

13 TECHNICAL GUIDANCE ON CONTAMINATED SITES

Version 2.0 November 1, 2017

Groundwater Protection Model

This document provides guidance to qualified professionals on using the ministry's Groundwater Protection Model (GPM). The GPM is an analytical fate and transport model that simulates the relationship between a substance concentration in soil and the corresponding substance concentration in groundwater at a downgradient point of compliance.

The GPM is applied under the Contaminated Sites Regulation (Regulation) for the purposes of:

- Deriving a site-specific numerical soil standard (SSS) under <u>Protocol 2 "Site-</u> <u>Specific Numerical Soil Standards"</u>. The GPM runs in backward calculation mode to calculate a substance concentration in soil (the SSS) based on the applicable water use standard at a downgradient point of compliance
- Completing a screening level risk assessment (SLRA) under <u>Protocol 13 "Screening Level</u> <u>Risk Assessment"</u>. The GPM runs in forward calculation mode to calculate the substance concentration in groundwater at a downgradient point of compliance based on an input substance concentration in soil or substance concentration in soil leachate.

Background

The GPM was developed for calculating the matrix numerical soil standards protective of groundwater for the substances listed in Schedule 3.1 Part 1 of the Regulation.

Details of the model development can be found in <u>Protocol 28, 2016 Standards Derivation</u> <u>Methods</u>, Chapter 4. Derivation of Soil to Groundwater Protection Matrix Soil Quality Standards.

Install the GPM

The GPM runs in Microsoft Excel with macros written in Visual Basic for Applications. The model is downloaded through the following link:

Groundwater Protection Model

It is recommended to save the Excel file to the user's own computer before executing the GPM.

How to run the GPM

Guidance on how to run the GPM is found in Appendix 1.

GPM Framework

The GPM is formulated on a conceptual site model of a contaminated site, see Figure 1.

The model assumes a contaminant source of prescribed dimensions in the unsaturated zone which generates leachate by partitioning. The leachate is transported through the unsaturated zone assuming one-dimensional steady-state flow with sorption and biological degradation (organic substances only). At the groundwater table, leachate mixes with groundwater based on a simple water balance model. Finally, solute is transported through the saturated zone to a point of compliance assuming two-dimensional steady-state flow with dispersion (all substances) and sorption and biodegradation (organic substances only).

The governing equations for the four model components are included in Appendix 2:

- soil leachate partitioning
- unsaturated fate and transport
- leachate/groundwater mixing
- saturated fate and transport

Details on the model development and model assumptions are described in Protocol 28, Chapter 4.

Model parameters

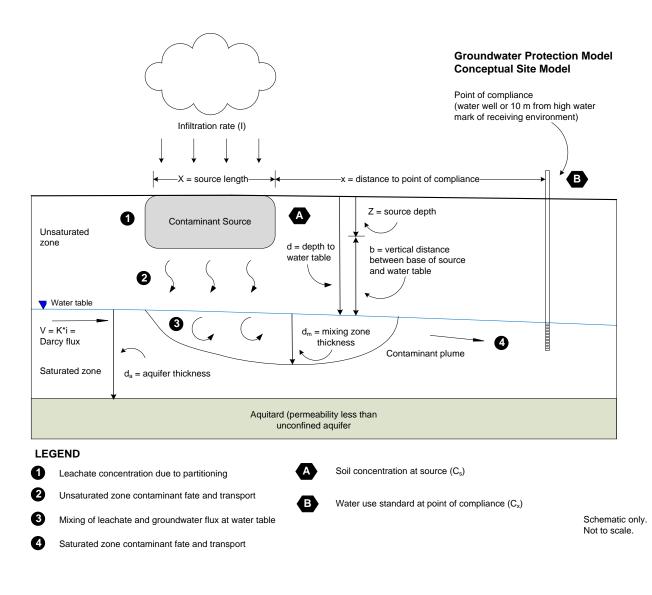
The GPM model parameters are divided into the following categories:

- Source dimensions
- Infiltration
- Hydrogeology
- Substance

Model parameters for source dimensions, infiltration and hydrogeology can be modified by the user from default values as listed in Appendix 3. Substance physical/chemical parameters cannot be modified in the GPM. Values applied in the model are listed in the GPM and are described in detail in Protocol 28, Chapter 4.

References

- United States Environmental Protection Agency. (1996). Soil Screening Guidance. <u>https://www.epa.gov/superfund/superfun</u> <u>d-soil-screening-guidance</u>
- Kool, J.B, Huyakorn, P.S., Sudicky, E.A., Saleem, Z.A. (1994). A Composite Modeling Approach for Subsurface Transport of Degrading Contaminants from Land-Disposal Sites. Journal of Contaminant Hydrology, 17. 1994
- 3. Domenico, P.A. (1987). An Analytical Model for Multidimensional Transport of a Decaying Contaminant Species. Journal of Hydrology, 91. 1987.


Note: This document is solely for the convenience of the reader. It does not contain and should not be construed as legal advice. The current legislation and regulations should be consulted for complete information.

For more information, contact the Environmental Emergencies and Land Remediation Branch at site@gov.bc.ca.

Revision history

Approved Date	Effective Date	Document Version	Notes
November 1, 2017	November 1, 2017	2.0	Updated for Stage 10/11 Amendment to the CSR
2009	2009	1.0	

Appendix 1

How to run the Groundwater Protection Model

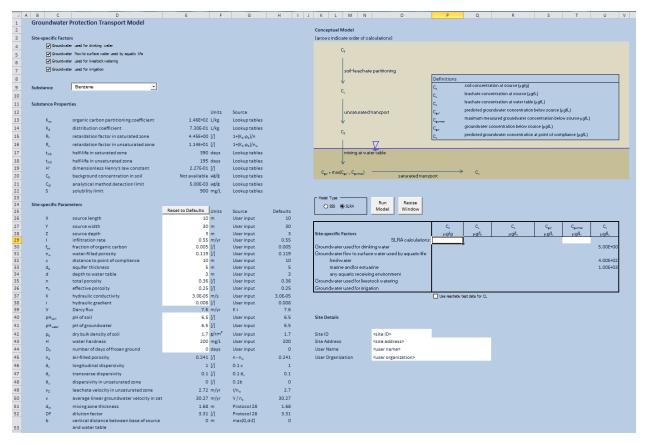
The ministry's Groundwater Protection Model (GPM) is a Microsoft Excel (Excel) based analytical groundwater fate and transport model. The GPM is applied when:

- Calculating site-specific numerical soil standards (SSSs) under <u>Protocol 2 "Site-</u> <u>Specific Numerical Soil Standards"</u>; or
- Completing screening level risk assessment (SLRA) under <u>Protocol 13</u> <u>"Screening Level Risk Assessment"</u>.

This appendix provides practical guidance on how to run the GPM. A detailed description of the model framework, equations and parameters are found in <u>Protocol 28</u> <u>"2016 Standards Derivation Methods"</u>, Chapter 4, Derivation of Soil to Groundwater Protection Matrix Soil Quality Standards.

Getting started

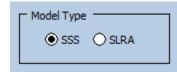
The GPM is developed in Excel with macros written in Visual Basic for Applications. To run the model, it is recommended to save the Excel file to the user's own computer. The first time the GPM is opened; the macros need to be enabled by pressing the "Enable Content" in the Security Warning at the top of the page.


Spreadsheet	Function			
input	The input sheet is the main model interface, where the user			
	enters model input, starts the model run and views the model			
	results. The user can enter site information for reference			
	including site ID, site address and user name. Model			
	modifications are controlled by choosing model type (SSS or			
	SLRA), substance, applicable water use(s) and site-specific			
	model parameters. The model is run by pressing the "Run			
	Model" button.			
defaults	The default sheet provides the default model parameter values			
	and acceptable parameter ranges. The sheet cannot be modified			
	by the user.			
substances	The substance sheet provides the chemical/physical properties			
	for all available substances. The Schedule 3.1 Part 1 substances			
	in the Regulation (matrix substances) are marked with "P28" in			
the "Origin" column of the sheet. The sheet cannot be				
	by the user.			

The GPM includes the following six Excel spreadsheets:

kds_kocs	The kds_kocs sheet provides the K _d values for available			
	inorganic substances and K _{oc} value for organic substances. The			
	sheet cannot be modified by the user.			
water use standards	The water use standards sheet provides the numerical water use			
	standards for all available substances as prescribed in Schedule			
	3.2 of the Regulation. The sheet cannot be modified by the user.			
soil standards	The soil standards sheet provides the numerical soil standards			
	for all available substances as prescribed in Schedule 3.1 of the			
	Regulation. The sheet cannot be modified by the user.			

The user can modify the size of the spreadsheet windows as desired by using the Excel zoom option. The Excel window can be adjusted to fit the entire screen by pressing the "Resize Window" button on the input sheet. Clicking the "Resize Window" button again, will return the window to its previous settings.


Input sheet

The input sheet is the main model interface where the user controls the model input and starts the model run. The input sheet is divided into the following sections, as described in detail below:

- Site-specific Factors
- Substance
- Substance Properties
- Site-specific Parameters
- Conceptual Model
- Model Type
- Model Output Box
- Site Details

Choose model type

The user can select between the following two model type options:


• SSS

The SSS Model Type is used to derive the site-specific numerical soil standard under Protocol 2. The model runs in backward calculation mode to calculate the substance concentration in soil (the SSS) based on the applicable water use standard at a downgradient point of compliance.

• SLRA

The SLRA Model Type is used to complete a screening level risk assessment (SLRA) under Protocol 13. The model runs in forward calculation mode to calculate the substance concentration in groundwater at a downgradient point of compliance based on an input substance concentration in soil or substance concentration in soil leachate.

Conceptual Model

The Conceptual Model figure illustrates the four subsurface processes that the model simulates: soil-leachate partitioning, unsaturated fate and transport, leachate mixing at the water table, and saturated fate and transport to a point of compliance. Also, it provides the definitions of the soil and groundwater concentrations used in the model calculations.

The direction of the arrows illustrates the order in which the model calculates the four processes; i.e. backward calculation mode for the SSS Model Type to derive the soil concentration, C_c , or forward calculation mode for the SLRA Model Type to estimate the groundwater concentration, C_x , at the point of compliance.

Enter site details

Site details can be entered by the user as desired for later reference.

Choose applicable site-specific factors

Site-specific Factors				
Groundwater used for drinking water				
Groundwater flow to surface water used by aquatic life				
Groundwater used for livestock watering				
Groundwater used for irrigation				

Select the site-specific factor(s) protective of groundwater use(s) to include in the model run. For the site-specific factor protective of aquatic life, the user does not specify if the receiving environment is freshwater or marine. Instead, the model will automatically include the applicable numerical aquatic life water use standard(s) for the specific substance.

Choose substance

Substance	Benzene 💌		
Substance Pro	perties		
		Units	Source
K _{oc}	organic carbon partitioning coefficient	1.46E+02 L/kg	Lookup tab
K _d	distribution coefficient	7.30E-01 L/kg	Lookup tab
R _f	retardation factor in saturated zone	4.45E+00 [/]	1 + (K _d ·ρ _b) ,
R _u	retardation factor in unsaturated zone	1.14E+01 [/]	1 + (K _d ·ρ _b) ,
t _{½S}	half-life in saturated zone	390 days	Lookup tab
$t_{_{2}U}$	half-life in unsaturated zone	195 days	Lookup tab
H'	dimensionless Henry's law constant	2.27E-01 [/]	Lookup tab
C _b	background concentration in soil	Not available µg/g	Lookup tab
C _{dI}	analytical method detection limit	5.00E-03 µg/g	Lookup tab
S	solubility limit	8.95E+02 mg/L	Lookup tab

Select the substance to include in the model run from the drop-down menu. The model can only simulate one substance at a time, so multiple model runs are required if the user wants to include several substances.

The drop-down menu includes both matrix substances listed in Schedule 3.1 Part 1 (substances that can be substituted with a SSS under Protocol 2) and substances available for SLRA under Protocol 13. It is the user's responsibility to ensure that SSSs are derived for substances included in Schedule 3.1 Part 1 only.

The chemical and physical substance properties used by the model for the specific substance are updated in the Substance Properties table. The substance properties are

drawn from the substance sheet and the kds_kocs sheet and cannot be modified by the user.

Site-specific Par	rameters			
		Reset to Defaults Units	Source	Defaults
Х	source length	10 m	User input	10
Y	source width	30 m	User input	30
Z	source depth	3 m	User input	3
I I	infiltration rate	0.55 m/yr	User input	0.55
f _{oc}	fraction of organic carbon	0.005 [/]	User input	0.005
n _w	water-filled porosity	0.119 [/]	User input	0.119
x	distance to point of compliance	10 m	User input	10
da	aquifer thickness	5 m	User input	5
d	depth to water table	3 m	User input	3
n	total porosity	0.36 [/]	User input	0.36
n _e	effective porosity	0.25 [/]	User input	0.25
К	hydraulic conductivity	3.00E-05 m/s	User input	3.00E-05
i	hydraulic gradient	0.008 [/]	User input	0.008
V	Darcy flux	7.57 m/yr	K∙i	7.57
pH _{soil}	pH of soil	6.5 [/]	User input	6.5
pH _{water}	pH of groundwater	6.5 [/]	User input	6.5
ρ _b	dry bulk density of soil	1.7 g/cm ³	User input	1.7
н	water hardness	200 mg/L	User input	200
D _{fr}	number of days of frozen ground	0 days	User input	0
n _a	air-filled porosity	0.241 [/]	n - n _w	0.241
ðx	longitudinal dispersivity	1 [/]	0.1 x	1
ðy	transverse dispersivity	0.1 [/]	0.1 ð _x	0.1
ðu	dispersivity in unsaturated zone	0 [/]	0.1 b	0
v _U	leachate velocity in unsaturated zone	2.72 m/yr	I/n _w	2.72
v	average linear groundwater velocity in saturated zone	30.27 m/yr	V / n _e	30.27
d _m	mixing zone thickness	1.68 m	Protocol 28	1.68
DF	dilution factor	3.31 [/]	Protocol 28	3.31
b	vertical distance between base of source and water table	0 m	max (0, d-Z)	0

Enter site-specific parameters

The user can modify selected model parameters (marked in white cells) from its corresponding default value. If a model parameter is not modified, the default value will apply. Site-specific parameters can be reset to the default values by pressing the "Reset to Defaults" button.

If a parameter is modified outside the allowable range, an error message will pop up and the model run cannot be executed.

Model Output Box

Site-specific Factors	Cs µg/g	C _L μg/L	C₂ μg/L	C _{gw} μg/L	C _{gwmax} μg/L	C _x μg/L
SLRA calculations:						
Groundwater used for drinking water		•				350
Groundwater flow to surface water used by aquatic life						
freshwater						
marine and/or estuarine						
any aquatic receiving environment						
Groundwater used for livestock watering						
Groundwater used for irrigation						
Use leachate test data for CL						

In SLRA mode, the user needs to provide the substance concentration in soil at the source, C_s , and the maximum measured concentration of the substance in the groundwater below the source, C_{gwmax} . If applicable, the user can enter substance concentration data, C_L , from a leachate test by clicking the box "Use leachate test data for CL". The data is entered in the model output box prior to running the model.

Run the model

Execute the model calculations by pressing the "Run Model" button.

Depending on the substance and site-specific parameters, a message box may pop up when running the SSS Model Type, informing the user that a constraint has been actioned in the model. The constraint is either that the substance solubility limit is exceeded (for organics and cyanide) or that the SSS exceeds 100% substance concentration (for inorganics). These messages are not calculation errors, but inform the user that the model calculations have been modified:

Message Box	Substance	Meaning		
Calculated leachate	P28 organics, cyanide	The simulated leachate concentration		
concentration >		is greater than the solubility limit for		
substance		the substance. The leachate		
solubility limit		concentration is set equal to the		
		solubility limit.		
Calculated SSS soil	P28 inorganics	The calculated SSS is greater than		
standard > 100%	_	100% substance concentration. The SSS		
		is set equal to $1E+06 \ \mu g/g$.		

Two other constraints are present in the mixing component of the model, however pop up messages are not included in the model. These include setting the dilution factor (DF) equal to 1 where the source extends into the water table and setting the mixing zone thickness (d_m) equal to the aquifer thickness where the calculated mixing zone thickness exceeds the aquifer thickness. The calculated values for DF and d_m can be viewed in the model interface (input sheet).

Output data

Site-specific Factors	C _x	C _{gw}	C _z	C _L	C _s	C _c
Site-specific factors	μg/L	μg/L	μg/L	μg/L	μg/g	µg/g
Groundwater used for drinking water	5.00E+00	1.20E+01	3.97E+01	3.97E+01	3.30E-02	3.50E-02
Groundwater flow to surface water used by aquatic life						
freshwater	4.00E+02	9.61E+02	3.18E+03	3.18E+03	2.64E+00	2.50E+00
marine and/or estuarine	1.00E+03	2.40E+03	7.94E+03	7.94E+03	6.61E+00	6.50E+00
any aquatic receiving environment						
Groundwater used for livestock watering						
Groundwater used for irrigation						

Model output is populated in the model output box when running the model for each of the applicable site-specific factors. Model output includes the calculated concentrations for each of the four model components.

For the SSS Model Type, be aware that site-specific soil standards can be calculated for selected substances that do not have a matrix numerical soil standard protective of a specific groundwater use (for example, tetrachloroethylene and trichloroethylene for the site-specific factor protective of drinking water and trichloroethylene for the site-specific factor protective of livestock watering). It is the responsibility of the user to ensure that SSS(s) are calculated for substances that have an applicable site-specific factor only.

For model documentation, the input sheet is saved to a pdf file (by using the "Save As" function in Excel).

Expire date

The model includes an expiry date. If actioned, the following message is displayed "This version of the model expired on <expiryDate>. Contact the Ministry of Environment for a more current version." An updated model will be posted to the ministry website prior to the expiry date

Appendix 2

Soil leachate partitioning

From EPA SSG [1]:

$$C_{s} = \frac{C_{L} \left[K_{d} + \left(\frac{n_{w} + H'n_{a}}{\rho_{b}} \right) \right]}{1000}$$

 $n_a = n - n_w$

 C_s = soil concentration at source (µg/g) C_L = leachate concentration at source (µg/L) K_d = distribution coefficient (L/kg) n = total porosity (default value 0.36) n_w = water filled porosity (default value 0.119) n_a = air filled porosity (default value 0.241) ρ_b = dry bulk density of soil (default value 1.7 g/cm³) H' = dimensionless Henry's law constant 1000 = conversion factor (1000 µg/mg)

Unsaturated fate and transport of leachate

Unsaturated zone transport as modified from Kool et al., 1994 [2]:

$$C_{L} = \frac{C_{z}}{\exp\left[\frac{b}{2\partial_{u}}\left(1 - \left(1 + \frac{4\lambda_{u}\partial_{u}R_{u}}{v_{u}}\right)^{1/2}\right)\right]}$$

$$b = d - Z$$

 $\partial_{\rm u} = 0.1 {\rm b}$

$$\lambda_{u} = \frac{\ln 2}{t_{1/2u}} \left(1 - \frac{D_{fr}}{365} \right)$$
 where $\ln 2 = 0.6931$

$$R_{u} = 1 + \frac{\rho_{b}}{n_{w}} K_{d}$$

$$v_u = \frac{I}{n_w}$$

 $\begin{array}{l} C_L = \text{leachate concentration at source } (\mu g/L) \\ C_z = \text{leachate concentration at water table } (\mu g/L) \\ b = \text{vertical distance between base of source and water table } (m) \\ d = \text{depth to water table } (m) \\ Z = \text{source depth } (m) \\ \partial_u = \text{dispersivity in unsaturated zone } (m) \\ \lambda_u = \text{biodegradation rate in unsaturated zone } (\text{days}^{-1*365 \text{ days/yr}}) \\ t_{1/2u} = \text{half-life in unsaturated zone } (\text{days}) \\ D_{fr} = \text{number of days of frozen ground} \\ R_u = \text{retardation factor in unsaturated zone} \\ \rho_b = \text{dry bulk density of soil (default value 1.7 g/cm^3)} \\ K_d = \text{distribution coefficient } (L/kg) \\ n_w = \text{water filled porosity (default value 0.119)} \end{array}$

 v_u = leachate velocity in unsaturated zone (m/yr)

Leachate/groundwater mixing

Water balance from EPA SSG [1]:

 $C_z = C_{gw} * DF$

 $DF = 1 + \left(\frac{d_m V}{XI}\right)$ $d_m = r + s = 0.1X + d_a \left[1 - \exp\left(-\frac{XI}{Vd_a}\right)\right]$ r = 0.1X $s = d_a \left[1 - \exp\left(-\frac{XI}{Vd_a}\right)\right]$

$$I = P - (RO + EV)$$

 C_z = leachate concentration at water table (µg/L) C_{gw} = groundwater concentration below source (µg/L) DF = dilution factor X = source length (m) d_m = mixing zone thickness (m) V = Darcy flux or specific discharge (m/yr) r = depth of mixing due to vertical dispersivity (m) s = depth of mixing due to downward velocity of infiltrating water (m) d_a = aquifer thickness (m) I = infiltration rate (m/yr) P = precipitation rate (m/yr) RO+EV = runoff plus evapotranspiration rate (m/yr)

Note: DF = 1 if source extends into water table Note: d_m constrained to $\leq d_a$

Saturated fate and transport of solute

2D saturated transient analytical transport solution from Domenico, 1987 [3]:

$$C(x, y, t) = \frac{C_{gw}}{4} \exp\left\{\frac{x}{2\partial_{x}}\left[1 - \left(1 + \frac{4\lambda_{s}\partial_{x}}{v'}\right)^{1/2}\right]\right\} \operatorname{erfc}\left[\frac{x - v't\left(1 + \frac{4\lambda_{s}\partial_{x}}{v'}\right)^{1/2}}{2(\partial_{x}v't)^{1/2}}\right]$$
$$*\left\{\operatorname{erf}\left[\frac{\left(y + \frac{Y}{2}\right)}{2(\partial_{y}x)^{1/2}}\right] - \operatorname{erf}\left[\frac{\left(y - \frac{Y}{2}\right)}{2(\partial_{y}x)^{1/2}}\right]\right\}$$

$$\partial_{x} = 0.1x \text{ and } \partial_{y} = 0.1 \partial_{x}$$

$$\lambda_{s} = \frac{\ln 2}{t_{1/2s}} \text{ where } \ln 2 = 0.6931$$

$$R_{f} = 1 + \frac{\rho_{b}}{n} K_{d} \text{ where } K_{d} = K_{oc} f_{oc}$$

$$V = K i$$

$$v = \frac{V}{n_{e}} = \frac{K i}{n_{e}}$$

$$v' = \frac{V}{R_{f}}$$

At steady-state conditions (t= ∞), consolidating terms, and for maximum groundwater concentrations along the plume centreline (y=0), C(x,y,t) reduces to:

$$C_{x} = C_{gw} \exp\left\{\frac{x}{2\partial_{x}}\left[1 - \left(1 + \frac{4\lambda_{s}\partial_{x}}{v'}\right)^{1/2}\right]\right\} \operatorname{erf}\left[\frac{Y}{4(\partial_{y}x)^{1/2}}\right]$$

Solving for Cgw:

$$C_{gw} = \frac{C_{x}}{\exp\left\{\frac{x}{2\,\partial_{x}}\left[1 - \left(1 + \frac{4\lambda_{s}\,\partial_{x}}{v'}\right)^{1/2}\right]\right\}\,erf\left[\frac{Y}{4(\partial_{y}x)^{1/2}}\right]}$$

or

$$C_{gw} = \frac{C_{x}}{\exp\left\{\frac{x}{2\,\partial_{x}}\left[1 - \left(1 + \frac{4\lambda_{s}\,\partial_{x}R_{f}}{v}\right)^{1/2}\right]\right\}\,erf\left[\frac{Y}{4(\partial_{y}x)^{1/2}}\right]}$$

 C_{gw} = groundwater concentration below source (μ g/L) C_x = water use standard at point of compliance (μ g/L) x = distance to point of compliance (default value 10 m) $\partial_x =$ longitudinal dispersivity (m) ∂_{y} = transverse dispersivity (m) λ_s = biodegradation rate in saturated zone (days^{-1*}365 days/yr) $t_{1/2s}$ = half-life in saturated zone (days) R_f = retardation factor in saturated zone ρ_b = dry bulk density of soil (default value 1.7 g/cm³) n = total porosity (default value 0.36) K_d = distribution coefficient (L/kg) K_{oc} = organic carbon partitioning coefficient (L/kg) f_{oc} = fraction of organic carbon (default value 0.5%) v' = retarded average linear groundwater velocity in saturated zone (m/yr) v = average linear groundwater velocity in saturated zone (m/yr) V = Darcy flux or specific discharge (m/yr) $n_e = effective porosity (default value 0.25)$ K = hydraulic conductivity (m/s*3.154E-07 s/yr)i = hydraulic gradientY =source width (m)

Appendix 3

Model parameters

Category	Parameter	Symbol	Unit	Default value
Source Dimensions	Source length	X	m	10
	Source width	Y	m	30
	Source depth	Z	m	3
Meteorology	Precipitation rate	Р	mm/yr	1,000
	Runoff + evapotranspiration rate	RO+EV	mm/yr	450
	Infiltration rate	I	mm/yr	550
	Number of days of frozen ground	D _{fr}	-	0
Hydrogeology	Total porosity	n	-	0.36
	Water-filled porosity	n _w	-	0.119
	Air-filled porosity	na	-	0.241
	Effective porosity	n _e	-	0.25
	Dry bulk density of soil	ρь	g/cm ³	1.7
	Fraction of organic carbon	f _{oc}	-	0.005
	Hydraulic conductivity	K	m/s	3E-05
	Hydraulic gradient	i	m/m	0.008
	Depth to water table	d	m	3
	Aquifer thickness	da	m	5
	pH of soil	pH _{soil}	-	6.5
	pH of groundwater	pH _{water}	-	6.5
	Water hardness	Н	mg/L as CaCO ₃	200
	Distance to point of compliance	x	m	10
Substance	Half-life in unsaturated zone	t _{1/2u}	days	Substance dependent
	Half-life in saturated zone	t _{1/2s}	days	Substance dependent
	Organic carbon partitioning coefficient	K _{oc}	L/kg	Substance dependent
	Distribution coefficient	K _d	L/kg	Substance dependent
	Dimensionless Henry's law constant	H′	-	Substance dependent
	Solubility limit	S	µg/L	Substance dependent