Entrust DataCard Securing Digital Transactions and Identities

Presenter : Debs F Debs VP Professional Services Amercias

AGENDA

- About Entrust DataCard
- Digital Transactions
- Role of PKI in securing Digital Transactions
- ➢PKI Integrations
- ➢PKI and Internet of Things (IoT)
- ≻Crypto Summary.

Entrust DataCard Overview

Driving innovation in issuance, authentication, PKI and SSL technologies

\$600M+ in annual revenue

2,000+ employees in 34 worldwide locations

Sales, service and support covering 150+ countries

Headquartered in Minneapolis, Minnesota USA

Privately held, founded in 1969

Dentrust Datacard

0

8

0

SOLUTION AREAS

Digital Transactions

DIGITAL TRANSACTIONS

We transact daily when we generate , post, search and retrieve data

- Website, and Forms (Gov employee, ministries, public, partners)
- Emails, Files (classified content, judicial, PII, etc..)
- Sensitive changes (Changes to our system, processes, IT & security notifications)
- Financial data and transactions
- Access to Resources (Sharepoint, VPN, Wirelss, building access, record access...)

VALUE OF TRANSACTED DATA

The value of transacted data is not just monetary!!

- Advantage
- Access to personal records, espionage
- May be used to breach
- Ransom
- Reputation and brand tarnish
- Other

ATTACK VECTORS

Attack vectors vary depending on how the transactions are carried

- Masquerading
- Fishing and spearfishing
- Un-protected websites (non SSL enabled, DNS poisoning)
- Malware (downloaded, or installed, Key loggers, Scripts part of forms, Adobe, non signed drivers, applications, etc...)
- Password-less & Password only access to resources (Wireless, VPN)
- Un-authorized devices (BYOD, Laptops, tablets) gaining access

Many forms to list, however all of the attacks are after your Identity. Once the identity is stolen, data follow.

Public Key Infrastructure Role In securing the Digital World

TRANSACTIONS – THINGS TO CONSIDER

WHAT IS THE END GAME?

- Connect
 - Anyone or Anything ANYWHERE
- ...and Trust
 - it is or they are who they say they are
- ...and Enable to transact securely

THE ACTUAL END GAME..

Enablement

ENABLING PKI SIGNATURES

STRONG AUTHENTICATION

ENABLING PKI ENCRYPTION

HOW IS IT DONE?

- A digital certificate is an object that contains
- Holders Identity/Name
- Valid from to date
- Valid to date
- Issuer (Organization/Issuer Name)
- Public key used to communicate with you
- Private key the owner keeps to themselves

WHAT DOES A PKI LOOK LIKE

Using PKI

Uniqueness of PKI

Leverage Trusted Identities for Multiple Purposes

Authentication

Authenticity

Encryption Secrecy & confidentiality

Digital Signatures Accuracy & Integrity

PKI End-Entities

Trusted Identities

ENABLING TRANSACTIONS

Secure Transactions

ENTERPRISE APPLICATIONS

Enterprise Use Cases

PKI FOR ENTERPRISE AND BEYOND

PKI Integrations

ENTELLIGENCE AUTO-ENROLLMENT

- Entrust Auto-Enrollment Service
 - Supports Auto-enrolment for:
 - Entrust Entelligence for Windows
 - Entrust Entelligence Secure Desktop for Mac (Coming in SDM 8.1 SP1)

ENTELLIGENCE AUTO-ENROLLMENT

Users will be prompted to enter a PIN or password if the private keys are configured to be stored on smart cards/tokens or in an Entrust EPF file

WINDOWS NATIVE ENROLLMENT

- Entrust Windows Network Enrollment Service
 - Provides client-less PKI enrolment for the Windows OS _
 - Single Admin Services install can support multiple WNES / AD Domains
- Supports
 - Self-Enrollment
 - Queued Enrollment

- Self Enrollment with Key Archive
- Enroll On Behalf Of with key archive

MDM INTEGRATION

- Allows MDMs to issue Entrust digital IDs to mobile devices •
 - Unified WS Interface to both IDG and Admin Services
- IdentityGuard SSM has native capability to enroll Mobile Devices for • certificates without MDM

CSR ENROLLMENT

- Web Application for summation and approval of PKCS#10 CSR
- Supports

31

- Client Auth / AD auth of submitters and approvers
- Queued Operations
- CSR rules / validation

SCEP ENROLLMENT

- Entrust SCEP Implementation offers RSA and ECC enrollment
- Static SCEP Password defined for enrollment / renewal operations

CMPV2 ENROLLMENT

- Entrust CMPv2 Implementation offers RSA and ECC enrollment •
- Static Password or Vendor Certificate authentication enrollment / renewal • operations
- IP Address or DNS whitelist validation •

EST ENROLLMENT

- Entrust EST Implementation offers RSA and ECC enrollment •
- Vendor Certificate authentication enrollment / renewal operations •

PKI And Internet of Things (IoT)

PKI MARKET TRENDS

- Internet of things
 - Wearables
 - Smart Traffic Systems
 - Automotive
 - Appliances
 - Smart Meters
 - Audio Visual Set-top Boxes
 - Vending machines
 - Toys

"Forecast: The Internet of Things, Worldwide, 2013" - Gartner

- IoT Challenges
 - Speed
 - Scale
 - Device heterogeneity, issuance and attributes
 - Assurance requirements and transaction types:
 - Closed usage model
 - Revocation and validation
 - Life cycle and renewal

The installed base of "things," excluding PCs, tablets and smartphones, will grow to 26 billion units in 2020, which is almost 30-fold increase from 0.9 billion units in 2009

Latest Crypto

Summary

38

- RSA, ECC are still the crypto of choice
- Winternitz One Time Signagture (WOTS), Merklee Hash Tree(MHT), Extended Merklee Signature Scheme(XMSS)
- Quantum computers
 - Not just massively-parallel classical computers
- Large-scale quantum computers are coming
- This will result in the need for new cipher suites
 - But, not for several years
 - 2025 minus the algorithm security lifetime
- It can take <u>several years</u> to roll out a new cipher suite
 - Even if the new cipher suite has similar characteristics to those of the old one
- How long will it take if the new cipher suite has different characteristics? Such as:-
 - Upper limit on the number of signatures per key
 - The need to maintain state
- Not too early to be thinking about this

BIBLIOGRAPHY

Quantum computers:

"The quest for the quantum computer", Julian Brown, Touchstone, 2001

"Quantum Computing Lecture Notes", Ronald de Wolf, 2011, http://homepages.cwi.nl/~rdewolf/qcnotes.pdf

Post-Quantum Cryptography:

"NSA Suite B Cryptography", NSA, 2015-08-19, https://www.nsa.gov/ia/programs/suiteb_cryptography/

Commercial National Security Algorithm Suite and Quantum Computing, NSA, Jan 2016,

https://www.iad.gov/iad/customcf/openAttachment.cfm?FilePath=/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/assets/public/upload/Commercial-National-Security-Algorithm-CNSA-Suite-Factsheet.pdf&WpKes=aF6woL7fQp3dJirQ4SVyNDgjbSJ9a88xZcnLAL

"A riddle wrapped in an enigma", Koblitz, Menezes, 2015-12-03, http://eprint.iacr.org/2015/1018.pdf

"Post-Quantum Cryptography for Long-Term Security", PQCrypto, September 2015, <u>http://pqcrypto.eu.org/docs/initial-recommendations.pdf</u>

Hash-based signatures:

"Hash based signatures", Imperial Violet, 18 Jul 2013, https://www.imperialviolet.org/2013/07/18/hashsig.html

XMSS – A Practical Forward Secure Signature Scheme based on Minimal Security Assumptions, Buchmann et al, November 2011, https://eprint.iacr.org/2011/484.pdf

XMSS: Extended Hash-Based Signatures

draft-irtf-cfrg-xmss-hash-based-signatures-03, Huelsing et al, Feb 2016, https://www.ietf.org/id/draft-irtf-cfrg-xmss-hash-based-signatures-03.pdf

Lattice-based cryptography:

"Lattice-based Cryptography", Daniele Micciancio, Oded Regev, July 22, 2008, http://www.cims.nyu.edu/~regev/papers/pqc.pdf

Code-based cryptography:

"McBits: fast constant-time code-based cryptography", Bernstein et al, 2013, <u>http://binary.cr.yp.to/mcbits-20130616.pdf</u> Wikipedia article on McEliece Cryptosystem

Questions?

