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Post-hoc Power Analyses for ANOVA F-tests

When an F-test for a treatment effect has a high p-value then there is little evidence for

rejection of the (null) hypothesis of no treatment differences. We may not be comfortable with this

result, especially if treatment differences were expected or decisions based on the test results need

to be made. While the non-significant statistical test tells us that the observed differences are small

relative to the background variability (as estimated by the error term) it does not tell us what

ability, known as power, the test had to find differences between treatment responses. If the power

is high then accepting1 the null hypothesis is reasonable, but if it is low, a clear decision cannot be

made. The power of a test depends upon the size of the treatment differences under consideration.

It is important to ask what treatment differences should be under consideration. For instance,

when the power of the test is determined for the observed F-value it is the observed treatment

differences that are under consideration. The power at this point is only of interest if they are

similar in size to a practical difference. A practical difference can be chosen on the basis that

treatment differences less than this value would suggest one course of action or decision while

larger differences would suggest a different course of action or decision. For instance, in a trial

comparing a new fertilizer to the standard one, finding a practical difference in response might

imply that the new fertilizer will be used in further operations, while a smaller difference implies

that the standard fertilizer will continue to be used. When studying the power of a statistical test,

the discussion of the test's power should center on either:

1) the power for a specified alternative hypothesis of practical consequence, or

2) the differences that could have been detected at a specified power (e.g. 0.90).

To explore this more fully, let us discuss a Randomized Block example with four blocks (b =

4) and four treatments (t = 4, with degrees of freedom, dfh = t-1). Each treatment level is assigned

to one of four plots within each block. Plots are the experimental units and each has been

subsampled (with e = 5 subsamples per plot). The degrees of freedom for the treatment test is

[(t-1), (b-1)(t-1)] = 3, 9 and the critical F-value at α = 0.05 is 3.86. Suppose that the response

variable is tree height measured in cm and that a non-significant F-value of 1.389 has been

observed with an Error Mean Square of 600 cm2.

1
Strictly speaking, hypotheses can only be rejected, not accepted. Nevertheless, to decide future actions, we must

choose which hypothesis we will assume is true. It is in this sense then, that we accept an hypothesis.
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Before conducting the experiment it may be useful to calculate the power for F-values that we

might observe. The power for an F-test is determined by first calculating the corresponding†

non-centrality parameter. Recall that the non-centrality parameter2 is nc = SSH/σ2 where SSH is

the treatment sums of squares of the hypothesized actual means and σ2 is the known value of the

error mean square (blocks by treatment for this example). Since the F-value is calculated by

F = [SSH/dfh]/σ2 it follows that nc = F * dfh. Thus it is straightforward to calculate the theoretical

power for each F-value and its degrees of freedom (see Appendix 1 for an example SAS program).

The thick line on the graph below is a plot of the power (scale is on the right side) against the

F-values for F-tests with 3, 9 degrees of freedom. Note that, for this example, the power for

F-values less than the critical value of 3.86 have low power (less than 0.62)3. A barely adequate

2
Note that there are many ways to define the non-centrality parameter. This definition is consistent with SAS.

3
With larger degrees of freedom, some F-values less than the critial value can have adequate power.

†
The following calculations assume that both SSH and σ2 are known and not estimated from results of the experiment.

Otherwise there could be a substantial bias in the calculations (Gerard et al. 1998).
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power of 80% occurs with F-values greater than 5.7, while if the F-value is 7.5 or more then the

power is at least 90%.

Hypothetical actual differences between treatment means can be associated with these F-values

to assist us in our interpretations. The calculations are begun by noting that SSH = sample size *

SSM, where SSM is the sums of squares of the hypothesized actual means and sample size is

constant at n = b * e for the example. Hence F = [SSH/dfh]/σ2 = [(b*e*SSM/dfh]/σ2. This can be

rearranged so that SSM = F*dfh*σ2/(b*e). This equation contains the error mean square, σ2, which
uis usually unknown. The obvious course of action is to assume that the estimated value of σ2

(MSBT = 600) is the actual value of σ2.

While SSM is a direct measure of the variability of the treatment means it would be easier to

understand its meaning if we can convert it to differences between the smallest and largest means

in the group, called the range. This range will differ for the same value of SSM depending upon

the pattern of the means in the group (especially the pattern of the non-extreme means as discussed

in Appendix 2). Nevertheless, we can determine a minimum and maximum range for each SSM

(see Appendix 3 for a description of the calculations and Appendix 4 for an example SAS

program). The large shaded area on the graph plots these ranges corresponding to the F-value on

the horizontal axis.

This graph is useful for calculating either the power for a specified alternative hypothesis, or

the hypothetical differences4 that could have been detected at a specified power and σ2. The

example F-value of 1.389 corresponds to an SSM of 125 (SSM = 1.389*3*600/4*5) and a range of

means between 11.2 cm and 15.3 cm. If a minimum practical difference between any two

treatment levels is 35 cm then the observed differences were quite a bit smaller than the practical

difference and it is not surprising that the observed F-value is not significant. Differences of 35 or

more cm correspond to F-values greater than 7. The corresponding power is at least 88% so this

experiment did have sufficient power to detect interesting differences. In this case, if the power of

the observed F-value (1.389) had been used to measure the power of the experiment iiittt wwwooouuulllddd hhhaaavvveee

bbbeeeeeennn dddeeeccciiidddeeeddd ttthhhaaattt ttthhheee ttteeesssttt hhhaaaddd hhhaaaddd lllooowww pppooowwweeerrr wwwhhheeennn,,, iiinnn fffaaacccttt,,, iiittt hhhaaaddd hhhaaaddd sssuuuffffffiiiccciiieeennnttt pppooowwweeerrr fffooorrr ttthhheee

aaalllttteeerrrnnnaaatttiiivvveee hhhyyypppooottthhheeesssiiisss ooofff iiinnnttteeerrreeesssttt (which, in this case, was nnnooottt the differences between the observed

means). On the other hand, this experiment did not have sufficient power to detect hypothesized

differences of 20 cm or less. Alternatively, using the second approach, suppose that a power of

90% or more had been desired. This corresponds to an F-value of about 7.5 with the range of

hypothesized means between 27 and 39 cm (if σ2 = 600). From this point of view, this experiment

had sufficient power to detect differences of 39 cm or more, may have had sufficient power for

4
Note the scale for these differences is determined by σ2 (estimated by MSBT).
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differences between 27 and 39 but did not have sufficient power to detect differences smaller than

27 cm.

In conclusion, graphs of this kind are straightforward to generate for a specific F-test within an

experiment and can be used to determine the power of that test. If this power is high for treatment

differences of practical consequence then it may be reasonable to accept the null hypothesis. On

the other hand, if the power is low then further experimentation may be required, or a decision

made on other grounds.

Contact: Wendy Bergerud
387-5676
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AAAppppppeeennndddiiixxx 111::: SAS program to calculate the power at observed F-values

tttiiitttllleee '''CCCooorrrrrreeessspppooonnndddeeennnccceee bbbeeetttwwweeeeeennn FFF---vvvaaallluuueeesss aaannnddd ttthhheeeiiirrr PPPooowwweeerrr''';;;
data fvalpwr;
t = 4; dfh = t-1; ** Treatment or hypothesis degrees of freedom ;
b = 4; ** Number of blocks;
dfe = (b-1) * (t-1); ** Error degrees of freedom;
alpha = 0.05; ** Alpha level (Type I error) for tests;
fc = finv(1-alpha,dfh,dfe,0); ** Critical F-value;

** A range of possible F-values for the horizontal axis;
do Fval = 0 to 1.2 by 0.2, 1.389, 1.4 to 3 by 0.2, 3.863, 4 to 20 by 1;
nc = Fval*dfh; ** Associated non-centrality parameter;
power = 1-probf(fc,dfh,dfe,nc); ** Calculation of power;
output; ** Output observation to data set;

end; run; ** End Do loop and run data step;
proc print;
by dfh dfe alpha fc notsorted; id Fval; var nc power;
title2 'Listing of Power for Possible F-values'; run;

proc plot;
plot power*Fval = 'P' / overlay href = 3.86 ;

title2 'Plot of Power vs F-value'; run;
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AAAppppppeeennndddiiixxx 222::: The relationship between the pattern of means and corresponding ranges for a constant
SSM (Sum of Squares of the Means):

To examine this relationship, first recall that the range is the difference between the smallest

and largest means. The pattern of the other or middle means5 determines if the range for a

specific SSM will be maximum, minimum, or inbetween. If the middle means have the same value

as the grand mean then the middle means contribute zero to SSM and all the variability is split

between the two extremes, yielding a maximum range. On the other hand, the means can be

divided into two groups with each group having one of the extreme values. The minimum range

occurs when the two groups are as equal in size as possible spreading the variability out so that all

the means contribute as equally as possible to the value of SSM. While the two groups will be the

same size for an even number of means, this will not be the case for an odd number (see the

difference in equations 2 & 3 in Appendix 3). These patterns are pictured below for four means.

Any number of other patterns are possible for a group of means, but their ranges will lie

between these two extremes. The order of the means does not matter unless the power of contrasts

(weighted sums of the means) is under consideration.

AAAppppppeeennndddiiixxx 333::: Calculation of the size of the minimum and maximum ranges as a function of SSM.

For a set of t numbers, µi, the range is calculated by µmax - µmin and their sum of squares by

SSM = ∑(µi - µ)2 where µ is the mean of the µi. The relationship between the range and sum of

squares depends on whether t is even or odd. If even, the relationship is:

4
sss* SSM ≤ (µmax - µmin)2

= range2 ≤ 2 * SSM (1)t

5
If there are two or more means at an extreme then count only one of them as an extreme mean and count the

other(s) as middle mean(s).
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While if t is odd, the relationship is:

4t
ssssssssssssss* SSM ≤ (µmax - µmin)2

= range2 ≤ 2 * SSM (2)
(t2-1)

The upper bound on the range is constant whether t is odd or even. These equations describe the

relationship between the range of a group of numbers and their sums of squares. They can be used

for a set of means by simply substituting the means for the µi, and by recalling that

SSM = F*dfh*σ2/n (as noted on page 3).

For a numerical example, suppose that the hypothesized means have an SSM of 125, then the

corresponding F = [n*SSM/(t-1)]/MSBT = (20*125/3)/(600) = 1.389. This F-value has a power of
sss sssabout 0.26. The difference between the largest (Ymax) and smallest (Ymin) means will range

between the following extreme values:

4 sss sss

sss* SSM = 125 ≤ (Ymax - Ymin)2
= range2 ≤ 2 * SSM = 250 .t

rrrrrrrrr rrrrrrrrrTherefore the minimum value of the range is p125 = 11.18 cm while the maximum is p250 = 15.81

cm. These are the top and bottom values of the cross-hatched area of the graph at F = 1.389.

Derivation: First I noted that in the Power Analysis Workshop Notes (pg. 9) a standardized range of the
treatment means is described as: µmax - µmin range

d= ssssssssssssssssssssssssssss = sssssssssssσ σ
For t treatments, where t is even, the non-centrality parameter, nc, has the following values:

nd
2

tnd
2

ssssss ≤ nc ≤ sssssssss, (3)
2 4

where n is the sample size for each mean (the number of numbers used to calculate the mean). Expression (3) can
be written in terms of the sums of squares of the means, SSM, by noting that nc = n*SSM/σ2

to get:

n*ra nge
2

n*SSM t*n*r a nge
2
. (4)

sssssssssssssssss ≤ ssssssssssss≤ ssssssssssssssssssss

2*σ2 σ2
4*σ2

Both n and σ2
drop out and, after some rearranging we obtain equation (1) above. These results are described in

Keppel, pg 79 who quotes Cohen (pgs 276 to 280); and in section 6.8.2 of Hinkelmann and Kempthorne (pg 175).

AAAppppppeeennndddiiixxx 444: SAS program to calculate the minimum and maximum ranges.

data fvalpwr; set fvalpwr; ** Data set created by program in Appendix 1;
** Adding the maximum and minimum ranges to the data set;
n = 20; ** (n = b*e for the example); MSBT = 600; SSM = Fval * dfh * MSBT / n ;
Minrng = sqrt((4/(dfh+1))*SSM); Maxrng = sqrt(2*SSM) ;
powrplt = 60 * power; ** Use the highest Maxrng value (e.g. 60) here to

** scale the printer plot to the same physical size as the plot for Minrng and
**Maxrng. Thus a power of .5 is plotted as 30 and 1 as 60;

label n = 'Sample Size per Mean' MSBT = 'Error Mean Squares'
Minrng = 'Minimum Range' Maxrng = 'Maximum Range'
powrplt = 'Power plotting values' power = 'Power' ; run;

proc print label; by dfh n msbt dfe alpha fc notsorted;
id Fval; title2 'Listing of Differences and Power'; run;

proc plot;
plot Minrng*Fval = 'L' Maxrng*Fval = 'U' powrplt*Fval = 'P'/ overlay href = 3.863;

run;


