Province of British Columbia Ministry of the Environment

Water Investigations Branch

CONTRIBUTION TO THOMPSON RIVER BASIN PREPLANNING STUDY

WATER QUALITY

Victoria, B.C. File 0273896-19 February, 1980

Shuswap - Thompson Basin Water Quality Report

TABLE OF CONTENTS

1. INTRODUCTION

- 2. PART ONE Quality of Receiving Water and Point Discharge Sources
- 3. PART TWO Limnology and Lake Water Quality
- 4. PART THREE Non-point Source Water Quality Concerns
- 5. PART FOUR Aquatic Plants

WATER QUALITY REPORT

1.0 INTRODUCTION

This chapter discussed available data on water quality in the basin's rivers and lakes and identifies the problem areas. This is followed by the discussion of various land use activities, notably human settlements, industry, agriculture and recreation, as they affect water quality. The effluent and run-off sources are subdivided into point and non-point sources, the latter including also erosion and sedimentation. The impact of existing water quality and other aquatic habitat characteristics on fisheries, wildlife and waterfowl is analysed in sections on fisheries and wildlife - Water Users Chapter. Finally, the potential problems associated with Eurasian water milfoil in the basin are discussed.

To simplify the presentation the Shuswap-Thompson Basin has been subdivided into three parts;

- 1. Thompson Sub-basin
- 2. North Thompson Sub-basin
- 3. South Thompson Shuswap Sub-basin

as shown in Figures 1, 2 and 3. Some subjects listed in the Introduction are discussed separately for each sub-basin, others deal with the entire region.

The first part of this report discusses the point discharges to the rivers and the corresponding water quality problems. The second part discusses limnology and lake water quality. The third part discusses non-point water quality concerns and the fourthand final part deals with the potential problem of Eurasian water milfoil in the basin.

SCALE = 1:2,000,000 lin. = 51 km.

THOMPSON RIVER DRAINAGE BASIN

PART ONE

Thompson River Basin Pre-Planning Study

Water Quality Analysis

prepared by

Marek Jarecki Water Investigations Branch

Part One

Shuswap - Thompson Basin Water Quality Report

Quality of Receiving Waters and Point Discharge Sources

	TABLE OF CONTENTS	Page
1.1	Thompson Sub-Basin	1
	1.1.1 Quality of Receiving Waters	1
	1.1.2 Point Discharges	3
1.2	North Thompson Sub-Basin	8
	1.2.1 Quality of Receiving Waters	8
	1.2.2 Point Discharges	8
1.3	South Thompson - Shuswap Sub-Basin	10
	1.3.1 Quality of Receiving Waters	10
	1.3.2 Point Discharges	12
1.4	Main Concerns	15
	LIST OF REFERENCES	16
	APPENDIX 1 Summary Report on Sources and Effects of Algal Growth	
	Colour, Foaming and Fish Tainting in the Thompson Rive	
	System. Federal-Provincial Task Force. December 1975.	• 1 /
	TABLES follow Apper	ndix 1
	FIGURES follow Table	es

LIST OF TABLES

- 1. Thompson River Water Quality Sampling Results Savona
- 2. Thompson River Water Quality Sampling Results Wallachin
- 3 Thompson River Water Quality Sampling Results Ashcroft
- 4 Thompson River Water Quality Sampling Results Spences Bridge
- 5 Bonaparte River Water Quality Sampling Results Above Clinton River
- 6 Bonaparte River Water Quality Sampling Results Above Cache Creek STP
- 7 Bonaparte River Water Quality Sampling Results Below Cache Creek STP
- 8 Bonaparte River Water Quality Sampling Results at mouth
- 9 Clinton Creek Water Quality Sampling Results near mouth
- 10 Loon Creek Water Quality Sampling Results at mouth
- 11 Hat Creek Water Quality Sampling Results at mouth
- 12 Cache Creek Water Quality Sampling Results at mouth
- 13 Weyerhaeuser Mill Effluent Monitoring Results
- 14 City of Kamloops Municipal Effluent Monitoring Results
- 15 Village of Ashcroft Municipal Effluent Monitoring Results
- 16 Village of Cache Creek Municipal Effluent Monitoring Results
- 17 Village of Clinton Creek Municipal Effluent Monitoring Results
- 18 North Thompson River Water Quality Sampling Results Kamloops
- 19 North Thompson River Water Quality Sampling Results Birch Island
- 20 North Thompson River Water Quality Sampling Results McLure
- 21 Clearwater River Water Quality Sampling Results Clearwater
- 22 100-Mile House Municipal Effluent Monitoring Results
- 23 Noranda Mine Camp Municipal Effluent Monitoring Results
- 24 Noranda Mine Tailings Effluent Monitoring Results
- 25 South Thompson River Water Quality Sampling Results Squilax
- 26 South Thompson River Water Quality Sampling Results Chase
- 27 South Thompson River Water Quality Sampling Results Pritchard
- 28 South Thompson River Water Quality Sampling Results Pioneer Pk (Kamloops)
- 29 Adams River Water Quality Sampa ag Results Celiste Road
- 30 Salmon River Water Quality Sampling Results one half way to Glenemmn
- 31 Salmon River Water Quality Sampling Results at Highway New Bridge
- 32 Shuswap River Water Quality Sampling Results u/s Sugar Lake
- 33 Shuswap River Water Quality Sampling Results d/s Enderby
- 34 Shuswap River Water Quality Sampling Results at Mara Bridge
- 35 Town of Enderby Effluent Monitoring Results -
- 36 Town of Salmon Arm Effluent Monitoring Results

LIST OF FIGURES

- 1. Thompson Sub-basin
- 2. North Thompson Sub-basin
- 3 South Thompson Shuswap Sub-basin
- 4 Water Quality Sampling Stations Thompson Sub-basin
- 5 Point Source locations Thompson Sub-basin.
- 6 Water Quality Sampling Stations North Thompson Sub-basin
- 7_c Point Sources Locations North Thompson Sub-basin
- 8. Water Quality Sampling Stations South Thompson Shuswap Sub-basin
- 9 Point Sources Locations South Thompson Shuswap-Sub-basin.

PART ONE

1.1 Thompson Sub-Basin

This sub-basin as shown in Figure 1 encompasses the Thompson River from Kamloops through Kamloops Lake to Lytton. The Thompson River Watershed to the north covers relatively undisturbed country. Two major tributaries of the Thompson River are Bonaparte River and Deadman River.

1.1.1 Quality of Receiving Waters

There are four water quality sampling stations on the Thompson River and an extensive sampling network on the Bonaparte River and its tributaries; Clinton Creek, Cache Creek, Hat Creek and Loon Creek. These stations are shown in Figure 4.

a) Thompson River

There are four sampling stations on the Thompson River; located at Savona (Site 0600004), Wallachin (Site 0600163), Ashcroft (Site 0600325) and Spences Bridge (Site 0600005). The stations are operated by the Kamloops Regional Office - Waste Management. In 1978, the Savona Station was taken over by the Weyerhaeuser Mill.

The water quality of the Thompson River downstream from Kamloops has been the subject of public concern since the early 1970's. In the spring of 1973, and ad hoc Federal-Provincial Committee was formed to carry out an immediate short-term study of the North and South Thompson Rivers, Kamloops Lake and the Thompson River. Based on its findings a joint Federal-Provincial Task Force was formed in the fall of 1973. The Task Force report was published in December 1975, dealing primarily with Kamloops Lake and the Thompson River. The conclusions of the Federal-Provincial Task Force are presented in Appendix 1. Its conclusions appear to be as applicable now as they were in 1975. The water quality sampling results presented in Tables 1, 2, 3 and 4 generally show no significant changes in the levels of different parameters over the years.

Slight increases in suspended solids and sulphate are noted at Savona - Table 1, and the alkali, colour, hardness, dissolved solids and sulphate increased at Wallachin - Table 2.

Another interesting observation is that there was very little difference in several parameters of water quality between the sampling stations from Savona to Spences Bridge, particularly colour, dissolved oxygen and dissolved phosphorus.

The major problems related to water quality of the Thompson River are:

- Nutrients the major one is phosphorous causing benthic algae growth in the lower Thompson River.
- Fish tainting whitefish and rainbow trout have consistent taste characteristics typical of kraft pulp mill effluent exposure.
- Colour the Lower Thompson River has a darker appearance than either the South or North Thompson Rivers upstream of Kamloops. See also Appendix 1.

b) Bonaparte River and Tributaries

This sampling network has been set up by the Former Pollution Control Branch - Kamloops Region and is presently operated by its successor the Waste Management Branch. The results from the four stations on the Bonaparte River presented in Tables 5 to 8 (St. 0600017, above Clinton Creek - Table 5; St. 0600506, above Cache Creek STP - Table 6; St. 0600508, below Cache Creek STP - Table 7; St. 0600329, at mouth - Table 8). The results from the main tributaries of the Bonaparte River are presented in Tables 9 to 12 (St. 0600009, Clinton Creek near mouth - Table 9; St. 0600336, Loon Creek, at mouth - Table 10; St. 0600073, Hat Creek, at mouth - Table 11; St. 0600074, Cache Creek, near mouth - Table 12). The water quality of the Bonaparte River, based on the mean results, is decreasing downstream. Above the confluence with Clinton Creek it reflects influence of agricultural activity by its slightly elevated coliform and nutrients levels. Downstream of Clinton Creek, the discharge of municipal effluent from the Village of Clinton causes both coliforms and nutrients to increase sharply. Further downstream, below Cache Creek

and the village outfall another sharp increase takes place. Near its mouth, coliforms decrease somewhat but the nutrient levels are maintained. The sampling results of its tributaries indicate the lowest water quality in Clinton Creek (high coliforms and nitrogen nutrients) followed by Loon Creek (high coliforms and nitrogen nutrients), Hat Creek (high nitrogen nutrients) and Cache Creek (high coliforms, nitrogen and phosphorus nutrients). In summary, both the agriculture (cattle industry) and the municipal effluents from the villages of Clinton and Cache Creek, combined with low seasonal flow contribute to the deteriorated condition of the Bonaparte River.

1.1.2 Point Sources

There are two major effluent sources in the sub-basin, both in Kamloops; the Weyerhaeuser Pulp Mill and the City of Kamloops. In addition there are several small municipalities and small industrial plants.

a) Weyerhaeuser Pulp Mill

The Kraft pulp mill is located on the Thompson River just west of Kamloops. Its normal output is 1260 air-dried metric tonnes of unbleached pulp per day. The operation is covered by Pollution Control Permit PE-1199, issued February 4, 1972, and amended several times. The last amendment was dated March 20, 1978.

Summary of Permit Conditions

Quality of effluent - $182,000 \text{ m}^3/\text{day}$ average $273,000 \text{ m}^3/\text{day}$ maximum

pH - 6.5 - 8.0

Temperature - 35° C maximum

T.S.S. - 8510 kg/day

D.O. - 2.0 mg/L

Toxicity - TL_m 96-50% survival at 90% effluent concentration

Treatment works: clarifier, two settling basins, emergency dump pond, 5-day aeration basin, two submerged outfalls and diffusers.

A summary of the mill effluent monitoring is presented in Table 13. Since 1975, a slight reduction in dissolved phosphorus has occurred. No reduction of colour has been achieved so far. The Regional Office of the Waste Management in Kamloops advises that the mill housekeeping and the spill prevention procedures have improved in recent years and only the colour remains a major unresolved problem.

b) City of Kamloops Sewage Treatment Works

In 1978 the city population was estimated at just over sixty thousand inhabitants; 35,000 on a central sewage collection system and 25,000 on septic tanks.

The sewage works consist of four (4) sewage lagoons, a chlorine contact chamber, a phosphorus removal facility on cell no. 4 and an outfall. The installation is covered by Pollution Control Permit PE-399, issued April 23, 1971, which specifies the following requirements:

Volume: 17,048 m³/day max.

T.S.S.: 65 ppm. ave.

B.O.D.: 50 ppm. ave.

Chlorination required if coliform count over 5000 MPN/100 ml. during the winter period.

The effluent monitoring results are presented in Table 14. A significant decrease of phosphorus in the effluent is evident and recent levels are quite low.

In September 1977, the City applied for an amendment to its permit to cover the future rate of discharge projected from available land use plans. This request was rejected by the Pollution Control Branch on May 12, 1978.

In June 1978, the City approved funding for a wastewater management study. Preliminary reports were submitted to the City by Associated Engineering Services Ltd. in August 1978 and Stanley Associates Engineering Ltd. in March, 1979. These reports discuss various options for sewage collection and disposal, in-

cluding continuation of the present river discharge in the existing lagoons and various schemes for land disposal through spray irrigation.

In August 1979, a Federal-Provincial Committee, struck specifically for this purpose, reviewed the Stanley report, but no recommendation was made regarding the selection of the most feasible scheme. As of this date, the Kamloops Waste Management Plan is under continuing study by various levels of government.

Other point discharges to the Thompson River are very small compared to the two in Kamloops and are spaced far apart. They are briefly discussed below in order proceeding downstream from Kamloops.

c) Tranquille School Outfall - N. Shore Kamloops Lake

This discharge is covered by Pollution Control Permit PE-1643, which was issued May 9, 1973, with the following permit conditions:

Volume =
$$545 \text{ m}^3/\text{day}$$

B.O.D.₅ = 45 mg/L
T.S.S. = 60 mg/L

100

on the discharge from the treatment system consisting of an aerated lagoon, stabilization pond and chlorination chamber. During the summer months the effluent is sprayed on a 24 ha. area. Monitoring results show effluent quality within the permit requirements.

d) Westcoast Transmission - Savona Station

The station covered by Pollution Control Permit PE-1758, issued June 12, 1973, and amended May 12, 1976, discharges only compressor cooling water to the Thompson River;

volume: $10,910 \text{ m}^3/\text{day}$

The monitoring records show that the effluent is of a better quality that the intake river water (because of the treatment it receives).

e) Savona Timber Co. Ltd.

This firm discharges 66 m³/day of compressor cooling water to Kamloops Lake. It is covered by Pollution Control Permit PE-429-P, which was issued August 30, 1971.

f) Village of Ashcroft

This discharge is covered by Pollution Control Permit PE-420, issued July 16, 1971, and amended December 24, 1975. This permit has following conditions:

Volume: 2273 m³/day

BOD₅ : 45 mg/L T.S.S.: 60 mg/L

Works: Secondary treatment plant, sludge handling facilities and

outfall.

The effluent monitoring results are presented in Table 15. A substantial improvement in the overall effluent quality was evident in 1977 when the secondary sewage treatment plant began regular operation.

g) Village of Cache Creek

This discharge is covered by the Pollution Control Permit PE-264, issued March 3, 1969, amended April 6, 1972, with the following permit conditions:

Volume: 1455 m³/day to Bonaparte and Thompson River

BOD₅ : 30 mg/L T.S.S.: 60 mg/L pH : 6.5 - 7.5

Works: Secondary treatment plant, chlorination chamber, sludge drying beds and outfall. In 1975 the treatment was converted to two parallel modules with common sludge thickener, storage and drying beds. Monitoring results presented in Table 16 indicate generally satisfactory operation with some room for improvement in biological control (coliforms).

h) Loon Creek Trout Hatchery, Hatchery Creek

The hatchery effluent is discharged to Loon Creek via Hatchery Creek, Bonaparte River and the Thompson River. Pollution Control Permit PE-2388, issued in September 6, 1974 specifies intermittent discharge; February 15 - May 30 and September 9 - September 30, with a maximum volume of 3582 m³/day.

$$BOD_5 = 10 \text{ mg/L}$$

T.S.S. = 5 mg/L

The Regional Office of the Waste Management Branch advises there have been no detrimental effects on the receiving waters based on several years of operation.

1974-1979 effluent sampling results show long terms means;

Diss. Oxygen =
$$7.85 \text{ mg/L}$$

 BOD_5 = 10 mg/L
 $T.S.S.$ = 3.3 mg/L

i) Village of Clinton

This discharge is covered by Pollution Control Permit PE-170, issued December 13, 1966, amended February 24, 1972 and July 20, 1974. This permit has the following conditions:

Volume: 455 m³/day
BOD₅: 20 mg/L
T.S.S.: 30 mg/L

Works: two anaerobic cells, two lagoons and an outfall to Clinton Cr.

Monitoring results presented in Table 17 show fairly typical effluent characteristics for an Interior sewage treatment facility. The problem is that the flow of the creek drops sharply during the winter months resulting in an unacceptable effluent dilution factor. The situation is being assessed currently by the Waste Management Branch.

1.2 North Thompson Sub-Basin

This sub-basin as shown in Figure 2 encompasses the North Thompson watershed extending from Kamloops in its south extremity to Wells Gray Park to the North and Quesnel Highlands to the West. The only major tributary of the North Thompson River is the Clearwater River.

1.2.1 Quality of Receiving Waters

There are two permanent water quality sampling stations on the North Thompson River located at Kamloops (Site 0600164) and at McLure (Site 0600002). operated by the Kamloops Regional Office - Waste Management Branch. In 1978 the Kamloops station was taken over by the Weyerhaeuser Mill. A station at Bird Island (Kamloops) was operated between May 1972 and August 1976 (Site 0600025), and the station on the Clearwater River was operated between May 1972, and May 1978 (Site 0600031). The monitoring results from these stations are presented in Tables 18 to 21, respectively. Generally the results are uniform regardless of the station location and show no definite trends in changes of water quality. Exceptions are noted in the tables. Generally the quality is acceptable and consistent with the values recommended for freshwater streams.

1.2.2 Point Discharges

There are only four small discharge point sources in the North Thompson sub-basin and their impact on the overall water quality is negligible, although some of them may pose local problems.

a) Village of 100 Mile House

This discharge is covered by Pollution Control Permit PE-236, issued June 28, 1965, amended October 22, 1971 and June 22, 1976. This permit has the following conditions:

Volume: 910 m³/day to Bridge Cr., Clearwater R., N. Thompson R.

 BOD_5 : 30 mg/1 T.S.S.: 40 mg/1

Works: mechanically aerated lagoon, two stabilization lagoons, outfall. The aeration lagoon was installed in late 1977. The monitoring results presented in Table 22 most likely do not reflect these changes. The Waste Management Branch is concerned with the very low dilution rates during the periods of low flow and this discharge is now under review.

b) Village of Clearwater

This discharge is covered by Pollution Control Permit PE-330, which was issued April 2, 1970. The permit has the following conditions:

Volume: 136 m³/day to North Thompson River

BOD₅ : 45 mg/L T.S.S.: 60 mg/L

Works: Stabilization pond (retention time 91 days), chlorination facili-

ties and outfall.

There are no monitoring results available, but the dilution ratio at low flow of the North Thompson River is 1:2000.

c) Noranda Mines Ltd. - Boss Mountain Camp

This discharge is from the permanent mining camp at Hendrix Lake in the Northwest corner of the sub-basin. It is covered by Pollution Control Permit PE-088, which was issued May 7, 1964, with following permit conditions:

Volume: 91 m³/day to Hendrix Lake

BOD₅ : 50 mg/L T.S.S.: 100 mg/L

Total coliforms: 40,000 MPN/100 m1

Works: Packaged secondary sewage plant improved in the early seventies. The available effluent monitoring results presented in Table 23 show generally acceptable effluent characteristics.

d) Noranda Mines - Boss Mt. Division - Tailings

This discharge is covered by Pollution Control Permit PE-3439, which was issued April 10, 1978 and amended April 9, 1979. The permit has the following conditions:

Volume: 3900 m³/day to Ryan Creek, Boss Creek, Canim Lake

T.S.S. : 50 mg/L

pH : 6.5 - 8.5

diss.Fe : 1.0 mg/L

diss.Mo: 3.0 mg/L

diss.Pb: 0.05 mg/L

diss.Cu: 0.05 mg/L

cyanide: 0.1 mg/L

toxicity: LC 50 (96 hr.) = 100%

Works : Tailings pond, settling pond, flocculant addition system,

outfall.

The monitoring results presented in Table 24 show the cyanide and copper levels well above permit conditions. The main problem is the cyanide, where the long term mean is 0.3 mg/L. The maximum level approved on the permit is 0.1 mg/L. The company is engaged in bench scale tests to reduce this level.

1.3 South Thompson-Shuswap Sub-basin

This sub-basin as shown in Figure 3 encompasses the South Thompson watershed from Kamloops eastward including the extensive lakes system, from Adams Lake in the north to Sugar Lake in the southcast. The major tributaries are the Adams, Salmon and Shuswap Rivers.

1.3.1 Quality of Receiving Waters

There is an extensive sampling network on the South Thompson River, Adams River, Salmon River and Shuswap River consisting of several permanent and temporary sites as shown in Figure 8. These sites were established by the former Pollution Control Branch and are operated by its successor the Waste Management Branch - Kamloops Region.

a) South Thompson River

There are four sampling stations established on the South Thompson River at: Squilax (Site 0500077), Chase (Site 0600136), Pritchard (Site 0600001) and Pioneer Park in Kamloops (Site 0600135). The stations at Squilax and Pritchard are temporary only. The water quality sampling results presented in Tables 25, 27 and 28 indicate relatively uniform water quality between Shuswap Lake and Kamloops, with low coliform, nutrient, suspended solids, hardness, colour and turbidity values, indicating an overall healthy condition of the river.

b) Adams River

There is one permanent sampling station at Celista Road Bridge near the mouth of Adams River (Site: 0500001). In 1974 the river was briefly sampled at several locations between its mouth and Adams Lake. The monitoring results presented in Table 29 show good water quality, with low nutrients, coliforms and suspended solids, consistent with values desired for healthy freshwater streams.

c) Salmon River

There are two permanent sampling stations, one approximately midway between Salmon Arm and Glenemma - Salmon Valley #1 (Site 1130003) and one at Highway #1 Bridge near the mouth of Salmon River (Site 0500062). The monitoring results presented in Tables 30 and 31 show the rapid deterioration of the water quality in the lower run of Salmon River. At both sites the nutrient levels, alkali, hardness and sulphate are uniformly high but near the mouth the coliform levels nearly double, indicating the effects of feedlot and agricultural runoff. There are no point discharges to the Salmon River. Seven more temporary sampling stations were maintained between 1973 and 1975 for varying periods of time, from one to three seasons, on the Salmon River. Their results show water quality gradually deteriorating downstream.

d) Shuswap River

There are five permanent sampling stations on the Shuswap River between its mouth and Mabel Lake. Two stations located further upstream operated, one from 1970 and the other from 1972, until the summer of 1978. To illustrate

the changes in water quality, the results from three stations are presented in Tables 32, 33 and 34;

Table 32 upstream of Sugar Lake (Site 0500072)

Table 33 downstream of Enderby (Site 0500498)

Table 34 at Mara Bridge - near mouth (Site 0500069)

A study by the Water Investigations Branch in 1977, initiated by complaints of deteriorating water quality by water users on the Shuswap River downstream of Enderby, indicated that:

- 1. the major source of suspended sediment is from natural slide areas along Kingfisher Creek (a tributary to the Shuswap River near Mabel Lake),
- 2. high concentrations of nutrients and coliform bacteria contamination came from Fortune Creek (a tributary to the Shuswap River draining predominantly agricultural land near Enderby), and
- 3. in general the concentrations increased gradually as one progressed downstream indicating most of the pollution to be from non-point sources.

e) Bessette Creek

This creek flows by the village of Lumby and flows into the Shuswap River south of Mabel Lake.

The Environmental Protection Branch - Pacific Region carried out a water quality and biological study of the creek during the summer of 1975. (Reference 3). The study concluded that the water quality was consistent with values desired for healthy freshwater streams. Macroinvertebrate diversity was also indicative of a clean water stream.

1.3.2 Point Discharges

There are three major municipal sewage outfalls in the Shuswap-Salmon Arm area and one industrial discharge to the South Thompson River, just upstream of Kamloops. In addition there are several small discharges in Salmon Arm and Lumby.

a) Lafarge Cement, Kamloops

This discharge is covered by Pollution Control Permit PE-365 P, issued October 7, 1970, with the following permit conditions:

Volume 1728 m³/day to South Thompson River

Characteristics: cooling water

Temp. gradient: 20°F

The monitoring results show good discharge quality water, well within the permit limits.

b) Village of Lumby

The village sewage outfall is covered by Pollution Control Permit PE-173, issued March 13, 1967, and amended on January 4, 1973, and June 21, 1976. The permit has the following conditions:

Volume: 1640 m³/day between April 15 - June 14 each year and 455 m³/day between October 3 and April 14 each year to Bessette Creek

BOD₅ : 45 mg/L T.S.S.: 60 mg/L

Works: One aerated lagoon, two polishing lagoons, chlorination fa-

cilities and outfall, completed in late 1976.

There are no recent monitoring results. The Pollution Control Branch stated in 1976 that after 13 months of operation of the plant, no negative effects were observed on Bessette Creek.

The village arena outfall - cooling water only, is covered by Pollution Control Permit PE-1662, issued September 21, 1972.

Volume: 182 m³/day, October to March each year

c) Town of Enderby

The town municipal effluent discharge is covered by the Pollution Control Permit PE-203, issued October 4, 1967, with the following permit conditions:

Volume: 1137 m³/day to Shuswap River

 BOD_5 : 20 mg/L

T.S.S.: 50 mg/L

pH : 6.5 - 7.5 Temp.range: 45 - 55° F

Fecal Coliforms: 10,000 MPN/100 ml.

Works : Oxidation ditch, secondary clarifier, chlorinator,

flow meter and outfall

The sludge is collected from the clarifier and stored in the sludge beds before being trucked out to cultivated areas.

The effluent monitoring results are presented in Table 35. The results are in compliance with the permit conditions. A small increase is noted in the nutrients level. The coliform numbers have decreased sharply in recent years.

d) District of Salmon Arm

The municipal sewage works are covered by Pollution Control Permit PE-1251, issued July 4, 1972, and amended on June 17, 1976. The permit has following conditions:

Volume: 2840 m³/day to Shuswap Lake

 BOD_5 : 30 mg/L T.S.S.: 40 mg/L

Works: Activated sludge plant with ancillary works and lake outfall

A sludge land disposal scheme is currently under consideration by the municipality but suitable land has not been located yet.

The plant discharge to the lake, augmented by the storm sewer discharge and effluent from different small industries located in Salmon Arm, is of concern to both the federal and provincial environmental agencies - see file PE-1251. The monitoring results (sampled in early 1977) presented in Table 36 indicate high coliform numbers.

1.4 Main Concerns

Based on the preliminary review of the point discharge sources and the corresponding water quality data, the following problem areas are identified:

1.4.1 Thompson Sub-basin

- a) Thompson River water quality downstream of Kamloops including colour, fish tainting substances, phosphorus nutrients and the corresponding algae problems downstream of Kamloops lake, all related to the discharges from the Kamloops area.
- b) The water quality of the Bonaparte River and its tributaries related to the point discharges from the villages of Clinton and Cache Creek and the agricultural runoff.

1.4.2 South Thompson-Shuswap Sub-basin

- a) Salmon River water quality in the Salmon Valley area and the nutrient input into Salmon Arm. Problems related to agricultural runoff and the District of Salmon Arm municipal effluent.
- b) Shuswap River between Mabel and Mara Lake deteriorating water quality as one proceeds downstream from no particularly identifiable source.

Further problem areas are identified in the subsequent parts of this report.

LIST OF REFERENCES

- 1. Waste Management Study Volume 1, prepared by Stanley Associates Engineering Ltd. for the City of Kamleops Engineering Department March 1979.
- 2. City of Kamloops Review of Wastewater Management, B.C. Ministry of Environment- Report No. 79-7, August 1979.
- 3. Summary Report on Sources and Effects of Algal Growth, Colour, Foaming and Fish Tainting in the Thompson River System, by Federal-Provincial Thompson River Task Force December 1975.
- 4. Review of Sampling Data From South Thompson River at Chase, 1977/78 and 1978/79. By:D.W. Holmes, Pollution Control Branch South Central, September 1979.
- 5. Water Quality in the Shuswap River between Mabel and Mara Lakes, 1977 By: R.N. Nordin, Ph.D. Water Investigations Branch.
- 6. Water Quality and Macroinvertebrate Community Structure of Bessette Creek, British Columbia. Regional Program Report No. 79 Draft Copy. By: G. Derksen, Environmental Protection Service, Vancouver, May 1979.
- 7. Determination of Nitrogen and Phosphorus in Periphyton and/or Algae Project No. 90010, Environmental Laboratory, Vancouver, 1979.

Appendix 1

Summary Report on Sources and Effects of Algal Growth, Colour, Foaming and Fish Tainting in the Thompson River System Federal-Provincial Thomspon River Task Force. December 1975

CONCLUSIONS

- (1) Discharge of phosphorus from Weyerhaeuser Canada Ltd. and the City of Kamloops should be reduced significantly. A treatment system should be adopted which will reduce as much phosphorus addition to the river as is technologically possible during most of the year. Phosphorus releases from settlements, feedlots, etc., should also be minimized. The option of a variable schedule for wastewater phosphorus release that is related to the physical dynamics of Kamloops Lake is recommended for consideration in the Canada Centre for Inland Waters Technical Report.
- (2) Colour in the Weyerhaeuser Canada Ltd. pulp mill effluent should be reduced to cause publically acceptable aesthetic improvement.
- (3) Studies should be initiated to identify and remove fish tainting agents from the major point source discharges (Weyerhaeuser Canada Ltd. and City of Kamloops) to the Thompson River system.
- (4) The Thompson River system should be monitored chemically and biologically on a continuing basis. Monitoring programs should include requirements established by the Task Force in order to detect changes in water quality leading to shifts in species composition and biomass in algal and invertebrate populations.

Monitoring results by permittees and regulatory agencies should be evaluated and reported by a federal-provincial committee after a five-year period.

- (5) New developments that result in nutrient discharges into the Thompson River basin (e.g., industry, logging, feedlots, urbanization) should be controlled to ensure that individual and cumulative effects of such discharges does not impair water quality in the system.
- (6) A social, economic, and technical study should be initiated to determine the feasibility of elimination of discharges detrimental to the Thompson River system. This could include total recycle, land disposal, joint effluent treatment.
- (7) The following research should be encouraged:
 - (i) A research program should be undertaken on the physiology and nutrient energetics of benthic algal communities typical to British Columbia rivers.
 - Because of insufficient knowledge in this area, accurate predictions of the changes in algal biomass to be expected in the lower Thompson River as a result of phosphorus control are not possible. There is no interpretable record of the algal communities that existed prior to recent reported changes. Hence it is impossible to deduce objectively the condition of the lower Thompson prior to recent reported degradation.
 - (ii) An investigation of the effluent of the Weyerhaeuser Canada mill should be undertaken to isolate and identify toxic substances which may adversely affect the biota of Kamloops Lake or the lower Thompson River. Any such substances should subsequently be removed from the effluent.
 - (iii) The effect of altered algal and invertebrate community structures on the feeding ecology of salmonids should be investigated.

TABLE 1 WATER QUALITY DATA COLLECTED BY THE PROVINCE

River: Thompson

Sampling Period

Site: <u>0600004 at Savona</u>

Nov. 71 - June 79

Parameter		Max.	Min.	Mean	No. of Values	Comments
Alkali T	mg/l	44.8	26.7	35.1	79	
Coliforms fecal Coliforms total	MPN/100 m1 MPN/100 m1	17 17	2 2	, 3.73 5	11 5	
Colour T.A.C.		16	1	7.6	81	
Copper, dissolved total	mg/L mg/L	0.06 0.02	0.001 0.001	0.0061 0.0037	31 21	
Dissolved oxygen	mg/L	13.4	4.8	10.15	58	
Hardness	mg/L	47.6	30.0	38.13	76	
Iron, dissolved total	mg/L mg/L	0.1	0.02 0.1	0.092 0.1667	29 6	
Lead, dissolved total	mg/L mg/L	0.003 0.006	0.001	0.00146 0.0019	13 21	
Mercury, dissolved total	mg/L mg/L	0.05 0.25	0.05	0.05 0.0548	1 27	
Nitrogen, Ammonia Nitrate	mg/L mg/L	0.03 0.22	0.005 0.02	0.00824 0.083	25 59	
Nitrite Organic	mg/L mg/L	0.005 0.15	0.005 0.01	0.005 0.0832	56 25	
рН		8.61	6.1	7.56	177	
Phosphorus, dissolved total	d mg/L mg/L	0.009 0.021	0.003	0.00315 0.0063	53 177	
Solids, dissolved suspended	mg/L mg/L	80.0 8.9	38.0 0.5	58.48 2.55	85 14	inc. noted 77/79 period
Sulphate	mg/L	10	5	7.25	72	some inc. in 78/79 peri
Turbidity, J.T.U.		8.5	0.2	1.5	82	
Zinc, dissolved total	mg/L mg/L	0.12 0.016	0.005	0.002 0.0057	12 22	

WATER QUALITY DATA COLLECTED BY THE PROVINCE

River: Thompson

Sampling Period

Aug. 75 - Nov. 78

Site:	0600163	at	Walachin
	-	-	e and refrigue can consider another participant beginning and participated to the best for

Parameter		Max.	Min.	Mean	No. of Values	Comments
Alkali T	mg/L	42.9	28.3	e34.8	42	Inc. noted starting 77
Coliforms fecal Coliforms total	MPN/100 m1 MPN/100 m1	8 2	2 2	2.6	10	
Colour T.A.C.		13	2	7.4	5.7	Inc. noted starting 76
Copper, dissolved total	mg/L mg/L	0.004	0.001	0.0016 0.0031	10 7	
Dissolved oxygen	mg/L	13.4	8.1	10.66	44	
Hardness	mg/L	47.4	30.0	38.1	41	Inc. noted starting 77
Iron, dissolved total	mg/L mg/L	0.1	0.1	0.1 0.133	10 6	
Lead, dissolved total	mg/L mg/L	0.001	0.001 0.001	0.001 0.001	2 9	
Mercury, dissolved total	mg/L mg/L	0.05	0.05	0.05	7	
Nitrogen, Ammonia Nitrate Nitrite Organic	mg/L mg/L mg/L mg/L	0.011 0.13 0.005 0.24	0.005 0.02 0.005 0.01	0.006 0.071 0.005 0.112	19 28 25 19	
рН		8.0	2.6	7.5	98	
Phosphorus, dissolved total	d mg/L mg/L	0.003	0.003 0.003	0.003 0.0072	37 119	
Solids, dissolved suspended	mg/L mg/L	74.0 6.0	40.0	59.68 2.5	51 8	Inc. starting in 1977
Sulphate	mg/L	9.5	5	7.36	44	Inc. noted in 1978
Turbidity, J.T.U.		4.4	0.,5	1.4	42	
Zinc, dissolved total	mg/L mg/L	0.005 0.005	0.005	0.005 0.005	2	

WATER QUALITY DATA COLLECTED BY THE PROVINCE

River: Thompson

Sampling Period

Site: 0600326 at Ashcroft

Nov. 73 - April 78

Parameter		Max.	Min.	Mean	No. of Values	Comments
Alkali T	mg/L	41.2	33	38.6 5	6	No significant change over the years in all
Coliforms fecal	MPN/100 ml	*** ***		r 0	may agos,	parameters
	MPN/100 ml	5	2	3.5	2	
Colour T.A.C.		15	1	7.82	29	
Copper, dissolved	mg/L		and the		فسار جسار	·
total	mg/L	en en	- «		= =	
Dissolved oxygen	mg/L	16.3	5.6	11.25	. 9 ()	• •
Hardness	mg/L	44.3	39.9	42.26	5	
Iron, dissolved	mg/L	-	, then then	. 44.00		
total	mg/L	em per	 	gar mar	राः स्र	
Lead, dissolved	mg/L			- -	₩ 	
total	mg/L	ann ann			पुर ग ण- -	
Mercury, dissolved	mg/L	••• •••			متد بند	•
total	mg/L			* **	**	
Nitrogen, Ammonia	mg/L	0.01	0.005	0.006	14	
Nitrate	mg/L	0.13	0.03	0.083	15	
Nitrite	mg/L	0.005	0.005	0.005	15	•
Organic	mg/L	0.41	0.01	0.118	14	
)H		8.5	4.0	7.53	34	
Phosphorus, dissolved	d mg/L	0.003	0.003	0.003	14	
total	mg/L	0.043	0.001	0.008	59	
Solids, dissolved	mg/L	86	56	68.85	14	
suspended	mg/L		~ -		4. **	
Sulphate	mg/L	10.1	7.2	8.78	14	
Turbidity, J.T.U.		3.2	0.5	1.25	11	
Zinc, dissolved	mg/L		eu ==	** **	₹.₩	
total	mg/L				₹ . % **.	

WATER QUALITY DATA COLLECTED BY THE PROVINCE

River: Thompson

Sampling Period

Site: 0600005, at Spences Bridge

Aug. 66 - Dec. 76

Parameter	a ann a ann ann an ann an ann an ann an	Max.	Min.	Mean	No. of Values	Comments
Alkali T	mg/L	51.9	27.6	38.17	117	
Coliforms fecal Coliforms total	MPN/100 ml MPN/100 ml	en 40.		me der	. 	
Colour T.A.C.		14	1	7.62	21	
Copper, dissolved total	mg/L mg/L	0.38 0.01	0.001	0.016 0.0039	37 25	
Dissolved oxygen	mg/L	13.2	5.7	9.15	21	
Hardness	mg/L	55,3	32.0	43.17	98	
Iron, dissolved total	mg/L mg/L	0.1 0.25	0.001	0.047 0.127	49	
Lead, dissolved total	mg/L mg/L	0.05	0.001	0.01 0.0028	34 23	
Mercury, dissolved total	mg/L mg/L	0.05	0.02	0.043	9	
Nitrogen, Ammonia Nitrate Nitrite Organic	mg/L mg/L mg/L mg/L	0.2 0.13 0.005 0.2	0.003 0.04 0.005 0.2	0.084 0.082 0.005 0.2	23 31 31 1	
рН		8.8	6.7	7.67	144	
Phosphorus, dissolve total	d mg/L mg/L	0.03 0.049	0.002 0.001	0.0036 0.009	38 96	
Solids, dissolved suspended	mg/L mg/L	80.0 36.0	1.0 0.7	61.0 11.84	44 16	
Sulphate	mg/L	27.3	4.1	8.76	104	
Turbidity, J.T.U.		47	0.1	2.48	116	
Zinc, dissolved total	mg/L mg/L	0.08 0.01	0.001	0.01 0.004	33 25	

TABLE 5

WATER QUALITY DATA COLLECTED BY THE PROVINCE

River: Bonaparte River

Sampling Period

Site: 0600017 above Clinton Cr.

May 72 - Feb. 79

Parameter	ى ئەرىدىن ئۇرىدىن ئالىرىدىن ئالىرىدىن ئالىرىدىن ئالىرىدىن ئالىرىدىن ئالىرىدىن ئالىرىدىن ئالىرىدىن ئالىرىدىن ئا ئالىرىدىن ئالىرىدىن	Max.	Min.	Mean	No. of Values	Comments
Alkali T	mg/L	211.	70.8	118.98	20	All values fairly
Coliforms fecal Coliforms total	MPN/100 m1 MPN/100 m1	110. 240.	2. 22.	36.78 64.67	18 15	steady, no trend
Colour T.A.C.		21.	8.	13.14	7	
Copper, dissolved total	mg/L mg/L	0.005	<0.001 <0.001	0.0024 0.0044	7	
Dissolved oxygen	mg/L	14.	6.5	10.32	25	
Hardness	mg/L	163.	65.	99.37	16	
Iron, dissolved total	mg/L mg/L	0.1	<0.1 0.1	0.1	7 3	
Lead, dissolved total	mg/L mg/L		<0.001 <0.001	0.0012 0.0072	5 10	
Mercury, dissolved total	mg/L mg/L	<0.05	<0.05	0.05	- - 1	
Nitrogen, Ammonia Nitrate Nitrite Organic	mg/L mg/L mg/L mg/L	0.051 0.09 <0.005 0.45	<0.005 <0.02 0.005 0.1	0.0148 0.03 0.005 0.258	18 26 26	
рН		8.8	7.8	8.16	49	
Phosphorus, dissolv total	red mg/L mg/L	0.01 0.103	<0.003 0.003	0.0044 0.0148		
Solids, dissolved suspended	mg/L mg/L	244.	90. 4.	150.39 10.75	36 4	
Sulphate	mg/L	7.6	< 5.	5.27	14	
Turbidity, J.T.U.		9.1	0.5	1.97	21	
Zinc, dissolved total	mg/L mg/L	0.006 0.03	0.006	0.006 0.0091	1 12	

TABLE 6

WATER QUALITY DATA COLLECTED BY THE PROVINCE

River: Bonaparte River

Sampling Period

Site: 0600506, above Cache Cr. S.T.P.

April 74 - March 79

Parameter		Max.	Min.	Mean	No. of Values	Comments
Alkali T	mg/L	230.	110.	182.13	15	
	MPN/100 ml MPN/100 ml G	920. 2400.	8. 9.	108.53 333.47	30 19	
Colour T.A.C.		27.	3.	10.16	6	
Copper, dissolved total	mg/L mg/L	0.004	0.004	0.004	1	
Dissolved oxygen	mg/L	14.6	5.38	10.57	29	
Hardness	mg/L	238.	106.	180.33	15	
Iron, dissolved total	mg/L mg/L	<0.1	<0.1	0.1	1	
Lead, dissolved total	mg/L mg/L	<0.001	<0.001	0.001	1	
Mercury, dissolved total	mg/L mg/L		der som			
Nitrogen, Ammonia Nitrate Nitrite Organic	mg/L mg/L mg/L mg/L	0.09 0.19 <0.005 0.97	<0.005 <0.02 0.005 0.13	0.022 0.043 0.005 0.278	24 26 26 22	
рН		8.75	6.3	8.22	45	
Phosphorus, dissolved total	d mg/L mg/L	0.057 0.403		0.018 0.037	10 51	
Solids, dissolved suspended	mg/L mg/L	326. 14	164. 14	254.2 14	30 1	
Sulphate	mg/L	37.4	37.4	37.4	1	
Turbidity, J.T.U.		54.	0.7	9.15	11	
Zinc, dissolved total	mg/L mg/L	0.08	0.08	0.08	1	

WATER QUALITY DATA COLLECTED BY THE PROVINCE

River: Bonaparte River

Sampling Period

Site: 0600508 below Cache Cr. S.T.P.

April 74 - March 79

Parameter		Max.	Min.	Mean	No. of Values	Comments
Alkali T	mg/L	228.	108.	172.93	14	
Coliforms fecal	MPN/100 ml MPN/100 ml	5400. 9200.	2. 8.	480. 1287.	29 19	
Colour T.A.C.		27.	6.	10.86	7	
Copper, dissolved total	mg/L mg/L	<0.001	<0.001	0.001	1	
Dissolved oxygen	mg/L	14.2	5.1	10.46.	27	
lardness	mg/L	239.	102.	171.92	13	
Iron, dissolved total	mg/L mg/L	<0.1	<0.1	0.1	1	
ead, dissolved total	mg/L mg/L	<0.001	<0.001	0.001	1	
Mercury, dissolved total	mg/L mg/L					
Nitrogen, Ammonia Nitrate Nitrite Organic	mg/L mg/L mg/L mg/L	0.15 0.24 0.027 1.06	<0.005 <0.02 <0.005 0.15	0.057	25 27 27 23	
pΗ		8.75	7.4	8.26	46	
Phosphorus, dissolv total		0.157 0.405			12 54	
Solids, dissolved suspended	mg/L mg/L	330. 13.	160. 13.	248. 13.	30 1	
Sulphate	mg/L	37.4	37.4	37.4	1	
Turbidity, J.T.U.		50.	1.	9.78	12	
Zinc, dissolved total	mg/L mg/L	0.006	0.006	0.006	. • 1	

TABLE 8

WATER QUALITY DATA COLLECTED BY THE PROVINCE

River: Bonaparte River

Sampling Period

Site: 0600329, at mouth

Feb. 78 - March 79

Parameter		Max.	Min.	Mean	No. of Values	Comments
Alkali T	mg/L	222.	189.	210.67	3	
	MPN/100 ml MPN/100 ml	920. 1600.	8. 33.	94.76 366.94	17 16	
Colour T.A.C.			and the	No. de-		
Copper, dissolved total	mg/L mg/L				 	
Dissolved oxygen	mg/L	14.8	4.7	10.55	15	
Hardness	mg/L	221.	195.	210.	4	
Iron, dissolved total	mg/L mg/L					•
Lead, dissolved total	mg/L mg/L					
Mercury, dissolved total	mg/L mg/L					
Nitrogen, Ammonia Nitrate Nitrite Organic	mg/L mg/L mg/L mg/L	0.061 0.23 0.005 1.07	<0.005 <0.02 0.005 0.14	0.018 0.065 0.005 0.305	17 17 17 17	
pН		8.8	8.2	8.42	18	
Phosphorus, dissolve total	d mg/L mg/L	0.04	0.04 0.016	0.04 0.060	1 33	
Solids, dissolved suspended	mg/L mg/L	338.	180.	263.22	18	
Sulphate	mg/L	34.2	34.2	34.2	1	
Turbidity, J.T.U.		42.	42.	42.	1	
Zinc, dissolved total	mg/L mg/L					

TABLE 9

WATER QUALITY DATA COLLECTED BY THE PROVINCE

River: Clinton Creek

Sampling Period

Site: 0600009, near mouth

May 72 - Feb. 79

Parameter		Max.	Min.	Mean	No. of Values	Comments
Alkali T	mg/L	386.	261.	326.92	24	
Coliforms fecal Coliforms total	MPN/100 ml MPN/100 m1	2400. 5420.	7 14	331.37 940.9	24	
Colour T.A.C.		42.	4	12.14	7	
Copper, dissolved total	mg/L mg/L	0.004	<0.001 <0.001	0.0024 0.0054	7 11	
Dissolved oxygen	mg/L	13.9	6.1	10.72	. 29	
Hardness	mg/L	405.	288.	341.75	12	
Iron, dissolved total	mg/L mg/L	0.1	<0.1 <0.1	0.1 0.266	7 3	•
Lead, dissolved total	mg/L mg/L	0.002	<0.001 <0.001	0.0011 0.006	6	
Mercury, dissolved total	mg/L mg/L	an an				
Nitrogen, Ammonia Nitrate Nitrite Organic	mg/L mg/L mg/L mg/L	0.4 0.76 0.016 2.	<0.005 <0.02 <0.005 <0.01	0.096 0.20 0.0066 0.448	19 28 28 19	
ρH		9.	7.8	8.49	54	•
Phosphorus, dissolve total		0.122 0.214	0.023	0.0646 0.077	5 63	
Solids, dissolved suspended	mg/L mg/L	468.	312. 3.	403.03 8.1	39 5	
Sulphate	mg/L	57.3	27.5	40.6	20	
Turbidity, J.T.U.		16.	1.2	3.48	21	
Zinc, dissolved total	mg/L mg/L	0.009 0.03	<0.005 <0.005	0.0062 0.012	5 12	

WATER QUALITY DATA COLLECTED BY THE PROVINCE

River: Loon Creek

Sampling Period

Site: 0600336, at mouth

April 79 - Oct. 79

Parameter		Max.	Min.	Mean	No. of	Comments
	water the late of the second control of the		administrative manifest in the state which that the transfer color color for	, was kan	Values	and reference of the section of the
Alkali T	mg/L	en en		<u>.</u>		
Coliforms fecal M	PN/100 ml	240.	4.	87.5	6 -	
Coliforms total M	PN/100 m1	1600.	17.	479.5	6	
Colour T.A.C.			des see	and the		
Copper, dissolved	mg/L	EG 200		mr mr		
total	mg/L	med since		*		
Dissolved oxygen	mg/L	14.8	10.1	11.74	5	
Hardness	mg/L		pm = m	en ma	-	
Iron, dissolved	mg/L	<u> </u>				•
total	mg/L	***	an vie	- grai dec		
Lead, dissolved	mg/L	***	gue aus			
total	mg/L			*		
Mercury, dissolved	mg/L	Alore Name				• •
total	mg/L	-		₩ ₩	man quan	
Nitrogen, Ammonia	mg/L	0.04	0.008	0.018	8	••• •
Nitrate	mg/L	0.15	0.04	0.098 0.005	7 7	
Nitrite	mg/L	1.06	0.24	0.003	8	
Organic	mg/L	1.00	0.24	0.40		
Нф		8.7	8.2	8.49	9	
Phosphorus, dissolved	nig/L	0.065	0.065	0.065	1	
total		0.121	0.06	0.09	18	
Solids, dissolved	mg/L	284.	226.	265.5	4	
suspended	mg/L	32.	3.	13.4	5	
Sulphate	mg/L	16.	7.8	11.83	3	
Turbidity, J.T.U.						
Zinc, dissolved	mg/L		-	·		
total	mg/L				-	

TABLE 11

River: Hat Creek

Sampling Period

Site: 0600073, at mouth

Nov. 72 - Feb. 79

Parameter		Max.	Min.	Mean	No. of Values	Comments
Alkali T	mg/L	275.	142.	245.05	20	
Coliforms fecal Coliforms total	MPN/100 ml MPN/100 ml	130. 240.	2. 6.	26.17 60.36	18. 14	
Colour T.A.C.		27.	1.	11.8	10	
Copper, dissolved total	mg/L mg/L	0.003	<0.001 <0.001	0.0015 0.0021	8 13	
Dissolved oxygen	mg/L	14.5	6.3	10.54	22	
Hardness	mg/L	288.	137.	249.89	18	
Iron, dissolved total	mg/L mg/L	<0.1 2.2	<0.1 0.1	0.1 0.51	7	
Lead, dissolved total	mg/L mg/L	0.002	<0.001 <0.001	0.0011 0.0017	8	
Mercury, dissolved total	mg/L mg/L	0.05	<0.05	0.05	8	
Nitrogen, Ammonia Nitrate Nitrite Organic	mg/L mg/L mg/L mg/L	0.028 0.09 <0.005 1.97	<0.02	0.030	17 28 28 16	
рН		9.	7.9	8.46	4	
Phosphorus, dissolve total	ed mg/L mg/L	0.02 0.865	0.006 0.007		9 57	
Solids, dissolved suspended	mg/L mg/L	428. 4.	176. 1.0	338.88 2.5	34 4	
Sulphate	mg/L	71.	24.2	51.16	15	
Turbidity, J.T.U.		29.	0.6	8.25	15	
Zinc, dissolved total	mg/L mg/L	<0.005	<0.005 <0.005		1 10	

WATER QUALITY DATA COLLECTED BY THE PROVINCE

River: Cache Creek

Sampling Period

Site: 0600074, near mouth

Nov. 72 - Feb. 79

Parameter		Max.	Min.	Mean	No. of Values	Comments
lkali T	mg/L	268.	47.4	205.03	15	
oliforms fecal oliforms total	MPN/100 ml MPN/100 ml	170. 920.	2. 5.	49.93 213.62	16 13	
olour T.A.C.		44.	1.	13.71	7	
opper, dissolved total	mg/L mg/L	0.004	<0.001 <0.001	0.0026 0.013	5 8	
eissolved oxygen	mg/L	14.2	5.8	10.05	24	
lardness	mg/L	265.	47.4	186.43	15	
ron, dissolved total	mg/L mg/L	1.8	<0.1 0.2	0.44 0.25	5 2	
Lead, dissolved total	mg/L mg/L	0.004	<0.001	0.00225	4	
Mercury, dissolved total	mg/L mg/L		an an			
Nitrogen, Ammonia Nitrate Nitrite Organic	mg/L mg/L mg/L mg/L	0.133 0.3 0.026 0.37	<0.005 <0.02 <0.005 0.06	0.016 0.054 0.0058 0.172	17 27 27 17	
Ho		9.	7.5	8.36	45	
Phosphorus, dissolve total	d mg/L mg/L	0.196 1.46	0.091	0.12 0.154	7 53	
Solids, dissolved suspended	mg/L mg/L	412. 6.	150. 5.	289.27 5.5	30 2	
Sulphate	mg/L	55.7	17.5	36.87	8	
Turbidity, J.T.U.		670.	0.4	52.58	14	
Zinc, dissolved total	mg/L mg/L	0.2	<0.005	0.031	8	

TABLE 13
EFFLUENT MONITORING RESULTS

Plant: Weyerhauser Pulp Mill, Kamloops

Sampling Period

Jan. 1965 - July 1979

•							
kayayan salakan ngandagan an at adadashan sa sa salakan sa	Parameter	Max.	Min.	Mean	No. of Values	Comments	
Bioassay	%	100	100	100	4	Fairly steady over year No definite trend	
B.O.D.5	Kg/day	16,018.	113	5331.9	628	70 /70	
Carbon Org.	mg/L	346	64	154.94	66	Slight inc. 78/79 mean 167 mg/L	
Chloride	mg/L	646	131	450.33	63	Fairly steady over las few years	
Colour	T.A.C.	1900	220	1364	97	Slight inc. lately,78/mean: 1401	
Flow	m^3/d	462,943	38,720	182,210	1923	modif. 1401	
Mercaptans	mg/L	9.6	0.0	0.3283	106	No sampling after mid Definite inc. in 77	
Nitrogen Kjel.	mg/L	29.	1.	4.31	49	Fairly steady since 75	
NO ₂ /NO ₃		0.03	0.02	0.025	2	no trend	
Oil & Grease	mg/L	53.6	0.2	9.75	61		
Oxygen Diss.	mg/L	11.0	0.1	3.48	1732	Fairly steady	
рН		9.6	5.8	7.29	2007		
Pheno1	mg/L	1.78	0.012	0.087	58		
Phosph. Total	mg/L	3.0	0.004	0.529	393	Slight inc. in 78/79	
Phosph. Diss.	mg/L	2.2	0.003	0.197	57	Decrease in recent yrs 78/79 mean 0.134	
Product	tonnes/d	6119.9	34.1	956.07	637	Slight inc of prod. noted in 78/79	
Solids Susp.	mg/L	130	1.4	39.42	134	Inc. 78/79 mean 63.58 19 values	
Solids Diss.	mg/L	1954	960	1512	37	Inc. 78/79 mean 1761,	
Spec. Cond.	UMHO/cm	3500	900	2055.2	134	19 values Fairly steady over yrs	
Sulphate	mg/L	304	<8	158.88	66	Fairly steady over yrs	
Tan. & Lignin	mg/L	200	20	62.22	58	Fairly steady over yrs	
Temp.	οС	35	7.5	26.74	1749		
T.S.S.	Kg/d	19,360	1.5	10,069	87	Exceeds permit condition fairly steady over the last two years	

TABLE 14

Town: Kamloops

Sampling Period

Aug. 73 - April 79

					• .	
	and the second s	Max.	Min.	Mean	No. of Values	Comments
alvakska nyogusen krista dastlemen Angerus bekense. Medaksinden proposa syona meneralismi, akti os s andersen		agramma and a service and residence of the particles of the service of the servic	t i god nest distribution region and artist to the property again assessments of	в	ga yana ya agasayan aya kanaba in daga aya bagana basaba	ар обого это пророжения посей несервой посей просей посей посей посей посей посей посей посей посей посей посе Несервой посей
BOD ₅	mg/L	80.	<10.	29.35	59	Fairly steady
Calcium, total	mg/L	21.8	15.3	18.57	7	Fairly steady, no trend
Chloride	mg/L	29.5	23.1	26.25	28	Steady over the year
Coliforms, Total	MPN/100 ml	920,000	80	80,184	48	
Coliforms, Fecal	MPN/100 m1	1,600,000	20	71,175	52	
Colour, T.A.C.		88.	16	56.5	26	Decrease in 1977
Flow	m ³ /day	14,547	1,818	6,364	6	Well below Permit specified maximum
Nitrogen Ammonia	mg/L	24.7	2.18	16.3	43.	Fairly steady, no trend
NO ₂ /NO ₃		10	<0.02	2.46	34	Decrease in recent year
Nitrogen, Organic	mg/L	7.7	0.3	3.62	39	Fairly steady, no trend
Nitrogen, Total	mg/L	29.02	11.08	20.18	60 .	Steady, no trend
Oxygen, Diss.	mg/L	11.9	0.4	4.7	42.	Inc. since early 1978
рН		8.1	6.4	7.37	104	
Phosphorus, Diss.	mg/L	5.46	0.012	3.05	49.	Steady dec. starting 7
Phosphorus, Total	mg/L	6.85	0.064	2.79	129	Dec. strongly in 77, low since
Sodium, Diss.	mg/L	43.2	40.2	41.46	3	TOW STITEO
Solids, Diss.	mg/L	300.	248.	269.61	31	Steady in recent years
Solids, Susp.	mg/L	125	5.	31.42	72	Slight red. starting 7
Spec. Cond.	UMHO/cm	620	411	512.93	-104	Steady over the years

TABLE 15

Town:	Ashcroft
-------	----------

Sampling Period

April 73 - Jan 79

•						
	and the second s	Max.	Min.		No. of Values	Comments
BOD ₅	mg/L	281		69.76	27	Drastic dec. starting May 77, mean: 27.51
Calcium, total	mg/L	21.1	16.0	18.93	9	Steady, no trend
Chloride	mg/L	35.6	11.7	22.37	23	Steady, no trend
Coliforms, Total	MPN/100 ml	2.8×10^6	49.000	1.4 x 10	⁵ 13	Steady
Coliforms, Fecal	MPN/100 m1	9.2×10^{6}	700	1.37 x 10	6) 17	Definite reduction Start. May 77:mean
Colour, T.A.C.		232	1.0	66.14	21	Start. May 77:mean 130,427 Steady, no trend
Flow	m ³ /day	868	868	868	1	
Nitrogen Ammonia	mg/L	16.6	0.145	9.2	11	Highly erratic reading
NO ₂ /NO ₃		21.2	<0.02	6.49	15	Highly erratic reading some drop in 78
Nitrogen, Organic	mg/L	17.6	1.0	8.9	8	Decrease since 77
Nitrogen, Total	mg/L	59.1	11.3	23.34	28	Decrease since 77
Oxygen, Diss.	mg/L	6.5	0.3	3.43	14	
рН		9.8	4.7	7.31	41	
Phosphorus, Diss.	mg/L	8.55	1.48	4.12	20	No change over years
Phosphorus, Total	mg/L	17	0.396	5.28	49	No change over years
Sodium, Diss.	mg/L	52	34.1	41.76	10	Steady, no trend
Solids, Diss.	mg/L	492	160	270.67	27	Steady, no trend
Solids, Susp.	mg/L	218	6	70.96	25	Definite reduction start 77, mean 23.86
Spec. Cond.	UMHO/cm	604	184	396.86	42	Steady, no trend

TABLE 16

Town: <u>Cache Creek</u>

Sampling Period

July 71 - March 79

					, , , , , , , , , , , , , , , , , , , ,	
		Max.	Min.	Mean	No. of Values	Comments
And the second s	en de de la companya de la filipación de la después de la defenda de la color	y (c	proportion of the region publication and proportion of the sec	· ·		required to the discoverage but of their in the good decisions of the discoverage of the
BOD ₅	mg/L	207	<10	37.41	60	Fairly steady over yrs.
Calcium, total	mg/L	gea nov	good where	gine uma	La control gang tamb	
Chloride	mg/L	67	0.3	36.5	46	Steady, no trend
Coliforms, Total	MPN/100 ml	2.4×10^6	1.70	303,830	38	Extremely variable res.
Coliforms, Fecal	MPN/100 ml	350,000	70	40,965	35	11 11 11
Colour, T.A.C.		78	16	38.55	20	No sampling since 78
Flow	m ³ /day	937	455	677	362	D. C
Nitrogen Ammonia	mg/L	29.8	0.144	11.49	36	Definite dec. starting summer 78, May 78-Feb mean: 3.91
NO_2/NO_3		20.5	0.02	6.61	32	mean: 3.91
Nitrogen, Organic	mg/L	37.9	1.5	4.85	35	
Nitrogen, Total	mg/L	52.34	9.41	22.1		
Oxygen, Diss.	mg/L	4.5	0.9	2.5	37	Steady, no trend
pH		8.3	6.4	7.6	83	
Phosphorus, Diss.	mg/L	8.1	2.1	4.81	17	Steady over years
Phosphorus, Total	mg/L	17.3	0.129	5.88	95	Steady over years
Sodium, Diss.	mg/L	67	60.2	63.6	2	
•		694	415	520	40	
Solids, Diss.	mg/L	120	5	31	76	Def. dec. started in 77 77-79 mean: 18.36 mg/L
Solids, Susp.	mg/L	1200	675	909	87	Fairly steady
Spec. Cond.	UMHO/cm	1200	0,0	202		•

TABLE 17

Town: <u>Clinton Creek</u>

Sampling Period

Oct. 71 - Feb. 79

		Max.	Min.	Mean	No. of Values	Comments
والمراجع والمراجع والمراجع والمستقبل	angan ang panggagilan si dar permangaha aki ng Mai Dalibarah, sak-ulik-Malabasah sak-ulik	Minimigraphines volgages, regign in reconstructed places in interesting personnel.	uniumanin'i Nora di Sar primitari additionali di primitari di Andre Malandia di Pari	P	and your requirement of the second of the se	and the second section of a supplied of the second section in the supplied and section is the second section and discovery section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the section is the second section in the section is the second section in the section is the s
BOD ₅	mg/L	60	Ĺ 10	- 21.22	49	Fairly consistent wit reg inc. during winte
Calcium, total	mg/L	James 2014	*** ***		Wind Made	
Chloride	mg/L	29.5	2.8	19.17	1.7	Fairly steady
Coliforms, Total	MPN/100 ml	1.1×10^6	<20	117,070	36	
Coliforms, Fecal	MPN/100 ml	1.1×10^6	<20	104,860	37	
Colour, T.A.C.		76	22	39.25	12	Fairly steady
Flow	m ³ /day	3146	0.34	474	17	
Nitrogen Ammonia	mg/L	19.4	0.043	4.95	35	Fairly steady
NO ₂ /NO ₃		0.71	0.019	0.086	34	Steady over the years
Nitrogen, Organic	mg/L	6.95	0.6	3.43	31	Fairly steady
Nitrogen, Total	mg/L	23	2.08	8.87	51	Fairly steady
Oxygen, Diss.	mg/L	G 20	0.7	6.2	38	Results erratic but mean steady
рН	3.	10	6.1	8.38	71	Steady over years
Phosphorus, Diss.	mg/L	4.55	1.31	2.53	20	Fairly steady
Phosphorus, Total	mg/L	7.55	0.082	2.73	84	Fairly steady
Sodium, Diss.	mg/L		ute em	· ·		
Solids, Diss.	mg/L	888.	62.	574.35	31	
Solids, Susp.	mg/L	104	4	24.92	48	Fairly steady over years
Spec. Cond.	UMHO/cm	1280	130	923.65	72	Fairly steady over

' TABLE 18

River: N. Thompson R.

Sampling Period

Site: 0600164, at Kamloops

Jan 65 - June 79

Parameter		Max.	Min.	Mean	No. of Values	Comments
Alkali T	mg/L	54.2	21.1	34.77	99	Most parameters gen. steady over years
Coliforms fecal M	PN/100 ml	13	2	3.57	7	with a few exceptions
Coliforms total N	IPN/100 ml	5	5	3.57 5	, a 2 , ,	noted below
Colour T.A.C.		17	-2	5.49	41	
Copper, dissolved	mg/L	0.01	0.001	0.005	25	
total	mg/L	0.02	0.001	0.004	21	
Dissolved oxygen	mg/L	13.2	8.2	10.78	41	
Hardness	mg/L	60.8	23.2	38.93	89	
Iron, dissolved	mg/L	0.1	0.001	0.03	38	
total	mg/L	3.8	0.003	0.56	19	
Lead, dissolved	mg/L	0.05	0.001	0.027	13	
total	mg/L	0.011	0.001	0.0027	23	
Mercury, dissolved	mg/L					
total	mg/L	0.05	0.05	0.05	12	
Nitrogen, Ammonia	mg/L	0.2	0.002	0.069	33	Pronounced drop since
Nitrate	mg/L	0.1355	0.02	0.085	27	27
Nitrite	mg/L	0.00	0.005	0.005	22	Slight inc. since 76
Organic	mg/L	0:45	0.03	0.141	7	
рН		8.3	4.4	7.52	150	
Phosphorus, dissolved	mg/L	0.0213	0.002	0.0036	37	
total	mg/L	0.218	0.002	0.0115	129	Slight drop since 77
Solids, dissolved	mg/L	86.0	38.0	58.0	55	
suspended	mg/L	30.0	4.0	10.3	13	•
Sulphate	mg/L	12.5	3.8	7.15	91	
Turbidity, J.T.U.		26.0	0.1	2.64	100	
Zinc, dissolved	mg/L	0.27	0.001	0.024	17	
total	mg/L	0.022	0.001	0.005	24	

TABLE 19

River: N. Thompson

Sampling Period

Site: 0600025 at Birch Island

May 72 - Aug. 76

Parameter		Max.	Min.	Mean	No. of Values	Comments
Alkali T	mg/L	241	11.8	35.36	20	All parameters
Coliforms fecal Coliforms total	MPN/100 ml MPN/100 ml			r	and the same of th	fairly steady over the sampling period
Colour T.A.C.		22	1	6.91	12	
Copper, dissolved total	mg/L mg/L	0.004	0.001 0.001	0.0018 0.0043	12 7	
Dissolved oxygen	mg/L	11.8	5.4	9.45	8	
Hardness	mg/L	216	14	42.67	16	
Iron, dissolved total	mg/L mg/L	0.1	0.1	0.1	12	
Lead, dissolved total	mg/L mg/L	0.001 0.05	0.001	0.001 0.0126	10	
Mercury, dissolved total	mg/L mg/L	des que	en en			
Nitrogen, Ammonia Nitrate Nitrite Organic	mg/L mg/L mg/L mg/L	0.01 0.22 0.005 0.08	0.01 0.05 0.005 0.08	0.01 0.13 0.005 0.08	1 14 14 1	
рН		8.7	6.7	7.36	36	
Phosphorus, dissolve total	ed mg/L mg/L	0.003 0.062		0.003 0.014	7 30	
Solids, dissolved suspended	mg/L mg/L	284 40	22 40	59.3 40	20 1	
Sulphate	mg/L	13.5	5.0	7.97	12	
Turbidity, J.T.U.		27	0.6,	8.19	21	
Zinc, dissolved total	mg/L mg/L	0.019 °0.022		0.0077 0.0116	9 7	

WATER QUALITY DATA COLLECTED BY THE PROVINCE

River: N. Thompson

Sampling Period

Site: 0600002 at McLure

August 66 - April 78

Parameter		Max.	Min.	Mean	No. of Values	Comments
Alkali T	mg/L	60.8	17.4	36.33	146	Increase noted since 1977
Coliforms fecal Coliforms total	MPN/100 ml MPN/100 ml	5	2	2.75	4 	•
Colour T.A.C.		19	1	5.93	30	
Copper, dissolved total	mg/L mg/L	0.05 0.02	0.001 0.001	0.0063 0.0052	42 36	
Dissolved oxygen	mg/L	13.6	6.0	10.31	25	
Hardness	mg/L	66.1	19.2	40.56	142	
Iron, dissolved total	mg/L mg/L	0.12	0.001	0.049 0.345	56 9	
Lead, dissolved total	mg/L mg/L	0.05 0.064	0.001	0.0136 0.0056	36 32	
Mercury, dissolved total	mg/L mg/L	0.05	0.05	0.05	9	
Nitrogen, Ammonia Nitrate Nitrite Organic	mg/L mg/L mg/L mg/L	0.2 0.22 0.005 0.25	0.003 0.07 0.005 0.04	0.068 0.107 0.005 0.089	39 33 33 13	Pronounced decreas since 1977
рН		8.78	6.6	7.59	176	
Phosphorus, dissolve total	ed mg/L mg/L	0.006 0.051	0.002 0.001	0.0028 0.0083	52 125	
Solids, dissolved suspended	mg/L mg/L	90 190	1 1	59.46 29.57	52 23	Slight decrease since 1977
Sulphate	mg/L	17	3.7	7.45	136	
Turbidity, J.T.U.		26	0.2	4.08	146	
Zinc, dissolved total	mg/L mg/L	0.05 0.03	0.001	0.0084 0.0076	37 34	

Note: Most parameters fairly steady over the years with a few exceptions as marked.

TABLE 21

River: Clearwater River

Sampling Period

Site: 0600031at Clearwater

May 72 - May 78

Parameter		Max.	Min.	Mean	No. of Values	Comments
Alkali T	mg/L	41.5	25.7	33.74 •	14	All parameters fairly steady
Coliforms fecal Coliforms total	MPN/100 ml MPN/100 ml	2.0 7.0	2.0 7.0	2.0 7.0	2	over the years. No trends.
Colour T.A.C.		35	5	13.67	6	
Copper, dissolved total	mg/L	0.001	0.001	0.0037	9	
Dissolved oxygen	mg/L	13.5	6.0	10.19	8	
Hardness	mg/L	42.4	25.4	34.77	.13	
Iron, dissolved total	mg/L mg/L	0.5	0.2	0.35	2	
Lead, dissolved total	mg/L mg/L	0.1	0.001	0.0159	 9	
Mercury, dissolved total	mg/L mg/L		gang dan		pan pan	
Nitrogen, Ammonia Nitrate Nitrite Total	mg/L mg/L mg/L mg/L	0.01 0.1 0.005 0.44	0.007 0.08 0.005 0.09	0.0085 0.091 0.005 0.185	2 7 7 16	Organic was not
На		8.8	6.8	7.55	23	Sampled
Phosphorus, dissolve total	d mg/L	0.003 0.019	0.003 0.003	0.003 0.0073	5 21	
Solids, dissolved suspended	mg/L mg/L	58 11.8	40 3.0	51 6.36	15 5	
Sulphate	mg/L	6.8	5.0	5.67	7	
Turbidity, J.T.U.		3.8	0.4	1.43	14	
Zinc, dissolved total	mg/L mg/L	0.016	0.005	0.0077	8	

TABLE 22

Town: 100 Mile House

Sampling Period

Aug. 78 - Feb. 78

•					11	
والمراقبة المراقبة المراقبة والمراقبة والمراقبة المراقبة المراقبة المراقبة والمراقبة المراقبة المراقبة والمراقبة	um, salah kulupun ar-dari da salah sal	Max.	Min.	Mean	No. of Values	Comments
BOD ₅	mg/L	129	13	55.58	31	Erratic readings but mean steady
Calcium, total Chloride	mg/L mg/L	66.2	28.5	50.85	27	Steady
Coliforms, Total	MPN/100 ml	1.6×10^6	130	418,690	21	Slight inc. starting 77
Coliforms, Fecal	MPN/100 ml	920,000	20	185,930	16	Slight inc. starting 77
Colour, T.A.C.	•	108	29	71.3	17	Steady
Flow	m ³ /day	-	art 1998			
Nitrogen Ammonia	mg/L	33.2	10	24.7	16	Fairly steady, no trend
NO ₂ /NO ₃		0.427	<0.02	0.06	15	Very low since 1976
Nitrogen, Organic	mg/L	12	3.8	6.54	15	Steady
Nitrogen, Total	mg/L	39	17	27.51	26	Fairly steady
Oxygen, Diss.	mg/L	10	1.2	3.67	27	Fairly steady
рН		9.2	6.8	7.81	72	Steady
Phosphorus, Diss.	mg/L	8.96	2.9	7.04	15	Steady
Phosphorus, Total	mg/L	13.95	3.04	7.95	35	Steady
Sodium, Diss.	mg/L	150	74	120.36	25	Fairly steady
Solids, Diss.	mg/L	730	448	608.14	28	Steady
Solids, Susp.	mg/L	146	80	113	2	
Spec. Cond.	UMHO/cm	1475	240	1008.6	74	Some inc. noted starting in 77

TABLE 23

Town: Noranda Mine Camp

Sampling Period

Jan. 74

		Max.	Min.	Mean	No. of Values	Comments
		ng garanta yakan kata da kabupatan kata ya makaban 1964 - Makaban Marin Makaban 1964 - Makaban 1964 - Makaban Ma	.0	ед стако и помератичного дага ; надаже част част общество		
BOD ₅	mg/L	65	L 10	23.75	4	
Calcium, total	mg/L	n ***	given were	gene suns		
Chloride	mg/L	14.1	4.6	8.86	3	
Coliforms, Total	MPN/100 ml	200	200	200	1	
Coliforms, Fecal	MPN/100 ml				bing.	
Colour, T.A.C.			D01 D00	Soc Pin	-	
Flow	m ³ /day		an en		-	
Nitrogen Ammonia	mg/L		State 15/4	-		
NO ₂ /NO ₃	•	0.540	0.540	0.540	1	•
Nitrogen, Organic	mg/L	1.48	1.48	1.48	1 .	
Nitrogen, Total	mg/L	5.54	1.89	3.71	2	
Oxygen, Diss.	mg/L			·	· .	
ρΗ			and and	MAT	-	
Phosphorus, Diss.	mg/L		gam mare	Pin and	-	
Phosphorus, Total	mg/L	1.120	1.120	1.120	1	
Sodium, Diss.	mg/L	tree down	and 400		-	
Solids, Diss.	mg/L	493	90	202	4	
Solids, Susp.	mg/L	88	88	88	1	
Spec. Cond.	UMHO/cm	176	102	137.33	3	

TABLE 24 EFFLUENT MONITORING RESULTS

Plant: Noranda Mines, Boss Mt. Div.

Hendrix Lake, B.C.

Sampling Period May 74 - July 79

PARAMETER		MAX	MIN	X	NO. OF VALU	COMMENTS JES
Chloride Colour, T.A.C.	mg/L	540 1600	1.6 6	″15.51 ,52	49 49	Act. mm. much lower ~ 5 with 1 except. high Steady, av. high due to single maximum
Copper, diss.	mg/L	1.53	0.006	0.39	57	
Cyanide	mg/L	2.3	<0.01	0.31	58	Inc. lately 78/79 mean 0.59 mg/L Err. res. val. above 1 mg/L from tm to tm
Iron, diss.	mg/L	1.0	<0.1	0.296	51	
Lead, diss.	mg/L	0.002	<0.001	0.00108	12	
Molybdenium dis	mg/L	3.2	0.00563	1.69	57	
Nitrite	mg/L	0,525	0.009	0.24	52	Fairly steady
Oxygen diss.	mg/L	11.2	5.9	8.64	53	
рН		8.6	6.0	7.34	141	Steady over years
Solids, diss.	mg/L	1610	96	244.18	34	Steady, max. could be result of mistake
Solids, susp.	mg/L	396	5	61.57	36	Dec. started 78, 79 av was 18.44 mg/L
Spec. Cond. UMH	IO/cm	2120	46	341	141	was 18.44 mg/L Steady over yrs. Singl max-mistake or spill
Turbidity J.T.U	J.	425	4.4	62.65	58	Act. mean 15, except fisolated peaks

TABLE 25

River: S. Thompson

Sampling Period

Site: 0500077, at Squilax

May 70 - June 78

Parameter	and a property flow publication and appropriate confidence and the property continues and the contract continues and the contract	Max.	Min.	Mean	No. of Values	Comments
alkali T	mg/L	42.2	16.5	33.04	39	
Coliforms fecal Coliforms total	MPN/100 ml MPN/100 ml	79.0 1609	2.0	14.83 361.6	6 5	Quite high and varied
Colour T.A.C.		19	19	19	1	
Copper, dissolved total	mg/L mg/L	0.41	0.0 0.001	0.36 0.001	26 6	
Dissolved oxygen	mg/L	13.4	0.9	11.44	27	
Hardness	mg/L	44.0	29.2	36.83	34	
Iron, dissolved total	mg/L mg/L	0.12	0.0 0.04	0.047 0.14	28 8	
Lead, dissolved total	mg/L mg/L	0.041 0.004	0.001 0.001	0.006 0.016	26 5	•
Mercury, dissolved total	mg/L mg/L	0.02 0.26	0.02	0.02 0.059	6 16	
Nitrogen, Ammonia Nitrate Nitrite Organic	mg/L mg/L mg/L mg/L	13.58 0.1 0.005 9.28	0.0 0.02 0.005 0.01	0.41 0.05 0.005 0.36	34 31 22 34	1976- 78 mean 0.006 mg/L 1975-78 mean
pΗ		9.2	6.6	7.54	52	0.006 mg/L
Phosphorus, dissolve total	4	11.0 11.85	0.0	0.35 0.33	32 37	1975-77 mean 0.003 mg. 1975-78 mn. 0.0053 mg.
Solids, dissolved suspended	mg/L mg/L	60.0 18.0	44.0 1.0	53.25 3.19	8 21	
Sulphate	mg/L	27.0	5.0	6.72	25	1974-77 mean 5.32 mg/
Turbidity, J.T.U.		3.3	0.2	0.79	14	
Zinc, dissolved total	mg/L mg/L	1.0	0.005 0.005	0.083 0.0052	26 5	

WATER QUALITY DATA COLLECTED BY THE PROVINCE

River: S. Thompson

Sampling Period

Site: 0600136, at Chase

Oct. 73 - April 79

Parameter	e de la composição de l	Max.	Min.	Mean	No. of Values	Comments
Alkali T	mg/L	54.1	29.3	38.24	18	
Coliforms fecal Coliforms total	MPN/100 ml MPN/100 ml	170 26.0	2.0 26.0	38.5 '26.0	6 1	
Colour T.A.C.		18.0	1.0	3.88	63	
Copper, dissolved total	mg/L mg/L	0.011	0.001 0.001	0.0028 0.004	7 6	-
Dissolved oxygen	mg/L	15.0	5.0	10.66	24	
lardness	mg/L	62.6	32.6	40.84	17	Increase in 77 - no further sampling
Iron, dissolved total	mg/L mg/L	0.1	0.1	0.1 0.62	6 5	
Lead, dissolved total	mg/L mg/L	0.003 0.003	0.001 0.001	0.002 0.0015	2 7	
Mercury, dissolved total	mg/L mg/L	0.05	0.05	0.05	 6	
Nitrogen, Ammonia Nitrate Nitrite Organic	mg/L mg/L mg/L mg/L	0.021 0.08 0.005 0.19	0.005 0.02 0.005 0.01	0.0072 0.047 0.005 0.087	21 23 23 21	
рН		9.2	4.7	7.63	91	
Phosphorus, dissolve total	d mg/L mg/L	0.007 0.121	0.003	0.0032 0.0096	29 131	
Solids, dissolved suspended	mg/L mg/L	90.0 45.0	44.0	64.0 14.2	32 5	
Sulphate	mg/L	9.2	5.0	6.96	27	
Turbidity, J.T.U.		21.0	0.3	2.21	38	
Zinc, dissolved total	mg/L mg/L	0.027 0.04	0.005 0.005	0.013 0.009	3 9	

TABLE 27

River: S. Thompson

Sampling Period

Site: 0600001, at Pritchard

Nov. 71 - Feb. 75

Parameter		Max.	Min.	Mean	No. of Values	Comments
Alkali T	mg/L	54.5	30.2	35.0	31	No sampling since 75 (why?).
Coliforms fecal Coliforms total	MPN/100 m1 MPN/100 m1	en en	***	: F	The day	
Colour T.A.C.		8.0	1.0	3.0	15	
Copper, dissolved total	mg/L mg/L	0.08 0.02	0.001	0.0013 0.0034	15 18	
Dissolved oxygen	mg/L	12.2	5.9	7.7	8	
Hardness	mg/L	61.8	31.0	36.96	30	
Iron, dissolved total	mg/L mg/L	0.1	0.01	0.082	14	
Lead, dissolved total	mg/L mg/L	0.006 0.105	0.001 0.001	0.002 0.0199	12 18	
Mercury, dissolved total	mg/L mg/L			nic eng		
Nitrogen, Ammonia Nitrate Nitrite Organic	mg/L mg/L mg/L mg/L	0.05 0.09 0.005 0.14	0.01 0.02 0.005 0.02	0.022 0.051 0.005 0.082	4 28 28 4	
рН		9.2	6.8	7.65	50	
Phosphorus, dissolve total	d mg/L mg/L	0.017 0.078	0.003 0.003	0.0039	15 48	
Solids, dissolved suspended	mg/L mg/L	96.0 16.5	46.0	54.05 3.8	14 19	
Sulphate	mg/L	8.5	5.0	6.26	25	
Turbidity, J.T.U.		6.7	0.5	1.59	29	
Zinc, dissolved total	mg/L mg/L	0.06 0.02	0.005 0.005	0.016 0.0086	9 18	

TABLE 28

River: S. Thompson

Sampling Period

Site: 0600135, at Pioneer Pk.

Oct. 73 - June 79

Parameter		Max.	Min.	Mean	No. of Values	Comments
Alkali T	mg/L	44.7	30.8	34.4	40	
Coliforms fecal Coliforms total	MPN/100 ml MPN/100 ml	130.0	2:0	26.83	6	
Colour T.A.C.		7.0	1.0	3.3	66	
Copper, dissolved total	mg/L mg/L	0.007	0.001	0.0016	13 7	
Dissolved oxygen	mg/L	15.0	4.6	10.4	48	
Hardness	mg/L	58.6	32.3	37.18	38	
Iron, dissolved total	mg/L mg/L	0.1	0.1	0.1 0.38	12	
Lead, dissolved total	mg/L mg/L	0.001 0.003	0.001 0.001	0.001	2	
Mercury, dissolved total	mg/L mg/L	0.05	0.05	0.05	7	
Nitrogen, Ammonia Nitrate Nitrite Organic	mg/L mg/L mg/L mg/L	0.021 0.09 0.005 0.23	0.009 0.02 0.005 0.03	0.0147 0.04 0.005 0.116	7 48 45 7	Inc. noted starting 7
рН		8.6	4.4	7.56	125	
Phosphorus, dissolve total	ed mg/L mg/L	0.004 0.033	0.003 0.003	0.003 0.0087	29 138	
Solids, dissolved suspended	mg/L mg/L	80.0 13.0	46.0 2.0	53.74 3.53	39 8	
Sulphate	mg/L	20.1	5.0	6.6	33	
Turbidity, J.T.U.		6.0	0.8	2.2	51	
Zinc, dissolved total	mg/L mg/L	0.005 0.007	0.005 0.055	0.005 0.0052	3 10	

TABLE 29

River: Adams R.

Sampling Period

Site: 0500001 at Celista Rd. Bridge

May 70 - May 79

Parameter		Max.	Min.	Mean	No. of Values	Comments
Alkali T	mg/L	32.0	22.1	26.26	47	
Coliforms fecal Coliforms total	MPN/100 ml MPN/100 ml	23.0 1600.0	<2.0 <2.0	7.0 240.33	9	
Colour T.A.C.		3.0	1.0	2.0	3	
Copper, dissolved total	mg/L mg/L	0.17 0.002	0.0 <0.001	0.0135 0.00114	26 <i>′</i> 7	
Dissolved oxygen	mg/L	15.0	9.4	11.87	32	
Hardness	mg/L	39.6	23.3	29.1	43	
Iron, dissolved total	mg/L mg/L	0.17	0.0 <0.02	0.064 0.272	29 8	
Lead, dissolved total	mg/L mg/L	0.023	<0.001 <0.001	0.005° 0.002	24 5	
Mercury, dissolved total	mg/L mg/L	<0.02 0.05	<0.02 <0.02	0.02 0.04	3 14	
Nitrogen, Ammonia Nitrate Nitrite Organic	mg/L mg/L mg/L mg/L	0.06 0.14 <0.005 0.27	0.0 0.04 <0.005 <0.01	0.018 0.085 0.005 0.1	42 29 21 43	
pH	mg/ ti	8.8	6.6	7.53	66	
Phosphorus, dissolv total		<0.01 0.053	<0.003 <0.003	0.0038 0.0073	30 55	
Solids, dissolved suspended	mg/L mg/L	52.0 85.0	32.0 <1.0	42.35 7.67	17 31	
Sulphate	mg/L	10.5	<5.0	5.94	26	
Turbidity, J.T.U.		2.8	0.2	0.72	21	
Zinc, dissolved total	mg/L mg/L	0.8 0.01	<0.005 <0.005	0.054	25 5	

WATER QUALITY DATA COLLECTED BY THE PROVINCE

River: Salmon R.

Sampling Period

Site: 1130003, Salmon R. Valley #1

Oct. 73 - March 79

Parameter		Max.	Min.	Mean	No. of Values	Comments
alkali T	mg/L	188.0	48.4	134.26	64	
Coliforms fecal Coliforms total	MPN/100 ml MPN/100 ml	2400.0 2400.0	33.0 49.0	862.44 1069.3	18 20	
Colour T.A.C.		10.0	10.0	10.0	1	
opper, dissolved total	mg/L mg/L	0.006	0.001	0.002	7	
Dissolved oxygen	mg/L		BAN BON.	,		
lardness	mg/L	206.0	49.0	146.72	83	
ron, dissolved total	mg/L mg/L	0.9	0.3	0.51	7	
ead, dissolved total	mg/L mg/L	0.002	0.001	0.001	7	
Mercury, dissolved total	mg/L mg/L	0.05	0.05	0.05	7	
Nitrogen, Ammonia Nitrate Nitrite Organic	mg/L mg/L mg/L mg/L	0.09 0.12 0.005 0.99	0.007 0.05 0.005 0.04	0.033 0.085 0.005 0.286	28 2 2 28	
Н		9.2	7.2	8.14	108	
Phosphorus, dissolv total	ved mg/L mg/L	0.106 0.83		0.05 0.1	56 167	
Solids, dissolved suspended	mg/L mg/L	286.0 388.0	78.0 2.0	243.0 59.2	24 83	
Sulphate	mg/L	46.5	6.1	30.04	64	
Turbidity, J.T.U.		92.0	1.1	14.57	83	
Zinc, dissolved total	mg/L mg/L	 0.006	0.005	0.0054	7	

TABLE 31

River: Salmon R.

Sampling Period

May 70 - Oct. 78

Site:	0500062,	at	Hwy.	1	Bridge
	و موسد مودر الرسيطين بي مودان بي المودان الرسيطينيية - وها المدين المودان المودان المودان المودان المودان				-

Parameter		Max.	Min.	Mean	No. of Values	Comments
Alkali T	mg/L	187.0	46.0	134.09	38	
Coliforms fecal	MPN/100 m1	7900.0	80.0	1205.9	10	
	MPN/100 ml	13000.	130.0	2296.9	20	
Colour T.A.C.		37.0	4.0	13.25	4	
Copper, dissolved	mg/L	0.16	0.001	0.022	23	
total	mg/L	0.005	0.001	0.0024	5	
Dissolved oxygen	mg/L	14.3	9.6	12.1	16	
Hardness	mg/L	214.0	49.0	143.24	36	
Iron, dissolved	mg/L	and and				
total	mg/L	3.8	0.12	1.08	7	
Lead, dissolved	mg/L	0.021	0.001	0.0052	24	
total	mg/L	0.006	0.001	0.0026	3	
Mercury, dissolved	mg/L	0.04	0.02	0.025	4	
total	mg/L	0.18	0.02	0.0572	11	
Nitrogen, Ammonia	mg/L	0.33	0.0	0.035	37	
Nitrate	mg/L	0.46	0.02	0.108	27	
Nitrite	mg/L	0.005	0.005	0.005	19	
Organic	mg/L	1.0	0.03	0.279	37	
рН		8.7	7.2	8.03	52	
Phosphorus, dissolve	d mg/L	0.1	0.0	0.045	29	mean of 7 May CON 0.0336 mg/L
total	mg/L	0.398	0.042	0.103	43	mean of 9 May CON 0.218 mg/L
Solids, dissolved	mg/L	256.0	109.0	211.46	13	
suspended	mg/L	300.0	2.7	50.24	28	
Sulphate	mg/L	47.6	8.3	31.01	34	
Turbidity, J.T.U.		82.0	0.8	10.87	17	
Zinc, dissolved	mg/L	0.74	0.005	0.007	24	
total	mg/L	0.016	0.005	0.01	3	

WATER QUALITY DATA COLLECTED BY THE PROVINCE

River: Shuswap R.

Sampling Period

Site: 0500072, U/S Sugar Lake

Aug. 72 - Aug. 78

Parameter		Max.	Min.	Mean	No. of Values	Comments
Alkali T	mg/L	38.6	16.8	27.36	10	
Coliforms fecal Coliforms total	MPN/100 ml MPN/100 ml	5.0 280.0	2.0	2.75 73.75	4 4	
Colour T.A.C.						
Copper, dissolved total	mg/L mg/L	0.001 0.002	0.001	0.001 0.002	2	
Dissolved oxygen	mg/L	13.2	8.4	10.68	5	
Hardness	mg/L	40.4	18.5	29.76	8.	
Iron, dissolved total	mg/L mg/L	0.1	0.02	0.06 0.15	4.	
Lead, dissolved total	mg/L mg/L	0.003 0.001	0.001	0.002 0.001	2 1	
Mercury, dissolved total	mg/L mg/L	0.07	0.05	0.055	 4	
Nitrogen, Ammonia Nitrate Nitrite Organic	mg/L mg/L mg/L mg/L	0.01 0.21 0.005 0:17	0.005 0.02 0.005 0.01	0.0068 0.112 0.005 0.084	10 5 5 10	
pН		8.4	7.0	7.5	14	
Phosphorus, dissolve total	ed mg/L mg/L	0.1 0.024	0.003	0.0042 0.0052	6 16	
Solids, dissolved suspended	mg/L mg/L	40.0 24.0	32.0 0.8	37.0 5.1	4 8	
Sulphate	mg/L	5.8	5.0	5.1	11	
Turbidity, J.T.U.		4.1	0.4	1.35	9	
Zinc, dissolved total	mg/L mg/L	0.015 0.005	0.005 0.005	0.01 0.005	2	

WATER QUALITY DATA COLLECTED BY THE PROVINCE

River: Shuswap R.

Sampling Period

Site: 0500498, D/S Enderby

Oct. 76 - June 79

Parameter		Max.	Min.	Mean	No. of Values	Comments
Alkali T	mg/L	49.6	37.6	42.43	7	
Coliforms fecal Coliforms total	MPN/100 ml MPN/100 ml	130.0 540.0	2.0 8.0	29.76 144.21	29 29	
Colour T.A.C.		20.0	1.0	5.3	23	
Copper, dissolved total	mg/L mg/L	0.005	0.005	0.005	1	
Dissolved oxygen	mg/L	13.6	8.6	10.3	4	
Hardness	mg/L	53.6	39.1	44.68	6	
Iron, dissolved total	mg/L mg/L	· — —	1964 Mad 1974 Sad			
Lead, dissolved total	mg/L mg/L	0.001	0.001	0.001	1	
Mercury, dissolved total	mg/L mg/L	0.05	0.05	0.05	1	
Nitrogen, Ammonia Nitrate Nitrite Organic	mg/L mg/L mg/L mg/L	0.071 0.09 0.005 0.26	0.005 0.02 0.005 0.01	0.0127 0.035 0.005 0.096	33 30 30 32	
рН		8.1	7.4	7.78	35	
Phosphorus, dissolve total	ed mg/L mg/L	0.008 0.035	0.003	0.0032 0.0076	28 56	
Solids, dissolved suspended	mg/L mg/L	76.0 25.0	48.0 1.0	62.35 5.95	23 20	
Sulphate	mg/L	7.7	5.2	6.33	11	
Turbidity, J.T.U.		6.4	0.4	1.79	22	
Zinc, dissolved total	mg/L mg/L	0.006	0.006	0.006	1	

TABLE 34

River: Shuswap River

Sampling Period

Site:

0500069, at Mara Bridge

March 71 - May 79

Parameter		Max.	Min.	Mean	No. of Values	Comments
Alkali T	mg/L	58.1	34.0	43.18	28	
Coliforms fecal Coliforms total	MPN/100 ml MPN/100 ml	110.0 1600.0	17.0 7.0	39.57 195.23	7 26	
Colour T.A.C.		9.0	1.0	4.72	29	
Copper, dissolved total	mg/L mg/L	0.16 0.002	0.001 0.001	0,016 0,00125	18 4	
Dissolved oxygen	mg/L	15.6	7.3	11.38	22	
Hardness	mg/L	62.6	38.3	47.35	29	
Iron, dissolved total	mg/L mg/L	0.14 0.1	0.0	0.069 0.1	22	
Lead, dissolved total	mg/L mg/L	0.06	0.001 0.001	0.0073 0.001	18 2	
Mercury, dissolved total	mg/L mg/L	0.02 0.05	0.02 0.02	0.02 0.044	2 11	
Nitrogen, Ammonia Nitrate Nitrite Organic	mg/L mg/L mg/L mg/L	0.38 0.1 0.006 0.3	0.0 0.02 0.005 0.02	0.02 0.042 0.0050 0.116	52 46 45 52	
рН		8.7	7.0	7.74	67	
Phosphorus, dissolve total	d mg/L mg/L	0.012	0.003 0.003	0.0035 0.0098	47 87	
Solids, dissolved suspended	mg/L mg/L	88.0 24.0	52.0	63.69 7.73	39 33	
Sulphate	mg/L	12.9	5.0	7.81	29	
Turbidity, J.T.U.		11.0	0.4	2.68	41	
Zinc, dissolved total	mg/L mg/L	0.87 0.005	0.005 0.005	0.082 0.005	18 2	

Town:	Enderby
-------	---------

Sampling Period

Dec. 70 - June 79

			÷			
		Max.	Min.	Mean	No. of Values	Comments
BOD ₅	mg/L	144	10	27.12	50	-
Calcium, total	mg/L	31.1	31.1	31.1	1	
Chloride	mg/L	41.9	0.5	28.13	29	
Coliforms, Total	MPN/100 ml	350,000	6	29,495	41	Dec. in recent yrs.
Coliforms, Fecal	MPN/100 ml	160,000	L .2	10,916	. 36	Dec. in recent yrs 1976-79 mean 2433
Colour, T.A.C.		59	21	43.25	4	19/0=/9 mean 2433
Flow	m ³ /day	1362	28	512	1353	
Nitrogen Ammonia	mg/L	25	0.05	15.32	36	Inc., since 77, 77-79
NO ₂ /NO ₃		0.67	0.04	0.1567	12	mean 20.48 mg/L 1977-79 mean 0.115 mg/l
Nitrogen, Organic	mg/L	22	0.3	4.73	32	Slight inc. 1977-79 mean 5.17 mg/L
Nitrogen, Total	mg/L	37.7	1.91	21.48	39	Inc. since 77, 77-79 mean 26.09 mg/L
Oxygen, Diss.	mg/L	7.4	2.5	4.87	31	mean 20.05 mg/ is
pН		7.9	6.6	7.4	64	
Phosphorus, Diss.	mg/L	5.8	1.6	3.77	28	Slight inc. 77-79 mean 4.09 mg/L
Phosphorus, Total	mg/L	10.6	0.51	5 4.48	42	Fairly steady
Sodium, Diss.	mg/L	47.6	29.4	40.66	9	Fairly steady
Solids, Diss.	mg/L	613	259	375.88	17	
Solids, Susp.	mg/L	345	2	44.3	49	Some inc. noted in 77
Spec. Cond.	UMHO/cm	667	536	598.25	4	

TABLE 36

Sampling Period

Sept. 69 - Oct. 79

		Max.	Min.	Mean	No. of	Comments
	and the state of t			. Te dil	Values	Commentes
		and the second s	aga ang ang ang ang ang ang ang ang ang	6	na uga anagy y a mai unau mai mai dha maga dhi dha an i nga banna dhi na	
BOD ₅	mg/L	905	<10	, 124.79		are and the second of the seco
Calcium, total	mg/L		Box Stree	en en		•
Chloride	mg/L	313	0.5	47.31	29	
Coliforms, Total	MPN/100 ml	$24x10^{6}$	24,000	3.63x10 ⁶	33	
Coliforms, Fecal	MPN/100 m1	16x10 ⁶	< 1	1.21×10^{6}	28	
Colour, T.A.C.		71	36	53.5	4	
Flow	m ³ /day	2265	6.54	1548	125	
Nitrogen Ammonia	mg/L	50.4	0.139	9 12.34	36	
NO ₂ /NO ₃		15.2	<0.02	3.036	17	
Nitrogen, Organic	mg/L	54	0.37	9.21	36	
Nitrogen, Total	mg/L	56.38	0.96	5 20.564	40	
Oxygen, Diss.	mg/L	me see	-	***	and the same	
рН		8.3	6.0	7.48	56	
Phosphorus, Diss.	mg/L	60.8	0.0	6.53	31	
Phosphorus, Total	mg/L	106	0.1	10.48	47	
Sodium, Diss.	mg/L	60.6	37	46.27	7	Erratic Results
Solids, Diss.	mg/L	4128	288	883.1	10	Err. res. mean inf. by single high mean 500mg/
Solids, Susp.	mg/L	1933	1.0	168.89	51	Err. res. 3 highs above 1000 in 72,77-79 mn=41
Spec. Cond.	UMHO/cm	2600	6.37	789.01	51	High readings until 75 77-79 mean=592

THOMPSON SUB-BASIN

DRAINAGE BASIN BOUNDARY

--- HIGHWAYS

1 inch = 15.3 MILES

SOUTH THOMPSON- SHUSWAP SUB-BASIN

THOMPSON SUB-BASIN WATER QUALITY SAMPLING STATIONS

DRAINAGE BASIN BOUNDARY
HIGHWAYS

1 inch = 15.3 MILES

△ TEMPORARY SAMPLING STATION

A PERMANENT SAMPLING STATION

THOMPSON SUB-BASIN POINT SOURCE LOCATIONS

DRAINAGE BASIN BOUNDARY

- HIGHWAYS

1 inch = 15.3 MILES

- MUNICIPAL DISCHARGE
- M INDUSTRIAL DISCHARGE

SOUTH THOMPSON-SHUSWAP SUB-BASIN WATER QUALITY SAMPLING STATIONS

SOUTH THOMPSON- SHUSWAP SUB-BASIN POINT SOURCES LOCATIONS

PART TWO

Limnology and Lake Water Quality

Thompson River Basin Preplanning Study

prepared by

R. N. Nordin, Ph.D.

Water Investigations Branch

December 1979

Thompson River Basin Pre Planning Water Quality - Item 4

1.2 Limnology and Lake Water Quality

There are a large number of lakes in the Thompson Basin, and they form an important role in many aspects of life in the watershed. The majority of lakes have never been sampled to document their physical/chemical/biological characteristics. What is intended here is to review those data which exist and to indicate those lakes in which a problem or problems exist and those lakes which some additional data collection might be made in order to more clearly identify problems or provide information on which to base water use or watershed management decisions.

The data are considered in three separate sub basins as was recommended by the Working Committee.

Limnology and Lake Water Quality Summary

Listed below are some of the concerns which appear to be the most important. Other concerns are noted in the overall text. Accompanying these major concerns are suggestions for either remedial action or for further sampling which might be carried out under the basin study, if one is forthcoming.

- 1. Shuswap Lake, particularly Tappen Bay of Salmon Arm, is subject to two major discharges, the Salmon River and the Salmon Arm Sewage Treatment Plant. Evaluation should be made of what the effects of these discharges on the Bay are, and effects of reducing or modifying the discharges.

 On Shuswap Lake in general, the effect of changes in land use (residential development, logging, agriculture) on lake water quality.
- 2. Residential development guidelines for small lakes should be drawn up to assist planning agencies (perhaps on an individual site basis) in insuring that water quality deterioration does not take place as a consequence of cottage or residential development.
- 3. Adoption of a monitoring program for lakes which have little or no water chemistry information recorded for them, particularly for lakes as important as Adams Lake.

A. North Thompson Sub Basin

In terms of the overall Thompson Basin, the majority of the lakes are in the North Thompson Sub Basin. Particularly notable are the number of large lakes in and near Wells Gray Park in the Clearwater River drainage. These lakes include Hobson, Azure, Clearwater, Murtle, Mahood, and Canim. These lakes have surfaces areas greater than 25 $\ensuremath{\mathrm{km}^2}$ and depths (from those measured) greater than 150 metres (Table 1). The two lakes which have been sampled (Mahood and Canim) show similar water chemistry (Table 2). Both are low in nutrients, moderately alkaline $pH_*(7.8-7.9)$ with moderate dissolved solids (75-100) and alkalinity (55-76). Because of their montane setting (minimal littoral area) and low nutrients, the group of lakes would be regarded as "pristine" in layman's terms. This group of lakes and some smaller lakes (Horse, Coldscaur, Bowers) by virtue of their size and their protected (park) status would be unlikely to undergo any changes in water quality from man's activity. However, there are a number of smaller lakes in the sub basin which are more succeptable to disturbance and likely to suffer from the influence of development. Some of these small lakes displayed signs of problems with regard to water quality either natural or man-mediated which have the potential of impairing human use of the water. Some limited sampling has been done at Hendrix Lake with regard to the discharge of domestic wastes from the village into the lake. North Barriere Lake has been sampled to determine water chemistry characteristics in the event that B.C.Hydro's Hat Creek Thermal Generating plant goes into service and causes some acidification of rain in the area. North Barriere Lake has very low dissolved ions and alkalinity (both parameters are less than 20 mg/L)(Table 1). Many other lakes and streams have been examined in the Thompson Basin (Newcombe, 1977) and potential acid rain problems are being addressed in another pre-planning submission by Don Holmes. Other lakes in the North Thompson which have been sampled include Paul Lake near Kamloops which is heavily utilized and an important sport fishing lake and the subject of a large number of fishery reports. Paul Lake is also one of a number of lakes being used as examples for development planning in trying to establish what loading of nutrients is acceptable in a lake basin before algal growth becomes objectionable. This water chemistry/nutrient/chlorophyll

sampling was carried out by Waste Management Branch (ex PCB) in order to assist the Thompson Nicola Regional District with regard to planning guidelines around lakes (T.N.R.D., 1979). Several other lakes have been sampled in this regard in the other sub basins.

Other lakes with site specific problems include Horse Lake (near 100 Mile House) where sampling was initiated by complaints regarding drinking water quality. Dutch Lake has also been the subject of some concern with regard to the effect of watershed development on water quality. The lake has a very long water residence time as no inlet or outlet streams exist and so its succeptability to eutrophication appears very high. McGillivary Lake is sampled to monitor a ski development project and as one of the lakes in the acid rain background reports.

B. South Thompson - Shuswap Sub Basin

This area is dominated by two large lakes, Adams and Shuswap. Adams Lake is notable for the lack of data which has been collected. Despite its size (132 $\rm km^2$, 475 metres deep) and importance, no water quality data of any kind have been collected.

Shuswap Lake on the other hand has been sampled at scattered intervals over the past 45 years by a number of agencies because of its importance as fishery habitat. It is also a highly favoured recreational area partially because of its excellent water quality. The first sampling was carried out by Clemens, et al. (1937). The longest sampling record has been compiled by the International Pacific Salmon Fisheries Commission. Their routine lake monitoring program has been directed toward salmon productivity and has consisted of temperature and conductivity profiles, some light penetration data, zooplankton biomass and (since 1974) identifications. Specific projects (ie., Ward, 1957) provided details on zooplankton populations. The Provincial Waste Management Branch has collected the vast majority of water chemistry information on the lake. Since 1971, a variety of parameters have been monitored at stations throughout the lake in an attempt to describe the basic limnology of the lake and to determine the sources of any contamination to the lake. Most recently the Environmental Protection Service of

Environment Canada has carried out sampling on the lake, particularly Salmon Arm (Kelso, 1979). Kelso (1979) as well as Truscott (1973) and Bryan (unpublished)have noted the significantly higher phytoplankton and nutrient levels in Tappen Arm than the rest of the lake.

From the collected data there appear to be identified a number of problems or potential problems. First is the supply of nutrients into Salmon Arm (Tappen Bay) and its effect on the water quality of that relatively isolated section of the lake. The nutrients originate from both the Salmon River, a highly agriculturalized valley, and the City of Salmon Arm, particularly the sewage treatment plant. The second concern with regard to Shuswap Lake is the general development pressure in the watershed. Large areas of land are being subdivided and developed and concern has been expressed that this activity would end in degradation of lake water quality. There are also concerns that forestry and agricultural activities could effect lake water quality. Concern for sewage contamination from houseboat discharges has also been noted.

Other lakes in the sub basin which have been examined include Sugar, Mabel and Mara Lakes (water quality summaries in Table 2). Sugar Lake serves as a control for other lakes in the area as it is relatively undisturbed. Mabel Lake is the next in the chain and it also is relatively undisturbed at present except for some farming activity at the inlet and the influences of discharges from the town of Lumby. There is some potential for large scale development if roads are upgraded and access improved.

Mara Lake is subject to change from two major sources. The first is the input from the Shuswap River of high concentrations of nutrients derived primarily from diffuse agricultural sources in farming areas around and downstream of Enderby. The second concern noted is from septic tank discharges near the lake in the Secamous area. As in Shuswap Lake, regulation of houseboat discharges is also a concern.

Nutrient discharges are also a concern for Three Valley Lake, but apparently because of a high water exchange rate the lake has not shown noticeable signs of deterioration. High water exchange also plays a large role in the water quality of Little Shuswap Lake, as the mean residence time appears to be about 0.03 years.

The other lake where sampling was carried out is at Tum Tum Lake (upper Adams River) as part of an acid rain monitoring program.

C. Lower Thompson Sub Basin

This sub basin has a smaller number of lakes than the other two basins but has the major centre of population and as such many of the lakes have very high utilization and are subject to the disadvantages of such utilization. These can be housing development or industrial development (mining). As well, some lakes are, in their natural state, very productive which limit their use to some degree.

The largest lake (by far) in the sub basin is Kamloops Lake. It has been the subject of a number of studies (Ward 1964, Kussat and Olan, 1975, Kelso and Derksen, 1976) the latter were of a Federal-Provincial Study which was undertaken to answer concerns about colour, foaming and fish tainting in the river. The limnology of the lake was superbly described (St. John, et al., 1976) during 1974 and 1975. The main concerns with regard to the lake are the discharges from the Weyernaeuser pulp mill and the city of Kamloops, however, because of the lake characteristics, the problems have been manifested in the Thompson River downstream of the lake.

Of the smaller lakes, several have received attention. Look Lake receives nutrients through its inlet stream from ranching operations upstream. It also has residential development which contributes nutrients to the lake. Fish and Wildlife Branch undertook a comprehensive study on the lake, and a report is in preparation.

Most of the other lakes have been sampled in response to three basic needs. The first is fisheries management Rawson, 1934, Johannes and Larkin, 1961, MacLeod, 1957) or by the Fish and Wildlife Branch in an attempt to improve winter kill lakes (i.e., Edith Lake).

The second need was to monitor the effect of Afton Mines smelter emissions on Take water chemistry, sediment chemistry and metal accumulations in fish tissues. These Takes (there are others in the Nicola Basin) include Six Mile, Pass, Duffy and Jocko.

The third group which are sampled are those monitored as baseline monitoring for possible acid rain effects. These lakes include Venables, Red and Phinetta lakes.

Water quality monitoring (for bacterial contamination) has been carried out by the South Central Health Unit at highly utilized beaches, ie., on Kamloops Lake, Barnes, Eleanor, Green, Loon and Paul lakes.

- Clemens, W.A., R.E. Forester, N.M. Carter, and D.S. Rawson. 1938. A contribution to the limnology of Shuswap Lake, British Columbia. Report of the Provincial Fisheries Dept., 1937:91-97.
- Johannes, R.E. and P.A. Larkin. 1961. Competition for food between redside shiners (Richardsonius baleatus) and rainbow trout (Salmo gardneri) in two B.C. lakes. J. Fish. Res. Bd. Can. 18:203-220.
- Kelso, B.W. 1979. Water Quality in the Salmon Arm Area of Shuswap Lake 1975. Summary memo in W.I.B. file ESD 0273896-19.
- Kelso, B.W. and G. Derksen. 1976. The standing crop of plankton in Kamloops Lake, B.C., from March, 1974, to April, 1975. Environmental Protection Service Report EPS -5PR-75-2. Vancouver. 59 pp.
- Kussat, R.H. and J.W. Olan. 1975. Summary Report on sources and effects of algal growth, colour, foaming and fish tainting in the Thompson River System. Federal Provincial Thompson River Task Force. 14 pp.
- MacLeod, J.C. 1957. The growth of rainbow trout in Pinatan Lake, B.C. U.B.C. Instit. Fisheries M.S. Report.
- Newcombe, C.P. 1977. Water quality near the proposed Hat Creek Thermal Generating Station. Potential Effects of Acid Precipitation on Streams and Lakes. B.C. Ministry of Recreation and Conservation. Fisheries Management Report No. 69. 41 pp.
- Rawson, D.S. 1934. Productivity studies in lakes of the Kamloops Region, B.C. Biological Board of Canada Bulletin XLII. 31 pp.
- St. John, B.C., E.C. Carmack, R.J. Daley, C.B.J. Gray, and C.H. Pharo. 1976. The Limnology of Kamloops Lake, B.C. Canda Centre for Inland Waters, Inland Waters Directorate Pacific and Yukon Region, Vancouver. 204 pp.
- Thompson-Nicola Regional District. M.S. 1978. Lake Study (Draft) Planning Dept. TNRD.
- Truscott, S.J. 1973. Water Quality of Shuswap Lake and Mara Lake. Pollution Control Branch Report, Vernon, B.C. 35 pp.
- Ward, F.J. 1957. Seasonal and annual changes in availability of the adult crustacean planteaters in Shuswap Lake. Internat. Pacific Salmon Fish. Comm. Progress Rept. 56 pp.
- Ward, F.J. 1964. Limnology of Kamloops Lake. International Pacific Salmon Fisheries Commission, Bulletin XVI. New Westminster, B.C.

IABLE I LAKE MORPHOMETRIC DATA - THOMPSON RIVER BASIN

NAME	ALT (meters)	SA (Kai²)	7 max (meters)	VOL. (decadeters)	DRAINAGE (km²) AREA	(YEARS) RET. TIME	(Km) AREA EPILIM	(DECAMETERS) VOL. EPILIM
GREEN	1,096	27.6	36	283,000			1.68	137,800
DUNN	451	3.7	84	204,860			0.36	25°, 27°,123
N. BARRIERE	634	5.14	54	181,373	486	0.588		
E. BARRIERE	640	10.4	92	1,311,242	205	15		
JOHNSON	1,057	4.02	59	70,032	64		0.59	25, 18,168
SUGAR	598	20.8	83	731,754	1,114	0.59	5.25	750,413
PINANTAN	853	'0.65	18.9	6,553	58	e		
LITTLE SHUSWAP	. 347	18.1	59'	260,633	15,974	0.029		
NISKONLTTH	513	37	37	6 9,076	128	8	0.66	25,666
MONTE	684	1.77	36	38,184	60	0.73		15.
BARNES	6 36 -	0.56	12.8	3,685	115		0.43	1,920
DUTCH	305	0.34	40.8	3,908			0.26	
AZURE	680	32.1	<150	3,343,658	1,088	1.98		2.1
MURTLE	1,128	73.3	< 60				204	201
CANIM	772	56.2	208	4,794,890		8.4	20° 4.4	20° 328,848
MURPHY	7 92	10.1	23		1			
HENORIX	1,067	0.9	9.4	4,247			0.58	²⁰ 620
HORSE	991	11.6	34	177,130	901	2.89		
RED	947	1.1	10	6,217			0.48	20° 5,365
SLEARWATER	756	57.8	186					
SALMON	936	1.2	12	7,148				

TABLE 2 WATER QUALITY SUMMARIES FOR THOMPSON DASIN LAKES

	SUGAR LAKE	PHINETTA LAKE	DUNN LAKE	DUTCH LAKE	COLDSCAUR LAKE	HENTORIX LAKE	HORSE LAKE	RED LAKE	NED ROBERTS LAKE	LITTLE SHUSWAP LAKE	TUM TUM LAKE	McGTLL IVRA: LAKE
. Alkalinity:LAB	26	98	25.6		60			301	208	31	12	11
Arsenic:Total		<0.005	<0.005		<0.005			0,005	0.006		<0.005	0.0075
Cadium:Total	<0.0005	<0.0005	<0.0005		<0.0005			<0.0005	<0.0005		<0.0005	<0.0005
Calcium:Total	9.5	28	7		16			36			5	3.3
Calcium:Dissolved				23					44	11	, 1	* *
Carbon:Total Organic	1.75			9		9		ļ		2.6		
Carbon:Total Inorganic	6.25		Ì	27						ε		
Chloride:Diss.	<0.5	1.0	· <0.5		<0.5	<0.5	c	22		ļ	<0.5	<0.5
Chlorophyll a	1.2						1.14		TAC			
Colour:True	5						7	,	18			
Copper:Total	<0.001	0,002	<0.001		<0.001			0.0025	0.002		0.0015	0.0035
1 Hardness	28.5			92					206	34		
Iron:Total	0.1	0.1	<0.1		0.1			0.3	0.23		0.2	0.15
Lead:Total	<0.001	0.0015			<0.001	ļ		0.0025	0.002		0.0015	0.002
Magnesium:Total	0.9	5.3	1.6		3.85			37	24		0.33	0.53
Magnesium:Dissolved				8.4						1.6		ļ ·
Manganese:Total	<0.02	<0.02	<0.02		<0.02			<0.02	0.05		0.03	<0.02
Hercury:Total	<0.05	<0.05	<0.05		<0.05			<0. 05			<0.05	<0.05
Molybedenum:Total	<0.0005	0.0009	0.0013		<0.0005			0.00195			<0.0005	<0.0005
Nickel:Total	<0.01	<0.01		<0.01	<0.01			<0.01			<0.01	<0.01
Nitrogen:NH _A	0.009	0.094	0.005		0.007	0.027	0.019	0.12			0.048	0.0185
Nitrogen:NO ₂ -NO ₂	0.09.	0.055	<0.02	0.03	<0.02	<0.02	<0.02	0.13	<0.02	0.03	0.175	<0.02
Nitrogen:Organic	0.07					0.22	0.42					
Ni trogen:Total	0.15			1.5		0.25	0.44		0.475	0.11		
Phosphorus: Diss. Inorganic	<0.003					0.005	<0.003		<0.003	<0.003		
Phosphorus:Total Diss.	<0.003			0.009		0.011	0.005	0.088	0.006			
Phosphorus:Total	0.005	0.019	0.008	0.030	0.008	0.02	0.016	0.131	0.009	0.0056	0.0075	G.0085
Potassium:Diss.	0.7	1.3		0.2	0.6						0.4	
Residue:T.Inorganics	33.3		17.				•					
Residue:T.Dissolved	42	125	33	155	74			340	266	49	26	41
Rasidue:I.Suspended						5		-			·	
Residue:Total Solids	44	127	35		81	58		360	269	55	34	44
Secchi Disc Depth feet	21.7					5	25				·	
Silica:Reactive	5.9	4.8	4.9		8.35	4,		17.6			4	4.6
Sodium:Dissolved	0.8	4.3		1.25	2			25			0.8	0.95
Specific Conductance	60	190	54	204	115	48.5	277	500	415	73	33	25
Sulphate	5	5.2	< 5		<5			<5	17.2		< 5	<5
Turbidity	0.88					1.5			1.5			
Zinc:Total		0:0075		<0.005	<0.005	-		<0.005	0.005		<0.005	0.0055
Trinc. rotar												

TABLE 2
WATER QUALITY SUMMARIES FOR THOMPSOM BASIN LAKES (Continued)

	MARA LAKE	JOCKO LAKE	MABEL LAKE	NORTH BARRICRE LANE	CANIM LAKE	THREE VALLEY LAKE	VENABLES LAKE	MILE SIX	DEMERS LAKE	McCGMMEL LAKE	DUEFY LAXE
Alkalinity:LAB	43	240	40	17.2	76	23	485	335	160	144	430
Arsenic:Total		<0.005		<0.005			0.006	<0.005		<0.005	<0.005
Cadnium:Total		<0.005	<0.0005	<0.0005			<0.005	<0.0005		<0.0005	<0.005
Calciumniotal	16		15	4,75	18.45	8.5	40			1	2
Calcium: Dissolved	15.8	57				8		31	60	34	29
Carbon:Total Organic	2.4		1.9		8.45	1.6			6.1	8	13.5
Carbon:Total Inorganic	11	'	9.6		16.8	4.			4 5	39	107
Chloride:Diss.	0.5		<0.5	<0.5	0.5	0.8	4.8		0.6		
Chromium:Total	<0.005			<0.005			0.009				
Colour:True	7.5	₹8°.5			17			gac	7.7	TAC 2	73C 7.3
Chlorophyll a	1.2		1.11			1.8					
Copper:Total		0.0005	<0.001	<0.001	DISSOLVED 0,0015		0.002	9.002		0.002	0.16
Hardness	48	270	44		71	27.5		315	177	133	575
Iron:Total	0.125	0.7	.:<0.ĭ	0.1	<0.1	10.5	0.2	0.1	0.15	0.1	0.1
Lead:Total .	<0.001	<0.001	<0.1	<0.001	0.0003		0.004	0.001	0.0005	0.001	<0.001
Magnesium:Total	2		1.7	0.53		1	216	<u> </u>			
Magnesium: Dissolved.		35.8			6.1			60	6.6	11.9	123
Manganese:Total	<0.02		40.02	<0.02	<0.01		0.055				
Marcury:Total		0.2	<0.05	<0.05			<0.05	0.09		0.05	0.05
Molybedenum:Total			0.0007	0.001	0.0053		0.003			1	
Nickel:Total	<0.01		<0.01	0.01			<0.01	1			
Nitrogen:NH,	0.0125	0.045	0.0115	0.005	0.018	0.011	0.07		0.57		0.17
Nitrogen:NO ₂ -NO ₃	0.09	0.02	0.0575	0.02	0.035	0.14	<0.02	<0.02	0.02	0.04	0.04
· Nitrogen:Organic	0.10	1.03	0.20		0.225	0.114		1	0.41		1.16
Nitrogen:Total	0.185	1.065	0.24		0.27	0.260		0.76	0.89	0.64	1.45
Phosphorus:Diss. Inorganic		0.0375	<0.003		<0.003			<0.003	0.003	<0.003	<0.003
Phosphorus:Total Diss.	0.0045	0.034	0.0035	*		0.003		0.008	0.006	0.007	0.009
Phosphorus:Total	0.0085	0.068	0.003	0.007	0.008	0.006	0.110	0.018	0.026	0.013	0.019
Potassium:Diss.	0.9		0.7	0.4	1.1	0.86					
Residue:T.Inorganics	53		49		82.8						1
Residue:T.Dissolved	68	455	62.5	16	101.4	41	1460	438	214	194	768
Residue:T.Suspended									9		1
Residue:Total Solids	68	459	63.5	18	107		1491	445	221	197	780
Secchi Disc Depth (feet)	15.5		15.4		1	14	ļ	14.7		14.7	16.4
Silica:Reactive	7.2		6.75	3.9	7.45	5.9	34]	
Sodium:Dissolved	1.5		1.2	0.8		1.35	60				1
Specific Conductance	108	6 58	94	34	152	62	1610	633	347	299	984
Sulphate	7.5	121	6.35	<5	<5	7	621	£ŋ	23.5	13.4	183
Turbidity	1.37	1.7	0.65		0.48	2.2		4.4	1.55	0.8	1.
Zinc:Total	0.009	<0.005		.<0.005	<0.005		0.008	∢0.205		<0.005	0.005
ь́н	7.67	8.2	7.7	7.7	7.9	7.35	8.5	8.7	7.7	8.1	8.5

TABLE 2
WATER QUALITY SUMMARIES FOR THOMPSON BASIN LAKES (Continued)

	MAHOOD LAKE	LOON LAKE	PAUL LAKE
Alkalinity:LAB	55	, 295	156
Calcium:Dissolved	14	23	37
Carbon: Total Organic	5	5.3	7.7
Carbon:Total Inorganic	12.5	72	39
Chloride:Diss.		2.3	1.2
Chlorophyll a		5.2	1.6
Colour:T.A.C.;True	TAC 10.5 ·		15
Copper:Total	BIS815		
Hardness	54	214	167
Iron:Total	DISS.		
Lead:Total	<0.001		
Magnesium:Dissolved	4.25	37	17.6
Molybedenum:Total	0.004		
Nitrogen:NH ₄		0.032	0.016
Nitrogen:NO ₂ -NO ₃	<0.02	0.10	<0.02
Nitrogen: Organic	-	0.5	
Nitrogen:Total	0.145	0.63	0.34
Phosphorus:Diss. Inorganic	<0.003	0.041	0.003
Phosphorus:Total Diss.		0.050	
Phosphorus:Total	0.006	0.058	0.0085
Potassium:Diss.		6.6	2.5
Residue:T. Dissolved	75	325	215
Residue:Total Solids	77	328	217
Secchi Disc. Depth feet			16
Silica:Reactive			9.3
Sodium:Dissolved		37.5	7.5
Specific Conductance	113	517	340
Sulphate	<5	<5	26.4
Turbidity		0.78	0.58
Hq	7.8	8.6	8.3

Part Three

NON-POINT SOURCE WATER QUALITY CONCERNS
IN THE THOMPSON-SHUSWAP BASIN

Background report for the Thompson-Shuswap Pre-planning Study

Prepared by J.H. Wiens, Ph.D., P.Ag.

Water Investigations Branch
December, 1979

TABLE OF CONTENTS - PART III

	Page
TABLE OF CONTENTS	. ii
LIST OF TABLES	. iii
1. INTRODUCTION	. 1
2. EROSION AND SEDIMENTATION - FORESTLAND	. 2
3. AGRICULTURAL ACTIVITIES	. 3
4. ON-SITE SEWAGE DISPOSAL	. 1.0
5. URBAN STORMWATER	. 13
6. MISCELLANEOUS NON-POINT SOURCES	, 18
7. RECOMMENDATIONS	. 19
7.1 Erosion and Sedimentation - Forestland	
7.3 Overwintering of Cattle and Other High Livestock concentrations	
7.5 On-site Sewage Disposal	
8. REFERENCES	. 23
APPENDIX I - Letter from Mr. H. Kirk, Chief Public Health Inspector, North Okanagan Health Unit	. 25

LIST OF TABLES

Table		Page
1.	Cattle feedlots in the Thompson-Shuswap Basin	4
2.	Estimated nutrients from livestock and poultry manures (kg/yr)	7
3.	Estimated nutrients from commercial fertilizers used in the Thompson-Shuswap Basin (kg/yr)	9
4.	Pollutant characteristics of urban runoff	13
5.	EPS storm sewer sampling stations (Kamloops)	15
6.	PCB storm sewer sampling stations (Kamloops)	16

1. INTRODUCTION

Tributary stream inflows, direct waste discharges (e.g. sewage treatment plants) precipitation, natural groundwater inflows, and diffuse leachate and runoff from various land use activities in a watershed all affect quality of receiving waters. Lake, stream, and river monitoring provides a composite measure of the impacts of all of these sources. To direct effective management at causes of degraded water quality, information on sources of impaired quality inflows is needed.

This report will deal with non-point or diffuse sources of water enriching nutrients or other potential contaminants. Erosion and sedimentation, agricultural activities, on-site land disposal of sewage, urban storm water runoff, and several miscellaneous sources are topics discussed.

Non-point sources, by their nature, are difficult to characterize or even detect. Data is therefore sparse. This report will identify some concerns which have been raised, indicate data which is available, present limited data on potential nutrient loadings from agricultural sources, and make recommendations for consideration by the working committee.

2. EROSION AND SEDIMENTATION - FORESTLAND

Forest harvesting practices have been blamed in the press, in briefs to government, and in questionnaire responses, for various problems including unsightly clearcut areas on mountain slopes, logging debris in streams and lakes, low summer stream flows, and sediment in spawning beds and water (high turbidity and residue). Sediment is a concern from both a water quality and a fish habitat point of view. Eroding areas whether forested, agricultural or other, should therefore be termed non-point sources.

Mass movement, sheet, rill or gully erosion processes are natural but may be accelerated by man's activities. Natural and accelerated rates are affected by factors such as steepness of slope, nature of soil and geologic materials etc. A particular situation of very high sediment loads in August 1976 (Kingfisher Creek - tributary to the Shuswap River) was alleged to be due to forest harvesting. On investigation, slumps were shown to have occurred primarily in undisturbed heavy timbered areas. This same creek continued to supply the major sediment load to the Shuswap River below Mabel Lake even in 1977 (Nordin, 1976). Undoubtedly forest operations have been the cause of high sediment loads in other cases.

The nature and extent of erosion and sedimentation in forested areas in the Thompson-Shuswap Basin is not well documented (Mitchell, 1979). Forest Service, Fish and Wildlife Management Branch, timber company, and various other agency personnel and local residents likely have knowledge of general high erosion rates in some areas, and times and locations of specific events. Agency files likely also contain reports.

Recommendation 1 is presented.

3. AGRICULTURAL ACTIVITIES

Concentrations of agricultural activities occur in various river valleys of the Thompson-Shuswap Basin. Extensive grazing occurs on rangelands of benches and plateaus etc. often further from river and stream valleys. Most prominent river valley concentrations include those of the Shuswap River (including Fertune Creek), Salmon River, White Creek, South Thompson River, North Thompson (various reaches), lower Barriere River, Louis Creek, Thompson River between Kamloops and Ashcroft, Deadman Creek, and the Bonaparte River. Primary intensive activities include overwintering and feeding of cattle, feedlot feeding of cattle, poultry and egg production, swine production, irrigated alfalfa and other hay production, sweet and silage corn production, small grain, and other miscellaneous crop production.

Feedlots, particularly proposed feedlots, are a public concern in relation to water quality. The Inland Feeders proposed feedlot near the Lafarge cement plant in E. Kamloops was strongly opposed by some members of the public and press, and by the Thompson-Nicola Regional District to the point of court proceedings. In the case of that proposal, site inspections by a soils specialist, arrangements for leachate movement monitoring, and arrangements for runoff collection and land spreading of manure on cropland had all been made. The project has now been set aside by the proponents. A proposed 100,000 head feedlot at Wahlachin on the Thompson River has recently generated controversy. Details of this proposal are not available. Water quality is not the only concern in the case of feedlot proposals but it certainly is a major concern.

Feedlots presently in the areas are outlined in Table 1. It can be seen that proposed feedlot capacity far exceeds present capacity. A trend to increased beef production and finishing in B.C. is expected. Confrontations occurring on proposals for new feedlots must be minimized and investiations should be undertaken. Future approval or rejection decisions should be made with greater direct knowledge of impacts.

It is not known whether existing feedlots are a source of nutrients to waterways. At present this does not appear to be a concern but a potential does exist.

Recommendations 2a, 2b and 2c are made relative to feedlots.

Overwintering and concentrated area feeding adjacent to streams and rivers can be the cause of various problems. Nutrient and B.O.D. loading to streams by washoff of accumulated winter manure or direct cattle entry to streams are perhaps the greatest concerns. However, careless disposal of pesticides containers, erosion and sedimentation etc. have also been reported. Louis and Campbell Creeks are particularly prominent examples of such activities in the Kamloops area. However, complaints have been registered through the Agricultural Environmental Control (A.E.C.) office for activities near Knouff and Heffley Creeks as well. Convenience of stock watering by direct access to streams, and required ice removal for watering in feeding areas, often dictate locations and concentrations of cattle.

TABLE 1: CATTLE FEEDLOTS IN THE THOMPSON-SHUSWAP BASIN¹

Name	Location	Maximum head/yr or
Name		mated capacity (approx.) ²
Present:		
Ashcroft Estates	Ashcroft	1000
Prairie Ranch	Cache Creek	800
Junction Feedlots	Kamloops 1R#1	2500
Purity Feedlot	Kamloops (N. Thom. R., West s	side) 800
Wayne Everett Feedlot	Monte Creek	600
Harper Ranch	Kamloops (near Lafarge Plant)	3000
		8700
Proposed:		
Inland Feeders	Kamloops (near Lafarge Plant)	5000
	Walhachin	100,000

¹Information largely from Mr. J. Ryder, District Agriculturist, B.C. Ministry of Agriculture, Kamloops.

²Mr. J. Ryder emphasized that several of the lots are used for only a portion of the year.

Only limited documentation of the magnitude of water quality impacts of overwintering or feeding near streams is available (e.g. Tautz, 1979). Local Ministry of Agriculture, Environment, and Health personnel are aware of other problem situations. Improvements in some of these situations could be prescribed based on experience and good judgement. The A.E.C. program has been set up and has dealt with some situations as complaints are received. Further authority beyond this voluntary program lies with the Pollution Control Act. However, diffuse sources and particularly traditional agricultural practices present a difficulty for enforcement.

Recommendations 3a, 3b, 3c and 3d are offered.

Other alleged agricultural impacts on water quality include flooding of feeding, grazing, and cropped areas during spring high water and resultant washoff of manure and sediment (Shuswap River between Enderby and Mara Lake), surface runoff of manure and sediment from dairy farm barnyards and cultivated fields immediately adjacent to streams (Salmon River, White Creek), and possible runoff from miscellaneous hobby farms and swine operations (Tappen Creek, middle Shuswap River). In addition to observed direct stream entry of cattle and washing of manure into creeks, increased periphytic algae growth has been observed (McDonald, 1979). Other evidence includes reports on water quality monitoring on the Salmon and Shuswap Rivers (Bryan, 1976; Nordin, 1978). Circumstantial evidence is provided in a water quality report by the Environmental Protection Service (Ferguson, 1978). In many cases problem situations and desirable management improvements are known to local Ministry of Agriculture, Environment, and Health personnel.

No documentation is available on commercial fertilizer nutrient use in the Thompson-Shuswap Basin and certainly not on inflows to receiving waters. The same is the case for animal manures. In an attempt to assess nutrient use and production, Census of Agriculture statistics were compiled and estimates made for livestock and fertilizer nutrient loading to the land by sub-basin. This information is presented in Tables 2 and 3. By far the largest amounts

of nutrients in livestock manures are produced in the S. Thompson and Thompson sub-basins. Cattle account for the largest amounts in all sub-basins, but amounts due to herses in all sub-basins, sheep and turkeys in the N. Thompson, and pigs and layers in the S. Thompson sub-basins should be recognized. Highest use of nutrients from commercial fertilizers is in the S. Thompson sub-basin (Table 3). This is likely due to the intensity of farming operations in the Shuswap and Salmon River valleys where both croplands and pastures are fertilized.

It must be emphasized that data presented in Tables 2 and 3 are only loadings to land. No estimates of loadings to receiving waters have been made. These would be very small fractions of loadings to land. Attenuation in nutrient pathways from land to water would have to be accounted for in making inferences on loadings to water.

Recommendations 4a and 4b are offered.

TABLE 2: ESTIMATED NUTRIENTS FROM LIVESTOCK AND POULTRY MANURES BY SUB-BASINS (KG/YR.)

Sub-basins	ż	Thompson	S. Thompson	nosdm	Thompson	noso
Livestock Type	Nitrogen	Phosphorus	Nitrogen	Phosphorus	Nitrogen	Phosphorus
Cattle	878,313	186,246	1,964,666	413,471	2,055,283	446,255
Pigs	5,259	1,663	22,224	7,409	5,566	1,855
Sheep	35,884	5,263	13,109	1,922	5,577	817
Horses	71,629	12,204	103,850	17,694	141,113	24,041
Layer Hens	2,104	818	99,856	38,834	8,698	3,380
Broilers	5,207	1,167	9,940	2,209	1,286	288
Turkeys	127,333	28,540	2,024	454	269	09
Geese	1,406	316	2,148	482	449	101
Ducks	565	1,068	1,095	245	255	7.2
· TOTAL	1,127,700	237,285	2,218,912	482,720	2,218,496	476,854
Percent of Basin	20.3	19.8	39.8	40.3	39.8	39.8

Notes:

- printouts of data by census sub-divisions courtesy of Mr. Hugh Bryce, Statistician, B.C. Ministry 1. Statistical data on livestock numbers extracted from 1976 Canada Census of Agriculture, computer of Agriculture.
- 2. Census subdivision data on livestock numbers aggregated for sub-basins statistics as follows

Subdivision B(100%), D(56%) Thompson Subdivision A, IR(100%) Subdivision C(100%) Subdivision E(100%) Thompson Subdivision A(100%) Subdivision A(10%) N. Thompson Sub-basins Columbia-Shuswap Thompson-Nicola North Okanagan Regional District Cariboo

TABLE 2 (Continued)

3. Nutrient production coefficients (kg/day/1000 kg liveweight) used were as follows:

nutrient		
Animal	Total Nitrogen	Total Phosphorus
Dairy cow	0.41	0.073
Beef feeder	0.34	0.11
Swine feeder	0.45	0.15
Sheep feeder	0.45	990.0
Layer hen	0.72	0.28
Broiler	1.16	0.26
Horse	0.27	0.046

4. Actual cattle numbers and liveweight used for various classes of livestock are available on request.

TABLE 3: ESTIMATED NUTRIENTS FROM COMMERCIAL FERTILIZERS USED IN THE THOMPSON-SHUSWAP BASIN (KG/YR.)

Sub-basin	N T	Thompson	S. Th	S. Thompson	Thom	Thompson
rertilized Land Type	Nitrogen	Phosphorus	Nitrogen	Phosphorus	Nitrogen	Phosphorus
Field crops including hay	19,424	34,805	130,259	153,398	19,124	39,629
Vegetables	211	110	2,855	1,305	1,007	471
Tree and Small Fruits	l i	1	931	728	92	34
Pasture	4,200	1,838	35,336	22,475	5,768	2,524
TOTAL	43,835	36,753	169,381	188,905	25,975	42,658
Percent of Basin	18.3	13.7	70.8	70.4	10.9	15.9

Notes:

- 1. Basic data on areas of fertilized land types by Regional District taken from the 1971 Census of Agriculture 2. Regional District fertilized land type areas were pro-rated for census subdivisions using 1976 proportions of Regional District subdivision areas in various crop types.
- 3. Census subdivision data aggregated for sub-basin statistics as follows:

				100%), E (56%)
Thompson	1	t t	1	Subdivision B (100%), E (56%)
S. Thompson	i i	Subdivision C (100%)	Subdivision A, IR (100%)	Subdivision E (100%)
N. Thompson	Subdivision A (10%)	1	1 1	Subdivision A (100%)
Sub-basın Regional District	Cariboo	Columbia-Shuswap	North Okanagan	Thompson-Nicola

- 4. Fertilizer application rates taken from: "Fertilizier Guide for Boundry, Okanagan and Kamloops" and "Fertilizer Guide for Kootenay Region and Southeastern B.C." both by B.C. Ministry of Agriculture.
- Actual areas of fertilized land types, proportions by census subdivision, and application rates are available on request. 5.

4. ON-SITE SEWAGE DISPOSAL

Septic tanks with associated drainfield areas (ST/DF) are the most common method of on-site domestic sewage disposal in rural and low density residential areas. Modifications of this conventional system (e.g. raised beds, leaching beds) exist and are used to a limited extent in B.C. Both conventional and modified systems are highly effective in sewage renovation given suitable construction, and soil, climatic, and other site conditions. Under poor conditions ST/DF systems can contribute to ground or surface water quality deterioration.

In the Thompson-Shuswap Basin area ST/DF systems are widely used. In Kamloops alone, a minimum of 22 percent of the population (i.e., Heffley Creek, Rayleigh, Westsyde, Dallas, Barnhartvale) is serviced by such systems (Stanley Associates Engineering Ltd. 1979). Many smaller centres such as Savona, Cache Creek, Grindrod, Sicamous etc. are entirely serviced by such systems.

The possibility of impact on water quality of several of these established centres (e.g. Savona) has been expressed, as has a concern for other low density areas (Shuswap River Valley, various Shuswap Lake shoreline areas). In a public opinion survey of foreshore use of Shuswap Lake, permanent residents ranked septic tank effluent entering the lake as the problem with highest severity rating (Regional District of Columbia-Shuswap, 1977). Greatest concern has been expressed for large new subdivisions on or near Shuswap Lake (e.g. Cedar Heights Estates, Shuswap Lake Estates, Anglemont). Thousands of lots are involved. Concern is for both receiving water quality due to sewage leachates, and land based problems such as sewage surfacing and instability of sloping land.

The Blind Bay-Sorento area where subdivision activity is high has received particular mention (Kirk, 1979a; Regional District of Columbia-Shuswap, 1977). A report describing soil characteristics and suitability for various urban related uses (Luttmerding, 1978) has been prepared.

Although indicating generally suitable soil conditions for sewage renovation in much of the area, concern is expressed for increased erosion, instability, and sewage problems with increased road building, vegetation removal and alteration to water courses.

The Ministry of Health (both North Okanagan and South Central Health Units) have emphasized that ST/DF systems are generally effective treatment systems and are having negligible effects on receiving water quality in the Thompson Shuswap Basin, especially when compared to other sources. This includes the Shuswap Lake system. However, the desirability of further study of several areas in the Shuswap Lakes area is allowed (Kirk, 1979 b).

Evidence for actual sewage entry from ST/DF to receiving waters is limited. Likewise, deterioration of receiving water or aquatic habitat due to leachate has not been documented. Several uses of dye tracers in ongoing inspections in the Kamloops area have confirmed drainfield sources of ditch-bank secpage (Keenan, 1979). A study of ST/DF systems has identified a number of malfunctioning systems in the Barnhartvale Community (South Central Health Unit, 1978). An estimate of nitrogen loading to the North and South Thompson Rivers from septic tank sources in the Kamloops area gave values of 20,566 kg/yr. and 11,805 kg/yr., or 1.72 and 2.86 percent of present river nitrogen, respectively. Phosphorus loading was considered to be very small (Stanley Assoc. Engineering Ltd. 1979). Water quality monitoring and observed trends (e.g. Nordin, 1978) were complicated by multiple stream-side land uses in the Shuswap River Basin. Observations of increased periphytic algae growth below suspected drainfield leachate entry (McDonald, 1979) is similarly circumstantial and complicated by mixed land uses.

Methodologies for distinguishing between diffuse sources, in particular ST/DF leachate and agricultural runoff are not well developed and not available for routine use and interpretation. Some evidence indicates ratios of fecal coliform to fecal streptococci may distinguish between human and animal sources (Geldreich and Kenner, 1969) and the method has been discussed and used by Hall et al (1974). Other ratios of indicator organisms

or chemicals may be used as well. If sources must be distinguished to aid decisions on improvements, one or more particular problem areas may need to be chosen for a pilot investigation.

Recommendations 5a and 5b relate to on-site sewage disposal problems.

5. URBAN STORMWATER

From studies in North American cities, primarily over the last ten years, it has become evident that urban stormwater is not as pure as was once thought. Many potential pollutants can be constituents of urban runoff. Table 4 presents a typical list. It will be recognized that air pollution fallout, automobile fuels and oils, road ice control chemicals, animal feces, as well as fertilizers and pesticides used on lawns, gardens, and parks can all be sources of pollutants.

TABLE 4 POLLUTANT CHARACTERISTICS OF URBAN RUNOFF

- 1. Colour causing materials
- 2. Turbidity
- 3. Foam causing materials
- 4. Floating materials
- 5. Street litter debris
- 6. Material from street or pavement surface
- 7. Debris from vacant lands
- 8. Ice control chemicals
- 9. Pest control chemicals
- 10. Fertilizers
- 11. Droppings from animals or birds
- 12. Lawn or garden litter
- 13. Household or commercial refuse
- 14. Air-deposited materials from precipitation
- 15. Twigs and leaves
- 16. Paper
- 17. Plastic materials
- 18. Tire and vehicular exhaust residue
- 19. Heavy metals
- 20. Hazardous material spills

Urban areas typically have large proportions of hard surfaces. Rainfall and snowmelt quickly washes accumulated constituents into sewers and other stormwater channels. Pollutant concentrations vary greatly with time, but typically, higher pollutant concentrations may be expected in early stages of a storm (first flush).

As with other B.C. areas, data on stormwater quality in the Thompson-Shuswap area is sparse. Three sources of data have been identified.

An Environmental Protection Service (EPS) study (Sidhu, 1975) in Kamloops in 1973 provided data on eleven quality parameters including dissolved and extracted heavy metals, BOD₅, COD, solids, pH, temperature and toxicity to salmonids. Ten storm sewers and 30 grab samples were involved. Sampling was done between July 31 and November 6. At that time Kamloops had about 45 storm sewer outfalls. Reported concentrations of BOD₅ are similar to those of other North American cities; of non-filterable residue they are lower; of total residue they are somewhat higher; and of COD they are similar (see Ferguson, 1979). Four of thirty samples exhibited acute toxicity to juvenile coho salmonids. No estimates of loadings were made. Table 5, taken from the EPS report, describes sampling locations.

The Pollution Control Branch (P.C.B.) has sampled storm drains at five locations at various times in the last three years. In addition, two creeks serving as stormwater receiving channels (Guerin Cr. and Patterson Cr.) have been sampled for a number of years (Table 6). Parameters for which analysis have been done have varied with date and location but have included measurements of oil and grease, residue, major cations and anions, nutrients, trace metals, and coliforms. Cursory examination of data in relation to the EPS data shows generally higher residue values. When compared to reported data for other North American cities (Ferguson, 1979) residue and nutrient values appear to be as high or higher than other cities. No estimates of loadings with the P.C.B. data have been attempted. Many of the stormwater samples were taken in the January to March period. Therefore, whereas the EPS data give an indication of summer and fall conditions, the P.C.B. data provide information on winter and spring runoff conditions.

TABLE 5: EPS STORN SEWER SAMPLING STATIONS (KAMLOOPS)

Sample Station	Description*
2	Beside trailer court in Mission Flats Road. Discharge is primarily from residential area. Continuously flowing.
6	Same general location as Hasler's Ready Mix. Discharge is primarily runoff from residential and possibly includes industrial yeard drainage. Usually flowing.
	Foot of MacKintosh Street. Discharge primarily runoff from residential areas. Occasionally flowing.
14	Foot of 8th Street at Thompson River. Discharge is primarily runoff from residential areas. Occasionally flowing.
. 16	Same general location as the veterinary clinic. Discharge primarily runoff from residential areas. Occasionally flowing.
18	Foot of 13th Avenue beside water intake plant. Discharge and runoff from both residential and commercial areas Continuously flowing.
23	West of new bridge. Discharge primarily runoff from residential areas. Continuously flowing.
29	Foot of Kenora Street. Discharge is primarily runoff from residential area. Occasionally flowing.
38	Foot of Sidney Street. Discharge is runoff from residential and commercial areas. Usually flowing.
45	Foot of Kingston Street. Discharge is primarily runoff from residential areas and includes some runoff from commercial areas. Occasionally flowing.

Note: Due to variability in weather conditions which affected flows of storm sewers, flow volumes were not estimated.

^{*} Information from personal communication (EPS) with City of Kamloops, Engineering Department.

TABLE 6: PCB STORM SEWER SAMPLING STATIONS (KAMLOOPS)

Sampling Station (EQUIS #)	Description
XE 0602201	Storn drain on West Lake Road
XE 0602301	8th Street to South Thompson
XE 0601901	3rd Avenue East at River
XE 0601601	Sydney Avenue storm drain
XE 0601501	Tranquille Road storm drain
0600056	Guerin Creek at Dufferin
0600055	Peterson Creek at mouth
0600168	Peterson Creek below Jocko Lake

A further study providing stormwater quality data for the Thompson-Shuswap area, was done by EPS in 1977 (Ferguson, 1978). Two storm drains to Tappen Bay of Shuswap Lake from Salmon Arm were sampled along with other streamflows. Sampling was done over a three day period in August. Both storm drains showed high concentrations of total phosphate, nitrate, and ammonia relative to other streamflows.

In summary little information is available on urban stormwater flow and quality in the Thompson-Shuswap Baśin. No estimates of loading or relative significance of stormflows have been made. The dry climatic regime of much of this area relative to coastal areas, and the runoff regime must be recognized when considering the impact of stormwater flows on receiving waters.

Recommendation 6a is presented for consideration.

6. MISCELLANEOUS NON-POINT SOURCES

The significance of precipitation and dry atmospheric fallout (e.g., dustfall) directly to water, as sources of nutrients and contaminants is unknown. It must be minor, however, when considering receiving water to receiving land areas, and the magnitudes of loadings of other sources. In some specific locations or lakes this may not be true. Review of dustfall and precipitation chemistry data may allow some inferences. Nearest CANSAP (Canadian Network for Sampling Precipitation) stations are in Kelowna and Prince George.

Possible acidification effects on water in the basin due to emissions from the proposed Hat Creek thermal power plant will be dealt with in another report.

Flushing of sewage or dumping of storage tanks by houseboat and cruisers has been raised as a concern by the public (Regional District of Columbia-Shuswap, 1977) as well as other management agencies (Thompson-Okanagan Regional Resource Management Committee, 1976). On recommendations of the Ministries of Health and Environment, the Environment and Land Use Technical Committee (ELUTC) recommended further public information efforts but no further regulatory actions. It has been emphasized that possible problems are confined to several local areas (e.g., Blind Bay, Mud Bay-Seymour Arm, marinas and launching area) where shelter is sought during rough water on the lake (Kirk, 1979 a).

Irrigation return-flow water quality (primarily salinity) and impact on receiving water has not been as significant a concern in B.C. as in western states of the U.S. It has not been identified as a problem within the Thompson-Shuswap Basin and no complaints have been recorded. Areas of saline, or saline and alkali soils do exist in the basin and if efforts are made to reclaim by leaching, local deteriorated water quality problems are a possiblity.

7. RECOMMENDATIONS

7.1 Erosion and Sedimentation - Forestland

1. A basin-wide review should be made of the known recent (e.g., 10-15 yr) occurrences of high stream sediment loads and high erosion rates (particularly mass movements) on forested lands in the Thompson-Shuswap Basin. Efforts should be made to relate these to conditions of geology, soils, precipitation patterns or storm events and forestry operations. Methods of review might include: a) a review of Forest Service files for Engineering, District Ranger, or special investigation reports of occurrences of slides or other heavy crosion; b) a review of Fish and Wildlife Branch or other Ministry of Environment files for reports of occurrences, special investigations, or public complaints about crosion and possible fisheries impacts; and c) meeting(s) of regional representatives of the Forest Service, Fish and Wildlife Branch, Water Management Branch, Fisheries and Oceans Canada etc. to discuss and record observed occurrences which are known to personnel of these agencies but have not been documented.

Patterns of occurrence should influence future forest operations planning and perhaps result in further pilot or problem areas investigations of spawning channel impacts, and effective management alternatives.

7.2 Beef Cattle Feedlots

Feedlot and other intensive housing/feeding of beef cattle is being promoted and is likely to increase in the Thompson-Shuswap Basin. Serious concerns for receiving water quality are being expressed by resource management agencies and the public, yet no systematic effort is being made to research the literature or investigate local conditions to allow informed decisions in the future. Therefore:

2a. Pending decisions on feedlots should be made with maximum possible precautions for water quality (e.g., maximum available distances to watercourses,

interception and diversion of clean drainage waters away from feedlots, collection and treatment of feedlot surface runoff, good manure management) and provision for ground and surface water monitoring.

- 2b. Extensive studies already done (primarily in the U.S.) should be reviewed and the information presented to and discussed with regulatory and resource management agencies. Ministry of Agriculture and Environment personnel should cooperate in this review.
- 2c. A monitoring program of ground and surface water below one or more existing feedlots should be undertaken to allow assessment of processes, pathways, and effects under local climatic conditions.
- 7.3 Overwintering of Cattle and Other High Livestock Concentrations
- 3a. Continued and increased efforts should be made by the Ministries of Agriculture and Environment to increase the awareness of producers of the impact of the cattle industry on water quality.
- 3b. Problem situations known to Ministry of Agriculture, Environment or Health personnel should be reported to the Agricultural Environmental Control Program immediately if this has not already been done. This would allow procedures under AEC to be set in motion for possible early improvement actions.
- 3c. Recognizing that both management and economic issues are involved, and most effective improvements would often involve considerable expense (e.g., fencing buffer strips; providing alternative stock watering facilities, purchasing stream buffer strip easements), selected problem areas should be chosen and alternative long term improvement schemes designed and costs estimated. This should involve personnel from the Ministry of Agriculture, Environment and perhaps other agencies (e.g., local government). As part of the design, technical alternatives and regulatory and funding options should be considered. A pilot project to carry out actual improvements should be undertaken as soon as possible.

3d. Further monitoring projects or extensions of those already done should be undertaken on some priority basis. These would be designed to assess nutrient loadings and other water quality impacts of livestock operations. Ideally they would be linked to actual improvements made as suggested in 3c above, and allow assessment of effectiveness.

7.4 Other Agricultural Effects on Water Quality

Agricultural impacts on water quality in several valleys (Salmon, Shuswap Rivers) have been noted and monitoring has been done.

- 4a. Further site specific monitoring, preferably tied particularly to storm events, or more generally to runoff amon-runoff periods might be undertaken. This would give evidence for processes of movement of potential pollutants to water courses. Further monitoring and flow measurement could give better estimates of loading from agriculture to receiving water and information on the significance of agriculture relative to other sources.
- 4b. A systematic reach by reach review of land use of priority streams (e.g., Salmon and/or Shuswap Rivers) might be considered as an initial step in designing improvement schemes to reduce potential pollutant runoff from agricultural land.

7.5 On-site Sewage Disposal

5a. Investigations should be designed in several priority areas (e.g., Savona, Sarento-Blind Bay, Mara Lake, Shuswap River - see also Appendix I) to determine whether effluent leachates are of significance and affecting surface or ground water quality. Results from such studies and further associated studies of soil and geologic conditions should aid local governments in development planning and Ministry of Health officials in regulation of on-site sewage disposal.

5b. In areas where agriculture and on-site sewage disposal are both believed to be contributing to deteriorated water quality (e.g., Shuswap River and Fortune Creek) some effort to identify sources may be desired. A small pilot project may investigate several methods for subsequent application to a larger study area.

7.6 Stormwater

6a. A detailed review of available data, particularly with reference to sampling dates and times should be made. This should give direction to design of a further study to estimate loadings of selected potential pollutants from stormflow in urban centres of the Thompson-Shuswap Basin. Particular recognition should be given to the climatic regime and receiving water flows. Decisions on further investigations of stormwater management could then be made.

8. REFERENCES

- British Columbia Ministry of Agriculture 1979. British Columbia 1978
 Agriculture Statistics Yearbook. Province of B.C. Ministry of Agriculture.
- Bryan, J.E. 1976. Water quality of the Salmon River (1974-75) and some aspects of agriculture on the water quality. Pollution Control Branch, Mimeo Report.
- Ferguson, K.D. 1978. Nutrient impacts to Salmon Arm of Shuswap Lake. EPS Mimeo Rpt.
- Ferguson, K.D. 1979. Stormwater discharges Fraser River/Estuary Report. 3rd Working Draft. Nov. 1979.
- Geldreich, E.E. and B.A. Kenner. 1969. Concepts of fecal streptococii in stream pollution. J. WPCF 41:336-352.
- Hall, K.J., F.A. Koch, and J. Yesaki. 1974. Further investigations into water quality conditions in the Lower Fraser River system. Tech. Rpt. #4, Westwater Research Centre, U.B.C.
- Keenan, Arthur. 1979. Personnal communication.
- Kirk, Harry. 1979 a. Personnal communication.
- Kirk, Harry, 1979 b. See Appendix I.
- Luttmerding, H.A. 1978. Soil characteristics in relation to settlement planning of the Blind Bay Sorento area. B.C. Ministry of Environment, Resource Analysis Br.
- McDonald, Sandy. 1979. Personnal communication.
- Mitchell, Robert. 1979. Personnal communication.
- Nordin, R.N. 1978. Water quality in the Shuswap River between Mabel and Mara Lakes, 1977. B.C. Ministry of Environment, Water Investigations Br., Dec. 1978.
- Regional District of Columbia-Shuswap. 1977. Public opinion on foreshore uses of Shuswap Lake. Planning Dept., Salmon Arm, B.C.
- Ryder, J.C. 1979. Personnal communication.
- Sidhu, S.T. 1975. A preliminary study of wastewater characteristics of Kamloops stormwater discharge. Manuscript Report, EPS 75-3, Oct. 1975.
- South Central Health Unit. 1978. Report on 1978 sewage disposal survey:
 Barnhartvale.

- Stanley Associates Engineering Ltd. 1979. Wastewater Management Study Kamloops, Stanley Assoc. Eng. Ltd. (Vol. 1, Sec. 3 and Vol. 2, Tech. Memo. No. 3.).
- Statistics Canada. 1971. Census of Agriculture. B.C. Statistics Canada, Ottawa.
- Tautz, A.L. 1979. Personnal communication re: a report on nutrient loadings to Loon Lake, in preparation.
- Thompson-Okanagan Regional Resource Management Committee (Mr. J.C. Ryder). 1976. Letter to Mr. Dennis O'Gorman, Secretary, ELUC. re: Water Quality Shuswap Lake System.

APPENDIX I

Province of British Columbia

Ministry of Health

PUBLIC HEALTH PROGRAMS

Director North Okanagan Health Unit 3300 - 37th Avenue Vernon British Columbia V1T 2Y5 Phone: 545-0651

HEALTH CENTRES:

Box 364, Armstrong, B.C. VOE 1B0 Box 400, Salmon Arm, B.C. VOE 2TO Box 610, Enderby, B.C. VOE 1V0 Box 269, Revelstoke, B.C. VOE 2S0 Box 520, Lumby, B.C. VOE 2G0

November 27, 1979

Mr. J. H. Wiens, Ph.D., F.Ag. 406 Gook Street Victoria, B. C. V8H 4S5

Dear Sir:

Ro: Proposed Shuswap Lake Study

As promised at our brief meeting in Kamloops, B. C., November 15, 1979, the following comments or opinions are the philosophy of the North Okanagan Health Unit as related to the proposed study of Shuswap Lake.

It would seem from your initial comments that the prime purpose of the study would relate to Shuswap Lake. I am of the opinion that any study involving such waters must include other portions of the Shuswap Chain. Except for a possible two (2) specific areas on the main Shuswap Lake, one would have some difficulty in classifying the Shuswap Lake as critical by reason of the limited development adjacent to its shores and the number of annual lake "turn overs" or volume of flow. Probably of greater importance would be the Shuswap River between Ashton Creek and Mara Lake, Mara Lake and the Narrows at Sicamous, B. C.

The magnitude of any study on the Shuswap Chain would appear to dictate that certain assumptions must be made. Initially assuming that the main Shuswap Lake is not critical, thus any study involved should be limited to establishing a 1980 base line. One must then determine what areas can be termed critical at the present time or could be so affected in the future as to become critical. The existing causative agent or agents and potential causative agent or agents would have to be assumed and placed on an assumed priority list depending upon the causative agent. Such agents may be classified as agricultural wastes, on-site sewage disposal, municipal wastes, perhaps on water waste disposal (house boats and launches) and industrial wastes (sawmills, log storage) etc.

Based on the above philosophy, I submit areas that are critical or have such a future potential.

. 2

(1) Blind Bay

Apparently present condition of waters in the Bay are acceptable. By reason of the location of the Bay, the turnover of water will not be as frequent as the main lake, thus any possibility of nutrient escapement into the Bay from on-site sewage disposal from the large residential development surrounding Blind Bay could be drastic.

(2) Mud Bay, Seymour Arm (Frequently referred to as "Soap Bay")

Residential development at Seymour Arm probably of little consequence at the present time. Currently the problem rests with the practise of house boats congregating in the Bay when the main lake is rough. It is possible that future residential development served via private sewage disposal could have an affect on the Seymour River, the Salmon run and the lake immediately adjacent to the river.

(3) Salmon Arm Bay

Probably the most critical area in the total Shuswap Chain. A shallow body of water with a low rate of exchange. Has been subjected to the discharge of septic tank effluent via a collection system for many years and is still subject to nutrient flows from the municipal sewage plant, the Salmon River, a slaughterhouse and waste waters from a cheese operation.

(4) Sicamous Narrows

An area immediately adjacent to a high density residential-commercial area. All premises being served via individual septic tank systems. Subsoil conditions tend to primarily sands with an intermix of sands and gravels. Evident at various depth are thin layers of clay. If, as many believe septic tanks are a hazard to a body of water, the Sicamous area should warrant attention.

(5) Mara Lake

Subject to a flow of water high in silts during spring run-off and subject to high agricultural inflows. A lake with fever annual turn overs than the Main Shuswap. It is my opinion that because of the inflow characteristics of the Shuswap River certain base line characteristics of Mara Lake should be established in the immediate future.

(6) Shuswap River

(Mara Lake to Ashton Creek influence). Because of agricultural vastes from lands adjacent to the Shuswap River, inflows from such drainage as Fortune Creek, municipal waste from the City of Enderby, septic tank wastes on a gravel fan adjacent to Brash Creek, it is believed that studies should be undertaken on the river.

. 3

In closing I gather that you are aware that the Columbia-Shuswap Regional District is in the process of negotiating with four (4) Engineering Firms as related to Water and Sewage, 6 Mile area, Mara Lake and to Sicarous proper. The final proposal for both areas from the firm selected to undertake such studies may be of interest to you. Mr. T. Pellett would probably supply the final report.

Yours truly,

H. W. Kirk, G.P.H.I.(C)

Chief Public Health Inspector

HWE:dld

Part Four

Aquatic Plants

Prepared by R.A. Nijman

Documentation and Prevention Coordinator

1. Reason for Concern: Eurasian Water Milfoil

The nuisance aquatic plant Eurasian water milfoil (Myriophyllum spicatum L.) was first recorded in British Columbia from Okanagan Lake in 1971. By 1976 six out of seven mainstem lakes in the Okanagan Valley were infested to some degree. Aquatic plant surveys to locate Eurasian water milfoil in British Columbia outside of the Okanagan Valley have been intensified since 1977, with the identification of 40 additional infested water bodies confined to the lower Fraser Valley region. To date, there are more than 1000 ha of Eurasian water milfoil infested area in British Columbia.

The geographic restriction of Eurasian water milfoil in British Columbia strongly suggests recent introduction. However, there is evidence suggesting that the distribution of Eurasian water milfoil is on the increase:

- 1) 1978 Boat Quarantine Project. This project indicated that boating traffic from infested water bodies could transport Eurasian water milfoil to non-infested areas.
- 2) Waterfowl transport. Waterfowl have long been implicated in the wide distribution of many aquatic plant species. Eurasian water milfoil is a non-native species; the source of introduction to many of the infested areas in the lower Fraser Valley could only be explained on the basis of waterfowl transport.

Some nuisance aspects of Eurasian water milfoil include aesthetic nuisance or direct interference with water-based recreational activities, reduction in usefullness of recreational facilities (marinas, boat docks and launching ramps), reduction in the value of lakefront property, and interference with the supply or quality of domestic or irrigation water. More than \$500,000 was spent to alleviate the nuisance conditions caused by Eurasian water milfoil populations in infested areas of British Columbia in the fiscal year 1979-80.

2. Requests for Assistance

Due to the proximity of Shuswap Lake to the Okanagan Valley area of infestation, together with its value as a water resource, the Water Investigations Branch began aquatic plant surveys in 1975 to locate possible pioneering infestations of Eurasian water milfoil. Since that date, surveys of both Shuswap Lake and other water bodies within the Thompson River Basin have been intensified, in part due to requests encouraging the provincial government to prevent the spread of Eurasian water milfoil into the area. Requests for assistance have come from the Regional District of Columbia Shuswap, the Shuswap-Thompson River Association as well as various chambers of commerce.

3. Survey Efforts

Although qualitative information on aquatic plant species diversity has been collected by the Water Investigations Branch from numerous lakes within the Thompson River Basin since 1977, the greatest volume of quantitative data has been collected for Shuswap (including Mara and Little Shuswap) and Mabel lakes, both frequented by boaters from the Okanagan Valley. Shuswap Lake was selected because of the potential serious negative impacts of Eurasian water milfoil infestations, whereas Mabel Lake was selected because infestation would quickly result in fragment drift into the Shuswap system via the Shuswap River. Data were collected to evaluate the potential impact of

Eurasian water milfoil in the selected lakes; these data included species diversity and abundance, physical characteristics of the lakes including sediments and size of the littoral shelf, together with water quality and water-use information. Data related to fisheries interests have also been collected.

The most important result of the aquatic plant surveys was that no Eurasian water milfoil has been yet identified in any of the lakes surveyed within the Thompson River Basin. However, data collected from the Shuswap Lake system indicate a potential for survival and propogation of a pioneering infestation of Eurasian water milfoil. The growth characteristics of Eurasian water milfoil suggest it would displace native aquatic plant species, resulting in decreased diversity. Seasonal drawdown would have some effect in controlling Eurasian water milfoil infestation in some areas. The maximum recorded seasonal variation in water level was 4.9 m (1972) although levels have varied considerably less (2.3 m in 1926) from one year to the next. The abundance of native aquatic plant species together with the clarity of the water in the Shuswap Lake system, however, suggest that Eurasian water milfoil could establish itself to nuisance proportions, particularly in areas where there are now populations of native species.

Some of the largest populations of native aquatic plants were noted to be a nuisance in areas of the Shuswap Lake system, including Blind Bay, Crystal Sands Beach and the Sicamous Narrows; all these areas have marinas, resorts or summer cottage development. The extent of nuisance populations of native plants as well as future populations of Eurasian water milfoil (if introduced) could well be encouraged if future shoreline developments (e.g., groins or piers) interfered with normal shore currents or effected increased sedimentation and nutrient input.

4. Efforts to Prevent the Spread of Eurasian Water Milfoil into the Thompson River Basin

To date, feasibility studies have been conducted by the Water Investigations Branch on the quarantine of Eurasian water milfoil within British Columbia. These studies have indicated the potential for Eurasian water milfoil to be transported by boaters. Also, road-side check stations for boaters leaving infested areas have been evaluated, to prevent transport of this aquatic plant and to distribute public education materials. A highway check station was manned in 1979 by Water Investigations Branch staff on Highway 97, north of Vernon, to intercept boaters travelling toward the Shuswap Lake area.

Other activities directed at preventing the spread of Eurasian water milfoil through the Thompson River Basin have included intensive field surveys to provide an early warning of introduction. The public and government agencies were encouraged to assist with this objective. Signs instructing the boating public to remove all aquatic plant material from their boating equipment were posted at all public boat launches in the Shuswap Lake system, as well as other selected locations in the Thompson River Basin. A Eurasian water milfoil display was set up in various regions of British Columbia to further the public education requirement involved with preventing the spread of Eurasian water milfoil.

Regardless of the intensity of these types of efforts, neither public education nor quarantine of infested areas may be totally effective in the long term in preventing the spread of Eurasian water milfoil. The lack of full public cooperation must be taken into account, together with the probability that waterfowl will contribute to its spread.

5. Contingency Plans for the Removal of New Eurasian Water Milfoil Infestations

If Eurasian water milfoil is identified within the Thompson River Basin, and intensive survey of the water body would be implemented to determine the nature of the infestation. With this information, the Water Investigations Branch would be in the position to recommend the appropriate methods of control or attempted eradication to local authorities. If the infestation was sufficiently small and if local agencies gave encouragement and support, the Water Investigations Branch could attempt a management project using either of the following methods:

- a) mechanical a diver operated dredge has been placed on standby, or
- b) herbicide application would be made to the Pesticide Control Branch for permits to use the herbicide 2,4-D in the following year (there would be delays in obtaining a herbicide permit after a new infestation was found).

If the size of the infestation was so large that attempted eradication was not feasible, a program of cosmetic control would be appropriate. Regional agencies would be encouraged to develop a management program that suited their needs, with technical advice from the Province.

6. Conclusion

Based on observations of aquatic plants in the Okanagan Basin, there is a high probability that Eurasian water milfoil may be introduced to some high use lakes in the Thompson River Basin. Eradication measures might be attempted but have a low probability of success. It is possible that some lakes may require cosmetic aquatic weed treatments to maintain water-based recreational activities to an acceptable standard following Eurasian water milfoil introduction. Even if Eurasian water milfoil is not introduced, some native species might be a nuisance in localized areas and be stimulated be shoreline developments.

Additional information is desirable to:

- a) evaluate the degree to which native populations and potential infestations of Eurasian water milfoil might be encouraged by shoreline developments,
- b) evaluate the potential for greater use of drawdown to control both native and introduced populations of aquatic plants.