Province of British Columbia Ministry of Environment, Lands and Parks

Vancouver Island Region

French Creek

Water Allocation Plan

July 1994

written by: George Bryden Tammy-Jo Welyk & Sean Gannon

Regional Water Management Vancouver Island Region Nanaimo, B.C.

Approve lun

Regional Water Manager Vancouver Island Region

Date: 15 SEPTEMBER 1994

Table of Contents	(i)
List of Tables(i	(ii)
List of Figures(i	(ii)
Appendices(ii	iii)
1.0 INTRODUCTION	1
2.0 GENERAL WATERSHED INFORMATION	2
3.0 HYDROLOGY 3.1 Precipitation 3.2 Hydrometric Information 3.2.1 Romney Creek 3.2.2 Carey Creek 3.2.3 Morningstar Creek 3.2.4 French Creek 3.2.5 Beach Creek 3.2.6 Grandom Creek 3.2.7 Other Small Drainages 3.4 Water Supply 1 3.4 Water Supply 1 4.0 INSTREAM FLOW REQUIREMENTS 4.1 Romney Creek and Carey Creek 4.2 Morningstar Creek 4.3 French Creek 4.4 Beach Creek 4.5 Grandom Creek 4.6 Other Small Streams	5 5 6 9 9 10 12 13 13 14 14 17 17 18 19 19
5.0 LICENSED WATER DEMAND 2 5.1 Municipal Waterworks Water Demand 2 5.2 Domestic Water Demand 2 5.3 Industrial Water Demand 2 5.4 Irrigation Water Demand 2 5.5 Storage Water Demand 2 5.6 Land Improvement Water Demand 2	20 22 24 24 24 25 25

Table of Contents

5.7 Conservation Water Demand 5.8 Projected Demand	25 26
6.0 CONCLUSIONS AND RECOMMENDATIONS	27
6.1 Waterworks	28
6.2 Domestic	29
6.3 Industrial and Commercial	30
6.5 Land Improvement	34
6.6 Conservation	34
6.7 Storage	35
6.8 Allocation Plan Revision	36

List of Tables

French Creek Drainage Areas	2
French Creek at Coombs (08HB038) Mean Monthly Discharge	6
French Creek above the Pumphouse (08HB078) Mean Monthly Discharge	6
Selected WSC Stations	7
Unit Area Discharge for Selected WSC Drainage Areas	7
Mean Annual Discharges	8
Percent MAD for Selected WSC Stations	8
Romney Creek Mean Monthly and Mean Annual Discharge	9
Carey Creek Mean Monthly and Mean Annual Discharge	. 9
Morningstar Creek Mean Monthly and Mean Annual Discharge	10
French Creek Mean Monthly and Mean Annual Discharge	10
Beach Creek Mean Monthly and Mean Annual Discharge	12
Grandom Creek Mean Monthly and Mean Annual Discharge	13
Water Supply Summary	14
Modified Tennant (Montana) Method Instream Flow Requirements	15
Estimated Average Annual Licenced Demand	21
Low Flow Licensed Demand by Drainage	22
Recommended Livestock Water Requirements	31
Annual Irrigation Water Requirements	32

List of Figures

Figure 1: French Creek Water Significant Drainage Areas	3
Figure 2: French Creek Water Allocation Area	4
Figure 3: Parksville Precipitation Normals	5
Figure 4: Flow Measurement Locations	11

Figure 5: Fish Habitat	16
Figure 6: Morningstar Creek Instream Flow Requirements	17
Figure 7: French Creek Instream Flow Requirements	18
Figure 8: Beach Creek Instream Flow Requirements	18
Figure 9: Number of Water Licences	20
Figure 10: Licenced Water Demand	20
Figure 11: Licenced Water Demand Locations	23
Figure 12: Annual Irrigation Water Requiremetns	33

Appendices

Appendix A: Parksville Canadian Climatic Normals 1951 - 1980	37
Appendix B: Water Survey Canada Monthly and Annual Mean Discharges	
French Creek, Millstone River, Enos Creek	39
Appendix C: Miscellaneous Flow Measurements and Estimates	45
Appendix D: Licensed Water Demand by Purpose	49
Appendix E: Licensed Water Demand by Drainage Area	54
Appendix F: Pending (1993) Water Licence Applications	57
Appendix G: Fish Screening Requirements	59

1.0 INTRODUCTION

The Water Management Program's goals are to sustain a healthy water resource through anticipating and planning for water uses. Water Allocation Plans are a means of identifying water demands and ensuring that water use is compatible with the goals of a sustainable environment. Water should not be allocated beyond the ability of the resource to replenish itself. The natural amenities must be maintained for present and future generations. Allocations must be based on reasonable expectations that water will be available for the period required without significantly impacting existing licenced allocations or instream flow requirements. Advantages of preparing an allocation plan include:

- 1. Providing the public with our position on water allocation in advance of water applications (pro-active management, information available to applicants and the public);
- 2. Reducing response time by having plans in place prior to receiving applications;
- 3. Eliminating individual studies and reports on each application;
- 4. Improving the consistency of our approach and decisions;
- 5. Replacing or reducing most Water Licence Application Reports by pre-defining specific allocation directions and decisions;
- 6. Being more comprehensive in the plan than in present reports;
- 7. Eliminating the need for many referrals.

The Vancouver Island Region developed the following policy to provide water allocation direction:

Regional Policy:

The region shall be subdivided into watershed areas and a water allocation plan shall be prepared for each watershed area. Water licence decisions will be made in accordance with approved plans.

Assessments undertaken as part of the water allocation planning process include identifying the surface water resources available, the instream requirements for fish, the existing and potential licensable water demands and providing direction regarding

further water licence allocations.

Input may be sought from other agencies. Referrals go to Federal & Provincial Fisheries agencies and to Water Management in Victoria.

2.0 GENERAL WATERSHED INFORMATION

The French Creek Water Allocation Plan area is located on the East coast of Vancouver Island and encompasses all the streams between the Englishman River to the south and the Qualicum River to the north that drain from the Beauford Mountains into the Strait of Georgia. The plan area is approximately 121 km². The plan area encompasses most of the City of Parksville, the Town of Qualicum Beach and the communities of Coombs and Errington. The plan area is illustrated in Figure 1 and cadastral features is illustrated in Figure 2.

The largest stream at the centre of the plan area is French Creek. The headwaters of French Creek drain from a maximum elevation of 1080 meters in the Beauford Mountains to sea level in the Strait of Georgia. Approximately 80% of the plan area is below the 200 meter elevation. The largest body of water in the plan area is Hamilton Marsh which drains into French Creek downstream of the Alberni Highway (Highway 4).

French Creek Drainage Areas								
Drainage Area (km ²) Median Elevation								
Romney Creek	6.52	90						
Carey Creek	3.47	50						
Morningstar Creek	7.90	60						
French Creek	79.09	140						
Beach Creek	6.25	80						
Grandon Creek	9.15	80						

For the purposes of assessing water supplies for allocation demands, the watershed and drainage areas in the following table were identified and illustrated in Figure 1.

WATER ALLOCATION PLAN

3

WATER ALLOCATION PLAN

3.0 HYDROLOGY

3.1 Precipitation

There is one AES precipitation station in Parksville just to the west of the French Creek Allocation Plan area. A bar graph showing the monthly precipitation normals for the 1951 to 1980 period for these stations is shown in Figure 3. The Canadian Climatic Normals 1951-1980 data is provided in Appendix A.

The mean total annual precipitation is 963.9 mm (37.9 inches). The minimum mean monthly precipitation is 23.1 mm (0.9 inch) in July and the maximum mean monthly precipitation is 165.8 mm (6.5 inches) in December. The mean number of days with measurable precipitation is 180 days; with 173 days with rain and 11 days with snow.

1

3.2 Hydrometric Information

There are two Water Survey Canada (WSC) hydrometric stations within the French Creek Water Allocation Plan area. Both of these hydrometric stations are on French Creek and both stream flow records are for the April through September period.

The WSC hydrometric station French Creek at Coombs (08HB038) has daily flow records for the period April through September for the years 1969 to 1971 and 1983 to 1989. The mean monthly flow summary for this station is in the following table:

French Creek at Coombs (08HB038) Mean Monthly Discharge litres/sec 1971 to 1978											
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
			1610	973	271	77	8	48			

The WSC hydrometric station French Creek above the Pumphouse (08HB078) has daily flow records for the period April through September for the years 1990 to 1993 (present). The mean monthly flow summary for this station is in the following table:

French Creek above the Pumphouse (08HB078) Mean Monthly Discharge litres/sec 1990 to 1993											
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
			1062	437	205	45	77	106			

Neither of the above noted flow records are sufficient to estimate the mean annual discharge (MAD) and the annual distribution of flow for streams within the plan area. Therefore three additional WSC station with small drainage areas and complete annual records were used. The WSC stations used to estimate the MAD and annual distribution of flow are noted in the following table:

Selected WSC Stations										
WSC Station Name	Station Number	Years of Record	Drainage Area (km²)							
French Creek above Pumphouse	08HB078	1990-93	79.1							
French Creek at Coombs	08HB038	1969-71 1983-89	58.3							
Millstone River near Wellington	08HB027	1961-64 1969-74	46.1							
Millstone River at Nanaimo	08HB032	1961-65 1986-90	86.2							
Enos Creek at the Outlet of Enos Lake	08HB030	1962-78	1.68							

A summary of WSC flow records may be found in Appendix B.

The unit area (1 Kilometre) discharge was estimated from the mean annual and mean monthly records for each station for the period of record. An average annual unit and average monthly unit discharges were used to estimate the mean monthly discharge and mean annual discharge (MAD) in all significant drainages within the French Creek Water Allocation Plan area. These estimated flows per unit area are in the following table:

Unit Area Discharge for Selected WSC Drainage Areas litres/second/Km ²													
Station Number	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	MAD
08HB078				13	6	3	1	1	1				
08HB038				28	17	5	1	0	1				
08HB027	64	57	62	39	22	6	2	1	0	9	49	95	34
08HB032	62	51	43	26	13	5	1	0	0	8	45	68	27
08HB030	70	45	42	15	4	4	1	0	0	1	20	56	21
Average	65	51	49	24	12	4	1	0	1	6	38	73	27

The above average flows were multiplied by the watershed area to obtain an estimated MAD and mean monthly flows for each identified significant watershed in the following sections of the report. The mean annual discharge (MAD) for the identified drainages and for a unit area (1 km^2) is in the following table:

Mean Annual Discharges								
Drainage	Drainage Area (km2)	MAD (m3/sec)						
Romney Cr	6.52	0.179						
Carey Cr	3.47	0.095						
Morningstar Cr	7.90	0.216						
French Cr	79.09	2.167						
Beach Cr	6.25	0.171						
Grandon Cr	9.15	0.251						
Unit Area (1 km ²)	1.00	0.027						

The period of low flow, for this report, is the period when the mean monthly flow is below 20% MAD. The percent MAD for the selected WSC stream flow stations with complete annual flow records is noted in the following table:

	Percent MAD for Selected WSC Stations											
Station Number	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
08HB027	188%	169%	183%	116%	64%	18%	7%	3%	1%	25%	144%	281%
08HB032	231%	188%	159%	96%	50%	19%	5%	1%	1%	30%	166%	253%
08HB030	328%	211%	194%	72%	17%	19%	3%	0%	0%	6%	92%	261%
Average	249%	190%	179%	95%	43%	19%	5%	1%	1%	20%	134%	265%

The mean monthly flow is below 20% of MAD for the period of June through

September (4 months); the low flow period. The high flow period will be the remaining months of October through May (8 months) when the mean monthly flow is above 20% of MAD.

3.2.1 Romney Creek

Parksville Springs 1, 2 and 3 were originally part of the Romney Creek drainage area. However site inspection indicates that Romney Creek has been diverted into Carey Creek just downstream of the Parksville Springs. For purposes of this report the two creeks will be estimated as separate drainages as they were before the diversion.

Romney Creek has a total drainage area of 6.52 km² (2.52 mi²) from a maximum elevation of 250 metres of Little Mountain to the south of the City of Parksville.

The estimated mean monthly discharge and mean annual discharge (MAD) flow estimates is in the following table:

	Romney Creek Mean Monthly and Mean Annual Discharge											
Jan	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec MAD											MAD
424 333 319 156 78 26 7 0 7 39 248 476 179												

3.2.2 Carey Creek

Most of the drainage of Romney Creek may have been diverted into Carey Creek by drainage development for subdivision within the City of Parksville. For purposes of this report the two creeks will be estimated as separate drainages as they were before the diversion.

Carey Creek has a total drainage area of 3.47 km² (1.34 mi²).

The estimated mean monthly discharge and mean annual discharge (MAD) flow estimates is in the following table:

	Carey Creek Mean Monthly and Mean Annual Discharge										
	litres/sec										
Jan	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec MAD										MAD
226	226 177 170 83 42 14 3 0 3 21 132 253 95										

On August 27, 1986, the streamflow of Carey Creek was 1.7 litres/sec (0.059 cfs); measured using a bucket and stopwatch.

3.2.3 Morningstar Creek

Morningstar Creek is tributary to the French Creek tidal area. The drainage area of Morningstar Creek is estimated to be 7.90 km^2 (3.05 mi²).

The estimated mean monthly discharge and mean annual discharge (MAD) flow estimates is in the following table:

	Morningstar Creek Mean Monthly and Mean Annual Discharge											
	litres/sec											
Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	MAD
514	514 403 387 190 95 32 8 0 8 47 300 577 216											

There was no significant flow on August 27, 1986 in the culvert under Lee Road.

Norecol Environmental Consultants Ltd. reportedly measured the flow in Morningstar Creek as 180 litres/sec on November 30, 1988.

3.2.4 French Creek

As noted above, the largest stream at the centre of the plan area is French Creek. The headwaters of French Creek drain from a maximum elevation of 1080 meters in the Beauford Mountains to sea level in the Strait of Georgia. The drainage area of French Creek is estimated to be 79.09 km² (30.54 mi²).

The estimated mean monthly discharge and mean annual discharge (MAD) flow estimates is in the following table:

	Fr	ench C	reek N	lean N	/lonth litr	ly and es/se	d Mea c	n Anı	nual E	Discha	rge	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	MAD

FRENCH CREEK WATER ALLOCATION PLAN

5,141	4,034	3,875	1,898	949	316	79	0	79	475	3,005	5,774	2,135
-------	-------	-------	-------	-----	-----	----	---	----	-----	-------	-------	-------

WATER ALLOCATION PLAN

figure 4

FRENCH CREEK

As well as the two Water Survey Canada (WSC) hydrometric stations on French Creek used to derive the above estimate, there are also miscellaneous flow measurements on French Creek. From June to October in 1982 and from May to October in 1983, 23 flow measurements were made with a Price Flow Meter on French Creek upstream of the Pumphouse (Station Number 8216). Also in September, October and November of 1987, 15 flow measurements were made with Parshall Flumes at three locations, namely; French Creek at Railroad Trestle (#1); French Creek 1,000 ft below Barclay Road (#2); and French Creek above Island Highway (#3). These miscellaneous flow records where compared with the estimated monthly flows for French Creek and the mean monthly flows of the two Water Survey Canada (WSC) hydrometric stations on French Creek. These miscellaneous flows indicate that there may be a small flow maintained throughout the month of August and, during some low flow years, the flow in the months of September, October and early November may be substantially less than the estimated mean monthly flows in the above table. Flow measurement locations are illustrated in Figure 4. The miscellaneous flow records and the comparison may be found in Appendix C.

Tributaries of French Creek include Fabrick Brook, Whiteley Creek, Virginia Creek, Binet Marsh, Hamilton Marsh, Little Hamilton Marsh, Tanabe Marsh, Dudley Marsh and South French Creek. Most small creeks tributary to French Creek, without significant storage in a marsh, have little or no flow during the low flow period.

3.2.5 Beach Creek

The Beach Creek drainage area is estimated to be 6.25 km^2 (2.41 mi²).

The estimated mean monthly discharge and mean annual discharge (MAD) flow estimates is in the following table:

	Beach Creek Mean Monthly and Mean Annual Discharge											
	litres/sec											
Jan	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec MAD											MAD
406	406 319 306 150 75 25 6 0 6 38 238 456 171											

Sigma Engineering Ltd. measured the outflow from the Qualicum Highland Golf & Country Club as 99 litres/second on February 26, 1990 (File 1001275).

Violetta Creek is tributary to Beach Creek.

3.2.6 Grandom Creek

The Grandom Creek drainage area is estimated to be 9.15 km² (3.52 mi²).

The estimated mean monthly discharge and mean annual discharge (MAD) flow estimates is in the following table:

	Grandom Creek Mean Monthly and Mean Annual Discharge litres/sec											
Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	MAD
595	467	448	220	110	37	9	0	9	55	348	668	251

3.2.7 Other Small Drainages

There are numerous springs and small brooks that flow into the Strait of Georgia in the areas between the above identified drainages. Alexander Brook, northwest of French Creek, and Benbow Creek, northwest of Grandom Creek, are two examples. The drainage areas of these smaller drainages can not be determined on the existing map scale. Information from investigations and reports associated with water licence applications indicate that there is no significant flow from most springs or streams in these smaller drainages from mid-July to the end of September.

3.3 Marshes

The largest body of water in the plan area is Hamilton Marsh which drains into French Creek downstream of the Alberni Highway (Highway 4). The storage provided in this marsh may contribute to the maintenance of some flow in French Creek below the confluence during the low flow period. Other small marshes, such as Price Marsh, Oldaker Marsh, Dudley Marsh, Binet Marsh, Whiteley Marsh and Clatworthy Marsh, provide small local water supplies.

3.4 Water Supply

The following table summarizes the estimated water supplies for each significant drainage and for a unit drainage:

Water Supply Summary									
Drainage	MAD (m³/sec)	June-Sept Min. Flow (I/sec)	Oct-May Volume (dam ³)						
Romney Creek	0.179	0.0	5,432						
Carey Creek	0.095	0.0	2,891						
Morningstar Creek	0.216	0.0	6,582						
French Creek	2.167	0.0	65,894						
Beach Creek	0.171	0.0	5,432						
Grandon Creek	0.251	0.0	7,623						
Unit Area	0.027	0.0	833						

4.0 INSTREAM FLOW REQUIREMENTS

Maintaining the natural stream environment and instream uses is of paramount importance for present and future generations. Maintaining water for the fisheries resource is a key factor in also providing instream flow requirements for water quality, recreational, aesthetic and cultural values. The Provincial Ministry of Environment policy is:

In situations where a water allocation decision will significantly impact instream uses of water, the comptroller or regional water manager may refuse the application or include water licence conditions to protect the instream use.

Instream fisheries flow requirements are based on a provincially modified version of the Tennant (Montana) Method.

Modified Tennant (Montana) Method Instream Flow Requirements							
Flows	Description						
30-60% MAD	Excellent spawning/rearing						
20-30% MAD	Good spawning/rearing						
10-20% MAD	Fair spawning/rearing						
5-10% MAD	Poor spawning/rearing						
>5% MAD	Severely degraded spawning/rearing						

In drainages where fish are present, the minimum flow required to sustain the fisheries resource for fair spawning and rearing habitat is 10% of the Mean Annual Discharge (MAD). Therefore, the Regional policies to implement the Provincial policy are:

The minimum flow required to sustain the fisheries resources for spawning and rearing is 10% of the Mean Annual Discharge (MAD); unless a more rigorous analysis indicates a different minimum flow requirement.

For streams where the natural mean monthly flow falls below 10% of the MAD, extractive licensed demands should only be allowed for the period of months when the mean monthly flow is above 60% of the MAD

For streams where the mean 7-day average low flow falls below 10% of the MAD, extractive demands should only be allowed for the period of months when the mean monthly flow is above 60% of the MAD (Figure 1.3). Where the mean 7-day average low flow remains above 10%, then the 7-day low flow amount above 10% MAD is available)

Withdrawals from natural water bodies (lakes, ponds, swamps and marshes) supporting natural fisheries resources shall not reduce the shoal area more than 10%.

The shoal area is the area from the lake shore at average summer lake level to a 6 metre depth.

The flows in all the streams in the French Creek Water Allocation Plan area are naturally limiting to fish production and maintenance of fish habitat. Figure 5 indicates the identified fish habitat.

WATER ALLOCATION PLAN

4.1 Romney Creek and Carey Creek

There was potential fish habitat identified in the lower reach of both Romney Creek and Carey Creek. However both creeks have been extensively channelized and culverted for subdivision development in the City of Parksville. Also Romney Creek has been diverted into Carey Creek just downstream of the Parksville Springs in order to accommodate further subdivision development. At the mouth of Carey a waterfall barrier to fish passage further limits its use by fish.

4.2 Morningstar Creek

Cutthroat trout and coho salmon utilize Morningstar Creek from just above Lee Road to the confluence with French Creek. However summer low flows naturally limit fish production and maintenance of fish habitat.

The estimated mean monthly flow in Morningstar Creek is below 10% of the Mean Annual Discharge (MAD) for the months of July, August and September. Therefore water is only available for extractive use during the months of November to April when the mean monthly flow is above 60% MAD. No water is available from Morningstar Creek when the flow is below 130 litres/second (60% MAD). Therefore the estimated volume of water available during the November to April period is 4,171 dam³.

4.3 French Creek

French Creek is the most utilized stream for fish within the plan area. Pink, Chinook, Coho and Chum Salmon and Steelhead and Cutthroat Trout utilize French Creek. Coho Salmon have been stocked in French Creek. These fish not only utilize the main channel of French Creek but also Dudley Marsh and the channel that drains from Hamilton Marsh. However, even in French Creek, the summer low flows are naturally limiting to fish production and fish habitat maintenance Schaedler's Falls provides a barrier to spawning fish approximately 3.5 km upstream of Coombs on French Creek. Dudley Marsh is managed by Ducks Unlimited as an overwintering site for coho fry.

The estimated mean monthly flow in French Creek is below 10% of the Mean Annual Discharge (MAD) for the months of July, August and September. Therefore water is only available for extractive use during the months of November to April when the

mean monthly flow is above 60% MAD. No water is available from French Creek when the flow is below 1,281 litres/second (60% MAD). Therefore the estimated volume of water available during the November to April period is 42,048 dam³.

4.4 Beach Creek

Potential fish habitat identified in the lower reach of Beach Creek has been

exploited by the fisheries agencies and the local fish and game club. A small salmon enhancement project has been implemented on the creek. Coho from the Big Qualicum Hatchery have been stocked in Beach Creek. Also a resident trout population has developed above the golf course's main pumping pond.

The estimated mean monthly flow in Beach Creek is below 10% of the Mean Annual Discharge (MAD) for the months of July, August and September. Therefore water is only available for extractive use during the

months of November to April when the mean monthly flow is above 60% MAD. No water is available from Beach Creek when the flow is below 103 litres/second (60% MAD). Therefore the estimated volume of water available during the November to April period is 3,295 dam³.

4.5 Grandom Creek

Potential fish habitat and marginal fish habitat has been identified in Grandon Creek. However there is no evidence of fish utilizing this habitat.

4.6 Other Small Streams

There is no identified significant fish habitat in the other small streams within the plan area.

WATER ALLOCATION PLAN

5.0 LICENSED WATER DEMAND

There are 69 water licenses currently (December 1993) within the French Creek Water Allocation Plan area. More than half of these water licences (36) are for domestic

purposes for rural residential demands. Figure 9 illustrated the number of water licences issued for each purpose for streams within the plan area. There are 18 water licences for irrigation purposes, 6 water licences for industrial purposes, 3 water licences for conservation, 2 water licences for municipal waterworks purposes, 2 water licences for land improvement purposes and 2 water licences for storage purposes.

Of greater significance for water management is the estimated average annual licenced water demands and low flow water demands. The total estimated average annual licenced water demand for the plan area is 1,318.7 dam³. Figure 10 illustrates the estimated average annual licenced water demands for each purpose under which water licences have issued within the plan area. The largest annual water demand is for conservation purpose. The second largest annual water demand is for municipal waterworks purpose; followed by irrigation purpose,

Figure 10

industrial purpose, storage purpose, land improvement purpose and finally domestic purpose. The following table summarizes these annual water demands.

Estimated Average Annual Licenced Demand

Purpose			Averag Licenced	e Annual d Demand [*]
	No. of Lic	Quantity Licenced		
			l/sec	dam ³
Municipal Waterworks	2	400,000 gpd	10.5	331.8
Domestic	36	25,100 gpd	0.7	20.8
Industrial (Fish Culture) (Golf Course) (Greenhouses) (Stock Watering) Sub total Irrigation Storage	1 2 1 2 6 18 2	30,000 gpd 26.6 acft 1.0 acft 1,000 gpd 195.85 acft 60.5 acft	1.6 1.0 0.0 0.1 2.7 7.7 2.4	49.8 32.8 1.2 0.8 84.6 241.6 74.6
	2	45 actt	1.8	55.5
(Storage) (Fish Hatchery) (Fish Fence) Sub total	1 1 1 3	51.3 acft 0.5 cfs 0.0	2.0 14.2 0.0 14.9	63.3 446.5 0.0 509.8
Total	69		40.7	1,318.7

* Based on assumption that: Municipal waterworks demand and domestic demand is the authorizes maximum daily licenced divided by 2 to estimate the average daily demand. Industrial, irrigation, storage, land improvement and conservation licenced flow is a uniform demand over the year and licenced volume is the total annual demand; except Conservation (fish fence) which has no demand.

The low flow period licenced water demand may be critical between competing water uses and instream flow requirements to maintain the fish resource. The estimated low flow licensed demand for each identified drainage area and for other drainages in the French Creek Water Allocation Plan area is summarized in the following table.

Drainage	Low Flow Wate	er Demand [*]
	(l/sec)	Dam ³
Romney Creek	17.1	132.6
Carey Creek	0.0	0.0
Morningstar Creek	0.2	1.2
French Creek	25.2	195.0
Beach Creek	4.4	34.9
Grandom Creek	1.7	12.7
Other	1.4	10.4
Total	50.0	386.8

Low Flow Licensed Demand by Drainage

^{*} Based on an estimated 90 day period demand assuming that; irrigation and industrial demands are totally withdrawn over the 90 day period; domestic and municipal waterworks demand is the authorizes licenced maximum daily for 90 days; authorized storage balances demand and therefore is a negative demand over 90 days; land improvement and conservation are non-consumptive and therefor have no demand.

The locations of licensed demand within the plan area is shown in Figure 11.

5.1 Municipal Waterworks Water Demand

Municipal waterworks purposes water licences are the second largest annual licenced water demand in the plan area. The City of Parksville has the largest of the two municipal waterworks water licenced demands, for 7.2 litres/second (275,000 gpd), from Parksville Springs; a tributary to Romney Creek. At present there are 2 artesian springs and 8 groundwater wells adjoining Romney Creek that the City of Parksville uses as part of their municipal water supply. During the winter most of the water supply for the city is from the artesian springs and associated wells as this source does not require water quality treatment; as does their alternative supply from the Englishman River. However the City of Parksville withdraws most its water supply during the summer from a licenced diversion on the Englishman River and no significant supply is available from the two Parksville Springs adjoining Romney Creek. The city has discontinued use of a third spring in the same area due to lack of quality and quantity.

WATER ALLOCATION PLAN

FRENCH CREEK LICENCED WATER

Key AF acre feet GD gallons per day Wwks water works purpose d domestic purpose Irr irrigation purpose LDimp land improvement purpose Ind industrial purpose

24

The other municipal waterworks water licence for 3.3 litres/second (125,000 gpd) is held by the utility Breakwater Enterprises Ltd. This utility uses water from French Creek to supplement ground water well supplies during the summer months. Therefore this demand directly impacts on instream flow requirements for fish.

5.2 Domestic Water Demand

Despite the larger number of domestic water licences, the licenced domestic water demand represents only 1.6% of the total average annual demand. Except for local competition for water on small streams and springs, domestic demand is not significant.

5.3 Industrial Water Demand

The water demand under this category would be better described as commercial or agricultural demands; but under the Water Act Regulations are categorized as sub-categories under the industrial water demand category for purposes of water licensing.

An industrial (fish culture) water licence for 30,000 gpd on Smith and Peters Springs is within the Romney Creek watershed. This is an old licence and it is unlikely that these springs are able to supply the optimistic demand suggested by the licence unless an artesian spring or groundwater is used.

The two industrial (golf course) water licences for 32.8 dam³ (26.6 acft) are held by the Village of Qualicum Beach to irrigate the village's golf course. The golf course uses water from a small dugout in Beach Creek to irrigate the golf course mainly during the summer months. Therefore this demand directly impacts on instream flow requirements for fish but the dugout also supplies a refuge for fish where otherwise fish may naturally not be able to exist on this stream.

The three water licences for industrial (greenhouses) and industrial (stock watering) are not significant demands in themselves. However they add to the local competition for water on small streams and springs and add to the overall demand within their respective watersheds.

5.4 Irrigation Water Demand

Irrigation water demand will have the most significant impact on low flows. Irrigation water demand occurs only during the low flow period and when the instream water requirement to support fish is the highest. The three largest irrigation water licences are within the French Creek watershed. The three largest irrigation water demands are 74 dam³ (60 acft) on Little Hamilton Swamp, 74 dam³ (60 acft) on Whitely Creek and 37 dam³ (30 acft) on French Creek. The latter two water licences are held by one farm owned by Fritzsche and the Whiteley Creek water licence requires that storage be developed to support the irrigation demand. The total irrigation demand in the French Creek watershed is 211.2 dam³ (171.25 acft).

There are also irrigation demands of 6.2 dam³ (5.0 acft) in the Romney Creek drainage, 1.9 dam³ (1.5 acft) in the Beach Creek drainage, 12.3 dam³ (10 acft) in the Grandom Creek drainage and 10 dam³ (8.1 acft) in other drainages. These irrigation demands primarily impact on competing local demands for water.

5.5 Storage Water Demand

There are only two water licences for storage purpose within the plan area. The only significant storage for 74 dam³ (60 acft) on Whitely Creek is to support the irrigation demand noted above. However the storage and irrigation use have reportedly not been developed and are subject to cancellation.

5.6 Land Improvement Water Demand

There are two land improvement demands to develop decorative ponds from small marshes. These improvements have no significant impact on low flows, instream fish flow requirements and licenced demands.

5.7 Conservation Water Demand

The largest licenced annual water demands are for conservation purposes. One licence, held by the Parksville/Qualicum Fish and Game Association, authorizes the diversion and use of 14.2 l/sec (0.5 cfs) from French Creek in a federal government sponsored (Salmon Enhancement Project) fish hatchery. This fish hatchery accounts for 35% of the total water demand in the plan area. The maximum water demand in the fish hatchery occurs during the period between October 1 and June 30.

Other conservation water licences include the storage of 63.3 dam³ of water in Dudley Marsh (tributary to French Creek) for wild foul habitat development and maintenance of fish flows. The third conservation water licence authorizes the

construction of a fish counting fence in French Creek.

These water licences for conservation purposes are not a significant consumptive demand and do not significantly impact other water uses or the instream low flow requirements for fish. However the public associated with the fish hatchery have developed the false expectation that the licenced demand to the hatchery can be naturally maintained to support fish released from the hatchery during the low flow period. As noted in the above sections, the low flow in French Creek is naturally limiting to fish production. The low flow will not support enhanced fish releases into the main channel of French Creek. Fish from the hatchery need to be released into marsh areas (ie Hamilton Marsh or Dudley Marsh) unless storage is developed to increase flow in the main channel.

5.8 Projected Demand

There are only five water license applications pending as of February 1993. These pending water licence application demands are for 11.6 dam³ (14,000 gpd) waterworks purpose, 492.2 dam³ (399 acft) industrial (golf course watering) purpose, 146.8 dam³ (119 acft) irrigation purpose and 231.9 dam³ (188.4 acft) storage purpose. The storage purpose is intended to support the irrigation and industrial (golf course watering) demands.

Future water demands are anticipated to be similar to existing licenced water demands. Future water demands in the plan area will primarily relate to domestic, industrial golf course watering, irrigation, conservation, municipal waterworks and land improvement ponds and drainage works. These water demands will require that winter high flows be stored for summer low flow demands (supporting storage).

The population is increasing rapidly within the plan area. Groundwater developments and wells have supplied most of the subdivision municipal waterworks demands and local domestic demands. There have been recent indications that these groundwater supplies may have reached their capacity and other sources may be required. If municipal waterworks demands can not be supplied from further development of groundwater, then supporting storage sites will have to be found within the plan area or in adjoining watersheds.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Within the plan area there is a four month low flow period, from June through September, when the flow is below 20% of the mean annual discharge (MAD). During this summer low flow period there are zero flow or flows below 10% of the mean annual discharge (MAD) in all streams within the Plan area. The minimum mean monthly flow occurs in August and is 0.0 litres/second; except perhaps in the lower reach of French Creek where a minor flow may be maintained by flow from natural depression storage in Hamilton Marsh.

Mean monthly flows higher than 20% MAD occur from October through May (8 months). The mean monthly flow is above 60% MAD for the period of November through April (6 months). Therefore there is considerable flow available for at least half of the year.

The flows in all the streams in the French Creek Water Allocation Plan area are naturally limiting to fish production and maintenance of fish habitat. There is fish and fish habitat identified in three of the drainages within the Plan area; namely Morningstar Creek, French Creek and Beach Creek. French Creek is the most utilized stream by fish within the plan area. Although fish migration, rearing and habitat maintenance are limited by existing low flows, the fish agencies and local sports groups are very active in fish stocking and enhancement work in these creeks. Water is available in these streams only from November through April when the flow is above 60% MAD. In order to protect and maintain the fish resources, storage development should be required to support any further extractive water demand in the period from May through October.

There may be some potential fish habitat and marginal fish habitat in other drainages within the plan area, however there is no evidence of significant fish utilization. Subdivision development around Romney Creek, Carey Creek and possibly Alexander Brook has destroyed or limited any potential fish habitat in these creeks.

Although the largest number of water licences have issued for domestic purposes, the licenced demand for domestic purpose does not significant impact other water interests; except where there is a local competing water demand conflict. The largest existing annual licenced water demands are for conservation purposes, municipal waterworks purpose, irrigation purpose and industrial (golf course watering) purpose. These larger demands do conflict with each other and local fish enhancement and maintenance efforts. Irrigation water demands have the largest impacts on the low flows as demand is coincident with the low flow period and the critical fish instream flow requirements.

There is not sufficient storage developed or proposed to maintain and support the existing and projected water demands through the low flow period. Further extractive demands, such as municipal waterworks, irrigation and industrial (golf course watering), will require supporting storage. Also any further salmon enhancement proposals that would increase fish stocks in the stream channels will require the development of supporting storage to maintain required low flows. Storage shall be required for all existing and proposed licenced water demand when applications for increased licenced water demands are received from an existing licensee.

Fish and debris screens shall be required on all intake or diversion works within the identified fish habitat areas of Morningstar Creek, French Creek and Beach Creek. Fish and debris screens are part of good intake design and should be encouraged on all intakes or diversion works. Fish passage provisions for both juvenile and adult fish shall be required on all storage dams or diversion works constructed on sources frequented by fish.

In stream works are to be constructed only during the period from June to October.

Springs developed for municipal waterworks and other purposes within the plan area have less water available than licenced. In order to ensure that a water licence on any new spring development reflects the quantities available, the applicant shall be required to determine the spring quantity yield (pump test) during the low flow period (June through September).

6.1 Waterworks

Waterworks purpose in the Water Act is the carriage or supply of water by a municipality, improvement district, regional district or private utility for the purpose of providing water to a residential area.

None of the drainages within this plan area have an adequate supply of water during the low flow period for waterworks demands. No further water licences shall issue within the French Creek Allocation Plan area for waterworks purpose unless storage is provided. No significant storage sites have been identified that may be adequate to supply the supporting storage required. Any large waterworks demands

may have to be supplied from further development of groundwater sources or supporting storage development in adjoining watersheds.

If a storage site can be identified then the applicants for a waterworks demand shall be require to assess the supply for a ten year projected demand and provide evidence that the projected demand is not excessive in comparison with adjoining community demands, water conservation is being promoted (ie. residential meters, pricing practices, education) and adequate system balancing storage (ie. volume difference between maximum hour and maximum day demands) will be constructed or is available for peek hour demands. Water Utilities will also have to provide evidence that the appropriate requirements for a Certificate of Public Convenience and Necessity (CPCN) have been met and a CPCN will be obtained. Licenced allocations will be limited to a 10 year projected demand except where the applicant can provide satisfactory evidence that a longer projection period is required (ie. because the cost of construction of works must be amortised over a longer period).

The licensee shall be required to meter or measure and record the water diverted from the source stream.

The licensee shall be required to treat the water supply in accordance with Ministry of Health requirements.

Adequate system balancing storage shall be required to ensure that the rate of withdrawal from the source during short term or maximum hour demand does not exceed the maximum daily demand. Good conservation techniques must be practised at all times and no increase in the amount of water in existing community waterworks licences shall be allowed unless meters and other conservation measures have been used.

6.2 Domestic

A domestic water licence shall be 2273 litres per day (500 gallons per day) for each rural dwelling as indicated on the plan attached to the water license application. This amount will allow for the maintaining of 0.10 hectares (0.25 acres) of garden associated with the dwelling. Domestic water licences shall not be issued solely to maintain green lawns and gardens where groundwater and other sources of water supply provide the primary domestic household needs.

Domestic water licence shall not be issued to provide evidence to subdivision approval authorities of an "adequate potable water supply" for subdivision development.

Large subdivision of land shall be encouraged to form a community water system.

To ensure an adequate domestic water supply for household uses, from a surface water source, applicants shall be required to develop storage or use marsh storage. For domestic water demands within the drainage areas of Morningstar Creek, French Creek and Beach Creek, the storage required is the average daily demand of 1135 litres per day (250 gpd) for the four month low flow period (June through September - 122 days); which is 138 m³ (4,500 ft³ or 0.11 acre feet). This requires a reservoir or dugout approximately 8 metres long by 6 metres wide with an average depth of 3.3 metres (20 feet wide by 25 feet long by 11 feet deep); allowing 0.3 metre (1 foot) for evaporation loss.

For domestic water demands within the plan area, but where there are no instream fish flow requirements, the storage required is the average daily demand of 1135 litres per day (250 gpd) for a one month period of no flow (August - 31 days); which is 35 m³ (1,250 ft³ or 0.03 acre feet). This requires a reservoir or dugout approximately 5 metres long by 3 metres wide with an average depth of 3 metres (15 feet long by 10 feet wide by 10 feet deep); allowing 0.3 metre (1 foot) for evaporation loss.

A water licence for domestic use shall not be issued to a residence within a community water supply area unless written leave to do so is obtained from the community water supply agency.

6.3 Industrial and Commercial

The industrial water licenses and water licence applications within the plan area are demands associated with golf course watering, greenhouses, stock watering and fish farming. All four demands are related to agricultural development.

Golf course watering and greenhouses are essentially an irrigation water demand except that the watering is not restricted to the irrigation period of April to September. The quantity of water required should be determined as follows in the irrigation section below. Except for the period of water withdrawal; which shall be whole year; the same requirements and conditions as irrigation demands shall apply. Storage is required to support these demands.

Cattle or livestock watering requiring more than 450 l/day (100 lgpd) are to be considered an Industrial (Agricultural) demand. Cattle or livestock requiring 450 l/day

(100 lgpd) or less will be considered a Domestic (livestock) demand. Estimated livestock demands are:

Livestock	Water Requirements	
	l/day	lgpd
cattle (beef) per animal	45	10
cattle (dairy) per animal	132	29
chickens per 100 animals	27	6
turkeys per 100 animals	55	12

Recommended Livestock Water Requirements

Commercial fish hatcheries and fish rearing facilities shall require an industrial water licence. Use of water by government and non-profit organizations in fish hatcheries and fish rearing facilities shall will be licensed as conservation purpose. Information on fish species and size, water temperature requirements and operating methods will be required in support of an application for a water licence. Fish Farm and Waste Management Permits will also be required.

6.4 Irrigation

The crop rooting depth, soil type and climatic characteristics determine requirements for irrigation.

Different crops and their rooting depth and water availability coefficient were classified into shallow (0.5 metre) and deep (1.0 metre) effective rooting depths. The available water storage capacity (AWSC) was estimated for shallow and deep root zone depth for classes of similar soil associations identified for the French Creek Water Allocation Plan area on the maps for the publication Soils of Southern Vancouver Island (J.R. Jungen, P.Ag., Ministry of Environment, August 1985). Where composites of two or three soil associations are intermixed or occupy such small areas that they cannot be separated at the scale of the mapping, only the predominant soil association was considered. The following table was made using the climatic information for Parksville and the AWSC of irrigation requirements for different crop effective rooting depth classes and soil classes. A colour mapped of irrigation requirements is provided in
FRENCH CREEK

WATER ALLOCATION PLAN

Figure 12.

Annual Irrigation Water Requirements millimetres (inches)											
Crops	Peas, Potatoes, Tomatoes, Lettuce, Pasture Species, Cranberries	Brussels Sprouts, Corn, Clover Grapes, Fruit trees, Alfalfa, Raspberries									
Effective Rooting Depth	Shallow 0.5 m (1.6 ft)	Deep 1.0 m (3.3 ft)									
Arrowsmith (AR) -organic	380 (15)	305 (12)									
Tolmie (T) - sandy clay loam	460 (18)	305 (12)									
Bowser (B) - loamy sand to gravelly sandy loam Chemainus (CH) - loam	530 (21)	460 (18)									
Quinsam (QN) Quimper (QP) - gravelly sandy loam											
Dashwood (D) - very gravelly loamy sand to gravelly loamy sand											
Haworth (HA) Cassidy (CA) - very gravelly loamy sand	610 (24)	610 (24)									
Shephard (SP) Strata (ST) Rossiter (RT) Hiller (HL) - gravelly loamy sand											

If the applicant for a water licence can provide more specific soil assessment information for a given area, that soil assessment may be used to assess irrigation demands.

It should be noted that these annual irrigation water requirements are for sprinkler irrigation systems only.

FRENCH CREEK

WATER ALLOCATION PLAN

Irrigation gun or flood irrigation systems require greater irrigation quantities and should be discouraged. If irrigation gun and flood irrigation practices are to be used then suitable meters shall be installed and water withdrawals limited to the equivalent annual irrigation requirements for sprinkler systems. As the equivalent annual irrigation water requirements for sprinkler systems may not be adequate to sustain crops using these less efficient methods of irrigation, the applicant may be required to reduce crops, limit the acreage irrigated or convert to a more efficient sprinkler irrigation system.

Trickle irrigation can reduce water requirements by 35% and should be encouraged where practical.

All irrigation water demands must be supported by storage development. Storage required to support irrigation demands is the total required amount as per crop and soils, plus an additional allowance for evaporation and other losses from the storage reservoir.

The maximum irrigation system flow rate shall not exceed 19.1 l/sec (4.2 imperial gals. per minute) per 0.4 hectare (1 acre), and users must be encouraged to employ good agricultural practices (field size, system selection and farm management) to conserve water.

The authorized period of use for irrigation shall be from April 1 to September 30.

As noted above all intake works in fish bearing waters shall be screened to prevent fish and debris from entering the intake.

6.5 Land Improvement

Water required for land improvement aesthetic ponds shall be the volume of the pond to be created. All the requirements noted for storage development shall be required for land improvement development where applicable.

6.6 Conservation

Conservation purpose is the use and storage of water or the construction of work in and about a stream for the enhancement of fish or wildlife for non-profit purposes.

Salmon enhancement proposals that would increase fish stocks in the stream

channels will require the development of supporting storage to maintain required low flows. All the requirements noted for storage development shall be required for conservation development where applicable.

6.7 Storage

Storage purpose is the impoundment of water, either on-stream or off-stream in a dugout or behind a dam. In the unlikely event that a large storage development (ie. BC Hydro power, pulp & paper, large waterworks) is proposed a more specific supply versus demand and environmental impact assessment will be required.

The storage quantity required to support the smaller water demands anticipated to support domestic, industrial, commercial and irrigation uses shall be the volume of the water demand plus an additional allowance of 0.3 metres (1.0 foot) depth over the surface area of the storage reservoir for evaporation and other losses.

It is recommended that the applicant be required to submit a completed report form entitled "Dam and Reservoir Information Required in Support of a Water Licence Application for Storage Purpose (Schedule 2)" before the application be considered.

Total storage (dead and live) will be licensed. Dead storage should be licensed as it will in most cases have some intrinsic value such as providing conservation of water for wildlife or aesthetic value.

Diversion of water into off-stream storage will be during the period November to April. All in-stream storage will be required to pass any stream flows during the period May to October.

It is recommended that the applicant must obtain written agreement, right-of-way or easement for works or flooding affecting other lands.

Fish passage is required for both juvenile and adult fish, at all dams in fish bearing streams. Design of storage dams must consider fish ladders and provide adequate flow release and maintain fish passage where required.

Design plans must be submitted and accepted in writing before construction commences on any proposed dam over 3 m (10 ft) in height or on storage of 12 dam³ (10acft) or more.

FRENCH CREEK

6.8 Allocation Plan Revision

The French Creek Water Allocation Plan should be reviewed and updated on or before January 1999.

Appendix A

Parksville Canadian Climatic Normals 1951 - 1980

BRITISH COLUMBIA/COLOMBIE-BRITANNIQUE

			в	RITIS	нсо	UMB	IA/C	OLON	BIE-	BRIT	ANNK	QUE			
	JAN	FEB FÉV	MAR	APR AVR	MAY	JUN	JUL	AUG AOUT	SEP SEPT	OCT OCT	NOV	DEC	YEAR ANNÉE	COD6	
49° 24'N 124° 37'W 8 m														-	
Daity Maximum Temperature Daity Minimum Temperature Daity Temperature	4.9 -0.4 2.3	7.2 0.9 4.1	8.9 1.1 5.0	12.5 3.4 8.0	16.4 6.8 11.6	19.1 9.9 14.5	22.0 11.4 16.7	21.4 11.3 16.4	18.1 8.8 13.4	13.0 5.5 9.3	8.2 2.6 5.4	6.2 1.1 3.7	13.2 5.2 9.2	8 9, 8	Température Maximale Quotidienne Température Minimale Quotidienne Température Quotidienne
Standard Deviation, Daily Temperature	1.6	1.2	0.8	0.8	0.7	1.2	0.9	1.0	1.1	0.7	1.0	1.7	0,4	4	Ecart Type de la Température Quotidienne
Extreme Maximum Temperature Years of Record Extreme Minimum Temperature Years of Record	14,4 18 -15,6 18	18.1 18 -7.8 18	18.9 18 -8.5 18	23.3 17 -2.8 17	26.1 17 0.0 17	30.0 18 2.8 18	31.1 18 5.0 18	31.1 19 4.4 19	27.2 19 0.0 19	22.0 19 -2.8 19	17.8 19 -7.0 19	16.0 19 -14.4 19	31.1 -15.6		Température Maximale Extrême Années de Relèves Température Minimale Extrême Années de Relèves
Rainfall Snowfall Total Precipitation	189.4 24.4 204.5	140.5 6.3 151.8	113.2 2.2 116.9	61.4 0.4 61.7	44.5 0.0 44.5	39.3 .0.0 39.3	26.3 0.0 26.3	41.8 0.0 41.5	58.5 0.0 58.5	137.9 0.0 137.9	203.4 2.0 204.4	219.0 12.1 229.8	1275.3 47,4 1317.2	8	Chutes de Pluie Chutes de Neige Préclipitations Totales
Standard Deviation, Total Precipitation	110.2	56.0	49.1	34.8	16.5	18.4	22.9	28.8	40.3	91.3	97.9	76.3	219.9	4	Ecart Type des Précipitations Totales
Greatest Rainfall in 24 hours Years of Record Greatest Snowfall in 24 hours Years of Record Greatest Precipitation in 24 hours Years of Record	117.3 18 49.0 18 117.3 18	61.7 18 45.7 18 61.7 18	69.1 18 12.7 18 69.1 18	29.5 17 4.6 17 29.5 17	27.7 16 0.0 18 27.7 16	34.2 18 0.0 18 34.2 18	25.4 18 0.0 18 25.4 18	38.1 18 0.0 19 38.1 18	31.8 19 0.0 19 31.8 19	72.6 19 0.0 19 72.6 19	85.1 19 11.7 19 85.1 19	85.4 19 45.7 19 85.4 19	117.3 49.0 117.3		Chute de Pluie Record en 24 heures Années de Relèves. Chute de Neige Record en 24 heures Années de Relèves Précipitation Piecord en 24 heures Années de Relèves
Days with Bain Days with Snow Days with Precipitation	16 4 19	15 1 16	16 1 16	12 0 12	10 0 10	909	6 0 6	8 0 8	10 0 10	15 0 15	17 1 18	19 2 20	153 9 159	8 8 8	Jours de Pluie Jours de Neige Jours de Précipitation
PARKSVILLE 49'18'N 124'18'W 82 m															
Daily Maximum Temperature Daily Minimum Temperature Daily Temperature	4.7 -1.8 1.6	7.7 -0.6 3.6	9.7 -0.1 4.8	13.2 2.1 7.7	17.4 5.0 11.2	20.3 8.1 14.3	23.5 9.8 16.7	23.0 9.5 16.4	19.5 7.4 13.5	13.6 4.2 8.9	8.2 1.0 4.6	5.8 -0.3 2.8	13.9 3.7 8.8	8	Tempirature Maximale Quotidienne Tempirature Minimale Quotidienne Tempirature Quotidienne
Standard Deviation, Daily Temperature	1.9	1,7	1.0	1.1	1.9	2.0	21	1.3	0.9	0.6	1.8	1.3	1.0	6	Écart Type de la Température Quotidienne
Extreme Maximum Temperature Years of Record Extreme Minimum Temperature Years of Record	12.2 6 -15.0 6	13.9 -12.2 6	16.7 7 6.9 7	25.0 7 -3.9 7	28.9 7 -2.8 7	31.7 6 1.1 6	33.9 6 4.4 6	30.6 6 3.9 6	29,4 6 -0,6 6	23.3 8 -9,3 6	15.0 6 -13.9 6	12.8 -10.0 6	33.9 -15.0		Température Maximale Extrême Années de Relèves Température Minimale Extrême Années de Relèves
Raintal Snowfall Total Precipitation	119.0 25.4 146.9	83.9 10.7 97.0	73.9 8.7 82.8	51.3 0.0 51.3	40.2	38.3 0.0 36.3	23.1 0.0 23.1	43.6 0.0 43.6	45.2 0.0 45.2	97.5 0.0 97.5	128.1 2.5 132.2	144.6 18.8 165.0	888.7 66.1 963.9	8	Chutes de Piule Chutes de Neige Précipitations Totales
Standard Deviation, Total Precipitation	59,4	41.9	27.0	25.3	10.1	20.0	20.6	36.0	21.2	\$4,4	63.7	46.8	122.1	8	Écart Type des Précipitations Totales
Greatest Rainfall in 24 hours Years of Record Greatest Snowfall in 24 hours Years of Record Greatest Precipitation in 24 hours Years of Record	66.5 43 35.6 44 66.5 42	54.9 43 61.0 45 61.0 43	51.6 41 43.2 45 51.6 41	47.2 43 10.2 45 47.2 43	48.3 44 0.9 45 48.3 44	36.1 43 0.0 44 36.1 43	42.2 44 0.0 44 42.2 44	37.8 42 0.0 44 37.6 42	44.2 42 0.0 45 44.2 42	54.9 43 5.1 45 54.9 43	69.3 44 22.9 45 69.3 44	68.8 45 27.9 45 68.6 45	69.3 61.0 69.3		Chute de Pluie Record en 24 heures Années de Relèves Chute de Neige Record en 24 heures Années de Relèves Précipitation Record en 24 heures Années de Relèves
Days with Rain Days with Snow Days with Precipitation	17 4 20	16 2 17	17 1 17	14 0 14	15 0 15	11 0 11	7 0 7	10 0 10	11 0 11	16 0 15	19 1 20	20 3 22	173 11 180	8 8 8	Jours de Pluie Jours de Neige Jours de Précipitation

Appendix B

Water Survey Canada Monthly and Annual Mean Discharges French Creek Millstone River Enos Creek

1990 MEAN-				0.975	0.430	0.391	0.064	0.016	0.021					1990
				9.975	0.430	0.391	0.064	0.016	0.021					MEAN
	LOCATION	- LAT LONG	124 20 24	N DRAL W NAT	INAGE AREA	, 86.6 kg	5 ⁸ .							
362				FRENCH	CREEK ABOA	TE PUMPHO	JSE - STA	TION NO.	0888076					
		ANN	UAL EXTREM	MES OF DIS	CHARGE AND	ANNUAL 1	FOTAL DIS	CEARGE PO	B THE PERI	OD OF RE	CORD			
YEAR	MAXIMUM IN	ISTANIAN (m ³ /8	ECUS DISC	RANGE	MAXIMUM	DAILY DIS (D ³ /8)	SCHARGE	MINI	MUM DAILY (±3/8)	DISCHARG	е 1	(dam ²)	ARGE	YEAR
1990								-	0.007 CN 3	NUG 21 *				1990
					• - 1	DETRIME RI	CORDED F	OR THE PE	RIOD OF RE	CORD				HEAN

FRENCH CREEK ABOVE PUMPHOUSE - STATION NO. OSMB078, MONTHLY AND ANNUAL MEAN DISCHARGES IN CUBIC METRES PER SECOND FOR THE PERIOD OF RECORD FEB MAR APR MAY JUN JUL AND SEP .OCT NOV DEC MEAN

YEAR

1

YEAR

JAN

4	1
_	_

	FRENCH CREEK AT COOMES - STATION NO. 06000036													
		ю	OTHLY AND	ANNUAL	MEAN DISCHAR	GES IN	CUBIC HETRE	58 PER 51	BCOBD FOR T	HE PERI	OD OF RECO	RD D		
YEAR.	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NON	DEC	NEAR	YEAR
1969				2.48	1.96	0.432	0.103	0.012	0.361					1969
1870		===	===	1:35	0.487 1.68	0.074 0.565	8:012	8:88	8:019	:::		===		1970 1971
1983 1984		:::	===	0.983	0.413	0.131 0.432	0.249	8.819	8:035	::::				1983 1984
1985 1986 1987 1988 1989				167609	0.996	0.196	0-014 0-055 0-055 0-027	0.001	0.017					1985 1986 1987 1988 1989
MEAN				1.61	0.973	0.271	0.077	0.008	0.048					MEAN
	LOCATION	- LAT LONG	123 25 30	N D	RAINAGE AMER ATURAL FLOW	, 58.3	kan²							
					FRENCE CRE	EK AT O	COMBS - STA	NTION NO	. 06HB038					

		ENCH CREEK AT COOMES - STATION NO	0. 06HB038		
	ANNUAL EXTREMES OF C	ISCHARGE AND ANNUAL TOTAL DISCHAR	NOE FOR THE PERIOD OF RECORD		
YEAR	HAXIMUM INSTANTANEOUS DISCHARGE (m ⁵ /s)	MAXIMUM DAILY DISCHARGE (D ³ /0)	MINIMUM DAILY DISCHARGE (R ³ /#)	TOTAL DISCHARGE (dam ³)	YEAR
1969			0 ON AUG 10 *		1969
1871			8.001 CM JUL 20		1970 1971
1983			0.005 ON AUG 24 0.001 ON AUG 28		1983 1984
1985 1986 1987					1985
1988			O ON SEP 15		1989
		 EXTREME RECORDED FOR 5 	THE PERIOD OF RECORD		MEAN

626				MILLS	TONE BIVE	R NEAR W	LLINGTON	- STATICS	NO. OBHE	027				
		ж	OTHLY AND	ANNUAL ME	AN DISCHA	RCES IN C	UBIC METR	ES PER SE	COND FOR	THE PERIOD	OF REC	CRD		
YEAR	JAB	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	MEAN	YEAR
1961	2.67	1.35	1:42	1.3807	1.17.0	0.212	0.068	8:873 8:887	0.028	0.717	1.73	4.05	1.51	1961 1962 1963 1964
1969	1.22	2.55	3.43	3.53	0.950	0.192				0.247	1.37	5.36		1969
1970 1971 1972 1973 1974 MEAN	2.48 3.04 1.80 4.92 4.01 2.94	776176	1.91 5.57 5.75 2.86	0.843	0.414 1.52 0.108 0.858 0.992	0.1275	0.016 0.219 0.207 0.044 0.041 0.104	0.004 0.003 0.003 0.104 0.044	0.004 0.003 0.003 0.001 0.009 0.021	0.019 0.039 0.003 0.070 0.001 0.397	1.31 1.50 0.231 2.231 2.19 2.25	4.38	1.68	1970 1971 1972 1973 1974 MEAN
	LOCATION	- Fore	49 12 22 124 03 06	N RA MILLS	TONE BIVE	ER NEAR W	ELLINGTON MURL TOTAL	- STATION	NO. OSED	8027 8 PERIOD OF	RECORD	· ·		
YEAR	MAXIM	N INSEA	(B ³ /8)	DISCHARGE	MAD	CIMUM DAI	LY DISCHAS	GE	MINIMUM 5	(m ³ /s)	ARGE	_ TOTAL (DISCHARGE Sam ³)	YEAR
1961 1962 1963 1964						10:98 0	JAN 03 DEC 24		0.02				\$3 \$99	1961 1962 1963 1964
1969						18.7 0	N DEC 14		0.00	A ON JUL 1	4			1969
1970 1977 1997 1977 1974						1119000 1119000 1119000 1119000 1119000 111900000000	N DEC 17 12000 19 10000 19 10000000000		0.000		*		34 200 53 000 54 400 52 300	197712971
			E - 1	ESTIMATED		* - EXTR	EME RECORD	ED FOR TH	E PERICO	OF RECORD			49 300	PODAS

197012114

MEAN

. .

1990	4.72 5.1	0. 3.34	1.53	0.659 0.794	0.152	.0.003 0	.004 (0.267	8.69	7.71	2.73	1990
NEAN	5.37 4.3	7 3.70	2.23	1.16 0.439	0.110	0.029 0.	.031 (0.702	3.86	5.88	2.32	MEAN
	FOCALION - TW	Ka 123 38 88	N DRAIN	AGE AREA, 85.2 AL FLOW	ien ^a							
			MILL	STONE RIVER AT	NANAINO - S	TATION NO.	08109032					
		ANNUAL E	TREMES OF D	ISCHARGE AND A	NNUAL TOTAL	DISCHARGE P	OR THE PI	ERICO OF	RECORD			
YEAR	NAXIMUM IN	TANTANEOUS ((nº/s)	DISCHARGE	MAXIMUM DA	11Y DISCHARG	RE MIN	IMUM DAII	LY DISCHU	RGE	TOTAL D: (day	LSCHARGE	YEAR
1961 1962				14-5	ON NOV 26		0.005 0	N N N N		ē	922	識
1964				12.2	58 356 59		0.006 0	NDG 05		9.		词科
1965							-			-		1965
1986 1987	25.7 82	04:25 PST 0	N DEC 10	23.8	ON DEC 10		8:885 8	翻翻		7	900	1986 1987
1988 1989	10:7 22	19101 PST 0	N MAR 12	20.5	ON MAR 12		8:866 8	N ADS 18		3	8 188	1969
1990	44.2 AT	11:50 PST 0	N DEC 04 *	40.8	ON DEC 04 *		0.002 0	N AUG 07	*	8	6 000	1990
		7	COTTMN/TED	* - PV7	THE RECORDS	O ROB THE R	ERIOD OF	RECORD		7	3 000	MEAN

MILLSTONE RIVER AT NAMAINO - STATION NO. 0800032 MONTHLY AND ANNUAL MEAN DISCHARGES IN CUBIC METRES PER SECOND FOR THE PERIOD OF RECORD JUL

0:085 0:130 0:170

0.045

AUG.

0.017 0.087 0.019

0.008

OCT

0.959 2.67 1.47

0.016 0.005 0.182 0.042

SEP 0.047 0.084 0.007

0.036

NON

2.58 5.45 5.84

2.36 0.083 5.54 0.329

DEC

5.91 6.24 9.05

5.639

MEAN

2:54

1:83

YEAR

1965

APR

1.92

2.22

1.20

MAY

2:41 2:94 0:736

0.411

JUN

0.377 0.904 0.183 0.469

0.110

MAR

3.07

2.28

4.73

YEAR

1965

JAN

4.86

9.24 4.23 4.11

FEB

2.60

6.69

5.53

				ENCS C	REEK AT OU	TLET OF	ENGS LARE	- STATIC	N NO. 088	B030				
		MOR	THLY AND	ANNUAL ME	AN DISCHAR	GES IN C	UBIC METS	ES PER SE	SCOND FOR	THE PERIC	O OF RECO	IRD		
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	SOV	DBC	MEAN	YEAR
1962 1963 1964	0.065	0.096	0.005	0.004	0:002	0.091 0	0-001	8.001	8.004	0:003	0.045	0.190	8:834	1962 1963 1964
1965 1966 1968 1969	0.078 0.187 0.153 0.045	0.095 0.055 0.055 0.093 0.088	0.028 0.124 0.091 0.029	0.007 0.066 0.025 0.033	0.007 0.025 0.009 0.024 0.024	0.013 0.004 0.007 0.007	0.007 0.002	0.001 0	00000	0.002 0.015 0.002 0.002 0.001	0.028 0.003 0.002 0.071 0.004	0.096 0.103 0.163 0.133	0.028 0.040 0.037 0.054 0.028	1965 1966 1967 1968
1101000 9998999	0.107 0.134 0.047 0.146	0.073	0.065	0.034 0.030 0.073 0.009 0.034	0.003 0.005 0.005 0.012	0.001 0.005 0.001 0.002	00000	00000	00000	00000	0.001 0.001 0.047 0.005	0.152 0.063 0.167 0.079	0.036 0.038 0.035 0.038 0.044	1970 1971 1972 1973 1974
1975 19776 19978	0.103	0-025 0-073 0-050	8:055 0:073 0:031	0.016 0.022 0.015 0.017	0.002	0000	0000	0000	0000	0.011	0.231	0.055	0.015	1975 1976 1977 1978
MEAN	0.118 LOCATION	0.075 - LAT LONG 1	0.070 49 17 13 124 09 32	0.026 N DRA W REG	0.005 INAGE AREA ULATED	0.007 , 1.68 k	0.001 m²	0	D	0.002	0.033	0.094	0.036	NEAN

NAMES OF A COLLET OF ENOS THEE - SIMILON N	ж.	06668030
--	----	----------

	ASSUAL EXTREMES OF DISCHA	ROE AND ANNUAL TOTAL DISCHAR	GE FOR THE PERIOD OF RECORD		
YEAR	MAXIMUM INSTANTANEOUS DISCHARGE M (±3/s)	AXIMUM DAILY DISCHARGE (m ³ /s)	MINIMUM DAILY DISCHARGE (m ³ /s)	TOTAL DISCHARGE (dan ³)	YEAR
1962 1953 1964		0.377 ON NOV 30 0.303 ON DEC 31 0.283E ON JAN 01	O ON JUN 29 * O ON MAR 01 O ON APR 18	1 070	1962
1965 1966 1966 1966 1966 1966		0.411 CN FEB 05 * 0.991 CN JAN 07 * 0.595 CN JAN 20 0.997 CN JAN 18 0.464 CN DEC 13	OE CN JUN C6 OE CN JUN C1 O CN JUL C1 O CN JUL 05 O CN MAY 13	884 1560 1600 179	1965 1967 1968 1969
1970 19772 19772 19773 1974		0.745 ON DEC 11 0.456 ON DEC 17 0.629 ON FEB 29 0.711 ON DEC 16 0.657E ON MAR 11	O ON MAY 31 O ON MAY 28 O ON JUL 04 O ON JUL 04 O ON JUL 22	400000 101100	1970 1977 1977 1977
1975 1976 1977 1978	8.227 AF 13:50 F87 CN DEG 15 .	0.748 ON MOV 15 0.464A ON FEB 26 0.224 ON DEC 16 0.280 ON JAN 10	O ON JUN 14 O ON MAY 10 O ON JAN 01 O ON MAY 21	489	1975 1977 1977 1978
A - (SE	HANUAL GADGE E - ESTIMATED E REFERENCE INDEX)	· - EXTREME RECORDED FOR T	HE PERIOD OF RECORD .	1 140	MEAN

Appendix C

Miscellaneous Flow Measurements and Estimates

French Creek Flow Measuements vs Estimate

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Estimate	5,141	4,034	3,875	1,898	949	316	79	0	79	475	3,005	5.774
08HB078		-		1,062	437	205	45	77	106			
08HB038				1,610	973	271	77	8	48			
8216(1982)						256	66	46	33	37	+	
		1						19	34	103		
8216(1983)					187	167	123	90	59	37		
						179	433	29	29	1 "		
						275	103	14	54		1	
									18	1		
Sta#1(1987)									4	13		
									7			
ł									1 ii			
									17			
Sta#2(1987)									3			
									2			
									3			
									6			
									13			
Sta#3(1987)									9	28	21	
									-	14		
										15		
French Cros	k at D	maha		0 ft holes		C1						
1090	a cín	unpho	use (Il	J II DEIOV	v)	station	Numbe	r 8216		Flow fo	r 1982-8	3
1982	CIS	I/SEC		1983	Cfs	l/sec		1983	cfs	l/sec		

18-Jun 9.03 256 23-Jul 2.32 66 13-Aug 1.63 46 24-Aug 0.66 19 7-Sep 1.16 20-Sep 1.19 33 34 37 4-Oct 1.31 37 18-Oct 3.65 103

> -.

UT Delov	Station	
1983	Cfs	l/sec
30-May	6.60	187
10-Jun	5.91	167
21-Jun	6.33	179
30-Jun	9.70	275
7-Jui	4.33	123
15-Jul	15.30	433
29-Jul	3.65	103
4-Aug	3.17	90

r 8216		Flow for
1983	cfs	l/sec
12-Aug	1.02	29
26-Aug	0.51	14
2-Sep	2.08	59
9-Sep	1.03	29
23-Sep	1.92	54
30-Sep	0.65	18
8-Oct	1.30	37

French Cree	K at R	ailroad	Trestle	•		Station	#1
1987	cfs	l/sec		1987	Cfs	l/sec	1
9-Sep	0.152	4		11-Sep	0.396	11	1
10-Sep	0.24	7		29-Sep	0.602	17	
French Cree	k 1,00	0 ft bel	ow Bar	clay Roo	bc	Station	#2

			Flow for	1987
	1987	cfs	l/sec	
2	Oct	0.474	13	

ch Cree	k 1,00	0 ft bel	ow Ba	rclay Roo	bd	Station	#2
1987	cfs	l/sec		1987	cfs	l/sec	
9-Sep	0.09	3		11-Sep	0.104	3.	1
10-Sep	0.057	2		16-Sep	0.208	6	

French Cree	k abo	və İsla	nd Highway		Station	#3
1987	cfs	i/sec	1987	Cfs	I/sec	1
29-Sep	0.306	9	16-Oct	0.496	14	1
2-Oct	0.288	8	20-Oct	0.516	15	1

 0.17.1		
	Flow for	1987

1987	cfs	l/sec
29-Sep	0.454	13

ſ

E

_		Flow for	1987
1987	Cfs	l/sec	
5-Nov	0.74	21	

FROM UT ALLO

French Creek	Water Allocat	fio Plan H	ydrology	Assessm	ent										
												-			
	Comparison of	% MAD													
		NAL	89	MAR	APR	MAY	NN	JULY	AUG	SEPT	oct	NON	S	MN ANN	
Milstone near W	elington	188%	169%	183%	116%	64%	18%	×.	3%	1%	25%	144%	281%	100%	
Milstone River at	Nanaimo	231%	188%	169%	200	80%	198	5%	. 1%	%	30%	166%	263%	100%	
Encs Creek at Ot	uttet of Enos Lake	328%	211%	1949	72%	17%	19%	3%	%0	30	6%	926	261%	100%	
	Average	249%	190%	3671	398	43%	19%	80	36	36	20%	134%	265%	3001	
															-
-															
	Comparison of	Uhit Area L	Olscharge												
		NAU	FEB	MAR	APR	MAY	NUN	JULY	MG	SEPT	CCI	NON	CEC CEC	MN ANN	Drainage Area (km
French Creek ab	ove Pumphouse				0.013	0.006	0.003	000	000	0.001					74.2
French Creek at	Combs				0.028	0.017	0.005	000	0000	0001					58.3
Milstone River ne	vor Welington	0.064	0.067	0.062	0.039	0.022	0.006	0.002	000	0000	0000	0.049	0.095	0.034	46.1
Milstone River of	Nanatmo	0.062	0.061	0.043	0.026	0.013	0.005	1000	0000	0000	0008	0.045	0.068	0.027	96.2
Encs Creek at O	uttet of Enos Lalo	0/0/0	0.045	0.042	0.015	0.004	0.004	1000	0000	D.DO	000	0.020	0.066	0.021	1.68
	Average	0.065	0.051	0.049	0.024	0.012	0.004	1000	0000	000	0009	0.038	0.073	0.027	

ĥ

Appendix D

Licensed Water Demand by Purpose

LICENCE NUMBER	FILE NUMBER	PRIORITY DATE	SOURCE	QUANTITY/ UNITS	LITRES/ SEC
Waterwork	s Purpose				
C035623	0281684	1968/09/06	French Creek	125000 GD	6.6250
C018817	0155723	1946/02/16	Parksville Springs	275000 GD	14.5750
			SUB-TOTAL	400000 GD	21.2000
Domestic F	Purpose				
F017900	0158523	1945/11/22	Bagshaw Spring	500 GD	0.0265
F045497	0243985	1962/05/24	Benbow Spring	1000 GD	0.0530
C045203	0323169	1974/05/31	Benbow Spring	100 GD	0.0053
C048186	0330297	1976/03/22	Binet Marsh	500 GD	0.0265
C036766	0296779	1970/07/13	Clatworthy Spring	500 GD	0.0265
F050180	0300335	1970/10/15	Fowler Spring	1000 GD	0.0530
C024357	0220404	1958/05/21	French Creek	500 GD	0.0265
F052376	0263424	1965/07/16	French Creek	500 GD	0.0265
C033493	0277522	1968/01/26	French Creek	1000 GD	0.0530
F040694	0290724	1970/01/06	French Creek	500 GD	0.0265
C046473	0329108	1975/07/04	French Creek	500 GD	0.0265
C047534	0330258	1976/03/09	French Creek	1000 GD	0.0530
C052866	0342458	1978/01/13	French Creek	500 GD	0.0265
C072605	0355984	1980/02/01	French Creek	500 GD	0.0265
C055168	0366526	1980/05/09	French Creek	500 GD	0.0265
C054995	0366816	1980/06/26	French Creek	1000 GD	0.0530
C058040	0369640	1981/11/23	French Creek	500 GD	0.0265
C024096	0218673	1957/12/17	Grandon Creek	1000 GD	0.0530
C057666	0367357	1980/10/08	Hait Spring	1000 GD	0.0530

LICENCE NUMBER	FILE NUMBER	PRIORITY DATE	SOURCE	QUANTITY/ UNITS	LITRES/ SEC			
C044820	0214025	1956/11/05	Judiesch Spring	1000 GD	0.0530			
C065818	1000763	1987/08/25	Leone Spring	500 GD	0.0265			
F018199	0205425	1954/09/20	Morningstar Creek	1500 GD	0.0795			
F051251	0277527	1968/01/29	Morningstar Spring	1000 GD	0.0530			
C056344	0368271	1954/12/30	Raper Spring	500 GD	0.0265			
C068977	0323141	1974/05/28	Robinson Spring	500 GD	0.0265			
C059717	0369644	1981/12/01	Robinson Spring	500 GD	0.0265			
C027114	0239536	1961/11/13	Smiths/Peters Springs	1000 GD	0.0530			
C024355	0220402	1958/05/22	South French Creek	2000 GD	0.1060			
C048689	0220885	1958/06/20	South French Creek	500 GD	0.0265			
C041858	0316817	1973/04/30	South French Creek	500 GD	0.0265			
C048835	0340685	1976/12/24	South French Creek	500 GD	0.0265			
C051409	0342060	1977/09/16	South French Creek	500 GD	0.0265			
C052799	0342483	1978/01/10	South French Creek	500 GD	0.0265			
C054428	0365694	1979/05/30	South French Creek	500 GD	0.0265			
F016069	0151449	1943/12/07	Taylor Spring	500 GD	0.0265			
F019901	0218294	1957/11/06	Young Spring	500 GD	0.0265			
	S	25100 GD	1.3303					
Industrial Ponds Purpose								
C027114	0239536	1961/11/13	Smiths/Peters Sprs	30000 GD	1.5900			
	S	SUB-TOTAL		30000 GD	1.5900			
Industrial V	Vatering Pur	pose	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
F052277	0173746	1948/05/27	Beach Creek	15 AF	2.3820			
F056342	0365950	1979/07/17	Beach Creek	11.6 AF	1.8421			
F057301	0208076	1955/05/31	Fabrick Brook	1 AF	0.1588			

LICENCE NUMBER	FILE NUMBER	PRIORITY DATE	SOURCE	QUANTITY/ UNITS	LITRES/ SEC
SUB-TOTAL				27.6 AF	4.3829
Industrial Stock Watering Purpose					
C065840	1001034	1989/02/21	French Creek	500 GD	0.0265
C072612	0300334	1970/10/15	Howard Spring	500 GD	0.0265
SUB-TOTAL			1000 GD	0.0530	
Irrigation F	Purpose				
C019234	0178540	1949/05/22	Beach Creek	0.5 AF	0.0794
F045497	0243985	1962/05/24	Benbow Spring	3.1 AF	0.4923
C045203	0323169	1974/05/31	Benbow Spring	5 AF	0.7940
C048186	0330297	1976/03/22	Binet Marsh	10 AF	1.5880
C036766	0296779	1970/07/13	Clatworthy Marsh	1 AF	0.1588
F057301	0208076	1955/05/31	Fabrick Brook	1 AF	0.1588
C020120	0188579	1951/05/05	French Creek	30 AF	4.7640
F048233	0193517	1952/02/18	French Creek	5 AF	0.7940
C024096	0218673	1957/12/17	Grandon Creek	10 AF	1.5880
F018105	0214001	1956/10/29	Little Hamilton Sw	60 AF	9.5280
C030761	0264805	1965/10/06	Smiths/Peters Sprs	5 AF	0.7940
C048689	0220885	1958/06/20	South French Cr	0.38 AF	0.0603
C028224	0249580	1963/05/07	South French Cr	3 AF	0.4764
C034953	0285615	1969/05/27	South French Cr	0.25 AF	0.0397
C048690	0342518	1958/06/20	South French Cr	0.25 AF	0.0397
C048691	0342519	1958/06/20	South French Cr	0.37 AF	0.0588
C023922	0216633	1957/06/17	Violetta Creek	1 AF	0.1588
C064062	1000619	1986/06/13	Whiteley Creek	60 AF	9.5280
SUB-TOTAL				195.85 AF	31.1010

LICENCE NUMBER	FILE NUMBER	PRIORITY DATE	SOURCE	QUANTITY/ UNITS	LITRES/ SEC	
Storage	Storage					
C065840	1001034	1989/02/21	French Creek	0.5 AF	-0.0794	
C064063	1000619	1986/06/13	Whiteley Creek	60 AF	-9.5280	
SUB-TOTAL				60.5 AF	-9.6074	
Land Improvement Purpose						
C072283	1001020	1989/01/17	Oldaker Marsh	5 AF	0.7940	
C036767	0296947	1970/07/22	Price Marsh	40 AF	6.3520	
SUB-TOTAL				45 AF	7.1460	
Conservation Storage Purpose						
C059538	1000073	1982/09/23	Dudley Creek	51.3 AF	8.1464	
SUB-TOTAL				51.3 AF	8.1464	
Conservation Use Purpose						
C063988	1000529	1985/09/13	French Creek	0.5 CS	0.0142	
SUB-TOTAL				0.5 CS	0.0142	
Conservation Works Purpose						
C061452	1000524	1985/09/12	French Creek	0 TF	0.0000	
SUB-TOTAL				0 TF	0.0000	

Appendix E

Licensed Water Demand by Drainage Area

Licensed Water Demand by Drainage Area

DRAINAGE/PURPOSE	LICENCED QUANTITY/UNITS	ESTIMATED litres/sec	ESTIMATED dam ³		
Romney Creek					
Waterworks	275,000 gpd (max day)	14.5	112.5		
Domestic	4,000 gpd	0.2	1.6		
Irrigation	5.0 acft	0.8	6.2		
Industrial	10.01 acft	1.6	12.3		
Total Consumption		17.1	132.6		
Land Improvement	t 6.352 acft Non-consumptive		ve		
Carey Creek					
none	none				
Morningstar Creek					
Domestic	3,000 gpd	0.2	1.2		
Total Consumption		0.2	1.2		
Land Improvement	5 acft	Non-consumptive			
French Creek					
Waterworks	125,000 gpd (max day)	6.6	51.1		
Domestic	14,500 gpd	0.8	5.9		
Irrigation	171.25 acft	27.2	211.2		
Industrial	1.17 acft	0.2	1.4		
Storage	60.5 acft	-9.6	-74.6		
	Total Consumption	25.2	195.0		
Land Improvement 40 acft Non-consumptive		ve			

DRAINAGE/PURPOSE	LICENCED QUANTITY/UNITS	ESTIMATED litres/sec	ESTIMATED dam ³	
	51.3 acft (Dudley Marsh)			
Conservation		Non-consumptive		
	0.5 cfs (fish hatchery)			
	TF (fish counting fence)			
Beach Creek				
Domestic	500 gpd	0	0.2	
Irrigation	1.5 acft	0.2	1.9	
Industrial	26.6 acft (golf course)	4.2	32.8	
Total Consumption		4.4	34.9	
Grandom Creek				
Domestic	1,000 gpd	0.1	0.4	
Irrigation	10.0 acft	1.6	12.3	
Total Consumptive	1.7	12.7		
Other				
Domestic	1,100 gpd	0.1	0.4	
Irrigation	8.1 acft	1.3	10.0	
Total Consumption		1.4	10.4	

Appendix F

Pending (1993) Water Licence Applications

FRENCH CREEK ALLOCATION PLAN PENDING APPLICATIONS

LICENSE NUMBER	FILE NUMBER	PRIORITY DATE	SOURCE NAME	QUANTITY	LITRES/SEC	
Waterworks Purpose						
Z100861	1000750	19870720	Unnamed Spring	14000 GD	7.4200	
SUB-TOTAL				14000 GD	7.4200	
Industrial Watering Purpose						
Z100840	1000976	19881130	Morningstar Creek	200 AF	31.7600	
Z100891	1001258	19900329	Morningstar Creek	119 AF	18.8972	
Z100896	1001275	19900502	Unnamed Creek	80 AF	12.7040	
SUB-TOTAL				399 AF	63.3612	
Irrigation Purpose						
Z100843	1000977	19881130	Morningstar Creek	119 AF	18.8972	
SUB-TOTAL				119 AF	18.8972	
Storage Purpose						
Z100843	1000977	19881130	Morningstar Creek	37.2 AF	-5.9074	
Z100891	1001258	19900329	Morningstar Creek	65 AF	-10.3220	
Z100896	1001275	19900502	Unnamed Creek	86.2 AF	-13.6886	
SUB-TOTAL				188.4 AF	-29.9179	
TOTAL DEMAND					59.7605	

Appendix G

Fish Screening Requirements

FISH SCREENING DIRECTIVE

Government of Canada Department of Pisheries and Oceans

WATER INTAKE FISH PROTECTION PACILITIES

The Department of Fisheries and Oceans has prepared this document as a guide to assist in the design and installation of water intakes and fish screening in British Columbia and the Yukon Territory to avoid conflicts with anadromous fish. Additional precautions must be taken at marine intake locations where entrainment of fish larvae, such as eulachon and herring larvae, is a possibility. The screening criteria constitutes the Department's policy regarding the design and construction requirements pursuant to Section 28 of the Fisheries Act.

PROVISIONS OF THE FISHERIES ACT - SECTION 28

Every water intake, ditch, channel or canal in Canada constructed or adapted for conducting water from any Canadian fisheries waters for irrigating, manufacturing, power generation, domestic or other purposes, shall, if the Minister deems it neccessary in the public interest, be provided at its entrance or intake with a fish guard or a screen, covering or netting, so fixed as to prevent the passage of fish from any Canadian fisheries waters into such water intake, ditch, channel or canal.

The fish guard, screen, covering or netting shall have meshes or holes of such dimensions as the Minister may prescribe, and shall be built and maintained by the owner or occupier of the water intake, ditch, channel or canal subject to the approval of the Minister or such officer as the Minister may appoint to examine it.

The owner or occupier of the water intake, ditch, channel or canal shall maintain the fish guard, screen, covering or netting in a good and efficient state of repair and shall not permit its removal except for renewal or repair, and during the time such renewal or repair is being effected, the sluice or gate at the intake or entrance of the water intake, ditch, channel or canal shall be closed in order to prevent the passage of fish into the water intake, ditch, channel or canal.

PROCEDURES FOR INSPECTION AND APPROVAL OF INTAKE STRUCTURES

Diversions less than 0.0283 cms (one cubic foot per second): The intake structure shall be constructed in accordance with specifications indicated herein. Upon completion of construction and prior to operation the owner shall contact a local representative of the Department of Fisheries and Oceans to arrange for on-site inspection and approval of the installation. Permanently submerged screens must be inspected prior to installation.

Diversons greater than 0.0283 cms (one cubic foot per second): The owner shall submit to the Department of Fisheries and Oceans 2 sets of detailed plans of the proposed installation for review and approval prior to fabrication. Design drawings are required whenever the diversion quantity exceeds 0.0283 cms (1.0 cfs) or 817,200 L/day (180,000 Igpd) for industrial diversions (calculated on the basis of 8 hours/day) or 123,350 cmy (100 ac.- ft./year) for irrigation diversions (calculated on the basis of 100 days/year and 12 hours/day). The plans shall contain the following information: Intake structure location and dimensions.

- Maximum discharge capacity of diversion. 2.
- Screen dimensions. з.
- Mesh size.
- Screen material. 5.
- Fabrication details. 6.
- Minimum and maximum water levels at the intake site.
- Provision for bypassing fish.

The intake structure shall then be constructed in accordance with the approved plans. Upon completion of construction and prior to operation, the owner shall contact the local representative of the Department of Fisheries and Oceans to arrange for on-site inspection and Permanently submerged screens must be approval of the installation. inspected prior to installation.

- 2 -

SPECIFICATIONS FOR INTAKE STRUCTURES WITHOUT PROVISION FOR AUTOMATIC CLEANING

- Screen Material: The screen material shall be either stainless steel, galvanized steel, aluminum, brass, bronze, or monel metal. Stainless steel is preferred since corrosion is greatly reduced.
- Screen Mesh Size: Clear openings of the screen (the space between strands) shall not exceed 2.54 mm (0.10 inch). The open screen area shall not be less than 50% of the total screen area. The following square-mesh wire cloth screens are recommended:
 - 7 mesh, 1.025 mm (0.041 inch) wire, 51% open, 2.54 mm (0.10 inch)
 - openings; or - 8 mesh, 0.875 mm (0.035 inch) wire, 52% open, 2.25 mm (0.09 inch)
 - openings; or - 8 mesh, 0.700 mm (0.028 inch) wire, 60% open, 2.54 mm (0.10 inch) openings.
- Screen Area: A minimum unobstructed screen area (gross area) of 0.93 square metre (10 square feet) shall be provided for each 0.0283 cms (1cfs) of water entering the intake. The required screen area shall be installed below minimum water level. Screen area lost by framing shall not be included as part of the unobstructed screen area.
- The screen shall be adequately supported with Screen Support: stiffeners or back-up material to prevent excessive sagging.
- 5. Screen Protection: The intake structure shall, where necessary, be equipped with a trash rack or similar device to prevent damage to the screen from floating debris, ice, etc.
- The screen shall be readily accessible for Screen Accessibility: cleaning and inspection. Screen panels or screen assemblies must be removable for cleaning, inspection and repairs.
- Allowable Openings: The portion of the intake structure which is submerged at maximum water level shall be designed and assembled such that no openings exceed 2.54 mm (0.10 inch) in width.

- Design and Location: The design and location of the intake structure shall be such that a uniform flow distribution is maintained through the total screen area.
- 9. Fish Bypass: The intake shall be designed to provide a transverse velocity (the component of the velocity parallel and adjacent to the screen face) to lead fish to a bypass or past the screens before they become fatigued. In no case should the transverse velocity be less than double the velocity through the screen.

SPECIFICATIONS FOR INTAKE STRUCTURES WITH PROVISIONS FOR AUTOMATIC CLEANING

The specifications are identical to those for intake structures without provisions for automatic cleaning except that the minimum unobstructed screen area (gross area) of 0.23 square metre (2.5 square feet) need only be provided for each 0.0283 cms (1 cfs) of water entering the intake. However, a regular cleaning and maintenance schedule is required to ensure seals and screen panels remain in good repair preventing impingement and entrainment of fish and debris.

For these self-cleaning intake structures, the location, design and juvenile fish avoidance system all affect operating characteristics. The final design, therefore, may incorporate modifications reflecting the best current technology available for minimizing adverse impact upon the fisheries resource.

ALTERNATE FISH PROTECTION FACILITIES

Enquiries concerning the Department's requirements for indirect intakes, such as infiltration galleries and wells, for salt water ocean intakes, and for new methods or devices for screening intake structures should be directed to the Department of Fisheries and Oceans, Senior Habitat Management Biologist.

Conversion Factors:

0.10 inch = 3/32" (approx.) = 2.54 millimetres

- 3 -

Addresses for Correspondence and Approvals

- Senior Habitat Management Biologist Fraser River, Northern B.C. and Yukon Division Department of Fisheries and Oceans Room 330, 80 - 6th Street New Westminster, B.C. V3L 5B3
- Senior Habitat Management Biologist South Coast Division Department of Fisheries and Oceans 3225 Stephenson Point Road Nanaimo, B.C. V9T 1K3

Phone: 666-6479

Phone: 756-7270

 Senior Habitat Management Biologist North Coast Division Department of Fisheries and Oceans Room 109, 417 - 2nd Avenue West Prince Rupert, B.C. V6J 168

Phone: 624-9385

Other Federal and Provincial agencies having jurisdiction in water withdrawals and construction pertaining to watercourses in British Columbia include:

- Transport Canada Canadian Coast Guard.
- B.C. Ministry of Environment Fish and Wildlife Management.
- B.C. Ministry of Environment Water Management.
- B.C. Ministry of Agriculture and Food.
- 5. B.C. Ministry of Lands, Parks and Housing.

It may be necessary that several or all these agencies also be solicited for approvals prior to the installation of a water intake.

Revised January, 1986

SHALLOW WATER WELL SCREEN

May be installed in lakes, pools, and stable areas in rivers.

Totally submerged cylindrical shaped stainless steel well screens provide for high intake capacity and large percentage of open area permitting water to enter at low velocities. Slot opening shall not exceed 2.54 mm (0.10 inch).

VERTICAL PANEL SCREENS

May be installed in rivers, lakes and the ocean. Generally, requires coarse trashracks, a sluice gate in river installations, double sets of guide-rails, and standby screen panels to allow for cleaning and repairs.

LARGE STATIONARY WATER INTAKE SCREENS (For pumps of a capacity more than 28.3 L/sec [icfs, 449U.S. or 374 Igpm])

REVOLVING DRUM SCREEN, HORIZONTAL AXIS

Generally, installed to divert fish from irrigation canals. Can be driven by a small motor or by a paddle whee! To avoid juvenile fish impingement, a bypass channel is required near the front of the screen. Rubber seals are necessary along the base and sides.

FINNIGAN SCREEN

The horizontal, self-cleaning Finnigan Screen is another concept, generally installed to divert fish from irrigation or enhancement projects. The stationary horizontal screen is kept clean by a set of brushes attached to a revolving paddle wheel powered by the water current entering the structure A portion of the flow, the suspended debris, and fish are directed to the bypass channel. The remainder of the flow passes through and below the screen for use as required.

IRRIGATION INTAKE SCREENS

CONVENTIONAL VERTICAL TRAVELLING SCREEN

May be installed in rivers, lakes and the ocean. A common screening method utilized by industry, these self-cleaning mechanical screens with modifications can prevent impact upon fish. Mounted flush to the stream bank (shoreline) or as pier intakes within streams and provided with an opening on the downstream end between the intake screens and trashracks, juvenile fish can generally escape entrapment. Rubber panel, side, and boot seals are required to prevent juvenile fish from gaining entry into the pumpwell. A safe bypass system is essential to return juvenile fish with debris back to the watercourse. Automatic controls are also necessary to ensure operation at a specific minimum head differential.

LARGE INDUSTRIAL AND DOMESTIC WATER INTAKE SCREEN