Implementing Climate Ready Requirements Case Study: MacLeod Renewal UBC

UB

December 6th 2022 Penny Martyn, Green Building Manager Colin Mingus, Climate and Energy Engineer

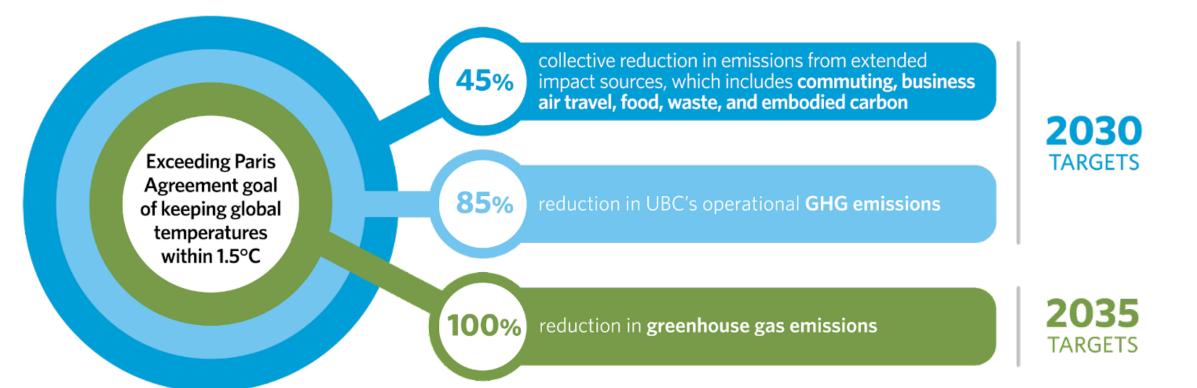
AGENDA

Presentation 10 minutes

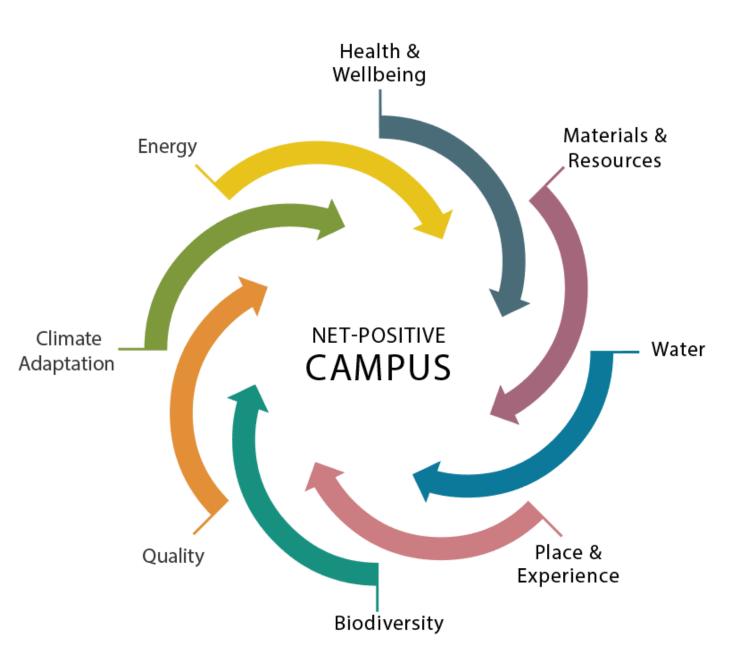
UBC context & policy UBC's Climate Ready Building Requirements Case study: MacLeod Renewal Discussion 15 minutes

UBC CLIMATE EMERGENCY DECLARATION

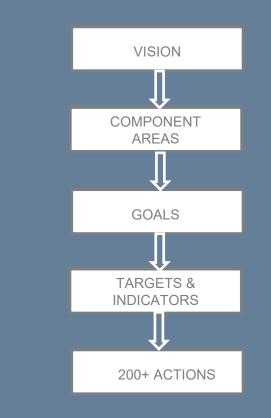
Final Report and Recommendations


This final report presents recommendations led and informed by the expertise and ideas from UBC's community on how UBC can enact its Declaration on the Climate Emergency on campus and beyond.

November 2020



UBC CLIMATE ACTION PLAN 2030


UBC GREEN BUILDING ACTION PLAN

Vision

By 2035, UBC's buildings will make net positive contributions to human and natural systems.

Objective: incorporate key design strategies to reduce risk and life cycle costs of the university's buildings due to predicted climate change in our region

Category	Requirement	Strategy	
Thermal comfort	Design for 2050 temperatures	 Use 2050 weather files Achieve <u>UBC's Indoor Thermal Environment requirements</u> Size equipment for 31 degrees Use a passive first approach 	
Rainwater management	Adaptable to 2100 rainfall pattern	 Use predicted 2100 moderate rainfall patterns (IDF curves) Provide pathway of future strategies that ensure the building can manage future rainfall 	
Indoor air quality	2050 ready	 Provide strategies for the university to consider in regard to indoor air quality (smoke) MERV 13 filters required 	
Water reduction	2050 ready	 Design for a climate-adaptive landscape with resiliency to drought and watering 	

CASE STUDY : MACLEOD RENEWAL

Architect: Proscenium Architecture & Interiors
in partnership with Teeple Architects
Location: UBC
Developer: UBC Project Services
Funding: Routine capital

Project Size: 7282 gsm Budget: \$51 million Occupancy: Summer 2022 Certifications Targeted: LEED gold No. of stories: 4 Key features: Glazing and Envelope Replacement, system replacement, seismic upgrade, layout to suit pedagogical changes, interior visual transparency

7

CASE STUDY : MACLEOD RENEWAL

APPROACH TO SUSTAINABILITY

EXTERNAL SHADING STUDIES

· Numerous louvers studied to idenfity optimal configuration

Vertical Louvers

Vertical Louvers

Vertical Louvers

Vertical Louvers

Horizontal & Vertical Louvers

Narrow Horizontal Louvers

Horizontal Louvers

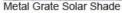
Narrow Horizontal & Vertical Louvers

Horizontal & Vertical Louvers

PROSCENIUM

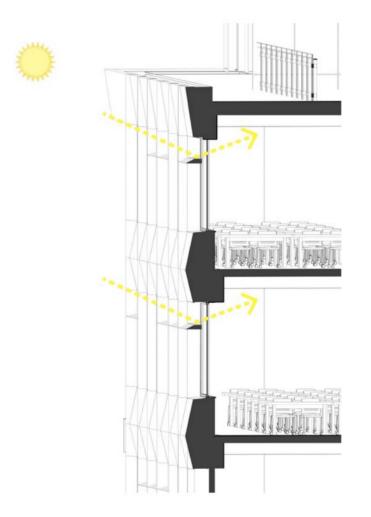
ARCHITECTURE + INTERIORS INC.

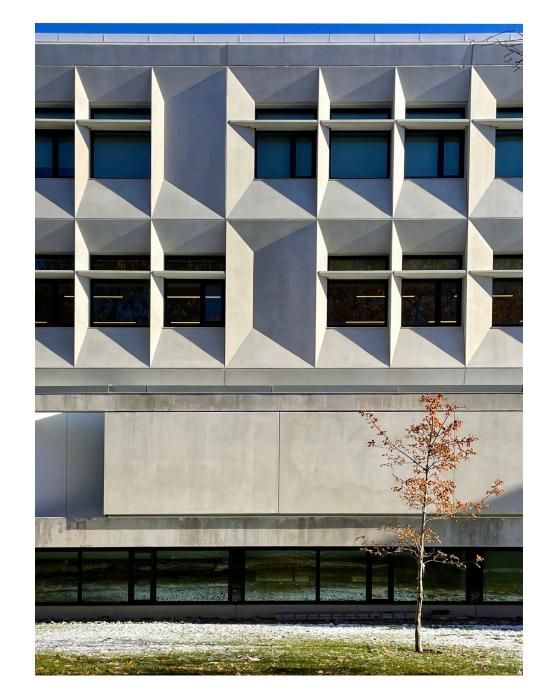
Metal Grate Solar Shade



Narrow Horizontal Louvers

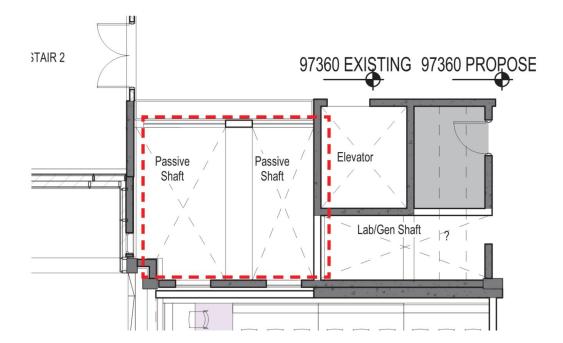
Narrow Horizontal Louvers

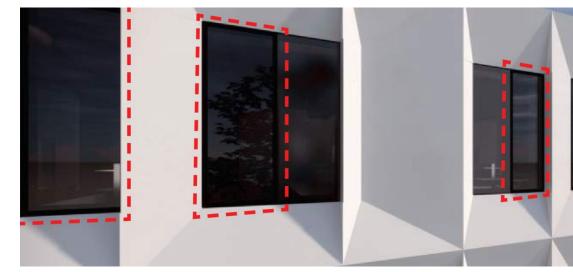

Horizontal & Vertical Louvers



ENVELOPE DESIGN

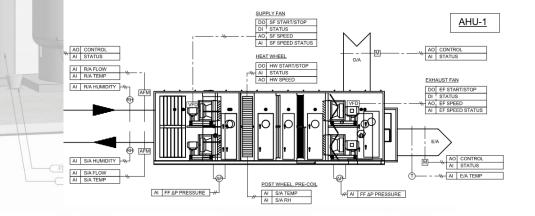
• Light Shelves for enhanced daylight penetration





PASSIVE VENTILATION MEASURES

- Operable windows (up to 25%)
- Vertical air shaft (passive air return with fan assist) w/ heat recovery on exhaust air from shaft
- Offers visual transparency within the building


UBC

- Mechanical design
 - 4-pipe heat recovery ASHP for heating and cooling (expandable for future additional floor)
 - DES heating for peaking (sub-fed from neighboring building)
 - Radiant panels (heating and cooling) + VAV w/ reheat in zones
 - AHUs with heat recovery wheels for ventilation

1111.11

· Return air via "passive shaft" to assist airflow through windows.

CASE STUDY : MACLEOD BUILDING PSO MINIMUM RESILIENCE STANDARDS EXISTING BUILDING SCORECARD

Risk	Compliance	Design strategies	Challenges
Climate and extreme heat events	good	Future weather files used for design, low carbon operation, cooling added, high performance envelope, passive measures incorporated	Sensitivity to extreme climate events (smoke events, power outages)
Flooding- pluvial	partly	Use of future IDF curves, roof slope, terrain slope, professional foundation drainage design	On site detention or capture, stormwater treatment in vehicle areas, moisture resistant materials
Droughts	good	Drought resistant and non invasive species, smart irrigation	
Power outages	partly	Back up generator is typically used for life safety power and research equipment at UBC (24 hours)	Back up power for: heating ,cooling of refuge area, BMS etc

- Develop organization's resilience requirements as far as possible to avoid consultants spending time
- Communicate and provide clarity for consultants early on in design process
- Modular approach for future additions is possible strategy (eg modular heat pumps)
- Passive measures need an interdisciplinary approach

Costs

- Low cost premium to design cooling for 2050
- Adding back up power to heating and cooling systems could have significant incremental capital costs
- Rainwater detention systems for additional rainfall could have significant incremental capital costs

QUESTIONS AND DISCUSSION

