





## About UVic

- Founded: 1963
- Full Time Equivalent Students: 18,500
- •Number of Buildings: 135
- Gross Building Floor Area: 400,000 m<sup>2</sup>
- Students in Residence: 2,300
- •BC Public Sector Greenhouse Gas Emissions in 2014: 2.1%









### Campus Energy: 2010 - 2014

#### Energy Consumption [GJ]



#### **Energy Cost**



Energy Use By Source: 2014



## Greenhouse Gas Emissions by Source: 2014





Source: Carbon Neutral Report 2014

## Greenhouse Gas Emissions: 2010 - 2019



## **Greenhouse Gas Emissions Weather Normalized**



University of Victoria

UVIC GHG Emissions UVIC Weather-Normalized GHG Emissions

# **Key Success Factors**

Strong Support from Executive Group

 Facilities Management and Office of Campus Planning & Sustainability report directly to VPFO

oSustainability Policy established 2009

- Sustainability Positions Established

   Sustainability Coordinator 2001
   Energy Manager 2010
- Early Accountability

oFirst Greenhouse Gas Emissions Report – 2007

oFirst Carbon Neutral Action Report - 2008

oUVic Sustainability Project Climate Leadership Report - 2007



# Role of Leadership, Culture, and Champions

•Leadership

- Executive Group sees the value of a project beyond the bottom line
- oFacilities Management ensures resources allocated to energy reduction projects
- Campus Planning and Sustainability provides vision and connects departments across campus
- oStudent Sustainability Organizations encourage student involvement
- •Culture
  - oStudents drive institutional interests
  - oSustainability Projects have easier buy-in because of a strong culture



#### Lessons Learned

- Large Opportunity for Optimization in Existing Buildings

   Building Automation and Retro-commissioning
   Occupant Behavioural Change
- Renewable Energy Projects less effective than Building Optimization
   OMarket is less mature
  - oHigher capital cost
  - $\circ$ Weaker payback periods
- Have GHG Reduction Projects ready
- Energy considerations included early in project planning



## **Funding & Incentives**

- •BC Hydro Energy Manager Program
- •BC Hydro Energy Conservation Incentives
- Fortis BC Incentives
- AVED Carbon Neutral Capital Program
- •Knowledge Infrastructure Program 2010/2011
- •UVic Revolving Sustainability Loan Fund Since 2011
- •UVic Utility Budget Savings help fund future projects
- •CAS Support: Reporting tools (SmartTool)



#### Hurdles and Obstacles

- •GHG reduction will become increasingly expensive (poor payback for new projects)
  - oGeothermal systems are expensive
  - oContinuous Optimization Program for all major buildings is complete
- •Inexpensive Natural Gas (33% drop in rates over 5 years) oBusiness case for fuel switching to electricity is more difficult
- Pilot Advanced Technology
  - Fault Detection algorithms and software to provide automation support for preventative maintenance



## Path to 2020

- District Energy System Upgrade: est. 900 tCO<sub>2</sub> saved
- Residence Building Automation
- Data Center Heat Recovery
- Increased Preventative Maintenance
- Increased use of Champions to Identify Opportunities
- Continued Reporting on Sustainability Action Plan Goals







