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	34.0	$\%$	
Adjustment for no-passing zones, fnp		49.1		
Percent time-spent-following, PTSFd	61.6	$\%$		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.23	
Peak 15-min vehicle-miles of travel, VMT15	513	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1807	veh-mi
Peak 15-min total travel time, TT15	9.6	veh-h
Capacity from ATS, CdATS	1055	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1208	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1055	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 230.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.40
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	MCElhanney
Date Performed	$2 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 12 (52.6-61.1)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.839	0.856	
Grade adjustment factor, (note-1) fg	0.78	0.82	
Directional flow rate, (note-2) vi	273	pc/h	348
Base percent time-spent-following, (note-4)	BPTSFd	31.7	$\%$
Adjustment for no-passing zones, fnp		50.5	
Percent time-spent-following, PTSFd	53.9	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.19	
Peak 15-min vehicle-miles of travel, VMT15	236	veh-mi
Peak-hour vehicle-miles of travel, VMT60	832	veh-mi
Peak 15-min total travel time, TT15	4.4	veh-h
Capacity from ATS, CdATS	1156	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1293	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1156	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 178.4
Effective width of outside lane, We 27.87
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.26
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	MCElhanney
Date Performed	$2 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 12 (52.6-61.1)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	24	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	5.3	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	62	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	215	veh/h		
Opposing direction vol	lume	157	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.856	0.839	
Grade adjustment factor, (note-1) fg	0.82	0.78	
Directional flow rate, (note-2) vi	348	pc/h	273
Base percent time-spent-following, (note-4)	BPTSFd	36.5	$\%$
Adjustment for no-passing zones, fnp		50.5	
Percent time-spent-following, PTSFd	64.8	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.23	
Peak 15-min vehicle-miles of travel, VMT15	324	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1140	veh-mi
Peak 15-min total travel time, TT15	6.0	veh-h
Capacity from ATS, CdATS	1069	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1223	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1069	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	5.3 mi	
Length of two-lane highway upstream of the passing lane, Lu	$-\quad-\quad \mathrm{mi}$	
Length of passing lane including tapers, Lpl	mi	
Average travel speed, ATSd (from above)	53.6	mi / h
Percent time-spent-following, PTSFd (from above)	64.8	
Level of service, LOSd (from above)	C	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 244.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.42
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 13 (61.1-63.93)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.97	
Shoulder width	6.0	ft	\% Trucks and buses	28	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	1.8	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	57	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	166	veh/h		
Opposing direction vol	lume	228	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.817	0.836	
Grade adjustment factor, (note-1) fg	0.78	0.82	
Directional flow rate, (note-2) vi	269	pc/h	343
Base percent time-spent-following, (note-4)	BPTSFd	31.5	$\%$
Adjustment for no-passing zones, fnp		49.8	
Percent time-spent-following, PTSFd	53.4	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.19	
Peak 15-min vehicle-miles of travel, VMT15	77	veh-mi
Peak-hour vehicle-miles of travel, VMT60	299	veh-mi
Peak 15-min total travel time, TT15	1.4	veh-h
Capacity from ATS, CdATS	1118	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1266	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1118	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 171.1
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 15.19
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 13 (61.1-63.93)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.97	
Shoulder width	6.0	ft	\% Trucks and buses	28	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	1.8	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	57	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	228	veh/h		
Opposing direction vol	lume	166	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.836	0.817	
Grade adjustment factor, (note-1) fg	0.82	0.78	
Directional flow rate, (note-2) vi	343	pc/h	269
Base percent time-spent-following, (note-4)	BPTSFd	36.3	$\%$
Adjustment for no-passing zones, fnp		49.8	
Percent time-spent-following, PTSFd	64.2	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.24	
Peak 15-min vehicle-miles of travel, VMT15	106	veh-mi
Peak-hour vehicle-miles of travel, VMT60	410	veh-mi
Peak 15-min total travel time, TT15	2.0	veh-h
Capacity from ATS, CdATS	1031	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1180	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1031	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 235.1
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 15.35
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 14 (63.93-70.68)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing		
PCE for trucks, ET	1.8		1.7		
PCE for RVs, ER	1.0		1.0		
Heavy-vehicle adjustment factor, fHV	0.862		0.877		
Grade adjustment factor, (note-1) fg	0.78		0.82		
Directional flow rate, (note-2) vi	261	pc / h	333		pc / h
Base percent time-spent-following, (note-4)	e-4) BPTSFd	29.9	\%		
Adjustment for no-passing zones, fnp		48.3			
Percent time-spent-following, PTSFd		51.1	\%		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.18	
Peak 15-min vehicle-miles of travel, VMT15	184	veh-mi
Peak-hour vehicle-miles of travel, VMT60	714	veh-mi
Peak 15-min total travel time, TT15	3.4	veh-h
Capacity from ATS, CdATS	1185	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1321	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1185	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	4.2	mi
Length of two-lane highway upstream of the passing lane,	Lu	-
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	54.0	mi / h
Percent time-spent-following, PTSFd (from above)	51.1	
Level of service, LOSd (from above)	C	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 175.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.64
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 14 (63.93-70.68)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.877	0.862	
Grade adjustment factor, (note-1) fg	0.83	0.79	pch/h
Directional flow rate, (note-2) vi	354	pc/h	277
Base percent time-spent-following, (note-4)	BPTSFd	36.8	$\%$
Adjustment for no-passing zones, fnp		44.9	
Percent time-spent-following, PTSFd	62.0	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.24	
Peak 15-min vehicle-miles of travel, VMT15	271	veh-mi
Peak-hour vehicle-miles of travel, VMT60	974	veh-mi
Peak 15-min total travel time, TT15	5.0	veh-h
Capacity from ATS, CdATS	1129	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1253	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1129	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 257.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.84
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 15 (70.68-94.27)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.90	
Shoulder width	6.0	ft	\% Trucks and buses	21	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	14.7	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	38	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	56	veh/h		
Opposing direction vol	lume	77	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.841	0.841	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	101	pc/h	139
Base percent time-spent-following, (note-4)	BPTSFd	11.7	\%
Adjustment for no-passing zones, fnp		41.5	
Percent time-spent-following, PTSFd		29.2	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.07	
Peak 15-min vehicle-miles of travel, VMT15	229	veh-mi
Peak-hour vehicle-miles of travel, VMT60	823	veh-mi
Peak 15-min total travel time, TT15	4.0	veh-h
Capacity from ATS, CdATS	904	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1106	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	904	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	14.7	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	mi
Average travel speed, ATSd (from above)	57.0	mi / h
Percent time-spent-following, PTSFd (from above)	29.2	A

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 62.2
Effective width of outside lane, We 36.96
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.79
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 15 (70.68-94.27)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.9	1.9		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.841	0.841		
Grade adjustment factor, (note-1) fg	0.73		0.73	
Directional flow rate, (note-2) vi	139	pc/h	101	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	15.7	$\%$	
Adjustment for no-passing zones, fnp		14.5		
Percent time-spent-following, PTSFd		24.1	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.10	
Peak 15-min vehicle-miles of travel, VMT15	314	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1132	veh-mi
Peak 15-min total travel time, TT15	5.4	veh-h
Capacity from ATS, CdATS	839	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1063	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	839	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	14.7	mi	
Length of two-lane highway upstream of the passing lane,	Lu	1.6	mi
Length of passing lane including tapers, Lpl	2.9	mi	
Average travel speed, ATSd (from above)	58.5	mi / h	
Percent time-spent-following, PTSFd (from above)	24.1		
Level of service, LoSd (from above)	A		

_Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl A
Peak 15-min total travel time, TT15 5.3 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 85.6
Effective width of outside lane, We 35.07
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 6.64
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 16 (94.27-96.11)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.90	
Shoulder width	6.0	ft	\% Trucks and buses	21	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	1.2	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	8	\%
Up/down	-	\%	Access point density	0	/mi
Analysis direction vol	lume	54	veh/h		
Opposing direction vol	lume	74	veh/h		

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.9			1.9		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.841			0.841		
Grade adjustment factor, (note-1) fg	0.73			0.73		
Directional flow rate, (note-2) vi	98	pc / h		134		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	11.4	\%			
Adjustment for no-passing zones, fnp		19.3				
Percent time-spent-following, PTSFd		19.6	\%			

Level of Service and Other Performance Measures \qquad

| Level of service, LOS | A | |
| :--- | :--- | :--- | :--- |
| Volume to capacity ratio, v/c | 0.07 | |
| Peak 15-min vehicle-miles of travel, VMT15 | 18 | veh-mi |
| Peak-hour vehicle-miles of travel, VMT60 | 65 | veh-mi |
| Peak 15-min total travel time, TT15 | 0.3 | veh-h |
| Capacity from ATS, CdATS | 891 | $\mathrm{veh} / \mathrm{h}$ |
| Capacity from PTSF, CdPTSF | 1092 | $\mathrm{veh} / \mathrm{h}$ |
| Directional Capacity | 891 | $\mathrm{veh} / \mathrm{h}$ |

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.2	mi	
Length of two-lane highway upstream of the passing lane,	Lu	0.1	mi
Length of passing lane including tapers, Lpl	1.1	mi	
Average travel speed, ATSd (from above)	58.6	mi / h	
Percent time-spent-following, PTSFd (from above)	19.6		
Level of service, LoSd (from above)	A		

__Average Travel Speed with Passing Lane___
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 13.00 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -13.00 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl \%
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl A
Peak 15-min total travel time, TT15 0.3 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 60.0
Effective width of outside lane, We 37.14
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.71
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$1 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 16 (94.27-96.11)
Jurisdiction	BC
Analysis Year	2014
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.9	1.9		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.841	0.841		
Grade adjustment factor, (note-1) fg	0.73	0.73		
Directional flow rate, (note-2) vi	134	pc/h	98	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	15.2	$\%$	
Adjustment for no-passing zones, fnp		54.1		
Percent time-spent-following, PTSFd		46.4	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.10	
Peak 15-min vehicle-miles of travel, VMT15	25	veh-mi
Peak-hour vehicle-miles of travel, VMT60	89	veh-mi
Peak 15-min total travel time, TT15	0.4	veh-h
Capacity from ATS, CdATS	839	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1044	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	839	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

Total length of analysis segment, Lt	1.2	mi
Length of two-lane highway upstream of the passing lane, Lu	-	mi
Length of passing lane including tapers, Lpl	-	56.3 mi
Average travel speed, ATSd (from above)	mi / h	
Percent time-spent-following, PTSFd (from above)	46.4	
Level of service, LOSd (from above)	B	

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 82.2
Effective width of outside lane, We 35.34
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 6.52
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 17 (96.11-116.3)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.94	
Shoulder width	6.0	ft	\% Trucks and buses	21	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	12.6	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	45	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	58	veh/h		
Opposing direction vol	lume	79	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.841	0.841	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	100	pc/h	137
Base percent time-spent-following, (note-4)	BPTSFd	11.6	$\%$
Adjustment for no-passing zones, fnp		44.8	
Percent time-spent-following, PTSFd	30.5	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	A	
Volume to capacity ratio, v/c	0.07	
Peak 15-min vehicle-miles of travel, VMT15	194	veh-mi
Peak-hour vehicle-miles of travel, VMT60	731	veh-mi
Peak 15-min total travel time, TT15	3.4	veh-h
Capacity from ATS, CdATS	891	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1106	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	891	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 61.7
Effective width of outside lane, We 36.78
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.86
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 17 (96.11-116.3)
Jurisdiction	BC
Analysis Year	2039
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.9	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.841	0.841	
Grade adjustment factor, (note-1) fg	0.73	0.73	
Directional flow rate, (note-2) vi	137	pc/h	100
Base percent time-spent-following, (note-4)	BPTSFd	15.5	$\%$
Adjustment for no-passing zones, fnp		44.4	
Percent time-spent-following, PTSFd		41.2	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.10	
Peak 15-min vehicle-miles of travel, VMT15	265	veh-mi
Peak-hour vehicle-miles of travel, VMT60	995	veh-mi
Peak 15-min total travel time, TT15	4.6	veh-h
Capacity from ATS, CdATS	839	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1044	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	839	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis \qquad

__Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad

Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde - mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld - mi
Adj. factor for the effect of passing lane on percent time-spent-following, fpl
Percent time-spent-following including passing lane, PTSFpl -
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl E
Peak 15-min total travel time, TT15 - veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 84.0
Effective width of outside lane, We 34.89
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 6.69
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```


Appendix F: Passing Lane HCS Analysis Reports

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 2 / 2015$	
Analysis Time Period	AM Peak Hr	
Highway	97	
From/To	NB - Segment 1 (12.52-20.35)	
Jurisdiction	BC	
Analysis Year	2039 with PL	
Description Alaska Highway Corridor Study		

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	12	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	4.9	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	59	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	317	veh/h		
Opposing direction vo	lume	187	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.6	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.933	0.923	
Grade adjustment factor, (note-1) fg	0.88	0.81	
Directional flow rate, (note-2) vi	439	pc/h	284
Base percent time-spent-following, (note-4)	BPTSFd	42.7	\%
Adjustment for no-passing zones, fnp		41.4	
Percent time-spent-following, PTSFd		67.8	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.27	
Peak 15-min vehicle-miles of travel, VMT15	441	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1553	veh-mi
Peak 15-min total travel time, TT15	8.4	veh-h
Capacity from ATS, CdATS	1231	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1317	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1231	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

| Total length of analysis segment, Lt | 4.9 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | 3.2 | mi |
| Length of passing lane including tapers, Lpl | 1.7 | mi |
| Average travel speed, ATSd (from above) | 52.4 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 67.8 | |
| Level of service, LOSd (from above) | D | |

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 7.79 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -7.79 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.61
Percent time-spent-following including passing lane, PTSFpl 58.6 \%
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl C
Peak 15-min total travel time, TT15 8.2 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 360.2
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 5.78
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 2 / 2015$	
Analysis Time Period	AM Peak Hr	
Highway	97	
From/To	NB - Segment 4 (32.86-36.28)	
Jurisdiction	BC	
Analysis Year	2039 with PL	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.867	0.850	
Grade adjustment factor, (note-1) fg	0.84	0.77	
Directional flow rate, (note-2) vi	373	pc/h	244
Base percent time-spent-following, (note-4)	BPTSFd	37.9	$\%$
Adjustment for no-passing zones, fnp		45.6	
Percent time-spent-following, PTSFd	65.5	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.25	
Peak 15-min vehicle-miles of travel, VMT15	143	veh-mi
Peak-hour vehicle-miles of travel, VMT60	485	veh-mi
Peak 15-min total travel time, TT15	2.7	veh-h
Capacity from ATS, CdATS	1062	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1208	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1062	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	2.1	mi	
Length of two-lane highway upstream of the passing lane,	Lu	0.6	mi
Length of passing lane including tapers, Lpl	1.3	mi	
Average travel speed, ATSd (from above)	53.4	mi / h	
Percent time-spent-following, PTSFd (from above)	65.5	D	

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl
Percent free flow speed including passing lane, PFFSpl

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 9.05 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -8.85 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.60
Percent time-spent-following including passing lane, PTSFpl 46.8 \%
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl B
Peak 15-min total travel time, TT15 2.5 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 271.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.13
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 2 / 2015$	
Analysis Time Period	AM Peak Hr	
Highway	97	
From/To	NB - Segment 6 (41.52-43.89)	
Jurisdiction	BC	
Analysis Year	2039 with PL	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.25	
Peak 15-min vehicle-miles of travel, VMT15	98	$\mathrm{veh}-\mathrm{mi}$
Peak-hour vehicle-miles of travel, VMT60	360	$\mathrm{veh}-\mathrm{mi}$
Peak l5-min total travel time, TT15	1.8	$\mathrm{veh}-\mathrm{h}$
Capacity from ATS, CdATS	1001	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1172	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1001	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane, Lu	0.0	mi	
Length of passing lane including tapers, Lpl	1.3 mi		
Average travel speed, ATSd (from above)	53.3	mi / h	
Percent time-spent-following, PTSFd (from above)	65.9	D	

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld
Adj. \quad factor for the effect of passing lane
on average speed, fpl

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 9.01 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -8.81 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.60
Percent time-spent-following including passing lane, PTSFpl 39.6 \%
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl B
Peak 15-min total travel time, TT15 1.7 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 260.9
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 14.63
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 2 / 2015$	
Analysis Time Period	AM Peak Hr	
Highway	97	
From/To	NB - Segment 7 (43.89-53.44)	
Jurisdiction	BC	
Analysis Year	2039 with PL	
Description Alaska Highway Corridor Study		

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	28	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	6.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	72	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	216	veh/h		
Opposing direction vol	lume,	127	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.24	
Peak 15-min vehicle-miles of travel, VMT15	352	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1296	veh-mi
Peak 15-min total travel time, TT15	6.6	veh-h
Capacity from ATS, CdATS	959	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1151	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	959	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	6.0	mi	
Length of two-lane highway upstream of the passing lane,	Lu	1.0	mi
Length of passing lane including tapers, Lpl	1.3	mi	
Average travel speed, ATSd (from above)	53.5	mi / h	
Percent time-spent-following, PTSFd (from above)	65.1		
Level of service, LOSd (from above)	D		

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 10.13 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -6.43 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.60
Percent time-spent-following including passing lane, PTSFpl 46.3 \%
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl B
Peak 15-min total travel time, TT15 6.4 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 234.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 15.35
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 8 (53.44-71.94)
Jurisdiction	BC
Analysis Year	2039 with PL @ ACR
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	28	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	11.6	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	52	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	186	veh/h		
Opposing direction vol	lume	110	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.836	0.817	
Grade adjustment factor, (note-1) fg	0.80	0.74	
Directional flow rate, (note-2) vi	302	pc/h	198
Base percent time-spent-following, (note-4)	BPTSFd	30.4	$\%$
Adjustment for no-passing zones, fnp		47.2	
Percent time-spent-following, PTSFd		58.9	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.22	
Peak 15-min vehicle-miles of travel, VMT15	586	veh-mi
Peak-hour vehicle-miles of travel, VMT60	2158	veh-mi
Peak 15-min total travel time, TT15	10.9	veh-h
Capacity from ATS, CdATS	935	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1111	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	935	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	11.6 mi	
Length of two-lane highway upstream of the passing lane,	Lu	1.0
Length of passing lane including tapers, Lpl	mi	
Average travel speed, ATSd (from above)	1.6	mi
Percent time-spent-following, PTSFd (from above)	54.0	mi / h
Level of service, LOSd (from above)	C	

Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 11.53 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -2.53 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.60
Percent time-spent-following including passing lane, PTSFpl 44.5 \%
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl B
Peak 15-min total travel time, TT15 10.6 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 202.2
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 15.27
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 8 (53.44-71.94)
Jurisdiction	BC
Analysis Year	2039 with PL @ ILR
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	28	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	11.6	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	52	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	186	veh/h		
Opposing direction vol	lume	110	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.836	0.817	
Grade adjustment factor, (note-1) fg	0.80	0.74	
Directional flow rate, (note-2) vi	302	pc/h	198
Base percent time-spent-following, (note-4)	BPTSFd	30.4	$\%$
Adjustment for no-passing zones, fnp		47.2	
Percent time-spent-following, PTSFd		58.9	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.22	
Peak 15-min vehicle-miles of travel, VMT15	586	veh-mi
Peak-hour vehicle-miles of travel, VMT60	2158	veh-mi
Peak 15-min total travel time, TT15	10.9	veh-h
Capacity from ATS, CdATS	935	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1111	$\mathrm{veh} / \mathrm{h}$
Directional capacity	935	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	11.6 mi		
Length of two-lane highway upstream of the passing lane,	Lu	9.4	mi
Length of passing lane including tapers, Lpl	1.3	mi	
Average travel speed, ATSd (from above)	54.0	mi / h	
Percent time-spent-following, PTSFd (from above)	58.9	C	
Level of service, LoSd (from above)			

Downstream length of two-lane highway within effective		
Length of two-lane highway downstream of effective length of the passing lane for average travel speed, Ld	-0.80	mi
Adj. factor for the effect of passing lane on average speed, fpl	1.10	
Average travel speed including passing lane, ATSpl	54.8	
Percent free flow speed including passing lane, PFFSpl	88.4	\%

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 11.53 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -10.63 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.60
Percent time-spent-following including passing lane, PTSFpl 54.5 \%
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl C
Peak 15-min total travel time, TT15 10.7 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 202.2
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 15.27
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 10b (21.1-38.33)
Jurisdiction	BC
Analysis Year	2039 with PL Gundy
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.8	1.9		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.828	0.810		
Grade adjustment factor, (note-1) fg	0.77	0.73		
Directional flow rate, (note-2) vi	255	pc/h	161	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	26.5	$\%$	
Adjustment for no-passing zones, fnp		45.0		
Percent time-spent-following, PTSFd		54.1	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.18	
Peak 15-min vehicle-miles of travel, VMT15	439	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1544	veh-mi
Peak 15-min total travel time, TT15	8.0	veh-h
Capacity from ATS, CdATS	880	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1084	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	880	$\mathrm{veh} / \mathrm{h}$

Total length of analysis segment, Lt			
Length of two-lane highway upstream of the passing lane, Lu	10.8	4.3	mi
Length of passing lane including tapers, Lpl	1.6	mi	
Average travel speed, ATSd (from above)	54.6	mi / h	
Percent time-spent-following, PTSFd (from above)	54.1		
Level of service, LOSd (from above)	C		

Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde 1.70 mi
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld 3.20 mi
Adj. factor for the effect of passing lane
on average speed, fpl 1.10
Average travel speed including passing lane, ATSpl 55.7
Percent free flow speed including passing lane, PFFSpl 90.3 \%
Percent Time-Spent-Following with Passing Lane__
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde
Length of two-lane highway downstream of effective length of
the passing lane for percent time-spent-following, Ld
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl
Percent time-spent-following
including passing lane, PTSFpl
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl B
Peak 15-min total travel time, TT15 7.9 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 162.5
Effective width of outside lane, We 29.13
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.29
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	AM Peak Hr
Highway	97
From/To	NB - Segment 10b (21.1-38.33)
Jurisdiction	BC
Analysis Year	2039 with PL
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.8	1.9		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.828	0.810		
Grade adjustment factor, (note-1) fg	0.77	0.73		
Directional flow rate, (note-2) vi	255	pc/h	161	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	26.5	$\%$	
Adjustment for no-passing zones, fnp		45.0		
Percent time-spent-following, PTSFd		54.1	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.18	
Peak 15-min vehicle-miles of travel, VMT15	439	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1544	veh-mi
Peak 15-min total travel time, TT15	8.0	veh-h
Capacity from ATS, CdATS	880	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1084	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	880	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	10.8	mi	
Length of two-lane highway upstream of the passing lane,	Lu	9.2	mi
Length of passing lane including tapers, Lpl	1.6	mi	
Average travel speed, ATSd (from above)	54.6	mi / h	
Percent time-spent-following, PTSFd (from above)	54.1		
Level of service, LOSd (from above)	C		

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld
Adj. \quad factor for the effect of passing lane
on average speed, fpl

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 12.23 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -12.23 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.59
Percent time-spent-following including passing lane, PTSFpl 50.8 \%
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl C
Peak 15-min total travel time, TT15 7.9 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 162.5
Effective width of outside lane, We 29.13
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.29
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 25 / 2015$	
Analysis Time Period	AM Peak Hr	
Highway	97	
From/To	NB - Segment 10a (1183 0-21.1)	
Jurisdiction	BC	
Analysis Year	2039 with PL	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.9	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.828	0.810	
Grade adjustment factor, (note-1) fg	0.77	0.73	
Directional flow rate, (note-2) vi	255	pc/h	161
Base percent time-spent-following, (note-4)	BPTSFd	26.5	$\%$
Adjustment for no-passing zones, fnp		51.2	
Percent time-spent-following, PTSFd	57.9	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.18	
Peak 15-min vehicle-miles of travel, VMT15	536	$\mathrm{veh}-\mathrm{mi}$
Peak-hour vehicle-miles of travel, VMT60	1888	$\mathrm{veh}-\mathrm{mi}$
Peak l5-min total travel time, TT15	9.9	$\mathrm{veh}-\mathrm{h}$
Capacity from ATS, CdATS	880	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1084	$\mathrm{veh} / \mathrm{h}$
Directional capacity	880	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	13.2	mi	
Length of two-lane highway upstream of the passing lane,	Lu	11.8	mi
Length of passing lane including tapers, Lpl	1.4	mi	
Average travel speed, ATSd (from above)	54.0	mi / h	
Percent time-spent-following, PTSFd (from above)	57.9	C	
Level of service, LoSd (from above)			

_Average Travel Speed with Passing Lane___
Downstream length of two-lane highway within effective

Percent Time-Spent-Following with Passing Lane
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 12.23 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -12.23 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.59
Percent time-spent-following including passing lane, PTSFpl 55.4 \%
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl C
Peak 15-min total travel time, TT15 9.8 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 162.5
Effective width of outside lane, We 29.13
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.29
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 26 / 2015$	
Analysis Time Period	PM Peak Hr	
Highway	97	
From/To	NB - Segment 1 (12.52-20.35)	
Jurisdiction	BC	
Analysis Year	2039 with PL	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.6	1.4	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.917	0.943	
Grade adjustment factor, (note-1) fg	0.86	0.92	
Directional flow rate, (note-2) vi	395	pc/h	493
Base percent time-spent-following, (note-4)	BPTSFd	44.0	$\%$
Adjustment for no-passing zones, fnp		37.4	
Percent time-spent-following, PTSFd	60.6	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.25	
Peak 15-min vehicle-miles of travel, VMT15	382	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1406	veh-mi
Peak 15-min total travel time, TT15	7.3	veh-h
Capacity from ATS, CdATS	1442	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1540	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1442	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	4.9	mi	
Length of two-lane highway upstream of the passing lane,	Lu	3.2	mi
Length of passing lane including tapers, Lpl	1.7	mi	
Average travel speed, ATSd (from above)	52.1	mi / h	
Percent time-spent-following, PTSFd (from above)	60.6		
Level of service, LOSd (from above)	C		

_Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl C
Peak 15-min total travel time, TT15 7.1 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 312.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 7.14
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 26 / 2015$	
Analysis Time Period	PM Peak Hr	
Highway	97	
From/To	NB - Segment 4 (32.86-36.28)	
Jurisdiction	BC	
Analysis Year	2039 with PL	
Description Alaska Highway Corridor Study		

Highway class Class	1		Peak hour factor, PHF	0.89	
Shoulder width	6.0	ft	\% Trucks and buses	20	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	2.1	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	53	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	209	veh/h		
Opposing direction vol	lume	287	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.6	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.877	0.893	
Grade adjustment factor, (note-1) fg	0.82	0.86	
Directional flow rate, (note-2) vi	326	pc/h	420
Base percent time-spent-following, (note-4)	BPTSFd	37.3	$\%$
Adjustment for no-passing zones, fnp		41.1	
Percent time-spent-following, PTSFd	55.3	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.22	
Peak 15-min vehicle-miles of travel, VMT15	123	veh-mi
Peak-hour vehicle-miles of travel, VMT60	439	veh-mi
Peak 15-min total travel time, TT15	2.3	veh-h
Capacity from ATS, CdATS	1289	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1432	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1289	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	2.1	mi	
Length of two-lane highway upstream of the passing lane,	Lu	0.6	mi
Length of passing lane including tapers, Lpl	1.3	mi	
Average travel speed, ATSd (from above)	53.4	mi / h	
Percent time-spent-following, PTSFd (from above)	55.3	C	
Level of service, LoSd (from above)			

Downstream length of two-lane highway within effective		
Length of two-lane highway downstream of effective length of the passing lane for average travel speed, Ld	-1. 50	mi
Adj. factor for the effect of passing lane on average speed, fpl	1.10	
Average travel speed including passing lane, ATSpl	57.0	
Percent free flow speed including passing lane, PFFSpl	92.0	\%

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 10.69 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -10.49 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.60
Percent time-spent-following including passing lane, PTSFpl 39.5 \%
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl B
Peak 15-min total travel time, TT15 2.2 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 234.8
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.79
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 26 / 2015$	
Analysis Time Period	PM Peak Hr	
Highway	97	
From/To	NB - Segment 6 (41.52-43.89)	
Jurisdiction	BC	
Analysis Year	2039 with PL	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.6	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.867	0.883	
Grade adjustment factor, (note-1) fg	0.83	0.88	
Directional flow rate, (note-2) vi	365	pc/h	463
Base percent time-spent-following, (note-4)	BPTSFd	40.8	\%
Adjustment for no-passing zones, fnp		37.7	
Percent time-spent-following, PTSFd		57.4	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.24	
Peak 15-min vehicle-miles of travel, VMT15	98	veh-mi
Peak-hour vehicle-miles of travel, VMT60	327	veh-mi
Peak 15-min total travel time, TT15	1.9	veh-h
Capacity from ATS, CdATS	1320	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1469	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1320	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	1.5	mi	
Length of two-lane highway upstream of the passing lane,	Lu	0.0	mi
Length of passing lane including tapers, Lpl	1.3	mi	
Average travel speed, ATSd (from above)	52.9	mi / h	
Percent time-spent-following, PTSFd (from above)	57.4		
Level of service, LOSd (from above)	C		

Downstream length of two-lane highway within effective		
length of passing lane for average travel speed, Lde	1.70	mi
Length of two-lane highway downstream of effective		
length of the passing lane for average travel speed, Ld	-1.50	mi
Adj. factor for the effect of passing lane on average speed, fpl	1.10	
Average travel speed including passing lane, ATSpl	58.1	
Percent free flow speed including passing lane, PFFSpl	93.8	\%

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 9.33 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -9.13 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.60
Percent time-spent-following including passing lane, PTSFpl 34.5 \%
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl A
Peak 15-min total travel time, TT15 1.
1.7 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 262.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.12
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 20 / 2015$	
Analysis Time Period	PM Peak Hr	
Highway	97	
From/To	NB - Segment 7 (43.89-53.44)	
Jurisdiction	BC	
Analysis Year	2039 with PL	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.6	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.861	0.879	
Grade adjustment factor, (note-1) fg	0.81	0.85	
Directional flow rate, (note-2) vi	319	pc/h	409
Base percent time-spent-following, (note-4)	BPTSFd	35.9	$\%$
Adjustment for no-passing zones, fnp		44.8	
Percent time-spent-following, PTSFd	55.5	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.22	
Peak 15-min vehicle-miles of travel, VMT15	334	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1176	veh-mi
Peak 15-min total travel time, TT15	6.3	veh-h
Capacity from ATS, CdATS	1244	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1417	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1244	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	6.0	mi	
Length of two-lane highway upstream of the passing lane,	Lu	1.0	mi
Length of passing lane including tapers, Lpl	1.3	mi	
Average travel speed, ATSd (from above)	53.3	mi / h	
Percent time-spent-following, PTSFd (from above)	55.5		
Level of service, LOSd (from above)	C		

Average Travel Speed with Passing Lane___
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 10.94 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -7.24 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.60
Percent time-spent-following including passing lane, PTSFpl 39.3 \%
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl B
Peak 15-min total travel time, TT15 6.1 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 222.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.70
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 8 (53.44-71.94)
Jurisdiction	BC
Analysis Year	2039 with PL @ ACR
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.845	0.861	
Grade adjustment factor, (note-1) fg	0.79	0.83	
Directional flow rate, (note-2) vi	288	pc/h	367
Base percent time-spent-following, (note-4)	BPTSFd	33.6	$\%$
Adjustment for no-passing zones, fnp		45.9	
Percent time-spent-following, PTSFd	53.8	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.20	
Peak 15-min vehicle-miles of travel, VMT15	557	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1960	veh-mi
Peak 15-min total travel time, TT15	10.3	veh-h
Capacity from ATS, CdATS	1216	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1315	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1216	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	11.6 mi		
Length of two-lane highway upstream of the passing lane,	Lu	1.0	mi
Length of passing lane including tapers, Lpl	1.6	mi	
Average travel speed, ATSd (from above)	53.8	mi / h	
Percent time-spent-following, PTSFd (from above)	53.8		
Level of service, LoSd (from above)	C		

_Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl B
Peak 15-min total travel time, TT15 10.1 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 192.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.62
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 8 (53.44-71.94)
Jurisdiction	BC
Analysis Year	2039 with PL @ ILR
Description Alaska Highway Corridor Study	

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.8	1.7	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.845	0.861	
Grade adjustment factor, (note-1) fg	0.79	0.83	
Directional flow rate, (note-2) vi	288	pc/h	367
Base percent time-spent-following, (note-4)	BPTSFd	33.6	$\%$
Adjustment for no-passing zones, fnp		45.9	
Percent time-spent-following, PTSFd	53.8	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.20	
Peak 15-min vehicle-miles of travel, VMT15	557	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1960	veh-mi
Peak 15-min total travel time, TT15	10.3	veh-h
Capacity from ATS, CdATS	1216	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1315	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1216	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	11.6 mi		
Length of two-lane highway upstream of the passing lane,	Lu	9.4	mi
Length of passing lane including tapers, Lpl	1.3	mi	
Average travel speed, ATSd (from above)	53.8	mi / h	
Percent time-spent-following, PTSFd (from above)	53.8		
Level of service, LOSd (from above)	C		

_Average Travel Speed with Passing Lane___
Downstream length of two-lane highway within effective

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length of passing lane for percent time-spent-following, Lde 11.77 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -10.87 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.59
Percent time-spent-following including passing lane, PTSFpl 49.7 \%
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl B
Peak 15-min total travel time, TT15 10.2 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 192.0
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.62
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 25 / 2015$	
Analysis Time Period	PM Peak Hr	
Highway	97	
From/To	NB - Segment 10a (1183 0-21.1)	
Jurisdiction	BC	
Analysis Year	2039 with PL	
Description Alaska Highway Corridor Study		

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	24	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	13.2	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	60	\%
Up/down	-	\%	Access point density	3	/mi
Analysis direction vol	lume	130	veh/h		
Opposing direction vol	lume	178	veh/h		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.17	
Peak 15-min vehicle-miles of travel, VMT15	487	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1716	veh-mi
Peak 15-min total travel time, TT15	9.0	veh-h
Capacity from ATS, CdATS	1116	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1237	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1116	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	13.2	mi
Length of two-lane highway upstream of the passing lane,	Lu	11.8
Length of passing lane including tapers, Lpl	mi	
Average travel speed, ATSd (from above)	1.4	mi
Percent time-spent-following, PTSFd (from above)	54.0	mi / h
Level of service, LOSd (from above)	50.4	

_Average Travel Speed with Passing Lane___
Downstream length of two-lane highway within effective Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 12.55 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -12.55 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.59
Percent time-spent-following including passing lane, PTSFpl 48.2 \%
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl B
Peak 15-min total travel time, TT15 8.9 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 147.7
Effective width of outside lane, We 30.30
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.46
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 10b (21.1-38.33)
Jurisdiction	BC
Analysis Year	2039 with PL
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	24	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	10.8	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	45	\%
Up/down	-	\%	Access point density	3	/mi
Analysis direction vol	lume	130	veh/h		
Opposing direction vol	lume	178	veh/h		

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.8			1.7		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.839			0. 856		
Grade adjustment factor, (note-1) fg	0.76			0.80		
Directional flow rate, (note-2) vi	232	pc / h		295		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	27.1	\%			
Adjustment for no-passing zones, fnp		47.4				
Percent time-spent-following, PTSFd		48.0	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.17	
Peak 15-min vehicle-miles of travel, VMT15	399	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1404	veh-mi
Peak 15-min total travel time, TT15	7.3	veh-h
Capacity from ATS, CdATS	1116	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1237	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1116	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	10.8	mi	
Length of two-lane highway upstream of the passing lane,	Lu	4.3	mi
Length of passing lane including tapers, Lpl	1.6	mi	
Average travel speed, ATSd (from above)	54.4	mi / h	
Percent time-spent-following, PTSFd (from above)	48.0	B	

_ Average Travel Speed with Passing Lane___
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 12.55 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -7.65 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.59
Percent time-spent-following including passing lane, PTSFpl 37.9 \%
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl B
Peak 15-min total travel time, TT15 7.2 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 147.7
Effective width of outside lane, We 30.30
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.46
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 25 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	NB - Segment 10b (21.1-38.33)
Jurisdiction	BC
Analysis Year	2039 with PL
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	24	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	10.8	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	45	\%
Up/down	-	\%	Access point density	3	/mi
Analysis direction vol	lume	130	veh/h		
Opposing direction vol	lume	178	veh/h		

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.8			1.7		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.839			0. 856		
Grade adjustment factor, (note-1) fg	0.76			0.80		
Directional flow rate, (note-2) vi	232	pc / h		295		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	27.1	\%			
Adjustment for no-passing zones, fnp		47.4				
Percent time-spent-following, PTSFd		48.0	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	B	
Volume to capacity ratio, v/c	0.17	
Peak 15-min vehicle-miles of travel, VMT15	399	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1404	veh-mi
Peak 15-min total travel time, TT15	7.3	veh-h
Capacity from ATS, CdATS	1116	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1237	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1116	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	10.8	mi	
Length of two-lane highway upstream of the passing lane,	Lu	9.2	mi
Length of passing lane including tapers, Lpl	1.6	mi	
Average travel speed, ATSd (from above)	54.4	mi / h	
Percent time-spent-following, PTSFd (from above)	48.0	B	

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld
Adj. \quad factor for the effect of passing lane
on average speed, fpl

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 12.55 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -12.55 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.59
Percent time-spent-following including passing lane, PTSFpl 45.1 \%
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl B
Peak 15-min total travel time, TT15 7.3 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 147.7
Effective width of outside lane, We 30.30
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 10.46
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 26 / 2015$	
Analysis Time Period	PM Peak Hr	
Highway	97	
From/To	SB - Segment 1 (12.52-20.35)	
Jurisdiction	BC	
Analysis Year	2039 with PL	
Description Alaska Highway Corridor Study		

Highway class Class	1		Peak hour factor, PHF	0.92	
Shoulder width	6.0	ft	\% Trucks and buses	15	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	4.9	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	4	\%
Grade: Length	-	mi	\% No-passing zones	69	\%
Up/down	-	\%	Access point density	4	/mi
Analysis direction vol	lume	394	veh/h		
Opposing direction vol	lume	287	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.4	1.6	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.943	0.917	
Grade adjustment factor, (note-1) fg	0.92	0.86	
Directional flow rate, (note-2) vi	493	pc/h	395
Base percent time-spent-following, (note-4)	BPTSFd	49.2	$\%$
Adjustment for no-passing zones, fnp		38.2	
Percent time-spent-following, PTSFd		70.4	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.31	
Peak 15-min vehicle-miles of travel, VMT15	525	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1931	veh-mi
Peak 15-min total travel time, TT15	10.2	veh-h
Capacity from ATS, CdATS	1327	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1404	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1327	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	4.9	mi	
Length of two-lane highway upstream of the passing lane,	Lu	3.1	mi
Length of passing lane including tapers, Lpl	1.6	mi	
Average travel speed, ATSd (from above)	51.5	mi / h	
Percent time-spent-following, PTSFd (from above)	70.4	D	

_ Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld
Adj. \quad factor for the effect of passing lane
on average speed, fpl

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 7.36 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -7.16 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.61
Percent time-spent-following including passing lane, PTSFpl 60.3 \%
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl C
Peak 15-min total travel time, TT15 9.9 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 428.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 7.30
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 26 / 2015$	
Analysis Time Period	PM Peak Hr	
Highway	97	
From/To	SB - Segment 4 (32.86-36.28)	
Jurisdiction	BC	
Analysis Year	2039 with PL	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing		
PCE for trucks, ET	1.6		1.7		
PCE for RVs, ER	1.0		1.0		
Heavy-vehicle adjustment factor, fHV	0.893		0.877		
Grade adjustment factor, (note-1) fg	0.86		0.82		
Directional flow rate, (note-2) vi	420	pc / h	326		pc / h
Base percent time-spent-following, (note-4)	e-4) BPTSFd	43.0	\%		
Adjustment for no-passing zones, fnp		38.1			
Percent time-spent-following, PTSFd		64.5	\%		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.27	
Peak 15-min vehicle-miles of travel, VMT15	169	veh-mi
Peak-hour vehicle-miles of travel, VMT60	603	veh-mi
Peak 15-min total travel time, TT15	3.2	veh-h
Capacity from ATS, CdATS	1185	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1305	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1185	$\mathrm{veh} / \mathrm{h}$

Total length of analysis segment, Lt	2.1	mi
Length of two-lane highway upstream of the passing lane, Lu	0.5	mi
Length of passing lane including tapers, Lpl	1.3	mi
Average travel speed, ATSd (from above)	53.2	mi/h
Percent time-spent-following, PTSFd (from above)	64.5	
Level of service, LOSd (from above)	C	
_Average Travel Speed with Passing Lane		
Downstream length of two-lane highway within effective	1.70	
length of passing lane for average travel speed, Lde Length of two-lane highway downstream of effective	1.70	m
length of the passing lane for average travel speed, Ld	-1.40	mi
Adj. factor for the effect of passing lane on average speed, fpl	1.10	
Average travel speed including passing lane, ATSpl	57.1	
Percent free flow speed including passing lane, PFFSpl	92.1	\%

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 7.94 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -7.64 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.61
Percent time-spent-following including passing lane, PTSFpl 45.4 \%
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl B
Peak 15-min total travel time, TT15 3.0 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 322.5
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 9.95
Bicycle LOS F
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:
Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$1 / 26 / 2015$	
Analysis Time Period	PM Peak Hr	
Highway	97	
From/To	SB - Segment 7 (43.89-53.44)	
Jurisdiction	BC	
Analysis Year	2039 with PL	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction Ana	Analysis(d)		Opposing			
PCE for trucks, ET	1.6			1.7		
PCE for RVs, ER	1.0			1.0		
Heavy-vehicle adjustment factor, fHV	0.879			0.861		
Grade adjustment factor, (note-1) fg	0.85			0.81		
Directional flow rate, (note-2) vi	409	pc / h		319		pc / h
Base percent time-spent-following, (note-4	Le-4) BPTSFd	42.4	\%			
Adjustment for no-passing zones, fnp		45.1				
Percent time-spent-following, PTSFd		67.7	\%			

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.27	
Peak 15-min vehicle-miles of travel, VMT15	459	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1614	veh-mi
Peak 15-min total travel time, TT15	8.7	veh-h
Capacity from ATS, CdATS	1140	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1285	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1140	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	6.0	mi	
Length of two-lane highway upstream of the passing lane,	Lu	3.0	mi
Length of passing lane including tapers, Lpl	1.3	mi	
Average travel speed, ATSd (from above)	52.9	mi / h	
Percent time-spent-following, PTSFd (from above)	67.7		
Level of service, LOSd (from above)	D		

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 8.03 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -6.33 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.61
Percent time-spent-following including passing lane, PTSFpl 55.3 \%
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl C
Peak 15-min total travel time, TT15 8.4 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 305.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.86
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	McElhanney
Date Performed	$3 / 24 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 8 (53.44-71.94)
Jurisdiction	BC
Analysis Year	2039 with PL at ACR
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	23	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	11.6	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	49	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	231	veh/h		
Opposing direction vol	lume	169	veh/h		

Average Travel Speed

\qquad

Direction Analysis(d)			Opposing (o)		
PCE for trucks, ET	1.7		1.8		
PCE for RVs, ER	1.0		1.0		
Heavy-vehicle adjustment factor, fHV	0.861		0.845		
Grade adjustment factor, (note-1) fg	0.83		0.79		
Directional flow rate, (note-2) vi	367	pc / h	288		pc / h
Base percent time-spent-following, (note-4	Ee-4) BPTSFd	39.0	\%		
Adjustment for no-passing zones, fnp		44.9			
Percent time-spent-following, PTSFd		64.2	\%		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.25	
Peak 15-min vehicle-miles of travel, VMT15	761	veh-mi
Peak-hour vehicle-miles of travel, VMT60	2680	veh-mi
Peak 15-min total travel time, TT15	14.2	veh-h
Capacity from ATS, CdATS	1112	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1230	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1112	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	11.6 mi		
Length of two-lane highway upstream of the passing lane,	Lu	9.7	mi
Length of passing lane including tapers, Lpl	1.3	mi	
Average travel speed, ATSd (from above)	53.5	mi / h	
Percent time-spent-following, PTSFd (from above)	64.2	C	

_Average Travel Speed with Passing Lane__
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl C
Peak 15-min total travel time, TT15 14.0 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 262.5
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.78
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 24 / 2015$	
Analysis Time Period	PM Peak Hr	
Highway	97	
From/To	SB - Segment 8 (53.44-71.94)	
Jurisdiction	BC	
Analysis Year	2039 with PL	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Direction Analysis(d)			Opposing (o)		
PCE for trucks, ET	1.7		1.8		
PCE for RVs, ER	1.0		1.0		
Heavy-vehicle adjustment factor, fHV	0.861		0.845		
Grade adjustment factor, (note-1) fg	0.83		0.79		
Directional flow rate, (note-2) vi	367	pc / h	288		pc / h
Base percent time-spent-following, (note-4	Ee-4) BPTSFd	39.0	\%		
Adjustment for no-passing zones, fnp		44.9			
Percent time-spent-following, PTSFd		64.2	\%		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.25	
Peak 15-min vehicle-miles of travel, VMT15	761	veh-mi
Peak-hour vehicle-miles of travel, VMT60	2680	veh-mi
Peak 15-min total travel time, TT15	14.2	veh-h
Capacity from ATS, CdATS	1112	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1230	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1112	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	11.6 mi		
Length of two-lane highway upstream of the passing lane,	Lu	0.5	mi
Length of passing lane including tapers, Lpl	1.3	mi	
Average travel speed, ATSd (from above)	53.5	mi / h	
Percent time-spent-following, PTSFd (from above)	64.2	C	

\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl C
Peak 15-min total travel time, TT15 14.0 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 262.5
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 11.78
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	MCElhanney
Date Performed	$3 / 24 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 9 (71.94-87.9)
Jurisdiction	BC
Analysis Year	2039 with PL
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.82	
Shoulder width	6.0	ft	\% Trucks and buses	26	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	10.0	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	56	\%
Up/down	-	\%	Access point density	3	/mi
Analysis direction vol	lume	185	veh/h		
Opposing direction vol	lume	135	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.7	1.8		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.846	0.828		
Grade adjustment factor, (note-1) fg	0.81	0.78		
Directional flow rate, (note-2) vi	329	pc/h	255	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	34.0	$\%$	
Adjustment for no-passing zones, fnp		50.5		
Percent time-spent-following, PTSFd		62.4	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.23	
Peak 15-min vehicle-miles of travel, VMT15	564	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1850	veh-mi
Peak 15-min total travel time, TT15	10.6	veh-h
Capacity from ATS, CdATS	1023	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1194	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1023	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	10.0 mi		
Length of two-lane highway upstream of the passing lane,	Lu	3.6	mi
Length of passing lane including tapers, Lpl	1.3 mi		
Average travel speed, ATSd (from above)	53.4	mi / h	
Percent time-spent-following, PTSFd (from above)	62.4		
Level of service, LOSd (from above)	C		

_Average Travel Speed with Passing Lane___
Downstream length of two-lane highway within effective

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 10.59 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.48 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.60
Percent time-spent-following including passing lane, PTSFpl 49.5 \%
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl B
Peak 15-min total travel time, TT15 10.4 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 225.6
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 13.82
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 25 / 2015$	
Analysis Time Period	PM Peak Hr	
Highway	97	
From/To	SB - Segment 10s (1183 0-21.1)	
Jurisdiction	BC	
Analysis Year	2039 with PL	
Description Alaska Highway Corridor Study		

Average Travel Speed

\qquad

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.21	
Peak 15-min vehicle-miles of travel, VMT15	667	veh-mi
Peak-hour vehicle-miles of travel, VMT60	2350	veh-mi
Peak 15-min total travel time, TT15	12.5	veh-h
Capacity from ATS, CdATS	1029	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1193	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1029	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

Total length of analysis segment, Lt	13.2	mi	
Length of two-lane highway upstream of the passing lane,	Lu	3.9	mi
Length of passing lane including tapers, Lpl	1.3	mi	
Average travel speed, ATSd (from above)	53.5	mi / h	
Percent time-spent-following, PTSFd (from above)	60.0		
Level of service, LOSd (from above)	C		

___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl B
Peak 15-min total travel time, TT15 12.3 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 202.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.33
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR	
Agency/Co.	McElhanney	
Date Performed	$3 / 25 / 2015$	
Analysis Time Period	PM Peak Hr	
Highway	97	
From/To	SB - Segment 11 (38.33-52.6)	
Jurisdiction	BC	
Analysis Year	2039 with PL	
Description Alaska Highway Corridor Study		

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	24	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	8.9	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	52	\%
Up/down	-	\%	Access point density	2	/mi
Analysis direction vol	lume	203	veh/h		
Opposing direction vol	lume	148	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)		
PCE for trucks, ET	1.7	1.8		
PCE for RVs, ER	1.0	1.0		
Heavy-vehicle adjustment factor, fHV	0.856	0.839		
Grade adjustment factor, (note-1) fg	0.82	0.78		
Directional flow rate, (note-2) vi	329	pc/h	257	pc/h
Base percent time-spent-following, (note-4)	BPTSFd	34.0	$\%$	
Adjustment for no-passing zones, fnp		49.1		
Percent time-spent-following, PTSFd	61.6	$\%$		

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.23	
Peak 15-min vehicle-miles of travel, VMT15	513	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1807	veh-mi
Peak 15-min total travel time, TT15	9.6	veh-h
Capacity from ATS, CdATS	1055	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1208	$\mathrm{veh} / \mathrm{h}$
Directional capacity	1055	$\mathrm{veh} / \mathrm{h}$

Total length of analysis segment, Lt	8.9	mi
Length of two-lane highway upstream of the passing lane, Lu	7.6	mi
Length of passing lane including tapers, Lpl	1.3	mi
Average travel speed, ATSd (from above)	53.7	mi/h
Percent time-spent-following, PTSFd (from above)	61.6	
Level of service, LOSd (from above)	C	
_Average Travel Speed with Passing Lane		
Downstream length of two-lane highway within effective	1.70	
length of passing lane for average travel speed, Lde Length of two-lane highway downstream of effective	1.70	m
length of the passing lane for average travel speed, Ld	-1.70	mi
Adj. factor for the effect of passing lane on average speed, fpl	1.10	
Average travel speed including passing lane, ATSpl	54.4	
Percent free flow speed including passing lane, PFFSpl	87.8	\%

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 10.59 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -10.59 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.60
Percent time-spent-following including passing lane, PTSFpl 58.0 \%
\ldots ___ Level of Service and Other Performance Measures with Passing Lane ___
Level of service including passing lane, LOSpl C
Peak 15-min total travel time, TT15 9.4 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P
Flow rate in outside lane, vOL 230.7
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.40
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	MCElhanney
Date Performed	$2 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 12 (52.6-61.1)
Jurisdiction	BC
Analysis Year	2039 with PL
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	24	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	5.3	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	62	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	215	veh/h		
Opposing direction vol	lume	157	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.856	0.839	
Grade adjustment factor, (note-1) fg	0.82	0.78	
Directional flow rate, (note-2) vi	348	pc/h	273
Base percent time-spent-following, (note-4)	BPTSFd	36.5	$\%$
Adjustment for no-passing zones, fnp		50.5	
Percent time-spent-following, PTSFd	64.8	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.23	
Peak 15-min vehicle-miles of travel, VMT15	324	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1140	veh-mi
Peak 15-min total travel time, TT15	6.0	veh-h
Capacity from ATS, CdATS	1069	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1223	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1069	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

| Total length of analysis segment, Lt | 5.3 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | 0.0 | mi |
| Length of passing lane including tapers, Lpl | 1.3 mi | |
| Average travel speed, ATSd (from above) | 53.6 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 64.8 | |
| Level of service, LOSd (from above) | C | |

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 9.92 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -5.92 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.60
Percent time-spent-following including passing lane, PTSFpl 42.8 \%
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl B
Peak 15-min total travel time, TT15 5.8 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 244.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.42
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```

Phone:
Fax:
E-Mail:

Directional Two-Lane Highway Segment Analysis \qquad

Analyst	MR
Agency/Co.	MCElhanney
Date Performed	$2 / 27 / 2015$
Analysis Time Period	PM Peak Hr
Highway	97
From/To	SB - Segment 12 (52.6-61.1)
Jurisdiction	BC
Analysis Year	2039 with PL2
Description Alaska Highway Corridor Study	

Highway class Class	1		Peak hour factor, PHF	0.88	
Shoulder width	6.0	ft	\% Trucks and buses	24	\%
Lane width	12.0	ft	\% Trucks crawling	0.0	\%
Segment length	5.3	mi	Truck crawl speed	0.0	mi/hr
Terrain type	Roll		\% Recreational vehicles	0	\%
Grade: Length	-	mi	\% No-passing zones	62	\%
Up/down	-	\%	Access point density	1	/mi
Analysis direction vol	lume	215	veh/h		
Opposing direction vol	lume	157	veh/h		

Average Travel Speed

\qquad

Direction	Analysis(d)	Opposing (o)	
PCE for trucks, ET	1.7	1.8	
PCE for RVs, ER	1.0	1.0	
Heavy-vehicle adjustment factor, fHV	0.856	0.839	
Grade adjustment factor, (note-1) fg	0.82	0.78	
Directional flow rate, (note-2) vi	348	pc/h	273
Base percent time-spent-following, (note-4)	BPTSFd	36.5	$\%$
Adjustment for no-passing zones, fnp		50.5	
Percent time-spent-following, PTSFd	64.8	$\%$	

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.23	
Peak 15-min vehicle-miles of travel, VMT15	324	veh-mi
Peak-hour vehicle-miles of travel, VMT60	1140	veh-mi
Peak 15-min total travel time, TT15	6.0	veh-h
Capacity from ATS, CdATS	1069	$\mathrm{veh} / \mathrm{h}$
Capacity from PTSF, CdPTSF	1223	$\mathrm{veh} / \mathrm{h}$
Directional Capacity	1069	$\mathrm{veh} / \mathrm{h}$

Passing Lane Analysis

| Total length of analysis segment, Lt | 5.3 | mi |
| :--- | :--- | :--- | :--- |
| Length of two-lane highway upstream of the passing lane, Lu | 1.5 | mi |
| Length of passing lane including tapers, Lpl | 1.3 | mi |
| Average travel speed, ATSd (from above) | 53.6 | mi / h |
| Percent time-spent-following, PTSFd (from above) | 64.8 | |
| Level of service, LOSd (from above) | C | |

_ Average Travel Speed with Passing Lane___
Downstream length of two-lane highway within effective
length of passing lane for average travel speed, Lde
Length of two-lane highway downstream of effective
length of the passing lane for average travel speed, Ld
Adj. factor for the effect of passing lane
on average speed, fpl
Average travel speed including passing lane, ATSpl

Percent Time-Spent-Following with Passing Lane \qquad
Downstream length of two-lane highway within effective length
of passing lane for percent time-spent-following, Lde 9.92 mi
Length of two-lane highway downstream of effective length of the passing lane for percent time-spent-following, Ld -7.42 mi
Adj. factor for the effect of passing lane
on percent time-spent-following, fpl 0.60
Percent time-spent-following including passing lane, PTSFpl 47.8 \%
___ Level of Service and Other Performance Measures with Passing Lane \qquad
Level of service including passing lane, LOSpl B
Peak 15-min total travel time, TT15 5.8 veh-h

```
Posted speed limit, Sp 55
Percent of segment with occupied on-highway parking 0
Pavement rating, P 3
Flow rate in outside lane, vOL 244.3
Effective width of outside lane, We 24.00
Effective speed factor, St 4.79
Bicycle LOS Score, BLOS 12.42
Bicycle LOS
Notes:
1. Note that the adjustment factor for level terrain is 1.00, as level terrain
    is one of the base conditions. For the purpose of grade adjustment, specific
    dewngrade segments are treated as level terrain.
2. If vi (vd or vo ) >= 1,700 pc/h, terminate analysis-the LOS is F.
3. For the analysis direction only and for v>200 veh/h.
4. For the analysis direction only.
5. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a
    specific downgrade.
```


Appendix G: Provincial Average Collision Rates Table

British Columbia Ministry of Transportation and Infrastuct

 AVERAGE PROVINCIAL COLLISION RATES BY HIGHWAY SERVICE CLASS AND TRAFFIC VOLUME RANGE

 AVERAGE PROVINCIAL COLLISION RATES BY HIGHWAY SERVICE CLASS AND TRAFFIC VOLUME RANGE}

January 1, 2006 to December 31, 2010 Data (5 years)

Average Daily Traffic Volume (vpd)	Highway Class																													
	UAU2			UAU4			UAD4			UED4**			UFD4**			RAU2			RAU4			RAD4**			RED4**			RFD4**		
	(C/MVK)	(km)	(\# coll)																											
1-5,000	1.02	228	1116	2.73	10	123	2.05	2	29	1.39	0	1				0.55	8536	15179	0.52	78	287	0.48	49	134				0.45	640	1922
5,001-10,000	0.83	120	1115	1.16	29	512	1.17	8	132							0.48	852	4944	0.25	11	39	0.67	19	126	0.53	39	279	0.39	221	990
10,001-15,000	0.69	57	859	1.01	20	440	0.28	1	8	0.59	18	264	1.14	3	80	0.50	112	1202	0.40	7	69	0.44	96	939	0.42	95	835	0.28	23	139
15,001-20,000	0.52	18	299	0.85	18	463	0.92	6	175	1.23	2	76	0.46	2	30	0.23	45	310	0.31	36	360	0.28	23	223	0.52	10	168	0.28	20	183
over 20,000	0.38	4	73	0.82	44	2041	1.11	25	1401	0.53	46	1495	0.42	135	4691	0.36	50	783	0.37	55	992	0.47	45	1127	0.61	15	409	0.28	254	3861
All Volumes	0.78	427	3462	0.90	120	3579	1.08	42	1745	0.56	65	1836	0.42	140	4801	0.51	9595	22418	0.37	187	1747	0.44	232	2549	0.48	159	1691	0.33	1158	7095

Collisions Occurring At All Intersections (MV6020 Accident Location Code 01, LKI Landmarks A1, A2, A3 \& A5). Zero radius from intersection point.

Collisions Occurring At Signalized Intersections (LKI Landmarks A3 \& A5). Zero radius from intersection point.

Average DailyTraffic Volume(vpd)	Highway Class																													
	UAU2			UAU4			UAD4			UED4 **			UFD4**			RaU2			RAU4			RAD4**			RED4**			RFD4**		
	(C/MV)	(\# int)	(\# coll)	(C/MV)	(\#int)	(\# coll)	(C/MV)	(\# int)	(\# coll)	(C/MV)	(\# int)	(\# coll)	(C/MV)	(\# int)	(\# coll)	(C/MV)	(\#int)	(\# coll)	(C/MV)	(\# int)	(\# coll)	(C/MV)	(\# int)	(\# coll)	(C/MV)	(\# int)	(\# coll)	(C/MV)	(\#int)	(\# coll)
1-5,000	0.71	16	76	0.94	6	33	1.12	3	17							0.70	9	39	0.32	2	4	0.70	13	54				0.41	4	
5,001-10,000	0.44	33	202	0.53	19	160	0.41	9	58							0.63	13	111	0.31	4	19				0.76	7	84			
10,001-15,000	0.33	32	232	0.38	16	141	0.28	3	20	0.46	4	43	0.04	1	1	0.63	16	241	0.30	1	7	0.83	12	213	0.56	23	278			
15,001-20,000	0.55	6	102	0.39	14	175	0.22	16	116	1.37	1	47				0.44	11	165	0.39	1	14	0.47	21	320	0.32	12	124			
over 20,000	0.28	4	59	0.37	48	964	0.43	38	843	0.43	25	735				0.31	17	254	0.44	18	444	0.42	23	547	0.38	11	185	0.20	1	14
All Volumes	0.40	91	671	0.39	103	1473	0.39	69	1054	0.45	30	825	0.04	1	1	0.45	66	810	0.43	26	488	0.49	69	1134	0.45	53	671	0.25	5	23

Non-Intersection Collisions (collisions not occurring at intersections above)

$\begin{gathered} \hline \text { Average Daily } \\ \text { Traffic Volume } \\ \text { (vpd) } \end{gathered}$	Highway Class																													
	UAU2			UAU4			UAD4			UED4**			UFD4**			RAU2			RaU4			RAD4**			RED4**			RFD4**		
	(C/MVK)	(km)	(\# coll)	(/MVK)	(km)	(\# coll)																								
1-5,000	0.29	228	318	0.31	10	14	0.21	2	3	1.39	0	1				0.36	8536	9967	0.32	78	176	0.25	49	71				0.42	640	1790
5,001-10,000	0.18	120	237	0.12	29	55	0.05	8	6							0.27	852	2818	0.08	11	12	0.44	19	83	0.25	39	133	0.34	221	886
10,001 - 15,000	0.15	57	185	0.11	20	50	0.11	1	3	0.29	18	${ }^{131}$	0.10	3	7	0.15	112	365	0.13	7	22	0.13	96	268	0.12	95	241	0.23	23	118
15,001-20,000	0.08	18	44	0.13	18	71	0.04	6	8	0.24	2	15	0.46	2	30	0.11	45	149	0.10	36	115	0.13	23	106	0.13	10	41	0.25	20	164
over 20,000	0.05	4	9	0.08	44	199	0.05	25	67	0.07	46	194	0.29	135	3295	0.07	50	153	0.08	55	214	0.07	45	160	0.13	15	87	0.21	254	2821
All Volumes	0.18	427	793	0.10	120	389	0.05	42	87	0.10	65	341	0.29	140	3332	0.31	9595	13452	0.12	187	539	0.12	232	688	0.14	159	502	0.27	1158	5779

1. ** All RFD4 \& UFD4 and most UED4, RED4, \& RAD4 roadways have a separate LKI segment for each direction of travel (see the "opposing LKI segments" tab for details). Therefore, the length in the tables above, which represents LKI segment length, will differ from roadway length for these 5 service classes. As well, for these 5 classes the rate is based on the collisions and volumes for each 1 -directional LKI segment. Therefore to find an average rate by volume range for any of these 5 classes use the volume range that best represents the 1 -way AADT at your site
2. Provincial average intersection collision rates are artificially high due to the lack of cross-street volume data in the CIS and the fact that the CIS analysis does not include intersections where there are zero collisions when calculating provincial average rates
been blacked out. However, these rates can still be seen and may be used at the discretion of the analyst
3. Analysis dates: 7-14 September 2012. CIS version 1.7.3. CIS collision data last updated 29 August 2012. Traffic volume updated to the end of 2011. Effective LKI: July 2011. Subseques. $7-14$ September 2012 . CIS version 1.7.3. Co

LEGEND:

$\mathrm{U}=\mathrm{Urban}$

A = Arterial
$A=$ Arterial
$E=$ Expressway, multi-lanes with at grade intersections
$\mathrm{F}=$ Freeway, multi-lane with grade separations
U2 $=$ Undivided Up to 3 Lanes
U4 $=$ Undivided 4 or More Lan
D4 = Divided 4 or More Lanes
vpd $=$ Vehicles per Day
C/MVK = Collisions per Million Vehicle Kilometres
$\mathrm{C} / \mathrm{MV}=$ Collisions per Million Entering Vehicles
coll = Number of Collisions
\# int = Number of Intersections

A1 = Intersection with stop sign or flashing red lights, no turning slots
A2 = Intersection with stop sign or flashing red lights, and turning slots
A3 $=$ Intersection with traffic control lights, no turning slots
A5 $=$ Intersection with traffic control lights, and turning slots A5 = intersection with traffic control lights, and turning slots
MV6020 Form Accident Location Code $01=$ at intersection
\square Less than 25 coliisions for this volume range and service class
ero collisions or no inventory for this volume range and service class

Appendix H: Highway 97 / Highway 29 Sensitivity Analysis Synchro Reports

HCM Unsignalized Intersection Capacity Analysis
1: Highway 29 \& Highway 97

	4	\rightarrow	\cdots	7	\nleftarrow	4	4	4	\%	-	\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	7		\uparrow	「	${ }^{7}$	中 ${ }^{\text {a }}$		${ }^{1}$	4	F'
Volume (veh/h)	6	7	165	19	3	10	154	208	24	7	371	10
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	7	8	183	21	3	11	171	231	27	8	412	11
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)			3			3						
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	887	1028	412	1018	1026	129	423			258		
$\mathrm{vC1}$, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	887	1028	412	1018	1026	129	423			258		
tC , single (s)	7.8	6.8	7.2	7.8	6.8	7.2	4.4			4.4		
tC, 2 stage (s)												
tF (s)	3.6	4.1	3.4	3.6	4.1	3.4	2.3			2.3		
p0 queue free \%	96	96	67	79	98	99	84			99		
cM capacity (veh/h)	187	178	556	99	179	860	1051			1221		
Direction, Lane \#	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	198	36	171	154	104	8	412	11				
Volume Left	7	21	171	0	0	8	0	0				
Volume Right	183	11	0	0	27	0	0	11				
cSH	600	160	1051	1700	1700	1221	1700	1700				
Volume to Capacity	0.33	0.22	0.16	0.09	0.06	0.01	0.24	0.01				
Queue Length 95th (m)	10.9	6.2	4.4	0.0	0.0	0.1	0.0	0.0				
Control Delay (s)	15.5	35.1	9.1	0.0	0.0	8.0	0.0	0.0				
Lane LOS	C	E	A			A						
Approach Delay (s)	15.5	35.1	3.6			0.1						
Approach LOS	C	E										
Intersection Summary												
Average Delay			5.4									
Intersection Capacity Utilization			45.9\%		CU Level	f Service			A			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis
1：Highway 29 \＆Highway 97

	\downarrow			7	\downarrow	4	4	4	p	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	$\overline{7}$		\uparrow	「	\％	中t		＊	\uparrow	「
Volume（veh／h）	6	7	184	21	3	11	172	232	27	7	414	11
Sign Control		Stop			Stop			Free			Free	
Grade		0\％			0\％			0\％			0\％	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate（vph）	7	8	204	23	3	12	191	258	30	8	460	12
Pedestrians												
Lane Width（ m ）												
Walking Speed（ m / s ）												
Percent Blockage												
Right turn flare（veh）			3			3						
Median type								None			None	
Median storage veh）												
Upstream signal（ m ）												
pX，platoon unblocked												
VC ，conflicting volume	988	1146	460	1134	1143	144	472			288		
$\mathrm{vC1}$ ，stage 1 conf vol												
vC2，stage 2 conf vol												
vCu ，unblocked vol	988	1146	460	1134	1143	144	472			288		
tC，single（s）	7.8	6.8	7.2	7.8	6.8	7.2	4.4			4.4		
$\mathrm{tC}, 2$ stage（s）												
tF（s）	3.6	4.1	3.4	3.6	4.1	3.4	2.3			2.3		
p0 queue free \％	96	95	60	67	98	99	81			99		
cM capacity（veh／h）	152	146	517	71	146	841	1006			1189		
Direction，Lane \＃	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	219	39	191	172	116	8	460	12				
Volume Left	7	23	191	0	0	8	0	0				
Volume Right	204	12	0	0	30	0	0	12				
cSH	553	117	1006	1700	1700	1189	1700	1700				
Volume to Capacity	0.40	0.33	0.19	0.10	0.07	0.01	0.27	0.01				
Queue Length 95th（m）	14.3	10.0	5.3	0.0	0.0	0.2	0.0	0.0				
Control Delay（s）	17.5	51.6	9.4	0.0	0.0	8.0	0.0	0.0				
Lane LOS	C	F	A			A						
Approach Delay（s）	17.5	51.6	3.8			0.1						
Approach LOS	C	F										
Intersection Summary												
Average Delay			6.3									
Intersection Capacity Utilization			49．3\％		CU Level	f Service			A			
Analysis Period（min）			15									

HCM Unsignalized Intersection Capacity Analysis
1：Highway 29 \＆Highway 97

	4	\rightarrow	\checkmark	7		4	4	4	p	（	\downarrow	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	7		\uparrow	「	${ }^{7}$	中 ${ }^{\text {a }}$		${ }^{7}$	4	「
Volume（veh／h）	8	10	252	29	4	15	234	316	37	10	566	15
Sign Control		Stop			Stop			Free			Free	
Grade		0\％			0\％			0\％			0\％	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate（vph）	9	11	280	32	4	17	260	351	41	11	629	17
Pedestrians												
Lane Width（m）												
Walking Speed（m／s）												
Percent Blockage												
Right turn flare（veh）			3			3						
Median type								None			None	
Median storage veh）												
Upstream signal（m）												
pX，platoon unblocked												
vC ，conflicting volume	1349	1563	629	1548	1559	196	646			392		
$\mathrm{vC1}$ ，stage 1 conf vol												
vC 2 ，stage 2 conf vol												
vCu ，unblocked vol	1349	1563	629	1548	1559	196	646			392		
tC，single（s）	7.8	6.8	7.2	7.8	6.8	7.2	4.4			4.4		
tC， 2 stage（s）												
tF（s）	3.6	4.1	3.4	3.6	4.1	3.4	2.3			2.3		
p0 queue free \％	87	84	30	0	94	98	70			99		
cM capacity（veh／h）	70	68	397	14	68	776	859			1081		
Direction，Lane \＃	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	300	53	260	234	158	11	629	17				
Volume Left	9	32	260	0	0	11	0	0				
Volume Right	280	17	0	0	41	0	0	17				
cSH	426	24	859	1700	1700	1081	1700	1700				
Volume to Capacity	0.70	2.19	0.30	0.14	0.09	0.01	0.37	0.01				
Queue Length 95th（m）	40.6	50.4	9.7	0.0	0.0	0.2	0.0	0.0				
Control Delay（s）	36.0	887.8	11.0	0.0	0.0	8.4	0.0	0.0				
Lane LOS	E	F	B			A						
Approach Delay（s）	36.0	887.8	4.4			0.1						
Approach LOS	E	F										
Intersection Summary												
Average Delay			36.8									
Intersection Capacity Utilization			61．2\％		CU Level	Service			B			
Analysis Period（min）			15									

HCM Unsignalized Intersection Capacity Analysis
1: Highway 29 \& Highway 97

	4	\rightarrow	7	7		4	4	4	\%	-	\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	7		\uparrow	「	${ }^{1 /}$	中 ${ }^{\text {a }}$		${ }^{7}$	4	F'
Volume (veh/h)	9	11	271	31	4	16	252	340	39	11	609	16
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	10	12	301	34	4	18	280	378	43	12	677	18
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)			3			3						
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	1452	1682	677	1667	1678	211	694			421		
$\mathrm{vC1}$, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	1452	1682	677	1667	1678	211	694			421		
tC , single (s)	7.8	6.8	7.2	7.8	6.8	7.2	4.4			4.4		
tC, 2 stage (s)												
tF (s)	3.6	4.1	3.4	3.6	4.1	3.4	2.3			2.3		
p0 queue free \%	82	77	18	0	92	98	66			99		
cM capacity (veh/h)	55	54	369	6	54	759	821			1054		
Direction, Lane \#	EB 1	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3				
Volume Total	323	57	280	252	169	12	677	18				
Volume Left	10	34	280	0	0	12	0	0				
Volume Right	301	18	0	0	43	0	0	18				
cSH	396	11	821	1700	1700	1054	1700	1700				
Volume to Capacity	0.82	5.08	0.34	0.15	0.10	0.01	0.40	0.01				
Queue Length 95th (m)	56.1	Err	11.5	0.0	0.0	0.3	0.0	0.0				
Control Delay (s)	50.8	Err	11.6	0.0	0.0	8.5	0.0	0.0				
Lane LOS	F	F	B			A						
Approach Delay (s)	50.8	Err	4.6			0.1						
Approach LOS	F	F										
Intersection Summary												
Average Delay			328.0									
Intersection Capacity Utilization			64.6\%		CU Level	Service			C			
Analysis Period (min)			15									

c Critical Lane Group

Appendix I: Signal Warrant Analysis Results

2005 Canadian Traffic Signal Warrant Matrix Analysis

WARRANT NO.I MINIMUM VEHICULAR VOLUME

Number of Incoming Lanes on Approach		Large Urban Areas (> 10000 population)				Small Urban Areas (<10000 population)	
		Posted or 85th Percentile Speed				Peak 7 Hour Volume (vph)	
		= $<70 \mathrm{~km} / \mathrm{hr}$ Peak 7 Hour Volume (vph)		$>70 \mathrm{~km} / \mathrm{hr}$Peak 7 Hour Volume (vph)			
Major	Minor	Major	Minor	Major	Minor	Major	Minor
1	I	500	150	350	105	350	105
2 or more	1	600	150	420	105	420	105
2 or more	2 or more	600	200	420	140	420	140
I	2 or more	500	200	350	140	350	140

Existing Scenario to be Considered			
Number of Incoming Lanes on Approach	Minimum Volumes		
Major	Minor	Major	Minor
2 or more	2 or more	420	140

Number of Incoming Lanes on Approach		Large Urban Areas (> 10000 population)				Small Urban Areas (<10000 population)	
		Posted or 85th Percentile Speed				Peak 7 Hour Volume (vph)	
		= $<70 \mathrm{~km} / \mathrm{hr}$		> 70 km/hr			
		Peak 7 Hour Volume (vph)		Peak 7 Hour Volume (vph)			
Major	Minor	Major	Minor	Major	Minor	Major	Minor
1	1	750	75	525	50	525	50
2 or more	1	900	75	630	50	630	50
2 or more	2 or more	900	100	630	70	630	70
I	2 or more	750	100	525	70	525	70

Existing Scenario to be Considered			
Number of Incoming Lanes on Approach	Minimum Volumes		
Major	Minor	Major	Minor
2 or more	2 or more	630	70

WARRANT NO. 3 Progressive Movement

I) Is the distance to the nearest signal greater than or equal to 300 m ?
Yes No

One Way
Are the adjacent signals so far apart that they do not provide a necessary

degree of vehicle platooning and speed control?

Two Way
Do the adjacent signals constitute a progressive system?
Yes

Are the adjacent signals so far apart that they do not provide a necessary
Yes No degree of vehicle platooning and speed control?

Warrant Satisfied? Yes No
Explanation: The adjacent signals do not constitute a progressive system, and the installation of a signal at this location will not provide a necessary degree of vehicle platooning and speed control.

WARRANT NO. 4 Accident Experience (based on ICBC Claims Data)

x

I) Have five or more reported accidents of types susceptible to correction

Yes
No by traffic signals occurred within a 12 month period, with each accident involving personal injury or damage exceeding $\$ 1000$?

- This intersection does warrant the installation of a traffic signal.

Yes
3) Will the installation of a signal allow progressive traffic flow?

Yes
Warrant Satisfied? Yes No

Explanation: - Previous 5 years (2008 to 2013): 7 accident
|'- Highest 12 months: 3 accident
'- Highest 12 months: 0 accident that may be correctable with a traffic

WARRANT NO. 5 System Warrant

I) Are both the major and minor streets "Major Routes"?
Yes No
2) Does the total Peak Hour Volume over all approaches equal or exceed
Yes 1000 vph ?
3) Are one or more of Warrants $I, 2,6,7$ and 9 satisfied using Projected 5
4) Does the Peak 5 Hour Weekend Volume equal or exceed 1000 vph ?

Explanation: The warrant is satisfied.
I) Have other measures been tried which cause less delay and
Yes
No invonvenience to traffic than traffic signals?

Number of Incoming Lanes on Approach		Large Urban Areas (> 10000 population)				Small Urban Areas (<10000 population)			
		Posted or 85th Percentile Speed				Peak 7 Hour Volume (vph)			
		$=<70 \mathrm{~km} / \mathrm{hr}$Peak 7 Hour Volume (vph)		$>70 \mathrm{~km} / \mathrm{hr}$					
		Peak 7 Hour Volume (vph)							
Major	Minor			Major	Minor	Major	Minor	Major	Minor
1	I	600	120	420	85	420	85		
2 or more	1	720	120	500	85	500	85		
2 or more	2 or more	720	160	500	110	500	110		
1	2 or more	600	160	420	110	420	110		

Existing Scenario to be Considered			
Number of Incoming Lanes on Approach	Minimum Volumes		
Major	Minor	Major	Minor
2 or more	2 or more	500	\times

WARRANT NO. 7 Four Hour Volumes

Location Type	Large Urban Areas (> 10000 population)	
	Posted or 85th Percentile Speed	
	$=<70 \mathrm{~km} / \mathrm{hr}$	$>70 \mathrm{~km} / \mathrm{hr}$
Large Urban		
(>10000 pop.)	Figure I	Figure 2
Small Urban $(<10000$ pop.)	Figure 1	Figure 2

	Existing Scenario to be Considered						
	Location Type		Figure				
	Rural		Figure 2				
Highest of 4 consecutive hours on an average day				Highest of 4 consecutive hours on an average day			
				Time Period	Eastbound	Westbound	Higher of
Time Period	Southbound	Northbound	Total of Both				Each
3 pm to 4pm	534	609	1143	3 pm to 4pm	216	45	216
4 pm to 5pm	648	663	1311	4 pm to 5pm	230	47	230
5 pm to 6pm	822	819	1641	5 pm to 6pm	377	65	377

Figure 2. Warrant 7: four hour volumes 2

Explanation: The warrant is satisfied.

	Number of Minor Street Incoming Lanes on Approach with Highest Peak Hour Delay	
	1	2 or more
Minimum Peak Hour Delay (veh hr)	4	5
Minimum Peak Hour Traffic (vph)	100	150

Number of Intersection Approaches	Minimum total Peak Hour Traffic for All Approaches Combined (vph)
3	650
4	800

Existing Scenario to be Considered	
Minimum Peak Hour Delay (veh-hr)	5
Minimum Peak Hour Traffic (vph)	150
Minimum total Peak Hour Traffic for All Approaches Combined (vph)	800

Peak hour traffic volumes on an average day

Peak hour traffic volumes on an average day			
Time Period	Eastbound	Westbound	Higher of Each
- This	377	65	377
intersection			
Existing Peak Hour Delay (veh-hr):			
	Eastboun		1.91
	Westboun		1.25

Warrant Satisfied? Yes No
Explanation: The warrant is satisfied.

WARRANT NO. 9 Peak Hour Volumes

Location Type	Large Urban Areas (> 10000 population)	
	Posted or 85th Percentile Speed	
	$=<70 \mathrm{~km} / \mathrm{hr}$	$>70 \mathrm{~km} / \mathrm{hr}$
Large Urban (>10000 pop.)	Figure 3	Figure 4
Small Urban $(<10000$ pop.)	Figure 3	

Existing Scenario to be Considered	
Location Type	Figure
Rural	Figure 4

Figure 4. Warrant 9: peak hour volumes 2

Explanation: The warrant is satisfied.

Summary

Warrant

I) Minimum Vehicular Volume
2) Interruption of Continuous Traffic
3) Progressive Movement
4) Accident Experience
5) System Warrant
6) Combination Warrant
7) Four Hour Volume
8) Peak Hour Delay
9) Peak Hour Volume
x Satisfied
x Satisfied

Satisfied

x Satisfied
x Satisfied
x Satisfied
x Satisfied
x Satisfied

\square Not Satisfied
x Not Satisfied
x Not Satisfied

Comments:

- This intersection does warrant the installation of a traffic signal.

Number of Incoming Lanes on Approach		Large Urban Areas (> 10000 population)				Small Urban Areas (<10000 population)	
		Posted or 85th Percentile Speed				Peak 7 Hour Volume (vph)	
		$=<70 \mathrm{~km} / \mathrm{hr}$Peak 7 Hour Volume (vph)		$>70 \mathrm{~km} / \mathrm{hr}$Peak 7 Hour Volume (vph)			
Major	Minor	Major	Minor	Major	Minor	Major	Minor
1	1	500	150	350	105	350	105
2 or more	1	600	150	420	105	420	105
2 or more	2 or more	600	200	420	140	420	140
I	2 or more	500	200	350	140	350	140

Existing Scenario to be Considered			
Number of Incoming Lanes on Approach	Minimum Volumes		
Major	Minor	Major	Minor
2 or more	2 or more	420	140

Existing Traffic Volumes (by Approach)
8 hours traffic volume on an average day

Total of Both Major
Time Period
6am to 7am
7am to 8am
8am to 9am
Ilam to 12am
I2am to lpm
3pm to 4 pm
4pm to 5 pm

	Existing Traffic Volumes (by Approach) 8 hours traffic volume on an average day		
Higher than Minimum?	Time Period	Higher of Each Minor Approaches	Higher than Minimum?
Yes	6am to 7am	121	No
Yes	7 am to 8am	140	No
Yes	8 am to 9am	167	Yes
No	Ilam to 12am	124	No
No	12 am to Ipm	106	No
Yes	3 pm to 4pm	122	No
Yes	4 pm to 5pm	130	No
Yes	5pm to 6pm	214	Yes

Explanation: The warrant is not satisfied. Only 2 hours of traffic volume exceed the minimum vehicular volume criteria.

Number of Incoming Lanes on Approach		Large Urban Areas (> 10000 population)				Small Urban Areas (<10000 population)	
		Posted or 85th Percentile Speed				Peak 7 Hour Volume (vph)	
		$=<70 \mathrm{~km} / \mathrm{hr}$Peak 7 Hour Volume (vph)		$>70 \mathrm{~km} / \mathrm{hr}$Peak 7 Hour Volume (vph)			
Major	Minor	Major	Minor	Major	Minor	Major	Minor
1	1	750	75	525	50	525	50
2 or more	1	900	75	630	50	630	50
2 or more	2 or more	900	100	630	70	630	70
1	2 or more	750	100	525	70	525	70

Existing Scenario to be Considered			
Number of Incoming Lanes on Approach	Minimum Volumes		
Major	Minor	Major	Minor
2 or more	2 or more	630	70

Existing Traffic Volumes (by Approach) 8 hours traffic volume on an average day			Existing Traffic Volumes (by Approach) 8 hours traffic volume on an average day		
Time Period	Total of Both Major	Higher than Minimum?	Time Period	Higher of Each Minor	Higher than
	Approaches			Approaches	Minimum?
6am to 7am	499	No	6am to 7am	121	Yes
7am to 8am	722	Yes	7 am to 8am	140	Yes
8 am to 9am	576	No	8 am to 9am	167	Yes
Ilam to 12am	414	No	Ilam to 12am	124	Yes
12 am to Ipm	415	No	12 am to 1pm	106	Yes
3 pm to 4pm	653	Yes	3 pm to 4 pm	122	Yes
4 pm to 5pm	748	Yes	4 pm to 5 pm	130	Yes
5 pm to 6pm	934	Yes	5 pm to 6pm	214	Yes

Explanation: The warrant is not satisfied. Only 4 hours of traffic volume exceed the minimum vehicular volume criteria.

WARRANT NO. 3 Progressive Movement

I) Is the distance to the nearest signal greater than or equal to 300 m ?
Yes No

One Way
Are the adjacent signals so far apart that they do not provide a necessary

degree of vehicle platooning and speed control?

Two Way
Do the adjacent signals constitute a progressive system?
Yes

Are the adjacent signals so far apart that they do not provide a necessary
Yes No degree of vehicle platooning and speed control?

Warrant Satisfied? Yes No
Explanation: The adjacent signals do not constitute a progressive system, and the installation of a signal at this location will not provide a necessary degree of vehicle platooning and speed control.

WARRANT NO. 4 Accident Experience (based on ICBC Claims Data)

I) Have five or more reported accidents of types susceptible to correction

Yes
 by traffic signals occurred within a 12 month period, with each accident involving personal injury or damage exceeding $\$ 1000$?
2) Have adequate trials of less restrictive remedies with satisfactory

Yes $\quad \mathrm{No}$ observance and enforcement failed to reduce the accident frequency?
3) Will the installation of a signal allow progressive traffic flow?

Yes

Warrant Satisfied? Yes No
Explanation: - Previous 5 years (2008 to 2013): 7 accident
'- Highest 12 months: 3 accident
'- Highest 12 months: 0 accident that may be correctable with a traffic

WARRANT NO. 5 System Warrant

I) Are both the major and minor streets "Major Routes"?
2) Does the total Peak Hour Volume over all approaches equal or exceed
Yes $N o$ 1000 vph ?
3) Are one or more of Warrants $I, 2,6,7$ and 9 satisfied using Projected 5

Yes Year Volumes?
4) Does the Peak 5 Hour Weekend Volume equal or exceed 1000 vph ?
Warrant Satisfied? Yes No

Explanation: The warrant is satisfied.
I) Have other measures been tried which cause less delay and

Yes \square invonvenience to traffic than traffic signals?

Number of Incoming Lanes on Approach		Large Urban Areas (> 10000 population)				Small Urban Areas (<10000 population)	
		Posted or 85th Percentile Speed				Peak 7 Hour Volume (vph)	
		$=<70 \mathrm{~km} / \mathrm{hr}$Peak 7 Hour Volume (vph)		$>70 \mathrm{~km} / \mathrm{hr}$Peak 7 Hour Volume (vph)			
Major	Minor	Major	Minor	Major	Minor	Major	Minor
1	1	600	120	420	85	420	85
2 or more	1	720	120	500	85	500	85
2 or more	2 or more	720	160	500	110	500	110
1	2 or more	600	160	420	110	420	110

Existing Scenario to be Considered			
Number of Incoming Lanes on Approach	Minimum Volumes		
Major	Minor	Major	Minor
2 or more	2 or more	500	IIO

Existing Traffic Volumes (by Approach) 8 hours traffic volume on an average day			Existing Traffic Volumes (by Approach) 8 hours traffic volume on an average day		
	Total of Both Major	Higher than Minimum?	Time Period	Higher of Each Minor	Higher than
Time Period	Approaches			Approaches	Minimum?
6am to 7am	499	No	6am to 7am	121	Yes
7 am to 8am	722	Yes	7 am to 8am	140	Yes
8 am to 9am	576	Yes	8 am to 9am	167	Yes
Ilam to 12am	414	No	11 am to 12am	124	Yes
12 am to Ipm	415	No	12 am to 1 pm	106	No
3 pm to 4pm	653	Yes	3 pm to 4 pm	122	Yes
4 pm to 5 pm	748	Yes	4 pm to 5 pm	130	Yes
5 pm to 6 pm	934	Yes	5 pm to 6pm	214	Yes

Warrant Satisfied? Yes \quad No
Explanation: The warrant is not satisfied. Only 5 hours of traffic volume exceed the minimum vehicular volume criteria.

WARRANT NO. 7 Four Hour Volumes

Location Type	Large Urban Areas (> 10000 population)	
	Posted or 85th Percentile Speed	
	$=<70 \mathrm{~km} / \mathrm{hr}$	$>70 \mathrm{~km} / \mathrm{hr}$
Large Urban (>10000 pop.)	Figure 1	Figure 2
Small Urban $(<10000$ pop.)	Figure 1	

	Existing Scenario to be Considered						
	Location Type		Figure				
	Large Urban ((10000 pop.)	Figure 2				
Highest of 4 consecutive hours on an average day				Highest of 4 consecutive hours on an average day			
				Time Period	Eastbound	Westbound	Higher of
Time Period	Southbound	Northbound	Total of Both				Each
3 pm to 4pm	306	348	653	3 pm to 4 pm	122	25	122
4 pm to 5pm	370	379	748	4 pm to 5pm	130	26	130
5 pm to 6 pm	468	466	934	5 pm to 6pm	214	36	214

Figure 2. Warrant 7: four hour volumes 2

Warrant Satisfied? Yes
No
Explanation: The warrant is not satisfied because only 2 of the 3 consecutive hours exceed or equal to the appropriate threshold.

	Number of Minor Street Incoming Lanes on Approach with Highest Peak Hour Delay	
	1	2 or more
Minimum Peak Hour Delay (veh hr)	4	5
Minimum Peak Hour Traffic (vph)	100	150

Number of Intersection Approaches	Minimum total Peak Hour Traffic for All Approaches Combined (vph)
3	650
4	800

Existing Scenario to be Considered	
Minimum Peak Hour Delay (veh-hr)	5
Minimum Peak Hour Traffic (vph)	150
Minimum total Peak Hour Traffic for All Approaches Combined (vph)	800

Peak hour traffic volumes on an average day				Peak hour traffic volumes on an average day			
Time Period	Southbound	Northbound	Total of Both				
				Time Period	Eastbound	Westbound	Each
1515 pm to	468	466	934	1515 pm to	214	36	214
1615 pm				1615 pm			
				Existing Peak H	r Delay (veh		
					Eastboun		1.08
					Westboun		0.69

Warrant Satisfied? Yes \quad No

Explanation: The warrant is not satisfied because the existing peak hour delay for the minor approach does not exceed 5 veh-hr.

WARRANT NO. 9 Peak Hour Volumes

Location Type	Large Urban Areas (> 10000 population)	
	Posted or 85th Percentile Speed	
	= $<70 \mathrm{~km} / \mathrm{hr}$	$>70 \mathrm{~km} / \mathrm{hr}$
Rural	Figure 3	Figure 4
$\begin{aligned} & \hline \text { Large Urban } \\ & \text { (> } 10000 \text { pop.) } \end{aligned}$	Figure 3	Figure 4
$\begin{gathered} \hline \text { Small Urban } \\ \text { (<10000 pop.) } \end{gathered}$	Figure 4	Figure 4

Existing Scenario to be Considered	
Location Type	Figure
Rural	Figure 4

Peak hour traffic volumes on an average day

| Higher of |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Figure 4. Warrant 9: peak hour volumes 2

Warrant Satisfied? Yes No
Explanation: The warrant is satisfied.

Summary

Warrant

I) Minimum Vehicular Volume
2) Interruption of Continuous Traffic
3) Progressive Movement
4) Accident Experience
5) System Warrant
6) Combination Warrant
7) Four Hour Volume
8) Peak Hour Delay
9) Peak Hour Volume

Satisfied

Satisfied

Satisfied
x Satisfied Satisfied Satisfied Satisfied x Satisfied
x Not Satisfied
x Not Satisfied
x Not Satisfied
x Not Satisfied

x Not Satisfied
x Not Satisfied
x Not Satisfied
\square Not Satisfied

Comments:

WARRANT NO.I MINIMUM VEHICULAR VOLUME

Number of Incoming Lanes on Approach		Large Urban Areas (> 10000 population)				Small Urban Areas (<10000 population)	
		Posted or 85th Percentile Speed				Peak 7 Hour Volume (vph)	
		= $<70 \mathrm{~km} / \mathrm{hr}$ Peak 7 Hour Volume (vph)		$>70 \mathrm{~km} / \mathrm{hr}$Peak 7 Hour Volume (vph)			
Major	Minor	Major	Minor	Major	Minor	Major	Minor
1	I	500	150	350	105	350	105
2 or more	1	600	150	420	105	420	105
2 or more	2 or more	600	200	420	140	420	140
I	2 or more	500	200	350	140	350	140

Existing Scenario to be Considered			
Number of Incoming Lanes on Approach	Minimum Volumes		
Major	Minor	Major	Minor
2 or more	2 or more	420	140

Number of Incoming Lanes on Approach		Large Urban Areas (> 10000 population)				Small Urban Areas (<10000 population)	
		Posted or 85th Percentile Speed				Peak 7 Hour Volume (vph)	
		= $<70 \mathrm{~km} / \mathrm{hr}$		> 70 km/hr			
		Peak 7 Hour Volume (vph)		Peak 7 Hour Volume (vph)			
Major	Minor	Major	Minor	Major	Minor	Major	Minor
1	1	750	75	525	50	525	50
2 or more	1	900	75	630	50	630	50
2 or more	2 or more	900	100	630	70	630	70
I	2 or more	750	100	525	70	525	70

Existing Scenario to be Considered			
Number of Incoming Lanes on Approach	Minimum Volumes		
Major	Minor	Major	Minor
2 or more	2 or more	630	70

WARRANT NO. 3 Progressive Movement

I) Is the distance to the nearest signal greater than or equal to 300 m ?
Yes No

One Way
Are the adjacent signals so far apart that they do not provide a necessary

degree of vehicle platooning and speed control?

Two Way
Do the adjacent signals constitute a progressive system?
Yes

Are the adjacent signals so far apart that they do not provide a necessary
Yes No degree of vehicle platooning and speed control?

Warrant Satisfied? Yes No
Explanation: The adjacent signals do not constitute a progressive system, and the installation of a signal at this location will not provide a necessary degree of vehicle platooning and speed control.

WARRANT NO. 4 Accident Experience (based on ICBC Claims Data)

x

I) Have five or more reported accidents of types susceptible to correction

Yes
No by traffic signals occurred within a 12 month period, with each accident involving personal injury or damage exceeding $\$ 1000$?

- This intersection does warrant the installation of a traffic signal.

Yes
3) Will the installation of a signal allow progressive traffic flow?

Yes
Warrant Satisfied? Yes No

Explanation: - Previous 5 years (2008 to 2013): 7 accident
|'- Highest 12 months: 3 accident
'- Highest 12 months: 0 accident that may be correctable with a traffic

WARRANT NO. 5 System Warrant

I) Are both the major and minor streets "Major Routes"?
Yes No
2) Does the total Peak Hour Volume over all approaches equal or exceed
Yes 1000 vph ?
3) Are one or more of Warrants $I, 2,6,7$ and 9 satisfied using Projected 5
4) Does the Peak 5 Hour Weekend Volume equal or exceed 1000 vph ?

Explanation: The warrant is satisfied.
I) Have other measures been tried which cause less delay and
Yes
No invonvenience to traffic than traffic signals?

Number of Incoming Lanes on Approach		Large Urban Areas (> 10000 population)				Small Urban Areas (<10000 population)			
		Posted or 85th Percentile Speed				Peak 7 Hour Volume (vph)			
		$=<70 \mathrm{~km} / \mathrm{hr}$Peak 7 Hour Volume (vph)		$>70 \mathrm{~km} / \mathrm{hr}$					
		Peak 7 Hour Volume (vph)							
Major	Minor			Major	Minor	Major	Minor	Major	Minor
1	I	600	120	420	85	420	85		
2 or more	1	720	120	500	85	500	85		
2 or more	2 or more	720	160	500	110	500	110		
1	2 or more	600	160	420	110	420	110		

Existing Scenario to be Considered			
Number of Incoming Lanes on Approach	Minimum Volumes		
Major	Minor	Major	Minor
2 or more	2 or more	500	\times

WARRANT NO. 7 Four Hour Volumes

Location Type	Large Urban Areas (> 10000 population)	
	Posted or 85th Percentile Speed	
	$=<70 \mathrm{~km} / \mathrm{hr}$	$>70 \mathrm{~km} / \mathrm{hr}$
Large Urban		
(>10000 pop.)	Figure I	Figure 2
Small Urban $(<10000$ pop.)	Figure 1	Figure 2

	Existing Scenario to be Considered						
	Location Type		Figure				
	Rural		Figure 2				
Highest of 4 consecutive hours on an average day				Highest of 4 consecutive hours on an average day			
				Time Period	Eastbound	Westbound	Higher of
Time Period	Southbound	Northbound	Total of Both				Each
3 pm to 4pm	534	609	1143	3 pm to 4pm	216	45	216
4 pm to 5pm	648	663	1311	4 pm to 5pm	230	47	230
5 pm to 6pm	822	819	1641	5 pm to 6pm	377	65	377

Figure 2. Warrant 7: four hour volumes 2

Explanation: The warrant is satisfied.

	Number of Minor Street Incoming Lanes on Approach with Highest Peak Hour Delay	
	1	2 or more
Minimum Peak Hour Delay (veh hr)	4	5
Minimum Peak Hour Traffic (vph)	100	150

Number of Intersection Approaches	Minimum total Peak Hour Traffic for All Approaches Combined (vph)
3	650
4	800

Existing Scenario to be Considered	
Minimum Peak Hour Delay (veh-hr)	5
Minimum Peak Hour Traffic (vph)	150
Minimum total Peak Hour Traffic for All Approaches Combined (vph)	800

Peak hour traffic volumes on an average day

Peak hour traffic volumes on an average day			
Time Period	Eastbound	Westbound	Higher of Each
- This	377	65	377
intersection			
Existing Peak Hour Delay (veh-hr):			
	Eastboun		1.91
	Westboun		1.25

Warrant Satisfied? Yes No
Explanation: The warrant is satisfied.

WARRANT NO. 9 Peak Hour Volumes

Location Type	Large Urban Areas (> 10000 population)	
	Posted or 85th Percentile Speed	
	$=<70 \mathrm{~km} / \mathrm{hr}$	$>70 \mathrm{~km} / \mathrm{hr}$
Large Urban (>10000 pop.)	Figure 3	Figure 4
Small Urban $(<10000$ pop.)	Figure 3	

Existing Scenario to be Considered	
Location Type	Figure
Rural	Figure 4

Figure 4. Warrant 9: peak hour volumes 2

Explanation: The warrant is satisfied.

Summary

Warrant

I) Minimum Vehicular Volume
2) Interruption of Continuous Traffic
3) Progressive Movement
4) Accident Experience
5) System Warrant
6) Combination Warrant
7) Four Hour Volume
8) Peak Hour Delay
9) Peak Hour Volume
x Satisfied
x Satisfied

Satisfied

x Satisfied
x Satisfied
x Satisfied
x Satisfied
x Satisfied

\square Not Satisfied
x Not Satisfied
x Not Satisfied

Comments:

- This intersection does warrant the installation of a traffic signal.

Appendix J: Estimated Cost Details

Alaska Hwy. (Hwy. 97) North of Fort St. John

Planning Construction Cost Estimate - Alaska Hwy. (Hwy. 97) NB and SB Passing Lanes

Description	Alaska Hwy. New NB Passing Lane 248 Rd. LKI 1180 17.6-19.6	Alaska Hwy. New NB Passing Lane Becker Hill Rd. LKI 1180 33.78- 35.15	Alaska Hwy. New NB Passing Lane S of Beatton Riv. LKI 1180 41.52-43.89	Alaska Hwy. New NB Passing Lane Sof Aitken Cr Rd LKI 1180 $55.0-57.5$	Alaska Hwy. New NB Passing Lane S of Inga Lk Rd LKI 1180 68.5-70.5	Alaska Hwy. New NB Passing Lane S of Tommy Lake LKI 1183 $19.0-21.19$	Alaska Hwy. New NB Passing Lane S of Jedney Rd LKI 1183 35.83-38.33
Road Length	2000	2000	2370	2500	2000	2190	2500
Engineering \& Project Management	\$0.275 M	\$0.256 M	\$0.320 M	\$0.317 M	\$0.264 M	\$0.298 M	\$0.354 M
Grade Construction	\$0.864 M	\$0.773 M	\$0.999 M	\$0.956 M	\$0.773 M	\$0.934 M	\$1.171 M
Other Construction (Environmental Mitigation)	\$0.023 M						
Paving Construction	\$0.462 M	\$0.420 M	\$0.538 M	\$0.524 M	\$0.420 M	\$0.501 M	\$0.565 M
Structural Construction	\$0.000 M						
Operational Construction (Lighting, Pavement Marking, Signing and Signal Improvements)	\$0.015 M	\$0.013 M	\$0.017 M	\$0.017 M	\$0.013 M	\$0.016 M	\$0.026 M
Utility Construction	\$0.000 M	\$0.000 M	\$0.000 M	\$0.000 M	\$0.160 M	\$0.000 M	\$0.000 M
Resident Engineering	\$0.122 M	\$0.110 M	\$0.141 M	\$0.135 M	\$0.110 M	\$0.131 M	\$0.159 M
Total Eng. \& PM \& Construction	\$1.760 M	\$1.595 M	\$2.039 M	\$1.972 M	\$1.764 M	\$1.903 M	\$2.298 M
Contingency 30\%	\$0.528 M	\$0.479 M	\$0.612 M	\$0.592 M	\$0.529 M	\$0.571 M	\$0.689 M
TOTAL	\$2.29 M	\$2.07 M	\$2.65 M	\$2.56 M	\$2.29 M	\$2.47 M	\$2.99 M
Lower	\$1.72 M	\$1.56 M	\$1.99 M	\$1.92 M	\$1.72 M	\$1.86 M	\$2.24 M
Estimated	\$2.29 M	\$2.07 M	\$2.65 M	\$2.56 M	\$2.29 M	\$2.47 M	\$2.99 M
Upper	\$4.00 M	\$3.63 M	\$4.64 M	\$4.49 M	\$4.01 M	\$4.33 M	\$5.23 M

Alaska Hwy. (Hwy. 97) North of Fort !

Planning Construction Cost Estimate - Alaska H

Description	Alaska Hwy. New SB Passing Lane S of Stoddard Cr Rd LKI 1180 17.5-20.0	Alaska Hwy. New SB Passing Lane S of Lower Cache LKI 1180 $33.6-35.6$	Alaska Hwy. New SB Passing Lane N of Beatton River LKI 1180 48.7-51.2	Alaska Hwy. New SB Passing Lane S of Inga Lk Rd LKI 1180 69.2-71.2	Alaska Hwy. New SB Passing Lane N of Upper Halfway LKI 1180 $\mathbf{8 0 . 2 - 8 2 . 2}$		Alaska Hwy. New SB Passing Lane N of Jedney Rd LKI 1183 38.5-40.5	Alaska Hwy. New SB Passing Lane N of 135 Rd LKI 1183 52.5-55.0
Road Length	2500	2000	2500	2000	2000	2000	2000	2500
Engineering \& Project Management	\$0.336 M	\$0.256 M	\$0.317 M	\$0.264 M	\$0.300 M	\$0.274 M	\$0.418 M	\$0.317 M
Grade Construction	\$1.050 M	\$0.773 M	\$0.956 M	\$0.835 M	\$1.009 M	\$0.864 M	\$1.730 M	\$0.956 M
Other Construction (Environmental Mitigation)	\$0.023 M							
Paving Construction	\$0.565 M	\$0.420 M	\$0.524 M	\$0.420 M	\$0.462 M	\$0.462 M	\$0.462 M	\$0.524 M
Structural Construction	\$0.000 M							
Operational Construction (Lighting, Pavement Marking, Signing and Signal Improvements)	\$0.018 M	\$0.013 M	\$0.017 M	\$0.013 M	\$0.013 M	\$0.013 M	\$0.177 M	\$0.014 M
Utility Construction	\$0.000 M	\$0.000 M	\$0.000 M	\$0.000 M	\$0.100 M	\$0.000 M	\$0.000 M	\$0.000 M
Resident Engineering	\$0.148 M	\$0.110 M	\$0.135 M	\$0.115 M	\$0.135 M	\$0.121 M	\$0.217 M	\$0.135 M
Total Eng. \& PM \& Construction	\$2.140 M	\$1.595 M	\$1.972 M	\$1.671 M	\$2.041 M	\$1.757 M	\$3.028 M	\$1.969 M
Contingency 30\%	\$0.642 M	\$0.479 M	\$0.592 M	\$0.501 M	\$0.612 M	\$0.527 M	\$0.908 M	\$0.591 M
TOTAL	\$2.78 M	\$2.07 M	\$2.56 M	\$2.17 M	\$2.65 M	\$2.28 M	\$3.94 M	\$2.56 M

Cost Range	Alaska Hwy. New SB Passing Lane S of Stoddard Cr Rd LKI 1180 17.520.0	Alaska Hwy. New SB Passing Lane S of Lower Cache Rd LKI 118033.6 35.6	Alaska Hwy. New SB Passing Lane N of Beatton River Arprt Rd LKI 1180 48.7-51.2	Alaska Hwy. New SB Passing Lane S of Inga Lk Rd LKI 118069.2-71.2	Alaska Hwy. New SB Passing Lane N of Upper Halfway Rd LKI 118080.2 82.2	Alaska Hwy. New SB Passing Lane N of 109 Rd LKI 1183 12.9-14.9	Alaska Hwy. New SB Passing Lane N of Jedney Rd LKI 1183 38.5-40.5	Alaska Hwy. New SB Passing Lane N of 135 Rd LKI 118352.5-55.0
Lower	\$2.09 M	\$1.56 M	\$1.92 M	\$1.63 M	\$1.99 M	\$1.71 M	\$2.95 M	\$1.92 M
Estimated	\$2.78 M	\$2.07 M	\$2.56 M	\$2.17 M	\$2.65 M	\$2.28 M	\$3.94 M	\$2.56 M
Upper	\$4.87 M	\$3.63 M	\$4.49 M	\$3.80 M	\$4.64 M	\$4.00 M	\$6.89 M	\$4.48 M

Appendix K: ShortBEN Analysis Worksheets

SHORTBEN.XLS	Required Inputs in Yellow		
Version 7 Feb 2013Intended for use as a screening tool prior to more complete benefit cost analysis			
Make an original copy before using.	SB Passing Lane North of 135 Road		
Alaska Hwy Traffic Study	Base	Proposed	Notes
General Information			
Segment Length (km)	2.40	2.40	Important to show any differences between base \& prop.
AADT	2,980	2,980	Base \& Proposed AADT should normally be the same.
Annual Traffic Growth (\%)	3.0\%	3.0\%	Compound growth
\% Trucks	20\%	20\%	
Base Year	2015	2015	Should be same for base and proposed.
Benefit Period (yrs)	24		Assumes 1 yr of construction prior to benefits starting.
Discount Rate	6\%	6\%	
Financial Account			
Property (\$)	\$0	\$0	
Engineering (\$)	\$0	\$232,727.27	Typical 10\% to 20\% of Construction
Construction (\$)	\$0	\$2,327,272.73	
Total (\$)	\$0	\$2,560,000.00	
Maintenance (\$/km/yr)	\$24,000	\$36,000	Typical \$3,839/Ln-km
Resurfacing Cost (\$/km)	\$360,000	\$540,000	Typical $\$ 60,000 / \mathrm{n}$-km
Resurfacing Years	2015	2030	Typical Pavement life is 15 yrs from the last resurfacing
	2030	2045	2nd resurf yr is ignored if 0 or >(base yr + benefit period)
Salvage Value (\$) in Horizon Yr Present Value	\$86,400	\$1,991,418	Typical is 100% of prpty $+80 \%$ of Const. resurf. Residual
Present Value	\$1,886,368	\$3,514,845	Present Value of capital + maint. + resurf. - salvage

SHORTBEN.XLS	Required Inputs in Yellow		
Version 7 Feb 2013	Optional Inputs in Green		
Intended for use as a screening tool	complete ben	efit cost analysis	
Make an original copy before using.	SB Passing Lane North of 109 Road		
Alaska Hwy Traffic Study	Base	Proposed	Notes
General Information			
Segment Length (km)	2.00	2.00	Important to show any differences between base \& prop.
AADT	2,460	2,460	Base \& Proposed AADT should normally be the same.
Annual Traffic Growth (\%)	3.0\%	3.0\%	Compound growth
\% Trucks	20\%	20\%	
Base Year	2015	2015	Should be same for base and proposed.
Benefit Period (yrs)	24	24	Assumes 1 yr of construction prior to benefits starting.
Discount Rate	6\%	6\%	
Financial Account			
Property (\$)	\$0	\$0	
Engineering (\$)	\$0	\$207,272.73	Typical 10% to 20% of Construction
Construction (\$)	\$0	\$2,072,727.27	
Total (\$)	\$0	\$2,280,000.00	
Maintenance (\$/km/yr)	\$20,000	\$30,000	Typical \$3,839/Ln-km
Resurfacing Cost (\$/km)	\$300,000	\$450,000	Typical $\$ 60,000 / \mathrm{Ln}$-km
Resurfacing Years	2015	2030	Typical Pavement life is 15 yrs from the last resurfacing
	2030	2045	2nd resurf yr is ignored if 0 or $>$ (base yr + benefit period)
Salvage Value (\$) in Horizon Yr Present Value	$\$ 60,000$ $\$ 1,309,978$	\$1,748,182 \$2,829,556	Typical is 100% of prpty $+80 \%$ of Const. + resurf. Residual Present Value of capital + maint. resurf. - salvage

SHORTBEN.XLS	Required Inputs in Yellow		
Version 7 Feb 2013Intended for use as a screening tool prior to more complete benefit cost analysis			
Make an original copy before using.	SB Passing Lane North of Upper Halfway		
Alaska Hwy Traffic Study	Base	Proposed	Notes
General Information			
Segment Length (km)	2.00	2.00	Important to show any differences between base \& prop.
AADT	2,560	2,560	Base \& Proposed AADT should normally be the same.
Annual Traffic Growth (\%)	3.0\%	3.0\%	Compound growth
\% Trucks	20\%	20\%	
Base Year	2015	2015	Should be same for base and proposed.
Benefit Period (yrs)	24		Assumes 1 yr of construction prior to benefits starting.
Discount Rate	6\%	6\%	
Financial Account			
Property (\$)	\$0	\$0	
Engineering (\$)	\$0	\$240,909.09	Typical 10\% to 20\% of Construction
Construction (\$)	\$0	\$2,409,090.91	
Total (\$)	\$0	\$2,650,000.00	
Maintenance (\$/km/yr)	\$20,000	\$30,000	Typical \$3,839/Ln-km
Resurfacing Cost (\$/km)	\$300,000	\$450,000	Typical $\$ 60,000 / \mathrm{n}$-km
Resurfacing Years	2015	2030	Typical Pavement life is 15 yrs from the last resurfacing
	2030	2045	2nd resurf yr is ignored if 0 or $>$ (base $\mathrm{yr}+$ benefit period)
Salvage Value (\$) in Horizon Yr Present Value	\$60,000	\$2,017,273	Typical is 100% of prpty $+80 \%$ of Const. resurf. Residual
Present Value	\$1,309,978	\$3,115,914	Present Value of capital + maint.+ resurf. - salvage

\% of AADTPeakShoulderLowTotalAuto Speed (km/hr)	$\begin{aligned} & 30.0 \% \\ & 35.0 \% \\ & 35.0 \% \end{aligned}$	$\begin{array}{\|} \hline 30.0 \% \\ 35.0 \% \\ 35.0 \% \\ 100.0 \% \end{array}$	\% of AADT occurring in each period. For example a 3 hr peak period with 10% of AADT per $\mathrm{hr}=30 \%$ of AADT These splits are used to differentiate speed, delay and veh. Op. costs during different periods of the day. Total must equal 100%											
	100.0%													
Peak	878790	$\begin{array}{l\|l\|} \hline 90 \\ 90 & \mathrm{p} \\ 90 \end{array}$	Representative average speeds in peak and shoulder periods are usually not much lower than speeds in the low period unless demand is exceeding 80% of capacity.											
Shoulder														
Low														
Truck Speed (km/hr)	$\begin{array}{l\|l\|} \hline 90 \\ 87 & 90 \\ 87 & 90 \\ 90 & 90 \\ \hline \end{array}$		the low period unless demand is exceeding 80% of capacity.											
Peak					$\begin{aligned} & 90 \\ & 90 \end{aligned}$									
Shoulder														
Low				LOS for Signalized I/S (see/veh)										
Peak	1616		LOS	A	B	C	D	E						
Shoulder			Max Delay	10	20	35	55	80						
Low			\% Vehicles Stopping during each period should be 0 if control delay is 0 . Values are used for fuel calculatons only. They do not impact delay calculations.											
\% of Vehicles Stopping														
Peak	0\%	0\%												
Shoulder	0\%													
Low	0\%													
Passenger Veh Occupancy	1.2	1.2	Use the same	ase a	ropo									
Value of Time (\$/occupant)	\$15.94	\$15.94												
Car (\$/veh)	\$19.13	\$19.13												
Truck Driver (\$/veh)	\$29.16	\$29.16	Assumes occu	1.0										
Travel Time (veh-hrs) in Year 1			Excludes cros	t del										
Car	19,725	16,612												
Truck	4,931	4,153												
Present Value of Time Costs (\$mill) for Benefit Period														
Car	\$6.390	\$5.381												
Truck	$\$ 2.435$ $\$ 8.825$	$\$ 2.051$ $\$ 7.432$												

Accident Costs			Typical acc. rates and severities by service class (2006-2010 data)																			
			Service Class	UAU2	UAU4	UAD4	UED4	UFD4	RAU2	RAU4	RAD4	RED4										
\% Fatal	2.6\%	2.6\%	Fatal	1.2\%	0.8\%	0.9\%	0.7\%	0.3\%	2.6\%	2.5\%	1.2\%	1.2\%										
\% Injury	41.3\%	41.3\%	Injury	39.3\%	42.7\%	48.3\%	40.3\%	33.9\%	41.3\%	44.2\%	40.3\%	44.5\%										
	56.1\%	56.1\%	PDO	59.5\%	56.5\%	50.8\%	59.0\%	65.8\%	56.1\%	53.2\%	58.5\%	54.3\%										
Cost/Collision																						
Fatala																						
Injury	\$135,577																					
PDO	\$11,367	\$11,367																				
Weighted Average	\$228,406	\$228,406																				
Vehicle Operating Costs (VOC)																						
											Fuel consumed at running speed, no control delay											
Car	$\begin{aligned} & 0.101 \\ & 0.441 \end{aligned}$	0.1030.450																				
Composite Truck																						
Control Delay Fuel (L/veh)			35% SU, semi - 20% empty 30% full, Btrain- 7% empty 8% full Additional fuel consumed due to control delay.																			
Car	0.006	0.000	includes deceleration, stop time and acceleration																			
Composite Truck	0.127	0.000																				
			Annual Fuel Consumption (L)																			
Composite Truck 188,538 168,318 Fuel Price $(\$ / L)$																						
Composite Truck	\$0.98	\$0.98	Truck fuel is usually diesel which is less costly than gasoline.																			
Fuel Cost (\$/yr)			Includes excess fuel consumption due to control delay, if any.																			
$\mathrm{Car}(\$ / \mathrm{km})$	\$0.113	\$0.113																				
Truck Time (\$/hr)	\$19.78	\$19.78	Use-related costs (other than fuel) Combination Truck Excluds fuel																			
Truck Distance (\$/km) $\$ 0.213$ $\$ 0.213$																						
			Excluds fuel																			
Car	$\$ 308,747$ $\$ 97,517$	$\begin{array}{r} \$ 307,243 \\ \$ 82,144 \end{array}$	low period speeds. Assumes 0% grade.																			
Truck Distance $\$ 264,001$ $\$ 244,225$ Present Value of VOC (\$millions)																						
$\stackrel{\text { Car }}{\text { Truck }}$	$\$ 5.229$ $\$ 6.123$	$\$ 5.203$ $\$ 5.527$																				
Truck Total	$\begin{array}{r} \$ 6.123 \\ \$ 11.351 \end{array}$	\$ $\$ 1.5578$																				
Summary of Discounted Costs (\$millions)																						
Capital	\$0.000	\$2.500																				
Maintenance \& Resurf	\$1.324	\$1.086																				
Salvage	(\$0.014)	(\$0.470)																				
Total	\$1.310	\$3.116	Sum of discounted Costs																			
Summary of Discounted Benefits																						
Time Savings		\$1.39	Savings due to higher speeds or shorter distance																			
Accident Savings Vehicle Operating Savings		\$1.037	Savings due to reduced accident rate or severityOften negative with increasing fuel at higher speed																			
		\$0.621																				
Total Benefits		\$3.05	Often negative with increasing fuel at higher speed																			
Summary of Results (Present Values in \$millions)																						
Incremental Cost		\$1.806																				
Customer Service Account $\$ 24$		\$21.274	$=$ Proposed - Base$=$ Base -Proposed																			
Incremental Benefit		\$3.05																				
B/C Ratio			$=$ Incremental benefits/incremental costs $=$ Incremental Benefits - Incremental Costs																			
Net Present Value		\$1.24																				
Greenhouse Gas Reduction																						
Gas Dies																						
Kg/Litre																						
2.25 2.62 Carbon Dioxide		57	CO2 is 2016 std																			
0.26 0.08 Nitrogen Oxide		${ }^{2}$																				
0.120 .12 Hydrcarbons		3																				
		62																				

SHORTBEN.XLS Required Inputs in Yellow	Required Inputs in Yellow		
Version 7 Feb 2013Intended for use as a screening tool prior to more complete benefit cost analysis			
Make an original copy before using.Alaska Hwy Traffic Study	SB Passing Lane South of Inga Lake		
	Base	Proposed	Notes
General Information			
Segment Length (km)	2.00	2.00	Important to show any differences between base \& prop.
AADT	3,200	3,200	Base \& Proposed AADT should normally be the same.
Annual Traffic Growth (\%)	3.0\%	3.0\%	Compound growth
\% Trucks	20\%	20\%	
Base Year	2015	2015	Should be same for base and proposed.
Benefit Period (yrs)	24		Assumes 1 yr of construction prior to benefits starting.
Discount Rate	6\%	6\%	
Financial Account			
Property (\$)	\$0	\$0	
Engineering (\$)	\$0	\$197,272.73	Typical 10\% to 20\% of Construction
Construction (\$)	\$0	\$1,972,727.27	
Total (\$)	\$0	\$2,170,000.00	
Maintenance (\$/km/yr)	\$20,000	\$30,000	Typical \$3,839/Ln-km
Resurfacing Cost (\$/km)	\$300,000	\$450,000	Typical \$60,000/Ln-km
Resurfacing Years	2015	2030	Typical Pavement life is 15 yrs from the last resurfacing
	2030	2045	2nd resurf yr is ignored if 0 or $>$ (base $\mathrm{yr}+$ benefit period)
Salvage Value (\$) in Horizon Yr	\$60,000	\$1,668,182	Typical is 100% of prpty + 80\% of Const.+ resurf. Residual
Present Value	\$1,309,978	\$2,744,422	Present Value of capital + maint.+ resurf. - salvage

SHORTBEN.XLS Required Inputs in Yellow	Required Inputs in Yellow		
Version 7 Feb 2013	Optional Inputs	in Green	
Intended for use as a screening tool prior to more complete benefit cost analysis			
Make an original copy before using.	SB Passing Lane North of Beatton River		
Alaska Hwy Traffic Study	Base	Proposed	Notes
General Information			
Segment Length (km)	2.50	2.50	Important to show any differences between base \& prop.
AADT	3,720	3,720	Base \& Proposed AADT should normally be the same.
Annual Traffic Growth (\%)	3.0\%	3.0\%	Compound growth
\% Trucks	20\%	20\%	
Base Year	2015	2015	Should be same for base and proposed.
Benefit Period (yrs)	24		Assumes 1 yr of construction prior to benefits starting.
Discount Rate	6\%	6\%	
Financial Account			
Property (\$)	\$0	\$0	
Engineering (\$)	\$0	\$232,727.27	Typical 10\% to 20\% of Construction
Construction (\$)	\$0	\$2,327,272.73	
Total (\$)	\$0	\$2,560,000.00	
Maintenance (\$/km/yr)	\$25,000	\$37,500	Typical \$3,839/Ln-km
Resurfacing Cost (\$/km)	\$375,000	\$562,500	Typical \$60,000/Ln-km
Resurfacing Years	2015	2030	Typical Pavement life is 15 yrs from the last resurfacing
	2030	2045	2nd resurf yr is ignored if 0 or $>$ (base $\mathrm{yr}+$ benefit period)
Salvage Value (\$) in Horizon Yr Present Value	\$93,750	\$2,002,443	Typical is 100% of prpty $+80 \%$ of Const. resurf. Residual
Present Value	\$2,046,840	\$3,645,303	Present Value of capital + maint.+ resurf. - salvage

Accident Costs			Typical acc. rates and severities by service class (2006-2010 data)																	
			Service Class	UAU2	UAU4	UAD4	UED4	UFD4	RAU2	RAU4	RAD4	RED4								
\% Fatal	2.6\%	2.6\%	Fatal	1.2\%	0.8\%	0.9\%	0.7\%	0.3\%	2.6\%	2.5\%	1.2\%	1.2\%								
\% Injury	41.3\%	41.3\%	Injury	39.3\%	42.7\%	48.3\%	40.3\%	33.9\%	41.3\%	44.2\%	40.3\%	44.5\%								
	56.1\%	56.1\%	PDO	59.5\%	56.5\%	50.8\%	59.0\%	65.8\%	56.1\%	53.2\%	58.5\%	54.3\%								
Cost/Collision																				
Fatal	\$6,385,999	$\begin{array}{r} \$ 6,385,999 \\ \$ 135,577 \end{array} \mathbf{T}^{\top}$																		
Injury	\$135,577		This is per fatal collision. Not per fatality (typical is 1.2 fatalities/fat acc.)																	
PDO ${ }_{\text {Weighted Average }}$	$\$ 11,367$ $\$ 228,406$	\$11,367																		
Present Value Coll. Costs (\$ mill)	$\$ 128.489$	$\begin{array}{r} \$ 228,406 \\ \$ 1.867 \end{array}$																		
Vehicle Operating Costs (VOC)																				
$\underset{\text { Running Fuel (L/km) }}{\text { Car }}$		0.101	Fuel consumed at running speed, no control delay																	
	0.099																			
Composite Truck Control Delay Fuel (L/veh)	0.432	0.441	35\%SU, semi - 20\%empty 30\% full, Btrain-7\%empty 8\%full																	
			Additional fuel consumed due to control delay. includes deceleration, stop time and acceleration																	
Car	${ }^{0.006}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$																		
$\xrightarrow[\text { Fuel (Litres/yr) }]{\text { Composite Truck }}$	0.127																			
Fuel (Litres/yr)	275,022		Annual Fuel Consumption (L)																	
Composite Truck	327,646	299,206																		
Fuel Price (\$/L)			Price net of taxes is about 55% of pump price																	
Car	\$0.90	\$0.90																		
Composite Truck Fuel Cost (\$/yr)	\$0.98	\$0.98																		
		\$245,447	Includes excess fuel consumption due to control delay, if any.																	
Composite Truck Other Vehicle Costs	$\$ 246,970$ $\$ 320,438$	\$245,447																		
Car (\$/km)	\$0.113	\$0.113																		
Truck Time (\$/hr)	\$19.78	\$19.78	Use-related costs (other than fuel)Combination Truck																	
Truck Distance ($\$ / \mathrm{km}$)	\$0.213	\$0.213	Excluds fuel																	
Annual Cost ($\$ / \mathrm{yr}$)Car			Composite values based on peak, shoulder and low period speeds. Assumes 0\% grade.																	
	$\$ 554,376$ $\$ 175752$	\$552,853																		
Truck Time	$\$ 175,752$ $\$ 465043$	\$152,598	low period speeds. Assumes 0% grade.																	
Truck Distance $\$ 465,043$ $\$ 437,229$ Present Value of VOC (\$millions)																				
Car	\$9.389	$\left.\begin{array}{r} \$ 9.363 \\ \$ 9.989 \\ \$ 19.352 \end{array}\right]$																		
Truck	\$10.852																			
Total	\$20.241																			
Summary of Discounted Costs (\$milions)																				
Capital	\$0.000	\$2.415																		
Maintenance \& Resurf	\$2.069	\$1.697	Sum of discounted Costs																	
退 $\begin{aligned} & \text { Salvage } \\ & \text { Total }\end{aligned}$	(\$0.022)	$\begin{gathered} (\$ 0.467) \\ \$ 3.645 \end{gathered}$																		
	\$2.047																			
Summary of Discounted Benefits																				
Time Savings		\$2.10																		
Accident SavingsVehicle Operating Savings		\$0.622																		
		\$0.889	Savings due to reduced accident rate or severity Often negative with increasing fuel at higher speed																	
Vehicle Operating Savings Total Benefits		\$3.61	Often negative with increasing fuel at higher speed																	
Summary of Results (Present Values in \$millions)																				
Financial Account	\$2.047	\$3.645	= Proposed - Base																	
Incremental Cost		\$1.598																		
Customer Service Account ${ }_{\text {Incremental Benefit }}$	\$39	$\begin{array}{r} \$ 35.025 \\ \$ 3.61 \end{array}=$	=Base -Proposed																	
B/C Ratio Net Present Value		$\begin{array}{r} 2.26 \\ \$ 2.01 \\ \hline \end{array}$	$=$ Incremental benefits $/$ incremental costs$=$ Incremental Benefits - Incremental Costs																	
Greenhouse Gas Reduction																				
2.25 2.62 Carbon Dioxide		78	CO2 is 2016 std																	
		3																		
0.120 .12 Hydrcarbons		4																		
		85																		

SHORTBEN.XLS Required Inputs in Yellow	Required Inputs in Yellow		
Version 7 Feb 2013	Optional Inputs	in Green	
Intended for use as a screening tool prior to more complete benefit cost analysis			
Make an original copy before using. SB Passing L		ane South of Lo	ower Cache
Alaska Hwy Traffic Study	Base	Proposed	Notes
General Information			
Segment Length (km)	2.00	2.00	Important to show any differences between base \& prop.
AADT	3,970	3,970	Base \& Proposed AADT should normally be the same.
Annual Traffic Growth (\%)	3.0\%	3.0\%	Compound growth
\% Trucks	20\%	20\%	
Base Year	2015	2015	Should be same for base and proposed.
Benefit Period (yrs)	24		Assumes 1 yr of construction prior to benefits starting.
Discount Rate	6\%	6\%	
Financial Account			
Property (\$) \$0			
Engineering (\$)	\$0	\$188,181.82	Typical 10\% to 20\% of Construction
Construction (\$)Total (\$)	\$0	\$1,881,818.18	
	\$0	\$2,070,000.00	
Maintenance (\$/km/yr)	\$20,000	\$30,000	Typical \$3,839/Ln-km
Resurfacing Cost (\$/km)	\$300,000	\$450,000	Typical \$60,000/Ln-km
Resurfacing Years	2015	2030	Typical Pavement life is 15 yrs from the last resurfacing
	2030	2045	2nd resurf yr is ignored if 0 or $>$ (base $\mathrm{yr}+$ benefit period)
Salvage Value (\$) in Horizon Yr	\$60,000	\$1,595,455	Typical is 100% of prpty + 80\% of Const.+ resurf. Residual
Present Value	\$1,309,978	\$2,667,028	Present Value of capital + maint.+ resurf. - salvage

SHORTBEN.XLS Required Inputs in Yellow	Required Inputs in Yellow		
Version 7 Feb 2013	Optional Inputs	in Green	
Intended for use as a screening tool prior to more complete benefit cost analysis			
Make an original copy before using. SB Passing L		ane South of S	toddard Creek
Alaska Hwy Traffic Study Base Proposed General Information Notes			
Segment Length (km)	2.50	2.50	Important to show any differences between base \& prop.
AADT	5,450	5,450	Base \& Proposed AADT should normally be the same.
Annual Traffic Growth (\%)	3.0\%	3.0\%	Compound growth
\% Trucks	20\%	20\%	
Base Year	2015	2015	Should be same for base and proposed.
Benefit Period (yrs)	24		Assumes 1 yr of construction prior to benefits starting.
Discount Rate	6\%	6\%	
Financial Account			
Property (\$) \$0 10			
Engineering (\$)	\$0	\$252,727.27	Typical 10\% to 20\% of Construction
Construction (\$)Total (\$)	\$0	\$2,527,272.73	
	\$0	\$2,780,000.00	
Maintenance (\$/km/yr)	\$25,000	\$37,500	Typical \$3,839/Ln-km
Resurfacing Cost (\$/km)	\$375,000	\$562,500	Typical \$60,000/Ln-km
Resurfacing Years	2015	2030	Typical Pavement life is 15 yrs from the last resurfacing
	2030	2045	2nd resurf yr is ignored if 0 or $>$ (base $\mathrm{yr}+$ benefit period)
Salvage Value (\$) in Horizon Yr	\$93,750	\$2,162,443	Typical is 100% of prpty $+80 \%$ of Const. + resurf. Residual
Present Value	\$2,046,840	\$3,815,570	Present Value of capital + maint.+ resurf. - salvage

SHORTBEN. XLS

Required Inputs in Yellow
Version 7 Feb 2013
Optional Inputs in Green

Intended for use as a screening tool prior to more complete benefit cost analysis

\% of AADT		30.0\%	\% of AADT occurring in each period. For example a 3 hr peak period with 10% of AADT per $\mathrm{hr}=30 \%$ of AADT These splits are used to differentiate speed, delay and veh. Op. costs during different periods of the day. Total must equal 100%					
Peak	30.0\%							
Shoulder	35.0\%	$\left.\begin{array}{r} 35.0 \% \\ 35.0 \% \\ 100.0 \% \end{array} \right\rvert\,$						
Low	35.0\%							
Total	100.0\%							
Auto Speed (km/hr)			Representative average speeds in peak and shoulder periods are usually not much lower than speeds in					
Peak	86	94						
Shoulder	86	9494						
Low	100		the low period unless demand is exceeding 80% of capacity.					
Truck Speed (km/hr)								
Peak	86	9494						
Shoulder	86							
Avg, Control Delay (sec/veh)	94	94	LOS for Signalized I/S (sec/veh)					
Peak	6		LOS	A	B	C	D	E
Shoulder	6		Max Delay	10	20	35	55	80
Low	3		\% Vehicles Stopping during each period should be 0					
\% of Vehicles Stopping								
Peak	0\%	0\%\%	if control delay is 0 . Values are used for fuel calculatons only. They do not impact delay calculations.					
Shoulder	0\%							
Low	0\%	0\%						
Passenger Veh Occupancy	1.2	1.2						
Value of Time (\$/occupant)	\$15.94	$\begin{aligned} & \$ 15.94 \\ & \$ 19.13 \end{aligned}$	Use the same for base and proposed.					
Car (\$/veh)	\$19.13							
Truck Driver (\$/veh)	\$29.16	$\begin{aligned} & \$ 19.13 \\ & \$ 29.16 \end{aligned}$	Assumes occupancy 1.0					
Travel Time (veh-hrs) in Year 1			Excludes cross street delay.					
Car	33,664	30,790						
Truck	8,578	7,698						
Present Value of Time Costs (\$mill) for Benefit Period								
Car	\$10.905	\$9.974						
Truck Total	$\$ 4.236$ $\$ 15.141$	$\$ 3.801$ $\$ 13.776$						

SHORTBEN.XLS	Required Inputs in Yellow		
Version 7 Feb 2013Intended for use as a screening tool prior to more complete benefit cost analysis			
Make an original copy before using.	NB Passing Lane South of Inga Lake Road		
Alaska Hwy Traffic Study	Base	Proposed	Notes
General Information			
Segment Length (km)	2.00	2.00	Important to show any differences between base \& prop.
AADT	3,200	3,200	Base \& Proposed AADT should normally be the same.
Annual Traffic Growth (\%)	3.0\%	3.0\%	Compound growth
\% Trucks	20\%	20\%	
Base Year	2015	2015	Should be same for base and proposed.
Benefit Period (yrs)	24	24	Assumes 1 yr of construction prior to benefits starting.
Discount Rate	6\%	6\%	
Financial Account			
Property (\$)	\$0	\$0	
Engineering (\$)	\$0	\$208,181.82	Typical 10% to 20% of Construction
Construction (\$)	\$0	\$2,081,818.18	
Total (\$)	\$0	\$2,290,000.00	
Maintenance (\$/km/yr)	\$20,000	\$30,000	Typical \$3,839/Ln-km
Resurfacing Cost (\$/km)	\$300,000	\$450,000	Typical \$60,000/Ln-km
Resurfacing Years	2015	2030	Typical Pavement life is 15 yrs from the last resurfacing
	2030	2045	2nd resurf yr is ignored if 0 or $>$ (base yr + benefit period)
Salvage Value (\$) in Horizon Yr	$\begin{array}{r} \$ 60,000 \\ \$ 1,309,978 \end{array}$	\$1,755,455	Typical is 100% of prpty $+80 \%$ of Const. + resurf. Residual

\% of AADT		30.0\%	\% of AADT occurring in each period. For example a 3 hr peak period with 10% of AADT per $\mathrm{hr}=30 \%$ of AADT These splits are used to differentiate speed, delay and veh. Op. costs during different periods of the day. Total must equal 100%						
Peak	30.0\%								
Shoulder	35.0\%	$\begin{aligned} & 35.0 \% \\ & 35.0 \% \end{aligned}$							
Low	35.0\%								
Total	100.0\%	100.0\%							
Auto Speed (km/hr)									
Peak	86	9191	Representative average speeds in peak and shoulder						
Shoulder	86		periods are us	not	low	an	ds in		
Low	91		the low period unless demand is exceeding 80% of capacity.						
Truck Speed (km/hr)									
Peak	86	9191	1						
Shoulder	86								
Low Avg, Control Delay (sec/veh)	91	91	LOS for Signalized I/S (sec/veh)						
Peak	8	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	LOS	A	B	C	D	E	
Shoulder	8		Max Delay	10	20	35	55	80	
Low	4								
\% of Vehicles Stopping			\% Vehicles Stopping during each period should be 0						
Peak	0\%	0\%	if control delay is 0 . Values are used for fuel calculatons only They do not impact delay calculations.						
Shoulder	0\%								
Low	0\%	0\%	They do not impact delay calculations.						
Passenger Veh Occupancy	1.2	1.2							
Value of Time (\$/occupant)	\$15.94	\$15.94	Use the same for base and proposed.						
Car (\$/veh)	\$19.13	\$19.13	Assumes occupancy 1.0						
Truck Driver (\$/veh)	\$29.16	\$29.16							
Travel Time (veh-hrs) in Year 1			Excludes cross street delay.						
Car	23,025	20,536	硣						
	5,756	5,134							
Present Value of Time Costs (\$mill) for Benefit Period									
Car	\$7.459		\$6.653						
Truck	\$2.843	\$2.535							
Total	\$10.302	\$9.188							

SHORTBEN.XLS	Required Inputs in Yellow		
Version 7 Feb 2013Intended for use as a screening tool prior to more complete benefit cost analysis			
Make an original copy before using.	NB Passing Lane South of Tommy Lake		
Alaska Hwy Traffic Study	Base	Proposed	Notes
General Information			
Segment Length (km)	2.20	2.20	Important to show any differences between base \& prop.
AADT	2,460	2,460	Base \& Proposed AADT should normally be the same.
Annual Traffic Growth (\%)	3.0\%	3.0\%	Compound growth
\% Trucks	20\%	20\%	
Base Year	2015	2015	Should be same for base and proposed.
Benefit Period (yrs)	24		Assumes 1 yr of construction prior to benefits starting.
Discount Rate	6\%	6\%	
Financial Account			
Property (\$)	\$0	\$0	
Engineering (\$)	\$0	\$224,545.45	Typical 10\% to 20\% of Construction
Construction (\$)	\$0	\$2,245,454.55	
Total (\$)	\$0	\$2,470,000.00	
Maintenance (\$/km/yr)	\$22,000	\$33,000	Typical \$3,839/Ln-km
Resurfacing Cost (\$/km)	\$330,000	\$495,000	Typical \$60,000/Ln-km
Resurfacing Years	2015	2030	Typical Pavement life is 15 yrs from the last resurfacing
	2030	2045	2nd resurf yr is ignored if 0 or $>$ (base $\mathrm{yr}+$ benefit period)
Salvage Value (\$) in Horizon Yr Present Value	\$72,600	\$1,905,264	Typical is 100% of prpty $+80 \%$ of Const. resurf. Residual
Present Value	\$1,585,073	\$3,200,248	Present Value of capital + maint.+ resurf. - salvage

SHORTBEN.XLS Required Inputs in Yellow	Required Inputs in Yellow		
Intended for use as a screening tool prior to more complete benefit cost analysis			
Make an original copy before using. NB Passing L		ane 248 Road	
Alaska Hwy Traffic Study Base Proposed General Information			
Segment Length (km)	2.00	2.00	Important to show any differences between base \& prop.
AADT	5,450	5,450	Base \& Proposed AADT should normally be the same.
Annual Traffic Growth (\%)	3.0\%	3.0\%	Compound growth
\% Trucks	15\%	15\%	
Base Year	2015	2015	Should be same for base and proposed.
Benefit Period (yrs)	24	24	Assumes 1 yr of construction prior to benefits starting.
Discount Rate	6\%	6\%	
Financial Account			
Property (\$)	\$0	\$0	
Engineering (\$)	\$0	\$208,181.82	Typical 10% to 20% of Construction
Construction (\$)	\$0	\$2,081,818.18	
Total (\$)	\$0	\$2,290,000.00	
Maintenance (\$/km/yr)	\$20,000	\$30,000	Typical \$3,839/Ln-km
Resurfacing Cost (\$/km)	\$300,000	\$450,000	Typical \$60,000/Ln-km
Resurfacing Years	2015	2030	Typical Pavement life is 15 yrs from the last resurfacing
	2030	2045	2nd resurf yr is ignored if 0 or >(base yr + benefit period)
Salvage Value (\$) in Horizon Yr Present Value	$\begin{array}{r} \$ 60,000 \\ \$ 1,309,978 \end{array}$	$\begin{aligned} & \$ 1,755,455 \\ & \$ 2,837,295 \end{aligned}$	Typical is 100% of prpty $+80 \%$ of Const.+ resurf. Residual Present Value of capital + maint.+ resurf. - salvage

SHORTBEN.XLS	Required Inputs in Yellow		
Version 7 Feb $2013 \quad$ Optional Inputs in GreenIntended for use as a screening tool prior to more complete benefit cost analysis			
Make an original copy before using.	NB Passing Lane Becker Hill Road		
Alaska Hwy Traffic Study	Base	Proposed	Notes
General Information			
Segment Length (km)	2.00	2.00	Important to show any differences between base \& prop.
AADT	3,970	3,970	Base \& Proposed AADT should normally be the same.
Annual Traffic Growth (\%)	3.0\%	3.0\%	Compound growth
\% Trucks	20\%	20\%	
Base Year	2015	2015	Should be same for base and proposed.
Benefit Period (yrs)	24		Assumes 1 yr of construction prior to benefits starting.
Discount Rate	6\%	6\%	
Financial Account			
Property (\$)	\$0	\$0	
Engineering (\$)	\$0	\$188,181.82	Typical 10% to 20% of Construction
Construction (\$)	\$0	\$1,881,818.18	
Total (\$)	\$0	\$2,070,000.00	
Maintenance (\$/km/yr)	\$20,000	\$30,000	Typical \$3,839/Ln-km
Resurfacing Cost (\$/km)	\$300,000	\$450,000	Typical \$60,000/Ln-km
Resurfacing Years	2015	2030	Typical Pavement life is 15 yrs from the last resurfacing
	2030	2045	2nd resurf yr is ignored if 0 or $>$ (base $\mathrm{yr}+$ benefit period)
Salvage Value (\$) in Horizon Yr Present Value	$\begin{array}{r} \$ 60,000 \\ \$ 1,309,978 \end{array}$	$\begin{aligned} & \$ 1,595,455 \\ & \$ 2,667,028 \end{aligned}$	Typical is 100% of prpty $+80 \%$ of Const.+ resurf. Residual Present Value of capital + maint.+ resurf. - salvage

SHORTBEN.XLS	Required Inputs in Yellow		
Version 7 Feb $2013 \quad$ Optional Inputs in GreenIntended for use as a screening tool prior to more complete benefit cost analysis			
Make an original copy before using.	NB Passing Lane South of Aitken Creek Road		
Alaska Hwy Traffic Study	Base	Proposed	Notes
General Information			
Segment Length (km)	2.50	2.50	Important to show any differences between base \& prop.
AADT	3,200	3,200	Base \& Proposed AADT should normally be the same.
Annual Traffic Growth (\%)	3.0\%	3.0\%	Compound growth
\% Trucks	20\%	20\%	
Base Year	2015	2015	Should be same for base and proposed.
Benefit Period (yrs)	24		Assumes 1 yr of construction prior to benefits starting.
Discount Rate	6\%	6\%	
Financial Account			
Property (\$)	\$0	\$0	
Engineering (\$)	\$0	\$232,727.27	Typical 10\% to 20\% of Construction
Construction (\$)	\$0	\$2,327,272.73	
Total (\$)	\$0	\$2,560,000.00	
Maintenance (\$/km/yr)	\$25,000	\$37,500	Typical \$3,839/Ln-km
Resurfacing Cost (\$/km)	\$375,000	\$562,500	Typical \$60,000/Ln-km
Resurfacing Years	2015	2030	Typical Pavement life is 15 yrs from the last resurfacing
	2030	2045	2nd resurf yr is ignored if 0 or $>$ (base yr + benefit period)
Salvage Value (\$) in Horizon Yr	\$93,750	\$2,002,443	Typical is 100% of prpty $+80 \%$ of Const. + resurf. Residual
Present Value	\$2,046,840	\$3,645,303	Present Value of capital + maint. + resurf. - salvage

\% of AADTPeakShoulderLowTotalAuto Speed (km/hr)PeakShoulderLowTruck Speed (km/hr)PeakShoulderLowAvg, Control Delay (sec/veh)PeakShoulderLow\% of Vehicles StoppingPeakShoulderLowValue of Travel TimePassenger Veh OccupancyValue of Time (\$/occupant)Car (\$/veh)Truck Driver (\$/veh)Travel Time (veh-hrs) in Year 1Car			$\%$ of AADT occurring in each period. For example a 3 hr peak period with 10% of AADT per $\mathrm{hr}=30 \%$ of AADT These splits are used to differentiate speed, delay and veh. Op. costs during different periods of the day. Total must equal 100\%						
	$\begin{aligned} & 30.0 \% \\ & 35.0 \% \\ & 35.0 \% \end{aligned}$								
	100.0%	\|r	$\left\|\begin{array}{r}30.0 \% \\ 35.0 \% \\ 35.0 \% \\ 100.0 \%\end{array}\right\|$						
	86	919191919191	Representative average speeds in peak and shoulder periods are usually not much lower than speeds in the low period unless demand is exceeding 80% of capacity.						
	86								
	91								
	86								
	86								
	91			S	Signal	I/S	/veh)		
	8	0	LOS	A	B	C	D	E	
			Max Delay	10	20	35	55	80	
	4								
			\% Vehicles S	dur	each	iod	Id be		
	0\%	0\%	if control dela	Valu	are us	for fu	alcul	ns only.	
	0\%	0\%	They do not	dela	alcula				
	0\%	0\%							
	1.2	1.2	Use the same	se	propo				
	\$15.94	\$15.94							
	\$19.13	\$19.13							
	\$29.16	\$29.16	Assumes occ						
			Excludes cros	de					
	28,353	25,670							
Truck	7,088	6,418							
Present Value of Time Costs (\$mill)									
for Benefit Period									
Car	\$9.185	\$8.316							
$\underbrace{\substack{\text { Truck } \\ \text { Total }}}_{\text {Tract }}$	$\$ 3.501$ $\$ 12.685$	$\begin{array}{r} \$ 3.169 \\ \$ 11.485 \end{array}$							

SHORTBEN XIS Required inots in Yellow	Required Inputs in Yellow		
Version 7 Feb $2013 \quad$ Optional Inputs in GreenIntended for use as a screening tool prior to more complete benefit cost analysis			
Make an original copy before using. NB Passing L		ane South of J	edney Road
Alaska Hwy Traffic Study Base Proposed Notes General Information			
Segment Length (km)	2.50	2.50	Important to show any differences between base \& prop.
AADT	2,460	2,460	Base \& Proposed AADT should normally be the same.
Annual Traffic Growth (\%)	3.0\%	3.0\%	Compound growth
\% Trucks	20\%	20\%	
Base Year	2015	2015	Should be same for base and proposed.
Benefit Period (yrs)	24		Assumes 1 yr of construction prior to benefits starting.
Discount Rate	6\%	6\%	
Financial Account			
Property (\$) \$0 10			
Engineering (\$)	\$0	\$271,818.18	Typical 10\% to 20\% of Construction
Construction (\$)Total (\$)	\$0	\$2,718,181.82	
	\$0	\$2,990,000.00	
Maintenance (\$/km/yr)	\$25,000	\$37,500	Typical \$3,839/Ln-km
	\$375,000	\$562,500	Typical \$60,000/Ln-km
Resurfacing Years	2015	2030	Typical Pavement life is 15 yrs from the last resurfacing
	2030	2045	2nd resurf yr is ignored if 0 or $>$ (base $\mathrm{yr}+$ benefit period)
Salvage Value (\$) in Horizon Yr	\$93,750	\$2,315,170	Typical is 100% of prpty $+80 \%$ of Const. + resurf. Residual
Present Value	\$2,046,840	\$3,978,098	Present Value of capital + maint.+ resurf. - salvage

