Accounting for Climate Change Impacts in the Design of Resource Road Crossings

Scaling IDF curves to account for climate change in resource road stream crossings: An approach for estimating future extreme rainfall (Webinar #8)

Kari Tyler, M.Ed.

User Engagement and Training Specialist, Pacific Climate Impacts Consortium

Dr. Charles Curry, Ph.D.

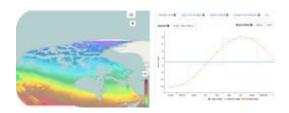
Acting Lead – Regional Climate Impacts, Pacific Climate Impacts Consortium

Matt Kurowski, P.Eng. Research Engineer, FPInnovations

March 10th, 2022

Ministry of Forests, Lands, Natural Resource Operations and Rural Development

Discussion panel - climate modeling experts


- Dr. Jeremy Fyke, P.Geo. Physical Scientist and Coordinator,
 Canadian Centre for Climate Services
- Dr. Charles Curry Pacific Climate Impacts Consortium

Government of Canada

Gouvernement du Canada

Small stream crossings and climate change

Brian Chow, P.Eng., Chief Engineer, Engineering Branch

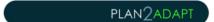
Opportunities for Questions/Comments

- During presentations and panel discussion:
 - Chat box we will check it as we go + collect for Q&A
 - Polls a few will be popping up!
 - Appear in chat box (and also pop-up for desktop app)
 - Most will be for designers of remote, small stream crossings
 - Recorded IDs are anonymous
- Will be opportunities to speak during Q&A (raise hand, unmute)

Webinar Outline

- (5 mins) Webinar series context
 - What is a climate tool?
- (30 min) Temperature scaling method
 - theory, example calculation, considerations
- (10 min) Small stream crossing context
 - situating temperature scaling: one of 3 approaches that use climate tool(s) to account for climate change impacts on a Q100 flood
- (25 min) Panel discussion followed by Q&A

ClimateBC_Map

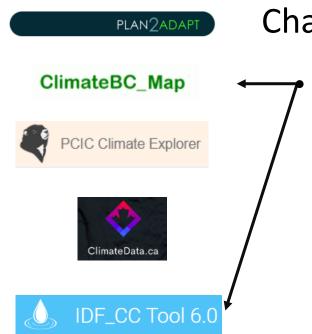


Publicly available climate tools

- interactive maps that show or use –
 climate index grid outputs from
 standardized global climate model (GCM)
 projections of carbon emissions scenarios
- used to calculate % change to the (independently calculated) historical Q100

ClimateBC_Map

Publicly available climate tools


- Climate index grids: statistical summaries e.g.
 - daily maximum precipitation in the fall season
 - annual average temperature
 - 5-day daily antecedent rain >15mm

Future periods:

30-year windows up to 2100

Resolution:

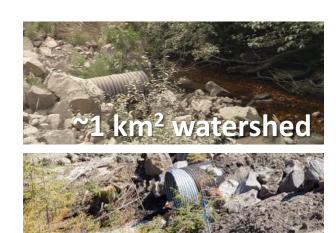
 highest temporal resolution in publicly available data for BC are daily ~56 km2 grids

Changes since Jan 2021?

switched to / now include new emission scenarios - associated with next generation CMIP6 climate models (from RCP to SSP)

Changes since Jan 2021?

ClimateBC_Map



 switched to / now include new emission scenarios - associated with next generation CMIP6 climate models (from RCP to SSP)

new IDF curve-based method recommended by Environment and Climate Change Canada that uses temperature scaling

Spatial scale:

- 1 km² to 100-300 km²

Temporal scale:

TOC is minutes to hours

Assuming that historical Q100 is defined by storm...

 $\sim 5 - 25 \text{ km}^2$: transition zone

Designs by Foresters/Engineers

• <2000mm CSP, <6 m³/s Q100

 $\sim 5 - 25 \text{ km}^2$: transition zone

Designs by Engineers

major crossings

Rational method

precipitation-based historical Q100

 $\sim 5 - 25 \text{ km}^2$: transition zone

Regional method

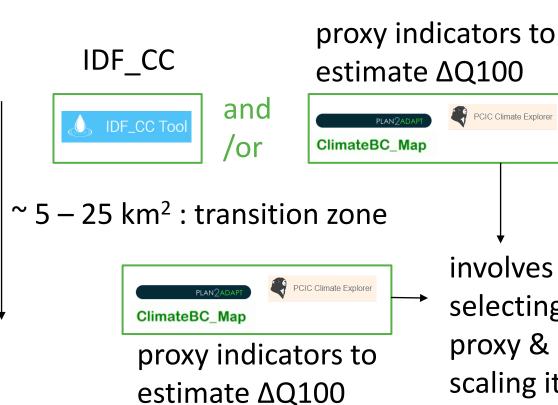
flow-based historical Q100

First webinar (February 2020)



20%?

 $\sim 5 - 25 \text{ km}^2$: transition zone


20%?

First webinar (February 2020)

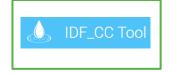
PCIC Climate Explorer

involves

selecting

proxy &

scaling it


Eighth webinar (March 2022)

IDF_CC

and /or

or

temperature scaling

 $\sim 5 - 25 \text{ km}^2$: transition zone

use hydrologic projections

proxy indicators to estimate $\Delta Q100$

<< Poll

Eighth webinar (March 2022)

IDF_CC

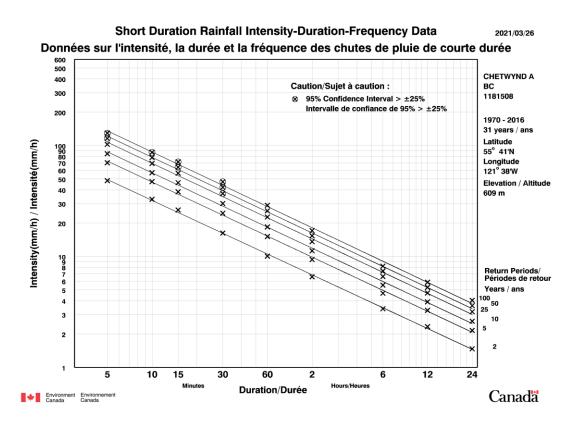
and /or temperature scaling

 $\sim 5 - 25 \text{ km}^2$: transition zone

or

proxy indicators to estimate $\Delta Q100$

Using a climate tool involves 5 steps:


- 1. Define climate change input parameters / be aware of pre-defined options
- 2. Define the location of interest
- 3. Define the projection calculation by selecting either:
 - a) a return period defining an IDF curve (if using IDF curve approach),
 - b) the annual avg. temp. projection grid (if using temperature scaling approach), or
 - c) a climate index grid proxy (if using scaled proxy climate index approach)
- 4. Calculate and/or interpret the percent change of the design flood
- 5. Compare results between approaches and/or climate tools

Using a climate tool to get an output ~1-2mins (repeated when doing a sensitivity analysis)

Discussion panel

IDF curve on climatedata.ca

Q & A

Research Engineer FPInnovations

matt.kurowski@fpinnovations.ca

