

BIOMETRICS INFORMATION

Index of Pamphlet Topics

for pamphlets #1 to #63

as of January, 2007

Adjusted R-square

18: Multiple regression: selecting the best subset

ANCOVA: Analysis of Covariance

- 13: ANCOVA: comparing adjusted means
- 31: ANCOVA: The linear models behind the F-tests
- 62: The Box-Cox transformation

ANOVA: Analysis of Variance

- 2: The importance of replication in analysis of variance
- 3: ANOVA using SAS: specifying error terms
- 4: ANOVA using SAS: How to pool error terms
- 6: Using plot means for ANOVA
- 9: Reading category variables with statistics software
- 14: ANOVA: Factorial designs with a separate control
- 16: ANOVA: Contrasts viewed as t-tests
- 19: ANOVA: Approximate or Pseudo F-tests
- 21: What are degrees of freedom?
- 22: ANOVA: Using a hand calculator to test a one-way ANOVA
- 23: ANOVA: Contrasts viewed as correlation coefficients
- 25: ANOVA: The within sums of squares as an average variance
- 26: ANOVA: Equations for linear and quadratic contrasts
- 27: When the t-test and the F-test are equivalent
- 28: Simple regression with replication: testing for lack of fit
- 39: A repeated measures example
- 40: Finding the expected mean squares and the proper error terms with SAS
- 45: Calculating contrast F-tests when SAS will not
- 48: ANOVA: Why a fixed effect is tested by its interaction with a random effect
- 49: Power analysis and sample sizes for completely randomized designs with subsampling

- 50: Power analysis and sample sizes for randomized block designs with subsampling
- 51: Programs for power analysis/sample size calculations for CR and RB designs with subsampling
- 52: Post-hoc power analyses for ANOVA F-tests
- 53: Balanced incomplete block (BIB) study designs
- 54: Incomplete block designs: Connected designs can be analysed
- 55: Displaying factor relationships in experiments
- 56: The use of indicator variables in non-linear regression
- 57: Interpreting main effects when a two-way interaction is present
- 58: On the presentation of statistical results: a synthesis
- 59: ANOVA: Coefficients for contrasts and means of incomplete factorial designs
- 60: MANOVA: Profile Analysis an example using SAS
- 61: ANOVA: Power of Linear Contrasts Interpreting the Non-centrality Parameter
- 62: The Box-Cox transformation

ASCII

1: Producing ASCII files with SAS

Blocks

- 17: What is the design?
- 34: When are blocks pseudo-replicates?
- 53: Balanced incomplete block (BIB) study designs
- 54: Incomplete block designs: Connected designs can be analysed

Bonferroni

13: ANCOVA: comparing adjusted means

Boxplots

33: Box plots

Chi-square Distribution

- 15: Using SAS to obtain probability values for F-, t-, and Chi-square statistics
- 36: Contingency tables and log-linear models

Cluster sampling

43: Standard error formulas for cluster sampling (unequal cluster sizes)

Completely Randomized Designs

- 5: Understanding replication and pseudo-replication
- 17: What is the design?
- 48: ANOVA: Why a fixed effect is tested by its interaction with a random effect
- 49: Power analysis and sample sizes for completely randomized designs with subsampling
- 55: Displaying factor relationships in experiments
- 57: Interpreting main effects when a two-way interaction is present
- 59: ANOVA: Coefficients for contrasts and means of incomplete factorial designs

Confidence Intervals

- 29: Simple Regression: Confidence intervals for a predicted X-value
- 30: Interpretation of probability p-values

Confidence Level

11: Sample sizes: for one mean

Contingency Tables

- 21: What are degrees of freedom?
- 36: Contingency tables and log-linear models
- 41: Power analysis and sample size determination for contingency table tests
- 58: On the presentation of statistical results: a synthesis

Contrasts

- 12: Determining polynomial contrast coefficients
- 13: ANCOVA: comparing adjusted means
- 14: ANOVA: Factorial designs with a separate control
- 16: ANOVA: Contrasts viewed as t-tests
- 23: ANOVA: Contrasts viewed as correlation coefficients

- 26: ANOVA: Equations for linear and quadratic contrasts
- 45: Calculating contrast F-tests when SAS will not
- 59: ANOVA: Coefficients for contrasts and means of incomplete factorial designs
- 61: ANOVA: Power of Linear Contrasts Interpreting the Non-centrality Parameter

Control

14: ANOVA: Factorial designs with a separate

Correlation Coefficient

23: ANOVA: Contrasts viewed as correlation coefficients

Crossed Factors

- 17: What is the design?
- 48: ANOVA: Why a fixed effect is tested by its interaction with a random effect
- 55: Displaying factor relationships in experiments
- 57: Interpreting main effects when a two-way interaction is present

Degrees of Freedom

- 19: ANOVA: Approximate or Pseudo F-tests
- 21: What are degrees of freedom?

Dunn-Bonferroni

13: ANCOVA: comparing adjusted means

EDA (Exploratory Data Analysis)

33: Box plots

Error Bars

38: Plotting error bars with SAS/Graph

Error Sums of Squares - see Residual sums of squares or Within sums of squares

Error Terms

- 3: ANOVA using SAS: specifying error terms
- 4: ANOVA using SAS: How to pool error terms
- 19: ANOVA: Approximate or Pseudo F-tests
- 48: ANOVA: Why a fixed effect is tested by its interaction with a random effect

Index of Pamphlet Topics

Expected Mean Squares

40: Finding the expected mean squares and the proper error terms with SAS

Experimental Design

- 17: What is the design?
- 34: When are blocks pseudo-replicates?
- 44: What do we look for in a working plan?

Experimental unit - see Treatment unit

F-Distribution

- 15: Using SAS to obtain probability values for F-, t-, and Chi-square statistics
- 37: A general description of hypothesis testing and power analysis
- 52: Post-hoc power analyses for ANOVA F-tests

F-Max Test

25: ANOVA: The within sums of squares as an average variance

F-Test

- 18: Multiple regression: selecting the best subset
- 27: When the t-test and the F-test are equivalent
- 28: Simple Regression with replication: testing for lack of fit
- 31: ANCOVA: The linear models behind the F-tests
- 45: Calculating contrast F-tests when SAS will not
- 46: GLM: Comparing regression lines

Factor Relationship Diagram

55: Displaying factor relationships in experiments

Factorial Design

- 14: ANOVA: Factorial designs with a separate control
- 17: What is the design?
- 48: ANOVA: Why a fixed effect is tested by its interaction with a random effect
- 53: Balanced incomplete block (BIB) study designs
- 54: Incomplete block designs: Connected designs can be analysed
- 55: Displaying factor relationships in experiments
- 57: Interpreting main effects when a two-way interaction is present

- 59: ANOVA: Coefficients for contrasts and means of incomplete factorial designs
- 60: MANOVA: Profile Analysis an example using SAS

Homogeneity of Variance

25: ANOVA: The within sums of squares as an average variance

Hypothesis Testing

- 30: Interpretation of probability p-values
- 37: A general description of hypothesis testing and power analysis
- 48: ANOVA: Why a fixed effect is tested by its interaction with a random effect

Indicator (Dummy) Variables

56: The use of indicator variables in non-linear regression

Inference

63: Comparing design-based and model-based inference: an introduction

Lack of Fit

28: Simple regression with replication: testing for lack of fit

Linear Combination

16: ANOVA: Contrasts viewed as t-tests

Linear Models

- 28: Simple regression with replication: testing for lack of fit
- 31: ANCOVA: The linear models behind the F-tests
- 46: GLM: Comparing regression lines

Log-linear model

36: Contingency tables and log-linear models

Logistic Regression

7: Logistic regression analysis: model statements in PROC CATMOD

LSD (Least Significant Difference)

- 13: ANCOVA: comparing adjusted means
- 57: Interpreting main effects when a two-way interaction is present

Mallow's CP

18: Multiple regression: selecting the best subset

MANOVA

- 39: A repeated measures example
- 60: MANOVA: Profile Analysis an example using SAS

Means

- 6: Using plot means for ANOVA
- 11: Sample sizes: for one mean
- 43: Standard error formulas for cluster sampling (unequal cluster sizes)
- 58: On the presentation of statistical results: a synthesis
- 59: ANOVA: Coefficients for contrasts and means of incomplete factorial designs

Multiple Range Tests

13: ANCOVA: comparing adjusted means

Multiple Regression

- 8: Standard errors for predicted values from multiple regression
- 18: Multiple regression: selecting the best subset
- 27: When the t-test and the F-test are equivalent
- 56: The use of indicator variables in non-linear regression
- 62: The Box-Cox transformation

Non-linear Regression

- 39: A repeated measures example
- 56: The use of indicator variables in non-linear regression

Polynomial Contrasts

- 12: Determining polynomial contrast coefficients
- 26: ANOVA: Equations for linear and quadratic contrasts
- 32: Analysing a split-plot in time with the proper repeated measures ANOVA

61: ANOVA: Power of Linear Contrasts - Interpreting the Non-centrality Parameter

Power

- 37: A general description of hypothesis testing and power analysis
- 41: Power analysis and sample size determination for contingency table tests
- 49: Power analysis and sample sizes for completely randomized designs with subsampling
- 50: Power analysis and sample sizes for randomized block designs with subsampling
- 51: Programs for power analysis/sample size calculations for CR and RB designs with subsampling
- 52: Post-hoc power analyses for ANOVA F-tests
- 61: ANOVA: Power of Linear Contrasts Interpreting the Non-centrality Parameter

Predicted values

- 8: Standard errors for predicted values from multiple regression
- 29: Simple Regression: Confidence intervals for a predicted X-value

Probability values

- 15: Using SAS to obtain probability values for F-, t-, and Chi-square statistics
- 30: Interpretation of probability p-values

Approximate or Pseudo F-tests

19: ANOVA: Approximate or Pseudo F-tests

Pseudo-Replication

- 5: Understanding replication and pseudo-replication
- 34: When are blocks pseudo-replicates?

Questionnaire

10: Results of biometrics questionnaire

R-square

18: Multiple regression: selecting the best subset

Index of Pamphlet Topics

Random Factors

- 40: Finding the expected mean squares and the proper error terms with SAS
- 48: ANOVA: Why a fixed effect is tested by its interaction with a random effect

Randomized Block Designs

- 5: Understanding replication and pseudo-replication
- 17: What is the design?
- 34: When are blocks pseudo-replicates?
- 50: Power analysis and sample sizes for randomized block designs with subsampling
- 55: Displaying factor relationships in experiments

Regression

- 21: What are degrees of freedom?
- 27: When the t-test and the F-test are equivalent
- 28: Simple regression with replication: testing for lack of fit
- 29: Simple regression: Confidence intervals for a predicted X-value
- 31: ANCOVA: The linear models behind the F-tests
- 46: GLM: Comparing regression lines
- 56: The use of indicator variables in non-linear regression
- 58: On the presentation of statistical results: a synthesis
- 62: The Box-Cox transformation

Repeated Measures

- 32: Analysing a split-plot in time with the proper repeated measures ANOVA
- 39: A repeated measures example
- 58: On the presentation of statistical results: a synthesis
- 60: MANOVA: Profile Analysis an example using SAS

Replication

- 2: The importance of replication in analysis of variance
- 5: Understanding replication and pseudo-replication
- 17: What is the design?

- 28: Simple regression with replication: testing for lack of fit
- 48: ANOVA: Why a fixed effect is tested by its interaction with a random effect

Residual Sums of Squares

- 31: ANCOVA: The linear models behind the F-tests
- 62: The Box-Cox transformation

Sample Size

- 11: Sample sizes: for one mean
- 41: Power analysis and sample size determination for contingency table tests
- 49: Power analysis and sample sizes for completely randomized designs with subsampling
- 50: Power analysis and sample sizes for randomized block designs with subsampling

Sampling

- 11: Sample sizes: for one mean
- 43: Standard error formulas for cluster sampling (unequal cluster sizes)
- 44: What do we look for in a working plan?
- 63: Comparing design-based and model-based inference: an introduction

Sampling Units

17: What is the design?

SAS Programs

- 1: Producing ASCII files with SAS
- 9: Reading category variables with statistics software
- 15: Using SAS to obtain probability values for F-, t-, and Chi-square statistics
- 29: Simple Regression: Confidence intervals for a predicted X-value
- 33: Box plots
- 35: The computation of tree shadow lengths
- 36: Contingency tables and log-linear models
- 41: Power analysis and sample size determination for contingency table tests
- 43: Standard error formulas for cluster sampling (unequal cluster sizes)
- 47: SAS: Adding observations when class variables (e.g. species list) are missing

- 51: Programs for power analysis/sample size calculations for CR and RB designs with subsampling
- 59: ANOVA: Coefficients for contrasts and means of incomplete factorial designs
- 60: MANOVA: Profile Analysis an example using SAS

SAS Programs cont.

- 61: ANOVA: Power of Linear Contrasts Interpreting the Non-centrality Parameter
- 62: The Box-Cox transformation

SAS: CATMOD

- 7: Logistic regression analysis: model statements in PROC CATMOD
- 36: Contingency tables and log-linear models

SAS: Data Step

- 20: Rearranging raw data files using SAS
- 24: Reading WATFILE file into SAS
- 47: SAS: Adding observations when class variables (e.g. species list) are missing

SAS: GLM

- 3: ANOVA using SAS: specifying error terms
- 4: ANOVA using SAS: How to pool error terms
- 6: Using plot means for ANOVA
- 32: Analysing a split-plot in time with the proper repeated measures ANOVA
- 40: Finding the expected mean squares and the proper error terms with SAS
- 45: Calculating contrast F-tests when SAS will not
- 46: GLM: Comparing regression lines
- 57: Interpreting main effects when a two-way interaction is present
- 59: ANOVA: Coefficients for contrasts and means of incomplete factorial designs
- 60: MANOVA: Profile Analysis an example using SAS

SAS: Graph

- 38: Plotting error bars with SAS/Graph
- 42: Labelling curves in SAS/GRAPH

SAS: MIXED

59: ANOVA: Coefficients for contrasts and means of incomplete factorial designs

SAS: NLIN

- 39: A repeated measures example
- 56: The use of indicator variables in non-linear regression

SAS: REG

- 8: Standard errors for predicted values from multiple regression
- 18: Multiple regression: selecting the best subset

Shadow Lengths

35: The computation of Tree Shadow Lengths

Split-Plot Design

- 6: Using plot means for ANOVA
- 17: What is the design?
- 32: Analysing a split-plot in time with the proper repeated measures ANOVA
- 34: When are blocks pseudo-replicates?
- 55: Displaying factor relationships in experiments

Standard Errors

- 8: Standard errors for predicted values from multiple regression
- 11: Sample sizes: for one mean
- 43: Standard error formulas for cluster sampling (unequal cluster sizes)
- 58: On the presentation of statistical results: a synthesis
- 59: ANOVA: Coefficients for contrasts and means of incomplete factorial designs

SYSTAT

9: Reading category variables with statistics software

t-distribution

15: Using SAS to obtain probability values for F-, t-, and Chi-square statistics

t-test

- 16: ANOVA: Contrasts viewed as t-tests
- 27: When the t-test and the F-test are equivalent

Transformations

62: The Box-Cox transformation

Index of Pamphlet Topics

Treatment Unit

- 2: The importance of replication in analysis of variance
- 5: Understanding replication and pseudo-replication
- 17: What is the design?
- 34: When are blocks pseudo-replicates?
- 55: Displaying factor relationships in experiments

Type I & II errors

- 30: Interpretation of probability p-values
- 37: A general description of hypothesis testing and power analysis

WATFILE

24: Reading WATFILE file into SAS

Within Sums of Squares

- 25: ANOVA: The within sums of squares as an average variance
- 28: Simple regression with replication: testing for lack of fit