BIOMETRICS
INFORMATION
(You're 95% likely to need this information)

SUBJECT: ANOVA: Using a hand calculator to test a one-way ANOVA

Hand calculators can be used to do one-way ANOVA calculations. The calculator must have a key that calculates means and standard deviations. Suppose that there are $\mathrm{i}=1,2, \ldots$, a treatments in the ANOVA, and each treatment has a sample size, n, and an observed mean \bar{Y}_{i} with a standard deviation S_{i}. The method (for balanced ANOVA's) is as follows:

STEP 1: Enter all values, Y_{ij}, for one treatment to obtain $\overline{\mathrm{Y}}_{\mathrm{i}}$ and S_{i} (or $\mathrm{S}_{\mathrm{i}}^{2}$). Record using many decimal places. If possible accumulate S_{i}^{2} in a memory (Step 3).

STEP 2: Repeat for each treatment.

STEP 3: Calculate the Sums of Squares Error (SSE) by: SSE $=(\mathrm{n}-1) \sum \mathrm{S}_{\mathrm{i}}^{2}$ or the Mean Sums of Squares Error (MSE) by: MSE $=\left[\Sigma S_{\mathrm{i}}^{2}\right] / \mathrm{a}$.

STEP 4: Enter all the means, \bar{Y}_{i}, to obtain S_{m}, the standard deviation of the means. Use lots of decimal places when inputting the means to avoid round-off error.

STEP 5: Calculate the Sums of Squares Between (SSB) by: $\mathrm{SSB}=\mathrm{n}(\mathrm{a}-1) \mathrm{S}_{\mathrm{m}}^{2}$ or the Mean Sums of Squares Between (MSB) by: $\mathrm{MSB}=\mathrm{nS}_{\mathrm{m}}^{2}$

STEP 6: Calculate the F-value as:
$\mathrm{F}=\frac{\mathrm{SSB} /(\mathrm{a}-1)}{\operatorname{SSE} /(\mathrm{a}(\mathrm{n}-1))}=\frac{\mathrm{MSB}}{\mathrm{MSE}}=\frac{\mathrm{anS}_{\mathrm{m}}^{2}}{\Sigma \mathrm{~S}_{\mathrm{i}}^{2}}$, with df $=[(\mathrm{a}-1),(\mathrm{a}(\mathrm{n}-1))]$
Example:

Treatment	Data	Standard		
		Mean, $\overline{\mathrm{Y}}_{\mathrm{i}}$	Deviation, S_{i}	$\mathrm{S}_{\mathrm{i}}^{2}$
1	53561	4.0000	2.0000	4.0000
2	12203	1.6000	1.140175	1.3000
3	54752	$\underline{4.6000}$	$\underline{1.816590}$	3.3000
	Grand Mean:	3.4000	Sum:	8.6000
	Std. Dev. S_{m} :	1.587451		

In this case, $\mathrm{a}=3, \mathrm{n}=5, \sum \mathrm{~S}_{\mathrm{i}}^{2}=8.6000$, and $\mathrm{S}_{\mathrm{m}}^{2}=2.52000$. Hence:
and

$$
\begin{gathered}
\mathrm{MSE}=\frac{\sum \mathrm{S}_{\mathrm{i}}^{2}}{\mathrm{a}}=\frac{8.6000}{3}=2.86666 \\
\mathrm{MSB}=\mathrm{nS}_{\mathrm{m}}^{2}=5(1.587451)^{2}=12.6000 \\
\mathrm{~F}=\frac{12.6000}{2.866666}=4.395 \text { with df }=2,12
\end{gathered}
$$

and

CONTACT: Wendy Bergerud 387-5676

The residual df for a simple regression on a dataset with 50 observations is 48 . With three independent variables the df become 50-4=46. The df for a dataset with 3 numbers is $3-4=-1$. Since df must have positive values, this means that a multiple regression with 3 variables can not be fit to a dataset with only 3 observations.

The residual df for a dataset with 70 observations divided into 6 groups would be $\mathrm{df}=70-6=64$. The df for the F-test is 5,64 .

The df for the usual contingency table χ^{2}-value is $(3-1)(6-1)=10$.
The df for a t -test of a mean with a sample size of 80 is 78 .

Calculate the SSB, MSE, and the F-test for the following data:

Treatment	Data	Mean, $\overline{\mathrm{Y}}_{\mathrm{i}}$	Standard Deviation, S_{i}	$\mathrm{S}_{\mathrm{i}}^{2}$
1	53101			
2	76584			
3	119767			
4	106996			
	Grand Mean:			
	Std. Dev. S_{m} :			

