

Corporate Services for the Natural Resource

Sector

Information Management Branch

Standards for Java Development

Last Updated: July 20, 2012

Version: 1.1.0

Document: NRS_Java_Development_Standards_1.1.0

NRS_Java_Development_Standards_1.1.0.docx Page 2 of 28

Table of Contents

1. VERSION CONTROL .. 4

2. INTRODUCTION .. 5
2.1 Purpose ... 5
2.2 Audience... 5
2.3 Scope/Exclusions ... 5
2.4 Assumptions ... 5
2.5 Definitions .. 5

2.6 Contacts .. 6

3 DELIVERABLES ... 6
3.1 Data Model ... 6
3.2 Executable Software ... 6

3.3 Source Code ... 7
3.4 Build Scripts ... 7
3.5 Development Tools .. 7

3.6 Documentation ... 7

4 DEVELOPMENT RULES & GUIDELINES .. 7
4.1 Development Process ... 8
4.2 Data Source Configuration ... 9
4.3 Coding Style ... 9

4.4 Source File Layout ... 10
4.5 Programming Techniques .. 11

4.6 Internal Documentation .. 11

4.7 Error Handling.. 12

4.8 Logging .. 14
4.9 XML Compressors & Accelerators .. 16

4.10 Java Naming Conventions .. 16
4.11 Sector Database Object Naming ... 17

5 APPLICATION DESIGN .. 17
5.1 Architecture Overview ... 17
5.2 Deployment Pattern .. 19
5.3 Movel View Controller Framework ... 19

5.4 Java Server Pages ... 19
5.5 Abstract Persistence Layer - Object Relational Mapping .. 19

6 APPLICATION ENVIRONMENT ... 20
6.1 Client Tier (Workstation) ... 21
6.2 Middle Tier (Internet Application Server) ... 21
6.3 Data Tier (Oracle Database) ... 22

7 SECURITY ... 22
7.1 Authentication .. 23

NRS_Java_Development_Standards_1.1.0.docx Page 3 of 28

7.2 Authorization .. 24
7.3 Database Access ... 25

7.4 Sector Database Role Naming.. 26

7.5 Enforcing Application Flow ... 26

8 REPORTS .. 27
8.1 Designing Reports .. 27
8.2 Charting .. 27

9 COMMON COMPONENTS .. 27
9.1 Mandatory Common Components ... 27
9.2 Additional Java Libraries ... 27

10 DOCUMENTATION .. 28
10.1 Release Notes ... 28

10.2 Application Use .. 28
10.3 Application Configuration .. 28
10.4 Instructions for Compilation ... 28

10.5 Design Revisions to As-Built ... 28

NRS_Java_Development_Standards_1.1.0.docx Page 4 of 28

1. Version Control
Document

Version

Revision Date Author(s) Change Reference

1.00 2012-Mar-01 Mark Will This standard was initially created for

MOE/MAL and has been updated to

become a Natural Resource Sector

standard.

1.0.0 Final April 2012 L Solomon Published

1.1.0 July 2012 D. Dawson Minor edits throughout.

NRS_Java_Development_Standards_1.1.0.docx Page 5 of 28

2. Introduction

2.1 Purpose

The intent of this document is to describe the guidelines and standards to be followed when

developing web applications using the Java programming language for the Sector. This

document will focus on development standards specific to the Sector; it is not intended to be a

general guide to Java programming. For detailed specifications concerning the Java

programming language, refer to the Oracle website.

2.2 Audience

This document is directed at those who will be designing, developing and maintaining Java

based application systems for the Sector. This includes external contractors, consultants, and

business partners, as well as Sector employees.

2.3 Scope/Exclusions

The scope of this document covers all Java application development but is primarily focused on

web-based deployments. The document does not address the low-level design of an application,

but rather provides high level considerations for a starting point for detailed design. Application

delivery standards are mentioned but the details are documented within other standards

documents.

Where conflicts, if any, are perceived between this document and other standards, the Sector

Business Portfolio Manager (BPM) must be consulted.

2.4 Assumptions

It is assumed that the audience has a working knowledge of the Java programming language,

J2EE, Oracle's Designer (CASE) product, and Oracle relational database technology.

2.5 Definitions

The following definitions apply throughout this document.

2.5.1 Standards

A standard is a specific statement of the rules and constraints governing the naming, contents,

and operations of software. A standard must be followed. There is a contractual obligation on

the part of the vendor/developer to adhere to all relevant standards.

2.5.2 Guidelines

A guideline is a method or custom, which through common usage has become an accepted

method of work. A guideline is not enforced, and is not a standard.

2.5.3 Sector

Unless otherwise specified, "Sector" is taken to collectively mean the Ministries and agencies

which are included under the umbrella of the Natural Resource Sector. All are served by a

http://www.oracle.com/java

NRS_Java_Development_Standards_1.1.0.docx Page 6 of 28

common Corporate Services Division and thus Information Management Branch (IMB) with the

mandate to formulate and maintain application development standards.

2.5.4 Automatic Field

The term “Automatic Field” is used to mean a word or phrase within a document that whose

value is generated based on information available to the system. In Microsoft Word, these are

called “Field Codes”. Examples relevant to this document include document filename, page

number, total number of pages, and document date.

2.6 Contacts

All inquiries regarding these standards should be directed to the Business Portfolio Manager

assigned to the project.

3 Deliverables
The following subsections describe the core types of deliverable components expected for each

release of any application (as applicable). Additional deliverables may be specified for any

application and will normally be indicated in the RFP.

For more detailed specifications regarding this topic refer to the Application Delivery Standards

and the Java Application Delivery Standards; please note that these documents are available only

on the Sector Intranet web server -- developers will require a VPN account to access these

documents.

3.1 Data Model

Before any application can be delivered, the data model for the application must be approved by

the Data Administration team. Every project will have a member of this team assigned to it and

developers should keep in regular contact with this person while establishing, updating, and

extending the data model.

For more detailed specifications regarding this topic refer to the NRS Data Modelling Standard.

3.2 Executable Software

All deliveries of Java based applications must be in Enterprise Archive (EAR) format. A separate

EAR file is required for each application. EAR files will be deployed in the Java EE server under

separate context roots, thus leveraging the Java Virtual Machine (JVM) as a mechanism for

ensuring that each application is functionally isolated from other applications sharing the same

JVM. In addition, the NRS Middleware Stack has multiple JVMs to isolate groups of

applications.

NOTE: The Sector has a slightly different requirement for delivering Java-based application

releases developed for the legacy JRun environment. Developers should consult with the

Architecture Group and the Application Delivery Team well in advance of delivery.

NRS_Java_Development_Standards_1.1.0.docx Page 7 of 28

All components that are required by the application to execute to its specification, excluding

generally available standard software of the WebADE, must be provided to the Sector. This

includes binary code and support files such as images, configuration files, etc.

For more detailed specifications regarding this topic refer to the Application Delivery Standards

and the Java Application Delivery Standards.

3.3 Source Code

Source code for all software not included in the standard WebADE components must be

provided as part of the project deliverables. This software will become the property of the

Province of BC. All of the Java code must be compiled at the Sector site to ensure that there are

no syntax errors and that it compiles in the Sector environment.

For more detailed specifications regarding this topic refer to the Application Delivery Standards

and the Java Application Delivery Standards.

3.4 Build Scripts

All of the Java deployable components must be compiled at the Sector environment. It is not

acceptable to skip the compilation step. The public domain tool Ant, available from the Jakarta

project, must be used for component compilation.

The current Ant version is listed in the Systems and Application Technology Standards Summary.

NOTE: The Sector has a slightly different requirement for building Java-based application

releases developed for the legacy JRun environment. Developers should consult with the

Architecture Group and the Application Delivery Team well in advance of delivery.

3.5 Development Tools

The term 'IDE' refers to an integrated development environment tool for writing standalone Java

classes, HTML pages, Java servlets, and Java Server Pages. Such a tool can assist with the

graphical layout of the user interface of a Java-based application, with writing Java code, and

with running, testing and debugging the application.

The Sector will permit application developers to use any IDE that generates Java EE 1.7 (or

above) compliant code; proprietary code and extensions must not be used in the development of

an application (e.g. use of Oracle's Business Components for Java (BC4J) will not be permitted).

3.6 Documentation

See Documentation for standards concerning required documentation associated with an

application.

4 Development Rules & Guidelines
This section describes the Sector expectations of how applications will be developed from both

macroscopic and microscopic perspectives. These expectations are illustrated in terms of rules,

which specify what must be done, and guidelines, which explain how things should be done.

NRS_Java_Development_Standards_1.1.0.docx Page 8 of 28

4.1 Development Process

The application development and delivery process is described in Java Application Delivery

Standards.

4.1.1 Quality Assurance (Source Code Reviews)

The Sector has defined formal quality assurance guidelines that will apply to each phase of the

System Development Life Cycle (SDLC).

The Sector Information Management Branch (IMB) will review all Java source code as part of

the Sector Quality Assurance process associated with the delivery of Java based applications to

the Sector. Java source code delivered to the Sector must conform to Sun's Code Conventions for

the Java Programming Language.

Java code delivered to the Sector that does not conform to Sun's Code Conventions for the Java

Programming Language will not be accepted. Vendors will be required to modify their code to

conform to Sun's Code Conventions before the application will be accepted by the Sector.

Specifically, the code must pass an automated audit process without generating any errors or

warnings.

The Sector employs the CheckStyle utility to analyze compliance of Java source code to Sun's

Java Coding Standards. The Sector CheckStyle configuration file contains a customized sub-set

of the rules included in the sun_checks.xml file that is included with the standard SourceForge

CheckStyle distribution. See in-line comments in env_checkstyle.xml for a explanation of the

checks, cross-referencing CheckStyle reference documents where necessary.

CheckStyle plug-ins are available on the SourceForge CheckStyle web site for many popular

Java Integrated Development Environments (e.g. Eclipse, JBuilder, NetBeans, etc.). Vendors are

expected to use CheckStyle within their development environment in order to ensure that Java

code is consistent, well structured, and properly documented.

CheckStyle can also be run interactively from the command line or integrated in an Ant build

script. The Sector provides a sample Ant build script along with the Sector CheckStyle

configuration file, all packaged in a zipfile (env_checkstyle.zip).

The Sector may also perform review source code for such things as:

 structure in accordance to commonly accepted programming practices; complete and

meaningful documentation

 portability and reusability

NOTE: The Sector has an additional utility for performing basic quality checks on application

releases developed for the legacy JRun environment. Developers should consult with the

Architecture Group and the Application Delivery Team well in advance of delivery.

NRS_Java_Development_Standards_1.1.0.docx Page 9 of 28

4.1.2 Exemption from Standards

Any exemption from Sector system and application technology standards must be approved in

writing by the Head of Architecture, IMB. Any such approval must be in place before

development. This includes use of components that are outside Sector standards (including third-

party java libraries), technology dependencies, failure to use mandatory security components,

failure to use common components for common functions, use of unsupported component

versions, requirement for components not within standard deployment patterns, or any other

deviation from standards.

4.2 Data Source Configuration

Developers will need to replicate the data sources that the application will use in production.

This involves (i) establishing the structure of the data sources, (ii) replicating those sources in the

development environment (i.e. the vendor's environment), and (iii) populating the data tables

appropriately for development.

In projects where the data sources already exist, the data source structure can be taken directly

from them. In most projects, however, some data modeling will be required. In this case the data

sources will be established as defined by the data model.

In some situations, the Sector may provide development-level data sources for developers to use.

The Sector will generally supply developers with sample data.

Any vendor to whom data sources are provided must comply with the British Columbia Freedom

of Information and Protection of Privacy Act. Attention is particularly drawn to section 30.1,

which specifies that "A public body must ensure that personal information in its custody or under

its control is stored only in Canada and accessed only in Canada."

Please contact the Sector Business Portfolio Manager for assistance.

4.3 Coding Style

The Sector bases its Java programming style on Sun's Code Conventions for the Java

Programming Language, as found at the locations:

Code Conventions for the Java Programming Language

Code Conventions for the JavaServer Pages

These conventions include basic guidelines for naming (files and code), code layout, comments,

and general programming practices.

Vendors should include JavaDoc style comments in their code as per Sun's Javadoc Standards;

each source file should begin with a file header level standard Javadoc comment as shown

below.

/*

$Id: java_standards_23.html,v 1.1 2006/03/31 01:07:06 teglover Exp $

http://www.bclaws.ca/EPLibraries/bclaws_new/document/ID/freeside/96165_00
http://www.bclaws.ca/EPLibraries/bclaws_new/document/ID/freeside/96165_00
http://www.bclaws.ca/EPLibraries/bclaws_new/document/LOC/freeside/--%20F%20--/Freedom%20of%20Information%20and%20Protection%20of%20Privacy%20Act%20RSBC%201996%20c.%20165/00_Act/96165_03.xml#section30.1
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://java.sun.com/developer/technicalArticles/javaserverpages/code_convention/

NRS_Java_Development_Standards_1.1.0.docx Page 10 of 28

Copyright (c) 2006,
Government of British Columbia,
Canada

All rights reserved.
This information contained herein may not be used in whole or in part without the

express written consent of the Government of British Columbia, Canada.
*/

4.4 Source File Layout

Java source files must have a specific layout, as described in the following subsections.

For more detailed specifications regarding this topic refer to the How to Write Doc Comments

for the Javadoc Tool document.

4.4.1 Header block

Every source file should begin with a simple Javadoc style header block that identifies the file

and provides a copyright disclaimer. The "header" comment block should appear as in the

following example:

/**
 * @(#)MyClass.java

 * Copyright (c) 2005, Province of British Columbia.

 * All rights reserved.
 */

4.4.2 Class Definition

The code defining the class should be immediately preceded by a Javadoc comment describing

the class. This comment provides general information about the class and references to related

items. A brief explanation or example of how the class can be used is encouraged but not

required.

The class definition comment must contain complete Javadoc @author tags and a @version tag

near the end.

Contributors should be listed in order of the date of their first contribution, with the original

author listed first.

The Javadoc block for the class should end with @author and @version tags, as shown:

/**
 * This class is used to ...

 * ... etc ...

 *
 * @author Jane Doe

 * @author John Doe

 * @version 2.3

 */

Use of other tags, such as @see and @link is encouraged to improve navigation in the generated

Javadoc.

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

NRS_Java_Development_Standards_1.1.0.docx Page 11 of 28

4.4.3 Methods, Initialisation Blocks, Variables, and Constants

The Javadoc blocks for each constructor and method, as well as non-private instance variables,

must contain @param, @return, @throws Javadoc tags as appropriate. Also, each such block

must end with the @since tag, as shown, if the product release currently under development is

newer than the original version (e.g., not version 1.0):

/**
 * Verifies the name against a database of known champions ...

 * ... etc ...

 *
 * @param name
 * the name of the person to verify.

 * @param dbURI

 * the URI of the file containing the database of champions.

 *

 * This is used to obtain a reference in the file system relative

 * to the root location of the application.

 *
 * @return

 * <CODE>true</CODE> if found, </CODE>false</CODE> otherwise.

 *

 * @throws FileNotFoundException

 * if a file corresponding to <CODE>dbURI</CODE> cannot be found.

 *

 * @since 1.0

 */

4.4.4 JSP Documentation

A JSP file or fragment file must begin with a server side style comment:

<%--
 - Author(s):

 - Date:

 - Copyright Notice:

 - @(#)

 - Description:
--%>

This comment is visible only on the server side because it is removed during JSP page

translation. Within this comment are the author(s), the date, and the copyright notice of the

revision, an identifier and a description about the JSP page for web developers

4.5 Programming Techniques

For details regarding programming techniques, please refer to the Code Conventions for the Java

Programming Language

.

4.6 Internal Documentation

Source for WebADE applications must be thoroughly commented, as described below.

Use Javadoc-style comments for all classes, methods, and class & instance variables, for all

access levels. Use "//" syntax for local variables in methods and for large blocks of code,

whenever their purpose or behaviour is contextually unclear from the perspective of an

experienced programmer who is otherwise uninvolved with the source code. Local variables in

http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html

NRS_Java_Development_Standards_1.1.0.docx Page 12 of 28

methods need not be commented if their scope is narrow and if their use is readily deduced from

the context.

Comment lines should not extend beyond the 72nd character position of a page (assuming fixed-

width font).

For more detailed specifications regarding this topic refer to the How to Write Doc Comments

for the Javadoc Tool document.

4.6.1 Methods and Instance Variables

A multi-line Javadoc style comment that describes the purpose and/or behaviour of the method,

its arguments, its return type, and any exceptions thrown explicitly within the method should

precede each method.

Non-private class & instance variables should also be preceded by a Javadoc comment, which

may be a single-line comment if brief enough, as in:

/** Holds the unprocessed input string */ public String rawInputString;

4.6.2 Code Within Methods

Provide regular comments for all major subsections of code, using white space liberally, but not

excessively, to distinguish these sections. The major subsections in a typical source file include

the overall class declaration, the class and instance variables, the constructors, and the methods.

Comments are not required for obvious items, such as simple "getter" and "setter" bean pattern

methods.

4.6.3 Custom Tags

The Javadoc comment for a custom tag class should include a description on how to use the tag

in a JSP, including the syntax, parameters, and where specifically the tag should be used within a

JSP. An example is desirable.

4.7 Error Handling

Applications should track errors, reporting internal problems to the log(s) using Commons

Logging and reporting usage errors to the user.

Internal problems usually manifest themselves as Java exceptions and those can usually be

handled within the code; otherwise, the problem is normally severe and requires operator

intervention to correct.

Interaction errors occur when users attempt to perform an action incorrectly with respect to the

"normal" flow of the application, such as entering invalid input into a form or attempting to

access a page out of sequence. There are three main issues with either type of error handling:

How to identify them

Where to respond to them

How to display them

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

NRS_Java_Development_Standards_1.1.0.docx Page 13 of 28

4.7.1 Exception handling

When preparing to handle an exception, consider if it can be prevented. The following may

provide some ideas:

 Provide default values for anticipated data when their availability and validity cannot be

guaranteed.

 Make sure that input fields are trimmed of excess spaces.

 Use defaults to avoid null values unless specifically anticipated.

The sections below provide information on the how to identify the exception as well as how to

properly react to the exception within your code.

4.7.1.1 Identification

Error handling should use Java exceptions wherever possible to ensure that the occurrence of

errors is explicit and that they must be dealt with. This should include class constructors that

cannot tolerate certain conditions (e.g., if a constructor must have all non-null arguments, it

should throw an IllegalArgumentException so that the caller can abandon the object it attempted

to create).

In general, specific exception classes should be defined to handle errors beyond what the

standard Java API exception classes are intended for.

The Sector core components add several exception classes. These are introduced in the technical

document that comes with the WebADE components.

4.7.1.2 Response

Exceptions should be handled at the point in the code where it makes most sense to do so. For

example, exceptions need not be caught "immediately" in the code when they are generated.

Instead, methods that generate exceptions, either locally or through a call to another method, can

be declared to throw that exception with the expectation that it will be handled "further down the

procedure stack".

Since Java does not require handling of some exceptions, developers should be careful to make

sure that they handle all exceptions that could occur. Unfortunately, this can sometimes demand

the handling of a large number of exceptions, so grouping their "handler" code is encouraged as

long as the granularity of response is sufficient. For example, the Exception type alone might

be caught instead of several different types of exceptions individually, as long as it is sufficient

to know that an exception occurred.

When an exception is thrown, the application should catch and attempt to process it immediately

if the error can be easily handled at that point and if it makes logical sense to do so. An example

of an error that would be easy to handle is if an input field in a Web browser form is incorrectly

entered and the application specifies to replace erroneous input with default values. This kind of

exception may not even be important enough to log.

NRS_Java_Development_Standards_1.1.0.docx Page 14 of 28

4.7.1.3 Displaying

This section describes what types of error conditions should be reported upon detection and to

who/where. Errors may be reported to application logs so that operators can review them, or to

client display pages so that users are notified, or both. For information on how to log errors, see

the Logging section. For information on how to display errors for users, see the section

Errors should be logged if they indicate definite or potential problems with the application or

system. They should also be logged if they indicate dangerous actions, whether malicious or not,

that could compromise system integrity. Individual applications may call for additional logging

of user activity for statistics gathering or monitoring. Critical messages should be sent directly to

an operator using e-mail messages. Errors should be reported to the user if they indicate incorrect

input or an inability by the system to process the current request. Other messages resulting from

error conditions, such as temporary limitations on input or an impending system shutdown,

should also be delivered to the user if possible. In no case should stack traces or Java-language-

specific messages be delivered to users. The Java environment provides the means to capture

events that would otherwise result in this kind of message being sent to users so that a more

appropriate message can be returned instead.

4.7.2 Interactive error handling

4.7.2.1 Identification

Interactive errors are due to incorrect use of the application by users and can be detected during

the processing of requests as part of the application's business logic.

4.7.2.2 Response

When interactive errors occur, the flow of the application may be affected depending on (i) the

type of error, (ii) the type of request, and (iii) the current state of the user's session (possibly also

the current state of the system). For example, a user might enter invalid input into a form, forcing

the application to request that the form be resubmitted with corrected input.

4.7.2.3 Displaying

Regardless of how application flow is affected, users should be notified of errors that have

occurred due to incorrect use of the application. For example, if a user has entered invalid form

input, then that should be pointed out when the user is requested to resubmit the form.

4.8 Logging

The activity of applications must be logged so operators can trace errors and can monitor

performance/usage issues. Developers must use the Apache group's Jakarta Commons Logging

tool (Log4J) for logging in Java code.

Developers may configure Log4J as they see fit to support their own in-house development, but

in preparing the delivery release, they must ensure that the logging is re-configured correctly for

production. This means:

 sensitive information, such as passwords, are not logged

NRS_Java_Development_Standards_1.1.0.docx Page 15 of 28

 logging is set to ERROR in the delivered source tar file. The logging config file must

include the WebADE entries:

log4j.category.ca.bc.gov.webade=error

log4j.logger.ca.bc.gov.webade=error

 logging is not, repeat not, sent to standard output (i.e. stdout)

 log files are directed to /apps_ux/logs

 log files follow the format below

Log File Name: <appname>.log
Log File Type: Rolling Log File
Max Backups: 6
Max File Size: 1MB
Log File Format: [date/time] - [priority] - [thread] - [file:line] - message

 This Log File Format implies that

*.layout.ConversionPattern=[%d{ISO8601}] - [%-5p] - [%t] - (%F:%L) - %m%n

Developers may use the basic priorities provided with Commons Logging. The following is a

description of the levels and their uses as specified in the Commons Logging documentation:

 fatal - Severe errors that cause premature termination. Expect these to be immediately

visible on a status console.

 error - Other runtime errors or unexpected conditions. Expect these to be immediately

visible on a status console.

 warn - Use of deprecated APIs, poor use of API, 'almost' errors, other runtime situations

that are undesirable or unexpected, but not necessarily "wrong". Expect these to be

immediately visible on a status console.

 info - Interesting runtime events (startup/shutdown). Expect these to be immediately

visible on a console, so be conservative and keep to a minimum.

 debug - detailed information on the flow through the system. Expect these to be written

to logs only.

 trace – more detailed information. Expect these to be written to logs only.

Again, ERROR must be set in the delivered source tar file.

The following example illustrates how to implement Commons Logging in Java code:

... etc ...

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

... etc ...

public class Foo {
private static Log log = LogFactory.getLog(Foo.class);

... etc ...

NRS_Java_Development_Standards_1.1.0.docx Page 16 of 28

public void doFoo(String msg) {
log.info("doFoo(String): This is a log statement"); if (msg == null) {
log.warn("doFoo(String): parameter msg is null");

NOTE: The Sector has an additional requirement for configuring logging on application

releases developed for the legacy JRun environment. Developers should consult with the

Architecture Group and the Application Delivery Team well in advance of delivery.

4.9 XML Compressors & Accelerators

In instances where an application is required to perform heavy XML or GML processing, the

requirements and the methodology proposed should be discussed with the IMB's Architecture

Group before the design is finalized.

4.10 Java Naming Conventions

4.10.1 Servlets

The main servlet in a WebADE application must be called ControllerServlet. Any other servlet

class must have the Servlet suffix in its name.

4.10.2 JavaBeans

Each other bean class should have the Bean suffix in its name and should be a valid Java bean

(i.e. is serializable, has getter+setter methods, and has a "no-arguments" constructor).

4.10.3 Tags

Each custom tag class must have the "Tags" suffix in its name. The .tld file must be placed in the

application's WEB-INF directory. Also, if the tag classes are contained in a separate library

archive (jar) from the main application classes, this archive should be placed in the WEB-INF/lib

directory.

Identification of tags to an application within the web.xml configuration file will use the

application short name or webade as the prefix, as in:

<%@ taglib uri="/WEB-INF/xyzTags" prefix="xyz" %>

<%@ taglib uri="/WEB-INF/webadeTags" prefix="webade" %>

4.10.4 Other Classes and Components

Classes that extend other classes from standard WebADE components, including Struts, J2EE,

and JDBC drivers, should be named consistently in a manner that reflects their association (and

purpose). For example, an extension of the Struts action class:

org.apache.struts.action.Action

should contain the suffix Action.

Other classes, as well as JSP pages and other targets, should be named using general

conventions.

NRS_Java_Development_Standards_1.1.0.docx Page 17 of 28

4.10.5 Java Package Naming

Every servlet and accompanying Java class will belong to a Java package. One main package

should be defined for an application, with possible sub-packages, containing all of the

application-specific classes. The name of the main package should be the same as the short

application name.

All WebADE packages must have the following prefix:

ca.bc.gov.srm.app

This will be followed by the short name of the specific application, in lower case to conform to

package naming conventions. The package for the XYZ application would be:

ca.bc.gov.srm.app.xyz

The fully-qualified package name of a top-level action class in the XYZ application called

MyStrutsAction would be:

ca.bc.gov.srm.app.xyz.MyStrutsAction

NOTE: Some classes, other than the standard tools, are intended to be common to more than one

(and in most cases all) applications. These are the "common" WebADE classes, and those

developed specifically for the Sector will belong in or below the package:

ca.bc.gov.webade

4.11 Sector Database Object Naming

The names of stored procedures and data tables should be prefixed by the application's acronym

followed by the underscore character, as in:

XYZ_getInspectionReport() // sample procedure
XYZ_AvailableReports // sample table name

Reference the Object Naming Conventions section of the Oracle Designer Standards and

Guidelines for more detailed information in this area. Standards for versioning of Data Definition

Language (DDL) and database objects may be found in the Application Delivery Standards

document.

5 Application Design

5.1 Architecture Overview

Sector Web applications follow the Model-View-Controller (MVC) "type 2" design pattern; the

MVC architecture was originally developed by Xerox PARC and was used as the framework for

developing the GUI interface for Microsoft Windows and Apple's Mac O/S. A schematic

representation of the Model-View-Controller scheme is shown in the figure below.

NRS_Java_Development_Standards_1.1.0.docx Page 18 of 28

Model-View-Controller Scheme

The MVC "type 2" scheme as applied to Java application development consists of the following:

 A single controller servlet that receives, validates, and directs incoming requests;

 Action classes that process requests (one class per request type), set data within

corresponding state beans, and return results from the processed request;

 State bean classes that contain state information for requests and/or results;

 JSPs to present the outcome of a request.

The controller servlet determines which "action" is requested, uses the appropriate action class to

process the request, and then uses the result to select the appropriate JSP to generate the

presentation of the outcome of the request. The controller servlet provides the action class

instance with the user-input data through an instance of the action-specific state bean. This bean

is also retained in the user session for future use.

The action class will use data from the action-specific state bean and will perform transactions

with the database to process the request. The action class next determines the result of its

processing, acquires and populates a state bean instance corresponding to the result, then returns

the result to the controller servlet. The state bean instance is retained in the user session for

future use.

The JSP selected for output based on the processing result obtains the appropriate state bean

instance from the user's session and uses this bean to generate the presentation content. The bean

is passed to the JSP as a session attribute.

General JSPs are intended for presentation and therefore should only be used at the end of a

chain of processing on the server. For example, an HTTP POST request will initially be

processed by a "controller" servlet to make sure it is in the correct sequence. The servlet may use

instances of other Java classes to further process the data. Finally, the servlet will hand off

presentation processing to a JSP page. A general design goal for JSPs is that they contain no

embedded Java code (i.e., Java scriptlets). Java beans and tags (standard and custom) should be

employed to acquire the required content and formatting.

NRS_Java_Development_Standards_1.1.0.docx Page 19 of 28

Variables should be defined in as narrow a scope as practical so that their purpose and content is

easy to determine by a reader unfamiliar with the code. This strategy also minimizes coding

errors. For example: Simple "one-off" variables such as loop counters should be defined within

the loop structure. Variables needed in multiple locations, such as in a "try" block plus one or

more of its corresponding "catch" blocks should be declared in a sufficiently higher level that

they are "available" in each location.

5.2 Deployment Pattern

Sector applications must conform to a standard Oracle/Java deployment pattern; any application

components that are not accommodated in the standard pattern require an Exemption from

Standards as described in this document.

The standard Oracle/Java deployment pattern is laid out in

http://www.env.gov.bc.ca/csd/imb/3star/arch/docs/Deployment_Patterns.pdf

5.3 Movel View Controller Framework

The Sector standard is to employ the use of Spring Web MVC for building web applications with

Java Servlet and JavaServer Page (JSP) technology. Spring Web MVC encourages application

architectures based on the Model-View-Controller (MVC) design paradigm.

Spring Web MVC includes the following primary areas of functionality:

 A controller servlet that dispatches requests to appropriate Action classes provided by the

application developer.

 JSP custom tag libraries, and associated support in the controller servlet, that assists

developers in creating interactive form-based applications.

 Utility classes to support XML parsing, automatic population of JavaBeans properties

based on the Java reflection APIs, and internationalization of prompts and messages.

5.4 Java Server Pages

JSPs are intended for presentation and therefore should only be used at the end of a chain of

processing on the server. For example, an HTTP POST request will initially be received and

examined by a "controller" servlet. The servlet may use instances of other Java classes to process

the request and store results of the processing. Finally, the servlet will hand off presentation

processing to a JSP page.

A general design goal for JSPs is that they contain no embedded Java code (i.e., Java scriptlets).

The common components of the WebADE include custom tags to help reduce the need for Java

scriptlets and to promote a consistent look & feel. Developers should produce a custom tag

library for an application and should use state beans to present data from a session or request

context in a page to further reduce code.

5.5 Abstract Persistence Layer - Object Relational Mapping

The Sector currently permits three data access models for object-relational mapping (ORM):

http://www.env.gov.bc.ca/csd/imb/3star/arch/docs/Deployment_Patterns.pdf

NRS_Java_Development_Standards_1.1.0.docx Page 20 of 28

 Hibernate ORM

 a manual mapping of objects to database tables;

 the use of Oracle stored procedures for mapping objects to database tables.

The first, Hibernate ORM, is the preferred model.

6 Application Environment

The Sector has implemented Java based web applications in a three-tier deployment based upon

the Java 2 Platform Enterprise Edition (Java EE) specification. The Sector standard is to build

and deploy Java applications based on server-side processing; use of applets is not permitted in

the design or construction of Sector Java applications.

 Component Tier Component Name

 Client Tier (Intranet) Internet Explorer

Client Tier (Extranet)

 Internet Explorer & Netscape

 Middle Tier Oracle Fusion Middleware (WebLogic)

 Java Enterprise Edition (Java EE)

 Sector standard Java Libraries

 Sector Common Components

 Data Tier Oracle Database

 Reporting Oracle Reports Server

Component versions are listed in the Systems and Application Technology Standards.

The Sector is moving towards a conventional 3-tier deployment to conform to standards defined

by the office of the CIO through the Security Enhancement Project.

 Component Tier Component Name

http://www.hibernate.org/

NRS_Java_Development_Standards_1.1.0.docx Page 21 of 28

6.1 Client Tier (Workstation)

Java EE applications use a thin-client interface. A thin-client is the distributed portion of the

application where the client program does not process data, but instead passes data to the server

for processing.

All applications must be built using server-side java. No applications shall be built using client-

side Java. Applications shall not have any dependency to client-side java runtimes such as

JInitiator or JRE.

Operations such as database queries and execution of business rules are off-loaded to servlets or

Java Beans (including EJB's) executing on the Java EE server where they can leverage the

security, speed, services and reliability of Java EE server-side technologies.

Developers building public web applications must ensure that their applications work with most

common web browsers including Internet Explorer Version 7 and above. Generated HTML code

must comply with the HTML 5 Standard and XML should comply with the XML 1.1 Standard.

Developers building applications that use the Sector Internet Map Framework (IMF) must design

their applications to use Microsoft's Internet Explorer (IE) version 6 or above; the IMF has been

optimized for IE and will not function correctly when used with other browsers.

6.2 Middle Tier (Internet Application Server)

A middle tier application server provides a runtime environment for the application and provides

access to business functions and data. The Sector standard is Oracle Fusion Middleware (OFM).

The Sector is moving to a middle tier architecture in which the web server (Apache) tier is

separated from the application tier. In the target model, the web server tier is in the DMZ and the

application tier is behind the firewall in a segmented security zone.

NOTE: The Sector has a legacy JRun application server environment on which a large number

of existing applications are expected to require maintenance using that platform until the

planned update. Developers should consult with the Architecture Group.

Client Tier
(Intranet) Internet Explorer

Client Tier
(Extranet) Internet Explorer & Netscape

 Web Server Tier Apache

 Application Tier Oracle Fusion Middleware (WebLogic)

 Java Enterprise Edition (Java EE)

 Sector standard Java Libraries

 Sector Common Components

 Oracle Reports Server

 Data Tier Oracle Database

http://archive.ilmb.gov.bc.ca/imf/index.html

NRS_Java_Development_Standards_1.1.0.docx Page 22 of 28

6.3 Data Tier (Oracle Database)

Oracle is the chosen database platform of the BC Government and has been adopted as the

standard database by most ministries.

7 Security
The central component for managing application security is WebADE. For information on

WebADE (see http://www.webade.org/). The WebADE supplies various APIs for use in

authorizing a user to an application. This framework used in conjunction with the government

supported global user directories (IDIR, BCeID and MyID) is used to authenticate and authorize

all users of an application.

The security framework selected by the Sector for web-based applications is intended to provide

a secure, scalable mechanism for protecting the Sector data. The framework can be classified by

one of the following categories of access:

 Public Access; no authentication required;

 Basic (a.k.a. Individual); identified but neither trusted nor verified;

 Personal (a.k.a. Verified Individual); Individuals with a confirmed identity; identified

and verified

 Business: bodies outside of government that have a business relationship with

government; trusted;

 Internal: internal users (e.g. employees); trusted;

These categories of access can be further differentiated as follows:

Public Access - must be query only; access to data is restricted through the use of a generic

database account which remains hidden from the end-user at all times.

Basic (a.k.a. Individual, or MyID) - the identity of the party connecting to the Sector

application server must be determined; the user is challenged to enter a unique username and

password; user authentication will be effected against the MyID directory service. A Secure

Socket Layer (SSL) implementation is required to ensure confidential data sent from the client is

encrypted. Database connections are to be made using a generic account in order to take

advantage of database connection pooling.

Personal (a.k.a. Verified Individual) - the identity of the party connecting to the Sector

application server must be determined; the user is challenged to enter a unique username and

password; user authentication will be effected against the BCeID directory service. Personal is a

person who has a personal rather than a business relationship with government (e.g. related to an

individual's personal health records). Both query and insert/update operations will be permitted.

A Secure Socket Layer (SSL) implementation is required to ensure confidential data sent from

the client is encrypted. Database connections are to be made using a generic account in order to

take advantage of database connection pooling.

Business - the identity of the party connecting to the Sector application server must be

determined; the user is challenged to enter a unique username and password; user authentication

http://www.webade.org/

NRS_Java_Development_Standards_1.1.0.docx Page 23 of 28

will be effected against the BCeID directory service. The Business category applies to registered

businesses, partnerships, proprietorships, foreign governments, etc. Note that Business may also

apply to an individual whose interactions with government are of a business rather than a

personal nature (e.g. buying products or services from the province). Both query and

insert/update operations will be permitted. A Secure Socket Layer (SSL) implementation is

required to ensure confidential data sent from the client is encrypted. Database connections are to

be made using a generic account in order to take advantage of database connection pooling.

Internal - the identity of the party connecting to the Sector application server must be

determined; the user will be challenged to enter a unique username and password; user

authentication will be effected against the IDIR directory service. Both query and insert/update

operations will be permitted. A Secure Socket Layer (SSL) implementation is required to ensure

that confidential data sent from the client is encrypted. Database connections are to be made

using a generic account in order to take advantage of database connection pooling.

Note: If the database account used by the application is for a named user (e.g. IDIR or BCeID),

the username and IP address should be logged by the application.

7.1 Authentication

User authentication for applications will be implemented using the BC Government's Enterprise

Security Gateway, built on Netegrity SiteMinder. The service provides the "Common Login

Page" (CLP) that must be used by all applications requiring user authentication. The CLP takes

advantage of the Single Sign On (SSO) feature of Siteminder and also provides features such as

expired passwords/password change and enforcement of Terms of Use agreements.

The SSO feature of the SiteMinder product allows a user to use multiple government e-services

(SiteMinder enabled) while only having to authenticate on the initial request. WebADE fully

supports SiteMinder and its use is transparent to the developer.

Conceptually the Authentication (SSO enabled) process is as follows:

 The client attempts to access a resource within the application (welcome page) that is

protected by Netegrity.

 Netegrity checks for SSO secure cookie (user already signed in via another service)

o If cookie exists and user has access, the user will be granted access to the resource

without having to log in again.

o If cookie does not exist, the user is redirected to the Common Login Page. Once

logged in correctly, the user is then redirected back to the original application

request (welcome page).

A "WebADE Developer Module" is available in order to emulate the government Siteminder

environment for the purposes of application development. See http://www.webade.org/.

http://www.webade.org/

NRS_Java_Development_Standards_1.1.0.docx Page 24 of 28

7.2 Authorization

Sector standard is to use WebADE for authorization. General introduction and documentation on

WebADE is available at http://www.webade.org/.

In addition to identifying the client, an application must know whether or not a client is

authorized for any request it makes to the application.

The WebADE provides several methods in its API, along with underlying constructs, to support

the association of users with actions. The technical documentation provided with the WebADE

software describes this through detail and example.

http://www.webade.org/

NRS_Java_Development_Standards_1.1.0.docx Page 25 of 28

7.3 Database Access

After a client has been authenticated by the Web server and authorized to the application,

processing of the request begins. This might involve any number of transactions with any

number of databases (usually just one). Applications access the database through "generic" proxy

accounts, rather than through specific accounts corresponding to the client initiating the request.

There is a proxy account for each unique level of access needed to the database. For example,

there could be an "admin" account, a "power user" account, and a "general user" account.

These proxy accounts correspond to the roles defined for the application. Therefore, in the

example just provided, there would be 3 roles: one corresponding to the "admin" account, one

corresponding to the "power user" account, and one corresponding to the "general user" account.

The names do not have to match, but are typically similar; they are associated by the WebADE

configuration for the application. Note that since a 1-to-1 mapping exists between database proxy

accounts and roles, any task requiring multiple data sources will have to use multiple roles (with

suitably identifying names).

Note that all connections to the database are pooled. Therefore a pool exists for every type of

connection (i.e., every proxy account) required by the application to every data source.

Developers will not have to establish or manage these pools --- the core WebADE components

will do this and will provide a simple interface to allow the application to acquire connections on

demand (assuming it is authorized for the current action request).

Database connections are not created in application code; instead, they are acquired from the

WebADE, which is responsible for creating and managing them. Therefore, account and

database connection information should not appear in an application's code or local

configuration.

NRS_Java_Development_Standards_1.1.0.docx Page 26 of 28

Developers must contact their Sector Business Portfolio Manager in order to obtain a list of

proxy accounts and application roles that will correspond to connection pools to be used by the

application. The developer will also need to provide minor configuration information for the

development and deployment environments such as # of initial connections, data source URL, id,

password, etc. The details on how to do this relatively simple task are provided in the WebADE

technical documentation.

7.4 Sector Database Role Naming

The names of database roles are subject to naming standards. Refer to the Oracle Designer

Standards and Guidelines:

 http://www.env.gov.bc.ca/csd/imb/3star/sdlc/4design/des6i_std/des6i_std.html

for more detailed information in this area. The Oracle Roles must be reflected in the submitted

Oracle Designer data model as defined in those standards.

7.5 Enforcing Application Flow

Normal flow for application requests that involve processing (i.e. not including fetches of static

items such as image files) should follow the Model-View-Controller pipeline as described in the

Architecture Overview section. The presence of JSPs makes this even more important because

they have the capability to acquire or present information intended for a restricted audience. A

clever user can directly access a JSP, bypassing the normal pipeline through the controller servlet

and the Struts action processing classes.

The WebADE provides a simple means to avoid this problem:

 A custom tag is available to verify that a request has followed the MVC pipeline

 If included near the top of a JSP, this tag will perform the verification before allowing the

remainder of the JSP to be processed

 If the verification fails, then the tag will direct the request to a configurable target (e.g. an

error page).

 The tag can be included in any or all JSPs where this check is require

In order to protect applications from Cross-Site Scripting attacks, the Enterprise Security

Gateway (Siteminder) will reject URLs that contain certain characters in either the base URL or

the query string (parameters).

Applications must not use any of the following characters in URL or query string (parameters),

whether escaped or not:

 single quote ('), character %27

 left angle bracket (<), character %3c

 left angle bracket (<), character %3c

Note that escaping of the characters does not mask them from detection. Thus, all of the following sequences will be
rejected as they all resolve to a single left angle bracket (<): %3c, %253c, %25%33%43, %25%32%35%33%43, etc.

http://www.env.gov.bc.ca/csd/imb/3star/sdlc/4design/des6i_std/des6i_std.html

NRS_Java_Development_Standards_1.1.0.docx Page 27 of 28

8 Reports
The Sector has selected Oracle Reports 11g as the standard tool for report generation.

Developers can develop Oracle Reports using the standard client-side reporting tools (i.e. Oracle

Reports Builder) and then deploy the report modules on the Sector dedicated reports server.

Standards for developing web based Oracle Reports for the Sector may be found in the document

Oracle Developer Standards and Guidelines. The Sector has also developed standards for the

delivery and deployment of web based Oracle Reports; these Reports Server Delivery Standards

are available to authorized users on the Sector Intranet server.

NOTE: The Sector JRun-based legacy environment has a large installation of applications with

reports built using Crystal Reports 10 and deployed using Crystal Enterprise 10 together with a

custom Sector code library for invoking these reports within WebADE applications. In some

cases it may be necessary to perform maintenance on these applications using the Crystal

technology so developers should consult with the Architecture Group early in the design phase

for direction.

8.1 Designing Reports

Details on designing reports, including Sector standards, can be found in a separate document on

the Application Development Web site.

8.2 Charting

The Sector has deployed the JFreeChart library as part of the standard Oracle Fusion Middleware

11g (OFM 11g) configuration. This is considered mandatory for charting in Sector applications.

Further information for the product can be found using the link below:

 JFreeChart

9 Common Components

9.1 Mandatory Common Components

Any component listed in the Systems and Application Technology Standards Summary document

is mandatory when the functionality it provides is a requirement of the application. This includes

but is not limited to:

 WebADE for security

 JFreeChart for charting

 Log4J for logging (mandatory in all applications)

9.2 Additional Java Libraries

A list of standard java libraries is provided in the Systems and Application Technology

Standards. Use of any other third party library, whether commercial, GPL or from any other

source, is considered outside of standard and requires an Exemption from Standards as described

in this document.

http://www.jfree.org/jfreechart/

NRS_Java_Development_Standards_1.1.0.docx Page 28 of 28

10 Documentation

10.1 Release Notes

A properly constructed, complete, and up-to-date release notes document is vital for every

release. Sector personnel rely on this document to determine what work must be done to ensure

successful deployment of a release.

10.2 Application Use

A single general user guide will be provided for the application. Normally this will be the

responsibility of the application custodian to produce in consultation with the developer;

however, it may be included in the specific deliverables for the project.

The user guide will be written in Microsoft Word format according to a template, which will be

available on the component workbench along with special instructions for creating the document

according to Sector standards.

10.3 Application Configuration

Two types of documentation covering the configuration of the application are required:

 A set of technical instructions for compiling the application, referred to as the Readme in

the Java Application Delivery Standards.

 A description of the configuration to assist non-programmers in understanding the

functional composition of the application.

10.4 Instructions for Compilation

The Sector uses the Apache Jakarta Ant utility to compile and build Web applications. Any

special requirements for compiling the application must be clearly documented. This will

include:

 A description of the platform requirements

 Environment settings

 Organization of all software components

The current Ant version is listed in the Systems and Application Technology Standards.

10.5 Design Revisions to As-Built

A final deliverable for an application is a revised version of the application's System Design

document. If there are any deviations from the System Design document submitted to the Sector

prior to commencement of the system build (e.g. database version), these should be reflected in a

re-delivered version of the System Design. This final revision should be versioned as a minor

point release - e.g., a final revision of the 3.2.0 design document (for version 3.2.0 of the

application) would be versioned as 3.2.1.

