Kamloops March 12, 2002

Pilot 2

Design and Installation of Embedded Culverts

Part 2: Design

Part 2: Design

6 Main Topics

- 1. Evaluation of site suitability
- 2. Detailed streambed profile
- 3. Sizing the pipe
- 4. Design embedment
- 5. Embedment material
- 6. Design drawings

Design and Installation of Embedded Culverts

1. Evaluation of Site Suitability Should consider the following:

- Fish stream
- Stable stream channel
- Stream gradient <6%
- Stream channel width <a>
- Depth of excavatable fill
- Suitable for <u>both</u> stream and road geometry
- Evaluate diversion options

2. Detailed Streambed Profile

- Use precise instruments
- Establish elevation benchmarks

Field Survey Reference Control

Elevational **benchmarks**

 Horizontal reference stakes

Detailed Streambed Profile

Profile Length

- Extended distance upstream and downstream (~50m minimum)
- note potential influences such as log/debris jams, bedrock, nick points

Detailed Streambed Profile

Elevation (m)

3. Sizing the Pipe Stream Channel Width

Culvert diameter / span must span SCW at point of embedment

stream channel width

Design and Installation of Embedded Culverts

Diameter/Span

 Determination of Stream Channel Width with field measurements

 Use systematic approach to avoid skewing the results

(FSCG - 6 equally spaced intervals along 100 m length)

Depth of Embedment

- Round pipes 40% of diameter or 0.6m, whichever is greater
- Pipe-arch 20% of vertical rise of the arch

Design and Installation of Embedded Culverts

Round Pipes

 40% of diameter or 0.6m, whichever is greater

Span the stream channel width (SCW) at embedment depth

stream channel width

present water level

40% embeddment

Design and Installation of Embedded Culverts

Arch Pipes

Arch Span <u>></u> Stream channel width

- Pipe-arch 20% of vertical rise of the arch
- Span the stream channel width (SCW) at embedment depth

20% embedment

stream channel width

Present water level

Design and Installation of Embedded Culverts

Check Q100

 Check that Q100 will pass @ embedment depth

Non-embedded pipe

Culvert Cross Sectional Area <u>~</u> 3 x Visible Highwater Area

- Round pipe at 40% embedment => loss of 37% of area
- Arch pipe at 20% embedment => loss of 17% of area

Design and Installation of Embedded Culverts

Check Q100

 Round pipe at 40% embedment -> loss of 37% of area Round Culvert X-sectional Area Required <u>~</u> 1.37 x (3 x visible high water area)

 Arch pipe at 20% embedment -> loss of 17% of area Arch Culvert X-sectional Area Required <u>~</u> 1.2 x (3 x visible high water area)

FPC Forest Road Regulations -Require P.Eng. For :

≥2000mm or ≥6 m³/s

Design and Installation of Embedded Culverts

Factors Influencing Culvert Length

- Depth of fill and fill slopes
- Road surface width
- Culvert gradient
- Skew angle of culvert to road

Factors Influencing Culvert Length

Include:

Factors Influencing Culvert Length

Include:

Design and Installation of Embedded Culverts

4. Design Embedment Depth of Embedment

- Round pipes 40% of diameter or 0.6m, whichever is greater
- Pipe-arch 20% of vertical rise of the arch

Design and Installation of Embedded Culverts

Design Embedment

Elevation (m)

5. Embedment Materials

- Objective is to emulate/simulate natural streambed
- Fish passage is related to "Hydraulic Roughness" (HR)
- HR related to size of bed materials
- Bed materials, in turn, are related to water velocities and water depth in culvert which influence fish passage

Material Size Influence on Velocity

Embedment Materials

Velocity Refuge (Shadows)

Roughness reduces velocity and creates shadows

Design and Installation of Embedded Culverts

Embedded pipes -modeling/simulating the natural streambed

Design and Installation of Embedded Culverts

Embedment Materials

"Rule of Thumb"

Size similar to that found in adjacent natural streambed

Natural Stream Channel

Embedment Material

Design and Installation of Embedded Culverts

Range of Material Size

Embedment Materials

Range of Material Size

- A range of substrate sizes (gradation) should be specified in the design
- Materials must be well graded to "seal" the streambed
- Ensure sufficient fines (sands & gravels) to "seal" the streambed
- Supplement with larger D90 material to help retain substrate
- D90 or greater particularly important on stream between 3 and 6%

Defn. D90 is the size of which 90% of the material will be smaller than

Design and Installation of Embedded Culverts

Range of Material Size

■ Cobble ■ Gravel ■ Fine ■ Boulder Rule of thumb - aka George Robison

General Size Distribution of Embedded Material

Design and Installation of Embedded Culverts

Substrate Volume Determination

 Round pipe embedded 40%
 ~ 37% of area

 $Area_{(Round)} = \pi (Dia/2)^2$

 Arch pipe embedded 20%
 <u>~</u> 17% of area

Area_(Arch) from manufacturer info

Purpose

- Tools to "design" culvert to fit site
- Document proposed works and final product
- Provides material and construction specifications
- Provide construction referencing

Site Plan / Profiles

- Plan/profiles developed for the crossing

- design drawings developed from site plan / profiles

 used for design and documentation purposes

- contour map of the site

Design and Installation of Embedded Culverts

Fit Crossing to Site

- The selected crossing structure should be suited to both the stream and road

- consider road drainage to minimize potential sediment delivery to the stream

 avoid vertical dips, provide for roadway drainage

Culvert Profile

Design and Installation of Embedded Culverts

NOTES

- 1. An objective is for the backfill in the culvert to simulate the natural streambed.
- 2. If suitable materials for backfilling the culvert are not available on site, suitable materials shall be imported.
- The backfill in the culvert to installed to the design streambed level using clean gravel, cobbles of similar size and distribution as in the natural streambed.
- Substrate material to be supplemented with 80-100, 350-450mm diameter boulders distributed and mixed into the backfill matrix.
- Substrate material to be imported into culvert to a nominal depth of 800mm (40% of culvert diameter) using suitable methods.
- 6. All voids in the substrate shall be filled in with clean sandy gravels.
- 7. Substrate material to be free of organics (roots, logs, twigs, etc.).
- If practicable, excavated streambed material shall be set aside to be utilized for placement in the culvert. Particular attention should be paid to salvaging the natural streambed surface material to be used for the upper layer in the culvert.

				S	CAL	E BA	R	
		5 4	3 2	1	0			5.0
S	CALE	: AS	NOTED	()	Metric)		PROJECT No. 8611.02	STRUC. No.
S	PANI	SH – AR PROPOSI	T F.S.I ED RO	R. CI AD (ROSSI	NG HOT S SECT	FISH CR.	– 2.0km FILE
-	100	MILE HO	Min USE DIS	istr STRIC	y of	Fore	ests BOU FORES	T REGION
Ì						Survey:	CARIBOO REGIO	N ENGINEERING
						Design:	CHOW / F	ROBISON
						Drawing:	M. DAVIES	
5	FOR	CONSTRUCT	ION BC		23/09/01	DWG No. EMBEDDED PILOT-B3		
EV. DESCRIPTION			BY	APPD	DATE	SHEET 3 OF 5		

Road profile

Design and Installation of Embedded Culverts

Plan Drawing

Design and Installation of Embedded Culverts

Riprap Specifications

Design and Installation of Embedded Culverts

Installation Measures

Design and Installation of Embedded Culverts

Installation Referencing

Design and Installation of Embedded Culverts

Other Details ie. Weir Design

- A downstream weir may required as part of the design to be installed within 1.5 – 2 channel widths downstream of culvert outlet
- Assists in maintaining adequate low flow depth
- Helps retain substrate
- Prevents formation of plunge pool
- Particularly important where stream gradient is > 3%

Longitudinal View

Design and Installation of Embedded Culverts

Design and Installation of Embedded Culverts

Design should include:

- Stream data
- Plan
- Profile
- Construction referencing
 (vertical / horizontal)
- Materials specifications
- Installation specifications
- other details (riprap, weir, etc.)