

PAMPHLET NO. # 22

BIOMETRICS INFORMATION

(You're 95% likely to need this information)

DATE: October 12, 1989

SUBJECT: ANOVA: Using a hand calculator to test a one-way ANOVA

Hand calculators can be used to do one-way ANOVA calculations. The calculator must have a key that calculates means and standard deviations. Suppose that there are i = 1, 2, ..., a treatments in the ANOVA, and each treatment has a sample size, n, and an observed mean \overline{Y}_i with a standard deviation S_i . The method (for balanced ANOVA's) is as follows:

- STEP 1: Enter all values, Y_{ij} , for **one** treatment to obtain \overline{Y}_i and S_i (or S_i^2). Record using many decimal places. If possible accumulate S_i^2 in a memory (Step 3).
- STEP 2: Repeat for each treatment.

STEP 3: Calculate the Sums of Squares Error (SSE) by: $SSE = (n-1) \sum S_i^2$ or the Mean Sums of Squares Error (MSE) by: $MSE = \left[\sum S_i^2\right] / a$.

- STEP 4: Enter all the means, \overline{Y}_i , to obtain S_m , the standard deviation of the means. Use lots of decimal places when inputting the means to avoid round-off error.
- STEP 5: Calculate the Sums of Squares Between (SSB) by: $SSB = n(a-1) S_m^2$ or the Mean Sums of Squares Between (MSB) by: $MSB = nS_m^2$
- STEP 6: Calculate the F-value as:

$$F = \frac{SSB/(a-1)}{SSE/(a(n-1))} = \frac{MSB}{MSE} = \frac{anS_m^2}{\Sigma S_i^2}, \text{ with } df = [(a-1), (a(n-1))]$$

Standard

Example:

		Standard		
Freatment	Data	Mean, \overline{Y}_i	Deviation, S _i	S_i^2
1 2 3	$5 \ 3 \ 5 \ 6 \ 1 \\1 \ 2 \ 2 \ 0 \ 3 \\5 \ 4 \ 7 \ 5 \ 2$	4.0000 1.6000 4.6000	2.0000 1.140175 1.816590	4.0000 1.3000 3.3000
	Grand Mean:	3.4000	Sum:	8.6000
	Std. Dev. S _m :	1.587451		

In this case, a = 3, n = 5, $\Sigma S_i^2 = 8.6000$, and $S_m^2 = 2.52000$. Hence:

$$MSE = \frac{\sum S_i^2}{a} = \frac{8.6000}{3} = 2.86666$$

 $MSB = nS_m^2 = 5(1.587451)^2 = 12.6000$

and

and

$$F = \frac{12.6000}{2.866666} = 4.395$$
 with df = 2, 12

CONTACT: Wendy Bergerud 387-5676

-PROBLEMS FROM BI #21-

The residual df for a simple regression on a dataset with 50 observations is 48. With three independent variables the df become 50 - 4 = 46. The df for a dataset with 3 numbers is 3 - 4 = -1. Since df must have positive values, this means that a multiple regression with 3 variables can not be fit to a dataset with only 3 observations.

The residual df for a dataset with 70 observations divided into 6 groups would be df = 70 - 6 = 64. The df for the F-test is 5, 64.

The df for the usual contingency table χ^2 -value is (3-1)(6-1) = 10.

The df for a t-test of a mean with a sample size of 80 is 78.

-NEW PROBLEM-

Calculate the SSB, MSE, and the F-test for the following data:

			Standard	
Treatment	Data	Mean, \overline{Y}_i	Deviation, S _i	S_i^2
1 2 3 4	$\begin{array}{c} 5 \ 3 \ 1 \ 0 \ 1 \\ 7 \ 6 \ 5 \ 8 \ 4 \\ 11 \ 9 \ 7 \ 6 \ 7 \\ 10 \ 6 \ 9 \ 9 \ 6 \\ \end{array}$ Grand Mean: Std. Dev. S_m :			