
 
PAMPHLET NO.  63 DATE:  January 26, 2007 

SUBJECT:  Comparing Design-based and Model-based Inference: an Introduction 
 
1. Introduction 

The goal in survey sampling is to estimate an unknown parameter (such as the mean, total, 
etc.) of a population – e.g., the volume of timber or the number of moose within a particular area.  
Sample information is used to generalize to the parameters of the typically larger unknown 
population.  The notion of generalizing to the unknown population, and determining the 
associated level of uncertainty, is the focus of statistical inference.  Model-based and design-
based inference are two rival views for making inference.  Each approach to inference can lead 
to different outcomes, and it is sometimes difficult to decide which approach to use.  

The purpose of this note is to introduce and compare model-based and design-based inference 
from the standpoint of survey sampling.  This article will be most relevant to those forest 
researchers that use sampling to estimate abundance, density, basal area, volume, etc.  We may 
delve into the concepts introduced here in more depth in future pamphlets. 
 
1.1. Design-based Inference 

Pure design-based inference is the backbone of traditional sampling theory.  Well-known 
sampling texts such as Cochran (1977) or Scheaffer et al (1996) advocate this type of inference.  
Here, the population of interest is considered as a finite collection of elements at a particular 
moment in time.  For example, the population might be the trees in a woodlot, the coarse woody 
debris in a forest, etc. 

Design-based inference assumes that the population is fixed (i.e. unchanging).  Since almost 
all natural populations are subject to change, this implies that we are interested in a characteristic 
or parameter of the population at the instance that our sample is drawn. 

Each sample is viewed as a realization of a random process, so a different sample may have 
chosen a different set of units.  The probabilistic nature of the sample is the only source of 
randomness that plays a part when making inference to the population.  Figure 1 is a schematic 
representation, showing the myriad of possible samples for a given sampling design. 

Inference in the design-based setting is generalized beyond the observed sample to all 
possible samples that could have been selected.  This is achieved by considering hypothetical 
repeated applications of the sampling design.  Each of these realizations would produce a 
different estimate1 of the population parameter.  The distribution of estimates from all possible 
samples provides a reference distribution, which allows inferences to the unknown population to 
be made.  The variability of this reference distribution is described by the variance or standard 
error of an estimator.  Fortunately, with ordinary sampling designs, the variance of an estimator 
can be expressed in terms of the sampled elements. 

                                                 
1 The term estimator refers to a function of the sample data used to approximate a population parameter, such as the 
sample mean y , which is an estimator of the population mean Y .  An estimate is the value of the estimator for a 
particular case (e.g. the estimate of y  equals 7.5). 
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FIGURE 1. Schematic representation of design-based inference.  Statistics from an observed 

sample are used to infer unknown parameters of a fixed population.  Here, inference 
acknowledges that the observed sample is merely one of several possibilities. 

 

With design-based inference, it’s important that the estimator matches the sampling design to 
achieve an unbiased estimator(s).  This will be discussed further in §2. 
 
1.2. Model-based Inference 

Unlike design-based inference, pure model-based inference does not regard the population of 
interest as fixed.  We assume that an infinite superpopulation or superpopulation model, which 
includes a random component, is responsible for creating the elements in the population.  One 
way to think of the superpopulation model is as the process, template or causal system used to 
create the elements in the population2.  The specific form of the proposed infinite 
superpopulation model is often borrowed from classical and well-understood statistical methods 
such as regression. 

As before, we are usually interested in making inference on a characteristic or parameter of 
the population (e.g. total volume) at the time our sample is drawn.  We assume that the 
superpopulation model that created the population is tied to a specific instant in time, since the 
population will generally be different (even if imperceptibly) moments after the sample is 
chosen.  

                                                 
2 Another view is that there exists an infinite population of finite populations similar but slightly different to ours, 
and we are observing merely one of them. 
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In model-based inference, the sampling design (i.e. how the sample was selected) plays little 
role, and inference stems entirely from the superpopulation model.  We acknowledge that the 
sample is a subset of population elements, and therefore need to predict those population 
elements not sampled.  However, inference is conditional on the observed sample, or any sample 
for that matter.  That is, we make a leap of faith that our sample is a faithful representation of the 
population and ignore the random nature of the sampling design when making inference.  The 
reference distribution is defined by the countless realizations of the population as governed by 
the superpopulation model.  Figure 2 is a graphical description. 

 

 
FIGURE 2. Schematic representation of model-based inference.  Statistics from an observed 

sample are used to infer unknown parameters from the finite population, or the 
infinite superpopulation.  We recognize that the sample is subset of elements, but the 
countless realizations of the population (as imposed by the superpopulation model) 
are the sole basis for inference. 
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You can see that it is important to check whether the sample data is adequately described by 
the proposed model.  It is also prudent to sample in a way that is objective, rational and 
noninformative (Särndal 1978).  The formal definition of a noninformative sampling design is 
fairly mathematical (Binder and Roberts 2001), but the basic idea is to sample elements without 
regard for the key variable(s) being studied.  For example, if the objective is to estimate the 
average height of trees in a stand, one would not select the 10 tallest trees per plot because the 
selection criteria would clearly be related to parameter of interest. 

Since it is postulated that the population characteristics are random variables generated by the 
superpopulation model, any function of the data such as a total or mean, will also be a random 
variable.  For this reason uncertainty will exist in our estimate of a population parameter, unless 
we sample the entire finite population (i.e. conduct a complete census).  As in design-based 
inference, a complete census would identify the population parameter at that moment in time, 
and its variance would be zero. 

Deming (1953) distinguishes between studies where interest lies in a particular population 
characteristic, from those where interest lies in a specific superpopulation model parameter.  The 
former are called enumerative, and the latter analytic.  So far, we have been describing 
enumerative studies.  In analytic studies, the desire is to extrapolate results to other populations 
(e.g. different locations), and interest lies in the process or causal system that created the 
population.  In an analytic study, uncertainty around the estimated superpopulation model 
parameter would remain even after a census. 

The key point here is that in the model-based setting, inference can be made to either a 
population parameter (e.g. total volume) or a superpopulation model parameter.  This subtlety is 
depicted in Figure 2, and will be discussed in more detail near the end of §2.2. 
 
2. Bias and Precision 

Sampling theorists use the concepts of bias and precision to describe the quality of an 
estimator.  We will now formally introduce these concepts, since they also help differentiate 
design-based and model-based inference.  The material that follows is somewhat technical but 
hopefully the general ideas are apparent. 

Recall that the customary goal in survey sampling is to estimate a population parameter after 
selecting a sample.  We will first define  as a key value or characteristic such as height, 
volume, etc. associated with each unit in the population.  Also, auxiliary information for each 
unit, such as weight, approximated volume, etc., is denoted as .  After taking, say, a simple 
random sample without replacement (SRS) of n units from the population of N units, we may 

wish to estimate the population mean per unit 
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Note that uppercase (Y ) is used to symbolize the population parameter, and lower case ( y ) is 
used to symbolize the estimator.  
 
2.1. Design-based Inference 

The bias measures how, on average, the sample mean differs from the true population mean.  
To begin with, let  represent the probability of observing each sample 3( )tp t .  For SRS, there 

                                                 
3 We have used “t” rather than the more obvious choice “s” so that s can be reserved to represent the standard 
deviation. 
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are  ways to chose n units from N, and each is equally likely.  Therefore, the probability of 

observing each sample (consisting of n elements) is 
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The expectation of the estimator y  is defined as the average value of the estimator over all 
possible samples.  Say each hypothetical sample produces an estimator of the mean ty , then the 
expectation is the weighted sum:  

( ) ( )∑ ⋅=
samples

possible all

t
t tpyyE  

The estimator y  will be design-unbiased if its expectation over all possible samples equals 
Y .  The formal definition is: 

( ) ( ) ( ) YyEYyEyBias −=−= . 

Keep in mind that the population (including Y ) is fixed and we need not make any 
distributional assumptions on how it was generated, or the spatial distribution of the units in the 
population.   

Accuracy of an estimator is measured using the mean squared error (MSE), which captures 
both precision and bias (see Appendix 1 for complete derivation): 

( ) ( )[ ] ( ) ( )[ ]22 yBiasyVarYyEyMSE +=−= . 

The above relationship is often shown pictorially using the well-known “dartboard” analogy 
(e.g. Figure 2.2 of Lohr (1999))4. 

The variance of y  conveys how the estimated mean varies among hypothetical samples:  

( ) ( )( )[ ] ( )[ ] ( )∑ ⋅−=−=
samples
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t
t tpyEyyEyEyVar . 

The variance occasionally simplifies to something that looks more familiar, as in the case of 
simple random sampling5: 
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4 The formulae that define Bias and MSE are applicable to any estimator, not just y . 
5 These steps have been omitted since the algebra is quite lengthy.  See § 2.9 of Cochran (1977) if curious. 
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The above variance and standard deviation require information from the population that is 
unknown – remember we merely have a sample – so we normally work with an estimate of 

( )yVar .  We maintain the convention of using lower case since it is an estimator:  
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n
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For some sampling designs, it is also possible to assess the bias of our estimated variance 
using: 

( )[ ] ( )[ ] ( )yVaryvarEyvarBias −= , where ( )[ ]yvarE  represents the expected sample variance 

overall all possible samples: ( )[ ] ( ) ( )∑ ⋅=
samples

possible all

t
t tpyvaryvarE . 

For the above SRS example, the squared sample standard deviation  allows the estimated 
variance 

2s
( )yvar  to be unbiased, but some designs do not have an unbiased estimator of precision 

available (e.g. a single systematic sample with random start). 
 
2.2. Model-based Inference 

Now we will presume that an infinite superpopulation or superpopulation model is 
responsible for creating the elements in the finite population of interest.  An estimator is model-
unbiased if the expected discrepancy between the estimator and the finite population value is 
zero over repeated realizations of the population.   

Expectation of the estimator is conditional on the observed sample, so the sampling design 
that produced the sample is irrelevant in our assessment.  In other words, we recognize that the 
sample represents only a fraction of the population, but we don’t pay attention to how it was 
selected.  In pure model-based inference, we are content that our sample is a valid representation 
of the population and do not bother worrying about the matter further.  This does not imply that 
sampling is unimportant in model-based inference.  In fact, the opposite is true.  A poorly chosen 
sample will always lead to poor (i.e. misleading) results because inference is limited to the 
observed sample. 

For example, let ( )sample|yEm  denote the expectation of the sample mean y  conditional on 
the observed sample.  Here the subscript m is used as a reminder that expectation is with respect 
to a model.  Also let ( )YEm  denote the expectation of the population mean Y .  Keep in mind 
that unlike the design-based setting, where Y  is a fixed quantity, both y  and Y  are now random 
variables and we must work with the expected values for both.  The formal definition for the 
model-bias of the sample mean y  is then: 

( ) ( ) ( ) ( )YEyEYyEyBias mmmm −=−= sample|sample| . 

For example, we might postulate the following superpopulation model: all N elements in the 
population are produced as independent realizations from a normal distribution having mean μ  
and variance .  It’s easy to show that under this scenario, 2σ ( ) ( ) μ== YEyE mm sample| , so y  is 
a model-unbiased estimate of Y .   
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Model-based estimators determined via maximum likelihood are asymptotically unbiased (i.e. 
as the sample size n approaches ∞)6.  This is one reason why maximum likelihood estimators 
(MLEs) are so popular. 

In survey sampling, the accuracy of any point estimator, such as y , can be evaluated using 
the MSE, but it has a slightly different interpretation than its design-based cousin.  Here it is 
defined as the expected squared deviation between the estimated mean and the population mean 
(over repeated possible realizations of the population), conditional on the observed sample (see 
Appendix 2 for complete derivation):   

( ) ( )[ ] ( ) ( )[ ]22 sample|sample| yBiasYyVarYyEyMSE mmmm +−=−=  

Above, ( sample|YyVarm − )  represents the variance of the difference between two random 
variables Yy − .  This distinctive variance occurs because the population characteristics are not 
fixed, and the model-based MSE must capture variability due to units from the sample, and all 
population units (including those that have not been sampled) that could have been generated 
from the superpopulation model.  Also, ( )sample|YyVarm −  is generally different from 

( )sample|yVarm .   

You can also see that ( )yMSEm  equals ( )sample|YyVarm −  only when the bias is zero.  
Statisticians often concentrate on the variance rather than the MSE, so that precision of the 
estimators can be studied.  However, the MSE reveals the subtle difference between the design-
based and model-based concepts of variance.  We have shown that seemingly identical 
definitions of MSE lead to different notions of variance between the two modes of inference.  
The design-based variance describes the variability in the estimator alone (due to sampling), 
whereas the model-based variance describes the variability in both the estimator and the 
population parameter (both due to the superpopulation model).   

To save space, the remaining discussion will drop the conditioning on “sample” from all 
formulae pertaining to model-based inference. 

Under the simple Normal superpopulation model described above, it turns out7 that  

( ) ( )
nN

nYyVaryMSE mm

2

1 σ
⎟
⎠
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⎜
⎝
⎛ −=−= , 

which appears almost identical to the design-based version.  However, we cannot assume this 
equivalence will hold with other models. 

The typical estimator for  is the squared sample standard deviation 2σ ( )∑
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although another possibility is the maximum likelihood estimator (MLE) : ( )∑
=

−=
n

i
i yy

n 1

22 1σ̂ . 

To determine whether an estimator of the variance is model-unbiased we would examine: 

( )[ ] ( )[ ] ( )YyVarYyvarEYyvarBias mmmmm −−−=− , 

                                                 
6 One potential drawback is that an estimator might still be biased if N is moderately small, even when sampling a 
sizeable fraction of the population (i.e. 1≅Nn ).  
7 See § 2.8 of Lohr (1999) for more detail. 
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where ([ YyvarE mm − )] is the expected (i.e. average) estimated variance taken over all possible 
realizations of the population.  Usually, we can only assess this via simulation.  In the above 
case,  leads to an unbiased estimate of 2s ( )YyVarm − , whereas  leads to an estimate that is 
slightly biased for small samples. 

2σ̂

Recall that μ  and  are the unknown model parameters of the infinite superpopulation 
model.  We have already seen that  is required to determine 

2σ
2σ ( )YyVarm − .  But what if we 

conducted an analytic study, and wanted to make inference on the superpopulation mean μ  
rather than finite population mean Y ?  Perhaps we were interested in the process that generated 
data, so we could generalize to several populations.  For instance, we might have a sample from 
one of many comparable populations, all believed to be generated by the same superpopulation 
model.   

The MLE of μ  turns out to be identical to the sample mean y .  However, this is not the case 
in general, especially if a more complicated model is assumed (e.g. one where the  are not 

independent).  The variance of the MLE, say 

iy

( )μ̂mVar , is 
n

2σ , which differs from ( )yMSEm  or 

( YyVarm − ) by not having the finite population correction factor (fpc) ⎟
⎠
⎞

⎜
⎝
⎛ −

N
n1 .  The increase in 

variance is the cost of making inference to a broader space (i.e. beyond the finite population to 
the infinite superpopulation). 
 
3. Confidence Intervals 

While both design-based and model-based approaches may lead to the same confidence 
interval (CI) when they produce the same variance for an unknown parameter, the interpretations 
are different. 

The design-based CI has a repeated sampling interpretation.  To begin with, let α  denote the 
level of significance (e.g. 05.0=α ).  If we take all possible simple random samples8 of size n 
from N fixed population units and construct a ( )%1100 α−⋅  CI for each sample, then 

( )%1100 α−⋅  of these CI’s will include the true population mean Y .  Thanks to the central limit 
theorem, we can then use a parametric distribution such as the Normal or Student’s t to build 
design-based CI’s9. 

The model-based CI can be interpreted by considering repeated realizations of the population 
due to the superpopulation model.  If we repeatedly (a) generate individual units within the 
population using the model, (b) select a sample, and (c) construct a ( )%1100 α−⋅  CI from each 
resulting sample, then ( )%1100 α−⋅  of these CI’s will include the true superpopulation 
parameter μ 10.  The parametric distribution required to build a model-based CI follows from the 
model itself.  For example, in our model-based example, it follows that ( )nNy 2,~ σμ  , so the 
normal distribution provides the basis for the CI. 
 
                                                 
8 Sampling designs different from SRS are obviously also permissible. 
9 This is a bit paradoxical, since the assumed distribution is in essence, a type of model. 
10 Another way to think of this is with the notion of an infinite population of finite populations.  If we could sample 
all of the finite populations and construct a CI for each one, ( )%1100 α−⋅  of these would contain the true mean (of 
the infinitely many populations). 
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4. Conclusion 
In an attempt to unify both types of inference, one could regard design-based inference as the 

case where inference is conditioned on (i.e. limited to) a particular realization from the 
superpopulation model, and model-based inference as the case where inference is conditioned on 
the observed sample.  A combined view is also possible, where both sources of randomness are 
incorporated into inference; this idea is developed further in §12.2 of Särndal et. al. (1992). 

Thompson (1992) states that “even the best model is something one not so much believes as 
tentatively entertains.”  For pure model-based inference, it’s important to check that the assumed 
model appropriately describes the sample data.  If you cannot unearth an appropriate model, then 
the design-based approach may be best.  Also, we have not discussed missing data, non-response 
or measurement error, but the usual way to deal with these issues is with some sort of model. 

Ibid. lists some advantages of the two approaches to inference.  He points out that design-
based inference is good at: 

• obtaining unbiased point estimators (and estimators of variance) that do not depend upon on 
assumptions about the population - a sort of nonparametric approach, 

• obtaining estimators acceptable to users with differing interests, and 

• avoiding ordinary human biases in sample selection. 

He also indicates that model-based inference excels at: 

• assessing the efficiency of standard sampling designs and estimators under different 
assumptions about the population,  

• deriving estimators that make the most efficient use of the sample data, including auxiliary 
information, and  

• dealing with observational data obtained without a proper sampling design. 

Careful consideration of the last point is in order.  Model-based inference is not an excuse for 
a poor sample design! 

Design-based and model-based interference can lead to different point estimators and/or 
variances.  It is also common to find an estimator that is model-unbiased but not design-unbiased 
or vice versa.  In these situations, it’s important to understand the underlying concepts that 
characterize the two approaches.  The excellent paper by Gregoire (1998) may shed more light in 
this area.  Future pamphlets may build on the foundation developed here, and examine in detail 
examples where the two modes of inference do lead to different estimators. 
 
Prepared by: 
Peter Ott.  Phone: 250-387-7982; email: peter.ott@gov.bc.ca 
B.C. Ministry of Forests and Range, Research Branch 
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Appendix 1.  Design-based MSE 
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Appendix 2.  Model-based MSE 
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