Kootenay Lake

 Recovery:
Update and Acti - June 15,2015

operaions Nelson

Outline

- Recap of Kootenay Lake and February meeting
- Biological and fishery update - new info since February meeting
- Kokanee fry
o 2015 Gerrard Spawning
o Fishery
- Action Update
o Expert Team and recommendations
o Actions
o Monitoring
- Summary, Questions and how to stay informed

Recap of Kootenay Lake Status

- Recent low older Kokanee abundance
- Kokanee fry ~average abundance
- Recent record high Gerrard trout abundance
- Decreasing Gerrard rainbow trout size a nd decreasing large trout abundance, degrading condition of trout in fishery
- High abundance of young Gerrard rainbow trout - could increase koka nee recovery time
- Nutrient program continuesto produce fish food
- IHN virus rema ins present - likely not a signific a nt issue currently

February 2015 - Meeting Outcomes

- O utsta nd ing written questions from Februa ry Meeting
- Provide a Sport Fishing Update on the state of Kootenay Lake
- Form an Expert team, facilitate team meetings a nd develop an Expert Team Report related to Kootenay Lake recovery
- All three a re on the Ministry Regional website:
o www.env.gov.bc.ca/kootenay/fsh/main/mainfish.htm
o Google "Kootenay Fisheries"
- Ministry action plan to speed recovery - summary tonight

2015 Kokanee Fry Abundance

- Kokanee numbers fluctuate
- Improvements since nutrient restoration
- Fry estimates more tha n doubled with nutrient restoration and have remained high
- 2014 was post nutrient a verage and 2015 looking relatively strong
- Egg to fry survival $>70 \%$, highest ever recorded
- 7.5 Million fry out of Mead ow Creek in 2015, and an additional 3.5 to 5 million expected from Lardeau.
- Likely fall fry estimate of 9 10 million (suitable for quick recovery)

Update - Gerrard Rainbow Trout

- Spawner estimate in $2015=301$
- Signific a nt dec line from 2014; simila rly low in 7 other years since 1960
- Likely high enough to allow continued production of juvenile Gerrardsfor the next generation
- Although short term impact to angling, a reduction of this magnitude required to help start kokanee recovery

Kootenay Lake Rainbow Trout Survey

- $\quad>50 \mathrm{~cm}$ rainbow and bull trout catch rates all show decrease in 201415
- Small rainbow catch continued increases ($\sim 250 \%$ higher than average)
- Small bull trout catch level, but very high
- 2014-15 KLRT sales ~5,000
- 2015-16 KLRT sales ~ 75\%

Actions - Expert Team

- The Ministry formed a team of fisheries experts comprised of Provinc ial fish biologists, Freshwater Fisheries So ciety of BC, the Ktunaxa First Nation, and a BC Wild life Federation tec hnical expert to disc uss all options to speed recovery of koka nee stocks a nd mainta in their numbers.
- Kootenay Lake Fisheries Advisory Team exa mined 20 actions to restore a productive a nd susta inable Gerrard trout fishery.
- Actionsconsidered included optionsto:
o 1) a s quickly a s possible, restore the main la ke koka nee population to support a susta inable trophy Gerrard a nd bull trout fishery, while also providing ecosystem benefits to the lake; and,
- 2) reduce, on a temporary basis, the predator population, to ensure kokanee recovery.
- Experts priontized Actions: high, medium, low/long term

Actions - Plan Implementation

- The Ministry will or already has implemented all high and some moderate prionty actions identified by the expert team in 2015
- Additional moderate and long term actions in the coming years will only be implemented if needed
- Actions set to implement include short term kokanee supplementation (if spawner abundance drops in 2015) and changes orimprovements to the nutrient addition program, spawning channel operations and angling regulations.

Angling Regulation Actions

- Temporary reductions in kokanee harvest and increase in predator harvest has likely benefits for rec overy time
- Increases in koka nee survival a re required to sta it recovery

Actions

- Regulation change
- decrease in kokanee quota (0/day) effective April 2015. Could provide 2.5 million extra eggs
- Daily rainbow quota on the Main Lake increase to 4/ day, 1 over 50cm - decreasing juvenile Gerrard abundance has likely benefits forkoka nee rec overy (50,000 caught in 2014-15, only 16,000 harvested);
- Reviewing a change to bull trout quota (<2kg catch very high)

Nutrient Restoration Actions

- Proven performer
- Quick koka nee recovery depends on continued nutrients (food for fish)
- Action: Optimization of timing and inputs
o Increase the length of the nutrient addition period into Fall if environmental conditions are suitable (warm), to increase kokanee overwinter survival
o Increased monitoring and continued consideration of natural variability and climatic events (flow, temperatures and natural nutrient inputs) will ensure nutrient additions are managed to best move up the food chain.

Kokanee Supplementation Actions

- Temporary infusion of koka nee through supplementa tion ha s likely benefits for recovery time, if natural production drops below 2014 levels
- Increases in koka nee survival a re required to sta it recovery

Actions

- Fry Stocking
- 95,000 koka nee fry were stocked in May 2015 into Crawford a nd Hendryx Creeks (FFSBC, FLNR, Eastshore Freshwater Ha bitat So c iety)
- An additional 500,000 for Spring 2016
- Eyed Egg Plants
- Requested 5 million "eyed" koka nee eggs Fall 2015 and plant to Meadow Creek Spawning Channel a nd/or suitable Kootenay La ke tributa ry

Spawning Channel Actions

- We will continue to limit IHN virus at spa wning channels where we have some control
o carcass removal
o flushing
o summerdrying
o kokanee testing will continue annually
- Continued improvements to operation and maintenance procedures

Review and Modelling

- Expert team work will continue
- Review in-season data when available asa triggerfor recommendations to the Province around recovery actions;
- Assist in a nalysis/modelling to understa nd predator/prey dynamics in the lake and better inform future management decisions

What else may be done?

Moderate priority:

- Make additional a reas of Kootenay Lake fishable by removing angling c losures (longer term; 2017-19 synopsis review).
- Change regulation on number of rods that anglers can have in the water at one time - allow 2 or more rods perperson (not a Regional decision, will recommend to Provincial Committee).
- Investigate opportunities to inc rease entra inment of koka nee past Libby Dam (likely no feasible options).
- Test koka nee from trawl samples for IHN virus (exploring potential of historic samplesto inform future actions)
- Resea rch feasibility a nd benefits of Mysid harvest (medium term, necessary to act if mysid abundance increases)

Low priority or long term potential but no immediate benefit to short term rec overy:

- Conduct stream habitat improvements to benefit koka nee spawning.
- Conduct mysid harvest if required in future

What are we not doing currently?

Moderate prionity:

- Allow guides by Scientific Collection Permit to collect additional Gerrard trout for biologic al sa mpling and koka nee predator reduction (not client consumption).
- Remove bull trout in spawning tributaries.

Low priority or long term potential but no immediate benefit

- Tag Gerrard trout with floy tags, and have a lottery style reward for fish harvested.
- Reduce Kootenay Lake rainbow trout licence to \$0.
- Reduce Gerrard trout in Lardeau River or at Gerrard.
- Transplant koka nee fry or eggs from Meadow Creek to a nother Kootenay tributary.

Monitoring

- How we know ouractionsare working:
o Kokanee abundance - spawners and in-lake
o In-lake koka nee survival (likely first indic ation of recovery)
o Fishery results - partic ipation, trout kept and released
o Gerrard spawner numbers
o Bull trout spawner numbers
o Zooplankton and Mysis abundance
o Meadow Creek spawning channel performance (koka nee size, fec undity, egg to fry survival rates)
o Looking for improvement in all of these, though with the right timing (koka nee before trout)

Questions and Updates

- Looking to keep you informed and answer questions as we implement and further develop actions
o If you want to know more: answers to common questions, information on current monitoring and updates around ongoing actions are and will be here:
o www.env.gov.bc.ca/kootenay/fsh/ma in/ma infish.htm
o Google "Kootenay Fisheries"
- Contact info
o 」eff.A.Burrows@gov.bc.ca
o Matt.Neufeld@gov.bc.ca

How Long Until Recovery?

- Recovery time hard to predict because of uncerta inty in predator response
- Best case - Less than one kokanee generation (~2 years)
o We currently have the building blocks for quick recovery - fry production (15 million in 2014, ~ 10 million in 2015?) a nd young Gerrard abundance (highest ever KLRTcatch)
o Potential uptum in kokanee spawners by 2017 and conc urrent stabilization in Gerrard catch rate and size
o Requires an increase in koka nee survival rates, and a corresponding strong reduction in predator abundance (curently underway)
- Worst Case - two kokanee generationsormore (8+years)
o If predator numbers are slow to drop off and young Gerrards exert additional pressure on depressed koka nee stocks

Other questions

- 2015 c ontingencies for low flows, temperatures
o Meadow nevera problem
o West Arm - July fishery c losed
- Less handling
o Access to tributaries
- Pikeminnow
o eat some kokanee (up to 50% of diet for the la rgest fish)
o part of the fish community that benefits from koka nee
o unlikely that pikeminnow or other non-game fish are contributing in a significant way to recent koka nee mortality inc reases
o There is an unlimited daily quota for non-game fish, but we can't definitively sa y if additional harvest would be beneficial at a full lake scale.
o reviewed our fish monitoring (eg trawl) not adequate so we don't know, can review if no tumaround

How you can help

- Stay informed
- Participate in Angling
- Join and help local NGOs

Why not act sooner?

- Koka nee and Gerrard rainbow trout numbers have fluc tuated signific a ntly over the last 50 years, sometimes high a nd sometimes low.
- In fall 2011, koka nee numbers were nearly the highest ever recorded, and in spring 2012, Gerrard numbers were the highest ever recorded at the spawning grounds.
- At the time, this was good news for anglers and Gerrards which consume kokanee.
- Kokanee spawner numbers started to dec line in 2012, as did Gerrards in 2013.
- This trend was part of what would be expected given previouscycles in population abundance for both fish.
- Questionna ire lags fishery by >1 y, fishery a nec dotes led to concems late 2013, through 2014
- Although declines in abundance were underway in 2012, it wa s not until 2014 that both data on Gerrard spa wner abundance (J une 2014), koka nee spawners (October 2014), a nd in lake kokanee abundance (J anuary 2015) were lower than what would have been expected given previous lows in predator prey cycles.
- Addressing virtually immediately

Kootenay Lake Rainbow Trout License Sales

- 2014-15 sales high $(\sim 5,000)$,
- 2014-15 effort rema ined high, likely drop in 2015
- 2015-16 sales ~75\%??
- Angler havest low despite high effort (~13\%; harvest likely not driving current change in abundance)

KLRT Creel Survey Comparison

- KLRTvs C reel: effort estimates - within 0.5% of each other (C reel 46,053; KLRT46,311angler days)
- $>50 \mathrm{~cm}$ BT a nd RB catch and ha rvest - $\mathbf{1 . 5}$ to $\mathbf{2 x}$ higher in KLRT- likely reflects survey bias that is well recognized including anglers that do not report if they did not catch, recollection bias ascreel completed on day of catch (with harvest in hand) and survey up to $1.5 y$ ss latter, anglers reporting boat catch not personal catch and other (creel survey a valuable reference point to correct for survey bias)
- Year to year predictive power is intemally consistent - KLRTcatch rates by size class in one year predict future catch rates of larger fish, so useful index of abundance and fishery performance

Where are the Really Big Fish (>25 lbs)

- Was happening well before current pred:prey mismatch
- Catch data not suitable to differentiate big ($>15 \mathrm{lb}$) vs very big ($>25 \mathrm{llbs}$).
- Peaks in the past (small numbers) but not since mid 2000's.

1. Natural morta lity plus a ngler ha rvest removal at high enough rate for none to make it to $>25 \mathrm{lbs}$ (need to get >8yrs old).
2. Large fish corresponded in past with Gerrard peaks, but latest peak $2 x$ past peaks, so competition with each other may have been strong enough to limit size
3. Adequate prey size not available for the very biggest (energetics poor if koka nee size is small for very la rgest fish?).
4. Genetic Selection - anglers preferentially remove the largest fish
5. Combination of some of the above.

Worms in Fish

- Worms reported by anglers a re "broad fish tapewom", native to Kootenay Lake
- La rvae infect both freshwater and ma rine fishes, a nd a re always present in the Kootenay Lake rainbow population at some level.
- There is no practical way of controlling parasites in wild fish populations. For anglers, the key consideration is care in the preparation of your catch prior to consumption.
- Tapeworm eggs are exc reted in the feces of animals hosting the adult tapewom (fish-eating birds or mammals), develop in water into larvae that work their way through the food chain and eventually into fish.
- Heavy infestations of these laval tapewoms could kill some fish, especially those an already weakened condition, such as older fish, malnourished fish, or post-spawning migrants that are just retuming to the lake.
- Parasite loads fluctuate. Although more trout appearto be affected by these parasites now than in the recent past, some anglers and retired fish biologists recall relatively high levels of parasites in past decades.
- We don't know for sure why these parasites are more common at some times, but this cycle is common in other populations

Impact of Proposed Regulation Changes

Gerrard Rainbow Trout

- annual small rainbow catch is 10,000-15,000 fish, and only 25-30\% harvested
- Anglers can help: there is potential to reduce the young Gerrard population by as much as 10,000 fish in one year if all fish were kept.
- For perspective, total production of 1 year old Gerrards annually is ~20,000, which decreases by the time they enter the fishery. Anglers catch and could keep almost one entire year class of juveniles in one year.

Kokanee

- measurable increase in egg numbers from 0 harvest. The estimated gain could be $\sim 10 \%$ or more in 2015 .

Assumed potential harvest under $15 / \mathrm{d}$ limit $=10,000 \mathrm{KO}$		
limit	harvest	number of extra eggs to MC
0	0	$2,500,000$
2	6125	968,750
5	9125	218,750
15	10000	0

Nutrients - why not stop South Arm?

- Following slides
- North a nd south results prove food increase
- Currently not too much.....compare to Cominco

Kokanee Distribution

Kokanee Distribution

- Density of koka nee higher after south a m nutrients
- No signific ant change in distribution, with high densitiesat all transects in both the north and south arms

Avg Pre and Post Nutrient program densities of 1-3+ Kokanee in Kootenay Lake

Secchi - measure of transparency

Kootenay Lake North Arm Secchi Annual Mean

Kootenay Lake South Arm Secchi Annual Mean

South Arm Secchi

Kootenay Lake South Arm Monthly Mean \pm Min and Max Values

North Arm Secchi

Kootenay Lake North Arm Monthly Mean \pm Min and Max Values

Turbidity

01

Phytoplankton

Zooplankton - Adult Kokanee Food

 Daphnia

Zooplankton - Kokanee Food Total Density

South Arm Kootenay Lake Zooplankton Annual Mean Total Density

Phosphorus - Top 20 meters

Phosphorus - Bottom

Oxygen Profile in a higher
phytoplankton year

South: KL6 Oxygen (mg/L)

Phosphorus loading

Phosphorus loading

Phosphorus loading in Kootenay River

Kootenay River Average Annual Total Phosphorus

Kootenai(y) River Nutrient Addition Bio-Monitoring Sites

Nutrient addition Zones

