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1 Introduction 
Based on the BC Ministry of Transportation and Infrastructure (BCMoTI) led synthesis of Vulnerability 
Assessments, completed using the Public Infrastructure Engineering Vulnerability Committee (PIEVC) 
Protocol, climate change has increased risk to transportation infrastructure in BC (BCMoTI et al., 2014). 
To address this increased risk, the BCMoTI released directives and guidance for incorporating climate 
adaptation into engineering designs in its T-04/19 Technical Circular (BCMoTI, 2019). This guidance 
document stipulates transportation engineering design projects should “incorporate information, analyses 
and projections of the impact of future climate change and weather extremes”. It also lists a few sources 
of climate change information such as the Pacific Climate Impacts Consortium’s (PCIC’s) analysis tools, 
including the Climate Explorer and Plan2Adapt and Western University’s IDF_CC Tool.  

One of the primary risks to infrastructure is the possibility of increased risk of floods, yet the 
aforementioned tools provide information on changes to precipitation only. While precipitation has 
intensified in North America (Kirchmeier-Young and Zhang, 2020; Sun et al., 2020) and will become 
more intense in the future (Li et al., 2020, 2019), this information is not directly translatable to changes in 
flood risk. BC’s contemporary hydrologic regime is primarily snow-dominated and peak flow events, 
which are generated in spring by snow-melt (Burn and Whitfield, 2016), are not necessarily correlated 
with precipitation extremes. Even in a future with less snow and increased rainfall, the relationship 
between rainfall extremes and flooding will be scale dependent and changes in extreme rainfall will be a 
poor predictor of flooding in relatively large basins. In order to address this gap BCMoTI supported the 
Pacific Climate Impacts Consortium (PCIC) in a pilot project to quantify design flood values (2-, 20-, 50-, 
100- and 200-year events) for historical and future periods and make them accessible as a gridded product 
via PCIC’s Climate Explorer tool. As part of this work, PCIC has also been asked to calculate and supply 
the Melton Ratio as a gridded product. The Melton Ratio (ratio of watershed relief to the square of the 
area) is used to characterize a location as being dominated by either flooding (Melton ratios <0.3) or 
debris flows (Melton ratios >0.6) (Wilford et al., 2004). 

This study focuses on the Upper Fraser, a 34,200 km2 region upstream of Prince George, BC, with 
primarily snow-dominated watersheds. Results are provided for every model grid cell in the domain, 
wherein design flood values for each grid are based on streamflow routed from the area upstream of the 
selected cell. Hence, watershed areas range from ~30 km2 (i.e., the area of a single headwater grid cell) to 
~32,400 km2. This work takes advantage of hydrologic projections produced by PCIC using the VIC-GL 
hydrology model driven with the CanESM2 50-member large ensemble (CanESM2-LE) (Government of 
Canada, 2019; Kushner et al., 2018). This large ensemble (7500 simulation years), which is based on the 
RCP8.5 scenario, provides sufficient peak flow samples to allow statistically robust estimation of large 
return-period events. The use of large-ensembles as a means to develop robust projections of changes to 
climate extremes and flood frequencies is well established (Alaya et al., 2020; Curry et al., 2019; Fyfe et 
al., 2017; Gao et al., 2020; Kirchmeier-Young et al., 2017b; Kirchmeier-Young and Zhang, 2020; Li et 
al., 2020, 2019). 

The structure of this report is as follows: in Section 2 we describe the Study Area. Section 3 details the 
Methodology of the hydrologic model and its parameterization, the CanESM2 Large Ensemble (LE), the 
downscaling method, the flood frequency analysis and summarize the overall study design. Section 4, 
Results presents (4.1) projected changes in peak flow by sub-basin, (4.2) projected changes in peak flow 
for all grid cells, and (4.5) Melton Ratio. Uncertainties, Limitations and Conclusions are presented in 
Sections 5 and 6.  
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2 Study Area 
The focus of this work is the Upper Fraser River watershed, a 34,200 km2 region of the Fraser River 
upstream of Prince George, BC (Figure 1). It was chosen because it represents a large area that has no 
large lakes and is free of flow regulation. For modelling and presentation purposes, the study region has 
been divided into eight sub-basins that are delineated based on the locations of eight Water Survey of 
Canada gauges. The characteristics of these sub-basins are summarized in Table 1 and shown in Figure 1. 

The western part of the study area (FRSRP, FRSMC, FRSHA and MCGRE) drains the Rocky and the 
Columbia Mountains and is bisected by the Rocky Mountain trench. This region is characterized by 
rugged terrain with high relief (Figure 1, Table 1) and large climatic gradients (Figure 2), where high-
elevation areas are dominated by rock and ice (Figure 1, Table 1). The region encompassed by the 
BOWRB and WILLO sub-basins, which is composed of highlands, uplands and some isolated ridges, has 
more modest elevations (Figure 1 and Table 1) and precipitation amounts (Figure 2). The most eastern 
portion of the study area, which includes the SALMO sub-basin and that portion of the study region 
downstream of MCGRE, FRSHA, WILLO and SALMO, is characterized by lowland and rolling upland 
terrain with a more sub-continental climate with even precipitation throughout the year. This region has 
the lowest elevation (Figure 1, Table 1) and driest climate (Figure 2) in the study area. 

 

 
 

 
Figure 1 - Study Area for Upper Fraser 

 

Based on PNWNAmet (Werner et al., 2019) the 1961-1990 mean annual minimum temperature for the 
region ranges from -0.4 to 8.3 °C, annual maximum temperature ranges from -0.8 to 12 °C and annual 
total precipitation varies from 430 to 2280 mm (Figure 2). Minimum temperatures are below freezing 
May through October and maximum temperatures are greater than 20°C on only a few days in 
July/August (Figure 3). Daily precipitation is greatest September through January, with a secondary peak 
in June/July.  
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Table 1 - Sub-basins of the Upper Fraser calibrated in the VIC-GL model  

Basin 
Code 

Basin Name WSC ID Area 
(km2) 

Glacier Area 
(km2)* (%) 

Elev. 
Min 
(m) 

Elev. 
Max 
(m) 

Elev. 
Mean (m) 

FRSRP Fraser River at Red 
Pass 

08KA007 2,538  
 

79 (3.1%) 1028 3307 1961 

FRSMC Fraser River at McBride 08KA005 8,025 
 

422 (7.7%) 702 3929 1742 

FRSHA Fraser River at Hansard 08KA004 16,010 
 

45 (0.1%) 604 2885 1318 

MCGRE McGregor River at 
Lower Canyon 

08KB003 5,484  
 

234 (4.3%) 627 3199 1405 

WILLO Willow River above 
Hay Creek 

08KD006 2,844  
 

0 589 1954 1104 

BOWRB Bowron River below 
Box Canyon 

08KD007 3,364  
 

0 625 2368 1190 

SALMO Salmon River near 
Prince George 

08KC001 4,912  
 

0 571 1558 849 

FRSSH  Fraser River at Shelley 08KB001 32,400  780 (2.4%) 570 3929 1308 
* Glacier area c. 2000  

 

 

  

 

 

 

Figure 2 - Annual average minimum and maximum temperature (top left and right, respectively), and average annual total 
precipitation (bottom left) for 1961-1990 based on PNWNAmet. 
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Figure 3 - Daily climatology of precipitation, minimum and maximum temperature in the Upper Fraser over 1961-1990. 

 

Throughout the Upper Fraser the annual hydrograph is dominated by snow and glacier melt and, 
depending upon the presence of glaciers, can be considered nival (i.e., BOWRB, WILLO and SALMO) or 
glacial-nival (FRSRP, FRSMC, FRSHA). The daily annual maximum streamflow event is driven by 
spring snowmelt and generally occurs between the months of May and July (Figure A6). A notable 
exception is the region largely defined by the MCGRE sub-basin, which occasionally experiences annual 
maximum events in the fall driven by large rainfall events (Figure A6).  

 

3 Models and Methodology 
Projections of future annual maximum streamflow and their flood frequencies requires a chain of models. 
The following provides details on each modelling component and summarizes the overall study design. A 
graphical summary of the study design is given in Figure 4. The implications of the chosen design with 
respect to modelling uncertainty and limitations will be discussed in Section 5. 
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Figure 4 – Modelling workflow used to derive estimates of annual maximum streamflow quantiles from the CanESM2 large 
ensemble. 
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3.1 CanESM2 – Large Ensemble 
Future climate projections at the regional scale start with model simulations of the global climate system. 
Because these are models, there is inherent uncertainty related to (1) the assumptions about how the 
greenhouse gases (GHG) will evolve, (2) the climate model and how it represents the physical processes 
and (3) the internal variability, e.g. the natural variability that we experience as weather or El Nino 
events, which is irreducible (Arora and Cannon, 2018; Cannon et al., 2020). The hydrologic projections 
were produced using climate simulations from CanESM2, which is a coupled Earth system model 
developed and run by the Canadian Centre for Climate Modelling and Analysis (Arora et al., 2011). 
CanESM2 is part of the World Climate Research Programs (WCRP) fifth Coupled Model Inter-
comparison Project (CMIP5) (Taylor et al., 2011). The CMIP5 submission of CanESM2 included five 
ensemble members run with historical forcings from 1850 to 2005. A much larger ensemble of climate 
projections was produced by expanding the ensemble to 50 members, each spanning the period 1950 to 
2100 (Government of Canada, 2019; Kirchmeier-Young et al., 2017a; Kushner et al., 2018). A random 
number generator with a pre-set seed was used to perturb slightly the initial state of each of the 50 
ensemble members. Thereby, quasi-independent climate change realizations were generated without any 
change to the model dynamics, physics or structure (Fyfe et al., 2017). The resulting ensemble represents 
50 equally plausible realizations of the evolution of the global weather and climate that are consistent 
with the observed emissions over the period 1950 to 2005 and the RCP 8.5 emissions scenario from 2006 
to 2100. In the RCP8.5 scenario, emissions continue to rise throughout the 21st century and this scenario 
is often used as the basis for worst case climate change. 

3.2 Downscaling 
The climate response to a prescribed RCP scenario that is obtained from a climate model is of too coarse 
a spatial resolution, with individual grid cells typically encompassing 10,000 km2, to be used directly in 
driving a hydrology model. For example, GCM output at this resolution does not reflect the detailed 
spatial variation in climate due to local orography and variations in land surface properties that are 
necessary for simulating surface hydrology well. Therefore, to model changing hydrologic conditions at 
local and regional scales, daily values of minimum temperature, maximum temperature and precipitation 
have been statistically downscaled to the resolution of VIC-GL. This downscaling used the Bias 
Correction/Constructed Analogues with de-trended Quantile mapping reordering downscaling technique 
(BCCAQv2) (Hiebert et al., 2018) with PNWNAmet (Werner et al., 2019) as the reference meteorology. 
BCCAQv2 is a hybrid method that combines results from bias-corrected constructed analogs (BCCA) 
(Maurer et al., 2010) and de-trended quantile mapping (QMAP) (Gudmundsson et al., 2012). BCCA 
obtains spatial information from a linear combination of historical analogues for daily large-scale fields. 
QMAP applies quantile mapping to daily climate model outputs interpolated to the high-resolution grid 
using the climate imprint method of Hunter and Meentemeyer (2005). The BCCAQv2 method includes a 
revision to the quantile mapping procedure that better preserve changes in quantiles and extremes 
(Cannon et al., 2015) as compared to its original implementation. BCCAQv2 works well for hydrologic 
extremes because of its ability to resolve event-scale spatial gradients (Werner and Cannon, 2016). For 
more information on BCCAQv2 see (Cannon et al., 2015; Hiebert et al., 2018; Sobie and Murdock, 2017; 
Werner and Cannon, 2016). 

3.3 VIC-GL Model Summary 
Streamflow was simulated with VIC-GL, an upgraded version of the Variable Infiltration Capacity (VIC) 
model that explicitly models glacier mass balance (accumulation, melt and runoff) and glacier dynamics 
(change in glacier area) (see Schnorbus 2018 for details). VIC is a spatially distributed macro-scale 
hydrologic model that calculates water and energy balances in each grid cell. Spatial variability in soil 
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properties within a drainage basin is modelled by sub-dividing the model domain into a computational 
grid with a spatial resolution of 0.0625° latitude by 0.0625° longitude (approximately 6 km x 5 km within 
the study region). The variability of land cover and topography within individual grid cells is further 
described using hydrologic response units (HRUs) which characterize land surface properties as a 
function of elevation. VIC runs at a 3-hour temporal resolution and output is aggregated to daily values. 
Soil moisture processes are represented by three-soil layers, spatial heterogeneity of runoff generation 
with variable infiltration curves, and subsurface flow generation using the Arno conceptual model 
(Todini, 1996). Surface runoff is generated when the moisture exceeds the storage capacity of the soil. 
Water fluxes are computed for a range of hydrologic processes such as evapotranspiration, snow 
accumulation, snowmelt, infiltration, soil moisture and surface and subsurface runoff. A detailed 
description of the baseline VIC model is available in Liang et al. (1996, 1994) and Cherkauer et al. 
(2003).  

VIC-GL uses several parametrization strategies to describe the influence of topography and vegetation 
cover. Sub-grid elevation is described using 200-m elevation bands derived from the GMTED2010 digital 
elevation model (Danielson and Gesch, 2011). Vegetation classification utilizes the North America Land 
Cover dataset, edition 2 (Natural Resources Canada / The Canada Centre for Mapping and Earth 
Observation 2013) produced as part of the North America Land Change Monitoring System (NALCMS). 
The NALCMS land cover data set divides North America into 19 classes representing circa 2005 
conditions, with most forest areas in the region for which VIC-GL has been parameterized being included 
in a single class, the temperate or sub-polar needle-leaf forest class. This is considered to be too 
homogeneous in this region and has therefore been further subdivided based on vegetation height and leaf 
area index. Leaf are index data is from the GEOV1 global time series dataset (Baret et al., 2013; Camacho 
et al., 2013). Vegetation height is based on global mapping using space borne light detection and ranging 
(LIDAR) (Simard et al., 2011). The final land cover classification, with needle-leaf forest further sub-
divided, contains 22 land cover classes. Although an Ice class exists in the NALCMS-based land cover 
inventory, the extent and location of glaciers and ice fields was updated using the Randolph Glacier 
Inventory (RGI) version 3.2 (Pfeffer et al., 2014). Soil classification and parameterization relies on 
physical soil data from the Soils Program in the Global Soil Data Products CD-ROM (Global Soil Data 
Task, 2014). For more details on parameterization of VIC-GL in these basins, please see Schnorbus (in 
press). 

Calibration is the process whereby certain model parameters are adjusted such that simulated output is in 
close agreement with observations. During the calibration process, VIC-GL was forced with the 
PNWNAmet gridded meteorological data set (Werner et al., 2019). Model calibration used a multi-
objective approach that constrained the model using observations of streamflow, evaporation, snow cover 
and glacier mass balance (estimated from thinning rates). For more details on calibration process, see 
Schnorbus (2017). Verification of the simulated streamflow is provided in Appendix A, with an in-depth 
analysis of performance for annual maximum streamflow. 

3.4 Surface Routing 
Surface water routing is applied as a post-processing step in the modelling chain using the RVIC model 
(https://rvic.readthedocs.io/en/latest/), which is based on the numerical schemes described in Lohmann et 
al. (1998). Runoff and baseflow generated in each VIC-GL model cell is collected and routed via a two-
step process: in-grid routing and channel routing. In-grid routing conceptually moves surface runoff 
through the sub-grid drainage network to the main channel using a transfer function that essentially 
describes the time distribution for runoff reaching the outlet of a grid box. The transport of water within 
the channel is modelled using a one-dimensional diffusive wave approximation to the full Saint Venant 
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equations. The channel system is defined by assigning one of eight flow directions (N, NE, E, SE, S, SW, 
W or NW) to each cell. The resultant channel network and flow accumulation (the number of upstream 
cells) for the Upper Fraser is shown in Figure 5.  

 

 
Figure 5 –Upper Fraser flow network with flow accumulation (as number of upstream cells) and sub-basin pour points.  

 

In-grid routing is parametrized by specifying the unit hydrograph for each grid cell. Channel routing 
requires specification of the channel length, wave celerity and diffusivity for each grid cell. Based on 
manual calibration, wave celerity is assumed constant at 2.0 m/s and channel diffusivity is set to 1300 m. 
Channel length is estimated as the cell height and cell width for north-south, east-west flow directions, 
respectively, and as the cell diagonal for all remaining flow direction. 

3.5 Flood Frequency Analysis 
The design of roads, bridges, culverts and other structures often requires estimates of peak flow quantiles 
that correspond to return periods varying from 2-years up to perhaps 200-years, depending on the 
application. When reliant on small sample sizes to estimate peak flow quantiles, as is typically the case 
when using observed data, these quantiles often correspond to return periods that are substantially longer 
than the sample. In these cases, one must generally resort to parametric flood frequency approaches so 
that one can extrapolate beyond the data to produce the necessary quantile estimates, such as using the 
Generalized Extreme Value, or GEV, distribution to describe the available peak flow data. Unfortunately, 
parametric approaches may suffer from some lack-of-fit that can result in biased quantile estimates, 
particularly for infrequent events. The benefit of using the CanESM2 large ensemble is that it provides 
enough samples of identically distributed annual maximum events that the quantiles, even for very large 
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design values such as the 200-year event, can be estimated directly from the empirical cumulative 
distribution. For example, for a given 30-year period, the large ensemble simulation of the Fraser provides 
1500 years of streamflow data, and thus 1500 realizations of annual maximum streamflow, that is 
representative of that period.  

Streamflow extremes were analyzed in non-overlapping thirty-years blocks 1961-1990, 2010-2039, 2040-
2069, and 2070-2099. Annual maxima were extracted for each year and each model run of the large 
ensemble, resulting in 1500 values for each thirty-year period (30 years by 50 ensemble members) from 
streamflow simulated at each grid point. Quantiles were estimated empirically using the function 
“quantile” from the R stats package (R Core Team, 2019). We used the default quantile algorithm where 
the 𝑝!" percentile from the sample is estimated as: 

𝑥⌊"⌋ + (ℎ − ⌊ℎ⌋) × (𝑥⌈"⌉ − 𝑥⌊"⌋)                                                (1)  

where ℎ = (𝑁 − 1)𝑝 + 1 and N is the number of samples. Note that for very high quantiles, empirical 
estimates can be somewhat biased depending on the choice of plotting position formula. However, 
because 200-year return levels (99.5 percentiles) are estimated from 1500 years of data we don’t consider 
this as a point of concern. We estimate the 50th, 80th, 90th, 95th, 98th, 99th, and 99.5th percentile of the 1500 
samples, which corresponds to the 2-, 5-, 10-, 20-, 50-, 100- and 200-year return levels, respectively. We 
define the best quantile estimates as those derived from the full sample. The confidence intervals for each 
quantile are quantified using the following bootstrapping approach: (1) randomly sample with 
replacement 30 years from each thirty-year block to generate a new sample of size n=1500; (2) estimate 
the quantiles from the new sample using equation 1; (3) repeat steps (1) and (2) 1000 times, and (4) 
estimate the 2.5% and 97.5% percentiles from the 1000 quantile estimates at each return level to obtain 
the 95% confidence intervals.  

 

4 Results 
4.1 Projected Changes in Peak Flow by Sub-basin 
Here we present the flood frequency results for seven locations corresponding to the outlets of the 
FRSRP, FRSMC, FRSHA, MCGRE, BOWRB, WILLO and SALMO sub-basins as well as the outlet of 
the entire study area (Upper Fraser). Results are summarized graphically as flood frequency curves 
(Figure 6) and relative changes for select return periods (Figure 7). Results indicate that the projected 
flood frequency response to climate change varies by sub-basin. As the projected flood frequency 
response is largely a function of changing snow dynamics, much of the spatial variation of basin response 
appears related to elevation. In the higher elevation regions of the FRSRP, FRSMC and MCGRE the 
flood frequency shows a largely unambiguous response to climate change, wherein flood magnitudes are 
expected to increase for all return periods for all future periods (Tables B1, B2 and B4). In contrast, the 
lower elevation basins WILLO, BOWRB and SALMO display a different response to climate change. For 
these three sites, changes in flood magnitude are projected to be relatively small early in the century. By 
mid-and end-century large events (100- to 200-year return levels) are projected to increase in magnitude 
whereas smaller events are projected to decrease in magnitude relative to base period values (Figure 6 and 
Figure 7; Tables B5, B6 and B7). For the higher-order basins Upper Fraser and FRSHA that contain a 
combination of high- and low-elevation regions, results are more mixed, with increases in flood 
magnitude projected for early- and mid-century for most return periods (Figure 6 and Figure 7). By the 
end of the century however, flood magnitudes are projected to decrease for frequent events (T ≤20 years) 
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below base period values in these basins, whereas large events (100- and 200-year return levels) are still 
projected to be larger than baseline (Figure 7; Tables B3 and B8).  

Examining the timing of annual maximum streamflow gives some indication of its physical driver, such 
as snowmelt freshet or fall rains. This is explored in Figure 8 and Figure 9, which show for each sub basin 
a polar plot of annual maximum peak flow magnitude versus occurrence (as the day of year). For clarity, 
results are plotted for single CanESM2 run only (CanESM2_run1_r1i1p1). In the FRSRP and FRSMC 
basins, annual maximums shift to earlier in the year and decrease in magnitude with each consecutive 
future 30-year period (Figure 8). Historically, maximum flows occur between July and August. In 2010-
2039 (2020s) and 2040-2069 (2050s) annual maximums are projected to occur between June and July and 
are higher in magnitude than the historical period. By 2070-2999 (2080s) annual maximum events are 
projected to occur as early as May 1st, and although higher than historical, not higher than the previous 
two future periods (2020s and 2050s). Results are similar in FRSHA, except discharge magnitudes are not 
projected to increase as much as in FRSRP and FRSMC (Figure 8). Large events can occur in October in 
the projections for MCGRE in the 2080s. The occurrence of peak streamflow events shifts primarily to 
fall in WILLO and BOWRB by the 2080s (Figure 9). The projected magnitude of annual maximum 
events progressively decreases and occurrence shifts to earlier in the year in SALMO, tending to occur 
primarily between March 1st and May 1st, although events still occur in November/December. 

 

 
Figure 6 - Flood frequency plot of annual maximum daily streamflow for seven sub-basins and four decades. Best estimates are 
given by the solid lines and the ribbons show the 95% confidence intervals. 
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Figure 7- Projected relative change in peak flow magnitude for seven sub-basins for three return periods and three future 
periods. All changes are relative to the 1961-1990 period.  
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Figure 8 - polar plots of annual maximum daily peak flow occurrence and magnitude in the FRSRP, FRSMC, FRSHA and 
MCGRE for the single ensemble member CanESM2-run1-r1ir1p1 for the historical (1971-1990 – grey) and three future periods 
2010-2039 (yellow), 2040-2069 (orange) and 2070-2099 (red). The behavior seen in run CanESM2-run1-r1ir1p1 is 
representative of that seen in all other runs. 
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Figure 9 - polar plots of annual maximum daily peak flow occurrence and magnitude in the BOWRB, WILLO, SALMO and 
FRSSH for the single ensemble member CanESM2-run1-r1ir1p1 for the historical (1971-1990 – grey) and three future periods 
2010-2039 (yellow), 2040-2069 (orange) and 2070-2099 (red). The behavior seen in run CanESM2-run1-r1ir1p1 is 
representative of that seen in all other runs. 
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4.2 Projected Changes in Peak Flow by Grid Cell 
In this section we describe the projected changes in design flood values over the 1229 basins defined at 
each individual grid cell. We display results for the 2-year and 100-year events in Figure 10 and Figure 11, 
respectively. Results for the 5-, 20-, 50- and 200-year design flood values are presented graphically in 
Appendix C. 

Consistent with the topology depicted in Figure 4, the magnitude of peak flow increases with increasing 
drainage area such that larger values occur where flow concentrates in the main valley-bottom channels 
and the largest values occur along the main stem of the Fraser River downstream of the confluence with 
the McGregor River (Figure 10 and Figure 11). Specific runoff (runoff/unit area) is higher in wetter 
climates than it is in drier climates, so for an equal size drainage area, wetter climates produce larger 
magnitude flood events. Consequently, a slight climatological gradient is also apparent in the gridded 
peak flow values, where for a given size of drainage area, peak flow magnitude is smaller in the lower-
elevation and drier SALMO, WILLO and BOWRB sub-basins than in the wetter FRSRP, FRSHA and 
MCGRE regions. 

Relative changes in peak flow magnitude at each grid cell will be influenced by numerous factors, the 
relative importance of which vary as a function of spatial scale. For cells draining very small drainage 
areas, individual grid cell changes will be affected more by local elevation, relief, and changes to the local 
climate, whereas peak flow changes in cells draining larger areas are likely influenced by changes 
occurring in distant (potentially wetter) upstream locations. Consequently, at the individual cell scale the 
spatial patterns of peak flow change for the 2- and 100-year events displays a rather heterogeneous 
pattern, without any widespread clear relationship to either topography, climate, or network topology 
(Figure 10 and Figure 11, respectively). Nevertheless, for both the 2- and 100-year events, the influence of 
climate and elevation can be seen at a more regional scale. For the 2-yr return period event the response at 
each grid cell within the low-elevation WILLO, SALMO and BOWRB sub-basins tends to be a decrease 
in event magnitude (Figure 10; Table 1). Conversely, in the higher elevations of the FRSRP and FRSMC 
sub-basins, the response tends towards increasing event magnitude. Results are more mixed for FRSHA 
and MCGRE. For the 100-year event (Figure 11), projections for the region encompassed by the FRSRP, 
FRSMC, and MCGRE sub-basins suggest increased flood magnitude at both mid- and end-century. For 
this more extreme event, the area within the BOWRB and WILLO is not projected to experience very 
large changes, whereas results for the SALMO are more mixed. Results for the 5-, 10-, 20- and 50-year 
events are intermediate to the 2- and 100-year response (Appendix C; Figures C1 through C4). The 
projected response of the 200-year event has a similar spatial structure to that of the 100-year event, 
although relative changes (whether positive or negative) have slightly larger magnitude (Figure C5). 

 

 

 

 



Schoeneberg, Sun and Schnorbus 2021 
 

17 
 

 
 

 
 

Figure 10 - Absolute (m3/sec) 1961-1990 (top) and projected relative change (%) in annual peak flow magnitude for 2-yr return 
period events for 2010-2039, 2040-2069 and 2070-2099 versus the baseline period (1961-1990). Results are shown for the 2.5th 
percentile (left), best estimate (middle) and 97.5th percentile (right). The black circles correspond to outlets of the FRSRP, 
FRSMC, FRSHA, MCGRE, BOWRB, WILLO and SALMO sub basins. 
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Figure 11 - Absolute (m3/sec) 1961-1990 (top) and projected relative change (%) in annual peak flow magnitude for 100-yr 
return period events for 2010-2039, 2040-2069 and 2070-2099 versus the baseline period (1961-1990). Results are shown for the 
2.5th percentile (left), best estimate (middle) and 97.5th percentile (right). The black circles correspond to outlets of the FRSRP, 
FRSMC, FRSHA, MCGRE, BOWRB, WILLO and SALMO sub basins. 
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4.3 Melton Ratio 
The Melton Ration, which is defined as the watershed relief (km) divided by the square root of watershed 
area (km), is used “to differentiate watersheds prone to flooding from those subject to debris flows and 
debris floods” (Melton, 1957; Wilford et al., 2004). The Melton Ratio has been incorporated into PCIC’s 
watershed API. Derived Melton Ratios of each sub-basin in the upper Fraser are summarized in Table 2. 
Flood watersheds have Melton ratios <0.3 and debris flows watersheds have Melton ratios >0.6 (Wilford 
et al., 2004). Melton ratios are all substantially less than 0.3 at the sub-basin scale (>2,500 km2) in the 
upper Fraser (Table 2). 

 

Table 2 - Melton ratio (km/km), minimum and maximum elevation (masl) and area (km2) summarized by sub-basin. 

Basin ID Melton ratio 
(km/km) 

Min elev. 
(masl) 

Max elev. 
(masl) 

Area 
(km2) 

FRSRP 0.045 1028 3307 2538 
FRSMC 0.036 702 3929 8023 
FRSHA 0.023 604 3807 19370 
MCGRE 0.035 627 3199 5483 
WILLO 0.026 589 1954 2843 
BOWRB 0.030 627 2368 3363 
SALMO 0.014 571 1558 4912 
Outlet 0.018 570 3929 35119 
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5 Discussion, Uncertainties and Limitations 
Hydrologic projections are subject to uncertainties arising from the need to make choices regarding the 
various components of the modelling chain (Figure 4). And results are affected by the choice of emissions 
trajectory, GCM, downscaling approach, hydrology model structure, model calibration approach, 
methodology for estimating flood quantiles, and the various data sets used for model parametrization and 
calibration (Chegwidden et al., 2019; Curry et al., 2019; Queen et al., 2021; Schnorbus and Curry, 2019; 
Schoeneberg and Schnorbus, 2020). When using results from this study one should take careful 
consideration of the uncertainties and limitations inherent in the various modelling choices, which we 
discuss in the remainder of this section.   

The actual trajectory of greenhouse gas emission that will occur during the 21st century is unknown. This 
uncertainty is addressed by using scenarios to capture a range of plausible emissions trajectories, which 
have been represented by the Representative Concentration Pathways (RCPs), of which there are four, 
RCP 2.6, 4.5, 6.0 and 8.5 (where the numbers refer to their peak radiative forcing at the end of the 21st 
century in W/m2). The CanESM2 Large Ensemble is based solely on RCP 8.5, which has the highest 
radiative forcing of the four RCPs available. 

Modelling the global climate response to radiative forcing includes two sources of uncertainty which can 
affect the possible range in future extremes. Differences between GCM structure (model numerics, 
resolution, process representation, parametrization, etc.) results in a range of climate responses to a given 
radiative forcing, resulting in so-called structural uncertainty. A second source of uncertainty is internal or 
natural climate variability, which refers to climate variations over time resulting from natural causes. We 
generally concern ourselves with unforced variations, which are internally generated redistributions of 
energy within the system that occur without changes in external factors, such as manifested by the El 
Niño/ Southern Oscillation. By only using ensemble results for the CanESM2 model, the spread of 
different runs can be attributed to internal variability only (Dai and Bloecker, 2019; Mahmoudi et al., 
2021) and thus the generated hydrologic ensemble does not address GCM structural uncertainty. 

The native‐scale outputs of climate models and climate model output is of too coarse a resolution for most 
hydrologic applications and must be downscaled, often using statistical methods. Users must choose from 
a wide number of algorithms and target data sets, where the representation of precipitation and hydrologic 
extremes can be sensitive to the choice of downscaling method (Gutmann et al., 2014; Werner and 
Cannon, 2016). Like all statistical approaches, BCCAQv2 also contains assumptions of stationarity, 
specifically in the quantile-mapping relationship and in the fine-scale spatial patterns of the temperature 
and precipitation fields, that may not be valid in a climate change context. In addition, errors in the 
chosen target data set may introduce artefacts into the downscaling process. 

VIC-GL’s overall performance (streamflow, evapotranspiration and snow cover) is quite strong, and the 
accurate representation of the seasonality of high flows in general (Figure A2), and timing of peak flows 
in particular (Figure A6) lends confidence that the physical mechanisms that generate peak flow events in 
the Upper Fraser are simulated with reasonable accuracy. Further, despite the biases in simulated annual 
maximum flows (Appendix A), the simulated peak flow changes reflect a physically realistic 
representation of the hydrologic response to climate change. Nevertheless, implementation of a hydrology 
and routing model requires a range of choices regarding the model structure (level of abstraction, grid 
resolution, model physics, etc.), model parametrization, and calibration method (including data used to 
both force and constrain the model). Different choices and combinations can lead to a wide range in 
future projections (Chegwidden et al., 2019). 
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The modelling chain used in this study is only designed to specifically address uncertainty due to climate 
variability, as it utilizes only a single emissions trajectory, GCM, downscaling scheme (trained to a single 
target data set), hydrology model (with one attempt at calibration) and routing model. However, recent 
research concludes that the choice of emissions scenario and GCM structural uncertainty tends to provide 
the largest source of uncertainty in hydrologic projections, and that the remaining sources of uncertainty 
are relatively small in comparison (Chegwidden et al., 2019; Hattermann et al., 2018; Her et al., 2019; 
Queen et al., 2021; Schoeneberg and Schnorbus, 2020; Sharma et al., 2018). In this context it is 
instructive to understand how well the range in CanESM2-based hydrologic projections compares to the 
range produced if a larger set of GCMs were used. We explored this issue by comparing annual maximum 
peak flows generated from the CanESM2 large ensemble (50 realizations) with those simulated using the 
PCIC6 ensemble, which is composed of six GCMs, some with multiple runs, for total of 15 ensemble 
members. The PCIC6 ensemble explores both GCM structural variability (different GCMs) and, to some 
degree, internal variability (multiple runs per GCM). The six GCMs that comprise the PCIC6 were 
selected specifically so as to best capture the full spread in climate change projections available from the 
full set of CMIP5 GCMs using the method of Cannon (2015). A comparison of simulated annual 
maximum streamflow produced by both ensembles is plotted by sub basin in Appendix D . Despite the 
fact that the CanESM2 large ensemble is designed only to address internal climate variability, results 
show that the spread of the CanESM2 large ensemble is comparable to (and even larger than) the spread 
captured by the PCIC6 ensemble. One can also note from the figures in Appendix E that magnitude of 
peak flow (as indicated by the respective ensemble medians) is higher in CanESM2 than PCIC6. Also, the 
direction of trend of the ensemble medians of annual maximum flow over the coming century is identical 
between ensembles in all sub basins, although and CanESM2 has larger positive and smaller (less 
negative) increasing and decreasing trends, respectively, than PCIC6. Therefore, we suggest that range of 
results provided by the large ensembles from CanESM2 coupled with the high-end RCP8.5 scenario can 
be considered to provide an upper-limit or worst-case estimate of the range of future design flow changes 
in the Upper Fraser. 

The resolution of the VIC-GL model also offers challenges with regard to the interpretation of streamflow 
values and peak flow changes. Each grid cell can only have a single flow direction and a single channel, 
therefore substantial simplification of the drainage system is imposed. This means that as drainage area 
decreases the modelled channel network (and resultant streamflow) becomes increasingly more abstract in 
terms of representing the detailed spatial structure of the drainage network. Also, with increasingly 
smaller drainage areas, the relative coarseness of the model resolution increases and the ability to 
accurately represent basin morphology and area (and, hence, runoff volume) degrades. 

With access to sufficiently large sample sizes, one can estimate quantile values directly from the 
empirical density function that are unbiased. This is the distinct advantage of using the CanESM2 large 
ensemble as the basis for this work, wherein quantiles for each analysis period are estimated using a 
sample of 1500 identically distributed peak flow events. A comparison of quantile estimation using both 
the GEV approach, and the direct empirical approach indeed confirms that the parametric GEV approach 
produces biased estimates, particularly for large events (see Appendix E, Figure E1). Nevertheless, the 
tradeoff for unbiased estimates is that the empirical quantiles have more variance and require a larger 
confidence interval than the corresponding GEV-based estimates (Figure E2 and Figure E3). 
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6 Conclusions 
PCIC has completed a pilot project to quantify design flood values (2-, 20-, 50-, 100- and 200-year 
events) for historical and future periods and make them accessible as a gridded product via PCIC’s 
Climate Explorer tool. As part of this work, PCIC has also provided the Melton Ratio as a gridded 
product. This pilot study uses on the Upper Fraser, a 34,200 km2 region upstream of Prince George, BC, 
as the study region.  Results are provided for every model grid cell in the domain at a spatial resolution of 
0.0625°, and design flood values for each grid are based on streamflow routed from the area upstream of 
the selected cell. Hence, watershed areas range from ~30 km2 (i.e., the area of a single headwater grid 
cell) to ~32,400 km2. Design flood values are provided for the thirty-year blocks 1961-1990, 2010-2039, 
2040-2069, and 2070-2099, respectively representing the historical, future early-, future mid- and future 
end-century periods. This work takes advantage of hydrologic projections produced by PCIC using the 
VIC-GL hydrology model driven with the CanESM2 50-member large ensemble (CanESM2-LE), which 
allows for statistically robust estimation of large return-period events.  

By using the CanESM2 large ensemble global climate simulations, but with only a single emissions 
trajectory, GCM, downscaling scheme (trained to a single target data set), hydrology model (with one 
attempt at calibration), and routing model, the modelling chain used in this study is only designed to 
specifically address uncertainty due to climate variability. Nevertheless, despite being limited to only a 
single hydrology mode, the performance of VIC-GL is such that the simulated peak flow changes reflect a 
physically realistic representation of the hydrologic response to climate change. However, based on the 
sensitivity of the peak flow response from CanESM2 and the large spread in the CanESM2 large 
ensemble as compared to other GCMs, coupled with the RCM8.5 scenario, the range of results provided 
by the large ensemble can be considered an upper-limit, or worst-case estimate, of the range of future 
design flow changes in the Upper Fraser. 
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Appendix A - Verification of VIC-GL in the Upper Fraser 
We summarize the performance of VIC-GL in simulating daily and annual maximum streamflow, snow 
covered area, evapotranspiration and basin-average glacier surface mass balance in seven sub-basins. This 
evaluation helps to understand the uncertainties inherent in projecting future annual max streamflow. 
Both the model calibration and validation process are conducted by forcing the VIC-GL model with 
gridded observations of daily minimum and maximum temperature and precipitation from PNWNAmet 
(Werner et al., 2019). 

A.1 VIC-GL Calibration 
Model calibration is governed by the desire to exploit the spatially distributed nature of the VIC-GL 
model. However, streamflow is the primary variable for water resources planning and management, thus 
calibration works around the availability of discharge data. In addition to discharge (Q), selected 
parameter sets for sub-basin were constrained using snow covered area (SCA), evapotranspiration (ET) 
and basin-average glacier surface mass balance (B). Calibration and validation performance is evaluated 
using the metrics and evaluation periods described in Table A1. Performance metrics include the Kling-
Gupta efficiency (KGE; Gupta et al. 2009), the Nash-Sutcliffe efficiency for log-transformed discharge 
(LNSE; Nash and Sutcliffe 1970) and the bell membership function (BMF; Zhao and Bose 2002). The 
possible value ranges for the various metrics are -∞ to 1 for KGE (1 is best), -∞ to 1 for LNSE (1 is best) 
and 0 to 1 for BMF (1 is best). Seven sub-basins had sufficient data over the collective calibration period 
(1991-2000). See Table 1 for a description of these stations, Figure 1 and Figure 5 for their locations. 

 

Table A1 - Calibration and validation metrics, and evaluation periods 

 Discharge 
(Q) 

Evapotranspiration 
(ET) 

Snow Cover 
(SCA) 

Glacier Mass Balance 
(B) 

Statistics KGE, LNSE BMF KGE BMF 
Calibration Period 1991-2000 1991-2000 2000-2005 1985-1999 
Validation Period 2001-2007 2001-2005 2006-2010 1985-1999$ 

 

Model performance is generally high over the calibration period (Table A2, Figure A1). KGEQ values are 
all greater than zero, with a median value of 0.86. This indicates that the model shows high correlation, 
low bias and variability that is well-matched to the observations. LNSEQ values are greater than zero for 
the majority of sub-basin. However, two sub-basins have LNSEQ scores less than zero, which is worse 
performance than the mean. Hydrologic models are known to struggle in simulating low-flows (Her et al., 
2019; Melsen et al., 2018; Shrestha et al., 2014, 2016; Werner and Cannon, 2016), so this result is not 
altogether surprising.  

VIC-GL simulates evaporation well in these basins, based on the BMFET scores, with values are 0.43 or 
greater in the calibration period. Snow covered area is modelled extremely well with KGESCA scores of 
0.74 or greater. For the sub-basins that contain glaciers, FRSRP, FRSMC, FRSHA and MCGRE, all 
except FRSRP simulate glacier mass balance well based on BMFB with values that exceed 0.8 and 
therefore simulated glacier mass balance is within the range of the upper and lower uncertainty bounds of 
the geodetic mass balance observations.  

 

 



Schoeneberg, Sun and Schnorbus 2021 
 

28 
 

 

Table A2 - Calibration results for streamflow (Q), evaporation (ET), snow covered area (SCA) and glacier mass balance (B) 

Basin Code Calibration  
KGEQ LNSEQ BMFET KGESCA BMFB 

FRSRP 0.67 -0.15 0.43 0.93 0.48 
FRSMC 0.89 0.86 0.43 0.83 1.00 
FRSHA 0.92 0.88 0.49 0.85 1.00 
MCGRE 0.83 0.78 0.46 0.83 0.88 
WILLO 0.88 0.66 0.55 0.74  
BOWRB 0.86 0.32 0.59 0.76  
SALMO 0.80 -0.08 0.52 0.82  

 

A.2 VIC-GL Validation 
We used a split-sample approach to model validation (Klemes, 1986), where the available observed data 
is split into two periods, one of which is used for calibration and the other for validation. Validation of 
model performance with independent data is necessary to ensure the model parameterization is robust, 
which is important to establish confidence in the model’s ability to extrapolate to climatic conditions 
unobserved during the historical period. During model calibration, simulated streamflow at the calibration 
site is composed simulated local runoff and observed upstream inflow, all routed to the outlet site (i.e., 
any errors from upstream basins are removed by using observed data). However, simulated streamflow 
for the validation runs is based on simulated runoff data from the entire upstream domain. Glacier area is 
held static during model calibration but allowed to evolve dynamically during the validation runs. As 
such, the validation diagnostics represent a very stringent test of VIC-GL performance. 

 

Table A3 - Validation results for streamflow (Q), evaporation (ET), snow covered area (SCA) and glacier mass balance (B) 

Basin  Validation  
KGEQ LNSEQ BMFET KGESCA BMFB 

FRSRP 0.50 -0.09 0.37 0.95 0.98 
FRSMC 0.52 0.85 0.40 0.87 0.60 
FRSHA 0.76 0.63 0.41 0.88 0.95 
MCGRE 0.83 0.74 0.46 0.86 0.90 
WILLO 0.85 0.57 0.50 0.82  
BOWRB 0.85 0.41 0.56 0.81  
SALMO 0.74 -0.03 0.55 0.83  

 

Performance metrics for streamflow decrease moderately in the validation period (Table A4). This is 
expected due to the more stringent nature of the validation test (compared to calibration) and the fact that 
some over-fitting to the calibration period is unavoidable. KGEQ values are 0.74 or greater for all basins 
except FRSRP (0.50) and FRSMC (0.52). FRSRP was already weakly calibrated in comparison to the 
other basins, while FRSMC decreased from 0.89 to 0.52. LNSE is 0.63 or greater for four of seven basins, 
0.41 in BOWRB and less than zero in FRSRP and SALMO. FRSRP and SALMO already had poor 
performance in the calibration period for this metric (Table A2). Simulated and observed daily 
streamflow during the calibration and validation periods are shown in Figure 5. Although the Fraser River 
at Shelley (FRSSH; WSC gauge 08KB001) data was not used for model calibration, it is included for 
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streamflow validation purposes and presented in Figures A1 through A7. Model streamflow validates 
well at FRSSH with a KGEQ of 0.79 and LNSEQ of 0.61. The simulation of glaciers improves for FRSRP, 
but worsens for FRSMC, dropping to 0.60 from 1 for BMFB. Evaporation performance is fairly stable, 
decreasing only minimally, and continues to be high in the validation period, based on BMFET (Table A4). 
Snow covered area is simulated as well or better than it was in the calibration period based on KGESCA.  
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Figure A1 - Daily streamflow for calibration (1991-2000) and validation (2001-2007) periods.. 
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Figure A2 - Minimum and maximum (polygon) and median (solid line) of simulated versus observed daily streamflow by Julian 
day over 1990-2007. 
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A.3 VIC-GL Annual Maximum Flow 
As peak flows are the emphasis of this study, we evaluate the performance of VIC-GL specifically for this 
metric. Simulated annual daily maximum peak flows are higher than observed in FRSRP, FRSMC, 
FRSHA, SALMO and FRSSH, and lower in magnitude in MCGRE, WILLO and BOWRB (Table A4, 
Figure A3). Relative bias, RBIAS, ranges from 24% to -26%, RMSE from 48% to 24% and MAE from 
40% to 18% of Mn.O. Although simulated and observed peaks flows show significant positive correlation 
at the 5% significance level (Table A4, Figure A3 and A4) in all basins, the distribution of the observed 
and simulated peak flow events can only be considered statistically identical at the 5% significance level 
in the FRSHA, MCGRE, WILLO and FRSSH basins (Table A4, Figure A5).  

The timing of peak flows in the simulated and observed are compared with polar plots (Figure A6 and 
Figure A7). Annual maximum peak flows are generated almost exclusively during the snowmelt freshet 
and occur predominately between May 1st and July 1st in all basins, except in lower-elevation SALMO, 
BOWRB and WILLO, where events can occur as early as mid-April. The MCGRE is the only site that 
exhibits a bi-modal distribution of annual maximum peak flows, with a minority of events occurring after 
the freshet period during the fall, likely as a result of extreme rainfall events. The seasonality, or timing, 
of annual maximum flow events is similar between the observed and simulated at all validation sites, 
including the MCGRE. This gives us confidence that the dominant physical mechanisms generating 
freshet peak flows are accurately represented by the VIC-GL model. 

 

Table A4 – Performance summary for simulated versus observed annual daily maximum peak flow events (1950-2010). Statistics 
include observed (Mn.O) and simulated (Mn.S) mean, observed and simulated standard deviation (SD.O and SD.S, respectively), 
observed and simulated coefficient of variation (Cv.O and Cv.S, respectively), bias (RBIAS), root mean square error (RMSE), 
mean absolute error (MAE), Spearman rank correlation (RS) and Kolmogorov-Smirnov test statistic (KS). RBIAS, RMSE and 
MAE are presented as a percentage relative to Mn.O.  Values of RS and KS that are significant at the 5% level (two-sided test) 
are shown in bold. The number of observations available over the 1950-2010 period are given as percent records (% Recs).  

Basin Mn.O 
(m3s-1) 

Mn.S 
(m3s-1) 

SD.O 
(m3s-1) 

SD.S 
(m3s-1) 

Cv.O 
(none) 

Cv.S 
(none) 

RBIAS 
(%) 

RMSE 
(%) 

MAE 
(%) 

RS 
(none) 

KS 
(none) 

%Recs 
(%) 

FRSRP 244 303 52 88 0.21 0.29 24 38 30 0.48 0.40 90 
FRSMC 899 1261 155 269 0.17 0.21 40 48 40 0.46 0.64 87 
FRSHA 2006 2232 386 537 0.19 0.24 11 27 20 0.43 0.25 93 
MCGRE 1100 1007 265 227 0.24 0.23 -8 22 18 0.45 0.16 82 
WILLO 235 174 118 38 0.50 0.22 -26 46 31 0.81 0.33 49 
BOWRB 326 251 93 55 0.28 0.22 -23 32 24 0.75 0.52 54 
SALMO 213 264 74 105 0.35 0.40 24 41 32 0.73 0.30 75 
FRSSH 3209 3475 658 800 0.21 0.23 8 24 18 0.51 0.25 100 
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Figure A3 – time series of annual daily max streamflow for simulated and observed 1950-2010. 
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Figure A4 - Simulated annual max flow versus observed by sub-basin for 1950-2010. One-to-one line (black) and simple linear 
regression line for best-fit (pink)..  
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Figure A5 - empirical distribution function for simulated and observed annual max streamflow by basin for 1950-2010. 
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Figure A6 - polar plots comparing simulated (red) and observed (blue) annual daily max peak flow timing and magnitude in the 
FRSRP, FRSMC, FRSHA and MCGRE for 1950-2010. 
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Figure A7 - same as Figure 18 but for WILLO, SALMO, BOWRB and FRSSH.  

  



Schoeneberg, Sun and Schnorbus 2021 
 

38 
 

Appendix B – Flood Frequency Tables  
 

Table B1- Best estimates of absolute (m3/sec) for 1961-1990 and projected relative change (units: %) in annual peak flow 
magnitude by three future periods (2010-2039, 2040-2069 and 2070-2099) for different quantiles for the pour point of the 
FRSRP basin. The baseline period is 1961-1990.  

Time 
Horizon 

Return period events  

2-yr 5-yr 10-yr 20-yr 50-yr 100-yr 200-yr 

1961-1990 295 374 419 464 506 526 568 

2010-2039 18 16 17 16 18 19 23 

2040-2069 25 21 21 19 20 25 22 

2070-2099 26 21 20 17 19 21 18 
 

 

Table B2 - same as Table B1 but for FRSMC. 

Time 
Horizon 

Return period events  

2-yr 5-yr 10-yr 20-yr 50-yr 100-yr 200-yr 

1961-1990 1258 1508 1673 1799 1915 1987 2063 

2010-2039 15 14 13 13 14 18 21 

2040-2069 19 18 16 15 16 18 21 

2070-2099 17 14 12 12 14 16 18 
 

 

Table B3 - same as Table B1 but for FRSHA. 

Time 
Horizon 

Return period events  

2-yr 5-yr 10-yr 20-yr 50-yr 100-yr 200-yr 

1961-1990 2334 2752 3019 3252 3469 3671 3823 

2010-2039 8 9 10 9 11 14 13 

2040-2069 3 6 7 7 7 10 10 

2070-2099 -8 -6 -5 -3 0 3 6 
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Table B4 - same as Table B1 but for MCGRE. 

Time 
Horizon 

Return period events  

2-yr 5-yr 10-yr 20-yr 50-yr 100-yr 200-yr 

1961-1990 1033 1227 1325 1396 1521 1588 1615 

2010-2039 7 8 9 12 11 13 25 

2040-2069 3 5 7 11 13 14 15 

2070-2099 0 1 6 10 15 21 27 
 

 

Table B5 - same as Table B1 but for WILLO. 

Time 
Horizon 

Return period events  

2-yr 5-yr 10-yr 20-yr 50-yr 100-yr 200-yr 

1961-1990 189 228 252 269 293 301 313 

2010-2039 -2 0 0 2 2 3 6 

2040-2069 -11 -9 -6 -2 0 7 6 

2070-2099 -6 -6 -7 -5 2 8 8 
 

 

Table B6 - same as Table B1 but for BOWRB. 

Time 
Horizon 

Return period events  

2-yr 5-yr 10-yr 20-yr 50-yr 100-yr 200-yr 

1961-1990 266 317 343 365 385 401 424 

2010-2039 0 2 3 4 6 4 6 

2040-2069 -9 -6 -3 -1 2 4 5 

2070-2099 -11 -12 -10 -7 -1 6 3 
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Table B7 - same as Table B1 but for SALMO. 

Time 
Horizon 

Return period events  

2-yr 5-yr 10-yr 20-yr 50-yr 100-yr 200-yr 

1961-1990 282 375 431 486 537 581 657 

2010-2039 -2 1 4 6 9 12 5 

2040-2069 -13 -4 -1 0 8 12 10 

2070-2099 -22 -19 -16 -12 -6 -6 -11 
 

 

Table B8 - same as Table 2B1 but for Upper Fraser. 

Time 
Horizon 

Return period events  

2-yr 5-yr 10-yr 20-yr 50-yr 100-yr 200-yr 

1961-1990 3605 4237 4656 4960 5305 5573 5776 

2010-2039 5 8 6 9 11 12 11 

2040-2069 0 4 4 5 6 7 9 

2070-2099 -8 -7 -6 -1 2 8 6 
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Appendix C - Relative Change for Different Return Period Events  
Projected changes in 5-year, 20-year, 50-year and 200-year design flood values over the 1229 basins 
defined at each individual grid cell (Figures C1, C2, C3 and C4, respectively).  

 
Figure C1 - Absolute (m3/sec) and projected relative change (%) in annual peak flow magnitude for 5-yr return period events for 
1961-1990 (top), 2010-2039, 2040-2069 and 2070-2099 versus the baseline period (1961-1990). Results are shown for the 2.5th 
percentile (left), best estimate (middle) and 97.5th percentile (right). 
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Figure C2 - Absolute (m3/sec) and projected relative change (%) in annual peak flow magnitude for 5-yr return period events for 
1961-1990 (top), 2010-2039, 2040-2069 and 2070-2099 versus the baseline period (1961-1990). Results are shown for the 2.5th 
percentile (left), best estimate (middle) and 97.5th percentile (right). 
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Figure C3 - Absolute (m3/sec) and projected relative change (%) in annual peak flow magnitude for 20-yr return period events 
for 1961-1990 (top), 2010-2039, 2040-2069 and 2070-2099 versus the baseline period (1961-1990). Results are shown for the 
2.5th percentile (left), best estimate (middle) and 97.5th percentile (right). 
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Figure C4 - Absolute (m3/sec) and projected relative change (%) in annual peak flow magnitude for 50-yr return period events 
for 1961-1990 (top), 2010-2039, 2040-2069 and 2070-2099 versus the baseline period (1961-1990). Results are shown for the 
2.5th percentile (left), best estimate (middle) and 97.5th percentile (right). 
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Figure C5 - Absolute (m3/sec) and projected relative change (%) in annual peak flow magnitude for 200-yr return period events 
for 1961-1990 (top), 2010-2039, 2040-2069 and 2070-2099 versus the baseline period (1961-1990). Results are shown for the 
2.5th percentile (left), best estimate (middle) and 97.5th percentile (right). 
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Appendix D – Comparison of Annual Maximum Flow between the CanESM2-
LE and PCIC6 Ensembles 
This section presents a comparison of simulated annual maximum peak flow by sub basin using climate 
projections provided by two different ensembles: the CanESM2-LE and PCIC6. The PCIC6 ensemble is 
composed of six GCMs (ACCESS1-0, CanESM2, CCSM4, CNRM-CM5, HadGEM2, and MPI-ESM-
LR). The CanEMS2-LE is composed of 50 ensemble members based on different initializations of the 
CanESM2 model. The PCIC6 ensemble is composed of 15 runs made up of the six aforementioned 
GCMs, with multiple runs for select GMCs (5 x CanESM2, 4 x HadGEM2, 3 x MPI-ESM-LR and 2 x 
CCSM4). All projections are based on the RCP8.5 emissions trajectory. 

Results are plotted for the outlets corresponding to the FRSRP, FRSMC, FRSHA, MCGRE, WILLO, 
BOWRB, SALMO and FRSHO sub basins in Figures D1 through D8, respectively. At all locations the 
spread of the ensemble results (indicated by the ensemble minimum and maximum) shows that the 
CanESM2-LE has a similar, if not slightly larger, range as the PCIC6 ensemble. Using the ensemble 
median, the CanESM2-LE annual maximum peak flow values tend to be larger than those obtained from 
the PCIC6 ensemble. Comparing trends, which are estimated by fitting a simple linear regression to the 
ensemble medians, we see that the direction of trend is identical between CanESM2-LE and PCIC6 at all 
locations. It is apparent, where the trend is positive (FRSRP, FRSMC), the CAnESM2-LE ensemble 
produces a stronger trend, whereas if the trend is negative (FRSHA, MCGRE, BOWRB and WILLO), 
CanESM2-LE produces a slightly weaker (less negative) trend. 

 

Figure D1- Annual maximum streamflow showing ensemble median (line) and minimum-maximum range (ribbon) of the 
CanESM2 Large Ensemble (pink/red) and the CMIP5 PCIC6 (grey/black) for RCP8.5 for FRSRP. Straight lines show fitted 
linear trend. 
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Figure D2 - Same as Figure D2, but for FRSMC. 

 

Figure D3 - Same as Figure D2, but for FRSHA. 
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Figure D4 - Same as Figure D2, but for MCGRE. 

 

 

 
Figure D5 - Same as Figure D2, but for WILLO. 
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Figure D6 - Same as Figure D2, but for BOWRB. 

 

Figure D7 - Same as Figure D2, but for SALMO. 
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Figure D8 - Same as Figure D2, but for FRSSH. 
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Appendix E – Comparison of Empirical and Parametric Flood Frequency 
Analysis 
Previous studies always fitted a parametric frequency distribution to a sample of block maximum events, 
such as the generalized extreme value distribution (GEV). The underlying asymptotic theory shows that 
the approximation should improve as the block length increases. However, there is a strong annual cycle 
in streamflow and daily amounts from which annual maxima are calculated are probably strongly serially 
correlated, resulting in that the effective block length is small. The GEV might not well approximate the 
upper tail of the distribution when fitted to such annual maxima. 

To test this, estimated peak flow quantiles by fitting a generalized extreme value (GEV) distribution to 
the sample data and compared the results to those directed using the empirical estimate of the distribution 
function. As anticipated, the GEV-estimated quantiles show biases at high (T > 20-years) return periods 
compared to the empirically derived estimates, (Figure E1). Although unbiased, the tradeoff with the 
empirical estimates is that they have higher variance and require a wider confidence region than the GEV-
based estimates (compare Figure E2 and Figure E3). 

  

 
Figure E1. Flood frequency plot of results empirically (solid lines) and from GEV fitting (dotted lines) of annual peak daily flow  
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Figure E2. Flood frequency plot comparing empirical quantile estimates (solid line) with 95% confidence interval (shaded 
region) for four non-overlapping decades. 
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Figure E3. Flood frequency plot comparing of GEV fit quantile estimates (solid line) with 95% confidence interval (shaded 
region) for four non-overlapping decades. 

 


