Technical Summary

January 2024

Pit Name: Cherry Creek

Provincial Pit Number: 0443

Location: The pit is located approximately 2 km northeast of Cherryville on the Sugar

Lake Road. (Figure 1).

Legal Land Description: Ministry of Transportation and Infrastructure Section 16 Map Reserve on that part of the Southwest 1/4, except Plan 32827, and that part of the Southeast 1/4, except Plan 32827, Section 33, Township 57, Osoyoos Division Yale District, containing 71.10 hectares, more or less, containing 71.1 hectares more or less. UTM coordinates for the pit are Zone 11, 5568800 Northing, 383800 Easting. (Figure 2).

Subsurface Investigation: Subsurface investigations at Cherry CreekPit were carried out in August of 2005 and November of 2020 by Ministry of Transportation & Infrastructure.

In 2015 twelve (12) test pits were excavated to depths ranging from 2.2 to 4.6m. During the test pitting, subsurface soil and groundwater conditions were logged and representative samples of the granular materials were collected for laboratory testing and future reference. Laboratory testing was carried out on twelve (12) of these samples to assess the gradation and durability characteristics. The tests completed were wet sieve analysis, micro deval, sand equivalent, relative density, and absorption.

Based on the results of the 2015investigation, one granular area has been defined. The detailed results of the subsurface testing are provided in the Test Pit Summaries and test pit locations are shown on the Pit Development Plan (Figure 3).

Material Gradation: Table 1 shows the gradation as a percentage by weight of the fines (silts and clays), sand and gravel components as well as the Unified Soil Classification (USC [included after test pit summary]) for the samples tested.

Table 1: Pit Run Gradation

Test Pit	Depth (m)	Fines (%)* <0.075mm	Sand (%)* 0.075-4.75mm	Gravel (%)* 4.75-75mm	USC						
Area A											
15-1	0-4.5	2.4	27.3	70.3	GW						
15-2	0-4.5	2.0	35.5	62.5	GW						
15-3	1-4.6	2.4	33.2	64.4	GW						
15-4	0-4.6	2.7	32.5	64.8	GW						
15-5	0-4.6	2.7	36.8	60.5	GW						
15-6	0-4.6	3.1	32.6	64.3	GW						
15-7	1.4-4.6	2.4	35.2	62.4	GW						
15-8	0-2.2	3.0	323	64.7	GW						
15-9	0-4.6	3.3	35	61.7	GW						
15-10	0-4.6	2.0	34.5	63.5	GP						
15-11	1-4.6	2.6	36	65.4	GW						
15-12	0-4.6	2.3	37.5	60.2	GW						
	– Area A	2.6	34	64	-						

^{*} Values are rounded to the nearest whole number so may not add exactly to 100%

Table 2: Oversize Field Estimates

Classification:	Average (%)	Range (%)
Boulders (>375mm)	2	0 - 7
Cobbles (150-375mm)	5	0 - 8
Cobbles (75-150mm)	8	0 - 12

Material Durability: Table 3 shows the results of the durability tests as well as the specifications as required in the Standard Specifications for Highway Construction.

Table 3: Durability Test Results

5. Durability rest Results								
TEST	AVERAGE	RANGE						
151 D 1551	1.6.0	140 170						
Micro-Deval (Fine)	16.0	14.8 - 17.2						
Micro-Deval (Coarse)	11.2	10.0 - 12.7						
Sand Equivalent %	52	34 - 71						
Magnesium Sulfate (Coarse %)	3.58	3.28 - 3.87						
Magnesium Sulfate (Fine %)	7.82	6.08 - 9.55						
Bulk Relative Density (Coarse)	2.644	2.625 - 2.664						
Bulk Relative Density (Fine)	2.626	2.616 - 2.647						
Absorption (Coarse)	1.18	1.06 - 1.28						
Absorption (Fine)	1.28	1.09 - 1.48						

BC MoTI Specifications						
Sand Equivalent	≥40 for base coarse and fine asphalt mix aggregate ≥20 for surfacing, sub-base and bridge end fill aggregates					
Micro Deval	≤30% for sub-base and bridge end fill aggregates ≤25% for surfacing & base course aggregates ≤18% for Class 1 Pavement asphalt mix aggregates ≤20% for Class 2 Pavement asphalt mix aggregates					
Absorption	<2.0% for coarse paving aggregates ≤1.0% for coarse and ≤1.5% for fine graded aggregate seals					
Relative Density	~2.65 for all aggregate products					

Material Suitability: Based on the 2015investigation results, the material is judged to be suitable for the following purposes:

Table 4: Suitability

	Pit Run	Crush
Cherry Creek Pit	Bridge End Fill SGSB	25mm WGB Asphalt Mix Aggregates

The samples tested meet the gradation, sand equivalent, and micro-deval specifications for base course, bridge end fill and asphalt mix aggregate.

Volume Estimates: The suitability area for Cherry Creek Pit has been stripped of topsoil and overburden. The estimated granular volume is 300,000 m3. The potential volumes of granular material were calculated by averaging the total thickness of granular material encountered in test pits and multiplying by the estimated surface area.

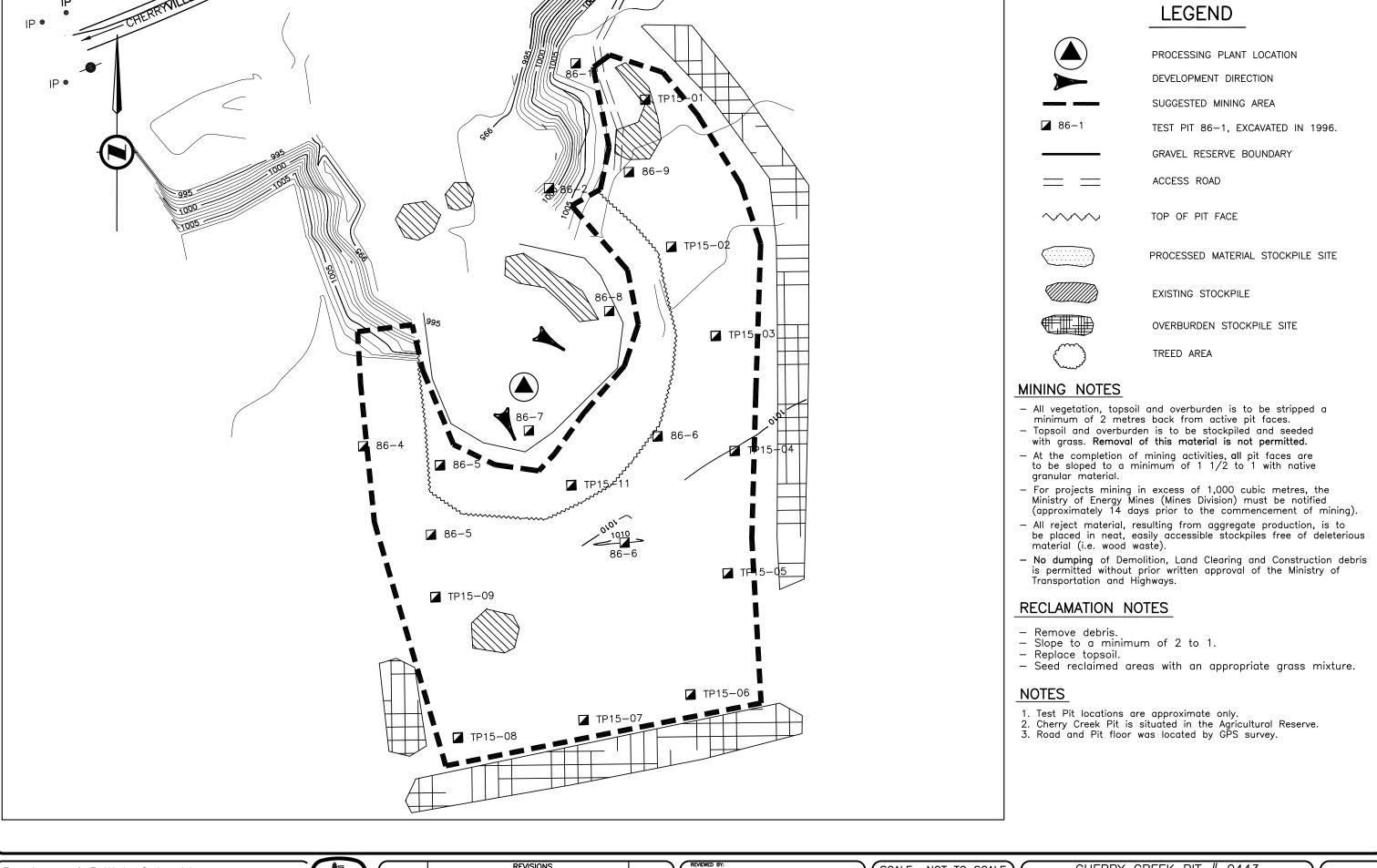
Pit Development Notes

- All development must be carried out in accordance with the Health, Safety, and reclamation Code for Mines in British Columbia, BC Ministry of Energy and Mines (2012, or later edition), the Standard Specifications for Highway Construction, BC Ministry of Transportation and Infrastructure (2020, or later edition) and the Aggregate Operators Best Management Practices Handbook for BC.
- The water table was found not found in Test Pits 1 through 12, but was encountered in the pit floor at approximately 2 meters deep.
- All trees, vegetation, and overburden are to be removed within 2m of the top of the pit faces. Topsoil, overburden, and aggregate cannot be removed within five meters of the reserve boundary.
- No dumping of debris or petroleum products will be permitted, and the site must be left in a clean and safe condition.
- Stockpiled rip rap and winter sand is not available for use in processing aggregate. Other existing stockpiles are recommended for use.
- At the completion of the pit development operations, but prior to the depletion of the pit, the sides of the pit faces, waste piles, and overburden stockpiles must be trimmed to a 1.5H:1V slope. Active pit faces must be reshaped with native granular materials.
- Upon depletion of the pit, all disturbed areas are to be reclaimed. The minimum reclamation procedure should include re-sloping of the pit faces and waste piles to a 2H:1V slope, contouring the area for appropriate drainage, spreading of overburden followed by topsoil, and seeding.
- Should any of the above conditions conflict with the Health, Safety, and Reclamation Code for Mines in British Columbia, then the Code will prevail.

Closure

The findings of this report and the soil conditions noted above are inferred from the extrapolation of limited surface and subsurface data collected during the site investigation. It should be noted that different and possibly poorer soil conditions may exist between the test pit locations and volume estimates may vary from those reported in this report.

Reviewed by:

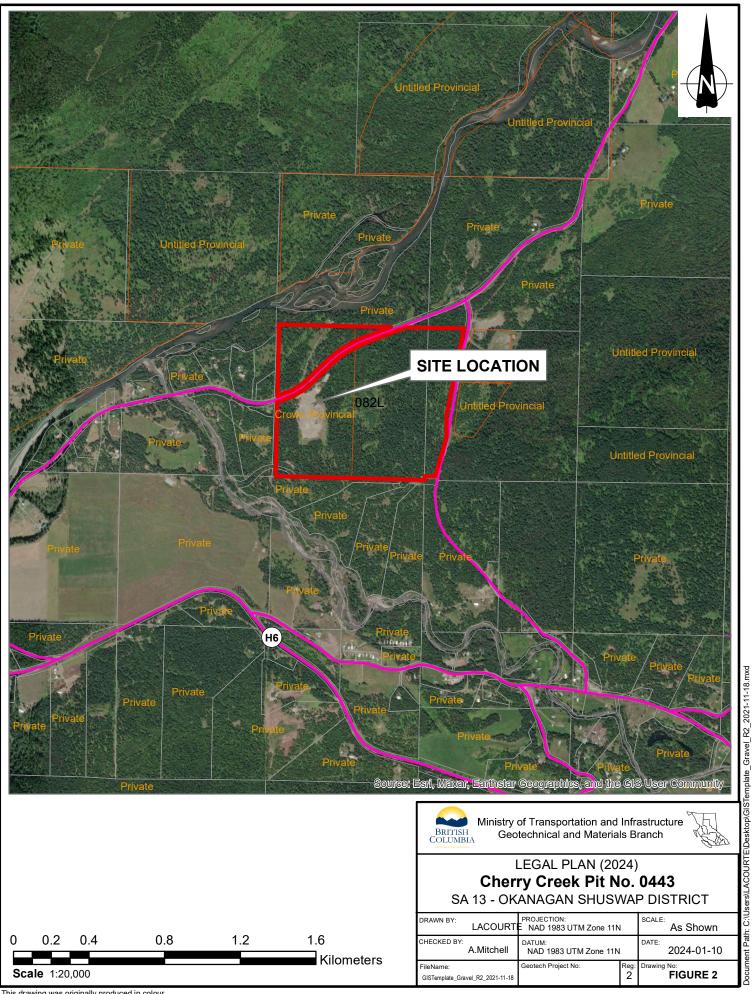

Laura Courtenay

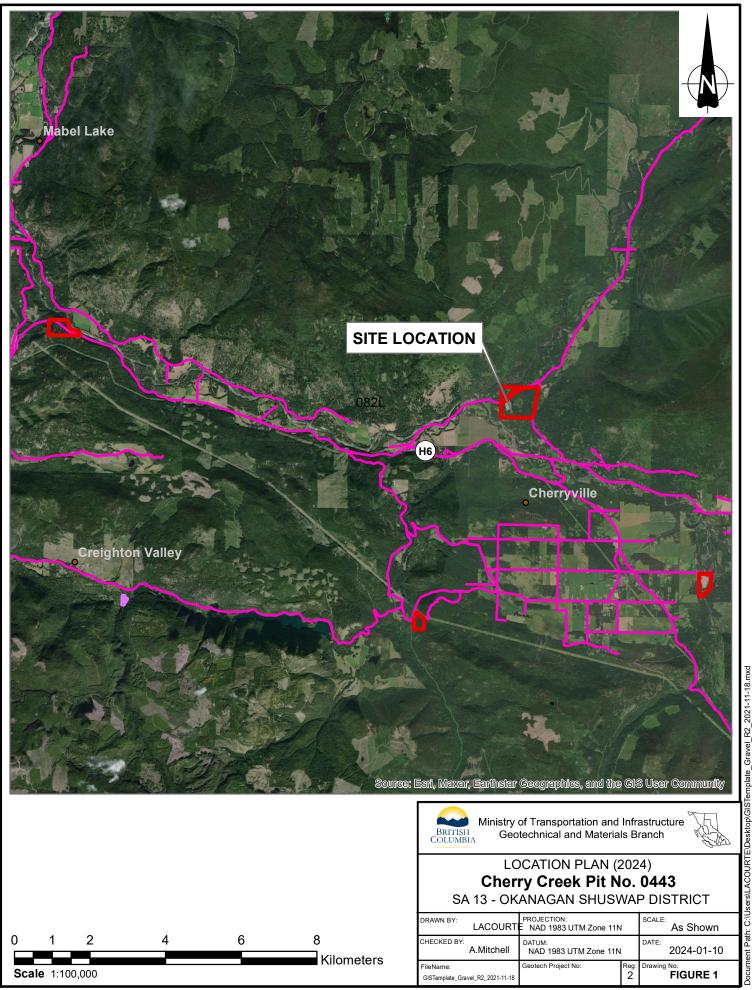
Prepared by:
Steven Lee
St. Aggregate Personne Specialist

Sr. Aggregate Resource Specialist Sr. Aggregate Resource Specialist

Figure 1 - Location Plan
Figure 2 - Legal Plan
Figure 3 - Development Plan
Test Pit Summary
USC Legend
Photos

Province of British Columbia
Ministry of Transportation and Highways
GEOTECHNICAL and MATERIALS ENGINEERING

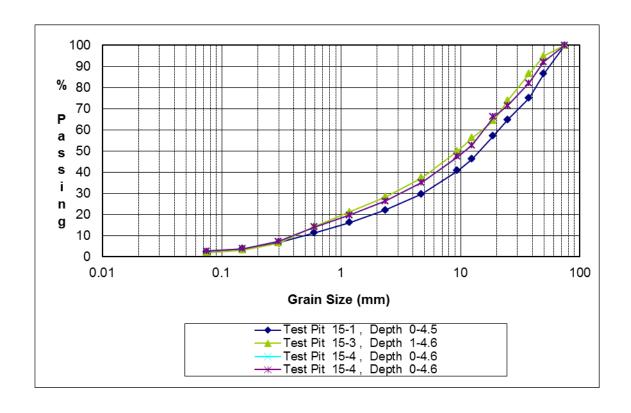


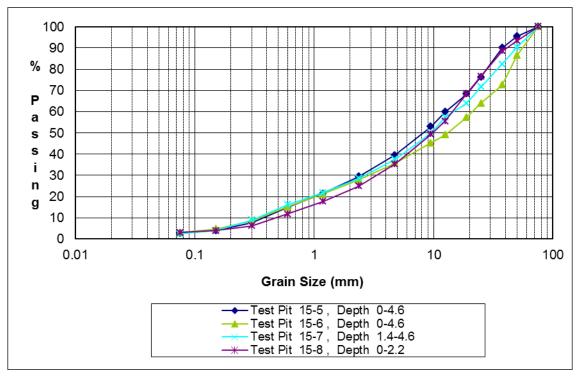

- 1		REVISIONS	
	Date	Description	Initial
	FEB 93	Panterra Pit Survey	
	MAR 96	1996 Testpits — Hip Chain Survev	
	NOV 99	GPS Pit Floor Survey	
	MAR 04	Inserted January 2003 Survey (Pin Point)	
,		, , , ,	

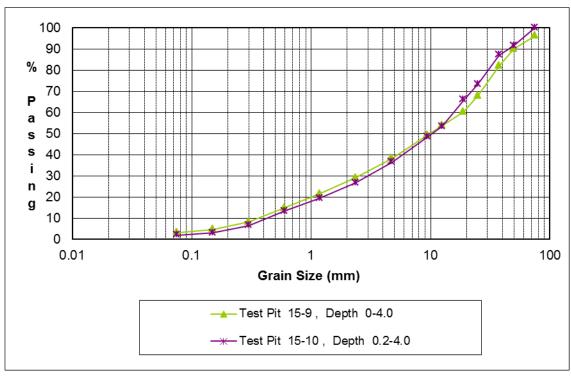

SCALE: NOT TO SCALE
DRAWN: WSR
DATE: NOV 2012
AutoCAD: F3P0443

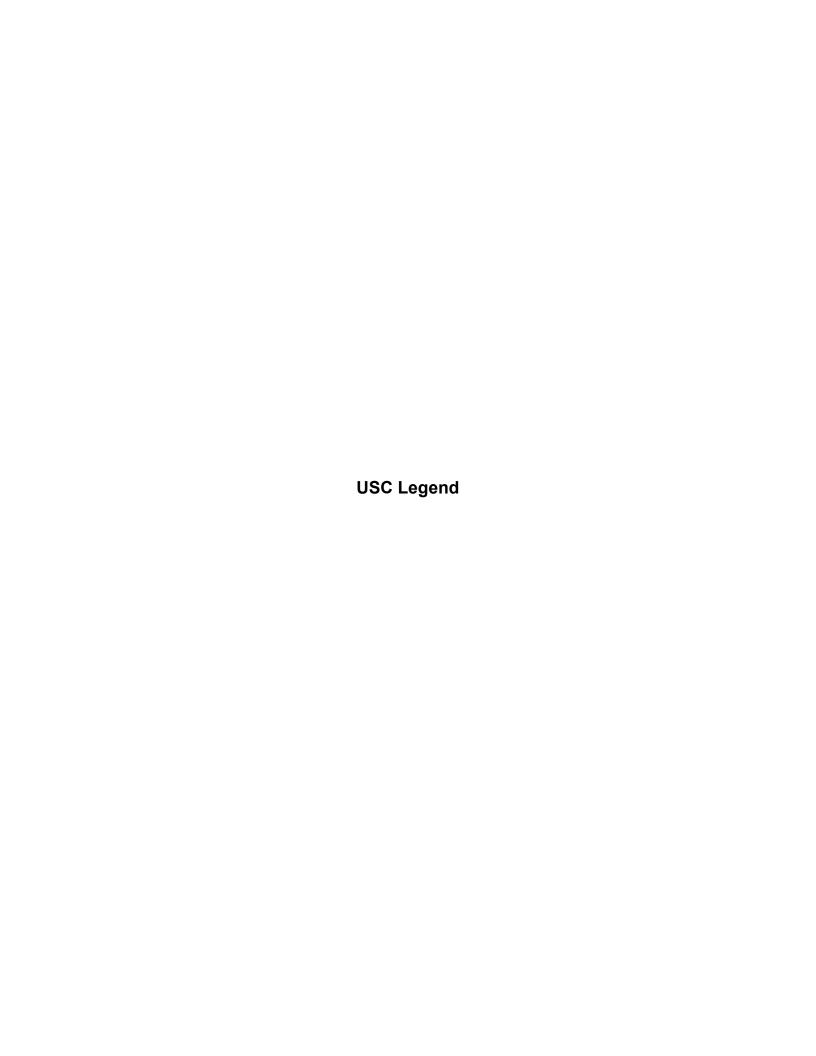
CHERRY CREEK PIT # 0443
PIT DEVELOPMENT PLAN
FILE NO. 50-13-0443

FIGURE

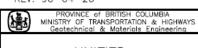




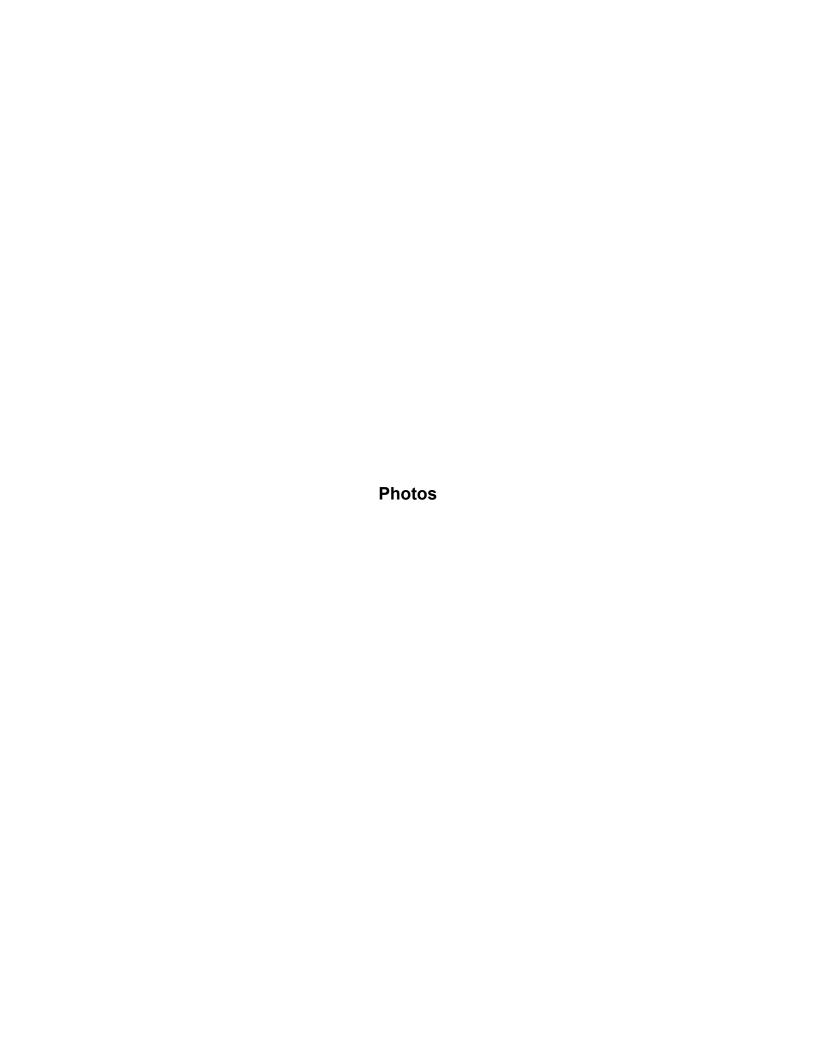



					AG	iGR	REG	AT	EL	.OG	i		
PROJ		С	herry Ck	Pit						PLED			WSR
	PIT #:		0443						N	/IETH	IOD:		Excavator
DIST	RICT:	Okar	agan Shu	ıswap						D	ATE:		25-Apr-15
TH / TP	DEF	тн	SAMPLE	SOILS CLASS		STIMATE RADATIO	_			ROCK 7	75mm	SAND TYPE	REMARKS
	FROM	то	BAG No.		G	s	F	MAX SIZE	75mm 150mm	150mm - 375mm	375mm	F M C	
15-01	0.0	4.5	190	GP	68	29	3	400	10	6	3	m	GP 70/27/3
15-02	0.0	2.0		GP	65	32	3	400	10	6	3	М	
	2.0	2.6	188	GP	52	45	3	400	10	6	3	М	COMBINED SAMPLE
	2.6	4.5		GP	66	32	2	400	10	6	3	М	GP 62/36/2
15-03	0.0	1.0		SP	27	72	1	75	0	0	0	М	
	1.0	4.6	189	GP	67	31	2	300	12	6	0	М	GP 65/33/2
15-04	0.0	2.6		GP	70	28	2	500	12	8	2	М	
	2.6	3.0	187	SP	5	94	1	10	0	0	0	М	COMBINED SAMPLE
	3.0	4.6		GP	60	38	2	200	5	2	0	М	GP 65/32/3
15-05	0.0	1.2		GP	65	33	2	300	10	6	0	М	
	1.2	2.3	241	GP	50	48	2	150	6	2	0	М	COMBINED SAMPLE
	2.3	4.6		GP	66	31	3	400	8	4	2	М	GP 61/37/2
15-06	0.0	4.6	242	GP	66	31	3	600	8	6	2	М	GP 64/33/3
15-07	0.0	1.4		GP	68	30	2	700	6	8	7	М	
10 01	1.4	4.6	243	Oi -	65	33	2	300	10	6	0	M	GP 62/35/3
15.09	0.0	2.2	244	GP	70	29	1	350	10	8	2	Λ4	CD 65/22/2
15-08	2.2	4.6	244	GP GP	56	41	3	100	5	0	0	M M	GP 65/32/3
15.00			0.15					100					
15-09	0.0	4.6	245	GP	64	33	3	400	7	4	2	М	GP 65/32/3
45.40	0.0	1.0	0.10	0.5		04		400				.,	00.04040
15-10	0.0	4.6	246	GP	66	31	3	400	6	4	2	М	GP 64/34/2
15-11	0.0	1.0	247	SP	40	58	2	50	0	0	0	М	
	1.0	4.6		GP	66	31	3	300	8	6	2	М	GP 62/36/2
15-12	0.0	4.6	248	GP	68	30	2	200	6	3	0	М	COMBINED SAMPLE
			-	SP	46	53	1	100	6	0	0	М	GP 60/38/2
15-13	0.0	0.7	י ח וח	CRUSH MAT	FRIA								PIT FLOOR
70 10	0.7	2.0	<u> </u>	GP	56	43	1	200	6	53	1	М	WATER TABLE
	_	?		SP	46	53	1	100	6	0	0	М	
	2.0			3F	70	33		100	٠		U	IVI	

San	nple Informa	ation						Per	cent Retair	ed							
Test Pit	Depth	Bag #						Pit Run	Sieve Size	s (mm)							
	(m)		75	50	37.5	25	19	12.5	9.5	4.75	2.36	1.18	0.6	0.3	0.15	0.075	PAN
15-1	0-4.5	190	0	13.5	11.5	10.1	7.6	11	5.5	11.1	7.5	6	4.8	4.7	2.8	1.5	2.4
15-2	0-4.5	188	0	5.1	8.4	12.5	9.5	8.3	6.1	12.6	9.1	7.2	6.8	7.8	3.4	1.2	2
15-3	1-4.6	189	0	13.1	10.9	8.4	6.7	7.5	5.3	12.5	9.7	7.5	6.3	5.9	2.8	1	2.4
15-4	0-4.6	187	0	7.9	10	10.5	5.3	13.5	5.4	12.2	8.8	6.6	5.7	6.8	3.5	1.1	2.7
15-5	0-4.6	241	0	4.5	5.4	13.7	8	8.5	7	13.4	10.1	7.9	6.7	7	3.8	1.3	2.7
15-6	0-4.6	242	0	13.5	14	8.6	6.6	8.3	3.7	9.6	7.9	6.7	6	6.5	3.9	1.6	3.1
15-7	1.4-4.6	243	0	9.6	8.1	10.6	7.7	6.6	7.4	12.4	9	6.8	5.6	7.2	5	1.6	2.4
15-8	0-2.2	244	0	6.6	4.8	11.9	8.2	13	6.2	14	10.4	7.2	5.9	5.5	2.4	0.9	3
15-9	0-4.6	245	3.8	6.2	8	14.1	7.5	6.5	4.4	11.2	9.2	7.6	6.6	6.7	3.5	1.4	3.3
15-10	0-4.6	246	0	8.4	4.5	13.8	7.3	12.7	4.8	12	9.8	7.2	6.1	6.8	3.6	1	2
15-11	1-4.6	247	0	6	12.4	9.2	7.8	7.2	6.2	12.6	9.8	7.8	6.6	6.6	3.7	1.5	2.6
15-12	0-4.6	248	0	8.3	8.4	10.5	7.1	9.4	4.5	12	9.8	7.7	6.9	7.6	4	1.5	2.3



MATERIALS CLASSIFICATION LEGEND


MAJ DIVIS	IOR IONS	SYMBOL	SOIL TYPE
	S	GW	WELL GRADED GRAVELS OR GRAVEL-SAND MIXTURES, < 5% FINES
SOILS	AND	GP	POORLY-GRADED GRAVELS OR GRAVEL-SAND MIXTURES, < 5% FINES
	GRAVEL	GM*	SILTY GRAVELS, GRAVEL—SAND—SILT MIXTURES
INEC	GRA	GC*	CLAYEY GRAVELS, GRAVEL—SAND—CLAY MIXTURES
GRAINED		SW	WELL-GRADED SANDS OR GRAVELLY SANDS, < 5% FINES
SE	AND SOILS	SP	POORLY-GRADED SANDS OR GRAVELLY SANDS, < 5% FINES
COARSE	SAND	SM*	SILTY SANDS SAND—SILT MIXTURES
Ö	SAS	SC*	CLAYEY SANDS SAND-CLAY MIXTURES
	s AND w_ <50	ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
GRAINED SOILS	SILTS AN	CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
VED.	긍	OL	ORGANIC SILTS AND ORGANIC SILT-CLAYS OF LOW PLASTICITY
GRAIN	AND >50	МН	INORGANIC SILTS, MICACEOUS OR DIATOM— ACEOUS FINE SANDY OR SILTY SOILS, PLASTIC SILTS
FINE	SILTS AND AYS w _L >	СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
L	SILT	ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
	ANIC ILS	Pt	PEAT AND OTHER HIGHLY ORGANIC SOILS
	SOIL	TS	TOPSOIL WITH ROOTS, ETC.
	BLES	SB	ROCK FRAGMENTS AND COBBLES, PARTICLE SIZE 75mm TO 300mm
LAF BOUL	RGE .DERS	LB	BOULDERS, PARTICLE SIZE OVER 300mm
	ROCK	BR	BEDROCK
*GM1; GM2; GM3;	GC1; SI GC2; SI GC3; SI	M1; SC1; M2; SC2; M3; SC3;	12% PASSING .075 SIEVE, USE DUAL SYMBOL 12 - 20% 20 - 30% 30 - 40% 40 - 50% PASSING .075mm SIEVE

REV. 90-04-26

UNIFIED SOIL CLASSIFICATION LEGEND

Drawn: LU	Date: JULY'97	Scale:	
File No.:		ACAD	File. ACADSTOS

Facing south from the pit entrance. Stockpiles and material in this area of the pit may need to be relocated for stockpiling (May 2022).

Facing southwest toward main pit face. Recommended crusher setup here (May 2022).

Facing southeast toward main pit face. Recommend crusher setup here (May 2022).

Facing north from the same location as the previous photo (May 2022).

Facing west toward treeline near center of pit (May 2022).

Overgrowth beyond the main pit face to the south (May 2022).

Aggregates in main face (May 2022).