PROVINCE OF BRITISH COLUMBIA MINISTRY OF ENVIRONMENT, LANDS AND PARKS VANCOUVER ISLAND REGION

SALTSPRING ISLAND

WATER ALLOCATION PLAN

NOVEMBER 1993

written by:

Lyn Barnett, Bruno Blecic Walter Van Bruggen

Regional Water Management Vancouver Island Region Victoria, B.C.

Approved

Regional Water Manager Vancouver Island Region

Date: 30 Nov. 93

Table of Contents

Table	e of (Contents		•••••	• • • •	•••	•••	••	•••	••	•••	•••	••	• •	• •	••	. 1
Table	es					•••		••		••						••	. 2
Figu	res					•••	•••	••		••	•••	•••	••	• •	•	•••	. 2
Apper	ndice	5				•••	•••	••		••	•••		••	• •	•	••	. 2
1.0	INTRO	DUCTION:				•••	•••	••		••	•••		••	• •	•	••	. 1
2.0	GENE 2.1 2.2 2.3 2.4 2.5	RAL WATERSHI Plan Area . Topography History and Groundwater Significant	and Clim d Growth	 ate 	· · · · ·	· · · ·	· · · ·	• • •	· · ·	••• ••• •••	••••	· · ·	· · · ·	· · · ·		•••	. 3 . 5 . 5 . 7
3.0	HYDI 3.1 3.2 3.4 3.5	3.2.2	ion mation Low Flow High Flow Other Sma es	Perio V Peri all Dr	 d od aina	 ges	· · · ·	• • •	· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·	· · · ·	· · · · · ·	· · · · · ·		• • • • • •	. 9 . 9 13 14 17 18
4.0	INST	REAM FLOW RI	EQUIREMEN	TS		•••	•••	••		••	•••	•••	••	• •	• •	••	19
5.0		5.2.2 5.2.3	emand ced Deman St. Mary Lake Mary Cusheon I Other Lak Demand	 Lake. vell Lake	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · ·	 		· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	21 24 26 27 27 27
6.0	CONC	LUSIONS						• •						• •			28

7.0	RECO	MMENDATIONS
	7.1	Domestic
	7.2	Irrigation
	7.3	Industrial
	7.4	Land Improvement and Conservation 32
	7.5	Waterworks
	7.6	Significant Water Supply Sources 33
		7.6.1 St. Mary Lake
		7.6.2 Lake Maxwell 33
		7.6.3 Cusheon Lake
		7.6.4 Lake Weston
	7.7	Storage
	7.8	Allocation Plan Revision 34

Tables

Saltspring Island Water Allocation Plan Areas 4
Population Growth 6
Population Forecast 6
Housing Units by Type (1991) 6
Saltspring Island Watersheds 8
Water Survey Canada Flow - Saltspring Island 13
Cusheon Lake Inflow 15
Water Available For Storage 17
Net Precipitation 19
Instream Flow Requirements Modified Tennant (Montana) Method 20
Licensed Demand by Purpose 22
Licensed Demand - June to October 22
Inflow to Lake Maxwell 26
Application Demand by Purpose 27
Recommended Livestock Water Requirements 31

Figures

Figure	1:	Key Plan Map	. 3
Figure	2:	Significant Watershed Areas	10
Figure	3:	Hydrometric and Precipitation Stations	11
Figure	4:	Saltspring Island Rainfall Summary	12
Figure	5:	Monthly Flows for Saltspring Island Streams	16
Figure	6:	Saltspring Island Annual Licensed Demand	23
Figure	7:	St Mary Lake Levels and Proposed Storage Range	25

Appendices

TEMPERATURE and PRECIPITATION	35
STREAMFLOW RECORDS	36
LAKE WATER LEVEL RECORDS	37
STREAMS THAT SUPPORT FISH RESOURCES	38
LICENSED WATER DEMAND	39

PENDING	WATER	LICENCE	APPLICATIONS	 	41
REFERENC	CES			 	42

WATER ALLOCATION PLAN

1.0 INTRODUCTION

The Water Management Program's goals are to sustain a healthy water resource through anticipating and planning for water uses. Water Allocation Plans are a means of identifying water demands and ensuring that water use is compatible with the goals of a sustainable environment. Water cannot be allocated beyond the resource ability of the resource to replenish itself. The natural amenities must be maintained for present and future generations. Allocation must be based on reasonable expectations that water will be available for the period required without significantly impacting existing licensed allocations or instream flow requirements. These include fisheries instream flow requirements, water quality maintenance, aesthetic values and cultural uses. Advantages of preparing an allocation plan include:

- Providing the public with our position on water allocation in advance of water applications (pro-active management, information available to applicants and the public);
- 2. Reducing response time by having plans in place prior to receiving applications;
- Eliminating individual studies and reports on each application;
- Improving the consistency of our approach and decision making;
- Replacing or reducing most Water Licence Application Reports by pre-defining specific allocation directions and decisions;
- 6. Being more comprehensive in the plan than in present reports;
- 7. Eliminating the need for many referrals.

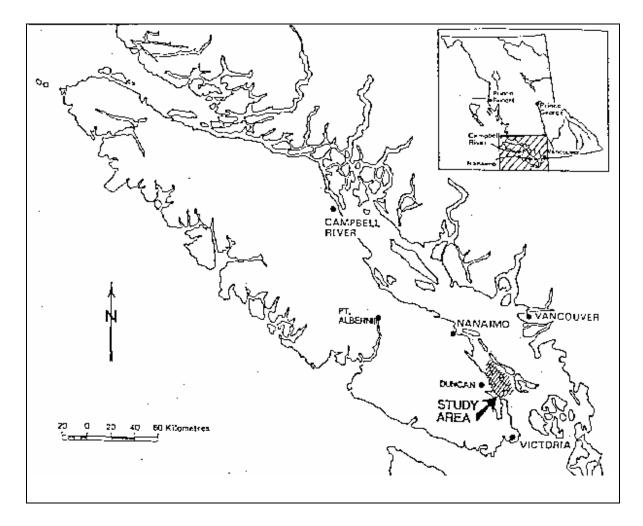
The Vancouver Island Region developed the following policy to provide water allocation direction:

Regional Policy:

The region shall be subdivided into watershed areas and a water allocation plan shall be prepared for each watershed area. Water licence decisions will be made in accordance with approved plans.

Assessments undertaken as part of the water allocation planning process include identifying the surface water resources available, the instream fisheries requirements, existing and potential licensable water demands in order to provide direction for further water licence allocations.

The Saltspring Island Water Allocation Plan is one of a series of allocation plans under development. Completion of this plan will significantly expedite the adjudication of water licence applications.


Water Allocation Plans are developed primarily from available in-house information which includes existing Regional Engineer's Reports (R.E.R.'s), information obtained from other reports and information and reports obtained from other agencies. These agencies include Federal & Provincial Fisheries, Regional Districts, Islands Trust and Water Survey of Canada.

The plans are intended to substantially reduce the need to prepare individual reports for each new water licence application. When completed, the Water Allocation Plan will serve as the basis for most licensing decisions. Separate reports should only be necessary for sensitive or complex water licence applications.

It should be emphasized however, that Water Allocation Plans (WAP) are not comprehensive Watershed Management Plans. Water Allocation Plans are less exhaustive and require less time to prepare. They should be updated at least once every five years. When Watershed Management Plans become available, they will replace Water Allocation Plans.

The location of the Saltspring Island Water Allocation Plan is shown in Figure 1: Key Plan Map.

Figure 1: Key Plan Map

2.0 GENERAL WATERSHED INFORMATION

2.1 Plan Area

The Water Allocation Plan area encompasses the whole of Saltspring Island, Prevost Island and the surrounding minor islands. Located off the east coast of Vancouver Island, the plan area lies mid-way between Victoria and Vancouver. Ferries link Saltspring Island to Victoria, Crofton and Vancouver, providing public access for both passengers and vehicles.

Islands	Size (km ²)	% Area
Saltspring Island	183.00	94.1
Prevost Island	8.00	4.1
Hawkins Island	0.01	*
Bright Islet	0.01	*
Red Islets	0.01	*
Ackland Islands (2)	0.06	*
Secretary Islands (2)	0.75	0.4
Wallace Island	0.80	0.4
Jackscrew Island	0.08	*
Norway Island	0.15	0.1
Hall Island	0.20	0.1
Mowgli Island	0.04	*
Idol Island	0.01	*
Russell Island	0.15	0.1
Channel Islands	0.01	*
Chain Islands	0.13	0.1
First Sister Island	0.01	*
Second Sister Island	0.01	*
Third Sister Island	0.02	*
Deadman Island	0.02	*
Goat Island	0.06	*
Grace Islet	0.01	*
Piers Island	1.00	0.5
Burial Islet	0.01	*
Isabella Island	0.01	*
Secret Island	0.04	*
Misc.Small Islands (4)	0.01	*
TOTAL AREA	194.39	100.0

* area less than 0.1%
Source: Islands Trust (1992) and Lesser Islands Atlas

2.2 Topography and Climate

Saltspring Island has a total surface area of 183 km^2 (71.6 mi^2) with a shoreline length of 133 km (83 mi). The highest elevation on the island is Bruce Peak at 704 m (2310 ft) and the lowest elevation is at sea level.

The climate on Saltspring Island is indicated by the climatic records for the station at Ganges (elev. 73 m (239 ft.)) for the period 1951 to 1980. The lowest average mean daily temperature is in January and is 2.9° C; with a mean daily maximum temperature of 5.6°C and a mean daily minimum temperature of 0.2°C. The highest average mean daily temperature is in July and is 17.0°C; with a mean daily maximum temperature of 11.7°C.

The climate station on Saltspring Island at Vesuvius (elev. 7 m (23 ft.)) indicates similar climatic conditions. The lowest average mean daily temperature is in January and is 3.3° C; with a mean daily maximum temperature of 5.8° C and a mean daily minimum temperature of 0.6° C. The highest average mean daily temperature is in July and is 17.3° C; with a mean daily maximum temperature of 22.9° C and a mean daily minimum temperature of 12.0° C. See **Appendix A** for climatic normals and precipitation records for the period of 1951 to 1980.

2.3 History and Growth

Saltspring Island is the largest and most populated of the Gulf Islands within the Vancouver Island Region. Once called "Admiral Island", it became known as Saltspring Island after the discovery of brine springs in the northern part of the island.

First settled by non-aboriginal people in 1857, population on Saltspring Island increased steadily, especially as marine transportation to Vancouver Island and the Mainland improved.

The following table highlights population growth over the past 25 years:

WATER ALLOCATION PLAN

Year	1966	1971	1976	1981	1986	1991		
Population	2,238	3,169	4,410	5,443	6,164	8,017		
Increase		931	1241	1033	721	1853		
Percent increase		42%	39%	23%	13%	30%		
Total population increase 1966 - 1991 is 5779 people (258%) or 231 people/year								

Population Growth

Source: Statistics Canada (1992)

The following table projects the population growth over the next 50 years:

Population Forecast

Year	1991	2001	2011	2021	2031	2041	2061
Population	7,070	9,215	11,131	12,619	13,654	14,321	14,970

Source: Oliver T. Coomes for Islands Trust, 1979.

The Saltspring Island population as of the 1991 census exceeds the 1991 forecast by 13% (947 people). Should the current growth rate over the last 5 years continue, the ceiling of 15,000 would be reached 40 years before the forecast above suggests.

Housing units by type to 1991 are provided in the following table:

Housing Units by Type (1991)

Permanent Dwelling Units:	3,428 *
Seasonal Units (cabins/cottages):	318 **
Mobile Home Units:	283 **
TOTAL UNITS	4,029

* Statistics Canada 1991 Census ** B.C.Assessment Authority 1991

WATER ALLOCATION PLAN

2.4 Groundwater

Saltspring Island bedrock consists primarily of sedimentary rock from the Upper Cretaceous (Nanaimo Group) and Carboniferous volcanic rock (Sicker Volcanics) (Hodge 1977). North of Ganges Harbour and Booth Bay, conglomerates, shales and sandstone result in an area of low porosity and permeability. In the highlands, there are sandstones, shales and conglomerates that are more resistant and less fractured. In the valley areas, particularly in the Ganges-Booth Bay area, less resistant shale beds occur. Hodge (1977) notes that the marine origin of the sedimentary rock in the north partly explains the poor water quality in that area. The southern part of the island consists primarily of older igneous rock where significant fracturing results in greater groundwater renewal and higher quality. Glacio-marine deposits of silt, clay and stoney clay blanket the lowland and bay areas.

Groundwater well use is limited and subject to increasing water quality problems. Although early findings in a current groundwater study suggest a dramatic increase in wells drilled in the past decade, it also appears that the number of abandoned wells equals or exceeds new wells drilled. Saltwater intrusion into aquifers threatens groundwater quality near the coast and in the area southeast of St. Mary Lake where natural brine springs near the ground surface seep into the water table. In the north where groundwater recharge is poor, low summer water tables are further threatened by excessive withdrawals. If well water quality or supply problems increase, this will inevitably lead to a greater demand for scarce surface water supplies¹.

In a report prepared by Oliver T. Coomes for Islands Trust, dated September 1979, a study of water use on North Saltspring Island states that 28% of freshwater demand came from groundwater and 72% from surface water. Most groundwater use is for domestic purpose in rural homes located outside waterworks district boundaries.

2.5 Significant Watershed Areas

For the purpose of assessing water supplies for allocation demands, the following watershed areas where identified and the drainage areas determined. The watershed area, surface area and volume of significant lakes were also determined. The watershed areas were derived from available Ministry of Environment reports or measured by planimeter from 1:50,000 NTS maps. Lake surface

A groundwater study being updated by Water Management's Groundwater Section in Victoria should be available by the summer of 1994 for review.

areas and volumes are from available bathymetric surveys. These watersheds are illustrated in Figure 2.

SOURCE	WATERSHED AREA	LAKE SURFACE AREA	LAKE VOLUME
DUCK CREEK	2,047 ac 828 ha		
ST MARY LAKE	1,747 ac	447 ac	12,696 acft
(at outlet)	707 ha	181 ha	15,666 dam³
MCFADDEN CREEK	750 ac 304 ha		
CUSHEON CREEK	2,498 ac 1,011 ha		
CUSHEON LAKE	1,788 ac	67 ac	942 acft
(at outlet)	724 ha	27 ha	1,162 dam³
BLACKBURN LAKE	1,531 ac	11.1 ac	109 acft
(at outlet)	620 ha	4.5 ha	134 dam³
BULLOCKS CREEK	1,038 ac 420 ha		
BULLOCKS LAKE	524 ac	25.2 ac	414 acft
(at outlet)	212 ha	10.2 ha	511 dam³
MAXWELL CREEK	1,888 ac 765 ha		
LAKE MAXWELL	288 ac	69 ac	1,752 acft
(at outlet)	117 ha	28 ha	2,162 dam³
FULFORD CREEK	5,665 ac 2,294 ha		
FORD LAKE	1,927 ac	11.1 ac	114 acft
(at outlet)	780 ha	4.5 ha	140 dam³
WESTON CREEK	1,254 ac 508 ha		
LAKE WESTON	420 ac	45.7 ac	582 acft
(at outlet)	170 ha	18.5 ha	718 dam³
LAKE STOWELL	961 ac	13.8 ac	211 acft
	389 ha	5.6 ha	260 dam³

Saltspring Island Watersheds

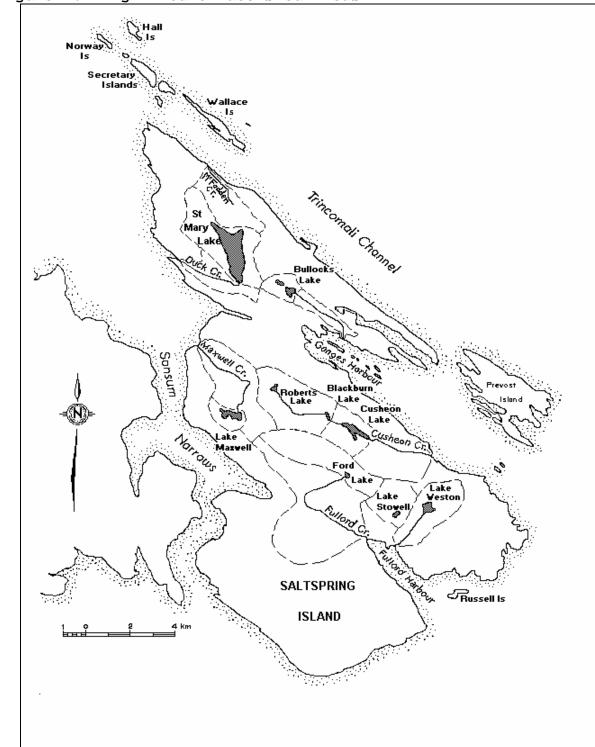
ac = acres ha = hectares acft = acre-feet dam³ = cubic decametre

3.0 HYDROLOGY

3.1 Precipitation

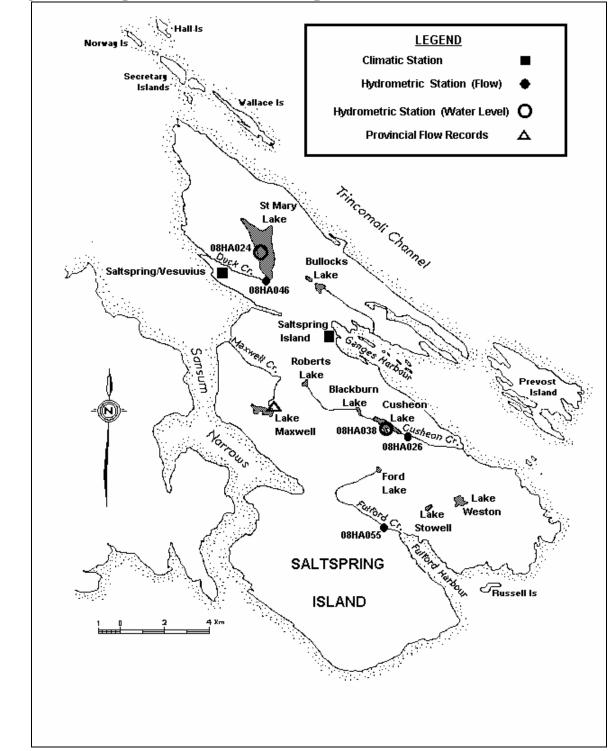
There are two AES precipitation stations on Saltspring Island. They are located at Ganges and Vesuvius as shown in Figure 3. A bar graph showing the monthly precipitation normals during the 1951 to 1980 period for these stations is shown in Figure 4. Monthly climatic data is provided in Appendix A.

The mean total annual precipitation at Ganges is 1065.2 mm (41.9 in.). The minimum mean monthly precipitation is 23.5 mm in July and the maximum mean monthly precipitation is 193.8 mm in January. The mean number of days with measurable precipitation is 149 days; with 144 days with rain and 8 days with snow.

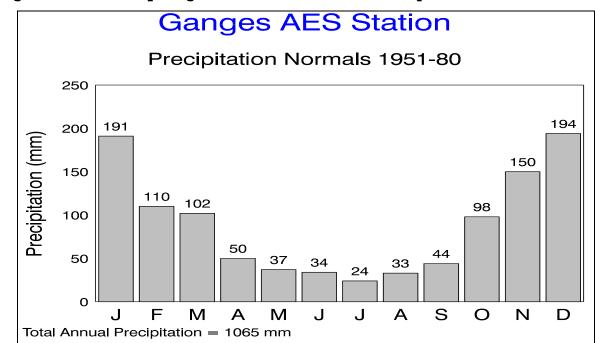

The mean total annual precipitation at Vesuvius is 908.8 mm (35.8 in.). The minimum mean monthly precipitation is 16.7 mm in July and the maximum mean monthly precipitation is 164.6 mm in January. The mean number of days with measurable precipitation is 147 days with 142 days with rain and 8 days with snow.

3.2 Flow Information

There are five Water Survey Canada (WSC) hydrometric stations on Saltspring Island. Three of these measure streamflow, namely; Duck Creek at outlet of St. Mary Lake (08HA046), Cusheon Creek at outlet of Cusheon Lake (08HA026) and Fulford Creek on Saltspring Island (08HA055). Cusheon Creek has records for the complete year while Duck Creek and Fulford Creek records cover only a part of a year. The remaining two hydrometric stations measure water levels on St. Mary Lake, Saltspring Island (08HA024) and Cusheon Lake near Ganges (08HA038). **Figure 3** illustrates the locations of the various Saltspring Island stations.


Stream flow and water volume information are available from Ministry of Environment lake studies and Regional Engineer Reports (R.E.R.'S) related to water licence applications. A summary of flow observations and records may be found in **Appendix B**.

WATER ALLOCATION PLAN


Figure 2: Significant Watershed Areas

WATER ALLOCATION PLAN

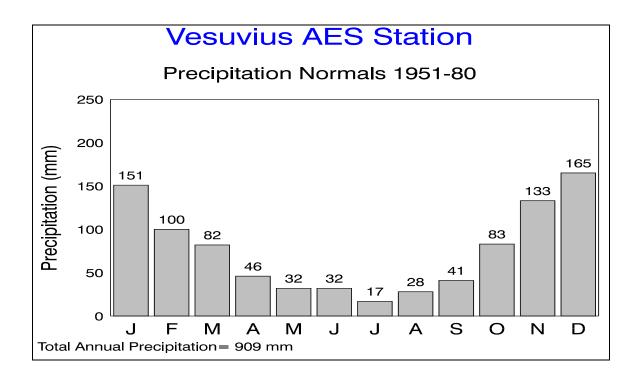


Figure 3: Hydrometric and Precipitation Stations

WATER ALLOCATION PLAN

Figure 4: Saltspring Island Rainfall Summary

3.2.1 Low Flow Period

The WSC station **Cusheon Creek** at the outlet of Cusheon Lake (08HA026) indicates that there is zero flow in August, September and October for most years. Monthly mean flows of zero have also been recorded for the months of July 1970, 1977, 1979 and 1985 and in November of 1987. Monthly low flow, below 20% of the mean annual discharge (MAD), generally commence in June and extend through October; a five month period.

Zero flows have been recorded on **Duck Creek** at the outlet of St. Mary Lake during August and September for all years on record (1970, 1980, 1990).

Fulford Creek provides the highest recorded summer flow on Saltspring Island. At the headwaters of Fulford Creek is Ford Lake. The outlet from Ford Lake dries up during the summer period and most of the summer flow contribution is from Kyler and Reid Creeks which are spring fed. WSC flow data is available on Fulford Creek for the months April through September over the period 1983 to 1990 (see **Appendix B**). Mean monthly flow for the Water Survey Canada flow stations on Saltspring Island is as follows:

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Cus	Cusheon Creek Mean Monthly Flow in m^3 /sec (08HA026) 1970, 1971, 1976 - 1992										
0.331	0.381	0.235	0.098	0.036	0.010	0.002	0	0	0	0.066	0.271
	Duck Creek Mean Monthly Flow in m ³ /sec (08HA046) 1980 & 1990-1992										
0.211	0.245	0.212	0.061	0.059	0.013	0.003	0	0			
	Fulford Creek Mean Monthly Flow in m^3 /sec (08HA055) 1983 - 1992										
			0.275	0.106	0.046	0.021	0.014	0.019			

Water Survey Canada Flow - Saltspring Island

A mean annual discharge (MAD) has been estimated for Fulford Creek by watershed correlation with Cusheon Creek (08HA026) WSC station as follows:

Watershed Area of Cusheon Creek = 724 ha (1788 ac) Watershed Area of Fulford Creek = 2294 ha (5655 ac) Cusheon Creek (MAD) = 0.116 cms (4.11 cfs)

Estimated MAD for Fulford Creek:

 $\frac{2294}{724}$ x 0.116 = 0.368 cms (13.0 cfs)

Therefore 10% of the mean annual discharge (MAD) for Fulford Creek is 0.037 m³/sec (1.31 cfs) and 60% MAD is 0.221 m³/sec (7.80 cfs).

Fulford Creek has the highest recorded mean monthly flows and these mean monthly flows are below the estimated 10% MAD in the July through September period and below the estimated 60% MAD from May through September period. In general flows are below 20% MAD for a five month low flow period from June through October.

Observations noted in reports for water licence applications indicate that there is zero flow in Bullocks Creek, Hoskin Brook, Weston Creek, Sharpe Creek and the lower reaches of McAfee Creek. In creeks that maintain a flow throughout the year, such as Kyler Creek, Reid Creek, Fulford Creek and the lower part of Cusheon Creek, low flows were observed during the June to October period.

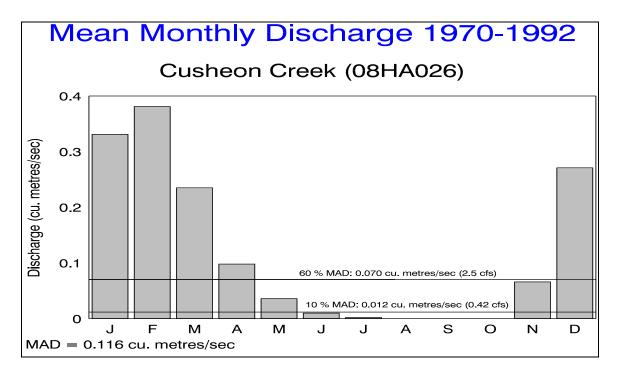
These records indicate that there are low flow or zero flow on most streams during the June through October period and significantly increased flows occurring during the remaining months. Therefore it may be assumed that all streams on Saltspring Island experience mean monthly low flow during the June through October five month period.

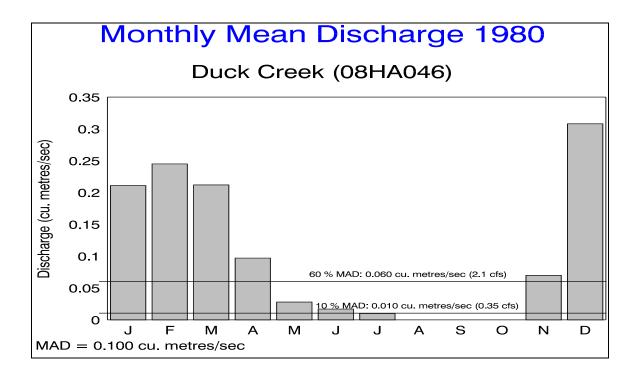
3.2.2 High Flow Period

Cusheon Creek at the outlet of Cusheon Lake (08HA026) is the only hydrometric station with flow records for the complete year. Duck Creek (08HA046) and Fulford Creek (08HA055) are seasonal WSC stations. Therefore the records for Cusheon Creek were used to estimate the quantity of water available during the high flow period.

The high flow period, for the purposes of developing storage and maintaining fish values, is those months where the flow is above 60% of the mean annual discharge (MAD). Based upon the flow records of Cusheon Creek the high flow period is the six months of November through April for all streams on Saltspring Island.

Figure 5 illustrates the mean monthly discharge of Cusheon Creek at the outlet to Cusheon Lake in relation to 10% and 60% of mean annual discharge (MAD).


The monthly flow into Cusheon Lake, may be estimated by correcting for the storage effects of Cusheon Lake. The mean monthly inflow to Cusheon Lake and the flow above 60% MAD available for storage is estimated in the table below:


Month	Mean Monthly Flow (m³/sec)	Flow in Excess of 60% MAD (0.069 m³/sec)	Available Monthly Storage Volume (dam ³)
Nov.	0.089	0.017	47
Dec.	0.282	0.210	564
Jan.	0.322	0.251	673
Feb.	0.371	0.299	802
Mar.	0.220	0.149	399
Apr.	0.096	0.024	65
	ilable Annual Sto - Apr) for Cush	eon Creek =	550 dam³/6.97 km² 3.66 dam³/ha 1.20 acft/acre)

Cusheon Lake Inflow

The water available for storage in the other identified watersheds, during the high flow period of November through April, is estimated using the above estimated unit runoff for Cusheon Creek of 3.66 dam³/ha (1.20 acft/acre). The following table summarizes the estimated surface water available for storage in the identified watershed areas:

Figure 5: Monthly Flows for Saltspring Island Streams

WATER ALLOCATION PLAN

Watershed	Ar	ea	Available Water November to April		
	acres	ha	acre-ft	dam³	
Duck Creek	2,047	828	2,456	3,030	
St Mary Lake	1,747	707	2,096	2,588	
McFadden Creek	750	304	900	1,113	
Cushion Creek	2,498	1,011	2,998	3,700	
Cusheon Lake	1,788	724	2,146	2,650	
Blackburn Lake	1,531	620	1,837	2,269	
Bullocks Creek	1,038	420	1,246	1,537	
Bullocks Lake	524	215	629	787	
Maxwell Creek	1,888	765	2,266	2,800	
Lake Maxwell	288	117	346	428	
Fulford Creek	5,665	2,294	6,798	8,396	
Ford Lake	1,927	780	2312	2,855	
Weston Creek	1,254	508	1,505	1,859	
Lake Weston	420	170	504	622	
Lake Stowell	961	389	1,153	1,424	

Water Available For Storage

3.2.3 Other Small Drainages

There are numerous smaller drainages around the coastline of Saltspring Island and associated islands that are not noted above. Information from reports on water licence applications and investigations by staff from Regional Water Management of the Ministry of Environment have indicated there is no surface flow during August and September in most years from springs or in streams associated with these smaller drainages. Also in extreme low flow years there is no surface flows observed or recorded for the months of June, July, August, September and October for these same basins.

WATER ALLOCATION PLAN

3.4 Lake Volumes

On Saltspring Island the majority of the fresh water supply during the summer low flow period is provided by lakes. At present, community water supplies are provided by St. Mary Lake, Lake Maxwell, Cusheon Lake and Lake Weston. Other lakes on Saltspring Island include Blackburn Lake, Bullocks Lake, Ford Lake and Lake Stowell. The supply is however limited from these lakes.

The following table summarizes the area and volumes of Saltspring Island lakes derived from bathymetric surveys by Water Management Branch and Fish and Wildlife Branch.

	Surface Area		Maximum Depth		Mean Depth		Volume	
	acres	ha	ft	m	ft	m	acft	\mathtt{dam}^{3}
St Mary Lake	447	181	54.1	16.4	28.4	8.7	12,700	15,700
Cusheon Lake	66.5	27.0	30.0	9.1	14.2	4.3	940	1,160
Blackburn Lake	11.1	4.5	16.4	5.0	9.8	3.0	110	135
Bullocks Lake	25.2	10.2	26.2	8.0	16.4	5.0	410	510
Lake Maxwell	69.0	28.0	63.3	19.2	25.4	7.7	1,750	2,160
Ford Lake	11.1	4.5	11.5	3.5	10.3	3.1	110	140
Lake Weston	45.7	18.5	40.0	12.2	19.3	5.9	880	1,090
Lake Stowell	13.8	5.6	24.6	7.5	15.3	4.7	210	260

Lake Area and Volume Summary

3.5 Evaporation

The net precipitation for Saltspring Island is estimated in the following table:

WATER ALLOCATION PLAN

	Saltspring Island 1951-80 Normalized Precipitation (mm)	Saanichton CDA 1960-90 Mean Evaporation (mm)	Net Precipitation (mm)
Jan	191.0	33.4	157.6
Feb	110.0	8.3	101.7
Mar	102.0	29.5	72.5
Apr	50.0	57.5	-7.5
Мау	37.0	86.9	-49.9
Jun	34.2	99.5	-65.3
Jul	23.5	114.0	-90.5
Aug	33.3	92.5	-59.2
Sep	44.1	61.1	-17.0
Oct	97.9	30.5	67.4
Nov	150.0	13.9	136.1
Dec	194.0	10.1	183.9
Total	1067.0	637.0	430.0

Net Precipitation

Therefore the net loss to evaporation during the period between April through September is 289 mm or 11.4". For the purposes of estimating evaporation losses a figure of 12 inches will be used.

4.0 INSTREAM FLOW REQUIREMENTS

Maintaining the natural stream environment and instream uses is of paramount importance for present and future generations. Water for the fisheries resource is a key factor in maintaining instream flow requirements for water quality and recreational, aesthetic and cultural values. The Ministry of Environment's Provincial policy is:

In situations where a water allocation decision will significantly impact instream uses of water, the comptroller or regional water manager may refuse the application or

include water licence conditions to protect the instream use.

Instream fisheries flow requirements are based on a provincially modified version of the Tennant (Montana) Method.

Flows	Description			
30-60% MAD	Excellent spawning/rearing			
20-30% MAD	Good spawning/rearing			
10-20% MAD	Fair spawning/rearing			
5-10% MAD	Poor spawning/rearing			
>5% MAD	Severely degraded spawning/rearing			

Instream Flow Requirements Modified Tennant (Montana) Method

In drainages where fish are present, the minimum flow required to sustain the fisheries resource for fair spawning and rearing habitat is 10% of the Mean Annual Discharge (MAD). Therefore, the Regional policies to implement the Provincial policy are:

The minimum flow required to sustain the fisheries resources for spawning and rearing is 10% of the Mean Annual Discharge (MAD); unless a more rigorous analysis indicates a different minimum flow requirement.

For streams where the natural mean monthly flow falls below 10% of the MAD, extractive licensed demands should only be allowed for the period of months when the mean monthly flow is above 60% of the MAD.

For streams where the mean 7-day average low flow falls below 10% of the MAD, extractive demands should only be allowed for the period of months when the mean monthly flow is above 60% of the MAD (Figure 1.3). Where the mean 7-day average low flow remains above 10%, then the 7-day low flow amount above 10% MAD is available.

Withdrawals from natural water bodies (lakes, ponds, swamps and marshes) supporting natural fisheries resources shall not reduce the shoal area more than 10%.

The shoal area is the area from the lake shore at average summer lake level to a 6 metre depth.

Fish have been identified in all significant main stream channels and lakes. In the north part of the island chum, cutthroat trout, and rainbow trout are the primary fish found in

streams. Duck Creek supports chum, cutthroat trout and rainbow trout. In the middle part of the island the primary fish found in streams are coho, chum and cutthroat trout (resident and sea run). Fish-bearing creeks include Cusheon Creek (coho, cutthroat), Ganges Creek (Salmon Enhancement Program project), Madrona Creek (sea run and resident cutthroat), Mansell Creek (cutthroat), Maxwell Creek (sea run cutthroat) and Sharpe Creek (chum, cutthroat). In the south part of the island coho and cutthroat trout are the most significant fish found in streams. Fulford Creek supports coho and cutthroat trout. In addition salmon enhancement projects supported by the federal government have been constructed. Weston Creek supports cutthroat trout while Lake Stowell has resident cutthroat.

Several Saltspring Island lakes flow into fish bearing streams. The flow from St.Mary Lake, Blackburn Lake, Cusheon Lake, Lake Maxwell, Ford Lake and Lake Weston flow into fish bearing streams. Significant water withdrawals from these lakes can reduce the low flows required to maintain the fisheries resource or extend the period of time of zero flow and thus hinder fish migration. When water withdrawals from a lake may affect the flow required to maintain the fisheries resource, mitigation (storage) will be required to support flow in the outflow stream.

Appendix D is a list of streams that support identified fisheries resources.

On streams that support fish migration, water diversion works need to be constructed so as to ensure fish passage.

To prevent fish and debris entering intakes, adequately designed and constructed fish screens are required on both lakes and streams that support fish.

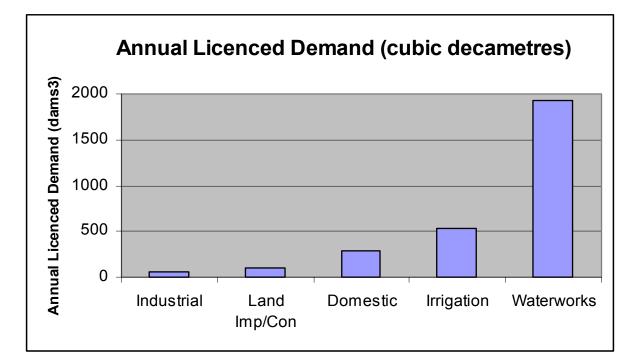
5.0 WATER DEMAND

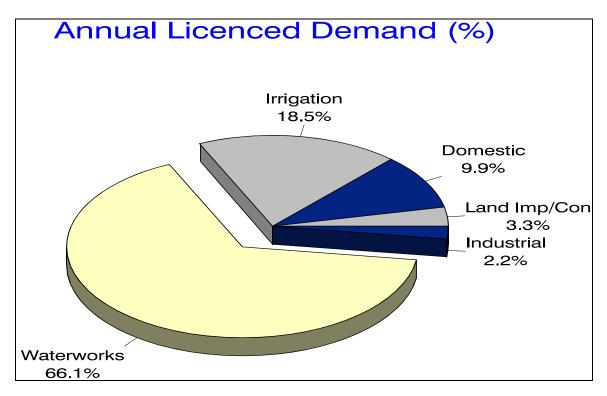
5.1 Licensed Demand

The total licensed demand within the Saltspring Island Water Allocation Plan area is summarized in the following table and illustrated in Figure 6.

WATER ALLOCATION PLAN

Purpose	Licensed Quantity	Equivalent Flow and Volu		
		m³/sec*	acft**	dam³
Domestic	174,100 gpd	0.009	234.2	288.8
Irrigation	437.1 acft	0.062	437.1	539.2
Industrial Enterprise	38,700 gpd	0.002	52.1	64.2
Conservation	58,557 gpd	0.003	78.8	97.1
Waterworks	1,564 acft	0.223	1,564.0	1,929.2
Total	2,366 acft	0.299	2,366.2	2,918.5
Storage	430.6 acft	0.061	430.6	531.1


Licensed Demand by Purpose


* Irrigation, Waterworks and Storage calculated for 100 day period. ** Domestic, Industrial and Conservation calculated for 365 day period.

The low flow licensed demand volume for each identified watershed is summarized in the following table and in Appendix E: Licensed Demand - June to October

Watershed	Water Demand June through October			
	acre-ft	dam³		
Duck Creek	607.0	746.4		
St Mary Lake	589.0	724.3		
McFadden Creek	12.1	14.9		
Cushion Creek	143.8	176.8		
Cusheon Lake	84.6	104.7		
Blackburn Lake	15.9	19.6		
Bullocks Creek	48.6	59.8		
Bullocks Lake	39.1	48.1		
Maxwell Creek	344.0	423.0		
Lake Maxwell	342.3	421.0		
Fulford Creek	159.1	195.6		
Ford Lake	0.4	0.5		
Weston Creek	77.7	95.6		
Lake Weston	76.6	94.2		
Lake Stowell	22.8	28.0		

Figure 6: Saltspring Island Annual Licensed Demand

Comparing the above demands with the Water Available for Storage table in Section 3.2.2 indicates that there is ample water available during the high flow period to supply low flow period demands, however storage is required. Also the above tables indicate that less than 20% of the existing licensed demand is supported by storage. All existing and proposed significant licenced demands should be supported with storage if water withdrawals are not to affect flows required to maintain the fisheries resource.

5.2 Lake Licenced Demand

Licenced surface water sources on Saltspring Island include about 94 springs, 53 creeks and brooks, 13 lakes, and a number of ponds and swamps. A 1979 report by Oliver T. Coomes states that within their North Saltspring Island study area, lakes accounted for 87%, creeks and brooks accounted for approximately 4% and springs and ponds accounted for 9% of the total licensed withdrawal.

Small lakes provide most of the water demand on Saltspring These lakes include St. Mary Lake, Cusheon Lake, Lake Island. Maxwell, Blackburn Lake, Bullocks Lake, Ford Lake, Lake Weston and Lake Stowell. Their combined surface area is 2.65 km² representing 1.4% of the island's surface area.

St. Mary Lake 5.2.1

St. Mary Lake is the largest lake on the island and is the most important source of water supply for municipal waterworks, resorts, private residences and some irrigation. St. Mary Lake although the largest lake on Saltspring Island has a relatively small surface area with a small watershed.

St. Mary Lake flows into Duck Creek. The flow in Duck Creek, as noted in Section 4.0 supports migrating chum, cutthroat trout and rainbow trout. Existing and proposed licenced withdrawals from St. Mary Lake increases the period of zero flow and adversely affects the migration and survival of fish. Figure 5 illustrates the estimated mean monthly flows for Duck Creek in relation to instream fisheries flow maintenance requirement of 10% mean annual discharge (MAD) and 60% of MAD flow level above which water may be withdrawn for storage.

The maximum recorded water level was 41.415 meters on February 9, 1992. The minimum recorded water level was 40.035 meters on October 25, 1987. The normal annual lake water level

WATER ALLOCATION PLAN

fluctuates between 40.00 to 41.00 m GSC (see Figure 7). There is no control on the outflow from St Mary Lake at this time. A storage structure should be required to control water levels within this lake fluctuation range to mitigate the adverse affects on the fisheries resources of existing and future licenced water withdrawals. This natural storage range may provide 1813 dam³ (1470 acft) of stored water for fish mitigation and would maintain lake levels no higher than the present normal flood levels. This storage range should not adversely affect private land owners not already affected by flooding of low lying lands.

See the report prepared by B. Blecic, May 1988 (water licence files 1000802 and 1000827) for further details.

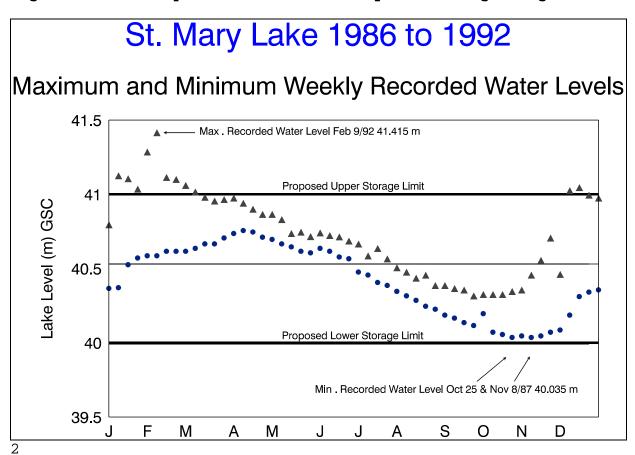


Figure 7: St Mary Lake Levels and Proposed Storage Range

WATER ALLOCATION PLAN

5.2.2 Lake Maxwell

Lake Maxwell has been a source of licenced water supply for waterworks purpose since 1939. An Order-in-Council Reserve exists on Maxwell Lake that reserves all the unrecorded water in the lake for waterworks purpose. A single water licence from the lake for 26 acre-feet (acft) for irrigation purpose is subject to the water reserve and may be cancelled when the water is required for waterworks purposes.

The natural inflow into Lake Maxwell reservoir may be increased by up to 200 acft per year by a licenced diversion of water from Rippon Creek during the period of November 1 to March 31 to supplement water supply in a dry year.

B. Blecic, on Water Licence File 1001170, calculated the annual inflow into Lake Maxwell, including the licenced diversion from Rippon Creek, as follows:

Return Interval	Infl	.OW	Unit Runoff		
	acft	dam³	acft/ac	dam³/ha	
Average Year	837	1032	1.82	5.55	
1 in 10 dry year	519	640	1.13	3.44	
1 in 20 dry year	443	546	0.96	2.93	

Inflow to Lake Maxwell

The existing potential storage levels are limited by the North Salt Spring Waterworks District's pipeline and intake level at elevation 311.7 metres (1022.5 ft). This elevation is 1.3 metres (4.2 ft) below the natural channel outlet control. Therefore the total volume of water presently available is 340 dam³ (276 acft). A proposed dam (1993) will raise the storage water level above the natural channel outlet control by 1.0 metre (3.3 ft) to invert of spillway elevation 314.0 metres (1030.0 ft) and could provide a further water volume of 291 dam³ (236 acft). Thus the total range in water levels could be 2.3 metres (7.5 ft) and the total volume of water that may be available is estimated as 630 dam³ (510 acft).

WATER ALLOCATION PLAN

5.2.3 Cusheon Lake

Cusheon Lake is a water supply for community waterworks and individual domestic supply to a number of lakeshore residences. There is no control on the outflow from Cusheon Lake at this time. Further significant withdrawals from the lake may extend the period of zero flow in Cusheon Creek and adversely affect the water available to support fish habitat and migration.

5.2.4 Other Lakes

Blackburn Lake, Bullocks Lake, Ford Lake, Lake Weston and Lake Stowell provide licensed water supply for minor domestic, irrigation and industrial. Lake Weston also supplies water to a small community waterworks. Any significant withdrawals from these lakes may adversely affect the water available to support fish habitat and migration.

5.3 Projected Demand

As of January 1, 1993, 38 water licence applications, dating back five years, are pending. The following table and Appendix F provide a summary of pending applications by purpose:

Purpose	Application Quantity	Equivalent Flow and Volume			
		m³/sec*	acft ^{**}	dam³	
Domestic	12,000 gpd	0.001	16	13	
Irrigation	118 acft	0.017	118	95.7	
Industrial	5,800 gpd	0.000	7.8	6.3	
Land Imp. & Cons.	4,800 gpd	0.000	6.5	5.3	
Waterworks	1,260 acft	0.180	1,260	1,026	
Total	1,410 acft	0.198	1,410	1,150	
Storage	684 acft	0.098	684	555	

Application Demand by Purpose

* Irrigation, Waterworks and Storage calculated for 100 day period.

** Domestic, Industrial and Conservation calculated for 365 day period.

The above table indicates small increases in domestic, industrial and conservation water demands while a modest increase in irrigation demand is indicated. The largest increase in demand will be for community waterworks where the water demand of the applications almost equals the existing licensed demand. Also the above table indicates that only a little less than 50% of the applications are proposed to be supported by storage. All existing and proposed significant licenced demands should be supported with storage if water withdrawals are not to affect flows required to maintain the fisheries resource.

5.4 Irrigation Demand

The soil type, crop rooting depth and climatic characteristics determine the water requirements for irrigation. According to B.C. Ministry of Agriculture, Fisheries and Food the soils on Saltspring Island are generally silts to loams with an available water storage capacity (AWSC) of approximately 2" per foot of soil. The maximum soil water deficit (MSWD) is closely comparable to the Saanich Peninsula (Saanichton). The crops most commonly grown are shallow soil crops such as hay and those found in small domestic gardens.

For the purpose of assessing the irrigation requirement on Saltspring Island a duty of 3.1 dam³ of water per hectare (1.0 acft of water per acre) of land to be irrigated has been recommended by the B.C. Ministry of Agriculture, Fisheries and Food (per. comm. T. Van der Gulik 1993). The recommended maximum rate of water withdrawal is 0.6 l/sec per hectare (3.3 Igpm per acre) of land to be irrigated.

In cases where further soil and crop demands are obtained from the applicant more specific water requirements may be determined.

6.0 CONCLUSIONS

- 1. The population of Saltspring Island has increased from 2,238 people to 8,017 people from 1966 to 1991; an increase of 258%. Indications are that existing community waterworks will need to expand and develop water supplies to service this rapid population growth.
- There is zero flow or flows are below 20% of the mean annual 2. discharge in all streams on Saltspring Island during the June through October low flow period.

- 3. There is fish and fish habitat in all identified significant watersheds on Saltspring Island.
- 4. Existing flows are limiting to fish migration, rearing and habitat maintenance.
- 5. Existing and projected water licence demands may affect flows required to maintain the fisheries resources unless supporting storage is developed.
- 6. There is adequate water available during the high flow period (November through April) to support the low flow period (June through October) demands for water without adversely affecting instream fish flow requirements. However storage is required.
- Water available for storage during the high flow period (November through April) is estimate as 3.66 dam³/ha (1.20 acft/acre).
- 8. Storage is not adequate to support existing and projected water demands. All existing and proposed significant licenced demands should be supported with storage if water withdrawals are not to affect flows required to maintain the fisheries resource.
- 9. Community waterworks demands on Saltspring Island are expected to increase as population rises; particularly in Ganges, Fulford and Vesuvius. To supply future waterworks demands from existing lakes and not to affect the flows required to maintain the fisheries resource, it will be necessary to develop storage to support both existing and projected demands.

7.0 RECOMMENDATIONS

It is recommended that no further significant allocation of water be made unless all existing and proposed significant licenced demands are to be supported with storage. On minor sources of supply, where water withdrawals will not affect flows required to maintain the fisheries resource, supporting storage may not be required.

Domestic demands from the identified lakes is not significant and will not require supporting storage. Also water applications involving non-consumptive or non-extractive uses such as fish fences, land improvement and conservation are not significant and will not require supporting storage.

WATER ALLOCATION PLAN

It is recommended that all streams within the Saltspring Island Water Allocation Plan area should be noted as "Fully recorded for All Purposes Unless Storage is Provided" as there is no water available during the summer low flow period.

It is recommended that fish and debris screens be required on all intake or diversion works to prevent fish and debris from entering the works.

It is recommended that fish passage be required, for both juvenile and adult fish, at all dams and diversion works in fish bearing streams.

7.1 Domestic

It is recommended that a 2270 l/day (500 gpd) water licence should be issued for each single rural residential water application demand.

It is recommended that the water supply should be restricted to uses associated with the dwelling(s) located approximately on the plan attached to the water licence.

It is recommended that a domestic water licences not be provided to subdivision and development approving authorities as a proof of an "adequate potable water supply" for subdivision approval purposes.

It is recommended that to ensure an adequate water supply, applicants should be prepared to develop storage or use lake or swamp storage, for the average daily demand of 1140 l/day (250 gpd) for a five month period (150 days), 170 m³ (6,000 ft³ or 0.14 acft). This requires a reservoir or dugout approximately 6 m (20 ft) wide by 9 m (30 ft) long, with an average depth of 3 m (11 ft) and with a 0.3 m (1.0 ft) allowance for evaporation loss.

7.2 Irrigation

It is recommended that a duty of 3.1 dam³ of water per hectare (1.0 acft of water per acre) of land be used for irrigation requirements.

It is recommended that a maximum rate of withdrawal of 0.6 l/sec per hectare (3.3 Igpm per acre) of land to be irrigated be used for all irrigated licenses.

It is recommended that all irrigation water demands must be supported by storage. Off stream dugouts will be encouraged for small storage reservoirs of 12 dam³ (10 acft) or less. However storage developed on existing lakes, ponds and marshes may be used where there are no fish values or where fish values can be preserved.

It is recommended that the storage required to support irrigation demands is 3.1 dam³ per hectare (1.0 acft per acre) of irrigation water demand, plus an additional 0.3 m (1.0 ft) of water allowance over the surface area of the body of water for evaporation and other losses from the storage reservoir.

7.3 Industrial

The industrial water licenses and water applications on Saltspring Island are uses associated with small resort (bed and breakfast) establishments, fish farming and stock watering.

It is recommended that industrial demands related to commercial and resort development should be handled similar to multiple domestic demands with the same requirements.

It is recommended that cattle or livestock requiring more 450 l/day (100 Iqpd) are to be considered an Industrial (Agricultural) demand. Cattle or livestock requiring 450 l/day (100 Iqpd) or less will be considered a Domestic (livestock) demand. Estimated livestock demands are:

	Water Requirements			
Livestock				
	l/day	Igpd		
cattle (beef) per animal	45	10		
cattle (dairy) per animal	132	29		
chickens per 100 animals	27	6		
turkeys per 100 animals	55	12		

Recommended Livestock Water Requirements

It is recommended that fish farming water requirements be determined through consultation with Regional Fisheries Management staff.

7.4 Land Improvement and Conservation

It is recommended that water applications involving nonconsumptive or non-extractive uses such as fish fences, land improvement channel development and conservation channel development are not significant and will not require supporting storage.

It is recommended that land improvement dugouts, conservation dugouts and lake and pond dam developments for conservation should be handled similarly to other storage developments (see Section 7.7) and through consultation with Regional Fisheries Management staff.

7.5 Waterworks

It is recommended that applicants for community water supply demands be require to assess the proposed demand for a ten year projected demand period and provide evidence that the demand is not excessive in comparison with adjoining community demands; water conservation is being promoted (ie. residential meters, pricing practices, education); adequate system balancing is available for peek hour demands (ie. volume difference between maximum hours and maximum day demands) and, for Water Utilities, evidence that the appropriate requirements for a CPCN have been met and a CPCN will be obtained. Licenced allocations should be limited to a 10 year projected demand except where the applicant can provide satisfactory evidence that a longer projection period is required (ie. because the cost of construction of works must be amortised over a longer period)

It is recommended that the licensee be required to meter or measure and record the water from the source stream.

It is recommended that the licensee be required to treat the water supply in accordance with Ministry of Health requirements.

It is recommended that all community water demands must be supported by storage. Supporting storage is required on all lake sources determined to be suitable for community water demands.

It is recommended that all the unrecorded water on St Mary Lake be reserve, under Section 44 of the Water Act, for community water supply for the rapidly expanding population in the north part of the island.

SALTSPRING ISLAND

WATER ALLOCATION PLAN

7.6 Significant Water Supply Sources

7.6.1 St. Mary Lake

It is recommended that all the unrecorded water on St Mary Lake be reserve, under Section 44 of the Water Act, for community water supply for the rapidly expanding population in the north part of the island. The low flow period should also be noted as fully recorded for all purposes except small domestic unless storage is provided.

It is recommended that storage for community waterworks demands be developed within the natural normal low elevation of 40.00 m and natural normal high elevation of 41.00 m GSC.

7.6.2 Lake Maxwell

It is recommended that the OIC reserve on Lake Maxwell, that reserves all the unrecorded water on the lake for community water supply, be retained. The low flow period should also be noted as fully recorded for all purposes except small domestic unless storage is provided.

7.6.3 Cusheon Lake

It is recommended that Cusheon Lake should be noted as fully recorded except for small domestic. Further licences, other than small domestic, should be supported by storage, however storage potential is limited as raising water may affect existing development around the lake.

7.6.4 Lake Weston

It is recommended that Lake Weston should be noted as fully recorded for all purposes except small domestic unless storage is provided.

7.7 Storage

Large storage developments (ie. BC Hydro, pulp & paper or metal processing, city waterworks) will require more specific supply-demand and environmental impact reports.

It is recommended that the applicant be required to submit adequately completed report form entitled "Dam and Reservoir

SALTSPRING ISLAND

WATER ALLOCATION PLAN

Information Required in Support of a Water Licence Application for Storage Purpose (Schedule 2)" before the application will be considered.

It is recommended that fish passage be required, for both juvenile and adult fish, at all dams in fish bearing streams. Design of storage dams must consider fish ladders and provide adequate flow release and to maintain fish passage where required.

It is recommended that the applicant must provide proof of a written agreement, right-of-way or easement for works or flooding affecting other lands

It is recommended that the total storage (live & dead) will be licenced.

It is recommended that an additional 0.3 m (1.0 ft) of depth over the surface area of the storage reservoir or natural water body must be allowed for evaporation and other losses when considering supporting storage for licensed demands.

It is recommended that the design plans must be submitted and accepted in writing before construction commences on any proposed dam over 3 m (10 ft) in height or on storage of 12 dam³ (10 acft) or more.

7.8 Allocation Plan Revision

The Saltspring Island Water Allocation Plan should be reviewed and updated on or before December 1999 (5 years).

APPENDIX A

CANADIAN CLIMATIC NORMALS

1951 -1980

TEMPERATURE and PRECIPITATION

for

SALTSPRING ISLAND

APPENDIX B

STREAMFLOW RECORDS

APPENDIX C

LAKE WATER LEVEL RECORDS

APPENDIX D

STREAMS THAT SUPPORT FISH RESOURCES

APPENDIX E

LICENSED WATER DEMAND

The summary of existing licenses by source provided the basis for converting demand volumes to equivalent litres per second during the low flow period from May to November. This was divided into two segments. The first represents the maximum demand during the 100 day irrigation period, assumed to fall between May and September. The second is the remaining low flow period estimate. This includes the maximum demand during October, November and the period between May and September not affected by irrigation demands (114 days).

APPENDIX F

PENDING WATER LICENCE APPLICATIONS

APPENDIX G

REFERENCES

APPENDIX A

CANADIAN CLIMATIC NORMALS

1951 -1980

TEMPERATURE and PRECIPITATION

for

SALTSPRING ISLAND

			Température Maximale Quotidienne Température Minimale Quotidienne	Finderstate Guotaenne Étant Tyna de la Tempinium Custeren	Température Maximule Extreme Années de Reières Température Minimale Extreme	Chutee de Pluie Chutee de Pluie Chutee de Narge	frant Tune des Précisiones Traise	Chute de Pule Record en 24 heures Chute de Pule Record en 24 heures Armées de Reiéves Armées de Reiéves Précipiteir Récord en 24 heures	Journ de Phile Journ de Neige Journ de Neige		Température Maximale Quotidienne Température Minimale Quotidienne Température Quotidianne	Écarl Type de la Température Quotidienne	Température Maximale Extrême Années de Reièves Température Minimale Extrême Années de Reièves	Churse de Pruie Churse de Neige Précipitations Totales	Écart Type des Précipitations Totales	Chute de Pluie Record en 24 heures Années de Reièves Chute de Neige Record en 24 heures Années de Reièves Précipitation Record en 24 heures Années de Reièves	Jours de Pluie Jours de Neige Jours de Précipitation
			n n e	4 EV		~~~~	•	ı	N N N		-	4		10 C 10	4		60 eo 60
	YEAR		- 13.7 6.8	. 0	3 9.3 -15.0	990.2 75.0	148.8	83.2 57.2 83.2	1 8 9 1 8 9		14.0 8.0 10.1	0.5	33.9 -15.6	870.5 34.8 906.8	143.8	87.1 33.0 87.1	142 8 142
DE			. 10 F 4	1.3	14.4 07 14.4	6.62	51.9	79.8 77.0 70.8 8.67	e a ⊿ œ		5.2.4 7.0	1.5	13.0 14.4 19.4	153.6 11.2 164.6	48.6	56.6 19 33.0 19 19 19 19	₽ ~ ₽
BRITISH COLUMBIA/COLOMBIE-BRITANNIQUE			0.00	1 2	18.9 68 67 67	148.4 3.2 149.8	69.3	85.1 73 36.8 74 85.1 73	5. 5		8-0 9-1 6-1 6-1	1.8	25.8 15.8 2.5 8	130.6 1.6 132.5	55.5	87.1 8.1 8.1 8.1 8	8 - 7
BRIT/		5		:	5 8688	97.9 0.0	62.9	8.52 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<u> </u>		14.0 6.6 4.01	1.2	23.3 19 2 2 3.3	83.0 0.0 0.0	43.0	52.6 18 19 18:5 18:6	<u>ត</u> o ត
IBIE-	SEP		101 101	12	15898	1,0 1 1.01	30.3	50.9 59.9 59.9	80 B		19.2 9.7 14.5	1.3	28.9 0.0 19.00	804 805 805	26.5	26.7 19 19.0 19.7 19.7	0 00
DLON	AOÚT		21.9 11.7	.1.3	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	32.4	78.5 72.00 78.5 78.5	NON		22.3 12.0 17.2	1.2	33.9 8.1 19.2	28:1 28:1 28:1	19.8	20.7 19 20.7 19.7 19.7	~ 0 ~
IA/CC	105		233 11.7	5.1	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	500 100 100 100 100 100 100 100 100 100	17.8	60.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	6 00		228 17.3	1.0	32.2 6.7	18.7 0.0 16.7	14.6	17.3 18 0.0 17.3 18	10010
-UMB	NUN		10.3 8.8 8.4	15	35.0 87 0.6 87	107 207	19.8	40.1 74 74 74 74 74			19.8 10.3 16.0	12	32 2 5 6 19 6	31.5 0.0 31.5	19.3	2000 00 200 2000 00 200 2000	808
H COI	MAY		16.8 7.2 12.0	12	31.7 67 67 67	36.8 0.0 8.8	17.1	46.5 74 74 74 74 74			172 77 821	0.8	27.8 20.0 20.0	22 27 20 27	13.7	8 88888888888888888888888888888888888	0000
RITIS	APR AVR		12.9 4.2 8.6	0 .0	27.8 67 5.6 67	40.4 0.3 49.7	26.2	50.8 2.5 2.5 2.5 2.5 2.5	ā. ā		13.1 8.8 8.0	0.7	23.3 19 17 19	84 61 0 84 61 0 61	26.8	រត្ត ខ្លួន ខ្លួន ខ្លួន	2°2
Ø	MAR MAR		8 0 5 8 0 5	12	20.6 67.6 67.6	848 7.7 01.0	42.5	6.1 8.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	4 ~ 6		25 20 20	0.9	17.2 18 18:1 18:1	78.8 3.0 82.1	47.1	37.3 19 27.9 37.3 19	ស៊ – ស៊
	FEB V		7.9 1.6 8.8	1.6	17.2 67 -16.0 67	90.9 9.7 109.6	45.7	52.8 57.2 57.2 57.2	4 – 5		19 19 19 19	1.1	16.7 19 18	83.7 4.6 100.0	45.9	47.0 19 19 19 19	4 - 5
	NAU		0 7 9 7 0 2	1.7	185 885 88	159.0 31.8 190.8	85.2	83.2 73 74 83.2 83.2 83.2	t 4 6		5.8 3.3 3.3	1.7	15.0 12.8 18	136.6 14.2 151.4	51.7	80.3 31.8 80.3 19.3	¢∞⊕
		BALT BPRING ISLAND - GANGES 48° 51°N 123° 30°W 73 m	Daily Maximum Temperature Daily Minimum Temperature Daily Temperature	Standard Deviation, Daily Temperature	Extreme Maximum Temperature Years of Record Extreme Minimum Temperature Years of Record	Rainfail Snowfail Total Precipitation	Standard Deviation, Total Precipitation	Greatest Rainfail in 24 hours Years of Record Greatest Snowfail in 24 hours Years of Record Greatest Precipitation in 24 hours Years of Record	Deys with Rain Deys with Snow Deys with Precipitation	GALT 3PRING I VEQUVIU g 48°53'N 123°34'W 7 m	Daily Maximum Temperature Daily Minimum Temperature Daily Temperature	Standerd Deviation, Daily Temperature	Extreme Maximum Temperature Years of Record Extreme Minimum Temperature Years of Record	Rainfall Snowiat Total Precipitation	Standard Devlation, Total Precipitation	Greatest Rainfall in 24 hours Years of Record Greatest Snowfall in 24 hours Years of Record Greatest Precipitation in 24 hours Years of Record	Deys with Risin Deys with Snow Days with Precipitation

APPENDIX B

7

STREAMFLOW RECORDS

Victoria Water District Measured-Estimated Flows

pr. 14, 1992

Page 1

ource	Location	File No	Watershed	Survey [)ate	Time	Method	Party	Mean	6.H.(m)	Flow	Unit
uck Creek	Tributary to Ocean	 0323703	4-12-10	1975 05	21		ES	DW			1/2 .	cfs
uck Creek			4-12-10	1977 û6	Ŭ2		-ES	GF			1/3	cfs
uck Creek	Tributary to Ocean	0364144	4-12-10	1979 02	27		ES	BB			13.00	cis
uck Creek	Under Tripp Road		4-12-10	1985 07	23		ES	WVB			0.0001	n3/s
luck Creek	Under Tripp Road		4-12-10	1986 09	Ù9		ES	WVB		999999	0.0003	m3/s
uck Creek	Tripp Rd. Bridge		4-12-10	1988 03	22	0300	CM	BB BC WVB	0.288	l í	0.0573	m3/s
loskin Brook	Tributary to McFadden Creek	0290784	4-12-10	1970 06	12			PGÖ			Seasonal	
eid Creek	Tributary to Fulford Creek	0317703	4-12-10	1973 11	13		ES	WBC, PGO			1/4	cfs
eid Creek	Tributary to Fulford Creek	0317704	4-12-10	1973 11	13		ES	WBC, PGO			1/4	cfs
eid Creek	Tributary to Fulford Creek		4-12-10	1979 02	22		ES	BB			15	gpm
eid Creek	10 feet above bridge		4-12-10	1984 03	20		ES	WVB		99999 9	0.0991	n3∕s
eid Creek	10 feet below foot bridge		4-12-10	1784 03			ES	₩VB		99999 9	0.0878	m3/s
leisner Brook	Trib. to McFadden Creek	0342944	4-12-10	1979 03			ES	BB			13,000	gpd

·`)

j

Victoria Water District Measured-Estimated Flows ...r. 14, 1992

£

Source	Location	File ^{No}	Watershed	Survey Date Tie	ne Method	Party	Mean	G.H.(m)	Flow		Unit
Acland Spring	Flows to ocean	0341236	4-12-20	1979 02 27	E5	88			5ú		gpn
Bullock Creek	At Zoltag Property		4-12-20	1985 11 07	-	WVB		999999		Flow	
Burgoyne Creek	Tributary to ocean	0328710	4-12-20	1975 06 27	ES	DW			1/4		cfs 🛛
Cusheon Creek	Trib. to Cusheon Lake	0300256	4-12-20	1971 04 30	ES	WDL			2		cts 🖬
Madrona Creek	Upper Ganges Road		4-12-20	1985 08 21	E5	WVB		779777		0.0003	
Madrona Creek	Upper Ganges Road		4-12-20	1985 10 17	E5	WVB		999999		0.0007	
Maxwell Creek	100' Upstream of Mouth		4-12-20	1985 07 24	ES	WVB		999999		0.0001	m3/s
McAfee Creek	Tributary to Sharp Creek	0323351	4-12-20	1974 10 30	E5	DW			12,00	00	gpd
McAfee Greek	N 48 51 W 123 32	0330359	4-12-20	-1976-09-15	ES	-66			7 1 8	Fod X-	-gpin -
McAfee Creek	N 48 51 W 123 32	0330683	4-12-20	1976 09 15	BS	GF			9		gpm 🚺
McAfee Creek	N 48 51 W 123 32		4-12-20	1977 08 11	B 5	IGL		999999		0.0005	m3/s ⁸⁸
McAfee Creek	N 48 51 W 123 32		4-12-20	1977 08 18	BS	IGL		99999 9		0.0006	m3/s
McAfee Creek	N 48 51 W 123 32		4-12-20	1977 08 23	BS	IGL	-	777777		0.0005	225
McAfee Creek	N 48 51 W 123 32		4-12-20	1977 08 25	PF	IGL		999999		0.0005	
McAfee Creek	N 43 51 W 123 32		4-12-20	1977 09 02	BS	IGL		999999		0.0005	
McAfee Creek	N 48 51 W 123 32		4-12-20	1977 09 12	BS	IM		999999		0.0005	
McAfee Creek	N 48 51 W 123 32		4-12-20	1977 09 15	BS	WR		599999			m3/s
McAfee Creek	N 48 51 W 123 32		4-12-20	1977 09 15	BS	WR		999999	Nu	Flow	
McAfee Creek	N 48 51 W 123 32		4-12-20	1977 09 20	BS	JD		999999	No	Flow	
Madfee Creek	N 48 51 W 123 32		4-12-20	1977 09 27	BS	JD				Flow	
rpe Creek	at Canal Road		4-12-20	1977 08 11	CM	WR		777777	No	Flow	20
Sharpe Creek	at Canal Road		4-12-20	1977 08 18	ES	WR		0.189		0.0005	m3/s_
Sharpe Creek	at Canal Road		4-12-20	1977 08 23	ES	WR		0.198		0.0005	·n3/s
Sharpe Creek	at Canal Road		4-12-20	1977 08 25	PF	WR		0.033		0.0010	m3/s
Sharpe Creek	at Canal Road		4-12-20	1977 09 02	BS	IM		0.204		0.0003	m3/s
Sharpe Creek	at Canal Road		4-12-20	1977 09 12	BS	IM		0.198		0.0001	m3/s m
Sharpe Creek	at Canal Road		4-12-20	1977 09 15	BS	IM		0.201		0.0001	m3/s
Sharpe Creek	at Canal Road		4-12-20	1977 09 20	BS	IM		0.207		0.0003	
Sharpe Creek	at Canal Road		4-12-20	1977 09 27	BS	IM		0.204		0.0003	m3/s

MN ANN	W	Σ	Σ	Σ	Z			MIN ANN	×	Σ	×	Σ	Σ	Σ	X	Σ	Σ	X	X
DEC	N	X	z	Σ	W			DEC	W	M	W	Σ	×	W	¥	Σ	Σ	Z	Σ
NON	Σ	Σ	≥	≥	¥			NON	Z	×	Z	×	X	Z	W	Σ	Z	W	Σ
OCT	¥	Σ	Z	W	Μ			OCI	Z	ž	Σ	≥	Z	X	N.	Σ	Σ	W	W
1) SEPT	Δ	0.000	0.000	0.000	0.000		 (SEPT	0.021	0.029	0.014	0.006	0.008	0.017	0.016	0.024	0.036	0.015	0.019
per second AUG	0.000	0.000	0.000	0.000	0.000		 per secon	AUG	0.011	0.029	0.013	0.006	0.007	0.014	0.017	0.009	0.022	0.015	0.014
NTHLY MEAN DISCHARGE (cubic metres per second) APR MAY JUN JULY AUG	0.010	0.000	0.001	0.000	0.003	 	 due metres	2012	0.023	0.037	0.017	0.014	0.011	0.016	0.025	0.023	0.024	0.023	0.021
<u>IARGE (cu</u> JUN	0.017	0.018	0.018	0.000	0.013		 lARGE (cl	NOP	0.029	0.096	0.048	0.027	0.021	0.031	0.035	0.115	0.037	0.021	0.046
-AN DISCH	0.028	0.067	0.073	0.067	0.059	 	 NTHLY MEAN DISCHARGE (cubic metres per second)	MAY	0.057	0.277	0.084	0.149	0.05	0.101	0.077	0.097	0.1	0.072	0.106
NIFLY M	0.097	0.051	0.147	0.030	0.081			APR	0.179	0.192	0.229	0.248	0.127	0.516	0.325	0.177	0.634	0.125	0.275
MAR MC	0.212	M	W	¥	0.212		MC	200	L M	W	W	M	W	W	W	W N	W	N .	ž
128	0.245	W	W	M	0.245				M	M	W	W	W	W	W	M	W	W	Ŵ
Duck Creek	0.211	M	W	W	0.211	 	 Fulford Creek	JAN	N	M	W	M	W	W	W	M	M	M	M
YEAR	1980	1950	1991	1992				YEAR	1363	1936	5351	1000	2003	1963 1963	1936	1090	1991	2363	
STATION	08HA046	08HAQ46	081-14046	36HADAG	MEAN			STATION.	08HA055	269 EA(255	00):140555	2694A0555	DEH LACKS	CONTROL	96)-141060	550755(96	03140555	3334666	

C ABRÍ A KINI		×	0.004 M			.430 0.093		0.554 0.158	
	W							0.198 0	
001	ŞΣ	N						0.001	
	0.000			0.001	0.001	0.000	0.001	000.0	0000
- 22	0.000			0.000	0.000	0.000	0.001	0000	0000
	0.00			0.000	0.001	0.000		0.003	
	0.002		Σ	0.002	0.003			0.019	0000
APP NAV	0.026	0.016	Σ	0.010	0.033	0.015	0.028	0.048	0.019
ADD 400	0.084	0.098	Σ	0.052	0.083	0.048	0.115	0.163	0.066
				g	51	38	8	52	6

CusheonCreek

MN ANN	X	Ŵ	Σ	0.094	0.078	0.093	0.175	0.158	0.141	Σ	X	0.061	0.120	0.087	0.104	0.091	0.146	0.144	0.125	0.116	100%
DEC N	W	M	0.004	0.441	0.026	0.430	0.587	0.554	0.263	Σ	0.482	0.039	0.147	0.103	0.329	0.051	0.590	0.189	0.102	0.271	235%
NON	M	M	0.002	0.051	0.001	0.001	0.111	0.198	0.001	M	0.237	0.001	0.020	0.000	0.154	0.001	0.166	0.081	0.030	0.066	57%
OCT	¥	M	0.001	0.001	0.000	0.000	0.000	0.001	0.001	Σ	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.001	0.000	0.000	%0
SEPT	0.000	0.000	0.000	0.001	0.001	0.000	0.001	0.000	0.000	W	0.000	0.000	0.000	0.000	0.001	0.000	0.001	0.003	0.000	0.000	%0
AUG 8	0.000	0.000	W	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.001	0.002	0.001	0.000	%0
JULY ,	0.000	0.001	W	0.000	0.001	0.000	0.008	0.003	0.001	0.001	0.006	0.000	0.001	0.001	0.003	0.001	0.001	0.001	0.002	0.002	1%
JUN .	0.002	0.005	M	0.002	0.003	0.001	0.011	0.019	0.002	0.002	0.048	0.010	0.014	0.002	0.011	0.005	0.035	0.008	0.004	0.010	%6
MAY	0.026	0.016	Μ	0.010	0.033	0.015	0.028	0.048	0.019	0.016	0.121	0.043	0.071	0.016	0.040	0.021	0.042	0.045	0.034	0.036	31%
APR	0.084	0.098	W	0.052	0.083	0.048	0.115	0.163	0.066	0.101	0.094	0.113	0.107	0.050	0.169	0.123	0.061	0.193	0.035	0.098	84%
MAR	N	W	M	0.409	0.151	0.238	0.329	0.152	0.202	0.316	0.283	0.142	0.248	0.261	0.147	0.335	0.162	0.269	0.117	0.235	204%
FEB	M	W	Σ	0.080	0.275	0.366	0.464	0.553	0.462	0.588	M	0.245	0.450	0.318	0.080	0.210	0.440	0.553	0.637	0.381	330%
JAN	Z	W	¥	0.066	0.376	0.034	0.449	0.238	0.687	0.358	M	0.156	0.402	0.302	0.303	0.352	0.273	0.417	0.557	0.331	287%
YEAR	1970	1971	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1968	1989	1890	1991	1992		
STATION N	08HA026	08HA026	D8HAD26	D8HA026	D8HA026	08HA026	08HA026	08HA026	08HA026	08H4026	DBHA026	08HA026	BHA026	38HA026	08HA026	06HA026	D8HA026	08HA026	08HA026	MEAN	% of MAD

5	

語などのないない

. 14, 1992

and the second secon

į

2

)

Victoria Water District Measured-Estimated Flows

13

Page 1

ILCE	Location	File No Waters	red Survey Date Tim	ne Method	Party	Mean G.H.(m)	Flow	Unit	
na Spring	Tributary to Garner Creek	0329343 4-12-30	0 1976 04 14	ES	GF		2 to 3	gpm	
ald Creek	Trib.to Fulford Harbour, ocean	0366173 4-12-30	0 1980 10 06	ES-	BB		5.i ¹	gpm	
ler Creek	Tributary to Fulford Creek	0285255 4-12-30) 1969 04 02	ES	WDL		10	ofe	
er Creek	Trib. to Fulford Creek	0285926 4-12-30) 1969 08 12	ES	WDL		4	cfs "	₩.++ `
ler Creek	Culvert -Fulford Ganges Rd.	4-12-30) 1985 07 25		WVB	999999	0.0002		
ton Creek	At the Mouth	0290081 4-12-30	1969 09 05		WDL		No Flow	• •	
le Creek	Tributary to sea	0317112 4-12-30) 1973 09 18	ES	WBC		3,000	gpd	•
le Creek	Tributary to Fulford Harbour	0322479 4-12-30	1974 05 17	£5	DW		1		
le Creek	Tributary to Fulford Harbour	0323350 4-12-30	1	ES	DW	•	40,000	gpd	
ncer Spring	Trib. to Weston Creek`	0285910 4-12-30			WDL		3	gpa	
ton Creek	Trib. to Weston Lake	0285911 4-12-30			WDL	1	dry/symmer		·
r.	a second								
								;	
								•	

APPENDIX C

LAKE WATER LEVEL RECORDS

KE WEAR GANGES - STATION ND. DAHAOJA CUSHEDN LA

MONTHLY AND ANNUAL MEAN WATER LEVELS IN METRES FOR THE PERIOD OF RECORD

YEAR	JAN		MAR	APR	MAÝ	JUN	JUL	AUG	.5 E P	DCT	NOV	DEC	MEAN .	Y L AF
				•	•				0.729	0.898	0.741	0.832		1978
1978					• • •	• • •					0.838	1,177	0.878	1 9 77
1877	0.182	0.997	1,145	0.974	0.924	0.883	0.773	0,848	0.607	0.584			0.857	1 8 78
	1,130	1.055	1.032	1.003	0.883	0.892	0.755	0.539	0.834	0.818	0.554	0,454		
1378				0.385	0.941	0.833	0.732	0.534	0.552	0.535	0,598	1,075	0,834	1878
1878	0.882	1,142	1,080		V. 941		•••••							
				•					0.740	0.712	0.931	1.261		1980
1980	1,140	1.128	• • •		• • •	0.828	0.105	0,786				1,210	0.983	1981
1881	1.011	1.158	1.029	1.033	0.873	0.854	0.877	0.758	0,878	0.757	1.052		0.880	1 9 4 2
		1,154	1.050	0.997	0.927	0.127	0.781	0.853	0.585	0,875	0.677	1.118		
1982	1.240				0.116	0.437	0.785	0.880	0.882	0.859	1.017	1.112	0.837	1983
1943	1.155	1,247	1.103	1,000				0.734	0.848	0.858	1.042	1.211	0.880	1 8 84
1884	1.105	1,017	1.075	0.887	1.021	0.874	0.875							
														1841
1245		1.088	1,028	1,018		0.812	0,781	0.847	0.880	0.535				1844
			1.047	1.018	0.882	0.888	0.818	0.885	0.575	0.835	0.677	1.038		
1986	• • •	1,158					0.881	0.542	0.433	0.347	0.372	0.879	0.770	1941
1287	1.120	1,110	1,078	0.170	0.902	0.818	V							
MEAN	1,102	1,121	1.071	1.000	0.852	0.887	0.787	0.570	0.818	0.802	0,790	1,070	0.884	MEAT
			ERRED TO A	SSUMED DA	TUM									

LOCATION - LAT 48 48 52 N Long 123 28 00 W Natural Flow

CUSHEON LAKE NEAR GANGES . STATION NO. OBHAO38

YEAR	MAXIMUM INSTANTANEOUS WATER LEVEL	MAXIMUM DAILY WATER LEVEL	MINIMUM DAILY WATER LEVEL	YEAR
			•••	1875
•••	•••	1.386 DN MAR 10	0,573 DN DCT 17	1977
		1.383 ON JAN 11	0.807 DN DCT 19	1878
	•••	1,870 DN DEC 18	0,500 ON OCT 14	1978
	• • • •	1.454 DN DEC 27	0,702 BN DET 23	1880
1980	•••	1.410 DN FEB 20	0.552 DN SEP 20	1881
1981	•••	1,648 ON JAN 26	0,547 DN DET 20	1842
1083		1.867 ON NOV 21	0.833 DN AUG 27	1843
1884	•••	1.524 ON NOV 30	0.508 DN 0C7 5	1964
		1.144 DN PER 15	0,499 DN DCT 9	1945
1945		1.818 ON FEB 26 *	0,518 ON DCT 24	1986
1987	•••	1,287 DN FEB 2	0.322 ON OCT 27 .	1847

· · EXTREME RECORDED FOR THE PERIDD OF RECORD

•
ST, MARY LAKE, SALTSPRING ISLAND - STATION NO, OBMA024
MONTHLY AND ANNUAL MEAN WATER LEVELS IN METRES FOR THE PERIOD OF RECORD

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP .	DET	NOV	DEC	HEAN	YEAR
1989	•••	•••	•••		1.104	1,033	0.831	0.809	0.762	•••	•••	•••	•••	1868
1\$70				•••	1.208	1.111	1.011	0.014	0.835	•••	• • •	•••	•••	1870
1871				1.258	1.153	1,105	1.052	0.348	0.880	•••				1971
1172		•••	•••	1,282	1.161	1.072	1.005	0.818	0 . 2 3 8	•••	•••	• • •	•••	1872
MEAN	•••	•••	•••	1.275	1,157	1,080	1.003	0.887	0.828	•••	•••	- • •	•••	MEAN

WATER LEVELS REFERRED TO ASSUMED DATUM

LOCATION - LAT 48 53 51 H LONG 123 32 46 W NATURAL FLOW

ļ

146

1

ST. MARY LAKE, SALTSPRING ISLAND - STATION NO. OSHAO24

	ANNUAL EXTREMES OF W	ATER LEVELS IN METRES FOR THE PERIOD	OF RECORD	
YEAR	MAXIMUM INSTANTANEOUS WATER LEVEL	MAXIMUM DAILY WATER LEVEL	MININUM DAILY WATER LEVEL	A B 1
1888	• • •	•••	0,747 DK SEP 18 =	101
1870	•••		0.880 DH SEP 26 0.614 DH SEP 16	181 181 181
1872	***	· 1,451 DH MAR 15 •	O.SIG DW SEP 10	10

WATER LEVELS REPERRED TO ASSUMED DATUM

1

. . EXTREME RECORDED FOR THE PERIOD OF RECORD

...........

	for the period 19 2:0:00 gauge 40.	
EEK	WEEKLY V	VEEKLY
		AAX
1	40.365	40.795
2	40.370	41.125
3	40.525	41.105
4	40.570	41.035
5	40.585	41.285
6	40.585	41.415
7	40.615	41.114
8	40.615	41.100
9	40.615	41.060
10	40.635	41.016
11	40.665	40.980
12	40.665	40.955
13	40.705	40.965
14	40.735	40.975
15	40.755	40.940
16	40.745	40.900
17	40.710	40.865
18	40.695	40.865
19	40.665	40.830
20	40.645	40.736
21	40.615	40.745
22	40.605	40.715
23	40.635	40.740
24	40.615	40.722
25	40.577	40.713
26	40.565	40.685
27	40.475	40.665
28	40.455	40.585
29	40.405	40.635
30	40.385	40.565
31	40.345	40.505
32	40.315	40.475
33	40.285	40.435
34	40.245	40.455
35 36	40.225	40.385
30 37	40.165	40.365
38	40.135	40.355
39	40.135	40.315
40	40.115	40.315
40	40.195	40.325
41 42	40.070	40.325
43	40.035	40.325
43 44	40.035	40.343
44		40.355
	40.035	40.455
46	40.045	
47	40.070	40.705
48	40.085	40.460
49	40.185	41.025
50	40.310	41.045
51	40.340	40.995
52	40.355	40.975

ł

and the second

.

APPENDIX D

STREAMS THAT SUPPORT FISH RESOURCES

SALISPRING ISLAND	トエンHEKIEU	REQUIREMENTS
ON LICENCED	WATER SOUP	(CES

Page No. 2 12/22/92

5

· · ·

••

SOURCE	WATERSHED CODE	FISHERIES CONCERNS	WATERSHED
SUFFOLK ACRES SPRING	4-12-20		BOGEY BR.
TARRASOFF SPRING	4-12-20	COHO CUTTHROAT ON CUSHE	CUSHEONECR.
TYLER BROOK	4-12-20	COHO CUTTHROAT ON CUSHE	CUSHEON CR.
WHITELOCK SPRING	4-12-20		OCEAN
WRIGHT SPRING	4-12-20		OCEAN
YULE SPRING	4-12-20	COHO CUTTHROAT ON CUSHE	CUSHEON CR.
ZZ POND	4-12-20		ACKLAND;SPRING
ZZ POND	4-12-20	-	SCOVELL CR.
ZZ SPRING	4-12-20		SCOVELL CR.
ZZ SPRING	4-12-20		1

i

÷

.

 $1 \le 1$

4 H.

•

er Er e

 $^{\circ}$

1 : 1

1

: . .

: .

SALISI	PRING ISLAND	FISHER! (KEQUIREMENTS	
Page No. 1 12/22/92		WATER SOURCES	
SOURCE	WATERSHED CODE	FISHERIES CONCERNS	WATERSHED
ABRAHAM SPRING	4-12-30		GROUND
AKERMAN SPRING	4-12-30	COHO,CUTTHROAT,	FULFORD CR
ARNOLD CREEK	4-12-30		FULFORD CR OCEAN
BURGOYNE CREEK	4-12-30		OCEAN
CADORNA, CAINE, SP. SKUCE BR			SKUCE BR.
CAHILL BROOK CAMPBELL SPRING	4-12-30 4-12-30	COUC CHITTUROAT DECISECT	OCEAN
CARLEY SPRING	4-12-30	COHO,CUTTHROAT PROJECT	FULFORD CR. 📟 Burgoyne cr
CEDARHAVEN SPRING	4-12-30	-	OCEAN
COLLINS BROOK	4-12-30		OCEAN OCEAN
CONNORS SPRING	4-12-30		OCEAN
COOMBES SPRING	4-12-30		UNNAMED BR.
DANA SPRING	4-12-30		OCEAN
DANIEL BROOK	4-12-30	COHO CUTTHROAT, ON CREEK	FULFORD CR.
DIRKSON SPRING	4-12-30		OCEAN
DISNEY SPRING DITMARS SPRING	4-12-30	COHO CUTTHROAT,ON FULFO	FULFORD CR.
DONALD SPRING	4-12-30 4-12-30		BURGUTNE CR.
DOWLING BROOK	4-12-30		OCEAN OCEAN
DUKES SPRING	4-12-30		OCEAN OCEAN
DUNBAR SPRING	4-12-30		OCEAN
EAST&WEST HEPBURN SPRING	4-12-30		
EDMUND SPRING	4-12-30		OCEAN OCEAN
EDNA SPRING	4-12-30	COHO,CUTTHROAT,ON FULFO	FORD CREEK
EIS SPRING	4-12-30		ΟΓΕΔΝ
FERN CREEK	4-12-30		OCEAN
FIRDAUSI SPRING	4-12-30		ULEAN
FORD LAKE	4-12-30	COHO,CUTTHROAT, ON FULF	FULFORD CREEK
FORSEN BROOK Frank brook	4-12-30		OCEAN
FROST SWAMP	4-12-30		OCEAN
FULFORD CREEK	4-12-30 4-12-30	COHO,CUTTHROAT PROJECT COHO,CUTTHROAT ON FULFO	FULFORD CR
FURNESS SPRING	4-12-30	COHO, CUTTHROAT ON FULFO	FULFORD CR.
GARVEY SPRING	4-12-30	cono, corrinkom on roero	SPENCER BR.
GASPELL BROOK	4-12-30	COHO,CUTTHROAT ON FULFO	FULFORD CR.
GERALD CREEK	4-12-30	······	OCEAN -
GOW SPRING	4-12-30		OCEAN
HARTNELL SPRING	4-12-30		OCEAN
HOREL BROOK	4-12-30	COHO,CUTTHROAT,ON FULFO	FULFORD CR.
KING CREEK Kyler creek	4-12-30		OCEAN
LAKE STOWELL	4-12-30 4-12-30	COHO,CUTTHROAT,ON FULFO	FULFORD CREEK
LAKE WESTON	4-12-30	RES.CUTTHROAT	UNNAMED BR.
	4-12-30	RES.COTTAROAT	WESTON CREEK
	4-12-30	COHO,CUTTHROAT,ON FULFO	FULFORD CR.
	4-12-30		OCEAN
		COHO, CUTTHROAT, ON FULFO	FULFORD CR.
		COHO, CUTTHROAT, ON FULFO	FULFORD CR.
	4-12-30		OCEAN
ACALPINE BROOK	4-12-30		OCEAN
ITCHELL SPRING	4-12-30		OCEAN
		COHO,CUTTHROAT,ON FULFO	FULFORD CR.
	4-12-30		OCEAN
	4-12-30 4-12-30		OCEAN
ICKERSON SPRING	4-12-30	COHO, CUTTHROAT ON FULF	FULFORD CR.
ENDERGAST SPRING	4-12-30		OCEAN
ERKS SPRING	4-12-30		OCEAN
			- w

SALISPRING ISLAND FISHERIES REQUIREMENTS ON LICENCED WATER SOURCES

.

WATERSHED

Page No. 1 12/22/92

SOURCE	0005	FISHERIES CONCERNS
ACLAND SPRING		N/A
ACLAND SPRING No.2	4-12-20	
ATKINS SWAMP	4-12-20	
BELL SPRING	4-12-20	
RESSTE BROOK	4-12-20	
BLACKBURN LAKE	4-12-20	COHO, CUTTHROAT, CUSHEON
BOGEY BROOK	4-12-20	
BOOTH SPRING	4-12-20	. .
BRACKETT SPRING	4-12-20	
BRIGGS SPRING	4-12-20	SEA.,RES.CUTTHROAT
BUCKLAND BROOK	4-12-20	STICLEBACK
BULLOCKS CREEK	4-12-20	
BULLOCKS LAKE	4-12-20	
BURGESS SPRING	4-12-20	S.E.P./PROJECT
BURTT SPRING	4-12-20	
	4-12-20	COHO,CUTTHROAT,CUSHEON
CROFTON SPRING	4-12-20	
CUSHEON CREEK	4-12-20 4-12-20	COHO, CUTTHROAT, ON CREE
CUSHEON LAKE	4-12-20	COHO.CUTTHROAT,ON CREE
DIFFIN CREEK	4-12-20	
	4-12-20	
	4-12-20	S.E.P. PROJECT ON GANG
EDWAL SPRING		
	4-12-20	SEARUN CUTTHROAT, ON MA
ERIC SPRING		S.E.P. PROJECT
	4-12-20	
	4-12-20	SCHRRES COTTINIONT ON I
	4-12-20	
	4-12-20	
	4-12-20	
	4-12-20	
		COHO,CUTTHROAT ON CUSH
JOEJONES SPRING	4-12-20	·
LAKE MAXWELL	4-12-20	CUTTHROAT ON MAXWELL C
LESLIE SPRING	4-12-20	
LIEBERHERR SPRING	4-12-20	
MADRONA CREEK	4-12-20	CUTTHROAT ON MADRONA C
MARCOTTE SPRING	4-12-20	COHO,CUTTHROAT,ON CUSH
MAWHINNA CREEK	4-12-20	NO CONCERNS
MAXWELL CREEK	4-12-20	SEARUN CUTTHROAT
MILES SPRING	4-12-20	CUTTHROAT ON MANSELL C
MOUAT SPRING	4-12-20	
MCAFEE CREEK	4-12-20	
	4-12-20	COHO,CUTTHROAT,ON CUSH
	4-12-20	
NELSON LAKE	4-12-20	STICLEBACK ON BULLOCKS
	4-12-20	
PARADISE SPRING	4-12-20	COHO CUTTHROAT ON CUSH
PICKUP SPRING	4-12-20	
PURDY CREEK	4-12-20	
RAINBOW SPRING	4-12-20	
RALPH SPRING		CUTTHROAT ON MADRONA C
RAM SPRING		CUTTHROAT ON MADRONA C CUTTHROAT ON MAXWELL C
RIPPON CREEK	4-12-20	COTTAKUAT ON MAXWELL C
SCOVELL CREEK Sharpe creek	4-12-20 4-12-20	CHUM CUTTHROAT
SINCLAIR SWAMP	4-12-20	CHOM COTTEROMI
SINCLAIR SWAMP Starfy Spring	4-12-20	

WATERSHED	FISHERIES CONCERNS	WATERSHED
CODE		
4-12-20	N/A	OCEAN
4-12-20		OCEAN
4-12-20		BESIE BR.
4-12-20		OCEAN
4-12-20		OCEAN ,
4-12-20	COHO, CUTTHROAT, CUSHEON	CUSHEON CREEK
4-12-20		OCEAN
4-12-20	_	UNNAMED CR.
4-12-20		OCEAN
4-12-20	SEA., RES.CUTTHROAT	MADRONA CR.
4-12-20	STICLEBACK	BULLOCKS CR.
4-12-20	0 T I O E E O ITO K	OCEAN
4-12-20		BULLOCKS CREEK
	S.E.P./PROJECT	GANGES CR.
4-12-20	a.e.r. rroster	OCEAN
4-12-20		CUSHEON CR.
4-12-20	COHO,CUTTHROAT,CUSHEON	
4-12-20		UNNAMED BR.
4-12-20	COHO,CUTTHROAT,ON CREEK	
4-12-20	COHO.CUTTHROAT,ON CREEK	CUSHEON CREEK
4-12-20		OCEAN
4-12-20		DIFFIN CR.
4-12-20	S.E.P. PROJECT ON GANGE	GANGES CR.
4-12-20		OCEAN
4-12-20		OCEAN
4-12-20	SEARUN CUTTHROAT,ON MAX	MAXWELL CR.
4-12-20	S.E.P. PROJECT	GANGES CR.
4-12-20	SEA&RES CUTTHROAT ON MA	MADRONA CR.
4-12-20		UNNAMED BR.
4-12-20		LELAND BR.
4-12-20		OCEAN
4-12-20		UNNAMED BR.
4-12-20		OCEAN
4-12-20	COHO,CUTTHROAT ON CUSHE	CUSHEON CR.
	cond, corrinkowi on coshe	OCEAN
4-12-20	CUTTUROAT ON MAYLELL CR	MAXWELL CREEK
4-12-20	CUTTHROAT ON MAXWELL CR	
4-12-20		OCEAN .
4-12-20		OCEAN
4-12-20	CUTTHROAT ON MADRONA CR	MADRONA CR.
4-12-20	COHO,CUTTHROAT,ON CUSHE	CUSHEON CR.
4-12-20	NO CONCERNS	MAWHINNA CR.
4-12-20	SEARUN CUTTHROAT	MAXWELL CR.
4-12-20	CUTTHROAT ON MANSELL CR	MANSELL CR.
4-12-20		OCEAN
4-12-20	CHUM, SEARUN CUTTHROAT,	SHARPE CR.
4-12-20	COHO, CUTTHROAT, ON CUSHE	CUSHEON CR
4-12-20		OCEAN
4-12-20	STICLEBACK ON BULLOCKS	BULLOCKS CR.
4-12-20		OCEAN
4-12-20	COHO CUTTHROAT ON CUSHE	CUSHEON CR
4-12-20		OCEAN
4-12-20		OLD LOWTHER CR
		UNNAMED CR.
4-12-20	CUTTUPOAT ON MADDONA CD	MADRONA CR.
4-12-20	CUTTHROAT ON MADRONA CR	MADRONA CR.
4-12-20	CUTTHROAT ON MADRONA CR	
4-12-20	CUTTHROAT ON MAXWELL CR	MAXWELL CR.
4-12-20		OCEAN
4-12-20	CHUM CUTTHROAT	SHARPE CR.
4-12-20		MAWHINNA CR.
4-12-20		OCEAN

age No. 2/22/92 1

SALTSPRING ISLAND FISHERIES REQUIREMENTS ON LICENCED WATER SOURCES

0.4000E				
OURCE	WATERSHED CODE	FISHERIES CONCERNS	WATERSHED	
OND SPRINGS	4-12-10		OCEAN	
OGSWELL BROOK	4-12-10		OCEAN	
URTIS SPRING	4-12-10		OCEAN	
ORGELES BROOK	4-12-10	CHUM,CUTTHROAT,etc.ON D	DUCK CR.	
UCK CREEK	4-12-10	CHUM, CUTTHROAT, RAINBOW	DUCK CR.	
RIN BROOK	4-12-10	•	OCEAN	
REDERICK SPRING	4-12-10	STICLEBACK IN MCFADDEN	MCFADDEN CR.	43
OSKIN BROOK	4-12-10	STICLEBACK ON MCFADDEN	MCFADDEN CR.	25
ANE SPRING	4-12-10	CHUM, CUTTHROAT, ON DUCK	DUCK CR.	
ATHLEEN SPRING	4-12-10	STICLEBACK ON MCFADDEN	MCFADDEN CR.	
IRKHAM SPRING	4-12-10		OCEAN	
AIRD POND	4-12-10	STICLEBACK ON MCFADDEN	MCFADDEN CR.	新聞新聞 。 (1973)
ARSON SPRING	4-12-10	CHUM.CUTTHROAT.ON DUCK	DUCK CR.	- 19
ILNER SPRING	4-12-10		OCEAN	
CALLION SPRING	4-12-10	STICKLEBACK ON MCFADDEN	MCFADDEN CR.	8
ICHARDSON SPRING	4-12-10	STICLEBACK ON MCFADDEN	MCFADDEN CR.	
AUNDERS SPRING	4-12-10	STICLEBACK ON MCFADDEN	MCFADDEN CR.	能發展
LMSON SPRING	4-12-10		UNNAMED CR.	82 2 -10
C. MARY LAKE	4-12-10	CHUM CUTTHROAT ON DUCK	DUCK CREEK	
LKER BROOK	4-12-10		OCEAN	
ISNER BROOK	4-12-10	STICLEBACK ON MCFADDEN	MCFADDEN CR.	
BROOK	4-12-10		OCEAN	
SPRING	4-12-10	RES. CUTTHROAT ON STOWE	STOWELL LKP	
SPRING	4-12-10	STICLEBACK ON MCFADDEN	MCFADDEN CR.	
		of a check of herhould		

2.01

	SALTSPRING ISLAND	FISHERIES REQUIREMENTS	
age No. 2		WATER SOURCES	
2/22/92			
OURCE	WATERSHED Code	FISHERIES CONCERNS	WATERSHED
UESTO SPRING	4-12-30		OCEAN
AYNES SPRING	4-12-30	COHO CUTTHROAT ON FULFO	
EID CREEK	4-12-30	COHO CUTTHROAT ON FULFO	
OBERT SPRING	4-12-30		
OBERTSON SPRING	4-12-30	COHO CUTTHROAT ON FULFO	FULFORD CR.
OLAND SPRING		RES. CUTTHROAT ON LK. S	LK STOWELL
OSEMERGY LAKE	4-12-30		UNNAMED CR.
OTHWELL SPRING	4-12-30	COHO,CUTTHROAT, ON FULF	
	4-12-30		OCEAN
KUCE BROOK	4-12-30	COHO CUTTHROAT ON FULFO	FULFORD CR.
MITH BROOK	4-12-30		OCEAN
OULE CREEK	4-12-30	· · · · · · · · · · · · · · · · · · ·	OCEAN
PENCER SPRING	4-12-30	CUTTHROAT ON WESTON CR.	
PIKERMAN SPRING	4-12-30		OCEAN
UMMERHILL SPRING	4-12-30	i	OCEAN
RENCH CREEK	4-12-30		OCEAN
ANS SPRING	4-12-30		OCEAN
Z BROOK	4-12-30	RESIDENT CUTTHROAT ON S	STOWELL CR.
Z SPRING	4-12-30	RES. CUTTHROAT ON STOWE	STOWELL CR.
Z SPRING	4-12-30		MUSGRAVE CR.
NESTON LAKE		RESIDENT CUTTHEOAT	WESTON CRECK
NESTON LAKE WESTON CREEK	4-12-30	CUTHROAT TROUT	WEITON CREDE
		· ·	
		· .	
-			

APPENDIX E

LICENSED WATER DEMAND

The summary of existing licenses by source provided the basis for converting demand volumes to equivalent litres per second during the low flow period from May to November. This was divided into two segments. The first represents the maximum demand during the 100 day irrigation period, assumed to fall between May and September. The second is the remaining low flow period estimate. This includes the maximum demand during October, November and the period between May and September not affected by irrigation demands (114 days). WATERSHED ALLGCATION SUMMARY

,

SOURCE	WATERSHED	DOM.	IRR.	IND.	LDIMP.& CONSER.	WWKS.	Total stor.	
	CODE	gpd.	acft	gpd.	gpd.	acft.	L/s acft.	
AT AND CODTNO	. 10 00	2000	1 0	2222	^	^	0 445 6 0	
CLAND SPRING	4-12-20	3000	1.2	2200	0	0	0.445 6.8	
CLAND SPRING No.		0 1 00	0.0	3300	0	. 0	0.174 (0.0)	•
TKINS SWAMP	4-12-20	300	0.0	0	0	0	0.026 0.0	
ELL SPRING	4-12-20	500	0.0	0	0	0	0.026 0.0	
ESSIE BROOK	4-12-20	500	0.0	0	0	0	0.026 0.0	
LACKBURN LAKE	4-12-20	500	10.0	7000		0	$1.822 0.0 \\ 1.742 12.2$	
OGEY BROOK	4-12-20	0	12.2	0	0	0	0.026 0.0	
ONNET SPRING OOTH SPRING	4-12-20 4-12-20	500	0.0 0.0	0 , 0	0	0 0	0.026 0.0	
RACKETT SPRING	4-12-20	500 1000		, 0	0	0	0.053 0.0	
RACKETT SPRING RIGGS SPRING	4-12-20	750	0.0 0.0	0	0	0	0.039 0.0	
UCKLAND BROOK	4-12-20	750 0	1.0	l o	2231	0	0.259 4 4.0	
ULLOCKS CREEK	4-12-20	0	6.4	· · · · · · · · · · · · · · · · · · ·	2231	0	0.907 3.4	
ULLOCKS LAKE	4-12-20	0	39.0	0	0.	0	5.568 0.0	
URGESS SPRING	4-12-20	500	0.0	0	0.	Ő	0.026 1.0	
URTT SPRING	4-12-20	1000	0.0	0	0	0	0.053 0.0	-
ASWELL CREEK	4-12-20	0	0.0	0	. 0	0	0.071 0.5	
ROFTON SPRING	4-12-20	0	2.0	0	0 0	0	0.286 2.0	
USHEON CREEK	4-12-20	500	0.3	ŏ	33668	Ő	1.834 0.0	
USHEON LAKE	4-12-20	14500	21.3	4500	0.0000	83	7.287 0.0	
IFFIN CREEK	4-12-20	0	6.0	0	Ő	0	0.857 6.0	т
IFFIN POND	4-12-20	õ	0.0	Ő	Ŭ V Ŭ	. 0	0.000 0.0	÷
ONKERSLEY SPRING		1000	0.0	õ	Ő	Ŏ	0.053 0.0	
DWAL SPRING	4-12-20	2000	0.0	Õ	Ő	. 0	0.105 0.0	•
FFIE SPRING	4-12-20	2000	0.0	0	- 0	0	0.105 0.0	
RIC SPRING	4-12-20	1000	0.0	Ō	0 0	Ō	0.053 0.0	
ANGES CREEK	4-12-20	0	0.0	Ō	149	Ō	0.008 0.0	
ILBERT BROOK	4-12-20	Ō	1.0	Ō	0	Ó	0.143 1.0	
ARRISON POND	4-12-20	0	17.0	0	Ō	0	2.427 15.0	
ERBERT SPRING	4-12-20	500	0.0	0	0	0	0.026 0.0	
OLMES SPRING	4-12-20	2100	0.Ò	0	0	0	0.110 0.0	
UBBARD SPRING	4-12-20	500	0.0	0	0	0	0.026 0.0	
NDIAN SPRING	4-12-20	500	0.0	0	0	0	0.026 0.0	
AMESKI SPRING	4-12-20	1000	0.0	. 0	0	0	0.053 0.0	
OEJONES SPRING	4-12-20	1000	0.0	0	0	0	0.053 2.0	
AKE MAXWELL	4-12-20	0	26.0	0	0	538	24.759 410.0	-
ESLIE SPRING	4-12-20	500	0.0	0	.0	0	0.026 0.0	ί.
IEBERHERR SPRING	4-12-20	500	0.0	0	0	0	0.026 0.0	
ADRONA CREEK	4-12-20	1000	2.5	0	0	0	0.410 3.5	
ARCOTTE SPRING	4-12-20	4500	0.0	0	0	0	0,237 0.0	
AWHINNA CREEK	4-12-20	2500	0.0	0	0	0	0.132 0.0	
AXWELL CREEK	4-12-20	1000	0.0	0	0	0	0.053 0.0	
ILES SPRING	4-12-20	0	0.0	0	0	0	0.000 0.0	
DUAT SPRING	4-12-20	1500	0.0	0	0	0	0.079 0.0	
CAFEE CREEK	4-12-20	3750	0.0	0	0	0	0.197 0.0	
CRIGOR SPRING	4-12-20	1000	0.0	0	0	0	0.053 0.0	
CLEOD SPRING	4-12-20	1000		0	0	0	0.053 0.0	
ELSON LAKE	4-12-20	500	0.0	0	0	0	0.026 0.0	
LD LOWTHER CREEK	4-12-20	1000	0.0	0	0	0	0.053 0.0	
ARADISE SPRING	4-12-20	500	0.0	0	0	0	0.026 0.0	
ICKUP SPRING	4-12-20	500	0.0	0	0	0	0.026 0.0	
JRDY CREEK	4-12-20	500	0.0	0	0	0	0.026 0.0	
AINBOW SPRING	4-12-20	500	0.0	0	0	0	0.026 0.0	
ALPH SPRING	4-12-20	500	0.0	0	0	0	0.026 0.0	
AM SPRING	4-12-20	500	0.0	0	0	0	0.026 0.0	÷
IPPON CREEK	4-12-20	0	0.0	0	0	0	0.000 200.0	-

WATERSHED ALLOCATION SUMMARY

1.

 2°

5 6 S I

5 1 47

~ ¥

en (and

.

· · · ,

lan Research

n i pers

<u>į</u>. :

					LDIMP.&		•	
SOURCE	WATERSHED	DOH.	IRR.	IND.	CONSER.	WWKS.		STOR.
	CODE	gpd.	acft	gpd.	gpd.	acft.	L/s	acft.
OND SPRINGS	4-12-10	1500	0.0	0	. 0	0	0.079	0.0
OGSWELL BROOK	4-12-10	1,000	0.0	0	0	0	0.053	0.0
URTIS SPRING	4-12-10	· 1000	0.0	0	0	0	0.053	0.0
ORGELES BROOK	4-12-10	0	0.5	0	0	0	0.071	0.4
UCK CREEK	4-12-10	0	16.3	0	0	0	2.320	14.3
RIN BROOK	4-12-10	0	0.3	0	- 0	0	0.036	0.0
REDERICK SPRING	4-12-10	1000	0.0	0	0	0	0.053	0.0
OSKIN BROOK	4-12-10	0	3.0	0	· 0	0	0.428	3.0
ANE SPRING	4-12-10	1000	0.0	0	0	0	0.053	0.0
ATHLEEN SPRING	4-12-10	500	0.0	ℓ 0	0	0	0.026	0.0
IRKHAM SPRING	4-12-10	500	0.0	; 0	0	0	0.053	0.0
AIRD POND	4-12-10	0	1.0	/ 0	0	0	0.143	· · · · · · · · · · · · · · · · · · ·
ARSON SPRING	4-12-10	500	0.0	0	0	0	0.026	0.0
ILNER SPRING	4-12-10	500	0.0	0	0	0	0.026	0.0
CCALLION SPRING	4-12-10	350	0.0	0	0	0	0.018	0.0
ICHARDSON SPRING	4-12-10	0	0.3	0	0	0	0.036	0.3
AUNDERS SPRING	4-12-10	1500	0.0	0	0	0	0.079	0.0
IMSON SPRING	4-12-10	1000	0.0	0	0	0	0.053	0.0
t. MARY LAKE	4-12-10	14750	63.0	19000	0	849	43.977	¹⁴ 0.0
ALKER BROOK	4-12-10	0	0.5	· 0	0	· 0	0.071	0.5
EISNER BROOK	4-12-10	0	5.2	0	` 0	0	0.742	5.2
Z BROOK	4-12-10	0	0.0	0	0	0	0.000	0.0
Z SPRING	4-12-10	500	0.0	0	0	0	0.000	0.0
Z SPRING	4-12-10	0	0.0	. 0	0.	0	0.000	0.0
					LDIMP.&		1	2 1 2 2 2 2
		DOM.	IRR.	IND.	CONSER.	WWKS.	TOTAL	STOR
		gpd.	acft	gpd.	gpd.	acft.	L/s	acft
ALLOCATION	TOTALS	25600	90.0	19000	gpu. 0	849	48.396	23.7_
		23000	20.0	19000	0	045		
								. : : i 🗐

2

 $\geq \frac{1}{2}$

¥

WATERSHED ALLOCATION SUMMARY

SOURCE	WATERSHED	DOM.	IRR.	IND.	LDIMP.& CONSER.	WWKS.	TOTAL	STOR.
	CODE	gpd.	acft	gpd.	gpd.	acft.	L/s	acft.
		JF~.	dere	aba.	gpu.	acre.	цір	acit.
COVELL CREEK	4-12-20	500	1.0	0	0	0	0.169	13.0
HARPE CREEK	4-12-20	2750	0.0	0	0	0		5 - 0.0
INCLAIR SWAMP	4-12-20	` 0	2.0	. 0	0	0	0.286	
TACEY SPRING	4-12-20	500	2.0	0	0	Ō	0.312	
UFFOLK ACRES SPR	4-12-20	0	10.0	500	0	Ō	1.454	
ARRASOFF SPRING	4-12-20	500	0.0	0	- 0	0	0.026	
YLER BROOK	4-12-20	0	0.0	0	10765	0	0.566	
HITELOCK SPRING	4-12-20	500	0.0	0	0	· 0	0.026	
RIGHT SPRING	4-12-20	500	0.0	0	0	0	0.026	
ULE SPRING	4-12-20	500	0.0	100	Ō	Ō	0.032	
Z POND	4-12-20	0	1.0	1 0	Ō	Ö	0.143	
Z POND	4-12-20	0	0.0	/ o	Ő	Ō	0.000	
Z SPRING	4-12-20	500	0.0	0	0	Ō		0.0
Z SPRING	4-12-20	500	0.0	0	0	Ō	0.026	
	*			-	•	Ū	01020	
					LDIMP.&			. : · .
		DOM.	IRR.	IND.	CONSER.	WWKS.	TOTAL	STOR
-		gpd.	acft	gpd.	gpd.	acft.		acft
ALLOCATION	TOTALS	64350	162.3	17600	46813	621		979.632
								-710:0
								and the second s
								2101

269.6

1 . **.** .

1.3

1.0

· / .

111

1 11.1

1.12

1911日、1917年1月 今期代刊 日本第二日 1917日日 1917日日 日本1917日、1917日 日本1917日、1917日、1917日

11

۰,۰

1

1000

ICKERSON SPRING

4-12-30

0

0.0

0

744

1

WATERSHED ALLOCATION SUMMARY

LDIMP.& TOTAL STOR. SOURCE WATERSHED DOM. IRR. IND. CONSER. WWKS. CODE acft gpd. acft. L/s acft. gpd. gpd. 0.079 \cdots 0.0 ABRAHAM SPRING 0 0 4-12-30 1500 0.0 0 0.0x 0.026 AKERMAN SPRING 0 4-12-30 500 0.0 0 0 0.0 ARNOLD CREEK 4-12-30 1500 6.0 0 0 0 0.936 BURGOYNE CREEK 0 0.105 0.0 4-12-30 2000 0.0 0 0 CADORNA, CAINE, SP. 0.105 0.0 4-12-30 2000 0.0 0 0 0 0.059 0.0 0 -2 0 CAHILL BROOK 4-12-30 0.0 0 0.224 0 0.3 CAMPBELL SPRING 4-12-30 200 1.5 0 0 • ; e 0.597 CARLEY SPRING 4-12-30 500 4.0 0 0 0 CEDARHAVEN SPRING 750 0.0 0 0 0 0.039 0.03 4-12-30 0.105 0.0 COLLINS BROOK 4-12-30 2000 0.0 0 0 0 0 0 0.026 11: 0.0 CONNORS SPRING 4-12-30 500 0.0 0 COOMBES SPRING 0.0 500 0.0 0 0 0 0.026 4-12-30 0.053 0.0 DANA SPRING 4-12-30 1000 0.0 0 0 0 DANIEL BROOK 4-12-30 2.480 17.C 17.0 0 0 0 1000 0.0 DIRKSON SPRING 4-12-30 500 0.0 0 0 0 0.026 0.0 DISNEY SPRING 0.053 4-12-30 1000 0.0 0 0 0 0.026 0.C DITMARS SPRING 4-12-30 500 0.0 0 0. 0 0.0 DONALD SPRING 0.316 4-12-30 0 0 6000 0.0 0 4-12-30 0.053 0.0 DOWLING BROOK 1000 0 0 0 0.0 0.079 0.0 DUKES SPRING 4-12-30 1500 0.0 0 0 0 0.C 0 0.026 DUNBAR SPRING 4-12-30 500 0.0 0 0 EAST&WEST HEPBURN 4-12-30 0 1000 0 0.105 0.0 1000 0.0 0.026 0.0 EDMUND SPRING 0.0 0 4-12-30 500 0 0 Ο. EDNA SPRING 0.053 C 4-12-30 1000 0 0 0 0.0 0.0 0 0.039 EIS SPRING 4-12-30 750 0.0 0 0 FERN CREEK 0 0.131 0.0 4-12-30 2500 0.0 0 0 0.026 IRDAUSI SPRING 4-12-30 500 0.0 0 0 0 0.0 0.026 0. di FORD LAKE 4-12-30 500 0.0 0 0 0 ORSEN BROOK 0.053 0.0 4-12-30 0 1000 0.0 0 0 4-12-30 0.053 0.0 RANK BROOK 1000 0.0 0 0 0 6.9 ROST SWAMP 0.928 4-12-30 0 6.5 0 0 0 14.884 ULFORD CREEK 4-12-30 1500 100.0 0 10000 0 35.0 URNESS SPRING 0.026 0.0 4-12-30 500 0.0 0 0 0 **GARVEY SPRING** 0.026 0.d 500 0 0 0 4-12-30 0.0 5.0 SASPELL BROOK 0 0.714 4-12-30 0 5.0 0 0 0.0 0 0.105 ERALD CREEK 4-12-30 2000 0.0 0 0 OW SPRING 4-12-30 500 0.0 0 0 0 0.026 0.C 0.026 0.d 500 0 0 0 IARTNELL SPRING 4-12-30 0.0 0.417 0.0 0 0 IOREL BROOK 4-12-30 2500 2.0 0 0.053 0 0.0 ING CREEK 4-12-30 1000 0.0 0 0 YLER CREEK 4-12-30 1500 0.0 0 0 0 0.079 0.d 0 3.123 0.0 AKE STOWELL 4-12-30 1000 21.5 0 0 AKE WESTON 6.047 40.0 94 4-12-30 11000 12.5 0 0 0.053 ARLOW CREEK 1000 0 0 0.Q 4-12-30 0.0 0 0.0 AUTMAN BROOK 4-12-30 500 0 0 0 0.026 0.0 0.026 0.0 AWRENCE BROOK 4-12-30 500 0.0 0 0 0 EE SPRING 0 0 0.026 0.d 4-12-30 500 0.0 0 UCY SPRING 0.053 0 0 0.Q 4-12-30 1000 0.0 0 0 0.079 0.0 YLA CREEK 4-12-30 1500 0.0 0 0 4-12-30 0.053 0.0 ACALPINE BROOK 1000 0.0 0 0 0 ITCHELL SPRING 1500 0 0 0.079 0.d 4-12-30 0.0 0 0.0 OLLET BROOK 0 0.026 4-12-30 500 0.0 0 0 ONTY CREEK 0.0 0.053 4-12-30 1000 0.0 0 0 0 0.0 ORRISON SPRING 4-12-30 0.3 0 0 0 0.036 0 ORTENSON SPRING 0.026 0.0 4-12-30 500 0 0 0 0.0

0.039

0

0.0

WATERSHED ALLOCATION SUMMARY

_ __

SOURCE	WATERSHED	DOM.	IRR.	IND.	LDIMP.& CONSER.	WWKS.	TOTAL	SHOP	
	CODE	gpd.	acft	gpd.	gpd.	acft.		STOR. acft.	
					52 ~ 1		2,0	acre.	
NDERGAST SPRING		. 500	0.0	0	0	0	0.026	0.0	
RKS SPRING	4-12-30	500	0.0	0	0	0	0.026		
ARRINGTON CREEK		500	2.5	0	0	0	0.383		
ESTO SPRING	4-12-30	0	0.5	0	0	0	0.071		
YNES SPRING	4-12-30	500	0.0	0	0	Ō	0.026		
ID CREEK	4-12-30	2750	0.5	0	- 0	Ō	0.216		
BERT SPRING	4-12-30	1000	0.0	0	Ō	0	0.053		
BERTSON SPRING	4-12-30	500	0.0	0	Ō	Ō	0.026		
LAND SPRING	4-12-30	500	0.0	0	Ō	0	0.026		
SEMERGY LAKE	4-12-30	0	0.0	÷ 0	Ő	õ	0.000		
THWELL SPRING	4-12-30	500	0.0	, õ	õ	ŏ	0.026	0.0	
UCE BROOK	4-12-30	1000	0.0	ÍŎ	õ	Ő	0.053	0.0	
ITH BROOK	4-12-30	500	0.0	Ō	0 0	ŏ	0.026	0.0	
JLE CREEK	4-12-30	3200	0.0	2100	ů 0	Ö	0.279	0.0	
ENCER SPRING	4-12-30	1500	0.0	0	Ő	ŏ	0.079	0.0	
IKERMAN SPRING	4-12-30	500	0.0	Ō	Ŏ	Ő	0.026	0.0	
IMERHILL SPRING	4-12-30	2000	0.0	0	0 0	ŏ	0.105		
ENCH CREEK	4-12-30	2500	0.5	ŏ	0	ŏ	0.203	0.0	
IS SPRING	4-12-30	500	0.0	Ő	0	ŏ	0.026		
BROOK	4-12-30	0	1.0	Ő	0	Ö	0.020	0.01.0	
SPRING	4-12-30	Ō	0.0	õ	Ö	0	0.000		
SPRING	4-12-30	0	3.5	0	0	0		0.0	
		Ū	3.5	v	U	U	0.000	0.0	
:					LDIMP.&				
		DOM.	IRR.	IND.	CONSER.	WWKS.	TOTAL	STOR	
	1	gpd.	acft	gpd.	gpd.	acft.	L/s	acft	
ALLOCATION 1	TOTALS	84650	184.8	2100	11745	94	34.656	137.3	
1								20710	
	Ĺ							1 1	
	i,								
	1 ¹							1	
	i. îg								
	4								

	Demand Irrig'n. Period		Demand Volume May-Nov	Existing Storage	
Watershed Area	(L/sec)	(L/sec)		<u>(acft)</u>	<u>(dam³)</u>
Duck Creek Dorgeles Brook Jane Spring Larson Spring St. Mary Lake	2.320 0.071 0.053 0.026 <u>43.977</u> 46.447	- 0.053 0.026 <u>34.983</u> 35.062	$20.0 \ \ 0.6 \ 1.0 \ 0.5 \ \frac{724.3}{746.4}$	14.3 0.4 <u>14.7</u>	17.6 0.5 $\overline{18.1}$
McFadden Creek Frederick Spring Hoskin Brook Kathleen Spring Laird Pond McCallion Spring Richardson Spring Saunders Spring Weisner Brook		0.053 0.026 0.018 0.079 	$ \begin{array}{r} 1.0\\ 3.7\\ 0.5\\ 1.2\\ 0.3\\ 1.5\\ \underline{6.4}\\ 14.9 \end{array} $	3.0 0.3 <u>5.2</u> 8.5	3.7 0.4 <u>6.4</u> 10.5
Other Small Drainage Bond Springs Cogswell Brook Curtis Spring Erin Brook Kirkham Spring Milper Spring	0.079 0.053 0.053 0.036 0.053	0.079 0.053 0.053 - 0.053	1.4 1.0 1.0 0.3 1.0	*,:	
Milner Spring Simpson Spring Walker Brook <u>Total North</u> <u>Saltspring Island</u>	0.026 0.053 <u>0.071</u> 0.424 48.396	$ \begin{array}{r} 0.026 \\ 0.053 \\ \\ 0.317 \\ 35.555 \\ \end{array} $	0.5 1.0 <u>0.6</u> 6.8 768.1	0.5 0.5 23.7	<u>0.6</u> 0.6 29.2

	Demand Irrig'n. Period	Demand Rem.Lo Flow M	w Volume	Existing Storage	Existing Storage
Watershed Area	(L/sec)	L/sec		<u>(acft)</u>	<u>(dam³)</u>
Bullocks Creek Buckland Brook Bullocks Lake Nelson Lake	0.907 0.259 5.568 <u>0.026</u> 6.760	0.116 - 0.026 0.142	7.8 3.4 48.1 <u>0.5</u> 59.8	3.4 4.0 	4.2 4.9 9.1
Cusheon Creek Blackburn Lake Caswell Creek Cusheon Lake Jameski Spring Marcotte Spring McGrigor Spring Paradise Spring Tarrasoff Spring Tyler Brook Yule Spring	$1.834 \\ 1.822 \\ 0.071 \\ 7.287 \\ 0.053 \\ 0.237 \\ 0.053 \\ 0.026 \\ 0.026 \\ 0.566 \\ 0.032 \\ 12.007$	$ \begin{array}{c} 1.791\\ 0.394\\ -\\ 4.246\\ 0.053\\ 0.237\\ 0.053\\ 0.026\\ 0.026\\ 0.566\\ 0.032\\ 7.424 \end{array} $	33.519.60.6104.71.04.41.00.50.510.40.6176.8	0.5	0.6
Ganges Creek Burgess Spring Donkersley Spr.	0.008 0.026 <u>0.053</u> 0.087	0.008 0.026 <u>0.053</u> 0.087	$0.1 \\ 0.5 \\ 1.0 \\ 1.6$	1.0	1.2
Maxwell Creek Eric Spring Lake Maxwell Rippon Creek	0.053 0.053 24.759 <u>0.000</u> 24.865	$0.053 \\ 0.053 \\ 21.047 \\ \\ 21.153$	$1.0 \\ 1.0 \\ 421.0 \\ -\frac{-}{423.0}$	(200.0)	875.8 246.7 122.5
Mawhinna Creek Sinclair Swamp	0.132 <u>0.286</u> 0.418	0.132 	2.4 <u>2.5</u> 4.9	5 torouge in Huxwell L 0.3 0.3	$\frac{0.4}{0.4}$
Other Small Areas Acland Spring Acland Spr. No.2 Atkins Swamp Bell Spring Bessie Brook	0.445 0.174 0.026 0.026 0.026	0.274 0.174 0.026 0.026	6.5 3.2 0.5 0.5	6.8	8.4
Bogey Brook Suffolk Ac.Sp Bonnet Spring Booth Spring (cont'd next page)	1.742 1.454 0.026 0.026	0.026 - 0.026 0.026 0.026	0.5 15.0 12.8 0.5 0.5	12.2	15.1

1.010

	Demand Irrig'n. Period		Demand Volume s May-Nov	Existing Storage	Existing Storage
Watershed Area	(L/sec)		$\frac{(dam^3)}{dam^3}$	<u>(acft)</u>	(dam ³)
Other Small Areas:					the second s
(Cont'd)	0 050	0 0 0 0 0			$\sim 10^{-1}$
Bracket Spring	0.053	0.053	1.0		
Burtt Spring	0.053	0.053	1.0	0 -	е., С. с.
Caswell Creek	0.071		0.6		0.6
Crofton Spring Diffin Creek	0.286	-	2.5		2.5
Diffin Pond	0.857		: 7.4	6.0	7.4
	0.000	- 0 10F		•	$t^{2}x^{2}$
Edwal Spring Effie Spring	0.105 0.105	0.105	1.9		· ·
Harrison Pond	2.427	0.105	1.9	15 0	10 5
Herbert Spring	0.026	0.026	20.9 0.5	15.0	18.5
Holmes Spring	0.110	0.028			,
Hubbard Spring	0.026		2.0		
Indian Spring	0.026	0.026	0.5		
Joejones Spring		0.026	0.5		
Leslie Spring	0.026	0.000	1.0		
Lieberherr Spring		0.026	0.5		
Madrona Creek	0.410	0.026	0.5	2 5	4 2
Briggs Spring		0.053	4.1	3.5	4.3
Gilbert Brook		0.039	0.7	1 0	1 0
Ralph Spring	0.026	0.026	1.2 0.5	1.0	1.2
Ram Spring	0.026	0.026	0.5		
McLeod Spring	0.053	0.020	1.0	7	
Miles Spring	0.000	-	-		•
Mouat Spring	0.079	0.079	1.4		
Old Lowther Creek		0.053	1.0	· · ·	
Purdy Creek	0.026	0.026	0.5		n gent
Pickup Spring	0.026	0.020	0.5		•.
	0.026	0.026	0.5		
Scovell Creek	0.169	0.026	1.7	1.0	1.2
	0.145	0.145	2.7	1.0	1.2
-	0.197	0.197	3.6		·
	0.312	0.026	2.9		
	0.026	0.026	0.5		
	0.026	0.026	0.5	,	• · · · • • •
	0.143	-	1.2	1.0	1.2
	0.026	0.026	0.5	1.0	4.4
Tl.Other Areas 1	0.146	2.092	108.2	49.0	60.5
Total Middle					
	4.283	31.030	774.3 9	68.2 11	94.3
			·····		

1 · · ·

and the second

and the second second

Manual

1294 (Stor ...

200.2

Watershed Area	Demand Irrig'n. Period (L/sec)		Demand Volume May-Nov (dam ³)	Existing Storage (acft)	-
Fulford Creek Ackerman Spring Campbell Spring Daniel Brook Disney Spring Ford Lake Frost Swamp Furness Spring Gaspell Brook Horel Brook Kyler Creek Lautman Brook Lee Spring Lucy Spring Mollet Brook Mortenson Spring Quarrington Crk. Raynes Spring Reid Creek Robert Spring Rosemergy Lake Skuce Brook Cadorna, Caine, Sp. Skuce Brk.		$\begin{array}{c} 0.607\\ 0.026\\ 0.010\\ 0.053\\ 0.053\\ 0.026\\ -\\ 0.026\\ -\\ 0.131\\ 0.079\\ 0.026\\ 0.026\\ 0.026\\ 0.026\\ 0.026\\ 0.026\\ 0.026\\ 0.026\\ 0.026\\ 0.026\\ 0.026\\ 0.026\\ 0.026\\ 0.026\\ 0.026\\ 0.026\\ 0.026\\ 0.0253\\ -\\ 0.053\\ -\\ 0.053\\ -\\ 0.053\\ -\\ 0.053\\ -\\ 0.576\\ \end{array}$	$\begin{array}{c} 0.5\\ 2.0\\ 21.9\\ 1.0\\ 0.5\\ 8.0\\ 0.5\\ 6.2\\ 4.9\\ 1.4\\ 0.5\\ 0.5\\ 1.0\\ 0.5\\ 3.5\\ 0.5\\ 3.5\\ 0.5\\ 3.3\\ 1.0\\ -\end{array}$	5.0	8.0 6.1
Lake Stowell Robertson Spring	3.123 <u>0.026</u> 3.149	0.053 <u>0.026</u> 0.079	27.5 <u>0.5</u> 28.0	0.0	0.0
Weston Creek Lake Weston Spencer Spring	6.047 <u>0.079</u> 6.126	4.262 <u>0.079</u> 4.341	94.2 <u>1.4</u> 95.6	40.0	49.4 49.4
Other Small Areas (see next page)	<u>5.174</u>	<u>2.866</u>	73.4	<u>2.5</u>	<u>3.0</u>
Total South Saltspring Island	35.358	8.980	392.6	136.3	168.1
TL.SALTSPRING ISLAND	L38.037	75.565	1935.0 1	128.2	L391.6

	Demand Irrig'n.	Demand Rem.Low	Demand	Existing Storage	Existing Storage
Watershed Area	Period (L/sec)	Flow Mos (L/sec)	May-Nov	<u>(acft)</u>	(dam ³)
	<u> </u>				
Other Small Areas:	0 070	0 070			
Abraham Spring Arnold Creek	0.079	0.079	1.4		
Burgoyne Creek	0.936 0.105	0.079	8.9		
Carley Spring	0.597	0.105	1.9		
Ditmars Spr.	0.026	0.026	5.4	1.0	1.2
Cahill Brook	0.059	0.026	0.5		1.
Cedarhaven Spr.	0.039	0.059	1.1		
Collins Brook	0.105	0.039 0.105	0.7		
Connors Spring	0.026	0.026	1.9		
Coombes Spring	0.026	0.026	0.5 0.5		· .
Dana Spring	0.053	0.053	1.0		
Dirkson Spring	0.026	0.026	0.5		
Donald Spring	0.316	0.316	5.8		
Dowling Brook	0.053	0.053	1.0		
Dukes Spring	0.079	0.079	1.5		
Dunbar Spring	0.026	0.026	0.5		
E&W Hepburn Spr.	0.105	0.105	1.9		
Edmund Spring	0.026	0.026	0.5		
Eis Spring	0.039	0.039	0.7		
Fern Creek	0.131	0.131	2.4		
Firdausi Spring	0.026	0.026	0.5		
Ford Creek	· · · ·		0.0		
Edna Spring	0.053	0.053	1.0		
Forsen Brook	0.053	0.053	1.0		1
Frank Brook	0.053	0.053	1.0		
Garvey Spring	0.026	0.026	0.5		
Gerald Creek	0.105	0.105	1.9		
Gow Spring	0.026	0.026	0.5		
Hartnell Spring	0.026	0.026	0.5		F
King Creek	0.053	0.053	1.0		
Larlow Creek	0.053	0.053	1.0		
Lawrence Brook	0.026	0.026	0.5		
Lyla Creek	0.079	0.079	1.5		
Macalpine Brook	0.053	0.053	1.0		
Mitchell Spring	0.079	0.079	1.5		
Monty Creek	0.053	0.053	1.0		
Morrison Spring	0.036	-	0.3		
Nickerson Spring	<u>0.039</u>	<u>0.039</u>	0.7	. <u> </u>	·•
Sub-total	3.691	2.227	53.8	1.0	1.2

(more on next page)

ñ L

$\sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}{i} \sum_{i$	Demand Irrig'n.			Existing Storage	Existing Storage
Watershed Area	Period (L/sec)	Flow Mos <u>(L/sec)</u>		<u>(acft)</u>	(dam ³)
Other Small Drainage Areas Balance Fwd	3.691	2.227	<u>53.8</u>	<u>1.0</u>	1,2
Pendergast Spr. Perks Spring Questo Spring Roland Spring Rothwell Spring Smith Brook Soule Creek Spikerman Spring Summerhill Spr. Trench Creek Vans Spring ZZ Brook ZZ Creek	$\begin{array}{c} 0.026\\ 0.026\\ 0.071\\ 0.026\\ 0.026\\ 0.026\\ 0.279\\ 0.026\\ 0.105\\ 0.203\\ 0.026\\ 0.143\\ 0.500\\ 5.174 \end{array}$	0.026 0.026 0.026 0.026 0.026 0.279 0.026 0.105 0.132 0.026 - - - 2.866	$\begin{array}{c} 0.5\\ 0.5\\ 0.6\\ 0.5\\ 0.5\\ 5.1\\ 0.5\\ 1.9\\ 3.0\\ 0.5\\ 1.2\\ \underline{4.3}\\ 73.4 \end{array}$		0.6 1.2 3.0
<u>Total South</u> <u>Saltspring Island</u>	35.358	8.980	392.6		168.1
TL.SALTSPRING ISLAND1	38.037	75.565 1	.935.0	1128.2 1	391.6

6

APPENDIX F

PENDING WATER LICENCE APPLICATIONS

. Alter a

王神内

1.910月前

5時間 1

ាររំលោ<u>ត</u>

ยพ่อปลา

units i M		· .					LDIMP		,	
SOURCE	LICENCE NUMBER	FILE NUMBER		OM. pd	IRR. acft	IND. gpd	/CONS gpd	WWKS	TOTAL L/sec	STOR
<u>North (4-12-10)</u>									. "	: 4
St.Mary Lake	Z101046	1000793			15.0	_	· •	•	2.142	
St.Mary Lake	Z101048	1000802				-		141	5.515) 1
St.Mary Lake	Z101050	1000827						807	31.565	400.0
St.Mary Lake	Z101052	1000923		•		,			· · ·	(J): 15.0
St.Mary Lake	z101054	1001025								135.0
St.Mary Lake	Z101056	1001036	:	500	4.8	,			0.711	ta a sa
St.Mary Lake	Z101075	1001271			5.0				0.714	·
St.Mary Lake	Z103160	1001501	Ę	500	10.0	800			1.496	• • •
St.Mary Lake	Z104325	1001550					-2	32	1.252	25.0
St.Mary Lake	Z105124	1001600						269	10.522	25.0
St.Mary Lake	Z105308	1001606					186		0.010	25.0
St.Mary Lake	Z105603	1001637	5	500 ·					0.026	25.0
22 Creek	Z101058	1000914			1.0				0.143	1.0
ZZ Creek		1001622	10	000				•	0.053	
22 Spring	Z101062	1000915	5	500					0.026	
22 Spring	Z1 01082	1001278					372		0.020	
22 Spring	Z101671	1001400	5	00	8.0				1.168	
total North			35	ioo 4	3.8	800	558	1249	55.363	651.0
1				•						
<u>Middle(4-12-20)</u>										
Bonnet Spring	Z101386	1001392			30.0				4.283	•
Bullocks Lake	Z101151	1001363			0.5				0.071	
Bullocks Lake	2101153	1001375			0.5				0.071	
Bullocks Lake	Z102756	1001491					0.0		0.000	
Cusheon Lake	Z101072	1001176						15	0.587	
Cusheon Lake	Z101154	1001376	5	00					0.026	
Cusheon Lake	Z101336	1001414	5	00					0.026	
Cusheon Lake	Z102700	1001485				3500			0.184	
Cusheon Lake	Z104390	1001551	5	00					0.026	
Mansell Creek	Z103653	1001515			.3				0.036	.7
Mawhinna Crk	Z102885	1001493			2.0			·	0.286	
Miles Spring	Z101275	1001366	50	00	3.0	500			0.481	
Miles Spring	Z102560	1001477	50	00	4.0				0.597	

SALT SPRING ISLAND CURRENT APPLICATIONS BY WATERSHED AND PURPOSE/USE

SALT SPRING ISLAND CURRENT APPLICATIONS BY WATERSHED AND PURPOSE/USE

· .

-

.

	· N.			SALT SI	PRING IS	LAND		/1703		
- - 	CUF	RENT APP	LICA	TIONS E	Y WATERS	SHED AND	PURPOSE	:/USE		
OURCE	LICENCE	FILE NUMBER	•	Don. gpd	IRR. acft	IND. gpd	LDIMP /CONS gpd	WWKS acft	TOTAL L/sec	STOR
iles Spring	z102731	1001483		500	0.8	35~	38 -		0.140	:
2 Pond	Z101059	1001175			•		1488		0.078	
Z Pond	z101138	1001370			1.0				0.143	1.0
Z Spring	Z101069	1001174					2752		0.145	2
OTAL MIDDLE				3000	42.1	4000	4240	15	7.180	1.7
						/				
outh (4-12-30)				,	•	1		!		л ;
ake Weston	Z101863	1001626		-	2.0	500			0.312	1. e 1
osemergey Lk	z101100	1001341							0.000	31.0
Z Spring	Z101060	1000741		5000					0.263	
Z Spring	Z101099	1001324		500	30.0	500			4.336	
OTAL SOUTH		(* * [*]		5500	32.0	1000			4.911 🦿	31.0
· · ·									÷ •	£ .
OTAL ALT SPRING				12000	117.9	5.800	4798	1264	67.454	683.7
nul sertng										
397 ag								н 		2 I 1 1
.1 1		ć, r						•	. • *	•
									**	÷.,
en e		ŝ.							19 ⁹	
5 B									ann ta	
										•
				•						
н 									•	
•										••
										l
i .							•		·	<pre>* ;</pre>
										*
1 E			·				. *		, , ^{, , ,}	, <i>1</i>
• 4										• •
,										

APPENDIX G

REFERENCES

13.,

sion .

SALT SPRING ISLAND WATER ALLOCATION PLAN REFERENCES

<u>Чр8е</u>ь

, ·

- Barr, L. (1986) <u>7-Day Average Low Flow Estimates for Vancouver Island</u>. Ministry of Environment and Parks, Water Management, Hydrology Section, Nanaimo.
- Blecic, B. (1992) Ministry of Environment, Water Management Technician, Victoria Sub-Region. Interviews July, August, October, December 1992 at Victoria.
- B.C. Ministry of Environment and Parks (1988) <u>1987 Monitored and Regulated Water</u> Supplies Vancouver Island Region. Water Allocation and Regulation Section, Regional Water Management, Vancouver Island Region, Nanaimo.
- B.C. Ministry of Environment, Lands and Parks (1992) <u>Stream Register Report</u> <u>1992/07/10: Saltspring Island</u>. Water Licence Information System, Victoria.
- B.C. Ministry of Environment, Lands and Parks (1992) <u>Regional Water Allocation</u> <u>Policy, Vancouver Island Region</u>. Water Management-Region 1, Nanaimo, B.C.
- Coomes, O.T. (1979) <u>A Methodology for Quantitative Examination of Freshwater</u> <u>Resources on Marine Islands: A Case Study of North Saltspring Island</u>. A Report prepared for Islands Trust, Victoria.
- Environment Canada (1989) <u>Historical Water Levels Summary British Columbia 1988</u>. Inland Waters Directorate, Water Resources Branch, Water Survey of Canada, Ottawa.
- Environment Canada (1991) <u>Historical Streamflow Summary British Columbia to 1990</u>. Inland Waters Directorate, Water Resources Branch, Water Survey of Canada, Ottawa.
- Environment Canada (n.d.) <u>Canadian Climate Normals: Temperature and Precipitation</u> <u>1951-1980 British Columbia</u>. Canadian Climate Program, Pacific Region, Atmospheric Environment Service, Vancouver, B.C.
- Goddard, J.M. (1976) <u>Cusheon Lake, Saltspring Island Data Report for the Water</u> <u>Quality Monitoring Program June 1974 to June 1975</u>. Department of Environment, Water Resources Service, Water Investigations Branch, Victoria.
- Grange, P. & Assocs. (1987) <u>Islands Trust Ganqes Creek Task Force: Ganges Creek</u> <u>Flood Control Engineering Study (Preliminary)</u>. Ganges, B.C.
- Hodge, W.S. (1977) <u>A Preliminary Geohydrological Study of Salt Spring Island</u>. B.C. Ministry of Environment, Groundwater Section, Hydrology Division, Water Investigations Branch, Victoria.
- Islands Trust (1990) The Policy of the Islands Trust. Victoria.
- Islands Trust (1992) These Islands of Ours... Framing Our Common Future Victoria.
- Islands Trust (1992) These Islands of Ours... Framing Our Common Future: More Facts, Trends and Food for Thought. Victoria.
- Jones, D.P. & Associates (1986) <u>Preliminary Report: Salmon Enhancement Project</u> <u>for Ganges Creek, Saltspring Island</u>. Prepared for Island Stream and Salmonid Enhancement Society, Ganges, B.C.
- McKean, C.J.P. (1981) <u>Domestic Water Supply Potential of Blackburn, Bullock's,</u> <u>Ford & Stowell Lakes, Saltspring Island 1981-01-05</u>. B.C. Ministry of Environment, Assessment and Planning Division, Aquatic Studies Branch, Victoria.

SALT SPRING ISLAND WATER ALLOCATION PLAN REFERENCES

- Nordin, R.N. (1986) <u>The Water Quality of Weston Lake Saltspring Island</u>. B.C. Ministry of Environment, Water Quality Unit, Resource Quality Section, Water Management Branch, Victoria.
- Nordin, R.N., McKean, C.J.P. and Boyd, I.T. (1982) <u>Water Quality of Lake Maxwell,</u> <u>Saltspring Island</u>. B.C. Ministry of Environment, Assessment and Planning Division, Aquatic Studies Branch, Victoria.
- John Motherwell & Associates Engineering Ltd. (1988) North Salt Spring Island Waterworks District 1988 Report on Water Supply. Victoria.
- Salt Spring Island Trust Committee (1988) <u>Salt Spring Island Official Community</u> <u>Plan By-Law No.200</u>. Victoria.
- Spar Consultants Ltd. (1981) <u>Ganges Improvement Study March 31st, 1981</u>. Prepared for Island Trust Committee, B.C. Ministry of Municipal Affairs, Victoria.
- Statistics Canada (1992) 1991 Canadian Census. Supply and Services Canada, Ottawa, Ontario.
- Van Bruggen, W. (1992) Ministry of Environment, Water Management Technician, Victoria, Sub-Region. Interviews July, August, October, December 1992 at Saltspring Island and Victoria, B.C. Various DBASE IV Reports and EXCEL charts generated from Water Licence, Fisheries, Habitat and miscellaneous data files.

Water Survey of Canada (1988) <u>Historic Water Levels Summary 1987</u>. Inland Waters Directorate, Water Resources Branch, Water Survey of Canada, Ottawa.