Integrated Stewardship Strategy for the Cranbrook TSA

Data Package

Version 1.0

November 28, 2019

Project 419-38

Prepared by:

Forsite Consultants Ltd. 330 – 42nd Street SW PO Box 2079 Salmon Arm, BC V1E 4R1 250.832.3366

Prepared for:

BC Ministry of Forest, Lands, Natural Resource Operations and Rural Development Resource Practices Branch PO Box 9513 Stn Prov Govt Victoria, BC V8W 9C2

Table of Contents

	Table	e of Conte	ents	i
	List o	of Tables .		iii
	List o	of Figures		iv
	List o	of Acronyi	ms	iv
	Docu	iment Rev	<i>v</i> ision History	ii
1	Int	roducti	on	1
	1.1	Project	t Area	1
	1.2	Contex	t	2
	1.3	Model		3
	1.4	Data Se	ources	4
	1.5		Inventory Updates	
2	Bas	se Case	Scenario	6
	2.1		ase Assumptions	
		2.1.1	Non-TSA Ownership	
		2.1.2	Non-Forest and Non-Productive	
		2.1.3	Cleared Right-of-Ways	
		2.1.4	Provincial Parks and Ecological Reserves	
		2.1.5	Inoperable/Inaccessible	
		2.1.6	Unstable Terrain	
		2.1.7	Environmentally Sensitive Areas	
		2.1.8	Non-Merchantable Forest Types	
		2.1.9	Low Productivity Sites	
		2.1.10	Problem Forest Types	
		2.1.11	Miscellaneous Reserves	
		2.1.12	Ungulate Winter Ranges and Wildlife Habitat Areas	16
		2.1.13	Riparian Zones	
		2.1.14	Old Growth and Mature Management Areas	
		2.1.15	Recreation & Scenic Areas	
		2.1.16	FSC High Conservation Value Forests	
		2.1.17	FSC Rare and Uncommon Ecosystems	
		2.1.18	Isolated Stands	
		2.1.19	Cultural Heritage Resources	
		2.1.20	Existing Wildlife Tree Retention Areas	
		2.1.21	Future Wildlife Tree Retention Areas	
		2.1.22	Open Range Conversions	
		2.1.23	Future Roads, Trails and Landings	
	2.2	-	mber Management Assumptions	
		2.2.1	Green-up and adjacency	
		2.2.2	Stand-Level Biodiversity	
		2.2.3	Landscape-Level Biodiversity Objectives	
		2.2.4	Community and Domestic Watersheds	
		2.2.5	Ungulate Winter Ranges	
		2.2.6	Grizzly Bear Habitat and Connectivity Corridors	
		2.2.7	Visual Quality Objectives	
	2.3	Harves	ting Assumptions	
	-	2.3.1	Utilization Levels	
		2.3.2	Minimum Harvest Criteria	28
		2.3.3	Harvest Priority	
		2.3.4	Silvicultural Systems	
	2.4	-	h and Yield Assumptions	
	·	2.4.1	Managed and Natural Stand Definitions	
		2.4.2	Analysis Unit Characteristics	
		2.4.3	Stand Projection Models	
		2.4.4	Yield Adjustments	
		2.4.5	Site Index Assignments	

		2.4.6	Not Satisfactorily Restocked					
		2.4.7	Select Seed Use / Genetic Gain					
		2.4.8	Regeneration Delay					
	2.5	Natu	al Disturbance Assumptions					
		2.5.1						
		2.5.2	Natural Disturbance within NHLB					
	2.6	Mode						
		2.6.1						
		2.6.2	Harvest System					
3	Sen	nsitivit	y Analyses					
	3.1							
		3.1.1						
		3.1.2	Patch Size Requirements					
	3.2	Lands	cape Unit Grouping Details					
4	Silv	vicultu	re Scenario	/11				
-								
5	Wil	dlife S	cenario	44				
	5.1	Wildl	ife Habitat					
	5.2	Speci	es at Risk					
6	Res	serve S	cenario					
•	6.1							
	6.2							
	0.2	6.2.1	•					
		6.2.2						
	6.3	Criter	0					
		6.3.1						
		6.3.1	Mature-Plus-Old Forest Retention					
		6.3.2	Reserve Size Distribution					
		6.3.3	Interior Old Forest					
	6.4	Analy	sis Steps					
		6.4.1	Pre-Analysis Summary					
		6.4.2	Pre-Processing					
		6.4.3	Processing					
		6.4.4	Post-Processing	57				
		6.4.5	Adjustments					
		6.4.6	Implementation					
7	Cor	mbine	d Scenario					
8	Ref	erenc	es					
			2 Natural Disturbance within NHLB 35 deling Assumptions 36 1 Haul Time Profile 37 2 Harvest System 38 vity Analyses 38 discape-Level Biodiversity Details 39 2 Patch Size Requirements 40 discape Unit Grouping Details 41 ture Scenario 41 e Scenario 44 differ Habitat 45 cices at Risk 47 e Scenario 48 orach 48 orach 48 orach 49 1 Stand Features 50 Resource Management Areas 50 Resource Management Areas 51 Old Forest Retention 53 Mature-Plus-Old Forest 55 Pre-Processing 56					
Aŗ	opend	dix 1	Detailed Statistics of the Non-Timber Objectives	60				
Aŗ	opend	dix 2	Analysis Units	1				
Ap	opend	dix 3	- ·					
Aŗ	opend	dix 4	Grouping Landscape Units	1				

List of Tables

Table 1	Spatial Data Sources	
Table 2	Methodology to Accomodate 2017 Wildfires into Inventory and Volume Adjustments	6
Table 3	Cranbrook TSA Land Base Area Summary	7
Table 4	Ownership Classification and FMLB Contribution	9
Table 5	Ownership Summary Comparison between TSR4 and ISS	10
Table 6	Netdown Factor Comparison between TSR4 and ISS	
Table 7	Non-Forest and Non-Productive Classification	
Table 8	Existing Roads and Non-Forested Widths	11
Table 9	Provincial Parks and Ecological Reserves	
Table 10	Description of Inoperable Areas	
Table 11	Description of Terrain Stability Mapping	
Table 12	Environmentally Sensitive Areas	
Table 13	Non-merchantable Forest Types	
Table 14	Low Productivity Sites	
Table 15	Problem Forest Types	
Table 16	Miscellaneous Reserves	
Table 17	Wildlife Habitat Areas and Ungulate Winter Ranges in No Harvest Zones	
Table 18	Riparian Criteria for Streams	
Table 19	Riparian Criteria for Wetlands and Lakes	
Table 20	Mature and Old Growth Management Areas	
Table 21	Rare and Uncommon Ecosystem Groups	
Table 22	Green-up Constraints	
Table 23	Forest Cover Constraints for UWR U-4-006	
Table 24	P2P Ratios and VEG Heights by Slope Class	
Table 25	VQO by Percent Alterations	
Table 26	Utilization Levels	
Table 27	Minimum Harvestable Age Criteria	
Table 28	Operational Adjustment Factors	
Table 29	Genetic gain by species for existing and future managed stands to be applied in TIPSY	
Table 30	Non-Recoverable Losses	
Table 31	Calculation of area to be disturbed annually in NHLB by LU/NDT	
Table 32	Modeling assumptions	
Table 33	Travel Speed by Road Segments	
Table 34	Summary of Model Runs	
Table 35	Landscape-Level Biodiversity Sensitivity Analyses Matrix	
Table 36	Mature-plus-old, and Old Forest Cover Requirements for Each Landscape Unit	
Table 37	Patch Size Criteria and Thresholds – Canfor Operating Areas Only	
Table 38	Patch Size Criteria and Thresholds – BCTS and Galloway Operating Area	
Table 39	Silviculture Scenario Tactics	
Table 39	Run IDs for the Silviculture Scenario	
Table 41	Wildlife Scenario Tactics	
Table 42	Methodology to Include Wildlife Habitat Model into Forest Estate Model	-
Table 42	Stand Feature Scoring for Old Forest	51
Table 44	Stand Feature Scoring for Old Forest	
Table 44	Resource Management Area Scoring	
Table 45	Old Forest Targets Applied to BEC Variants within Landscape Units	
Table 40	Mature-Plus-Old Forest Targets Applied to BEC Variants within Landscape Units	
Table 47	Reserve Size Distribution Targets	
Table 48 Table 49	Tactics Applied in the Combined Scenario	
Table 49		
Table 50 Table 51	Community and Domestic Watersheds Visual Quality Objectives	

List of Figures

Figure 1	Cranbrook TSA	. 2
Figure 2	BEC Zone Distribution across the Forest Management Land Base	. 8
Figure 3	Age Class Distribution across the Forest Management Land Base	. 8
Figure 4	Example of Uneven-aged Silvicultural System	29
Figure 5	Analysis Units Assignment	31
Figure 6	Distribution of Natural and Managed Stand Site Indices over the THLB	33
Figure 7	Haul Cycle Time Zones	38
Figure 8	Approach for ranking stands as candidate reserves	50

List of Acronyms

AD	Anthropogenic Disturbance	NRL	Non-Recoverable Losses
ATC	Access Timing Constraints	NDT	Natural Disturbance Type
BEC	Biogeoclimatic Ecosystem Classification	OAF	Operational Adjustment Factor
BEO	Biodiversity Emphasis Option	OF	Open Forest
CMAI	Culmination of Mean Annual Increment	OGMA	Old Growth Management Area
DRM	Rocky Mountain Natural Resource District	OR	Open Range
ECA	Equivalent Clearcut Area	PEM	Predictive Ecosystem Mapping
FAIB	Forest Analysis and Inventory Branch	PFT	Problem Forest Type
FMER	Fire Maintained Ecosystems Restoration	RESULTS	Reporting Silviculture Updates and Land
FMLB	Forest Management Land Base		Status tracking System
FRPA	Forest Range and Practices Act	RMZ	Resource Management Zone
FSC	Forest Stewardship Council	SFMP	Sustainable Forest Management Plan
FTA	Forest Tenure Administration	THLB	Timber Harvesting Land Base
GIS	Geographic Information System	TIPSY	Table Interpolation Program for Stand
HCVF	High Conservation Value Forest		Yields
IBS	Insect Beetle Spruce (Spruce Beetle)	TSA	Timber Supply Area
ISS	Integrated Stewardship Strategy	TSR	Timber Supply Review
KBLUP	Kootenay-Boundary Land Use Plan	UWR	Ungulate Winter Range
LMZ	Lakeshore Management Zone	VDYP	Variable Density Yield Prediction
LU	Landscape Units	VRI	Vegetation Resource Inventory
MAI	Mean Annual Increment	WHA	Wildlife Habitat Area
MHA	Minimum Harvest Age	WTRA	Wildlife Tree Retention Area
MMA	Mature Management Area		
MPB	Mountain Pine Beetle		

Version	Date	Notes/Revisions
0.1	Dec 31, 2016	 Distributed to project team to develop Base Case Scenario. Only included the Base Case Scenario assumptions based on TSR Benchmark.
0.2	Apr 18, 2018	 Revised to include updated land base definition, growth and yield, ECA target calculation and Silviculture Scenario assumptions.
0.3	Aug 15, 2018	 Incorporated edits and updates throughout the document in preparation for the project team review. Described assumptions applied for the Base Case Scenario plus preliminary assumptions for the Silviculture Scenario.
0.4	Oct 19, 2018	 Revised criteria for some Silviculture Scenario tactics (section 4).
0.5	Apr 15, 2019	• Described approach and preliminary assumptions for Wildlife Scenario (section 5).
0.6	Oct 6, 2019	 Described approach and assumptions applied in the Reserve Scenario (section 6). Described approach and assumptions applied in the Combined Scenario (section 7).
1.0	Nov 28, 2019	 No further edits at this time. Made available for distribution on website. <u>https://www2.gov.bc.ca/gov/content/industry/forestry/managing-our-forest-resources/silviculture/silviculture-strategy-areas</u>

Document Revision History

1 Introduction

The British Columbia Ministry of Forests, Lands, Natural Resource Operations and Rural Development initiated an Integrated Stewardship Strategy (ISS) – sustainable forest management analysis – in the Cranbrook Timber Supply Area (TSA). This Data Package describes the information that is material to the analysis including the model used, data inputs, and assumptions.

1.1 PROJECT AREA

The Cranbrook TSA is located in the southeastern corner of British Columbia within the boundaries of the Rocky Mountain Natural Resource District (Figure 1). It is bordered by the Skookumchuck Valley (and Invermere TSA) to the north, the Alberta border to the east, the Canada-U.S. border to the south and the southern Purcell Mountains to the west. It includes the cities of Cranbrook, Kimberley, and Fernie and the smaller communities of Sparwood and Elkford. The project (Cranbrook TSA) covers an area of approximately 1.485 million hectares.

Plans and strategies in place for the Cranbrook TSA include:

- Kootenay Boundary Higher Level Plan Order
- Kootenay-Boundary Land Use Plan (KBLUP)
- Southern Rocky Mountain Management Plan
- Cranbrook West Recreation Management Strategy
- Provincial Timber Management Goals and Objectives
- Federal Recovery Strategy for Northern Caribou
- Sustainable Forest Management Plan (Forest Licensees)
- Silviculture Strategies Types 1, 2 and 4
- BC Mountain Pine Beetle Model
- Future Forest Products and Fibre Use Strategy
- Multiple Resource Value Assessment
- Provincial Stewardship/ Timber Harvesting Land Base Stabilization
- Forest Health Strategy
- Ecosystem Restoration
- Whitebark Pine
- Fire and Fuel Management
- Non-Spatial Biodiversity Management Objectives

Many aspects of these plans will have an influence on the development of this Data Package and modeling strategies.

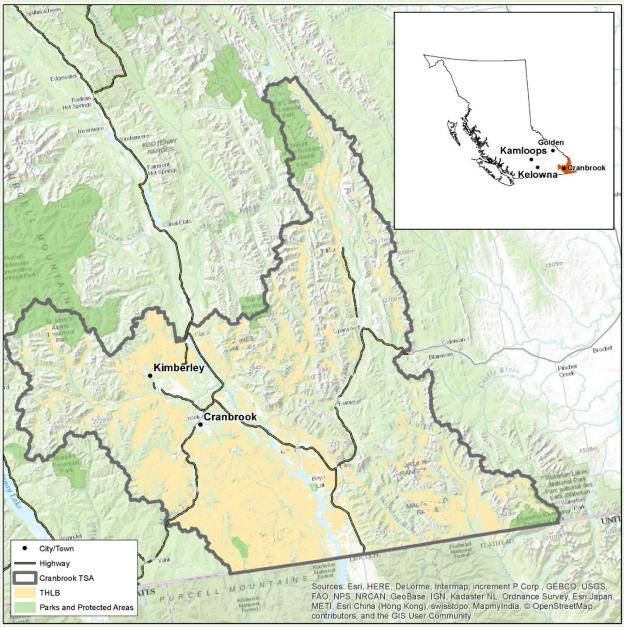


Figure 1 Cranbrook TSA

1.2 CONTEXT

This document is the third in a series of documents developed through the ISS process.

- 1) Situation Analysis describes in general terms the situation for the project area this could be in the form of a PowerPoint presentation with associated notes or a compendium document.
- 2) Scenario Development describes the development of a Combined Scenario based on multiple scenarios explored through forest-level modelling and analysis scenarios.
- 3) <u>Data Package</u> describes the information that is material to the analysis including the model used, data inputs and assumptions.

- 4) Analysis Report provides modeling outputs and rationale for choosing a preferred scenario.
- 5) Tactical Plan direction for the implementation of the preferred scenario.
- 6) Implementation Monitoring Plan direction on monitoring the implementation of the ISS; establishing a list of appropriate performance indicators, developing monitoring responsibilities and timeframe, and a reporting format and schedule.
- 7) Final Report summary of all project work completed.

1.3 MODEL

The PATCHWORKS [™] modeling software was used for forecasting and analysis. This suite of tools is sold and maintained by Spatial Planning Systems Inc. of Deep River, Ontario (Tom Moore - www.spatial.ca).

PATCHWORKS is a fully, spatial forest estate model that can incorporate real world operational considerations into a strategic planning framework. It utilizes a goal seeking approach and an optimization heuristic to schedule activities across time and space in order to find a solution that best balances the targets and/or goals defined by the user. Targets can be applied to any aspect of the problem formulation. For example, the solution can be influenced by issues such as mature/ old forest retention levels, young seral disturbance levels, patch size distributions, conifer harvest volume, growing stock levels, snag densities, CWD levels, ECAs, specific mill volumes by species, road building/ hauling costs, delivered wood costs, net present values, etc. The PATCHWORKS model continually generates alternative solutions until the user decides a stable solution has been found. Solutions with attributes that fall outside of specified ranges (targets) are penalized and the goal-seeking algorithm works to minimize these penalties, resulting in a solution that reflects the user objectives and priorities. PATCHWORKS' flexible interactive approach is unique in several respects:

- PATCHWORKS' interface allows for highly interactive analysis of trade-offs between competing sustainability goals.
- PATCHWORKS software integrates operational-scale decision-making within a strategicanalysis environment: realistic spatial harvest allocations can be optimized over long-term planning horizons. PATCHWORKS can simultaneously evaluate forest operations and log transportation problems using a multiple-product to multiple-destination formulation. The model can identify in precise detail how wood flows to mills over a complex set of road construction and transportation alternatives.
- Allocation decisions can be made considering one or many objectives simultaneously and objectives can be weighted for importance relative to each other (softer vs. harder constraints).
- Allocation decisions can include choices between stand treatment types (clearcut vs. partial cut, fertilization, rehabilitation, etc.).
- ▶ Unlimited capacity to represent a problem only solution times limit model size.
- Fully customizable reporting on economic, social and environmental conditions over time.
- Reports are built web-ready to share analysis results easily even comparisons of multiple indicators across multiple scenarios.

1.4 DATA SOURCES

Table 1 lists the spatial data and sources used in the ISS Base Case Scenario.

Table 1Spatial Data Sources

Spatial Data	Source	Feature Name	Effec tive
TSA Boundary	WHSE_ADMIN_BOUNDARIES	FADM_TSA	2011
Parks and Protected Areas	WHSE_TANTALIS	TA_PARK_ECORES_PA_SVW	2011
Ownership	Forsite consolidated	own_consolidated	2012
Special Use Permit	WHSE_FOREST_TENURE	FTEN_SPEC_USE_PERMIT_POLY_SV W	2011
Biogeoclimatic Ecosystems (BEC v10)	WHSE_FOREST_VEGETATION	BEC_BIOGEOCLIMATIC_POLY	2016
Landscape Units (LU)	WHSE_LAND_USE_PLANNING	RMP_LANDSCAPE_UNIT_SVW	2011
Old Growth Management Areas (OGMA) Non Legal	WHSE_LAND_USE_PLANNING	RMP_OGMA_NON_ALL_SVW	2014
Fire Management Ecosystem Restoration for DRM	REG_LAND_AND_NATURAL_RESO URCE	FOR_FIRE_MAINT_ECO_RES_DRM_ SP	2011
Wildland Urban Interface	BC Wildfire Service, 2015 Wildfire Threat Analysis (PSTA)	Wildland_Urban_Interface_Buffer_ Area	2015
Ungulate Winter Ranges (UWR) deer, moose, sheep , goat (u-4-006)	Forsite consolidated	EK_UWR_u_4_006	2015
Ungulate Winter Ranges (UWR) Caribou (u-4-013 and u-4-014)	WHSE_WILDLIFE_MANAGEMENT	WCP_UNGULATE_WINTER_RANGE_ SP	2010
Wildlife Habitat Areas (WHA)	WHSE_WILDLIFE_MANAGEMENT	WCP_WILDLIFE_HABITAT_AREA_PO	2011
Community Watersheds	WHSE_WATER_MANAGEMENT	WLS_COMMUNITY_WS_PUB_SVW	2011
Domestic Watersheds	REG_LAND_AND_NATURAL_RESO URCE	DOMESTIC_WATERSHED_KBLUP_P OLY	2011
Enhanced Resource Development Zones - Timber	WHSE_LAND_USE_PLANNING	RMP_PLAN_LEGAL_POLY_SVW	2011
Mature Management Areas	WHSE_LAND_USE_PLANNING	RMP_PLAN_NON_LEGAL_POLY_SV W	2011
Water bodies	WHSE_BASEMAPPING.FWA	FWA_water	2011
FSC classified streams	Forsite consolidated	FSC_Streams	2015
Riparian Buffers	Forsite consolidated	FOR_riparian_buffer	2015
Lakeshore Riparian Management Zones	TSR3 coverage	EK_Imz	2004
Environmentally Sensitive Areas	TSR3 coverage	EK ESA	2004
Terrain Stability	WHSE TERRESTRIAL ECOLOGY	STE TER ATTRIBUTE POLYS SVW	2011
Operability	TSR3 coverage		2004
Slope Class	TRIM/Forsite	slope_3class_clip_sgl_e2	2016
Visual Landscape Inventory (VLI)	WHSE_FOREST_VEGETATION	REC_VISUAL_LANDSCAPE_INVENTO RY	2011
Recreation Polygons	WHSE_FOREST_TENURE	FTEN_RECREATION_POLY_SVW	2011
Forest Inventory –VRI	WHSE_FOREST_VEGETATION	VEG_COMP_LYR_R1_POLY	2014
Forest Inventory – Cut Blocks	WHSE_FOREST_TENURE	FTEN_CUT_BLOCK_POLY_SVW	2016
Forest Inventory – Results Openings	WHSE_FOREST_VEGETATION	RSLT_OPENINGS_SVW	2016
Forest Inventory – Reserves	WHSE_FOREST_VEGETATION	RSLT_FOREST_COVER_RESERVE_SV W	2015
Forest Inventory – Results Forest Cover	WHSE_FOREST_VEGETATION	RSLT_FOREST_COVER_INV_SVW	2016
Forest Inventory – Managed Site Index	FAIB	sprod_09	2015
Seed Planning Units	WHSE_FOREST_VEGETATION	SEED_PLAN_UNIT_POLY_SVW	2015
Wildfires – Historic (1919-2015)	WHSE_LAND_AND_NATURAL_RES	PROT_HISTORICAL_FIRE_POLYS_SP	2016

Spatial Data	Source	Feature Name	Effec
			tive
Wildfires – Current (2016)	WHSE_LAND_AND_NATURAL_RES OURCE	PROT_CURRENT_FIRE_POLYS_SP	2016
BC Mines	Imageries - Forsite	BC_Mines	2018

1.5 FOREST INVENTORY UPDATES

The current forest inventory available for the Cranbrook TSA is based on projects prepared as far back as 1981. Most of the current inventory was completed in 1992 from air photos flown in 1988. While the Forest Inventory Planning lines and attributes were rolled over to the Vegetation Resources Inventory (VRI) format in 2000, attributes that were not part of 1992 project are missing from the VRI standard (e.g., Basal Area).

More recently, forest cover updates were conducted using the Reporting Silviculture Updates and Land Status tracking System (RESULTS) data up to 2009 and were adjusted for denudation to 2013 using satellite imagery. The latest VRI version acquired from DataBC was projected to January 1, 2016.

Logging

The 2016-projected VRI was updated for logging disturbance to March 2016 using harvest areas identified in the consolidated cutblock layer that includes blocks from the forest tenure administration (FTA) and RESULTS data. Logged areas from FTA were first identified by year of harvest completion (Disturbance_End_Date), and then by year of harvest start (Disturbance_Start_Date). Logged areas using RESULTS openings were identified in the following order: (1) by year of disturbance start, (2) for remaining records by year of harvest completion, (3) for remaining records by year of denudation completion date 1 and (4) for remaining records by year of denudation completion date 2. Finally, the depletions were applied only if the disturbance year determined in the consolidated cutblocks layer was more recent than the VRI field "REFERENCE_YEAR".

Efforts were made to identify areas that were partially harvested using the silvicultural system codes (DN1_SILSYS), and the RESULTS Forest Cover Inventory and VRI layers to determine the age of partially harvested areas.

Wildlife tree retention areas (i.e., wildlife tree patches) were identified using the RESULTS Forest Cover Reserve layer. The stand ages of these areas were assigned using VRI and RESULTS Forest Cover Inventory layers.

Mountain Pine Beetle

In the Cranbrook TSA, forest-level damage from the Mountain Pine Beetle (MPB) was relatively little had was quickly managed as licensees proactively logged infested stands. Consequently, no additional forest cover updates were applied for MPB.

<u>Wildfires</u>

Over the summer of 2017, approximately 50,000 ha of forested lands were impacted by wildfire throughout the Cranbrook and Invermere TSAs. The project team elected to incorporate available data from 3 sources:

- Rapid Burn Area Mapping (RBAM) from Hatfield Consultants (~24,800 ha)
- Relativized Burn Ration Index (RBR) from HR GIS Solutions (~24,900 ha)
- Fire Boundaries from Wildfire Management Branch (~200 ha)

These spatial datasets were consolidated and included in the GIS resultant to account for losses due to wildfire (Table 2).

Burn Severity	Stand Percentage Dead	Approach to Adjust Yields and Stand Ages
Unburnt	0%	 No changes to existing stand yields.
Low	50%	Maintain stand age for assessing forest requirements.
		Reduce existing yields by 50%.
		• Add 50% of existing yields regenerating from stand age of 0.
Moderate & No Data	70%	Maintain stand age for assessing forest requirements.
		Reduce existing yields by 70%.
		• Add 70% of existing yields regenerating from stand age of 0.
High	100%	 Reset stand age to 0 for assessing forest requirements.
		• Use 100% existing yields regenerating from stand age of 0.

Table 2	Methodology to Accomodate 201	7 Wildfires into Inventory (and Volume Adjustments
---------	-------------------------------	------------------------------	------------------------

The ISS Base Case Scenario did not account for wildfires that occurred prior to 2017.

Volume Adjustments

The 1992 inventory was audited in 1997 where it was found that the natural stand volumes in the TSA were overestimated in the inventory by 5%. This difference was deemed to be statistically insignificant.

The following adjustments were made stand yield projections (section 2.4):

- Existing natural stands: in the successive partial cuts regime for open forests within fire maintained ecosystem restoration (FMER) areas, yields were reduced by 49.5% following the first entry; in line with the designed partial cut regime described in the TSR4 data package. No reductions were applied to other yields generated in VDYP for natural existing stands. In contrast, dead MPB and deciduous component yield were deducted in the ISS scenarios.
- Existing managed stands: in the TSR Benchmark scenario, yields were reduced by 5.3% to account for existing roads. This yield reduction was not applied in the ISS scenarios because existing roads were spatially defined and removed from the net harvestable land base.
- Future managed stands: yields for stands harvested and regenerated from the existing natural stands (in both TSR and ISS scenarios), were reduced by 3.8% to account for future roads.

2 Base Case Scenario

This section describes the assumptions used to model the base case scenario that mimics status quo management. Results from this scenario provide the baseline from which to compare other scenarios.

2.1 LAND BASE ASSUMPTIONS

Land base assumptions are used to define the forest management land base (FMLB) and the timber harvesting land base (THLB) for the TSA. The THLB is the area identified to support timber harvesting while the FMLB is the area that contributes toward meeting non-timber objectives (e.g., biodiversity).

Factor	Total Area (ha)	Effective Area (ha)	% of Total Area	% of FMLB
Total Area	1,484,998	1,484,998	100.0%	
Less Community Forests	20,197	20,197	1.4%	
Private	223,286	223,286	15.0%	
Christmas Trees Permit	5,508	5,508	0.4%	
Indian Reserves	20,282	20,282	1.4%	
Woodlots	8,469	8,469	0.6%	
Misc leases	70	70	0.0%	
Special Permit	226	141	0.0%	
Mines	18,670	8,212	0.6%	
Vegetated, non FMLB	151	151	0.0%	
Non-treed	106,895	68,706	4.6%	
Non-vegetated	283,994	260,736	17.6%	
Not typed	115,337	2,849	0.2%	
Factored Roads		726	0.0%	
Total Forest Management Land base (FMLB)	(in FMLB)	865,665	58.3%	100.0%
Less Complete Removals:				
Parks	28,663	28,663	1.9%	3.3%
Inoperable	347,462	321,600	21.7%	37.2%
Steep Slopes (>70%)	53,866	2,959	0.2%	0.3%
Terrain Class V in CWS	1,417	68	0.0%	0.0%
ESA	93,452	8,199	0.6%	0.9%
Non Merchantable	84,576	11,406	0.8%	1.3%
Low Sites	148,840	4,962	0.3%	0.6%
Misc Reserves	254	167	0.0%	0.0%
Crown UREP	658	519	0.0%	0.1%
UWR Caribou	72,521	11,274	0.8%	1.3%
WHA	3,246	2,548	0.2%	0.3%
OGMA +MMA	102,025	27,065	1.8%	3.1%
FSC Endangered Forests	41,389	927	0.1%	0.1%
FSC Rare/Uncommon Ecosystems	7,512	3,129	0.2%	0.4%
Existing WTRAs	8,163	4,759	0.3%	0.5%
100% InBlock Retention	4,028	4,028	0.3%	0.5%
Gross Timber Harvesting Land Base (THLB)		433,392	29.2%	50.1%
Less Partial Removals:				
Slopes 40-70% (50%)	238,760	42,137	2.8%	4.9%
Terrain Class V outside CWS (95%)	13,877	1,507	0.1%	0.2%
Terrain Class IV outside CWS (5%)	102,438	3,024	0.2%	0.3%
Terrain Class IV in CWS (95%)	6,178	419	0.0%	0.0%
PFT Pine >80yrs (29%)	61,085	6,183	0.4%	0.7%
PFT Pine 61-80yrs (18%)	39,280	2,546	0.2%	0.3%
PFT Pine 41-60yrs (35%)	3,269	645	0.0%	0.1%
PFT Pine <40yrs (80%)	9,037	968	0.1%	0.1%
Isolated Stands	648	648	0.0%	0.1%
In-Block Retention*		36,971	2.5%	4.3%
Effective THLB		338,343	22.8%	39.1%
Less: Future Reductions				
Open Range Conversion	12,270	9,512	0.6%	1.19
Future Roads (3.8%)	,	10,110	0.7%	1.29
Long-term Effective THLB		318,722	21.5%	36.8%

Table 3 Cranbrook TSA Land Base Area Summary

* In-Block Retentions include FSC Rare Ecosystems, (50%), WTRA (6% for existing natural stands and 3.5% for existing managed stands), and Riparian (% determined spatially for each polygon).

After defining the land base, it was summarized below according to BEC zones and age classes. The area distribution of BEC zones for both the THLB and non-harvestable Land Base (NHLB) – together equalling the FMLB - are shown in Figure 2.

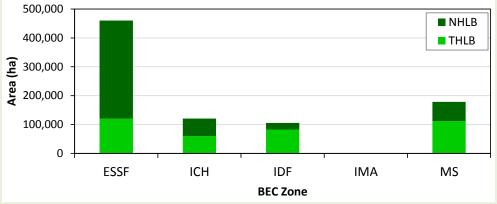


Figure 2 BEC Zone Distribution across the Forest Management Land Base

After applying assumptions to reflect changes in stand age from disturbances (i.e., fire, insects, and harvesting) the current age class distribution on both the THLB and NHLB are shown in Figure 3.

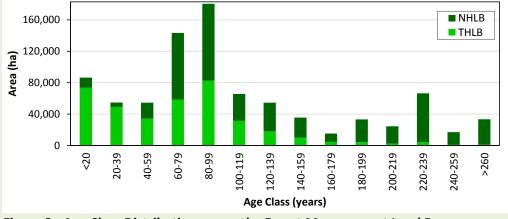


Figure 3 Age Class Distribution across the Forest Management Land Base

TSR4 approach where different

The FMLB area was smaller by approximately 83,000 ha due, primarily, to differences with ownership, criteria for defining non-forest and non-productive areas, and aspatial road reductions as detailed in each section below.

2.1.1 Non-TSA Ownership

The FMLB was spatially reduced for all areas identified as private land, Indian Reserve, woodlot licences, community forest agreements, Christmas tree permits, miscellaneous leases, special use permits, and non-commercial brush. Forsite also made efforts to consolidate an ownership layer that is divided into ownership codes describing the nature of ownership of a particular parcel of land. The consolidated ownership layer integrated three sources: DataBC ownership layer, TSR3 ownership layer, and FAIB TSR4 resultant. Firstly, the DataBC ownership layer was corrected for ownership schedule for codes 61 and 69 – where area >100 ha, the ownership schedule was changed to "C" instead of "N" to be in line with the

ownership and schedule code summary dated March 4, 2016. Secondly, the private lands (40-N, 72-A), Christmas tree permits (75-N), woodlot licenses (77-N), and miscellaneous leases (99-N) were updated from TSR3 ownership layer. Thirdly, the private lands (40-N) from the FAIB TSR4 resultant were updated to the consolidated ownership layer used in the ISS Base Case Scenario.

Visual checks of the ownership layer were conducted by district staff. While not perfect, the DRM staff concluded that the consolidated ownership layer was suitable for the ISS Base Case Scenario.

Ownership Code and Schedule	Description	ls FMLB	ls THLB	Gross Area (ha)	FMLB Area (ha)	Effective THLB Area (ha)
40-N	Private - Crown grants	Ν	Ν	223,286	0	0
52-N	Indian Reserves	Ν	Ν	20,282	0	0
54-N	Dominion Government Block	Ν	Ν	20,197	0	0
60-N	Crown - Ecological Reserves	Y	Ν	436	384	0
61-C	Crown - UREP	Y	Y	1,245	1,160	593
61-N	Crown - UREP	Y	Ν	969	658	0
62-C	Crown - Forest Management Unit (TSA)	Y	Y	1,008,383	730,101	296,405
63-N	Crown - Provincial Park Class A	Y	Ν	72,693	28,216	0
67-N	Crown - Provincial Park Equivalent or Reserve	Y	N	68	62	0
68-N	Crown - BMTA	Y	Y	9,722	8,558	6,288
69-C	Crown - Miscellaneous Reserves	Y	Y	113,232	96,272	35,056
69-N	Crown - Miscellaneous Reserves	Y	Ν	439	254	0
75-N	Crown - Christmas Tree Permits	N	Ν	5,508	0	0
77-B	Crown - Awarded Woodlot license	N	Ν	347	0	0
77-N	Crown - Awarded Woodlot license	N	Ν	8,122	0	0
99-N	Crown - Miscellaneous leases	N	Ν	70	0	0
Total				1,484,998	865,665	338,343

Table 4Ownership Classification and FMLB Contribution

According to the ownership and schedule code summary dated on 2016-03-04, the Crown-BMTA (68-N) areas should not contribute to the THLB. However, the district staff reviewing the consolidated ownership layer concluded that 68-N should not be part of the TSA and that there appeared to be errors in the DataBC ownership layer. Thus, 68-N contributed to both the FMLB and THLB.

In addition to the ownership consolidate layer, Forsite referred to a spatial representation for non-road special use permits and mines (FTEN_SPEC_USE_PERMIT_POLY_SVW layer) plus satellite images to identify other mining sites. These areas were also excluded from the FMLB.

TSR4 approach where different

A different source for ownership than the latest dataset available on DataBC. A comparison of ownership data indicated that TSR4 removed approximately 69,000 ha less than the ISS (Table 5). However, the netdown table comparison indicated that TSR4 netted down approximately 77,000 ha less non-Crown area than the ISS (Table 6). The extra difference in the Table 6 is explained by additional ISS exclusions due to special use permits and BC mines.

Ownership	TSR4	ISS	Difference	
Ownership	(ha)	(ha)	ha	%
Non-Crown*	208,667	277,811	69,144	25%
NHLB (Schedule N)**	73,356	74,606	1,250	2%
THLB (Schedule C)**	1,202,975	1,132,581	-70,394	-6%
Total	1,484,998	1,484,998	0	0%

Table 5	Ownership Summary Comparison between TSR4 and ISS
---------	--

*ownership code <60 or >69, any ownership schedule. Non-Crown includes TFL 14. **ownership code \ge 60 and \le 69.

Table 6 Netdown Factor Comparison between TSR4 and ISS

	TSR4	ISS	ISS Difference	
Netdown Factor	(Net ha)	(Net ha)	ha	%
Non-Crown	208,685	286,165	77,480	27%
Non-Productive	480,141	332,443	-147,698	-44%
Existing Roads	13,698	726	-12,972	-1787%
FMLB	782,474	865,665	83,191	10%
Total	1,484,998	1,484,998	0	0%

2.1.2 Non-Forest and Non-Productive

Non-forest includes areas that are non-vegetated and/or non-productive for commercial timber. Areas were identified using the approach described in Table 7.

Table 7	Non-Forest and Non-Productive Classification
---------	--

Description	Assumption	Gross Area (ha)	Net area (ha)
Not Typed	No logging history and BCLCS Level 1 = U, or null	115,337	2,849
Not Vegetated	No logging history and BCLCS Level 1 = N	283,994	260,736
Not Treed	No logging history and BCLCS Level 2 = N	106,692	68,543
Alpine	No logging history and BCLCS Level 2 = A	0	0
Vegetated nen EMID	No logging history and Height <5m and Crown closure		
Vegetated, non FMLB	(all layers) ≤10 and inventory Age >120 years	151	151
Mator 514/A	No logging history and Lakes/Rivers from FWA dataset		
Water FWA	(if missed by VRI)	203	163
Total		506,378	332,443

The logging history was determined as follows:

- Valid VRI harvest date
- VRI 'LINE_7B_DISTURBANCE_HISTORY' field starts with character 'L'
- Valid consolidated cutblock id and no wildlife tree retention area

TSR4 approach where different

The FMLB field in the VRI dataset was the only criterion used to determine all non-forest and non-productive areas. By comparison, TSR4 excluded approximately 148,000 ha more of these areas than ISS (Table 8).

2.1.3 Cleared Right-of-Ways

The road network used in the ISS Base Case Scenario was provided by the Provincial Cumulative Effects Team as a consolidated road dataset using provincial data (Digital Road Atlas, Forest Tenure, and RESULTS forest cover inventory) and road data from other industries (oil and gas, and mining). Forsite removed most of the in-block skid trails that were visibly overgrown or within partially treated cutblocks. Road sections were then placed into 5 classes based on fields ROAD_CLASS and ROAD_SURFACE and, since road buffer widths were not described in TSR4, those described in TSR3 were applied (Table 8). Railways, power lines, and pipelines were also buffered to account for non-forested area.

Class	Width (m)	ROAD_CLASS	ROAD_SURFACE
Highways	40	'paved'	Not 'local'
		'paved'	'local'
Secondary Road	15.9	'loose'	Not in ['resource', 'unclassified', 'proposed', 'trail']
		'rough'	Not in ['resource', 'unclassified', 'proposed', 'trail', 'skid']
Logging Dood	8.5	'loose'	In ['resource', 'unclassified', 'proposed']
Logging Road	0.5	'rough'	In ['resource','proposed']
		'rough'	In ['unclassified', 'skid']
In-block	5.0	'overgrown'	Any
III-DIOCK	5.0	'unknown'	Not 'trail'
		NULL	Any
		'loose'	'trail'
Trail	3.0	'rough'	'trail'
		'unknown'	'trail'
Railway	33.8	NA	NA
Power Line	49.0	NA	NA
Pipeline	30.8	NA	NA

 Table 8
 Existing Roads and Non-Forested Widths

Finally, through a post-processing spatial exercise, the area of existing roads was prorated from resultant polygons that intersect with all buffers in Table 8. Future roads were addressed as a 3.8% reduction on future stand yields.

TSR4 approach where different

Roads were aspatially removed from the FMLB by applying a 5.3% area reduction to each polygon. Thus, TSR4 netted out approximately 13,000 ha more roads than ISS (Table 6).

2.1.4 Provincial Parks and Ecological Reserves

Provincial parks and Ecological Reserves were identified from 2 sources: Consolidated Ownership layer ("60-N", "63-N", "64-N", "67-N") and TA_PARK_ECORES_PA_SVW. These areas are excluded from the THLB but remained in the FMLB to contribute towards non-timber objectives (e.g., biodiversity).

Park or Reserve Name	Gross FMLB Area	
Park of Reserve Name	(ha)	
60-N	333	
63-N	0	
67-N	62	
AKAMINA-KISHINENA PARK	6,282	
ELK LAKES PARK	6,012	
ELKO PARK	6	
GILNOCKIE CREEK ECOLOGICAL RESERVE	51	
GILNOCKIE PARK	2,734	
HEIGHT OF THE ROCKIES PARK	3,600	
JIMSMITH LAKE PARK	12	
KIANUKO PARK	1	
KIKOMUN CREEK PARK	120	
LOCKHART CREEK PARK	5	
MOUNT FERNIE PARK	253	
MOYIE LAKE PARK	0	
NORBURY LAKE PARK	62	
PURCELL WILDERNESS CONSERVANCY PARK	4,321	
ST. MARY'S ALPINE PARK	4,704	
TOP OF THE WORLD PARK	28	
WASA LAKE PARK	80	
Total	28,663	

Table 9 Provincial Parks and Ecological Reserves

TSR4 approach where different

In addition to the parks layer, all ownership codes between 60 and 69, where schedule was "N", were considered a provincial park or ecological reserves and removed from the FMLB.

2.1.5 Inoperable/Inaccessible

Physical limitations, such as steep slopes, limited road access, or extreme yarding distance, were considered operational barriers to harvesting. These areas were deemed inoperable and excluded from the THLB remained in the FMLB to contribute towards non-timber objectives. Since operability mapping is not always accurate at a stand level, areas that were previously logged were reassigned as THLB.

Two sources were used to identify inoperable areas (Table 10): TSR3 operability layer and the 3-class slope layer derived from the provincial terrain resource information management (TRIM) data using GIS terrain analysis. The operability thresholds and percent reductions were estimated by FAIB using harvest history mapping over the last 10 years. The 50% reduction for cable yarding areas (slope >40% and ≤70%) was applied through a GIS algorithm which considered, in descending order, the proximity to the existing THLB patches >4 ha in size and productivity of the cable yarding areas. Inoperable stands were first selected from polygons without previous netdown factors. This resulted in less than 50% of the net area identified as spatially explicit THLB area exclusions for cable yarding. This was appropriate as these constrained polygons are less likely to be harvested. While this approach serves to spatialize inoperable stands for modelling purposes, it may not be appropriate for operational planning.

Description	Reduction (%)	Gross FMLB Area (ha)	Net Area (ha)
Operability (I or N)	100	347,462	321,600
Slope>70% inoperable	100	53,866	2,959
Slope >40% and ≤70% (cable yarding)	50	238,760	42,137
Total		640,087	366,696

Table 10 Description of Inoperable Areas

TSR4 approach where different

The 50% reduction was applied aspatially to each FMLB polygon where slope >40% and ≤70%. Inoperable areas with logged history were not reassigned as THLB. The slope layer used appeared to be corrupt as it did not align with TRIM contours. The net area identified as inoperable in TSR4 was approximately 130,000 ha less than the ISS Base Case Scenario with the largest difference being classification of steep slopes.

2.1.6 Unstable Terrain

Forest licensees and BCTS have completed terrain stability mapping over areas of concerns throughout the TSA in a variety of projects and intensities (Level B and D). Areas classified as U (unstable) or class V (high instability) were considered unsuitable for timber harvesting. Class P (potentially unstable) or IV (moderately unstable) are generally suitable for harvesting. Other classes were also considered suitable for timber harvesting. Since terrain mapping is not always accurate at a stand level, areas that were previously logged were reassigned as THLB.

Based on licenses and BCTS input, FAIB determined that outside of the community watersheds, 5% of the class P or IV areas are not harvested, while 5% of the class U or V are harvested. Within the community watersheds, 5% of the areas in class P or IV are harvested, while none in the class U or V are harvested.

A GIS algorithm was developed to spatially identify areas to exclude from the THLB in each terrain stability class (Table 11). Polygons were selected to meet each percentage requirement by considering, in a descending order, proximity to the existing THLB, patches >4 ha in size, and productivity of the terrain stability areas. As with the partial netdowns for cable yarding on steep slope, the GIS algorithm prioritized polygons without previous netdown factors as exclusions for terrain stability. While this approach serves to spatialize PFTs for modelling purposes, it may not be appropriate for operational planning.

Description	Reduction	Gross FMLB Area	Net Area
	(%)	(ha)	(ha)
Class U or V in CWS	100	1,417	68
Class P or IV in CWS	95	102,438	3,024
Class U or V outside CWS	95	13,877	1,507
Class P or IV outside CWS	5	6,178	419
Total		123,910	5,019

Table 11 Description of Terrain Stability Mapping

TSR4 approach where different

Reductions were applied aspatially to each FMLB polygon according to Table 11. The terrain stability layer used appeared to be corrupt as large areas of terrain stability mapping were missing attributes,

while these polygons appeared to be present in the FAIB resultant. Areas with logged history were not reassigned as THLB. The net area identified as unstable was approximately 4,700 ha less than the ISS Base Case Scenario.

2.1.7 **Environmentally Sensitive Areas**

Environmentally Sensitive Areas (ESA) are a broad classification of areas that indicate sensitivity for unstable soils (E1s), forest regeneration problems (E1p), snow avalanche risk (E1a), and high water values (E1h). Terrain stability mapping provides a more accurate estimate of soil stability than E1s mapping. However, where no terrain mapping exists, E1s mapping takes precedence. While some ESAs are 100% excluded from THLB (Table 12), forested areas can contribute to meeting non-timber objectives. Since ESA mapping is not always accurate at a stand level, areas that were previously logged were reassigned as THLB.

Description	Reduction (%)	Gross FMLB Area (ha)	Net Area (ha)
E1a, E1h	100	73,500	4,574
E1p outside FMER-OF/OR	100	19,722	3,505
E1s where no terrain stability mapping exists	100	230	120
Total		93,452	8,199

TSR4 approach where different

Issues with the terrain stability mapping (section 2.1.6) were related to the application of ESA netdowns, resulting in differences in ESA netdown areas; TSR4 resulted in approximately 2,900 ha net area less than the ISS Base Case Scenario. Areas with logged history were not specifically reclassified as THLB.

2.1.8 Non-Merchantable Forest Types

Non-merchantable forest types are stands that include tree species currently not utilized, or not economically viable, or low quality timber (i.e., small size and/or low volume). Under certain market conditions, future analyses might include some of these stands (Table 13). These stands are 100% excluded from the THLB. Since stand attributes used to identify non-merchantable forest types are not always accurate at a stand level, areas that were previously logged were reassigned as THLB.

	Non-incremantable rolest rypes	
Descript	on	Re

Description	Reduction (%)	Gross FMLB Area (ha)	Net Area (ha)
Decadent (age >200 years) cedar, hemlock, or subalpine fir leading	100	40,211	2,207
Deciduous or whitebark pine leading	100	44,365	9,199
Total		84,576	11,406

TSR4 approach where different

The whitebark pine species code (Pa) appeared to be mistaken by white pine species code (Pw) and the VRI projected age to year 2014 was misapplied for decadent stands. When these differences were adjusted to the correct values, the FAIB resultant produced almost identical results as the resultant used in the ISS Base Case Scenario. However, areas with logged history (deciduous- or Pa-leading) were not reassigned as THLB.

2.1.9 Low Productivity Sites

Low productivity sites are areas with commercial tree species that are not expected to reach minimum volumes to be economically viable. These stands were 100% excluded from THLB.

An important relationship exists between slopes, harvest system employed, minimum harvest criteria (section 2.3.2), and low productivity sites. Conventional harvesting systems on slopes <40%, typically require lower timber volume and piece size thresholds than the more expensive cable systems needed to harvest timber on steeper slopes (≥40%). The minimum volume thresholds for timber volume and piece size are higher. These differences in minimum harvest criteria must be incorporated into the definition of low productivity sites. Otherwise, areas classified as THLB will never be harvested because these stands never reach minimum harvest criteria.

The criteria for identifying low productivity sites is summarized in Table 14 and assumes that (1) pine and some Douglas-fir leading stands have a lower threshold for piece size and are more sensitive to increases in piece size with slope, and (2) other species are not differentiated based on slope, but the values reflect a weighted average of all conditions. Since stand attributes used to identify low productivity sites are not always accurate at a stand level, areas that were previously logged were reassigned as THLB.

		Description Gross					
Leading Species	Slope	Min Volume (m³/ha)	At age (years)	Site Index (m)	(%)	FMLB Area (ha)	Net Area (ha)
PL	<40%	150	120	<10	100	6,002	1,731
PL	≥40%	200	120	<12	100	25,347	0
F except FS	<40%	100	150	<10	100	1,810	1,145
F except FS	≥40%	150	150	<13	100	22,070	0
FS, S, PW	All	150	120	<8	100	15,745	531
All Others	All	150	120	<10	100	77,867	1,555
Total						148,840	4,962

Table 14Low Productivity Sites

TSR4 approach where different

The same criteria were used to identify low productivity sites. However, areas with logged history were not reassigned as THLB.

2.1.10 Problem Forest Types

Stands identified as problem forest types (PFT) have the potential to produce merchantable timber but will not likely be harvested due to marginal merchantability. While opportunities may exist to rehabilitate these stands, they were excluded from the THLB as partial reductions for modelling purposes (Table 15).

A GIS algorithm was developed to spatially identify areas to exclude PFTs from the THLB. The percentage reductions were applied by considering, in descending order, the proximity to the existing THLB patches >4 ha in size and productivity of the PFT stands. As with other partial netdowns described above, the GIS algorithm prioritized PFTs as polygons without previous netdown factors. While this approach serves to spatialize PFTs for modelling purposes, it may not be appropriate for operational planning. Finally, since stand attributes used to identify PFTs are not always accurate at a stand level, areas that were previously logged were reassigned as THLB.

Description				Reduction	Gross FMLB Area	Net Area	THLB Area
Leading Species	Age (years)	Site Index (m)	Height (m)	(%)	(ha)	(ha)	(ha)
PL	>40	<16	≤10.4	80	9,037	968	194
PL	41-60	<16	>10.4, ≤19.4	35	3,269	645	419
PL	61-80	<16	>10.4, ≤19.4	18	39,280	2,546	2,088
PL	61-80	<16	>10.4, ≤19.4	29	61,085	6,183	4,390
Total					112,671	10,342	7,090

Table 15 Problem Forest Types

Note: 20-years were added to the age at minimum harvest volume for PFTs remaining in the THLB.

TSR4 approach where different

While the criteria and reduction percentages were the same, aspatial reductions for PFTs were applied to each FMLB polygon. The VRI projected age to year 2014 was misapplied for PFTs. When these differences were adjusted to the correct values, the TSR resultant produced almost identical results as the ISS Base Case Scenario. However, areas with logged history were not reassigned as THLB.

2.1.11 Miscellaneous Reserves

Miscellaneous reserves are areas that are classified by the consolidated ownership layer as 61-N or 69-N. Because of their reserved status denoted by the ownership layer, these areas were 100% excluded from the THLB.

Table 16Miscellaneous Reserves

Description	Gross FMLB Area	Net Area
Description	(ha)	(ha)
Crown Miscellaneous Reserves	254	167
Crown UREP	658	519
Total	913	686

TSR4 approach where different

These miscellaneous reserves were included in the Parks and Reserve netdown category.

2.1.12 Ungulate Winter Ranges and Wildlife Habitat Areas

Ungulate Winter Ranges (UWR) and Wildlife habitat Areas (WHA) with harvest restrictions were 100% excluded from the THLB. With UWRs, 'no harvest' areas were only applied to UWR U-4-013 and U-4-014, which were established for the protection of woodland caribou range. With WHAs, 'no harvest' areas included:

- Data sensitive (WHA 4-044, 4-045, 4-109, 4-112),
- Rocky Mountain Tailed Frog (WHA 4-046 through 4-063)
- Long-billed Curlew (WHA 4-074,4-075)
- Lewis's Woodpecker (WHA 4-086)
- Flammulated Owl (WHA 4-099,4-101)
- Williamson's Sapsucker (WHA 4-108, 4-110, 4-127 through 4-144, 4-181 through 4-202)
- Western Screech Owl (WHA 4-114, 4-115, 4-178, 4-179, 4-243 through 4-276)

- Antelope-brush/blue-bunch wheatgrass (WHA 4-116, 4-119)
- Douglas-fir/snowberry/balsamroot (WHA 4-118,4-120)

Description	Gross FMLB Area (ha)	Net Area (ha)
UWR Caribou	72,521	11,274
WHA	3,246	2,548
Total	75,767	13,822

Table 17 Wildlife Habitat Areas and Ungulate Winter Ranges in No Harvest Zones

TSR4 approach where different

No harvest zones are described in the TSR data package where some WHA TAG#s have both, conditional and no harvest zones. However, in the FAIB netdown script, entire WHA TAG#s were 100% excluded from the THLB regardless of the timber harvest code. The TSR4 data package only included a net area in the netdown table.

2.1.13 Riparian Zones

The classified stream line features, lakes, and wetlands were spatially identified using a consolidated dataset from TSR3 and updates conducted by licensees in other forest analysis projects related to Forest Stewardship Council (FSC) standards. Stream features were reclassified to Forest Range and Practices Act (FRPA) standards as follows: S1-S4 classes were identical between the two standards, FSC S5a/S5b to FRPA S5, and FSC S6a/S6b to FRPA S6.

Two sets of riparian buffers were developed, one following the FSC standards, and another following the FRPA standards. The FSC standards were applied only to the Canadian Forest Products Ltd. (Canfor) operating areas, while FRPA standards were applied to the rest of the TSA. Effective buffers were applied to the outside shape of the polygon features and on both sides of the line features are shown in Table 18 and Table 19. These buffers were 100% excluded from the THLB.

In addition, Lakeshore Management Zones (LMZ) were established in TSR3 around some lakes and wetland complexes. The LMZ were also 100% excluded from the THLB regardless the standard (FRPA or FSC).

				FRPA		FSC		
Stream Class	Description	RRZ (m)	RMZ (m)	RMZ Min BA Retention	Effective Buffer (m)	RRZ Budget/Equivalent Minimums	RMZ Budget/Equivalent Minimums	Effective Buffer (m)
S1-A	>100m in width	0	100	20	20	6 ha/km or ~30m	8 ha/km or ~40m	56
S1-B	>20 up to 100m in width	50	20	20	54	each side	buffer each side with 65% BA retention	(30+26)
S2	5-20 m in width	30	20	20	34		(26m)	
S3	1.5 – 5 m in width (fish bearing or community watershed)	20	20	20	24	6 ha/km or ~30m each side	4 ha/km or ~20m buffer each side with 65% BA retention	43 (30+13)
S4	<1.5 m in width (fish bearing or community watershed)	0	30	10	3		(13m)	
S5 or S5a	>3 m in width (not fish bearing or not in community	0	30	10	3	4 ha/km or ~20m each side	4 ha/km or ~20m buffer each side with 65% BA retention	33 (20+13)

Table 18 Riparian Criteria for Streams

			FRPA			FSC		
Stream Class	Description	RRZ (m)	RMZ (m)	RMZ Min BA Retention	Effective Buffer (m)	RRZ Budget/Equivalent Minimums	RMZ Budget/Equivalent Minimums	Effective Buffer (m)
	watershed)						(13m)	
S5b NDT 1,2,4	Above AND non- domestic watershed AND >500 m upstream of a fish-bearing					n/a	3 ha/km or ~15m buffer each side with 30% BA retention (4.5m)	4.5
S5b NDT 3	stream					n/a	3 ha/km or ~15m buffer each side with 10% BA retention (4.5m)	1.5
S6 or S6a	≤3 m in width (not fish bearing or not in community watershed)	0	20	n/a	0	4 ha/km or ~20m each side	4 ha/km or ~20m buffer each side with 65% BA retention (13m)	33 (20+13)
S6b NDT 1,2,4	Above AND non- domestic watershed AND >250 m upstream of a fish-bearing					n/a	3 ha/km or ~15m buffer each side with 30% BA retention (1.5m)	4.5
S6b NDT 3	stream					n/a	3 ha/km or ~15m buffer each side with 10% BA retention (1.5m)	1.5

Note: FSC budget equivalent minimums were calculated by multiplying the 'ha/km' by 5 to get the equivalent width of each zone in metres (e.g., 6ha/km =~30m on each side of a stream). The intent of the flexibility is also to allow limited trade-off between the reserve and management zones and between classes, as long as the "equivalent total retention" is comparable (e.g., 10m of reserve zone is equivalent to 20m of management zone at 50% retention); however, total reserve zone area should never be below 80% of the budget for any specific class (i.e., conversion of all reserve zones to management zones is not acceptable).

Table 19 Riparian Criteria for Wetlands and Lakes

				FRPA		FSC		
Riparian Class	Description	RRZ (m)	RMZ (m)	RMZ Min BA Retention	Effective Buffer (m)	RRZ Budget/Equivalent Minimums	RMZ Budget/Equivalent Minimums	Effective Buffer (m)
				Wetlan	ds			
W1	>5 ha in area	10	40	10	14	2 ha/km or ~20m	1.5 ha/km or ~15m	24.5
W2	1-5 ha in area in PP or IDF	10	20	10	12	from edge of	from edge with	
W3	1-5 ha in area not in PP or IDF	0	30	10	3	wetland	30% BA retention	
W4	0.25-1 ha. in area in PP or IDF	0	30	10	3			
W5	2 adjacent wetlands separated by <60 m and both <5 ha, or separated by <80 m if one is <5 ha and the other is >5 ha, or separated by 100 m or less if both are >5 ha.	10	40	10	14			
				Lakes	5			
L1	>5 ha in area	10	Varies	10	Varies	1.5 ha/km or ~15m	1.5 ha/km or ~15m	19.5
L2	1-5 ha in area in PP or IDF	10	20	10	12	from edge of lake	from edge with	
L3	1-5 ha in area not in PP or IDF	0	30	10	3		30% BA retention	

		FRPA				FSC		
Riparian Class	Description	RRZ (m)	RMZ (m)	RMZ Min BA Retention	Effective Buffer (m)	RRZ Budget/Equivalent Minimums	RMZ Budget/Equivalent Minimums	Effective Buffer (m)
L4	0.25-1 ha in area	0	30	10	3			
LMZ					200			

Note: FSC budget equivalent minimums were calculated by multiplying the 'ha/km' by 10 to get the equivalent width of each zone in metres (e.g., $2ha/km = \sim 10m$ along the edge of the feature). The intent of the flexibility is also to allow limited trade-off between the reserve and management zones and between classes, as long as the "equivalent total retention" is comparable (e.g., 10m of reserve zone is equivalent to 20m of management zone at 50% retention); however, total reserve zone area should never be below 80% of the budget for any specific class (i.e., conversion of all reserve zones to management zones is not acceptable).

The area of riparian buffers applied for each standard (FSC and FRPA) was prorated for each intersecting resultant polygon through a post-processing spatial exercise. Then, a final in-block retention percentage was determined for each THLB polygon and for each standard as the maximum percentage between prorated riparian buffer and wildlife tree retention area (WTRA). Recall, the FSC standards only apply to the Canfor operating areas.

TSR4 approach where different

Riparian buffers were aspatially netted out.

2.1.14 Old Growth and Mature Management Areas

Old growth (OGMA) and mature (MMA) management areas were established to meet landscape-level biodiversity requirements for mature and old seral forest types designated in the Kootenay-Boundary Higher Level Plan Order (KBHLPO). The latest OGMAs and MMAs were gathered from licensees (BCTS, Galloway, and Canfor) and consolidated into a spatial layer. These polygons were 100% excluded from THLB.

Description	Gross FMLB	Net
Description	Area (ha)	Area (ha)
MMA	13,422	3,402
OGMA	88,603	23,663
Total	102,025	27,065

Table 20 Mature and Old Growth Management Areas

TSR4 approach where different

MMAs were not specifically identified. The gross area for OGMAs was approximately 22,000 ha less than the consolidated OGMA+MMA dataset applied in the ISS Base Case Scenario.

2.1.15 Recreation & Scenic Areas

While attempts were made to exclude from the THLB areas with preservation as the established visual quality objective, none were identified within this TSA.

TSR4 approach where different

It is unclear if TSR4 specifically identified recreation and scenic areas.

2.1.16 FSC High Conservation Value Forests

Under the FSC standard, High Conservation Value Forest areas (HCVF) were previously identified as areas that possess one or more of the following attributes:

- significant concentrations of biodiversity values,
- large landscape level forests,
- rare, threatened or endangered ecosystems,
- provision of basic services of nature in critical situations such as watershed protection or erosion control, or
- significant to the traditional cultural identity for local communities.

HCVF areas are spatially mapped and have management strategies designed to maintain or enhance the values within them. Endangered Forests are a subset of these HCVF areas, where management strategies were developed to reserve the entire area (i.e., no logging or road-building).

This scenario incorporated Canfor's description and spatial data of areas currently identified as Endangered Forests. These areas were completely excluded from the THLB.

TSR4 approach where different

FSC standards for HCVF areas were not applied.

2.1.17 FSC Rare and Uncommon Ecosystems

Rare ecosystems were defined as those groups of site series with less than 0.1% (< 2000 ha) total area within the East Kootenay Conservation Partnership area (Crown and private land in the Rocky Mountain forest district, plus TFL 14, and a portion of the Golden TSA – see Wells et al., 2005 or Canfor's SFMP for details). Uncommon ecosystems were defined as those groups with 0.1% to 0.5% of total area (2,000-9,000 ha).

The ecosystem groupings were originally defined using site series from BEC Version 6. These areas were spatially defined using the latest and most appropriate PEM data (Table 21). In consultation with Kari Stuart-Smith (Canfor), the ecosystems were assigned to one of two retention classes: either 100% retention (no harvest) or 50% retention (i.e., 50% of the stand retained at the time of harvest). The 100% retention was applied as a THLB netdown while the 50% retention was applied as an in-block retention factor reflected in the long term THLB.

Ecosystem Group	Site Series within the Ecosystem Group	Retention Class (%)							
	Rare Ecosystems								
2	IDFun-DP	100							
5	IDFun2-FH	100							
9	IDFun2-SD	100							
14	PPdh2 04	100							
15	IDF dm ² 07, IDF dm ² XB	50							
16	IDFun-CD	100							
19	MSdk 07, IDFdm ² A-SB	100							
24	ESSFdm ² /FS	100							
30	ESSFdm1-FH	100							
	Uncommon Ecosystems								
8	PPdh2 03	100							
10	ICH mk1 06	50							
13	ICHdm-XA	50							
17	ICH mk1 07, ICH dm-SD	100							
18	MSdk 06, IDFdm ² a-SH	100							
29	ESSFwm 04	50							
35	ESSFdku-FH, ESSFdmu1-FH, ESSFwmu-WE, ESSFdmu2-WE	100							

Table 21 Rare and Uncommon Ecosystem Groups

TSR4 approach where different

FSC standards for rare and uncommon ecosystems were not applied.

2.1.18 Isolated Stands

Isolated stands are patches of THLB that are too small and too far from other large THLB patches to be operationally viable. In the ISS Base Case Scenario, isolated stands were defined as:

- Any THLB contiguous patch that is <4 ha in size and >200 m from the closest THLB contiguous patch >4 ha. Here, it is assumed that a THLB patch <4 ha is not economically viable for harvesting if a road longer than 200 m has to be built to access it.
- Any THLB contiguous patch <1ha in size and >50 m from the closest THLB patch >4 ha in size. Here, a relatively small THLB patch <1ha is not economically viable if it is more than 50 m from a larger THLB patch. However, THLB patches <1 ha and within 50 m are assumed economically viable because they can be separated by existing road right-of-ways or riparian buffers.

These areas were 100% excluded from the THLB. The total area identified as isolated stands was 648 ha.

TSR4 approach where different

Given the aspatial approach applied for some netdown factors, it is likely that isolated stands were not considered.

2.1.19 Cultural Heritage Resources

Most known archaeological sites and band-specific Traditional Use Studies are located in areas with additional ecological or environmental constraints. DRM staff have indicated that additional areas over those already excluded from the THLB are expected to be minimal. Thus, no additional THLB exclusion were applied in the ISS Base Case Scenario.

TSR4 approach where different

The ISS Base Case Scenario applied the same assumption; cultural heritage resources were not explicitly modelled.

2.1.20 Existing Wildlife Tree Retention Areas

Wildlife tree retention areas (WTRA) are sections of the cutblocks left standing to meet various nontimber objectives (e.g., stand level biodiversity). The WTRAs were identified through a GIS exercise that compiled information from the RESULTS Forest Cover Reserve layer and VRI to consolidate the spatial location and age of these stands. These WTRAs amounted to 2.5% of the associated THLB.

TSR4 approach where different

A 6% aspatial netdown was applied to all THLB area. Thus, reductions for future WTRA were also considered at this stage of the netdown process.

2.1.21 Future Wildlife Tree Retention Areas

To account for future WTRAs, a 6.0% area reduction (from TSR4) was applied, but only to the THLB area of existing natural stands and their corresponding future managed stands. The THLB for existing managed stands and their corresponding future managed stands was reduced by 3.5% to account for future WTRAs. This 3.5% average (ranging between 1.6 to 7.3%) was applied used in the previous TSR3 as a spatially-explicit reduction for existing WTRA. It also reflects the difference in WTRAs for natural stands (6.0%) and the WTRAs identified for existing WTRAs (2.5% - section 2.1.20).

To properly account for in-block retention associated with riparian zones, rare and uncommon ecosystems, and existing WTRAs, an in-block retention field was populated in the resultant file. Since WTRAs can overlap riparian zones and both WTRA and riparian zones can contribute to rare and uncommon ecosystems, the maximum value of the 3 factors was used to populate the in-block retention field. In addition, 10 retention classes were applied in the model - each of 10% in length – and an area-weighted average retention percentage was developed for each of the 10 classes and then used to determine the reserved in-block retention for each block, corresponding to the retention class.

As they are managed through a selection silvicultural system, reductions for future WTRA were not applied to FMER stands.

TSR4 approach where different

While existing WTRAs were not specifically determined, a 6% WTRA reduction was applied to the entire THLB area – existing and future. It was deduced that the 6% WTRA reduction was also applied to FMER OF/OR.

2.1.22 Open Range Conversions

Fire Maintained Ecosystems Restoration (FMER) areas were established for grass-growing areas under the authority of the Kootenay-Boundary Higher Level Plan Order (KBLUPO). The THLB area within Open Forest (OF) ecosystems is managed under an uneven-aged management regime with successive entries (detailed in section 2.3.4). The THLB area within Open Range (OR) ecosystems is managed as a single clearcut entry with 10 m³/ha retention. The THLB area is gradually reduced over time as OR ecosystems are treated. Note that UWR habitat type identified as OF/OR was not included under the open range conversions strategy. The OF/OR habitat types identified in the UWR layer were not used in the ISS Base Case Scenario.

TSR4 approach where different

The ISS Base Case Scenario applied the same silvicultural systems.

The ISS team elected to use the FMER layer from TSR4 as it better reflects open forest, open range, and grassland connectivity. The publicly available FMER layer was only used in the TSR Benchmark analysis.

In TSR4, estimates for the area of OR and OF within FMLB were 55,465 ha (13,571 ha in OR and 41,895 ha in OF) while the ISS Base Case Scenario identified 50,696 ha (12,270 ha in OR (OR, OR/OF) and 38,426 ha in OF (OF, MF/OF)). The differences between the two analyses were likely due to the non-forested land base definition differences discussed in section 2.1.2.

Note that the Open Range Conversion THLB reported in the Public Discussion Paper was 16,920 ha, while the TSR4 resultant indicated only 10,834 ha; it is unclear how this difference occurred. The public discussion paper estimate of the THLB Open Range Conversion was approximately 6,800 ha higher than the current analysis. Compared to the TSR4 resultant, the current analysis identified 1,300 ha less THLB Open Range Conversion; another factor to contribute to this difference was the converted area to open range between the two analyses.

2.1.23 Future Roads, Trails and Landings

To account for future roads deductions, yield curves for future managed stands (i.e., following stand-replacing harvest disturbance of an existing natural stand) were reduced by 3.8%.

TSR4 approach where different

The 3.8% reduction was applied to all THLB stands older than 70 years (according to the FAIB netdown script but 60 years is documented in the TSR4 data package document). It is possible that the future THLB was reduced for both existing roads (5.3% of the FMLB area) and future roads (3.8% of the yield).

2.2 NON-TIMBER MANAGEMENT ASSUMPTIONS

This section describes the criteria and considerations used to model non-timber resources.

2.2.1 Green-up and adjacency

The KBLUPO specifies block level green-up targets based on Operational Planning Regulation (section 68(4) – green-up height of 2.5 m for areas adequately stocked and 3.0 m for areas not adequately stocked except community watersheds, visually sensitive areas, Enhanced Resource Development Zones (ERDZ) – Timber, and FMER. These green-up constraints were configured in the model according to (Table 22).

Management Zone	Green-up Constraint
Enhanced Resource Development Zone = 'Timber'	THLB area restricted to max 33% <2 years within each
	landscape unit/ERDZ
FMER – Open Forest and Open Range	No green-up requirements were set
Neither ERDZ nor FMER (Integrated Resource	Remaining THLB area restricted to max 33% <12 years
Management Zones - IRMZ)	within each landscape unit/IRMZ

Table 22 Green-up Constraints

TSR4 approach where different

The same constraints for green-up and adjacency were applied.

2.2.2 Stand-Level Biodiversity

The stand-level biodiversity is typically addressed by means of WTRAs. Details on how existing and future WTRAs were determined are discussed in sections 2.1.20 and 2.1.21. The ISS Base Case Scenario applied two reductions to the THLB for WTRAs, accordingly:

- 6.0% of the THLB area of existing natural stands (and their corresponding future managed stands), and
- 3.5% of the THLB area of existing managed stands (and their corresponding future managed stands).

TSR4 approach where different

In TSR4, the 6% WTRA was applied to all THLB area, yet the existing WTRA were not specifically identified.

2.2.3 Landscape-Level Biodiversity Objectives

Spatially defined OGMA\MMAs were used to meet the landscape-level biodiversity targets set by the KBHLPO. Four sensitivity analyses were designed to explore the status of mature and old seral requirements relative to the spatial OGMA/MMAs and the targets established in the KBLUPO (section 3.1).

TSR4 approach where different

The TSR4 applied modelling constraints to maintain the KBHLPO targets for mature-plus-old and old forests: (1) within each BEC variant along with assigned natural disturbance type (NDT), and (2) for each landscape unit along with the assigned biodiversity emphasis option (BEO). The TSR4 also used a different (older) version of BEC, thus some variants did not match. Finally, the TSR4 used an aspatial modelling approach which are likely less constraining compared to applying spatially-explicit targets.

2.2.4 Community and Domestic Watersheds

There are 12 community and 149 domestic watersheds within the TSA; all modelled through an indicator of peak flow – Equivalent Clearcut Area (ECA) – with maximum thresholds of 30%. Given the separate accounts for natural non-forest (0% ECA), private (75% ECA), and permanent anthropogenic disturbances (AD) (100% ECA), ECA targets were adjusted relative to the modelled FMLB area (Detailed statistics are provided in Appendix 1):

- Determine the area for private lands, AD, natural non-forest, and FMLB.
- Determine the maximum area allowed to be disturbed.
 - Max Area ECA (ha) = Watershed Gross Area (ha) * ECA target (%).
- Determine the Area ECA generated from AD and private lands.
 - Area ECA AD+Private = Max Area ECA (ha) (Area AD (ha) x ECA (100%) Area Private (ha) x ECA (75%)).
- Determine the new max ECA.
 - New Max ECA (%) = (Max Area ECA (ha) Area ECA AD+Private(ha)) /FMLB area (ha)

ECA recovery curves were developed for each AU following the guidance from (Winkler & Boon, 2015). In addition, these curves were adjusted to address lower productivity sites where the height will never reach 25 m. The percent ECA relative to the stand height is calculated as follows:

$$ECA[\%] = 100 * (1 - e^{-0.24*(height[m]-2)})^{2.909}$$

Stand heights for each AU were determined during the yield development (section 2.4.3).

Attempts were made to assess the impact of 2017 wildfires on community and domestic watersheds via ECA. However, there were no 2017 wildfires within community watersheds and approximately 389 ha FMLB impacted by 2017 wildfires within domestic watersheds (295 ha within Linklater Creek, 83 ha within Pippen Creek, and 11 ha within Monroe Lake Face). Thus, no wildfire ECA assumptions were modelled.

TSR4 approach where different

The same number of community watersheds were considered. The TSR4 data package mentions that the same forest cover targets were applied to both domestic and community watersheds, yet the FAIB resultant does not spatially identify domestic watersheds. It is therefore unclear how the forest cover requirements for domestic watersheds were applied in TSR4 analysis. The community watersheds were modelled using a forest cover requirement of max 30% <6m in height.

2.2.5 Ungulate Winter Ranges

As described in section 2.1.12, some UWRs were 100% excluded from the THLB.

UWR U-4-006 was established to protect habitat for white-tailed deer, mule deer, moose, elk, bighorn sheep, and mountain goat and was modelled according to the prescribed forest cover constraints (Table 23). For habitat types that have snow interception cover and mature cover requirements, both constraints were modelled. In addition, a maximum 33% <21 years of the FMLB was maintained for each habitat type and landscape unit combination.

Note that both the GIS layer available via DataBC and the Forsite consolidated data included 2 more habitat types (Open Forest and Open Range) that, for the most part, do not overlap with the FMER OF/OR. No forest requirements were modelled for these 2 habitat types.

Habitat Type	Cover Requirement	Target	FMLB Area (ha)	NHLB (ha)	THLB (ha)
Managed Forest - Dry	Mature Cover	10% > 100 years	29,473	5,024	24,448
Managed Forest - Transitional	Snow Interception Cover	10% > 60 years	8,044	2,562	5,481
Managed Forest -	Mature Cover	10% > 100 years,			
Transitional		Fd and Sx leading			
Managed Forest - Mesic	Snow Interception Cover	10% > 60 years	496	199	296
Managed Forest - Mesic	Mature Cover	20% > 100 years,			
		Fd and Sx leading			
Managed Forest - Moist	Snow Interception Cover	20% > 60 years	106,638	27,298	79,340
Managed Forest - Wet	Snow Interception Cover	30% > 60 years	12,620	6,934	5,686
Total			157,270	42,018	115,252

Table 23	Forest Cover	Constraints	for I	11-4-006
	I DIESL COVEI	construints	<i>, , , ,</i> , , , , , , , , , , , , , , ,	0-4-000

The heavily pixilated UWR layer available via DataBC was consolidated into a more appropriate spatial layer for forest-level analysis that was later accepted by the project team for use in the ISS Base Case Scenario. This process made use of the latest datasets available from DataBC for UWR, VRI (January 01, 2016), and BEC v10, and the Forsite consolidated ownership dataset (section 2.1.1). It aimed to maintain similar areas for each UWR habitat class by landscape unit in the consolidated dataset compared to the DataBC dataset. The following procedure, originally developed by Reg Davies, RPF (Forsite), was applied:

1. Develop a resultant GIS file to include VRI, ownership, and BEC (resultant 1).

- 2. Develop a second resultant GIS file to include VRI, ownership, BEC, and UWR (resultant 2).
- 3. Determine the area for each UWR habitat class from the DataBC UWR dataset
- 4. Determine the percentage cover for each polygon in resultant 1 by UWR habitat class using the values from resultant 2. For example, resultant 2 indicates that polygon #1 is covered 80% by habitat class A. The 80% value is then added into a new field in resultant 1 (e.g., PCT_HABITAT_CLASS_A).
- 5. Assign UWR habitat classes in resultant 1
 - a. For each UWR habitat class, starting with the class with the least area determined at step 3
 - i. Sort descending resultant 1 by the percentage covered
 - ii. Assign UWR habitat class
 - iii. Tally the cumulative area
 - iv. Stop when the cumulative area reaches the area determined at step 3
- 6. Select all records from resultant 1 that were assigned to UWR habitat classes and dissolve by UWR habitat classes.

Results from this consolidation procedure showed trivial differences in area between DataBC and consolidated datasets (0.0% to -1.8% or 0 to -29 ha), but significant spatial improvement as the consolidated UWR habitat is more contiguous; aligned with VRI, BEC or ownership linework rather than severely fragmented raster polygons.

TSR4 approach where different

The same forest cover requirements were applied. The TSR4 likely used the DataBC version of the UWR U-4-006.

2.2.6 Grizzly Bear Habitat and Connectivity Corridors

The KBHLPO provides for the maintenance of mature and old forest cover requirements adjacent to important grizzly bear habitat, and within mapped connectivity corridors. Where applicable, these areas must first be used to address 'mature and old' targets. There is no explicit modelling of grizzly bear habitat as it is managed at an operational level.

TSR4 approach where different

The ISS Base Case Scenario applied the same assumption; grizzly bear habitat was not explicitly modelled.

2.2.7 Visual Quality Objectives

Visual quality objectives (VQOs) were addressed in the model for each VLI polygon using Plan-to-Perspective (P2P) ratios, Visually Effective Green-up (VEG) heights determined for 5% slope class increments, and maximum percentage alterations. The P2P ratios and VEG heights by slope class and VQO percentage alterations by visual absorption capacity (VAC) are detailed in Table 24 and Table 25, respectively and the following steps were undertaken:

1) For each VLI polygon, area-weighted averages of the managed site index for the most common species within the VLI polygon, and area-weighted averages of the slope were determined.

- 2) VEG height values were assigned to each VLI polygon using the calculated area-weighted slope average and relationship shown in Table 24.
- 3) An age was determined (using Site Tools (v4.1)) for each VLI polygon according to the VEG height and area-weighted average of the managed site index of the most common species. This is the age at which VEG height is reached; the area of stands within each VLI polygon needs to be lower than the maximum percentage alteration.
- 4) The maximum percentage alteration applied to each VLI polygon was calculated as the P2P ratio by slope class multiplied by the proposed percentage alteration in perspective view by VQO/VAC. For example, the largest max percentage is for slope class 0-5%, VQO class M (modification) and high VAC: 4.68 x 18.0 = 84.2%. The lowest: 1.04*0.1=0.104%.

		Modified Visual Unit Slope Classes for P2P Ratios and VEG Heights													
Slope %	0-5	5.1-	10.1	15.1	20.1	25.1	30.1	35.1	40.1	45.1	50.1	55.1	60.1	65.1	70+
		10	-15	-20	-25	-30	-35	-40	-45	-50	-55	-60	-65	-70	
VEG Height (m)	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	6.5	7.0	7.5	8.0	8.5	8.5	8.5
P2P Ratio	4.68	4.23	3.77	3.41	3.04	2.75	2.45	2.22	1.98	1.79	1.6	1.45	1.29	1.17	1.04

Table 24 P2P Ratios and VEG Heights by Slope Class

Table 25 VQO by Percent Alterations

νοο	Max % Alteration in Perspective View					
VQU	Low VAC	Medium VAC	High VAC			
Preservation	0	0	0			
Retention	0.1	0.7	1.5			
Partial Retention	1.6	4.3	7.0			
Modification	7.1	12.5	18.0			
Maximum Modification	N/A	N/A	N/A			

The VLI data accessed from DataBC indicated there were 563 VLI polygons within the TSA. However, VQOs were established for only 471 VLI polygons. The other 92 VLI polygons were either entirely excluded from THLB, or were sliver polygons for which area-weighted average site indices could not be determined. Detailed statistics are provided in Appendix 1.

TSR4 approach where different

The same maximum percentage alteration targets were applied. However, the slope information present in the FAIB resultant was questionable when overlaid with contour lines.

2.3 HARVESTING ASSUMPTIONS

Harvest assumptions describe the criteria and considerations used to model timber harvesting activities.

2.3.1 Utilization Levels

The minimum merchantable timber specifications for all species and analysis units (natural and managed) are presented in Table 26.

Leading Species	Minimum	Maximum	Minimum		
Leading Species	Diameter at Breast Height (cm)	Stump Height (cm)	Top Diameter Inside Bark (cm)		
Pine	12.5	30	10		
Cedar	17.5	30	15		
All other	17.5	30	10		

Table 26 Utilization Levels

TSR4 approach where different

The same utilization levels were applied.

2.3.2 Minimum Harvest Criteria

The model considered stands to be eligible for a clearcut treatment when they met the minimum harvest age (MHA) associated with one or more minimum harvest criteria; in this case, a pre-assigned minimum harvestable age and a minimum volume per hectare by leading species and slope class (Table 27). In addition to these criteria, yields for existing and future managed stands had to reach 95% of the culmination of mean annual increment (CMAI).

Stands that never met the minimum harvest criteria were reconsidered and made available at the age they reached 95% of CMAI and yield \geq 150 m³/ha. While the area of these stands is relatively small, they can help the model achieve a more realistic spatial solution, and therefore remained in the THLB.

Leading Species	Slope	Minimum Harvest Age (years)	Minimum Volume (m³/ha)
Pine	<40%	60	150
Pine	≥40%	60	200
Douglas-fir	<40%	80	100
Douglas-fir	≥40%	80	150
All Other	any	80	150

Table 27 Minimum Harvestable Age Criteria

Note: stands that did not meet these criteria must reach 95% of CMAI and \geq 150 m³/ha

For stands within FMER areas, the MHA was fixed at 90 years for both the OR that are clearcut once with 10 m³/ha retention and the OF that are managed under an uneven-aged silvicultural system.

TSR4 approach where different

Only the minimum harvest criteria described in Table 27 were applied. The CMAI was not used for stands that never met minimum harvest criteria and the managed stands.

2.3.3 Harvest Priority

Harvest priority refers to a range of factors used to prioritize and, thus, control the harvest flow. For example, certain units or areas must be harvested first for salvage purposes or delayed to achieve one or more non-timber objective.

Specific harvest priorities were not set in the ISS Base Case Scenario. The model explored many options to achieve the most favourable timber harvest solution that meets all non-timber objectives. The model was designed to achieve the highest even flow harvest level (i.e., flat line) to provide a more direct comparison with TSR4. Alternative timber harvest flows were explored for comparison (section 3).

TSR4 approach where different

The first harvest priority was applied on pine-leading stands to reflect the salvage MPB efforts, the second priority was applied to the FMER OF and OR, and third priority was applied on the oldest stands.

2.3.4 Silvicultural Systems

While the predominant silvicultural system used within the TSA is clearcut with reserves (i.e., WTRAs), two additional silvicultural systems were applied:

- 1) OR stands within FMER areas were configured as a single clearcut entry with 10 m³/ha retention that were then reclassified as NHLB.
- 2) OF stands within FMER areas were configured as an uneven-aged silvicultural system where the first entry was scheduled at age 90 to remove 49.5% of the full VDYP yield, or approximately 45 m³/ha. The second entry was scheduled after 50 years (i.e., stand age ≥140 years) to remove another 49.5% of the reduced yield (i.e., VDYP yield reduced by 49.5%). After each successive entry, the age was reset to 90 on the same VDYP yield and harvesting was excluded for the next 50 years (Figure 4).

Figure 4 Example of Uneven-aged Silvicultural System

TSR4 approach where different

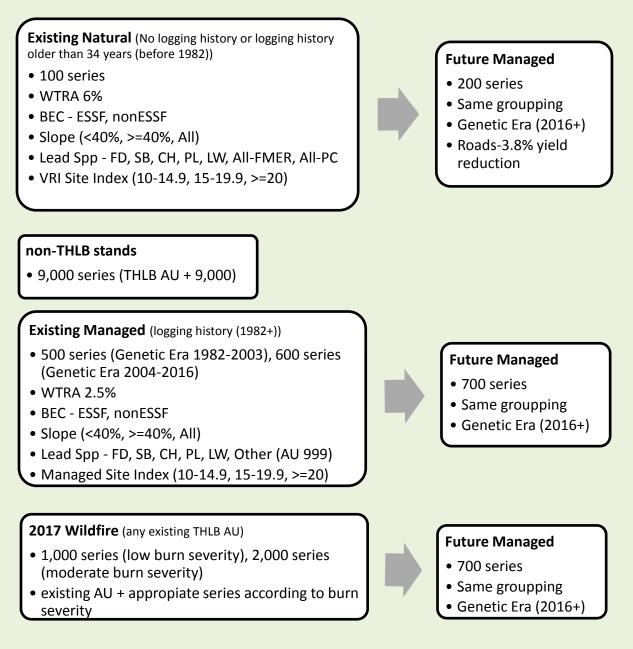
The residual volume after the first entry in the uneven-aged silvicultural system was 25 m³/ha. This difference could be related to (1) different OR areas used to determine VDYP yield, or (2) how the age was reset and how different models handle uneven-aged silvicultural systems.

2.4 GROWTH AND YIELD ASSUMPTIONS

Growth and yield assumptions describe how net volumes for natural and managed stands were developed and incorporated in the model. They also describe changes in other tree and stand attributes over time (height, tree diameters, presence of dead trees, etc.).

2.4.1 Managed and Natural Stand Definitions

To project stand growth and yield, existing stands were classified according to their 'state'; as either natural or managed stands based on their year of establishment. Natural stands were considered stands with no past logging history, or with logging history prior to 1982. Managed stands were considered to be stands with logging history beginning in 1982.


Stands that were disturbed in the model through a harvesting treatment were set to transition to a future managed stand, whereas stands that were disturbed by a natural agent (and not salvaged) were set to return as natural stands.

TSR4 approach where different

The same managed and natural stand definitions were applied.

2.4.2 Analysis Unit Characteristics

Stands were grouped into analysis units (AU) to reduce the complexity and volume of information in the model and for assigning potential treatments and transitions to yield curves following harvest. AUs are based on state (existing natural, existing managed, and future managed), leading species, site index, FMER, BEC zone, genetic gain era, and slope (Figure 5). Two series of AUs were added to accommodate the volume adjustments described in Table 2 for stands impacted by 2017 wildfires with low and moderate burn severities; 1,000 and 2,000, series respectively. Finally, logged AUs with no species information in the VRI were assigned to the dominant AU within each BEC variant. Detailed AU descriptions and statistics are provided in Appendix 2.

Figure 5 Analysis Units Assignment

TSR4 approach where different

AUs were aggregated based only on state, leading species, site index, and FMER. Area-weighted averages were used to develop assumptions related to BEC zone, genetic gain era, and slopes. There were 48 AUs developed for TSR4 (47 AUs for THLB, 1 AU for NHLB), compared to 293 AUs developed for the ISS Base Case Scenario (292 AUs for THLB, 1 AU for NHLB).

2.4.3 Stand Projection Models

Yield curves developed for the forest estate model were prepared using the following stand projection models:

- Existing natural stands: Variable Density Yield Prediction (VDYP) console (v. 7.30a, Build 299) at a VRI polygon level. The VDYP input polygon and layer datasets current to May 12, 2017 were used as inputs. A VDYP yield curve is generated for each VRI polygon, then area-weighted averages of these curves are calculated according to the assigned AUs. The deciduous component of the AUs covering the THLB is removed. Because the MPB is assumed to have run its course within the TSA, no MPB yield specific modelling is conducted, but the dead volume due to remaining MPB stands was removed from the VDYP yields.
- Existing and future managed stands: Table Interpolation Program for Stand Yields (TIPSY) (v. 4.4, Ministry Standard Database, September 2017). A TIPSY yield is developed for each existing and future managed AU given the regeneration assumptions inputs (Appendix 3).

TSR4 approach where different

An older version of VDYP7 was likely used with a single input dataset; the approach for calculating areaweighted averages was the same. TIPSY v.4.3 was used but which version of the Ministry Standard Database is unclear.

2.4.4 Yield Adjustments

For natural stands, the default provincial stand loss factors were used as reductions to stand volume for decay, waste and breakage factors. These factors were applied in VDYP to develop the yield curves.

For managed (second growth) stands, the operational adjustment factors (OAF) were applied in TIPSY. OAF1 affects the magnitude of the yield curve and is constant across all ages This reflects volume losses due to a range of abiotic and biotic factors, including unmapped non-productive areas (e.g., rock and wetland), weather-related losses (e.g., wind, snow, and ice), and gaps from brush competition, and pests. OAF2 accelerates with age and reflects losses from decay, waste and breakage, as well as, specific forest health losses that increase over time.

An OAF1 of 85% (i.e., 15% reduction) was applied, while OAF2 differed by leading species and BEC zone to reflect losses from root rot disease (Table 28).

Leading Species	BEC	OAF 1 (%)	OAF2 (%)
FD	Non-ESSF	85	89.2
PL	Non-ESSF	85	91.3
Non-FD, Non-PL	Non-ESSF	85	95
All	ESSF	85	95

Damage to trees from mountain pine beetle (MPB) has more recently been recorded within the TSA since 1978; this peaked in 2008 and has since declined. The DRM staff observed that the current MPB infestation has run its course and that licensees have proactively salvaged damaged stands. Any remaining dead volume attributed to MPB damage was removed from the VDYP yields – for each VRI feature ID, the dead percentage from MPB was multiplied with the pine percentage and the resulting percentage removed from the total VDYP yield. Otherwise, no specific yield adjustments were applied to address MPB.

TSR4 approach where different

The same yield adjustments were applied.

2.4.5 Site Index Assignments

Site index reflects the potential productive capacity of a stand; measured as top height in meters at age 50. The VRI site index (interpreted) was used to develop yield curves for existing natural stands while a managed site index was derived for existing and future managed stands. Managed stand site indices were calculated for each species as area-weighted averages of site index estimates assigned in the provincial site productivity layer (correlated to BEC site series) and applied to VRI polygons. Figure 6 shows the area distribution of both natural and managed stands across the THLB.

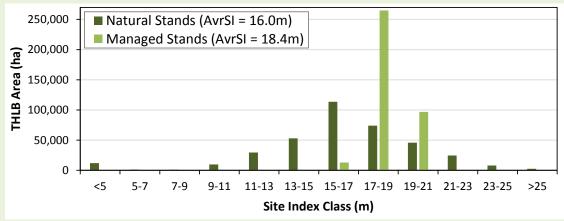


Figure 6 Distribution of Natural and Managed Stand Site Indices over the THLB

TSR4 approach where different

Look-up tables to correlate site indices with BEC site series (SIBEC), developed through predictive ecosystem mapping (site series), were used to assign site index for managed stands.

2.4.6 Not Satisfactorily Restocked

Not satisfactorily restocked (NSR) areas do not have a sufficient number of well-spaced trees of desirable tree species. This definition does specify why the area is NSR (harvesting or natural disturbances) and suggests that NSR areas require some remedy or consideration (i.e., it is not satisfactory). *Current* NSR typically refers to stands recently disturbed (i.e., since 1987) that are regenerating but are not yet declared as being stocked, while *backlog* NSR refers to stands disturbed prior to 1987 that are not declared as satisfactorily restocked.

At present, all previously identified backlog NSR within TSA had been addressed. Thus, VRI records indicating NSR were assumed to have regenerated as existing managed stands, unless other netdown factors (e.g., reserves, riparian, existing WTRA) apply.

TSR4 approach where different

The same NSR assumptions were applied.

2.4.7 Select Seed Use / Genetic Gain

Genetic gain assumptions for existing managed stands were based on past use of select seed with genetic gains. Planting stock from tree nurseries is derived from seed assigned by seed planning unit (acceptable geographic extent) and by seed class (i.e., A – Tree seed orchard, B+ – natural stands identified as superior provenances, and B – natural stands).

Estimated genetic gains (Table 29) from the TSR3 were applied to stands regenerated during the period 1982-2003 (i.e., genetic gain era). The Tree Improvement Branch (FLNRO) provided estimates for the 2004-2016 and 2016+ genetic gain eras. These gains were applied in TIPSY for developing yields for existing and future managed stands associated with each AU – specifically aggregated according to genetic gain era (section 2.4.2).

Table 29 Genetic gain by species for existing and future managed stands to be applied in TIPSY

Era	Fdi	Lw	Pli	Sx
1982-2003	0	4	3	12
2004-2016	2	23	3	24
2016+	3	27	5	27

TSR4 approach where different

TSR4 spread genetic gains across the land base by applying an area-weighted average genetic gain for each species.

2.4.8 Regeneration Delay

Regeneration delay is the average time, in years, needed to establish stands following a stand-replacing disturbance event like logging. Where applicable, the age of seedling stock planted is considered. For the ISS Base Case Scenario, 2- to 3-year regeneration delays were applied to all existing and future managed stands (see Appendix 3).

TSR4 approach where different

The same regeneration delay assumptions were applied.

2.5 NATURAL DISTURBANCE ASSUMPTIONS

Natural disturbance assumptions define the extent and frequency of natural disturbances across the land base. Assumptions used to model disturbance within the THLB and NHLB are described below.

2.5.1 Natural Disturbance within the THLB

Natural disturbances within the THLB are addressed as non-recoverable losses (NRL) over the entire planning horizon. These are estimates of annual volume loss resulting from catastrophic events, such as insect epidemics, fires, wind damage, and other agents. NRLs were applied according to updated figures recommended to the provincial Chief Forester for TSR4 (Table 30). This NRL rate was subtracted from the annual harvest flows generated for each scenario analyzed.

Agent	Cause of loss	Species	NRL (m³/yr)
	Douglas-fir beetle	F	1,726
	Douglas-fir engraver beetle	F	120
Insects	Spruce bark beetle	Sx/Se	97
insects	Western pine beetle	PI	36
	Western balsam bark beetle	All	1,900
	Mountain pine beetle	PI	35,500
Fire		All	7,792
Flooding		All	305
Windthrow/snowpress*		All	0
Total			47,476

Table 30Non-Recoverable Losses

* windthrow/snowpress not updated since 2005

TSR4 approach where different

NRLs were originally applied at 32,745 m³/year.

2.5.2 Natural Disturbance within NHLB

Most non-timber objectives are related to the maintenance of desired forest conditions such as a specified age structure or proportion of old forest and are applied to the entire FMLB. Accordingly, we must account for the natural disturbance outside of the THLB and the role they have in altering forest conditions over time, rather than allowing this forest to age continually and contribute inappropriately to forest cover requirements.

In the ISS Base Case Scenario, natural disturbances within the NHLB were applied as a constant area disturbed annually within each Landscape Unit (LU) and Natural Disturbance Type (NDT). The disturbed area varies based on the BEC variants present, their associated natural disturbance intervals and old seral definitions, as outlined in the Biodiversity Guidebook (B.C. Ministry of Forests and B.C. Ministry of Environment, Lands and Parks, 1995). The proportion of forest expected as old seral forest was calculated based on the disturbance interval:

% area in old =
$$\exp\left(-\frac{\text{old age}}{\text{disturb interval}}\right)$$

The % area in old is then used to calculate the effective rotation age associated with this seral distribution:

effective rotation age = $\frac{\text{disturb interval}}{1 - \text{proportion old}}$

The effective rotation age can then be used to define an annual area of disturbance. For example, ESSF variants in NDT1 have a disturbance interval of 300 years and an old definition of 250 years. This translates into a typical age class distribution where 43% of the area is "old" (>250 years) and the oldest stands are around 531 years. Thus, 1/531st of the area is disturbed each year to maintain this age class distribution.

Table 31 shows the data used to determine the annual disturbance limits applied to the forested NHLB by LU/NDT. Overall, approximately 0.36% of the NHLB is disturbed annually.

BEC	NDT	Disturbance Interval (years)	OLD Def (years)	% Area >OLD*	Effective Rotation Age (years)*	NHLB (ha)	Annual Area Disturbed (ha)**
ESSF	1	300	250	43%	531	60,293	114
ESSF	2	200	250	29%	280	73,242	262
ESSF	3	150	140	39%	247	196,915	797
ICH	2	200	250	29%	280	1,999	7
ICH	3	150	140	39%	247	58,962	239
IDF	4	250	250	37%	395	22,861	58
MS	3	150	140	39%	247	66,599	270
Total						480,870	1,746

Table 31 Calculation of area to be disturbed annually in NHLB by LU/NDT

* %Area Old = exp[-(Old Def/Disturbance Interval)]. Effective Rotation Age = Disturbance Interval/(1-%Area OLD). ** Annual Area Disturbed = NHLB/Effective Rotation Age

TSR4 approach where different

TSR4 did not model natural disturbances within NHLB as spatial OGMAs were assumed to account for any key forest cover requirements.

2.6 MODELING ASSUMPTIONS

General assumptions were incorporated into the model to improve its efficiency or to produce results that are more realistic spatially. Table 32 summarizes the modeling assumptions employed in the ISS Base Case Scenario.

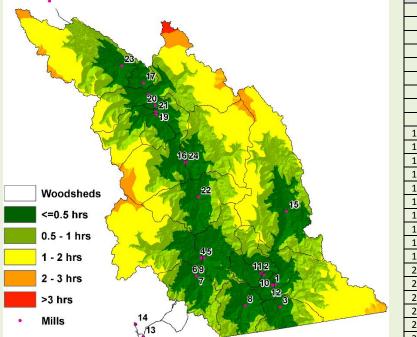
Criteria	Assumption						
Minimum Polygon Size	Minimum size of the polygon size within the resultant was set depending on the						
		data source within the resultant.					
	 10 m² f 	or road/water buffers					
	 100 m² 	for larger area features	(VRI, VLI etc.)				
	• 1,000 n	n ² for very large adminis	trative boundaries (e.g., ow	vnership,			
		pe units etc.)					
Maximum Polygon Size	Polygons larger	than 10 ha were split ac	cording to a fixed-area grid				
Blocking	To improve mod	leling performance, resu	Iltant polygons were blocke	d (or grouped)			
	where possible b	by maintaining the same	AUs and 5-year age classes	. The model			
	was configured	for a target harvest oper	ning size of 40 ha.				
Harvest Profiles		-	owing area-based harvest pr	ofiles:			
	 Individu 	ual species and species g	roups				
		Species Group	Major Tree Species				
		White Wood - SxPl	Spruce, Lodgepole Pine				
		White Wood - HwBl	Hemlock, Balsam				
		Red Wood - FdLw	Douglas-fir, Larch				
		Red Wood - PyCw	Yellow Pine, Cedar				
	 Haul tir 	ne (one-way half-hour c	lasses) and woodsheds (sec	tion 2.6.1)			
			slope class). Recall, slopes >	>70% were			
		ered inoperable.					
	 Young seral patches on THLB area under 20 years 						
		· ·	a defined as old in Table 36,				
Planning Horizon	• •	ning horizon was applied	and reported in 10-year in	crements (i.e.,			
	30 periods).						
Harvest Flow Objectives	Even Flow for th	e entire planning horizo	n				

Table 32Modeling assumptions

2.6.1 Haul Time Profile

Haul times were assigned using the consolidated road network described in section 2.1.3; combined for Cranbrook and Invermere TSAs (Figure 7). Each road segment was given a haul speed based on its classification (Table 33). These roads were then segmented and a travel time was assigned to each segment.

time =
$$\frac{metres \cdot 3.6}{speed}$$


This time-cost was converted to a 20x20m pixel and used as input to the *cost distance tool* in ArcGIS. This tool calculated the time in seconds to travel to each pixel from the closest (by time) mill location. The cost data was converted to a raster and used as the input surface to the cost distance tool in ArcGIS¹ which provided the time in seconds to travel to each pixel from the closest (by time) mill location by the fastest route. Finally, a cost allocation was applied using the same inputs to identify the woodsheds that supply timber to each mill location.

¹ <u>http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-the-cost-distance-tools-work.htm</u>

Road Class	Speed
HIGHWAY	80 km/hr
LOGGING	60 km/hr
SECONDARY	50 km/hr
INBLOCK	30 km/hr
TRAIL	10 km/hr
Non-Roaded	10 km/hr

25

Table 33Travel Speed by Road Segments

ID	Company	Location
1	Tembec Industries Ltd.	Elko
2	Galloway Lumber Co. Ltd.	Galloway
3	McDonald Ranch & Lumber Ltd.	Grasmere
4	Bear Lumber Ltd.	Cranbrook
5	Canalog Wood Industries Ltd	Cranbrook
6	Palmer Bar Holdings Inc.	Lumberton
7	Palmer Bar Holdings Inc.	Lumberton
8	Quinton Bros.	Caven
9	Panhandle Forest Products	Lumberton
10	Selkirk Forest Products Ltd.	Galloway
11	Galloway Lumber Co. Ltd.	Galloway
12	Canadian Forest Products Ltd.	Elko
13	J H Huscroft Ltd.	Erickson
14	Wynndel Box & Lumber Co. Ltd.	Wynndel
15	NA	Sparwood
16	Tembec Industries Ltd.	Canal Flats
17	Woodex Industries Ltd.	Edgewater
18	Canadian Forest Products Ltd.	Radium Hot Sprgs
19	Ukass Logging Ltd.	Wilmer Creek
20	North Star Planing Co. Ltd.	Athalmer
21	Enid Lake Logging Ltd.	Invermere
22	Tembec Industries Ltd.	Skookumchuk
23	Brisco Wood Preservers Ltd.	Brisco
24	Canadian Forest Products Ltd.	Canal Flats
25	Louisiana Pacific Canada Ltd.	Golden

Figure 7 Haul Cycle Time Zones

Area-based harvest profile targets were calculated from the merchantable THLB in each haul time class. Two targets were applied in the model over the first 40 years as a minimum 57% of the harvest from the <0.5 hr class and a minimum 32% of the harvest from the 0.5-1.0 hr class.

2.6.2 Harvest System

Slope classes were used to approximate harvest systems (i.e., ground as <40% slope class; cable as 40-70% slope class). Slopes >70% were considered inoperable. An area-based harvest profile target was calculated from the merchantable THLB in each slope class. One harvest system target was applied in the model over the first 40 years as a minimum 90% of the harvest from the \leq 40% slope class.

3 Sensitivity Analyses

A range of sensitivity analyses were explored relative to the ISS Base Case scenario. Each sensitivity analysis is described in the following sections and summarized in Table 34.

Scenario Elements	Description	Modelling Run/Approach (including Sensitivity Analyses)	Complexity Index
Harvest Flow	Examine alternative timber	Sens [001] – Even flow	1
	harvest flows to better	Sens [002] – Max non-declining flow	1
	understand potential harvest	Base [003] – Max initial with max 10%	1
	rates over time for the land base.	decline	
Community	Examine the impact of increasing	Base [003] – Max 30% <6m heights	2
Watersheds	disturbance thresholds within community watersheds.	Sens [004] – Max 25% <6m heights	1
Harvest Priority	Spatialize harvest and track	Base [003] – track and report profiles	4
	appropriate harvest profiles and	for species, red/white wood, age,	
	patch sizes.	slope class, and haul distance, UWRs	
		Sens [005] – implement current	2
		profile for slope class and haul	
		distance as targets for the first 40	
		years	
Mature/Old Seral	Examine the status of mature and old seral requirements relative to	Base [003] – Only Spatial OGMAs and MMAs	1
	spatial OGMAs/MMAs and	Sens [006] – Spatial OGMA/MMA	3
	targets established in the	with full targets (no 1/3 rd drawdown	
	KBHLPO. Detailed in section 3.1.	in low BEO)	
		Sens [007] – Only Old Seral	2
		Sens [008] – Only Mat+Old Seral	2
		Sens [009] – Patch size targets	3
		(Canfor and BCTS/Galloway) on Very	
		Early Seral and report on Old Seral	
FSC Certification	Implement assumptions	Base [003] – FSC On	3
	associated with FSC standards	Sens [010] – FSC Off (i.e., FRPA)	2
	throughout Canfor's operating areas.		
LU Grouping	Increase the relative size of the	Sens [011] – OGMA off, only Mat+Old	1
	reporting units by grouping	Seral for LU groups (2/3 draw back for	
	adjacent LUs based on ecological	Low BEO)	
	similarities. Detailed in section	Sens [012] – OGMA off, Mat+Old	1
	3.2.	Seral for LU groups, (2/3 draw back	
		for Low BEO), UWR, and Green-up	

Table 34Summary of Model Runs

Note: **complexity index** assigned as: **1** = straightforward to **4** = complex; also relates to analysis costs.

3.1 LANDSCAPE-LEVEL BIODIVERSITY DETAILS

3.1.1 Seral Stage Requirements

Four sensitivity analyses were conducted to explore the status of mature and old seral forest requirements relative to spatial OGMA\MMAs and targets established in the KBHLPO (Table 35). This approach provided a thorough comparison of how these landscape-level biodiversity thresholds are maintained utilizing spatial OGMA\MMAs, only old seral, and old/mature seral criteria, as described below.

Scenario	Spatial OGMA/MMAs	Old Seral	Mature + Old Seral	Early Seral Patch
Base [003]	On	Off	Off	Off
Sens [006]	On	Off	Full Targets	Off
Sens [007]	Off	On*	Off	Off
Sens [008]	Off	Off	On*	Off
Sens [009]	Off	Off	On*	On

Table 35	Landscape-Level	Biodiversity	Sensitivity	/ Analyses N	1atrix
----------	-----------------	---------------------	-------------	--------------	--------

*including 2/3 draw-down for the "Old" seral stage component in low biodiversity emphasis. Includes tracking of old seral patch size for Base Case and Sensitivity 4.

The KBHLPO specifies that the landscape-level biodiversity is managed via targets for mature-plus-old, and for old forests, that must be maintained: (1) within each BEC variant along with assigned natural disturbance type (NDT) and (2) for each landscape unit along with the assigned biodiversity emphasis option (BEO) (Table 36). The old forest cover requirements for low BEO must be met by the end of the third rotation, while targets can be reduced to one-third of the full target over the first rotation, and to two-thirds over the second rotation.

NDT	BEC		Version 6	Stand Age (yrs)		% Retention (Mat+Old/Old) by biodiversity emphasis		
	Zone	BEC Variant	BEC Variant	Mature	Old**	Low*	Interm	High
1	ESSF	wcw, wm²	vc, wm, wc1, wc2, wc4	>120	>250	19/19 (6.3)	36/19	54/28
	ICH		vk1, wk1	>100	>250	17/13 (4.3)	34/13	51/19
2	ESSF	wh2, wm4, wmw, wm1	wm, dm, wmu, wm	>120	>250	14/9 (3)	28/9	42/13
2	ICH	mw1, mw2, dm	mw1, mw2, dm	>100	<mark>>140</mark>	15/9 (3)	31/9	46/13
	ESSF	dk1, dk2, dw, dkw, dm, dmw	dk, dc1	>120	>140	14/14 (4.7)	23/14	34/21
3	ICH	dm, dw1, dmk4, mk4, mk5	dm, dw1, mk1	>100	>140	14/14 (4.7)	23/14	34/21
	MS	dk1, dk2	dk, dku	>100	>140	14/14 (4.7)	26/14	39/21
	IDF	dk5, dm², un, xk,	dm², un					
4	IDF	xx2	PPdh2	>100	>250	17/13 (4.3)	34/13	51/19
	PP	dh2	dh2					
5	ESSF dkp, wmp dkp, wmp							
5	AT	All	All	n/a				

Table 36 Mature-plus-old, and Old Forest Cover Requirements for Each Landscape Unit

* bracketed targets employ a 2/3 draw-down for the "Old" seral stage component in low biodiversity emphasis. ** note that old for NDT 2 ICH was incorrectly applied at 140 yrs; this was corrected to 250 yrs in the Combined Scenario.

Note that the landscape units/BEO layer identifies, in some cases, multiple BEOs for the same landscape unit. Each landscape unit that has multiple BEOs is spatially separated by the BEO in the layer accessed from DataBC. Thus, no further GIS processing was implemented.

3.1.2 Patch Size Requirements

Patch size distributions are not legally-established for the project area but they can be examined as another indicator of landscape-level biodiversity. The Base Case Scenario was configured to report patch sizes according to the criteria and thresholds shown in Table 37 and Table 38 for stands classified as very early (0-20 years) and old (as described in Table 36) seral stages. Very early seral patches were modelled in 62 reporting units with THLB area >500ha.

To address gaps in the forest cover or FMLB data and to prevent patches being created due to roads, a 25 metre buffer was used to assign patch sizes to stands; stands could form a patch if they were within 50 metres of one another.

			-		-
NDT 2		NDT 3		NDT 4	
Patch (ha)	Target (%)	Patch (ha)	Target (%)	Patch (ha)	Target (%)
<40 ha	30-40	<40 ha	15-25	<40 ha	30-40
40<80 ha	30-40	40<250 ha	20-40	40<80 ha	30-40
80<250 ha	20-40	250<1000 ha	30-50	80<250 ha	20-30
≥250 ha	0-5	≥1000 ha	10-20	≥250 ha	5-15

Table 37 Patch Size Criteria and Thresholds – Canfor Operating Areas Only

Assessed for each Ecosection (Canfor's adjusted version)

Source: "A Brief Rationale for a Different Approach to Patch Size Analysis", K. Stuart-Smith, June 27, 2012

NDT 1 NDT 2		2	NDT 3a (Fd absent)		NDT 3b (Fd throughout)		NDT 4		
Patch (ha)	Target (%)	Patch (ha)	Target (%)	Patch (ha)	Target (%)	Patch (ha)	Target (%)	Patch (ha)	Target (%)
<40 ha	30-40	<40 ha	30-40	<40 ha	10-20	<40 ha	20-30	<40 ha	30-40
40<80 ha	30-40	40<80 ha	30-40	40<250 ha	10-20	40<80 ha	25-40	40<80 ha	30-40
80<250 ha	20-30	80<250 ha	20-30	250<1000 ha	60-80	80<250 ha	30-50	80<250 ha	20-30
≥250 ha	n/a	≥250 ha	n/a	≥1000 ha	n/a	≥250 ha	n/a	≥250 ha	5-15

Table 38 Patch Size Criteria and Thresholds – BCTS and Galloway Operating Area

Assessed for each Landscape Unit Source: Biodiversity Guidebook

3.2 LANDSCAPE UNIT GROUPING DETAILS

As a potential means to alleviate the impact that some non-timber objectives have on harvest flow, two sensitivity analyses were conducted, which increased the relative size of the reporting units by grouping adjacent landscape units based on ecological similarities (Appendix 4). Harvest flows were developed with OGMAs turned off (i.e., harvesting within OGMAs is allowed unless netted out for other reasons) for the two sensitivity analyses:

- Sens 011: Apply landscape unit grouping only on landscape-level biodiversity objectives. Here, the requirements outlined in Table 36 were applied for each combination of landscape unit group (which replaced the original LUs), BEO, NDT, and BEC variant.
- Sens 012: Apply landscape unit grouping for all non-timber objectives that require modelling at landscape unit level (i.e., green-up and adjacency, landscape-level biodiversity, and UWR). Here, the landscape unit groups replaced the original landscape units for all non-timber objectives.

4 Silviculture Scenario

The Silviculture Scenario was designed to explore alternative silviculture practices that would benefit long-term timber and non-timber objectives. In particular, this scenario aimed to enhance timber quantity and quality over the mid- and long-term, as well as, improve biodiversity, wildlife habitat, and

cultural interests. In addition, the Silviculture Scenario examines incremental silviculture investments that would improve future harvest flows for the TSA, given an expected funding level of *\$0.3 and \$1 million per year over the first 20 years of the planning horizon*. In this ISS iteration, the Project Team identified 3 tactics to explore: 1) enhanced basic silviculture, 2) commercial thinning, and 3) fertilization. Each of these tactics are detailed in Table 39. Criteria for these tactics reflect a broad array of silvicultural activities that may be applied across various conditions for eligible stands. For example, an assortment of alternative activities may be appropriate for the enhanced basic silviculture tactic, including, but not limited to, increase initial planting densities, plant rust-resistant trees, and re-plant rust-impacted stands with alternate species.

Tactic	Element	Description	Criteria
	Eligible Stands	Existing natural and managed stands (approx. 131,538 ha THLB – 22,498 ha productive, 76,833 ha health risk, and 32,207 ha productive/health risk).	 ○ Productive stands: all stands (except CH-, OT-leading) outside FMER and SI managed ≥18 m ○ Health risk stands (if not included above) and SI managed ≥15 m ○ Root-rot: non-ESSF and Fd- and PI-leading ○ Rust: PI-leading within spatially identified pine rust risk area (MSdk 101 and 105; MSdw 101 and 104)
	Timing	As stands that are harvested/regenerated in the model	First 20 years of the planning horizon
Enhanced Basic Silviculture		Transitions	To future enhanced managed stands for the first 20 years. Then, transition back to original un- enhanced yield.
	Treatment	Regeneration method	No changes from the Base Case (a combination of planted and natural)
	Response	Density	Increase planting to 1,700 stems/ha
		Species Composition	No changes from the Base Case
		Genetic gains	No changes from the Base Case
		Regeneration delay	From 2 yrs to 1 yr
	Costs	Incremental planting of trees sown with select seed	\$385/ha
	Anticipated	Currently lacks funding source;	
	Issues	possibly operational cost allowance	
Commercial	Eligible Stands	Existing natural and managed stands (Approx. 3,615 ha THLB)	 Leading Species: Fd, Lw, Sx Age: 20yrs before and 10 years after age of treatment BEC: all SI (managed or natural): ≥18 m Slope: ≤40% Haul Time: 1.5 hr one-way FMER: outside FMER only
Thinning	Timing	Yield/Age criteria	 Age of treatment: at minimum 100 m³/ha Intensity: 40% of standing volume Time window: maximum 10 yrs Lock for 20 yrs following treatment
	Treatment	Net cost (cost of treatment less	 Total Cost: \$1,200/ha
	Costs	revenue from sales of thinned wood)	 Net Cost: 50% of Total Cost = \$600/ha
	Treatment Responses	Yield increase following commercial thinning	Treatment response developed for each yield in TASS. The response factor applied then to the

 Table 39 Silviculture Scenario Tactics

Tactic	Element	Description	Criteria		
			corresponding yield developed in VDYP/TIPSY to		
			be aligned with the Base Case.		
			Final harvest MHA: 20yrs after commercial		
			thinning (or same as un-thinned MHA). If		
		Transition of thinned stand	combined with fertilization application, stand is		
			locked from harvest for 10 yrs after each		
			fertilization application.		
	Anticipated Issues	Understanding trade-offs between damage to remaining trees and the redistributed volume growth.			
	Eligible Stands	Young natural and existing managed stands (approx. 23,663 ha THLB – 5,859 ha for 1 application only, 17,804 ha for 1-2 applications)	 Fd + Lw + Sx + Pl ≥80%; Sx-leading ≥70% BEC: MS, ICH, and ESSF below 1,650 m FMER: outside FMER only SI managed: >15 Slope ≤ 40% 		
	Timing	Minimum and maximum age defining opportunity window, for up to 2 applications, every 7 years	7 years before MHA for 1 application, 14 years before MHA for 2 applications		
Fertilization		Growth increase 7 years after application (entire stand) – existing natural stands	10 m ³ /ha for each application.		
		Growth increase after application (entire stand) – existing managed stands	Applications Fd/Lw Pl Sx		
	Treatment		(every 7 yrs) (m³/ha) (m³/ha) (m³/ha		
	Response		1 15 12 16		
			2 30 24 32		
		Transitions to future stands	Locked from harvesting, 10 years after last application.		
	Costs	Fertilization costs for all stands	\$450/ha for each application.		
	Anticipated Issues	Fertilize entering water sources, possibly larger buffers around water sources.			

The opportunity for commercial thinning was explored in two additional sensitivity analyses where the \$0.3 million per year funding level was extended from 20 to 60 years and the cost for commercial thinning was kept at \$600/ha and then set to \$0/ha (Table 40). In addition, each tactic was explored separately in 3 additional runs.

Run ID	Description
[020]	Replicate the ISS Base Case run [003] with added AUs and Silviculture Scenario features. No Silviculture
	Scenario targets are applied nor modeled.
[021]	MINDY with \$0.3 million/year maximum budget for all three silviculture tactics for the first 20 years of
	the planning horizon.
[022]	MINDY with \$1 million/year maximum budget for all three silviculture tactics for the first 20 years of
	the planning horizon.
[023]	MINDY with \$0.3 million/year maximum budget for all three silviculture tactics for the first 60 years of
	the planning horizon.
[023a]	MINDY with \$0.3 million/year maximum budget for all three silviculture tactics for the first 60 years of
	the planning horizon. Here, CT cost was set to \$0/ha (i.e., break-even operations).
[024]	MINDY with \$0.3 million/year maximum budget for ENH only for the first 20 years of the planning

Run ID	Description
	horizon.
[025]	MINDY with \$0.3 million/year maximum budget for FERT only for the first <u>20 years</u> of the planning
	horizon.
[026]	MINDY with \$0.3 million/year maximum budget for CT only for the first <u>20 years</u> of the planning
	horizon.

Thinning Height-Repressed, Pine-Leading Stands

Another silviculture tactic was closely examined but abandoned at this time. This would involve a precommercial thinning treatment on height-repressed, pine-leading stands to release a sufficient number of potential crop trees to make these stands available for harvest (i.e., meets the minimum harvest criteria) and at least sooner than untreated stands.

Eligible stands were identified as severely burned areas that were not planted but would likely regenerate naturally to extremely high densities (i.e., >10,000 stems per ha), where stand height growth would eventually stagnate. Since they cannot be identified through existing data sources (i.e., VRI, RESULTS, and fire history), two approaches were used to identify these potentially stagnated stands:

- 1) VRI plus additional harvest and fire history information (i.e., 2017 high severity fires). This approach identified approximately 477 ha of THLB, selected as follows:
 - EARLIEST_NONLOGGING_DIST_TYPE in ['B', 'NB'] or BurnSev 2017 = 'High'.
 - Identified only stands with a fire year more recent than harvest year.
 - Identified stand-replacing wildfires by ensuring that current age to year 2016 was in line with the fire year (i.e., difference between stand age current to 2016 and the difference between year 2016 and fire year was between -5 and 5 years).
 - Age of stands was \geq 15 and \leq 40 years.
 - Pine leading species.
- 2) RESULTS forest cover inventory. This area was determined by overlaying the RESULTS forest cover inventory polygons that had total stem/ha ≥10,000 with the THLB area that had the age current to 2016 between 15 and 40 years. This approach identified approximately 637 ha of THLB.

Note that the Base Case Scenario was not originally set-up to specifically identify these stagnated stands. To identify any gains from this tactic, appropriate yield reductions would first need to be implemented in a separate sensitivity analysis.

Given that there was a relatively small area identified as potentially stagnant stands and the additional effort required to model and appropriately compare harvest flows for this tactic, thinning height-repressed, pine-leading stands was not modelled in this iteration of the ISS.

5 Wildlife Scenario

The Wildlife Scenario was designed to assess habitat quality and quantity for a range of wildlife species while continuing to meet all other timber and non-timber objectives. In this ISS iteration, the Project Team elected to explore three tactics: wildlife habitat, species at risk, and access (Table 41). Due to time and budget constraints, the Project Team decided not to proceed with the access tactic.

Tactic	Purpose	Method
Wildlife	Quantify/qualify habitat	 Include wildlife habitat ratings for the 7 species identified as
Habitat	required to achieve the	indicators of representative habitat types (particularly marten,
	desired outcome for	northern goshawk, and Flammulated owl).
	representative types.	 Apply Best Management Practices or similar retention levels.
Species at	Clarify how species at risk	 Caribou: model federal recovery strategy.
Risk	are considered.	 Re-evaluate biodiversity criteria and/or matrix habitat.
Access	Manage road density and	 Acquire complete existing/planned road network.
	identify opportunities to	 Link blocks to roads and monitor road density over time.
	rehabilitate key sections	 Assess road densities relative to thresholds over key habitat
	(open/closed).	types (e.g., grizzly).

Table 41 Wildlife Scenario Tactics

5.1 WILDLIFE HABITAT

In conjunction with the latest TSR5, an aspatial, post-processing exercise was conducted to examine effects of future forest harvest on wildlife habitat (Muhly, et al., 2016). Habitat models were completed for seven wildlife species: grizzly bear, elk, mule deer, marten, Williamson's sapsucker, flammulated owl, and northern goshawk. These species were selected in discussion with the Ktunaxa Nation and as indicators of representative habitat types in the TSAs, such as old and mature forests.

The wildlife habitat tactic builds upon the (Muhly, et al., 2016) analyses by implementing the habitat models directly into the forest estate model to examine effects on both, harvest flow and wildlife habitat ratings over time, when aspatial and spatial targets for wildlife habitat are implemented. The key products from the (Muhly, et al., 2016) analyses include:

- RRM WHR models Wildlife Habitat Rating models (Madrone Environmental Services Ltd.) that accesses information across multiple tabs and produces results that include Predictive Ecosystem Management (PEM) units, all possible structural stages for each PEM unit, and habitat classes by each of 14 habitat types (i.e., wildlife species and life requisite combination).
- CSV output file consolidated results from all of WHR models into a single spreadsheet. This file joins to PEM spatial datasets by PEM unit and structural stage.
- CSV lookup table consolidated lookup table that links the structural stage to age for each PEM unit.
- Spatial PEM Summarizing these spatial data produced similar results as those presented in the (Muhly, et al., 2016) analyses.

The above key products were used to develop habitat class rating over age curves which were linked spatially to PEM and to the GIS resultant file that was used to develop the forest estate model. The forest estate model was programmed to track the THLB and non-THLB area within each habitat class rating and for each of the 14 habitat types. The habitat class ratings were reported over the planning horizon, aspatially in a similar format to (Muhly, et al., 2016) and spatially-explicit in the form of maps (i.e., one map for each habitat type showing all habitat class ratings by THLB and non-THLB). The methodology and scenarios modelled is detailed in Table 42.

Phase		Description						
Translate	From the CSV output file, extract the wildlife habitat class curves (class ratings from 1 to 6, 1							
wildlife habitat	highest, 6 none) by structural stage and by each unique PEM unit/slope/aspect combination –							
models outputs	called here wildlife analysis unit, or W_AU – (14 curves for each W_AU), then translate structural							
into binary	stage to age for each W_AU using the CSV lookup table, and develop a unique set of binary curves							
curves		r age). For example, for one particular W_AU and habitat type, habitat class						
	rating 4 occurs ages 0-60, rating 3 occurs 60-80yrs, rating 2 occurs 80-120, and rating 1 over							
		120yrs. These binary curves will instruct the forest estate model where a certain habitat rating						
	-	occurs on the land base.						
	BNOGO_RE							
	1.2							
	ਦੇ 0.8							
	โ 0.8 - อ 0.6 - มา 0.4 -							
		Hclass2 Hclass4						
	0.2							
	0							
	0 50	100 150 200 250 300 350 400 450 Age (years)						
	-	ther summarized accordingly:						
		section, BEC zone, subzone, variant phase, site series),						
	• •	class (<35%, 35-100%, >100%),						
	 aspect class (135-285°, 285-135°), and aspect class (D. Brazellar & 75°), C. Consideration 75° (M. Minard (neithern C. 75°) (and D. 75°). 							
		Broadleaf>75%, C – Coniferous >75%, M-Mixed (neither C>75% or B>75%).						
Check results	Link the binary habitat curves to the spatial PEM and compare results with the tables summarized							
against (Muhly, et al., 2016)	in (Muhly, et al., 2016). Results were described in:							
analyses	 Memo_WHSM_differences_20190123.pdf Memo_WHSM_inconsistencies_20190210.pdf 							
Link habitat	 Memo_WHSM_inconsistencies_20190219.pdf Add a field called W_AU to the spatial PEM and assign unique IDs based on the unique 							
model results	 Add a field called W_AU to the spatial PEM and assign unique IDs based on the unique combinations of the above factors (PEM, slope class etc.). 							
with forest	 Combinations of the above factors (PEM, slope class etc.). For each fragment (spatial resultant dataset for the project area), determine dominant W_AU 							
estate model	-	y area). The W_AU is now linked spatially to the forest estate and each W_AU						
		es attached, corresponding to each of the 14 habitat types.						
Aspatial Targets		area for each of the 14 habitat types by the 6 habitat classes, for the entire TSA						
		type (THLB and non-THLB): $14 \times 6 \times 1 \times 2 = 168$ targets						
Spatial Targets	-	for this ISS iteration						
Runs	Run ID	Description						
	[030] No	No harvest treatments and no habitat targets. This run simply tracks the						
	harvest and no							
	habitat targets							
		habitat needing young ages) might be present in the long-term.						
	[031] Harvest	Maintain ISS Base Case harvest flow (accept max 1% change in harvest level)						
	targets only	and apply lower weights to encourage the model wildlife habitat targets; not						
	necessarily maintain them.							
	[032] Harvest Apply habitat targets (i.e., maintain current distribution of 'at least habitat							
	and habitat							
	targets							
	[033] Habitat	Apply habitat targets (i.e., maintain current distribution of 'at least habitat						
	targets only	class 3' (i.e., combine class 1, 2, and 3) without harvest targets. Model						
		determines the harvest necessary to achieve appropriate foraging habitat (or						
		habitat needing young ages).						
	1. Berlin							

Phase	Description
Outputs	• Area distribution for each of the 14 habitat types by the 6 habitat classes, for the entire TSA and
	by land base type (THLB and non-THLB). Summarize outputs in line graphs – 168 graphs.
	 Spatial results at pre-determined periods (years 0, 20, 50, 100). The CFLB area by habitat type
	and class is included into a GIS feature class based on the GIS resultant used to develop the
	forest estate model in order to include the Crown non-CFLB area in the spatial outputs. The
	non-CFLB area is not included into the forest estate model in order to improve efficiency.

5.2 SPECIES AT RISK

This tactic examines potential impacts on timber harvest from implementing the <u>federal caribou</u> <u>recovery strategy</u> for the Purcells South herd area and combines the results across both, Cranbrook and Invermere TSAs. The federal caribou recovery strategy aims to reduce the disturbance levels within High/Low Elevation Range and Matrix Range in the context of recovery plan thresholds (65% undisturbed). Anthropogenic disturbances include permanent (e.g., hydro transmission lines, camps, mines, roads etc.) and temporarily (i.e., <40 yrs old harvests and temporary roads) disturbed areas, including their associated 500 m buffer. Areas disturbed naturally (i.e., wildfire) were also considered temporary disturbances for 40 yrs following the event but no buffers were applied.

Because the forest estate model cannot track the buffers associated with the temporary disturbed areas and the overlaps between the buffers, the temporary disturbed area < 40yrs old within the Purcells South herd area is tracked and controlled accordingly as a surrogate for capping the disturbance level:

- Maximum 35% for the High or Low Elevation range, and
- Maximum 35% for the Matrix Range, as a surrogate for low predation risk (< 3wolves/1000 km²).

In addition, the harvest openings for the entire TSA are also controlled in order reduce the sliver disturbed areas which are associated with relatively large 500 m buffers. Finally, the temporary roads construction and usage are tracked and reported in order to estimate more accurately the buffers associated with the temporary roads. For example, if a temporary road segment was not used for the last 40 yrs, it is assumed to be greened-up and no disturbed area and associated buffers are included to estimate the disturbance levels.

The modeling outputs were used to conduct a post-processing disturbance level assessment at eight periods along the planning horizon: P0 (initial), P0a (5 yrs), P1 (10 yrs), P2 (20 yrs), P5 (50 yrs), P10 (100 yrs), P20 (200 yrs), and P30 (300 yrs). The following methodology was applied:

- Determine the permanent anthropogenic features:
- Buffer all permanent linear features (roads, seismic, hydro lines, pipelines, etc.) and permanent disturbed polygonal features (e.g., mines, camps, municipalities etc.) by 500m. Consolidate into a "permanent anthropogenic disturbance" layer (PAD).
- Determine the temporary features.
- In PO, fire history since 1976 if not properly accounted in the inventory and all other forested polygonal features <40yrs old (e.g., cut-blocks) and their associated 500m buffer areas. Include all 500-m buffered temporary roads.</p>
- In POa, and P1-P2, the last 40-year of fire history corresponding to each analyzed period, the non-THLB disturbed areas (i.e., random fires), and the THLB blocks harvested by the model

with their associated 500 m buffers. Include all 500-m buffered temporary roads and any future roads built and used by the model.

- From P5 on, relative to the period in question, the last 40 yrs of the non-THLB disturbed areas and the THLB blocks harvested by the model with their associated 500 m buffers. Include all 500-m buffered temporary used/built roads by the model in the last 40 yrs.
- Determine the NRLs for the Low Elevation range (prorated based on THLB area within the range relative to the total THLB) in order to adjust the maximum disturbance level target (i.e., 35% less percentage of NRLs).
- Report results spatially (i.e., maps) and graphically.

In this ISS iteration, three runs were modeled and their outputs used to conduct the post-processing analysis:

- ▶ [040] No harvest for the entire TSA.
- [041] ISS Base Case scenario harvest schedule and assessment of the federal recovery strategy disturbance levels for the Purcells South herd area.
- [042] Attempt to reduce the disturbance levels within the Purcells South herd area by controlling the area under 40yrs (for each range Low/High Elevation and Matrix) and grouping harvest openings within each range and for the rest of the TSA (i.e., 3 sets of harvest opening control).

6 Reserve Scenario

The reserve scenario aimed to identify where and how we should reserve forested stands to address landscape-level biodiversity and where possible, non-timber values, while minimizing impacts to the working forest. While it considers strategies already in place (e.g., spatial OGMAs and MMAs), this scenario incorporates operational factors to identify alternative areas to maintain for non-timber values.

We did not intend to apply results as reserves in an operational sense. Rather, these candidate reserves provided additional information – as starting point – for revising existing reserves or developing recruitment strategies; involving a collaborative planning team to review each landscape unit – one at a time.

We also recognize that we currently do not have full information regarding First Nations values. While tactics to address specific First Nations values may not be directly modelled in this Reserve Scenario, they are considered within other scenarios where appropriate information is available. We will continue to work with First Nations to understand and incorporate their values into the Reserve and other Scenarios as information becomes available.

6.1 APPROACH

The Reserve Scenario involved three general steps:

- 1) First, each stand was assigned a relative score considering the quality/desirability of the candidate reserves (i.e., stand-level scoring relative to the stand features, anchors, and constraints).
- 2) Then, a model steadily selected candidate reserves that meet landscape-level thresholds. Here, two models were developed in two stages:

- a) determine the most suitable candidate stands that meet old seral landscape-level biodiversity targets, and
- assign an additional score to the stands selected from (a), as a start to determine the most suitable candidate reserves that meet both, old seral and mature-plus-old seral landscape-level biodiversity requirements.
- 3) Finally, results were further analyzed (post-processing) in the combined scenario to indicate the performance of candidate reserves relative to the old interior forest. Since old interior forest requirements were not set in the KBLUP, the spatial grouping of candidate reserves was implemented throughout the entire analysis to mimic the selection of OGMAs.

6.2 STAND-LEVEL SCORING

Relative scores were assigned to each stand with the following objectives (Figure 8):

- Assign scores based on stand features to assess their overall suitability as candidate reserves.
- Assign scores to resource management areas on their overall suitability as candidate reserves. Scoring for resource management areas was applied separately according to two main management tactics:
- Anchors are areas that exclude timber harvesting altogether, and
- Constraints are areas that restrict timber harvesting on a portion of stands.

Scores were assigned based on impact to timber availability within each area. A stand's total score was the sum of the applicable scores (both Stand Features and Resource Management Area). Stands were then sorted by their total scores – those with the highest values reflected the most desirable candidate reserves.

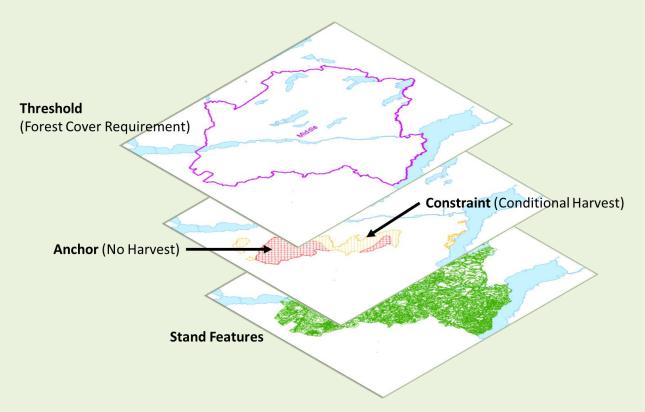


Figure 8 Approach for ranking stands as candidate reserves

6.2.1 Stand Features

Stand features scoring utilized vegetation and other attributes to rank stands based on their overall suitability as candidate reserves. Stands were evaluated using the indicators described in Table 43 and Table 44. In some cases, stand feature scores provided the 'tie-breaking' assessment between two stands identified as candidate reserves. These scores were developed and assessed independently of scores developed for resource management areas. In addition, categories and scoring considered stand resilience, while negative values reflected undesirable stand characteristics.

The total stand feature score was calculated as the sum of the applicable category scores. Stand-level indicators for scoring stand features were detailed for each stage (i.e., stage 1 determines the most suitable candidate reserves to meet old seral requirements in Table 43, and stage 2 determines the most suitable reserves candidates to meet both old and mature-plus-old KBLUP seral requirements in Table 44).

Indicator	Category	Score
Seral Stage	Old Conifer (as defined by KBLUP)	8
	Very Old Conifer (>250 years NDT3; >400 years others)	10
	Old Deciduous (>100 years)	8
	Very Old Deciduous (Old + 50 years)	10
Species Composition	≥ Three Conifer Species (Mixed Stand)	5
	Lodgepole Pine Leading (≥50%)	-10
	Balsam Leading (≥50%)	-10
Tree Height	≥ 30 m	8
	≥ 20 and < 30m	4
Interior Old Forest	Interior buffer (100 m) on old stands	5

Table 43Stand Feature Scoring for Old Forest

Note: Old Interior Forest must include the buffer to be selected as a candidate reserve

Table 44 Stand Feature Scoring for Mature Recruitment

Indicator	Category	Score
Seral Stage	Early & Mid	-10
	Older Mid Conifer (40 years prior to Mature Conifer as defined in KBLUP)	3
	Mature Conifer (as defined in KBLUP)	5
	Older Mature Conifer (>200 years NDT1; mature-old midpoint for others)	7
	Mature Deciduous (>40 years)	3
	Older Mature Deciduous (>60 years)	5
Species Composition	≥ Three Conifer Species (Mixed Stand)	5
	Lodgepole Pine Leading (≥70%)	-10
	Balsam Leading (≥50%)	-10
Tree Height	≥ 20 m	4
Interior Old Forest	Mature stands within 200m from old interior forest	5

6.2.2 Resource Management Areas

Resource management areas include areas that restrict harvesting completely (i.e., anchors) or partially (i.e., constraints) (Table 45). Anchors were assigned a score of 10 because these areas are already excluded from harvesting because of some established requirement.

Like stand features, constraints were used to influence the selection of candidate reserves when a choice is presented. Constraints were scored (from 1 to 10 - Table 45) based on their perceived impact to timber availability (i.e., the higher the score, the greater the impact to timber supply relative to other constraints). The total score for a stand is the sum of all applicable category scores for that stand including those for multiple overlapping constraints.

Category	Constraints	Score
Constraint	Old forest identified from first run*	20
Anchor	Parks and Protected Areas	10
Anchor	FSC High Conservation Value Forests (Endangered Forests Only)	10
Anchor	FSC Rare and Uncommon Ecosystems (100% reduction)	10
Anchor	WHA 4-044, 4-045, 4-109, 4-112: Data sensitive	10
Anchor	WHA 4-046 through 4-063: Rocky Mountain Tailed Frog	10
Anchor	WHA 4-066, 4-069, 4-070, 4-074,4-075: Long-billed Curlew	10
Anchor	WHA 4-086: Lewis's Woodpecker	10
Anchor	WHA 4-099,4-101: Flammulated Owl	10
Anchor	WHA 4-082, 4-083, 4-084, 4-085, 4-108, 4-110, 4-127 through 4-144, 4-181 through 4-202: Williamson's Sapsucker	10
Anchor	WHA 4-114, 4-115, 4-178, 4-179, 4-243 through 4-276: Western Screech Owl	10
Anchor	WHA 4-116, 4-117, 4-119: Antelope-brush/blue-bunch wheatgrass	10
Anchor	WHA 4-118,4-120: Douglas-fir/snowberry/balsamroot	10
Anchor	UWR u-4-013, u-4-014: Woodland Caribou Range	10
Anchor	Proposed or Draft WHAs (No Harvest GWM)**	10
Anchor	Proposed or Draft UWRs (No Harvest GWM)**	10
Anchor	Riparian Reserves (FSC or FRPA standards)	10
Anchor	Wildlife Tree Retention (≥ 2ha)	10
Anchor	Cultural Values**	10
Constraint	Current OGMAs and MMAs (update with Canfor July 22 version)	4
Constraint	KBLUP connectivity corridors	10
Constraint	UWR u-4-006, u-4-008 (white-tailed deer, mule deer, moose, elk, bighorn sheep, and mountain goat)	6
Constraint	Community and Domestic Watersheds	3
Constraint	VQO: Retention (R)	7
Constraint	VQO: Partial Retention (PR)	3
Constraint	VQO: Modification (M)	1
Constraint	Wildland Urban Interface (WUI)	-2
Constraint	Landscape-Level Fuel Breaks	-2
Constraint	Physically Inoperable (inoperable, unstable terrain, ESA, steep slopes)	5
Constraint	Isolated Stands	3
Constraint	Economic Inoperable (Low Productivity Sites, Problem Forest Types)	1
Constraint	Non-Merchantable Forest Types (decadent stands >200 yrs with uncertain economic operability)	1

 Table 45
 Resource Management Area Scoring

* Developed in stage 1 of the analysis

** Data not available at this time

Green highlighted items were also considered in stage 1 to improve recruitment of old seral reserves and alignment to the KBLUP intent.

While connectivity corridors were available under the KBLUP, important habitat for GBEAR had not yet been developed.

6.3 CRITERIA AND THRESHOLDS

Threshold(s) were used to evaluate when the required objective is met with the candidate reserves. Thresholds are the indicators and targets to be maintained or enhanced through this analysis. In modelling terms, these are typically forest cover requirements configured as target levels that the model seeks to achieve as:

- minimum or maximum levels,
- units in percent or area,
- over a given unit (e.g., watershed or landscape unit), or
- across specified periods (not applicable for this reserve scenario).

Stands were ranked and grouped relative to each landscape-level threshold until the appropriate requirements were met. For this analysis, landscape-level thresholds were assessed for the following indicators: old forest retention, mature-plus-old retention, reserves size distribution, and interior old forest (tracked only).

6.3.1 Old Forest Retention

BEC version 11 was used to assess the old forest retention as designated in Table 46. Thresholds were calculated as the percentage of forest area (FMLB) within the BEC unit (zone and variant) for each landscape unit.

NDT	BEC	Version 11	Version 6 BEC Variant	Stand	% Retention by biodiversity emphasis			
	Zone	BEC Variant	(Reference Only*)	Age	Low**	Interm	High	
1	ESSF	wcw, wm2, wmw	wcw, wm, wmw, wmu	≥250	19	19	28	
2	ESSF	mm3, mmw, wh2, wm1, wm4		≥250	9	9	13	
2	ICH	mw1, mw2	mw1	≥250	9	9	13	
2	ESSF	dk1, dk2, dkw	dk1, dk2, dku, dkw, dm, dmw	≥140	14	14	21	
3	ICH	dm, dw1, mk4, mk5	dm, dw1, mk1	≥140	14	14	21	
	MS	dk, dw	dk	≥140	14	14	21	
4	IDF	dk5, dm2, un, xk, xx2	dm2, un, xk	≥250	13	13	19	
4	PP		dh2	2250	12	12	19	
E	ESSF	dkp, mmp, wmp, wcp	dkp, dmp, wcp, wmp					
5 -	IMA	All	All	n/a				

Table 46 Old Forest Targets Applied to BEC Variants within Landscape Units

* BECv6 was not used for this analysis but shown here as a reference to the targets established in KBLUP.

** "Old" seral stage targets in low biodiversity emphasis may be reduced up to 2/3 draw-down over the first rotation. Note: ESSFdk1/dk2 and MSdk1/dk2 were mapped in BECv6 but grouped in OGMA calculations. BECv6 to BECv11: MSdk1 = MSdw; MSdk2 = MSdk

For identifying candidate reserves, we applied the full target rather than the 2/3 drawdown for old seral in LUs with low BEO.

6.3.1 Mature-Plus-Old Forest Retention

BEC version 11 was used to assess the mature-plus-old forest retention as designated in Table 47. Thresholds were calculated as the percentage of forest area (FMLB) within the BEC unit (zone and variant) for each landscape unit.

LU #	LU Name	BEO	NDT	BECv6 Variants	Mature Age	Older Mature Age	% Retention (Mat+Old)
101	Findlay	Н	3	ESSF dk1, dku	≥120	≥130	34
102	Buhl/Bradford	Н	3	ESSF dk1, dku	≥120	≥130	34
102	Buhl/Bradford	Н	3	MS dk	≥100	≥120	39
111	Kootenay	Н	3	ESSF dk1, dku	≥120	≥130	34
111	Kootenay	Н	3	MS dk	≥100	≥120	39
I16	Jumbo	Н	1	ESSF wm, wmu	≥120	≥200	54
I16	Jumbo	Н	3	ESSF dk1, dk2, dku	≥120	≥130	34
I16	Jumbo	Н	3	MS dk	≥100	≥120	39
117	Goldie	Н	3	ESSF dk1, dku	≥120	≥130	34
117	Goldie	Н	3	MS dk	≥100	≥120	39
I19	Fenwick	I	3	MS dk	≥100	≥120	26
120	Pallisar	I	3	MS dk	≥100	≥120	26
122	Albert	Н	3	ESSF dk1, dk2, dku	≥120	≥130	34
122	Albert	Н	3	MS dk	≥100	≥120	39
124	Pedley	Н	3	MS dk	≥100	≥120	39
C04	Hellroaring - Meachen	Н	1	ESSF wm, wmw	≥120	≥200	54
C09	Yahk River	L	3	ESSF dk	≥120	≥130	14
C09	Yahk River	L	3	ICH mk1	≥100	≥120	14
C14	Wigwam River	Н	3	ESSF dk, dkw	≥120	≥130	34
C14	Wigwam River	Н	3	MS dk	≥100	≥120	39
C15	Lodgepole - Bighorn	Н	3	ICH mk1	≥100	≥120	34
C15	Lodgepole - Bighorn	Н	3	MS dk	≥100	≥120	39
C18	East Flathead	I	3	MS dk	≥100	≥120	26
C22	Upper Elk	I	3	MS dk	≥100	≥130	39
C22	Upper Elk	I	3	ESSF dk, dkw	≥120	≥120	34
C23	West Elk	Н	3	ESSF dk, dkw	≥120	≥130	34

Source: KBLUP Variance 08, November 2006 and Table 46

6.3.2 Reserve Size Distribution

Given the complexities involved with assessing reserves relative to multiple thresholds and the desire to group reserves into larger areas where appropriate, this analysis was designed as a spatial model (i.e., Patchworks[™]). One of the goals of the reserves scenario was to develop relatively large, contiguous areas of mature and old forest to maximize the area of the interior forest habitat. Therefore, reserve size distribution targets were implemented according to Table 48.To avoid splitting reserves that result from narrow road buffers, a distance threshold for combining reserves was applied by cleaning topology (i.e., combine where reserves are under 10m). In addition, narrow riparian buffers were not included in order to avoid narrow and relatively large size areas to be selected as candidate reserves. Finally, individual polygons were aggregated prior to running the model in order to avoid interior gaps within a patch of selected reserves.

NDT*	Area (ha)	Target	Weight
Each NDT	<2	< 0%	Very High
Each NDT	2-10	< 10%	High
NDT 1	10-50	≥ 5%	
	50-250	≥ 15%	Low
	250-1000	≥ 40%	Medium
	≥1000	≥ 40%	High
NDT 2	10-50	< 100% (no target)	
	50-250	≥ 25%	Low
	250-500	≥ 35%	Medium
	≥500	≥ 35%	High
NDT 3 (MS)	10-50	≥ 30%	Low
	50-250	≥ 30%	Medium
	≥250	≥ 40%	High
NDT 3	10-50	< 100% (no target)	
(ICH/ESSF)	50-250	≥ 30%	Low
&	250-500	≥ 40%	Medium
NDT 4	≥500	≥ 20%	High

 Table 48 Reserve Size Distribution Targets

Note that these sizes are for reserves and differ from those for cutblocks in the Biodiversity Guidebook. Adapted from Habitat Branch document - Guidance for OGMA Implementation (Holt 2000).

6.3.3 Interior Old Forest

Specific criteria for interior old forest were not established for the Cranbrook TSA. The KBLUP implementation strategy document references Appendix 1 of the Biodiversity Guidebook, which includes a very general description of edge effects and interior old forest. For this analysis, interior old forest was identified as the area of 'old seral' forest or natural forest area that is uninfluenced by the microclimate of biotic edge effects. For this exercise, we applied a 100m buffer from adjacent stands less than 60 years (age class 1-3) or any permanent anthropogenic disturbance (e.g., primary road right-of-ways, pipeline and railroad corridors, transmission lines, and urban communities). Old forest was defined according to Table 46.

Initially, interior old forest included natural non-forest (e.g., lakes, wetlands, rock) to eliminate 'natural edges'. The natural non-forest features were then erased from the interior layer. The buffered area of old forest stands was maintained as edge areas to identify, where necessary, mature stands with potential recruitment areas.

A post-processing exercise should be considered to assess the final interior old forest selected (see section 6.4.4). If controls are implemented, this analysis is important to verify that interior old forest targets were met.

6.4 ANALYSIS STEPS

The subsections below briefly describe the steps required for the Reserve Scenario analysis, including work to prepare the model prior to processing, running the model, and post-processing following each run.

6.4.1 Pre-Analysis Summary

An accompanying Excel file summarizes detailed statistics for the stand-level scoring (section 6.2). Overall, the current landscape-level biodiversity objectives are in deficit for:

- Old Seral (210 reporting units) by 40,293 ha (32%) in 127 reporting units,
- Mature-Plus-Old Seral (18 reporting units) by 8,728 ha (21%) in 9 reporting units,

Note that: a) we applied the full target rather than the 2/3 drawdown for old seral in LUs with low BEO, and b) mature-plus-old targets only apply to specific LU/BEC Variant combinations; not all of them.

6.4.2 Pre-Processing

A resultant file (overlays of spatial data developed for the ISS Base Case analysis) provided an initial spatial dataset to work with. The following spatial data - not required for the ISS Base Case - were added to the resultant for the Reserve Scenario:

- Interior Old Forest +edges (100m),
- Current FSC high value and endangered forests,
- Current OGMAs and MMAs,
- ▶ KBLUP connectivity corridors,
- Landscape-level fuel breaks,
- ▶ Riparian reserves (FSC for Canfor Operating areas and FRPA for the rest), and
- ▶ Wildlife tree retention areas \geq 2ha.

Assessment criteria were calculated as separate fields in the spatial database for each of the stand features and resource management area indicators. The cumulative scores for each of the two stages were tracked in two separate fields. This was done using a python script that accessed Excel spreadsheets with scores for each indicator.

6.4.3 Processing

Two separate models were developed and applied:

- The first run focused on identifying stands that met the <u>old forest requirements</u> (Table 46) and assessing these criteria to calculate the old forest surplus/deficit for each LU/BEC reporting unit. While this includes parameters for interior old forest and reserve size distribution, only the cumulative scores of stand features for old forest (Table 43) were applied in this run.
- 2. The second run focused on identifying <u>mature stands as recruitment for future OGMAs</u>, which is required: a) where old seral status is in deficit for a LU/BEC unit, b) where mature-plus-old targets were established (section 6.3.1), and c) to address identified connectivity corridors (grizzly bear not available). This process also incorporated, through anchors and constraints, reserves associated with other non-timber values. In this run, cumulative scores were calculated from stand feature scores for mature recruitment (Table 44), and identified anchors and constraint scoring (Table 45).

The primary approach to modelling each process was to maximize the cumulative score while trending towards the landscape-level criteria and thresholds. Once target thresholds were met, selection of

candidate reserves within LU/BEC reporting units was halted. A Patchworks[™] model was built with the following components:

- Thresholds defined in section 6.3.1 were used to create ratio accounts for each reporting unit (i.e., area selected divided by total forested area) to meet old and mature-plus-old forest area targets. The model was first run only with these targets. The targets had a minimum value with a relatively high weight (i.e., 1e12) and a maximum value with a slightly lower weight than the minimum value (i.e., 1e10). The goal was to restrict the model of over-selecting candidate stands needed to meet the old and mature-plus-old forest area targets.
- 2. Maximize the value of each stand measured as the score/ha value (i.e., total area selected as reserves divided by the total score of the area selected). Note that scoring scheme discouraged the selection of early- and mid-seral candidate reserves, unless the reporting unit had a deficiency of mature and old stands needed to meet the old and mature-plus-old forest area targets.
- 3. Minimize the area selected from the THLB while maintaining similar amount of total area selected and similar value of selected reserves (i.e., score/ha).
- 4. Maximize the area selected as candidate reserves from the a-priori determined old interior (+associated edge). Continue to achieve similar values for total area selected and its quality.
- 5. Attempt to meet the reserve size distribution patterns detailed in section 6.3.2.

Within each of the steps 2-5 above, weights were balanced such that the old and mature-plus-old forest area targets were not violated (i.e., first increase the weights until the old and mature-plus-old forest area targets are starting to be violated, then decrease the weights so the old and mature-plus-old forest area targets are met). For example, during step 2, the weight on the quality of the selected reserves (i.e., score/ha) was first increased to a relatively high weight so the model will select only the stands with the highest score/ha values in each reporting unit. Because a relatively high value of the stands was requested by increasing the weight on score/ha account, the model would select only a subset of the stands available and thus, not meeting the minimum old and mature-plus-old forest targets. The weight of score/ha account was then refined to a point that the minimum old and mature-plus-old forest targets were met.

6.4.4 Post-Processing

Patchworks[™] does not dynamically track buffer areas like those required to maintain old interior forest over time. A post-processing is required to determine the actual old-interior areas that were maintained over time. Since there are no KBLUP targets for the old interior forest, a post-processing exercise might be conducted for the combined scenario that incorporates the candidate reserves.

6.4.5 Adjustments

The Reserve Scenario modelling process was developed to accommodate adjustments with the standlevel scoring and/or the assigned thresholds. Implementing these adjustments as sensitivities can be easily done but changes to spatial designations (e.g., turning off WHAs) requires more work to rebuild and/or redefine the resultant file.

6.4.6 Implementation

The approach anticipated for implementing candidate reserves in the Combined Scenario is to 'lock' the selected areas from harvesting over the short- to mid-term (e.g., 20 to 40 years). In this case, edge polygons identified to maintain forest interior thresholds will also be included with the candidate reserves.

The candidate reserves also provide additional information – as starting point – for revising existing reserves or developing recruitment strategies; involving a collaborative planning team to review each landscape unit – one at a time.

7 Combined Scenario

The Combined Scenario aimed to guide development, implementation, and monitoring of tactical plans over the first 20 years of the planning horizon. Key elements from the three scenarios (ISS Base Case, Silviculture, and Reserve) were included to provide an integrated strategy to this first iteration of the ISS process. Specific tactics and approaches are briefly summarized in Table 49.

For comparison, two separate runs were completed for the Combined Scenario:

- Run 1 (Candidate Reserves) utilized the spatially defined candidate reserves developed through the reserve scenario (i.e., full old seral target in LUs with low BEO). These areas were locked from being harvested over the first 20 years and aspatial seral targets were applied afterwards (i.e., included 2/3 drawdown).
- Run 2 (Current OGMAs/MMAs) utilized the current spatially defined OGMA/MMA areas. These areas were locked from being harvested over the first 20 years and aspatial seral targets were applied afterwards (i.e., included 2/3 drawdown).

Scenario	Tactic	Approach
ISS Base Case	BEC v11	 Updated the spatial delineation of BEC draft version 11 with final BEC version 11.
ISS Base Case	OGMA	 Updated the spatial delineation of OGMA/MMA with Canfor's latest version dated July 22, 2019.
ISS Base Case	FSC HCVF Areas	 Updated the spatial delineation of FSC HCVF (Endangered Forests and Reserve Areas) with Canfor's latest version dated July 22, 2019.
ISS Base Case	Proposed WHAs	 Implemented spatial delineation of core habitat areas of proposed WHAs for Rocky Mountain Tailed Frog, Westslope Cutthroat Trout and Bull Trout (TAG# 4-284 to 4-287, 4-291 to 4-299).
ISS Base Case	Wildfires	 Updated forest inventory for 2018 wildfires according to available burn severity mapping.
ISS Base Case	Depletions	 Updated forest inventory for depletions and established WTR areas to January 2019.
ISS Base Case	Seral Targets	 Continued to apply old seral targets for each LU/BEO/NDT/BEC zone combination using latest BEC v11. Included 2/3 drawdown on old seral targets for LUs with low BEO. Applied mature-plus-old seral targets only to designated LU/BEO/NDT/BEC zone combinations (26 reporting units for both TSAs).

Table 49 Tactics Applied in the Combined Scenario

Scenario	Tactic	Approach
ISS Base Case	Harvest Flow	 Developed harvest flow at current AAC over the initial period and a non- declining pattern thereafter, while maintaining an even merchantable growing stock over the last 100 years of the 300-year planning horizon.
ISS Base Case	Harvest Profile	 Maintained current harvest profiles for harvest system (i.e., ground/slope ≤40%) and haul time (i.e., <0.5hrs and 0.5-1hr), over the first 40 years.
ISS Base Case	Harvest Opening Sizes	 Implemented harvest opening criteria as follows: 0 to 1 hectare: None allowed, hard constraint 1 to 5 hectares: Maximum 5% of harvest area, moderately hard weight
ISS Base Case	Visual Quality	 Applied VEG height to each analysis unit within VLI polygons rather than an average VEG height for the VLI polygon.
Silviculture	Analysis Units	 Split AUs originally grouped with site index 15-20 m to identify eligible stands for various silviculture tactics. For consistency with TSR, maintained the same yield curves for the split AUs.
Silviculture	Treatments	 Implemented treatments for enhanced basic and fertilization over the first 20 years but extended the commercial thinning treatments to the first 60 years. Limited the area treated for enhanced basic and commercial thinning to 10% and 5%, respectively, of the eligible area over each period. Also limited the budget for all treatments to \$300,000 per year.
Reserve	Landscape-Level Biodiversity	 Prepared one model that utilized the spatially defined candidate reserves developed through the reserve scenario (i.e., full old seral target in LUs with low BEO). Locked these areas from being harvested over the first 20 years and applied aspatial seral targets afterwards (i.e., include 2/3 drawdown). For comparison, prepared a second model that utilized the current spatially defined OGMA/MMA areas. Locked these areas from being harvested over the first 20 years and applied aspatial seral targets.

8 References

- B.C. Ministry of Forests and B.C. Ministry of Environment, Lands and Parks, 1995. *Biodiversity Guidebook,* Victoria: Forest Practices Code.
- B.C. Ministry of Forests, Lands and Natural Resource Operations, 2016. *Cranbrook Timber Supply Area. Timber Supply Review. Updated Data Package*. May 2016. 49p.
- B.C. Ministry of Forests, Lands and Natural Resource Operations, 2016. *Cranbrook Timber Supply Area. Timber Supply Analysis Discussion Paper*. September 2016. 24p.
- B.C. Ministry of Forests, Lands and Natural Resource Operations, 2017. *Cranbrook Timber Supply Area. Rationale for Allowable Annual Cut (AAC) Determination*. August 24, 2017. Diane Nicholls, RPF, Chief Forester. 47p.
- Muhly, T. et al., 2016. *Effects of Future Forest Harvest on Wildlife Habitat in southeast British Columbia,* Victoria, BC: Ministry of Forests, Lands and Natural Resource Operations.
- Winkler, R. & Boon, S., 2015. *Revised snow recovery estimates for pine-dominated forests in interior British Columbia,* Victoria, B.C.: Prov. B.C., Exten. Note 116.

Appendix 1 Detailed Statistics of the Non-Timber Objectives

Table 50 Community and Domestic Watersheds

Watersheds	Gross Area (ha)	Non Forest (ha)	Private Lands (PL) (ha)	Anthropogenic Disturbance (AD) (ha)	FMLB (ha)	THLB (ha)	Max ECA 30% (ha)	Max ECA less PL and AD (ha)	Max ECA target on FMLB (%)
Community Watersheds	65,831	16,698	1,963	41	47,128	19,813			
Boardman	215	134	49	0	33	0	65	28	86%
Boivin	5,867	3,051	0	0	2,817	357	1,760	1,760	62%
Cummings	12,285	5,910	160	0	6,215	229	3,686	3,565	57%
Fairy	2,371	1,830	0	0	541	12	711	711	100%
Glencairn	576	24	19	0	534	364	173	159	30%
Gold	9,327	78	0	0	9,249	7,075	2,798	2,798	30%
Joseph	5,810	39	793	14	4,964	3,063	1,743	1,138	23%
Kimberley	1,021	304	5	0	712	562	306	302	42%
Mark	11,194	961	910	27	9,295	4,688	3,358	2,655	29%
Matthew	15,356	4,302	0	0	11,053	3,194	4,607	4,607	42%
Miller	730	26	17	0	687	158	219	206	30%
Reserve	1,078	40	10	0	1,028	112	323	316	31%
Domestic Watersheds	141,231	22,401	23,301	174	95,391	45,565			
Arnold Creek	2,090	319	528	0	1,243	686	627	231	19%
Baldrey Creek	345	22	237	0	85	25	103	-74	0%
Barkshanty Creek	1,126	4	50	0	1,072	719	338	300	28%
Barkshanty Creek 1	245	20	0	0	225	148	73	73	33%
Barkshanty Creek 2	756	8	0	0	749	409	227	227	30%
Bean Creek	492	204	242	0	46	0	148	-34	0%
Bergen Face	152	97	45	2	9	9	46	10	100%
Blavatsky Face	511	109	256	0	146	3	153	-39	0%
Bothe Creek	479	109	78	5	291	9	144	82	28%
Bowman-Phillipps Face	354	0	127	0	227	105	106	11	5%
Brooks Creek	296	229	0	0	66	7	89	89	100%
Caithness Creek	1,401	260	118	6	1,021	598	420	328	32%
Caithness Creek 1	1,563	341	178	3	1,044	583	469	333	32%
Callagham Creek	285	113	0	0	172	0	86	86	50%
Callaghan Creek	159	63	1	0	95	0	48	47	49%
Caxias Creek	123	6	70	3	48	11	37	-17	0%

FORSITE

Watersheds	Gross Area (ha)	Non Forest (ha)	Private Lands (PL) (ha)	Anthropogenic Disturbance (AD) (ha)	FMLB (ha)	THLB (ha)	Max ECA 30% (ha)	Max ECA less PL and AD (ha)	Max ECA target on FMLB (%)
Chaucer Face	67	0	0	0	67	55	20	20	30%
Chipka Creek	1,321	301	66	0	953	687	396	346	36%
Chipka Creek 1	477	0	0	0	477	210	143	143	30%
Cotton Creek	1,069	99	1	1	969	777	321	319	33%
Cotton Creek 1	578	125	0	0	453	416	173	173	38%
Cotton Creek 2	558	15	0	0	543	212	167	167	31%
Cotton Face	291	1	44	0	246	172	87	54	22%
Crombach-Currie Face	160	17	13	0	130	31	48	39	30%
Cummings Face	1,417	183	1,037	0	197	4	425	-352	0%
Dalzell Creek	842	0	825	0	17	3	253	-366	0%
Dalzell Creek 1	571	154	152	0	265	38	171	57	22%
Dalzell Creek 2	832	223	141	0	468	79	250	144	31%
Dalzell Creek 3	681	8	298	0	374	129	204	-20	0%
Denver Creek	547	92	4	0	450	115	164	161	36%
Denver Face	365	25	31	5	307	86	109	83	27%
Doran-Jim Smith Face	177	0	175	0	1	1	53	-79	0%
Douglas Creek	330	94	1	0	236	15	99	99	42%
Edwards Face	1,431	58	1,149	0	224	99	429	-432	0%
Elk West Face	67	8	36	0	22	14	20	-7	0%
Fairy Face	1,062	232	400	6	427	53	319	14	3%
Fillmore Creek	120	8	0	0	111	89	36	36	32%
Fontana Creek	791	21	0	0	770	367	237	237	31%
Galbraith Face	41	4	10	0	28	23	12	5	18%
Greggden Creek	101	23	0	0	78	0	30	30	39%
Gustavus Creek	355	73	181	3	95	88	106	-32	0%
Haha Creek	4,539	655	1,742	0	2,142	1,503	1,362	55	3%
Haha Creek 1	603	1	123	0	479	195	181	89	19%
Haha Creek 2	524	32	193	0	300	151	157	13	4%
Haha Creek 3	762	1	0	0	761	716	228	228	30%
Haha Creek 4	486	3	4	0	480	430	146	143	30%
Hartley Creek	1,322	394	199	0	729	216	397	247	34%
Hartley Creek 1	349	192	7	0	150	35	105	99	66%
Hartley Creek 2	235	103	0	0	133	54	71	71	53%

Watersheds	Gross Area (ha)	Non Forest (ha)	Private Lands (PL) (ha)	Anthropogenic Disturbance (AD) (ha)	FMLB (ha)	THLB (ha)	Max ECA 30% (ha)	Max ECA less PL and AD (ha)	Max ECA target on FMLB (%)
Irishman Creek	559	39	0	0	519	346	168	168	32%
Jim Smith Creek	824	16	388	0	419	333	247	-44	0%
Jim Smith Creek 1	547	17	0	0	529	493	164	164	31%
Jim Smith Creek 2	658	35	201	0	422	342	197	47	11%
Johnson Creek	191	0	41	0	149	91	57	26	18%
Khartoum-Bock Face	250	37	206	0	8	7	75	-80	0%
Koocanusa Face	235	7	188	0	39	24	70	-71	0%
Labelle Creek	253	112	29	2	112	8	76	52	47%
Labelle Face	233	8	202	1	22	1	70	-82	0%
Lakit Creek	2,159	456	311	0	1,392	368	648	414	30%
Lazy Lake Face	767	108	62	0	597	78	230	184	31%
Lewis Creek	2,271	485	681	0	1,105	496	681	171	15%
Lewis Creek 1	1,299	305	0	0	994	298	390	390	39%
Lewis Creek 2	1,204	165	0	0	1,039	356	361	361	35%
Lewis Creek 3	853	362	60	1	430	9	256	210	49%
Linklater Creek	3,197	445	165	0	2,587	1,989	959	835	32%
Linklater Creek 1	770	116	61	0	593	495	231	185	31%
Linklater Creek 2	456	21	0	0	435	316	137	137	31%
Linklater Creek 3	1,138	40	0	0	1,099	639	342	342	31%
Linklater Creek 4	2,560	33	0	0	2,527	1,616	768	768	30%
Linklater Creek 5	2,157	54	0	0	2,103	1,556	647	647	31%
Lizard Face	267	0	259	0	7	0	80	-114	0%
Lladnar Face	36	0	24	0	12	0	11	-7	0%
Mack-Callagham Face	147	68	51	0	28	9	44	6	21%
Magel Face	128	5	74	2	48	10	38	-19	0%
Maguire Creek	1,745	131	0	0	1,614	179	523	523	32%
Mark Face	170	0	106	0	63	47	51	-29	0%
Mather Creek	10,253	1,283	1,095	31	7,845	6,043	3,076	2,232	28%
Mather Creek 2	2,147	372	0	0	1,775	466	644	644	36%
Mather Creek 3	330	61	0	0	269	106	99	99	37%
Mather Creek 4	400	84	0	0	316	115	120	120	38%
Mather Creek 5	194	49	0	0	145	79	58	58	40%
Mather Creek 6	5,236	735	79	0	4,423	3,481	1,571	1,512	34%

Watersheds	Gross Area (ha)	Non Forest (ha)	Private Lands (PL) (ha)	Anthropogenic Disturbance (AD) (ha)	FMLB (ha)	THLB (ha)	Max ECA 30% (ha)	Max ECA less PL and AD (ha)	Max ECA target on FMLB (%)
Mather Creek 7	484	31	2	0	450	435	145	143	32%
Mather Creek 8	924	52	452	3	421	333	277	-64	0%
Mather Creek1	3,061	401	0	0	2,659	436	918	918	35%
Matthew Face	183	1	59	0	122	98	55	11	9%
Mause Creek	3,304	664	872	0	1,768	154	991	337	19%
Mause Creek 1	324	0	0	0	324	97	97	97	30%
McClure Creek	952	208	0	0	744	527	286	286	38%
Monroe Lake Face	2,119	150	254	0	1,714	1,122	636	445	26%
Mutz Creek	245	121	28	1	95	18	73	51	54%
Noke Creek	1,757	106	3	0	1,649	701	527	525	32%
Norbury Creek	3,599	361	2,038	3	1,198	725	1,080	-451	0%
Norbury Creek 1	656	70	15	0	571	0	197	186	33%
Norbury Creek 2	1,253	416	29	0	808	12	376	354	44%
Norbury Creek 3	419	143	4	0	271	45	126	122	45%
Norbury Creek 4	448	148	33	0	267	62	135	110	41%
Norbury Creek 5	309	78	28	0	203	59	93	72	35%
Norbury Creek 6	214	37	35	0	142	7	64	38	27%
Norbury Creek 7	352	139	11	0	203	8	106	98	48%
Norbury Creek 8	504	231	93	2	179	20	151	80	45%
Nordstrum Creek	1,433	302	259	0	872	122	430	235	27%
Nordstrum Creek 1	454	103	0	0	351	131	136	136	39%
Nordstrum Creek 2	408	7	89	0	312	149	122	56	18%
North Hosmer Creek 1	323	1	281	0	41	24	97	-114	0%
North Hosmer Creek 2	336	7	200	0	129	16	101	-49	0%
North Hosmer Creek 3	635	54	187	0	393	34	190	50	13%
Pennock Creek	701	150	189	0	361	260	210	68	19%
Phillipps Creek	1,931	36	30	0	1,865	452	579	557	30%
Phillipps Creek 1	994	77	0	0	917	197	298	298	33%
Phillips Face	1,141	1	960	0	181	94	342	-377	0%
Pippen Creek	187	1	0	0	186	37	56	56	30%
Rainbow Creek	674	12	9	0	652	78	202	195	30%
Raymond Creek	910	305	83	0	522	16	273	211	40%
Red Canyon Creek	1,683	52	98	0	1,533	367	505	431	28%

Watersheds	Gross Area (ha)	Non Forest (ha)	Private Lands (PL) (ha)	Anthropogenic Disturbance (AD) (ha)	FMLB (ha)	THLB (ha)	Max ECA 30% (ha)	Max ECA less PL and AD (ha)	Max ECA target on FMLB (%)
Resort Creek	172	36	7	0	130	3	52	47	36%
Roxana Creek	288	90	67	0	131	0	87	36	28%
Sand Face	2,717	29	2,223	6	459	369	815	-857	0%
Sand-Agnew Face	114	6	94	0	14	14	34	-37	0%
Saugum Creek	409	79	112	0	219	99	123	39	18%
Scherf Creek	890	51	1	0	838	122	267	267	32%
Sheep Face	108	37	0	0	71	22	32	32	46%
Simms Creek	136	69	32	0	35	2	41	16	47%
Staples Creek	1,168	236	219	0	713	180	351	186	26%
Stodavil Creek	858	183	51	4	622	321	257	216	35%
Sulphur-Hartley Face	256	21	197	0	37	10	77	-71	0%
Sweet Pea Spring	45	10	0	0	35	22	13	13	39%
Ta Ta Creek	1,560	439	126	6	993	910	468	369	37%
Ta Ta Creek 1	135	18	19	0	98	40	41	26	27%
Ta Ta Creek 2	89	0	81	0	6	6	27	-34	0%
Thorne Creek	193	19	138	0	36	0	58	-45	0%
Tie Lake Face	142	1	18	0	123	84	43	29	24%
Wasa Face	236	42	114	0	80	25	71	-15	0%
Wendell Creek	87	1	0	0	86	65	26	26	30%
Wild Horse River	7,777	1,132	113	76	6,456	2,713	2,333	2,192	34%
Wild Horse River 1	919	54	54	0	811	439	276	235	29%
Wild Horse River 10	627	92	0	1	534	75	188	187	35%
Wild Horse River 2	569	226	1	0	343	73	171	170	50%
Wild Horse River 3	1,172	219	0	0	953	371	352	352	37%
Wild Horse River 4	932	283	0	0	649	136	280	280	43%
Wild Horse River 5	451	288	0	0	162	52	135	135	83%
Wild Horse River 6	950	359	0	0	591	221	285	285	48%
Wild Horse River 7	720	253	0	0	467	151	216	216	46%
Wild Horse River 8	2,014	1,101	0	0	913	419	604	604	66%
Wild Horse River 9	2,306	851	0	0	1,455	471	692	692	48%
Willie Phillipps Creek	909	58	1	0	849	206	273	272	32%
Wolf Creek	1,992	869	227	0	895	338	598	427	48%
Wolf Creek 2	294	88	17	0	189	2	88	75	40%

Table 51 Visual Quality Objectives

VLI Polygon ID	Established VQO	VAC	Species	Slope (%)	Site Index (m)	Height (m)	Age at Height (years)	THLB (ha)	THLB Younger than Target Age (ha)	NHLB (ha)	NHLB Younger than Target Age (ha)	Current (%)	Max Target (%)
110611	PR	М	Р	37.8	18.1	6.5	14	178	96	186	31	35.0	9.5
110615	PR	L	Р	59.0	9.0	8	43	0	0	4	0	0.0	2.3
110616	PR	L	Р	48.0	17.6	7	16	165	83	327	4	17.7	2.9
110617	PR	М	Fd	48.8	17.6	7	16	101	11	453	0	2.0	7.7
110619	PR	L	Р	7.0	20.5	3.5	6	1	0	7	0	0.0	6.8
110620	PR	L	Р	17.7	20.3	4.5	8	21	0	6	0	0.0	5.5
110621	PR	М	Р	13.4	20.1	4	7	32	3	13	0	5.7	16.2
110622	PR	L	Р	7.1	20.6	3.5	6	1	0	5	0	0.0	6.8
110623	PR	М	Fd	62.3	14.9	8.5	24	0	0	69	0	0.0	5.5
110624	PR	М	Р	43.9	18.4	6.5	14	152	51	228	1	13.8	8.5
110626	PR	L	Р	23.2	20.2	5	9	208	0	13	0	0.0	4.9
110627	PR	L	Fd	50.3	17.9	7.5	17	117	47	511	0	7.5	2.9
110628	PR	М	Р	46.0	17.8	7	15	2	0	283	0	0.0	7.7
110629	М	L	Р	9.5	20.6	3.5	6	14	0	2	0	0.0	30
110630	PR	L	S	53.3	16.2	7.5	23	31	21	202	1	9.1	2.6
110631	PR	L	S	39.5	15.7	6.5	21	6	0	16	0	2.1	3.6
110632	М	М	Р	22.5	19.4	5	10	121	3	16	0	2.0	38
110633	PR	L	В	34.5	17.7	6	17	60	5	108	0	3.4	3.9
110634	PR	L	В	27.0	18.4	5.5	15	121	36	30	1	24.1	4.4
110635	PR	L	S	51.2	16.8	7.5	22	14	14	229	1	6.3	2.6
110636	PR	L	Р	4.7	18.5	3	6	42	0	3	0	0.0	7.5
110638	PR	М	Р	47.4	16.8	7	16	67	33	516	4	6.4	7.7
110639	М	М	Р	18.0	18.4	4.5	9	105	0	12	0	0.0	42.6
110640	М	L	Р	60.9	15.5	8.5	23	0	0	9	0	0.0	9.2
110642	М	L	S	51.7	10.7	7.5	35	0	0	2	0	0.0	11.4
110644	PR	М	Р	42.7	17.2	6.5	15	87	74	345	28	23.5	8.5
110645	PR	L	Р	37.2	18.4	6.5	14	60	41	188	60	40.8	3.6
110646	М	L	Р	54.5	16.7	7.5	18	0	0	24	3	12.9	11.4
110649	PR	L	Р	24.4	19.2	5	10	44	3	28	4	9.9	4.9
110650	PR	М	В	48.3	16.4	7	21	1	0	244	8	3.4	7.7
110651	PR	М	Р	41.6	18.0	6.5	14	22	9	371	2	2.8	8.5
110652	PR	L	В	48.0	17.5	7	19	27	0	115	0	0.0	2.9
110653	PR	М	S	53.2	11.5	7.5	33	0	0	4	0	0.0	6.9
110655	PR	М	L	13.2	20.1	4	7	145	34	9	0	22.0	16.2
110657	PR	L	Р	45.9	17.8	7	15	152	36	458	1	6.1	2.9

AFORSITE

VLI Polygon ID	Established VQO	VAC	Species	Slope (%)	Site Index (m)	Height (m)	Age at Height (years)	THLB (ha)	THLB Younger than Target Age (ha)	NHLB (ha)	NHLB Younger than Target Age (ha)	Current (%)	Max Target (%)
110658	PR	L	Fd	53.8	15.6	7.5	20	0	0	184	0	0.0	2.6
110660	PR	М	В	59.6	9.1	8	44	0	0	6	0	0.0	6.2
110661	М	L	L	25.8	20.7	5.5	10	6	0	2	0	0.0	19.5
110662	PR	М	В	54.1	9.4	7.5	40	0	0	2	0	0.0	6.9
110663	PR	L	Fd	60.1	16.6	8.5	21	1	0	416	0	0.0	2.3
110664	М	М	Fd	12.3	15.7	4	9	1,641	0	851	0	0.0	47.1
110667	PR	L	Р	38.9	16.2	6.5	16	211	141	1,262	6	10.0	3.6
110668	М	М	Р	7.6	15.9	3.5	8	283	0	430	0	0.0	52.9
110669	R	М	Fd	50.9	16.5	7.5	19	1,065	80	4,145	76	3.0	1.1
110670	PR	М	Р	56.3	17.7	8	18	0	0	77	0	0.0	6.2
110671	PR	М	Fd	62.4	17.9	8.5	19	0	0	15	0	0.0	5.5
110672	R	L	Р	46.7	18.3	7	15	8	0	81	0	0.0	0.2
110675	PR	М	Fd	62.3	17.2	8.5	20	0	0	15	0	0.0	5.5
110677	PR	М	Р	44.7	17.2	6.5	15	0	0	141	0	0.0	8.5
110678	PR	L	Р	56.1	13.7	8	25	0	0	43	0	0.0	2.3
110680	PR	L	В	42.7	16.6	6.5	19	0	0	169	0	0.0	3.2
110682	PR	М	Р	41.0	16.7	6.5	15	0	0	60	0	0.0	8.5
110683	Μ	L	AT	0.3	19.9	3	4	11	0	120	0	0.0	33.2
110684	М	L	Р	17.1	20.3	4.5	8	101	7	56	0	4.2	24.2
110685	PR	L	Р	19.5	19.6	4.5	9	176	0	79	0	0.0	5.5
110687	Μ	М	Fd	4.9	14.6	3	6	17	0	19	0	0.0	58.5
110689	PR	М	Р	19.0	18.9	4.5	9	535	186	104	3	29.5	14.7
110693	PR	Μ	Fd	53.6	17.5	7.5	17	47	47	501	1	8.7	6.9
110694	PR	L	Р	40.3	19.3	6.5	13	36	17	45	1	22.0	3.6
110696	PR	М	Р	32.4	18.6	6	12	776	248	666	19	18.5	10.5
110716	PR	Μ	Р	39.2	16.2	6.5	16	0	0	339	7	1.9	9.5
110717	PR	М	Р	37.5	17.2	6.5	15	0	0	219	10	4.8	9.5
110718	PR	М	В	51.1	14.2	7.5	26	0	0	139	0	0.0	6.9
110720	М	L	Fd	24.0	16.7	5	11	19	0	17	0	0.0	21.6
110731	PR	М	Р	39.4	16.4	6.5	15	0	0	501	0	0.0	9.5
110733	М	М	Р	5.1	13.3	3.5	10	56	0	16	0	0.0	58.5
110734	PR	М	В	61.4	9.3	8.5	46	0	0	3	0	0.0	5.5
110736	PR	L	Р	43.7	16.1	6.5	16	0	0	446	0	0.0	3.2
110739	PR	М	В	60.0	15.2	8	26	0	0	150	0	0.0	6.2
110744	PR	М	Р	44.8	16.4	6.5	15	31	21	81	1	19.9	8.5
110745	PR	М	В	40.9	13.8	6.5	24	0	0	10	0	0.0	8.5

VLI Polygon ID	Established VQO	VAC	Species	Slope (%)	Site Index (m)	Height (m)	Age at Height (years)	THLB (ha)	THLB Younger than Target Age (ha)	NHLB (ha)	NHLB Younger than Target Age (ha)	Current (%)	Max Target (%)
110752	PR	М	Р	41.8	14.9	6.5	18	0	0	3	0	0.0	8.5
110753	PR	М	Р	17.1	15.2	4.5	12	111	21	7	0	17.9	14.7
110754	PR	М	Р	12.8	16.1	4	9	97	3	3	0	3.2	16.2
110755	М	М	Р	40.7	17.7	6.5	14	245	130	745	58	19.0	24.8
110756	PR	М	Р	29.5	17.9	5.5	12	0	0	0	0	0.0	11.8
110757	PR	М	AT	0.9	20.4	3	4	0	0	7	0	0.0	20.1
110761	PR	М	AT	11.6	18.5	4	7	6	0	19	0	0.0	16.2
110763	PR	М	Р	38.7	19.5	6.5	13	158	112	183	1	33.3	9.5
110764	PR	М	Р	21.0	17.3	5	11	575	83	672	0	6.6	13.1
110766	PR	М	Р	16.9	19.4	4.5	9	280	150	17	2	51.1	14.7
110773	М	М	Fd	11.7	16.6	4	8	952	3	313	0	0.2	47.1
110775	PR	М	Р	20.2	19.7	5	10	83	45	14	1	47.2	14.7
110776	М	М	Fd	17.5	15.8	4.5	11	360	8	148	4	2.4	42.6
110779	PR	М	Р	49.3	15.7	7	17	0	0	91	0	0.0	7.7
110783	PR	М	Р	52.8	15.6	7.5	20	117	31	206	0	9.7	6.9
110784	PR	М	Р	9.2	18.2	3.5	7	1,042	155	141	4	13.5	18.2
110785	PR	М	AT	0.6	20.0	3	4	0	0	20	0	0.0	20.1
110786	PR	М	Р	4.4	14.5	3	8	62	0	24	0	0.0	20.1
110787	PR	М	Р	36.9	19.0	6.5	13	0	0	8	0	0.0	9.5
110788	PR	М	L	49.4	16.4	7	18	0	0	2	0	0.0	7.7
110790	PR	М	Р	12.4	13.7	4	11	177	0	41	2	0.7	16.2
110798	М	L	В	53.5	11.8	7.5	31	0	0	18	0	0.0	11.4
110801	PR	М	Р	49.1	16.3	7	17	3	0	196	0	0.0	7.7
110805	PR	L	Р	2.5	13.0	3	8	54	0	1	0	0.0	7.5
110806	PR	М	Р	26.7	17.7	5.5	12	389	12	109	0	2.5	11.8
110807	R	М	В	54.3	16.0	7.5	23	0	0	123	0	0.0	1.1
110811	М	М	Р	53.1	15.5	7.5	20	0	0	38	0	0.0	20
110812	PR	М	Fd	6.3	14.4	3.5	8	13	0	6	0	0.0	18.2
110813	PR	М	AT	14.4	21.0	4	6	34	0	136	0	0.0	16.2
110814	R	L	Р	26.5	17.6	5.5	12	383	183	79	16	42.9	0.3
110815	PR	L	AT	0.6	21.6	3	4	0	0	2	0	0.0	7.5
110816	PR	М	Р	11.3	18.5	4	8	215	5	58	0	2.0	16.2
110817	PR	М	Р	5.5	17.0	3.5	7	24	0	0	0	0.0	18.2
110818	PR	М	Р	36.1	16.2	6.5	16	30	5	280	0	1.9	9.5
110819	PR	L	L	7.9	19.8	3.5	6	534	64	142	11	11.1	6.8
110821	PR	М	Р	27.0	19.4	5.5	11	261	136	89	8	41.2	11.8

VLI Polygon ID	Established VQO	VAC	Species	Slope (%)	Site Index (m)	Height (m)	Age at Height (years)	THLB (ha)	THLB Younger than Target Age (ha)	NHLB (ha)	NHLB Younger than Target Age (ha)	Current (%)	Max Target (%)
110822	М	М	AT	26.8	20.1	5.5	9	48	0	110	1	0.4	34.4
110823	R	М	S	46.7	18.2	7	19	48	4	363	0	0.9	1.3
110826	PR	М	Fd	57.1	16.4	8	21	81	57	456	3	11.2	6.2
110827	М	М	Р	37.0	18.1	6.5	14	28	0	76	0	0.0	27.8
110829	PR	М	Р	26.7	17.0	5.5	12	187	72	71	0	27.9	11.8
110830	PR	М	AT	26.1	21.2	5.5	9	184	7	707	1	0.9	11.8
110831	PR	L	Р	15.8	17.3	4.5	10	11	1	0	0	6.9	5.5
110832	PR	М	L	8.6	15.7	3.5	8	237	0	7	0	0.1	18.2
110833	PR	М	Р	28.2	17.5	5.5	12	255	22	193	2	5.2	11.8
110835	М	М	Fd	16.1	16.3	4.5	10	182	0	95	1	0.4	42.6
110836	PR	М	Р	57.2	17.5	8	18	0	0	99	0	0.0	6.2
110838	PR	L	Р	22.1	17.7	5	11	274	35	29	1	11.8	4.9
110839	PR	М	Р	33.8	17.3	6	13	10	0	3	0	0.0	10.5
110840	PR	М	AT	9.4	21.3	3.5	5	0	0	13	0	0.0	18.2
110841	PR	М	Р	2.9	12.0	3	9	29	0	5	0	0.0	20.1
110842	PR	М	Fd	55.8	16.2	8	21	256	51	1,847	5	2.7	6.2
110843	PR	М	Р	15.5	18.6	4.5	9	92	70	25	9	67.8	14.7
110844	PR	М	Fd	5.1	16.5	3.5	7	182	9	18	0	4.7	20.1
110845	PR	М	L	22.3	17.6	5	11	56	0	17	0	0.7	13.1
110846	PR	М	Р	11.9	17.8	4	8	158	42	11	0	24.9	16.2
110849	PR	М	Р	22.6	18.6	5	10	158	43	12	2	26.3	13.1
110850	М	М	Р	27.2	17.2	5.5	12	70	10	140	0	4.7	34.4
110851	PR	L	Fd	5.9	15.6	3.5	8	105	2	29	8	7.7	6.8
110853	PR	L	Fd	5.8	14.4	3.5	8	57	0	51	0	0.0	6.8
110855	PR	L	Р	45.9	18.7	7	15	51	26	156	3	13.9	2.9
110857	М	Н	L	11.5	20.2	4	7	25	0	5	0	0.0	67.9
110859	R	L	Fd	49.8	17.3	7	16	164	24	462	0	3.8	0.2
110860	PR	М	Р	28.3	17.9	5.5	12	217	1	59	0	0.3	11.8
110861	PR	М	Р	35.3	19.3	6.5	13	117	8	91	5	6.1	10.5
110862	PR	М	Р	12.0	19.7	4	8	30	0	0	0	0.0	16.2
110863	PR	М	L	14.5	20.3	4	7	23	0	2	0	0.0	16.2
110864	М	М	Fd	8.9	15.6	3.5	8	832	0	132	0	0.0	52.9
110866	PR	М	Р	22.6	18.8	5	10	62	37	14	1	50.4	13.1
110868	PR	М	AT	9.7	23.7	3.5	4	0	0	66	0	0.0	18.2
110869	PR	М	S	43.5	20.2	6.5	16	9	0	0	0	0.0	8.5
110870	PR	М	Р	48.7	18.6	7	15	73	0	282	0	0.0	7.7

VLI Polygon ID	Established VQO	VAC	Species	Slope (%)	Site Index (m)	Height (m)	Age at Height (years)	THLB (ha)	THLB Younger than Target Age (ha)	NHLB (ha)	NHLB Younger than Target Age (ha)	Current (%)	Max Target (%)
110873	PR	М	L	18.2	18.2	4.5	10	131	0	126	0	0.0	14.7
110875	R	М	Fd	54.6	16.1	7.5	19	49	0	563	0	0.0	1.1
110876	PR	L	Р	36.2	18.3	6.5	14	302	76	504	11	10.8	3.6
110877	PR	М	В	44.2	13.8	6.5	24	0	0	63	0	0.0	8.5
110879	PR	L	Р	28.5	17.1	5.5	12	433	189	151	8	33.8	4.4
110882	PR	М	Р	7.1	13.6	3.5	10	13	0	6	0	0.0	18.2
110883	PR	L	Fd	52.4	15.5	7.5	20	28	0	553	0	0.0	2.6
110884	PR	М	AT	3.6	18.3	3	5	0	0	5	0	0.0	20.1
110885	PR	М	Р	58.7	20.3	8	15	0	0	0	0	0.0	6.2
110889	PR	L	Р	31.3	19.7	6	12	628	123	124	0	16.4	3.9
110890	PR	М	Р	51.6	18.6	7.5	16	5	0	306	0	0.0	6.9
110891	R	М	В	56.7	14.4	8	27	0	0	0	0	0.0	1
110892	PR	М	Fd	24.7	17.5	5	11	99	0	81	0	0.0	13.1
110900	PR	М	Fd	4.9	14.3	3	6	125	0	2	0	0.0	20.1
110902	R	М	Р	54.0	18.3	7.5	16	87	37	573	2	5.9	1.1
110904	R	L	Fd	53.6	16.5	7.5	19	357	3	2,228	62	2.5	0.2
110906	PR	М	Fd	8.4	14.6	3.5	8	86	0	20	0	0.0	18.2
110910	R	L	Р	54.3	19.5	7.5	15	9	0	169	0	0.0	0.2
110911	PR	М	L	60.8	20.7	8.5	17	1	0	55	0	0.0	5.5
110912	PR	Н	Fd	26.2	18.0	5.5	12	499	0	194	0	0.0	19.3
110913	PR	М	Р	30.7	17.9	6	13	120	0	120	0	0.0	10.5
110914	PR	L	Fd	28.0	16.6	5.5	12	181	0	50	0	0.0	4.4
110915	PR	Μ	L	22.8	21.6	5	8	60	0	88	0	0.0	13.1
110916	PR	М	Р	32.8	17.8	6	13	638	34	578	11	3.7	10.5
110919	PR	Н	Fd	15.7	16.8	4.5	9	74	0	10	0	0.0	23.9
110920	PR	М	Fd	14.1	16.8	4	8	46	0	4	0	0.0	16.2
110923	PR	М	Fd	9.7	17.2	3.5	7	42	0	2	0	0.0	18.2
110924	М	L	Fd	8.8	15.5	3.5	8	240	0	80	0	0.0	30
110928	R	L	Fd	21.4	16.3	5	12	12	0	13	0	0.0	0.3
110930	PR	М	Fd	8.6	15.9	3.5	8	32	0	3	0	0.0	18.2
110931	PR	М	Fd	21.6	15.6	5	12	24	24	13	13	100.0	13.1
110932	PR	Н	Fd	33.3	19.4	6	12	195	11	157	0	3.0	17.2
110933	PR	М	L	17.4	18.3	4.5	9	591	4	54	0	0.6	14.7
110934	PR	Н	Fd	11.1	14.3	4	9	119	15	29	7	14.7	26.4
110935	PR	М	Fd	12.1	16.4	4	9	102	0	2	0	0.0	16.2
110939	PR	Н	Fd	23.8	16.4	5	12	52	0	5	0	0.0	21.3

VLI Polygon ID	Established VQO	VAC	Species	Slope (%)	Site Index (m)	Height (m)	Age at Height (years)	THLB (ha)	THLB Younger than Target Age (ha)	NHLB (ha)	NHLB Younger than Target Age (ha)	Current (%)	Max Target (%)
110941	PR	М	Fd	11.6	15.7	4	9	42	0	13	0	0.0	16.2
110942	PR	М	Р	47.5	18.0	7	15	120	49	159	3	18.7	7.7
110943	PR	М	Р	43.0	17.7	6.5	14	23	2	52	3	6.5	8.5
110945	PR	М	Р	7.4	13.2	3.5	10	10	0	9	9	49.6	18.2
110946	М	L	Fd	6.5	16.5	3.5	8	305	0	27	0	0.0	30
110949	PR	Н	Fd	19.3	17.2	4.5	9	0	0	0	0	0.0	23.9
110950	PR	М	L	17.7	18.8	4.5	9	787	18	76	0	2.1	14.7
110951	PR	М	Fd	56.1	16.1	8	21	4	0	643	0	0.0	6.2
110952	PR	L	Р	29.4	17.0	5.5	12	112	43	86	2	22.6	4.4
110954	PR	М	Р	16.2	18.9	4.5	9	546	108	32	0	18.7	14.7
110956	PR	М	Fd	12.4	15.1	4	9	53	0	0	0	0.0	16.2
110957	PR	L	Fd	59.3	18.2	8	18	50	22	573	1	3.7	2.3
110958	PR	М	Fd	13.2	16.2	4	9	44	0	65	0	0.0	16.2
110960	PR	М	Р	2.0	12.5	3	9	5	0	0	0	0.0	20.1
110961	PR	Н	Fd	15.5	15.7	4.5	11	72	0	1	0	0.0	26.4
110962	PR	М	Fd	14.8	16.4	4	9	35	0	69	0	0.0	16.2
110964	PR	L	Р	33.9	17.0	6	14	161	58	436	0	9.7	3.9
110965	PR	М	L	41.0	20.4	6.5	12	2	0	315	0	0.0	8.5
110966	PR	М	Р	1.5	12.5	3	9	0	0	0	0	0.0	20.1
110967	PR	М	Fd	17.7	16.5	4.5	10	86	0	21	0	0.0	14.7
110969	М	L	Fd	3.6	16.1	3	6	90	0	11	0	0.0	33.2
110970	PR	М	Р	42.6	16.4	6.5	15	0	0	297	0	0.0	8.5
110972	PR	М	S	15.2	21.2	4.5	11	12	0	29	0	0.0	16.2
110973	PR	М	L	17.4	19.8	4.5	8	275	0	35	0	0.0	14.7
110974	PR	L	L	32.8	19.2	6	12	60	5	49	0	4.5	3.9
110975	М	М	Fd	13.5	16.5	4	8	84	0	33	0	0.0	47.1
110977	R	М	L	41.4	20.3	6.5	12	13	0	135	0	0.0	1.4
110979	PR	М	L	8.3	16.3	3.5	7	242	0	47	0	0.0	18.2
110980	PR	М	Р	47.2	17.6	7	16	170	0	600	0	0.0	7.7
110981	PR	М	Fd	13.0	14.7	4	9	401	0	6	0	0.0	16.2
110982	М	L	L	16.1	19.9	4.5	8	479	1	41	0	0.2	24.2
110983	PR	L	L	13.3	18.9	4	7	562	6	64	0	0.9	6
110984	PR	М	Fd	6.9	16.1	3.5	8	101	0	26	0	0.0	18.2
110986	PR	L	L	47.3	19.2	7	14	4	4	123	0	3.2	2.9
110987	М	L	Sx	5.6	20.1	3.5	8	40	0	0	0	0.0	30
110988	R	М	Fd	37.7	18.5	6.5	14	65	0	214	0	0.0	1.6

VLI Polygon ID	Established VQO	VAC	Species	Slope (%)	Site Index (m)	Height (m)	Age at Height (years)	THLB (ha)	THLB Younger than Target Age (ha)	NHLB (ha)	NHLB Younger than Target Age (ha)	Current (%)	Max Target (%)
110989	PR	L	Р	32.4	16.9	6	14	479	129	270	6	18.1	3.9
110990	R	М	Р	53.0	17.1	7.5	17	21	8	1,743	0	0.5	1.1
110991	PR	L	Fd	19.0	17.2	4.5	9	906	0	165	0	0.0	5.5
110993	PR	М	L	14.0	17.0	4	9	777	0	49	0	0.0	16.2
110994	PR	М	Fd	14.7	17.0	4	8	27	0	1	0	0.0	16.2
110995	PR	L	Р	39.4	17.6	6.5	14	401	44	402	0	5.5	3.6
110996	PR	L	Р	36.9	16.6	6.5	15	316	87	516	0	10.4	3.6
110997	PR	М	Fd	46.6	18.7	7	15	0	0	337	0	0.0	7.7
110998	PR	L	Fd	14.1	17.0	4	8	16	0	9	0	0.0	6
111000	PR	М	Р	34.0	19.0	6	12	1,178	2	1,370	0	0.1	10.5
111001	PR	L	L	15.5	17.6	4.5	10	519	15	114	0	2.3	5.5
111002	PR	М	Fd	12.7	16.7	4	8	61	0	7	0	0.0	16.2
111003	PR	L	Р	32.0	15.5	6	16	367	120	494	20	16.3	3.9
111006	PR	L	S	60.2	12.4	8.5	35	0	0	4	0	0.0	2.3
111008	PR	L	Fd	2.5	16.4	3	6	0	0	7	0	0.0	7.5
111011	PR	М	Fd	52.1	17.4	7.5	17	0	0	258	0	0.0	6.9
111013	PR	М	Fd	48.6	18.2	7	15	40	15	238	0	5.5	7.7
111015	PR	L	Р	23.3	17.7	5	11	895	82	291	1	7.1	4.9
111019	PR	М	L	8.8	15.9	3.5	8	5	0	2	0	0.0	18.2
111020	PR	Μ	Fd	15.1	16.2	4.5	11	123	0	80	0	0.0	16.2
111021	PR	М	Fd	31.4	15.9	6	15	33	0	19	5	9.0	10.5
111022	PR	М	Fd	15.1	17.3	4.5	9	81	0	1	0	0.0	16.2
111023	PR	L	Fd	52.2	19.5	7.5	16	0	0	38	0	0.0	2.6
111024	PR	М	L	8.1	16.3	3.5	7	254	0	55	0	0.0	18.2
111026	PR	М	Fd	16.0	16.8	4.5	9	49	0	44	0	0.0	14.7
111027	PR	L	Р	1.1	12.0	3	9	0	0	1	0	0.0	7.5
111028	PR	М	Fd	15.1	16.0	4.5	11	100	0	45	0	0.0	16.2
111029	PR	М	В	57.3	18.3	8	21	0	0	123	0	0.0	6.2
111031	М	L	L	26.0	17.2	5.5	13	231	42	39	0	15.6	19.5
111034	PR	М	Р	53.7	19.7	7.5	15	9	0	347	0	0.0	6.9
111036	PR	L	Fd	9.8	15.9	3.5	8	8	0	0	0	0.0	6.8
111037	PR	L	Sx	16.9	21.5	4.5	11	43	0	8	0	0.0	5.5
111038	PR	М	Р	28.9	19.7	5.5	11	363	3	291	0	0.5	11.8
111040	PR	Н	L	8.5	16.1	3.5	8	252	0	7	0	0.0	29.6
111041	PR	М	Р	21.9	18.3	5	10	610	119	146	1	15.8	13.1
111042	PR	М	Fd	17.5	18.1	4.5	9	282	80	29	1	26.1	14.7

VLI Polygon ID	Established VQO	VAC	Species	Slope (%)	Site Index (m)	Height (m)	Age at Height (years)	THLB (ha)	THLB Younger than Target Age (ha)	NHLB (ha)	NHLB Younger than Target Age (ha)	Current (%)	Max Target (%)
111043	PR	М	S	40.1	16.4	6.5	19	141	22	409	0	3.9	9.5
111045	PR	L	L	42.4	15.4	6.5	18	0	0	40	0	0.0	3.2
111046	PR	L	Р	8.6	17.3	3.5	7	94	0	6	0	0.0	6.8
111047	PR	М	Р	23.6	17.2	5	11	581	47	453	9	5.4	13.1
111048	R	L	Р	38.7	21.1	6.5	11	35	0	84	0	0.0	0.2
111049	PR	М	L	6.2	16.1	3.5	8	164	0	9	0	0.1	18.2
111052	PR	М	L	8.0	20.0	3.5	6	401	15	100	0	3.0	18.2
111054	М	М	Fd	29.9	16.2	5.5	13	17	0	13	0	0.0	34.4
111056	PR	М	Fd	23.6	17.4	5	11	123	0	46	0	0.0	13.1
111057	PR	М	Fd	59.7	16.9	8	19	2	0	298	0	0.0	6.2
111058	PR	М	Р	32.5	18.3	6	13	649	4	754	0	0.3	10.5
111059	PR	М	Р	20.8	19.4	5	10	1,111	295	165	4	23.5	13.1
111060	PR	L	Fd	21.2	16.1	5	12	601	12	293	0	1.4	4.9
111062	PR	L	Р	6.0	17.6	3.5	7	138	1	10	0	0.6	6.8
111063	PR	L	Р	50.7	15.8	7.5	19	0	0	7	0	0.0	2.6
111066	PR	М	Fd	31.3	17.9	6	13	339	26	209	0	4.8	10.5
111070	PR	L	Fd	20.3	16.3	5	12	62	37	1	0	58.8	5.5
111073	PR	L	Р	3.8	17.9	3	6	7	2	1	0	22.6	7.5
111075	PR	М	Р	47.1	9.7	7	33	0	0	31	0	0.0	7.7
111078	PR	L	Sx	1.4	21.8	3	7	1	0	0	0	0.0	7.5
111079	PR	L	Fd	3.3	16.6	3	5	1	0	0	0	0.0	7.5
111080	PR	М	L	2.4	16.3	3	6	25	0	0	0	0.0	20.1
111081	PR	М	Fd	54.5	16.1	7.5	19	127	0	218	0	0.0	6.9
111083	М	L	Fd	4.0	16.6	3	5	11	0	0	0	0.0	33.2
111084	PR	L	Р	56.5	19.9	8	16	0	0	11	0	0.0	2.3
111085	PR	L	Fd	34.9	19.2	6	12	20	0	35	0	0.0	3.9
111086	PR	М	Р	40.6	15.7	6.5	16	63	0	186	0	0.0	8.5
111087	PR	L	Fd	5.9	17.6	3.5	7	11	0	0	0	0.0	6.8
111091	PR	М	Р	22.1	18.5	5	10	159	0	3	0	0.0	13.1
111094	PR	М	Р	58.7	19.2	8	16	0	0	56	0	0.0	6.2
111095	PR	М	Fd	19.7	16.4	4.5	10	74	3	9	0	4.2	14.7
111096	М	М	Fd	9.3	16.4	3.5	8	14	0	0	0	0.0	52.9
111097	PR	L	Fd	48.6	18.7	7	15	64	11	108	0	6.7	2.9
111098	PR	L	Fd	6.4	16.0	3.5	8	2	0	0	0	0.0	6.8
111099	PR	М	Р	3.0	19.5	3	6	21	8	0	0	38.2	20.1
111100	PR	М	Р	56.5	15.3	8	22	3	0	29	0	0.0	6.2

VLI Polygon ID	Established VQO	VAC	Species	Slope (%)	Site Index (m)	Height (m)	Age at Height (years)	THLB (ha)	THLB Younger than Target Age (ha)	NHLB (ha)	NHLB Younger than Target Age (ha)	Current (%)	Max Target (%)
111101	PR	М	L	15.6	16.6	4.5	10	494	0	50	0	0.0	14.7
111102	PR	М	Fd	31.4	16.1	6	15	24	0	2	0	0.0	10.5
111103	PR	L	Р	29.9	17.5	5.5	12	371	125	221	5	22.0	4.4
111104	М	L	Р	25.3	18.9	5.5	11	218	43	25	2	18.7	21.6
111105	R	М	Fd	51.7	17.2	7.5	17	2	0	221	0	0.0	1.1
111107	PR	М	Р	30.0	17.6	6	13	537	24	613	0	2.1	11.8
111109	R	М	Fd	49.0	16.9	7	16	14	0	249	0	0.0	1.3
111110	PR	L	Р	25.5	18.9	5.5	11	371	68	123	1	13.9	4.9
111111	PR	L	Fd	48.0	16.5	7	18	175	0	240	4	0.9	2.9
111112	PR	L	L	10.0	16.4	3.5	7	14	0	9	0	0.0	6.8
111113	R	М	Р	40.7	18.7	6.5	14	177	93	261	222	71.9	1.4
111114	PR	L	Fd	44.7	17.8	6.5	14	5	0	100	0	0.0	3.2
111115	PR	L	Fd	63.9	17.2	8.5	20	0	0	55	0	0.0	2.1
111116	М	М	Р	18.2	19.3	4.5	9	769	21	147	0	2.3	42.6
111117	PR	L	L	11.1	18.1	4	8	35	15	0	0	42.3	6
111118	PR	М	L	20.7	17.4	5	11	9	0	8	0	0.0	13.1
111121	PR	М	Р	12.3	16.0	4	9	35	0	4	0	0.0	16.2
111122	М	М	Fd	20.3	17.0	5	11	764	0	353	0	0.0	42.6
111125	PR	М	Fd	26.1	15.9	5.5	14	85	0	10	0	0.0	11.8
111127	PR	L	Р	19.7	18.6	4.5	9	286	0	110	0	0.0	5.5
111128	PR	Μ	Р	24.1	17.3	5	11	904	0	522	0	0.0	13.1
111129	PR	М	Fd	44.5	17.3	6.5	15	0	0	19	0	0.0	8.5
111130	PR	Μ	L	39.3	19.6	6.5	13	49	27	13	1	43.9	9.5
111134	PR	L	Р	33.5	19.4	6	12	522	379	260	208	75.0	3.9
111138	PR	L	Fd	8.4	16.2	3.5	8	95	0	2	0	0.0	6.8
111140	PR	L	Р	21.2	16.7	5	11	384	0	125	8	1.6	4.9
111141	PR	L	Р	39.5	18.7	6.5	14	29	0	39	0	0.0	3.6
111142	PR	М	L	29.4	17.3	5.5	13	24	0	23	0	0.0	11.8
111144	М	L	Fd	1.9	15.9	3	6	148	136	12	5	88.2	33.2
111145	PR	L	Fd	24.9	19.8	5	9	571	20	217	6	3.4	4.9
111146	PR	L	L	19.8	19.0	4.5	8	188	0	61	0	0.0	5.5
111147	PR	L	Fd	5.8	17.1	3.5	7	0	0	3	0	0.0	6.8
111148	PR	М	Fd	12.7	16.4	4	9	0	0	2	0	0.0	16.2
111149	PR	L	L	31.8	16.1	6	15	45	0	30	0	0.7	3.9
111150	PR	L	Р	9.2	17.3	3.5	7	5	0	8	0	0.0	6.8
111151	PR	L	Fd	32.8	16.9	6	13	0	0	4	0	0.0	3.9

VLI Polygon ID	Established VQO	VAC	Species	Slope (%)	Site Index (m)	Height (m)	Age at Height (years)	THLB (ha)	THLB Younger than Target Age (ha)	NHLB (ha)	NHLB Younger than Target Age (ha)	Current (%)	Max Target (%)
111154	R	L	AT	0.0	20.2	3	4	0	0	0	0	0.0	0.5
111155	R	L	Fd	28.0	17.6	5.5	12	43	0	23	0	0.0	0.3
111156	PR	М	Р	29.1	17.2	5.5	12	114	0	51	0	0.0	11.8
111160	PR	L	L	17.1	16.4	4.5	10	28	8	6	0	22.7	5.5
111161	PR	М	L	48.8	17.1	7	17	0	0	5	0	0.0	7.7
111162	М	М	Fd	16.3	17.9	4.5	9	572	0	380	4	0.4	42.6
111163	PR	L	Fd	6.3	15.6	3.5	8	13	0	1	0	0.0	6.8
111164	PR	М	Fd	21.2	17.6	5	10	7	2	0	0	30.3	13.1
111165	PR	М	Fd	35.0	17.9	6	13	20	0	57	0	0.0	10.5
111166	PR	L	Fd	37.0	16.4	6.5	16	21	0	18	0	0.0	3.6
111167	М	М	Р	20.2	17.2	5	11	116	12	10	2	11.7	42.6
111168	PR	М	Р	29.2	17.1	5.5	12	874	7	206	5	1.1	11.8
111169	PR	М	Р	3.2	18.3	3	6	90	5	3	0	5.9	20.1
111170	PR	Н	Fd	23.5	20.2	5	9	224	0	103	0	0.0	21.3
111171	PR	М	В	22.3	17.2	5	14	108	21	0	0	19.3	13.1
111172	PR	L	Fd	11.4	16.8	4	8	114	0	38	0	0.0	6
111173	PR	L	Р	48.7	18.3	7	15	171	0	502	0	0.0	2.9
111174	PR	М	В	28.0	17.7	5.5	15	58	17	59	0	14.5	11.8
111175	PR	L	Р	21.7	19.4	5	10	106	17	47	4	13.7	4.9
111176	PR	М	L	21.5	18.9	5	9	685	149	70	6	20.6	13.1
111177	PR	М	Sx	27.0	19.8	5.5	14	172	131	10	0	72.4	11.8
111178	М	М	Fd	20.3	17.1	5	11	159	11	18	1	6.7	42.6
111179	PR	L	Р	33.5	18.7	6	12	31	24	28	2	43.2	3.9
111180	PR	L	Fd	21.9	19.4	5	10	102	5	13	0	4.8	4.9
111181	PR	L	Fd	4.6	19.5	3	5	0	0	7	0	0.0	7.5
111182	PR	L	Fd	2.3	15.3	3	6	37	12	1	0	30.4	7.5
111183	PR	М	Fd	52.6	19.4	7.5	16	5	0	251	0	0.0	6.9
111184	PR	L	Fd	11.0	18.1	4	8	50	19	10	0	32.2	6
111185	М	L	Fd	7.8	16.7	3.5	7	918	84	141	1	8.0	30
111187	PR	L	Fd	7.7	18.7	3.5	7	0	0	1	0	0.0	6.8
111188	PR	L	Fd	42.9	19.4	6.5	13	19	0	50	0	0.0	3.2
111189	PR	L	Fd	22.0	17.6	5	10	902	142	79	0	14.5	4.9
111190	PR	М	В	42.0	17.5	6.5	18	0	0	53	0	0.0	8.5
111191	PR	М	Р	33.9	20.2	6	11	243	36	284	0	6.9	10.5
111192	PR	L	Р	24.3	20.1	5	9	618	34	92	0	4.8	4.9
111193	PR	L	Fd	23.3	21.2	5	9	202	0	10	0	0.0	4.9

111194 PR 111195 PR 111196 PR 111197 PR 111198 PR 111199 R 111200 PR 111201 PR 111203 M 111204 R	R R R R R R R R 1	L M M M L L M M M	B P P Fd L P	23.6 39.6 42.6 24.3 41.3 17.9	18.6 18.4 18.6 17.4 17.3	5 6.5 6.5 5	14 17 14	159 1	40	153	0	42.0	
111196 PR 111197 PR 111198 PR 111199 R 111200 PR 111201 PR 111203 M 111204 R	R R R R R 1	M M M L M M	P P Fd L	42.6 24.3 41.3	18.6 17.4	6.5		1			0	12.9	4.9
111197 PR 111198 PR 111109 R 111200 PR 111201 PR 111203 M 111204 R	R R R R 1	M M L M M	P P Fd L	24.3 41.3	17.4		1/	-	0	12	0	0.0	9.5
111198 PR 111199 R 111200 PR 111201 PR 111203 M 111204 R	R R R 1	M L M M	P Fd L	41.3		5	14	0	0	62	0	0.0	8.5
111199 R 111200 PR 111201 PR 111203 M 111204 R	R R 1	L M M	Fd L		17.3	5	11	139	17	7	0	11.4	13.1
111200 PR 111201 PR 111203 M 111204 R	R R 1	M M	L	17.9		6.5	15	0	0	58	0	0.0	8.5
111201PR111203M111204R	R 1	М			20.1	4.5	8	0	0	2	0	0.0	0.3
111203 M 111204 R	1		Р	12.2	19.0	4	7	70	0	0	0	0.0	16.2
111204 R		М		49.4	17.8	7	15	5	0	421	0	0.0	7.7
-			Fd	6.8	17.3	3.5	7	15	0	8	0	0.0	52.9
444206 00	R	М	Fd	44.4	20.9	6.5	12	11	0	79	0	0.0	1.4
111206 PR		L	Р	31.7	18.5	6	13	270	87	179	2	19.9	3.9
111208 PR	R	L	Р	56.3	16.9	8	19	0	0	113	0	0.0	2.3
111209 PR	R	М	Р	28.7	20.0	5.5	11	303	70	138	11	18.3	11.8
111210 PR	R	М	Р	30.0	16.5	6	14	6	0	171	0	0.2	11.8
111211 PR	R	L	Р	26.8	19.0	5.5	11	135	13	73	0	6.3	4.4
111212 R		L	Р	23.2	20.1	5	9	0	0	2	0	0.0	0.3
111213 PR	R	L	Р	28.0	20.6	5.5	10	438	55	244	2	8.4	4.4
111214 PR	R	L	Р	41.5	18.6	6.5	14	0	0	140	0	0.0	3.2
111215 R		L	Fd	13.0	24.1	4	6	9	0	11	0	0.0	0.4
111216 PR	R	L	Р	14.8	19.2	4	8	688	0	67	0	0.0	6
111217 M	1	М	Р	28.0	19.2	5.5	11	219	5	29	0	1.9	34.4
111219 PR	R	L	Р	50.3	17.5	7.5	17	6	0	461	0	0.0	2.9
111220 PR	R	L	L	35.4	22.3	6.5	11	108	5	111	0	2.2	3.9
111221 PR	R	L	Fd	45.0	16.4	6.5	16	154	0	170	0	0.0	3.2
111222 PR	R	М	Р	25.7	19.2	5.5	11	24	0	7	0	0.0	11.8
111223 PR	R	L	Fd	8.4	15.0	3.5	8	0	0	3	0	0.0	6.8
111224 PR	R	L	Р	32.1	18.9	6	12	93	30	72	0	18.6	3.9
111225 PR	R	М	Р	23.7	18.7	5	10	41	0	19	0	0.0	13.1
111226 R		L	AT	5.5	21.6	3.5	5	4	0	4	0	0.0	0.4
111227 R		L	Р	8.4	22.7	3.5	5	1	0	0	0	0.0	0.4
111228 M	1	М	Fd	9.1	16.1	3.5	8	1,270	43	80	0	3.2	52.9
111229 PR	R	М	Р	15.8	19.5	4.5	9	59	0	2	0	0.0	14.7
111230 PR	R	М	Р	25.8	18.0	5.5	12	62	0	19	0	0.0	11.8
111231 PR	R	М	Р	21.3	20.7	5	9	342	9	77	0	2.1	13.1
111233 PR	R	М	Р	26.0	18.1	5.5	12	8	0	13	0	0.0	11.8
111234 PR		1	Р	54.0	16.7	7.5	18	3	0				

VLI Polygon ID	Established VQO	VAC	Species	Slope (%)	Site Index (m)	Height (m)	Age at Height (years)	THLB (ha)	THLB Younger than Target Age (ha)	NHLB (ha)	NHLB Younger than Target Age (ha)	Current (%)	Max Target (%)
111235	PR	М	Fd	17.5	16.1	4.5	11	27	0	45	0	0.0	14.7
111236	PR	L	Fd	43.3	16.6	6.5	15	222	1	380	0	0.2	3.2
111237	М	М	Р	28.6	17.7	5.5	12	396	156	57	3	35.1	34.4
111238	PR	Н	Fd	16.6	18.6	4.5	9	0	0	22	0	0.0	23.9
111239	PR	М	Р	25.4	19.3	5.5	11	38	30	9	0	63.9	13.1
111240	PR	L	Fd	14.1	16.2	4	9	26	0	46	44	60.6	6
111241	PR	М	AT	9.4	21.3	3.5	5	0	0	14	0	0.0	18.2
111242	PR	М	AT	8.2	22.0	3.5	5	3	0	5	0	0.0	18.2
111243	PR	М	Р	18.4	18.7	4.5	9	120	0	10	0	0.0	14.7
111244	PR	М	Fd	22.2	15.2	5	12	76	0	35	0	0.0	13.1
111245	PR	М	Fd	25.7	14.9	5.5	14	3	0	19	0	1.8	11.8
111246	PR	М	Р	25.8	21.0	5.5	9	335	40	106	0	9.0	11.8
111247	PR	L	Р	22.9	17.6	5	11	0	0	23	0	0.0	4.9
111248	М	М	Fd	19.0	16.6	4.5	9	20	0	9	0	0.0	42.6
111249	R	L	Р	10.8	22.6	4	6	12	0	6	0	0.0	0.4
111251	PR	М	Fd	46.0	19.8	7	13	28	0	105	0	0.0	7.7
111252	PR	L	Fd	1.1	16.3	3	6	91	0	0	0	0.0	7.5
111256	PR	М	Р	19.2	20.4	4.5	8	869	172	89	1	18.1	14.7
111257	PR	М	Р	3.0	22.5	3	4	1	0	0	0	0.0	20.1
111258	PR	М	Р	26.9	20.8	5.5	9	561	123	162	1	17.1	11.8
111259	PR	М	Fd	44.6	17.5	6.5	14	84	0	194	0	0.0	8.5
111260	М	М	Fd	44.9	19.6	6.5	13	49	0	152	0	0.0	24.8
111261	PR	L	L	40.1	19.7	6.5	13	102	0	47	0	0.0	3.6
111262	PR	L	Fd	44.6	18.5	6.5	14	200	0	289	0	0.0	3.2
111263	М	М	Fd	26.1	16.4	5.5	13	161	14	48	1	6.8	34.4
111264	PR	М	Р	44.3	16.4	6.5	15	0	0	124	0	0.0	8.5
111265	PR	М	Fd	37.6	21.7	6.5	12	78	0	127	0	0.0	9.5
111266	PR	М	Fd	50.3	16.7	7.5	18	62	0	129	0	0.0	7.7
111267	PR	М	Fd	18.1	16.5	4.5	10	63	0	4	0	0.0	14.7
111268	PR	М	Р	8.2	23.4	3.5	5	106	0	18	0	0.0	18.2
111269	PR	L	Fd	4.8	16.2	3	6	0	0	0	0	0.0	7.5
111270	PR	М	Р	30.3	18.0	6	13	22	0	75	3	3.4	11.8
111271	R	L	Fd	42.7	19.6	6.5	13	8	0	148	0	0.0	0.2
111272	PR	М	Р	32.7	21.9	6	10	598	13	350	0	1.4	10.5
111273	PR	М	Р	31.1	20.6	6	10	128	14	76	0	6.8	10.5
111275	PR	М	Р	50.0	16.6	7	16	74	3	1,138	0	0.3	7.7

VLI Polygon ID	Established VQO	VAC	Species	Slope (%)	Site Index (m)	Height (m)	Age at Height (years)	THLB (ha)	THLB Younger than Target Age (ha)	NHLB (ha)	NHLB Younger than Target Age (ha)	Current (%)	Max Target (%)
111276	PR	L	Fd	18.5	18.9	4.5	9	161	0	47	0	0.0	5.5
111277	PR	М	Fd	46.4	16.4	7	18	118	0	203	0	0.0	7.7
111278	PR	М	Fd	37.3	15.5	6.5	17	22	0	14	0	0.0	9.5
111279	М	М	L	27.5	19.6	5.5	10	329	40	68	3	11.0	34.4
111280	PR	L	Fd	49.2	20.2	7	13	0	0	353	0	0.0	2.9
111281	PR	М	Fd	42.2	17.0	6.5	15	156	50	444	3	8.9	8.5
111282	PR	L	Р	37.4	19.6	6.5	13	62	0	40	0	0.0	3.6
111283	PR	L	Р	19.3	19.2	4.5	9	125	0	46	0	0.0	5.5
111285	PR	М	AT	13.7	23.0	4	6	0	0	13	0	0.0	16.2
111286	М	М	Р	28.7	17.7	5.5	12	352	124	83	0	28.7	34.4
111287	PR	М	Р	30.4	22.3	6	10	130	0	99	0	0.0	11.8
111289	PR	М	Р	35.6	18.5	6.5	14	1,495	132	855	3	5.7	9.5
111290	PR	М	Р	21.3	19.3	5	10	36	0	3	0	0.0	13.1
111292	М	L	Fd	10.4	16.5	4	8	10	0	23	0	0.0	30
111293	PR	L	Fd	30.4	17.2	6	13	103	0	22	0	0.0	4.4
111294	PR	М	Р	22.2	19.3	5	10	282	54	30	0	17.2	13.1
111297	М	М	Fd	14.0	15.4	4	9	96	0	42	0	0.0	47.1
111298	PR	Н	В	31.9	18.2	6	16	30	0	14	0	0.0	17.2
111300	PR	L	S	14.6	19.2	4	10	32	0	6	0	0.7	6
111301	PR	L	Р	15.6	19.3	4.5	9	87	20	32	0	16.7	5.5
111302	М	М	Р	33.4	17.9	6	13	192	18	92	1	6.6	30.6
111303	М	L	Fd	18.0	16.7	4.5	9	271	25	124	0	6.3	24.2
111304	PR	М	Р	44.3	17.4	6.5	14	18	0	413	0	0.0	8.5
111305	PR	L	Р	52.9	16.3	7.5	18	0	0	209	0	0.0	2.6
111307	PR	L	Fd	45.8	16.8	7	16	48	0	345	0	0.0	2.9
111308	PR	L	Р	38.4	17.3	6.5	15	136	10	124	0	3.9	3.6
111309	PR	М	Р	26.6	20.1	5.5	10	35	0	1	0	0.0	11.8
111310	PR	L	Fd	50.6	16.8	7.5	18	2	0	213	0	0.0	2.6
111312	М	М	Fd	12.6	15.3	4	9	55	0	2	0	0.0	47.1
111313	PR	М	Fd	45.5	16.8	7	16	0	0	171	0	0.0	7.7
111314	PR	L	Р	36.9	17.4	6.5	15	87	6	74	1	3.9	3.6
111315	PR	L	Fd	7.3	15.7	3.5	8	0	0	0	0	0.0	6.8
111316	PR	М	Fd	40.7	15.6	6.5	17	7	0	91	0	0.0	8.5
111317	М	М	Р	34.0	18.4	6	13	691	68	382	0	6.4	30.6
111318	PR	L	Fd	16.2	16.4	4.5	10	352	0	101	0	0.0	5.5
111319	PR	L	Fd	39.2	16.7	6.5	15	113	0	99	0	0.0	3.6

VLI Polygon ID	Established VQO	VAC	Species	Slope (%)	Site Index (m)	Height (m)	Age at Height (years)	THLB (ha)	THLB Younger than Target Age (ha)	NHLB (ha)	NHLB Younger than Target Age (ha)	Current (%)	Max Target (%)
111321	Μ	М	Р	26.3	18.3	5.5	12	1,321	144	234	2	9.4	34.4
111324	PR	L	Р	34.3	16.8	6	14	9	7	103	0	6.2	3.9
111325	М	L	Р	25.6	18.8	5.5	11	566	0	174	0	0.0	19.5
111326	PR	М	Fd	20.8	18.9	5	10	158	46	39	2	24.4	13.1
Total								72,641	8,453	68,017	1,171		

Appendix 2 Analysis Units

AU	State	Lead Species	BEC	Genetic Era	Slope	SI	2017 Fire	Treatment	MHA	Regen AU	THLB (ha)	NHLB (ha)	Total (ha)
101	EN	FD	nonESSF	N/A	0	10 ≤ SI < 15		CC	116	201	11,310	0	11,310
102	EN	FD	nonESSF	N/A	0	15 ≤ SI < 20		CC	80	202	13,039	0	13,039
103	EN	FD	nonESSF	N/A	0	≥20		CC	80	203	1,582	0	1,582
104	EN	SB	nonESSF	N/A	All	10 ≤ SI < 15		CC	117	204	4,642	0	4,642
105	EN	SB	nonESSF	N/A	All	15 ≤ SI < 20		CC	83	205	8,810	0	8,810
106	EN	SB	nonESSF	N/A	All	≥20		CC	80	206	2,477	0	2,477
107	EN	СН	nonESSF	N/A	All	All		CC	80	207	1,263	0	1,263
108	EN	PL	nonESSF	N/A	0	10 ≤ SI < 15		CC	102	208	3,902	0	3,902
109	EN	PL	nonESSF	N/A	0	15 ≤ SI < 20		CC	71	209	36,759	0	36,759
110	EN	PL	nonESSF	N/A	0	≥20		CC	60	210	8,641	0	8,641
111	EN	PL_PFT	nonESSF	N/A	0	All		CC	99	208	10,398	0	10,398
112	EN	LW	nonESSF	N/A	All	10 ≤ SI < 15		CC	157	212	6,850	0	6,850
113	EN	LW	nonESSF	N/A	All	15 ≤ SI < 20		CC	95	213	22,551	0	22,551
114	EN	LW	nonESSF	N/A	All	≥20		CC	80	214	5,641	0	5,641
115	All	ORcc	All	N/A	All	All		CC,once	90	215	9,512	0	9,512
116	All	OFpc, FdPy, Py	All	N/A	All	All		PC	90	216	34,571	0	34,571
121	EN	FD	ESSF	N/A	0	10 ≤ SI < 15		CC	108	221	329	0	329
122	EN	FD	ESSF	N/A	0	15 ≤ SI < 20		CC	80	222	306	0	306
123	EN	FD	ESSF	N/A	0	≥20		CC	80	223	64	0	64
124	EN	SB	ESSF	N/A	All	10 ≤ SI < 15		CC	116	224	12,240	0	12,240
125	EN	SB	ESSF	N/A	All	15 ≤ SI < 20		CC	87	225	20,009	0	20,009
126	EN	SB	ESSF	N/A	All	≥20		CC	80	226	2,020	0	2,020
127	EN	СН	ESSF	N/A	All	All		CC	80	227	122	0	122
128	EN	PL	ESSF	N/A	0	10 ≤ SI < 15		CC	96	228	5,169	0	5,169
129	EN	PL	ESSF	N/A	0	15 ≤ SI < 20		CC	68	229	18,379	0	18,379
130	EN	PL	ESSF	N/A	0	≥20		CC	60	230	1,820	0	1,820
131	EN	PL_PFT	ESSF	N/A	All	All		CC	103	228	10,932	0	10,932
132	EN	LW	ESSF	N/A	All	10 ≤ SI < 15		CC	128	232	581	0	581
133	EN	LW	ESSF	N/A	All	15 ≤ SI < 20		СС	93	233	1,910	0	1,910
134	EN	LW	ESSF	N/A	All	≥20		CC	80	234	367	0	367
151	EN	FD	nonESSF	N/A	40	10 ≤ SI < 15		СС	138	251	1,316	0	1,316
152	EN	FD	nonESSF	N/A	40	15 ≤ SI < 20		СС	87	252	1,410	0	1,410
153	EN	FD	nonESSF	N/A	40	≥20		СС	80	253	228	0	228
158	EN	PL	nonESSF	N/A	40	10 ≤ SI < 15		CC	132	258	532	0	532
159	EN	PL	nonESSF	N/A	40	15 ≤ SI < 20		СС	83	259	4,226	0	4,226
160	EN	PL	nonESSF	N/A	40	≥20		СС	60	260	941	0	941
.171	EN	FD	ESSF	N/A	40	10 ≤ SI < 15		CC	119	271	203	0	203

AU	State	Lead Species	BEC	Genetic Era	Slope	SI	2017 Fire	Treatment	MHA	Regen AU	THLB (ha)	NHLB (ha)	Total (ha)
172	EN	FD	ESSF	N/A	40	15 ≤ SI < 20		СС	89	272	213	0	213
173	EN	FD	ESSF	N/A	40	≥20		CC	80	273	37	0	37
178	EN	PL	ESSF	N/A	40	10 ≤ SI < 15		CC	124	278	1,348	0	1,348
179	EN	PL	ESSF	N/A	40	15 ≤ SI < 20		CC	83	279	4,026	0	4,026
180	EN	PL	ESSF	N/A	40	≥20		CC	60	280	349	0	349
216	FM	OFpc, FdPy, Py	All	N/A	All	All		PC	90	216	272	0	272
501	EM	FD	nonESSF	GE1	0	10 ≤ SI < 15		CC	89	701	138	0	138
502	EM	FD	nonESSF	GE1	0	15 ≤ SI < 20		CC	87	702	2,836	0	2,836
503	EM	FD	nonESSF	GE1	0	≥20		CC	80	703	165	0	165
505	EM	SB	nonESSF	GE1	All	15 ≤ SI < 20		CC	80	705	2,405	0	2,405
506	EM	SB	nonESSF	GE1	All	≥20		CC	80	706	933	0	933
507	EM	СН	nonESSF	GE1	All	All		CC	83	707	228	0	228
508	EM	PL	nonESSF	GE1	0	10 ≤ SI < 15		CC	119	708	0	0	0
509	EM	PL	nonESSF	GE1	0	15 ≤ SI < 20		CC	73	709	17,419	0	17,419
510	EM	PL	nonESSF	GE1	0	≥20		CC	65	710	7,221	0	7,221
513	EM	LW	nonESSF	GE1	All	15 ≤ SI < 20		CC	80	713	1,005	0	1,005
514	EM	LW	nonESSF	GE1	All	≥20		CC	80	714	2,535	0	2,535
522	EM	FD	ESSF	GE1	0	15 ≤ SI < 20		CC	90	722	133	0	133
523	EM	FD	ESSF	GE1	0	≥20		CC	80	723	1	0	1
524	EM	SB	ESSF	GE1	All	10 ≤ SI < 15		CC	109	724	419	0	419
525	EM	SB	ESSF	GE1	All	15 ≤ SI < 20		CC	88	725	13,406	0	13,406
526	EM	SB	ESSF	GE1	All	≥20		CC	80	726	476	0	476
527	EM	СН	ESSF	GE1	All	All		CC	92	727	5	0	5
528	EM	PL	ESSF	GE1	0	10 ≤ SI < 15		CC	108	728	1	0	1
529	EM	PL	ESSF	GE1	0	15 ≤ SI < 20		CC	79	729	6,519	0	6,519
530	EM	PL	ESSF	GE1	0	≥20		CC	66	730	496	0	496
533	EM	LW	ESSF	GE1	All	15 ≤ SI < 20		CC	80	733	515	0	515
534	EM	LW	ESSF	GE1	All	≥20		CC	80	734	270	0	270
551	EM	FD	nonESSF	GE1	40	10 ≤ SI < 15		CC	91	751	0	0	0
552	EM	FD	nonESSF	GE1	40	15 ≤ SI < 20		CC	84	752	658	0	658
553	EM	FD	nonESSF	GE1	40	≥20		CC	80	753	52	0	52
559	EM	PL	nonESSF	GE1	40	15 ≤ SI < 20		CC	73	759	921	0	921
560	EM	PL	nonESSF	GE1	40	≥20		CC	65	760	540	0	540
572	EM	FD	ESSF	GE1	40	15 ≤ SI < 20		CC	88	772	74	0	74
578	EM	PL	ESSF	GE1	40	10 ≤ SI < 15		CC	110	778	1	0	1
579	EM	PL	ESSF	GE1	40	15 ≤ SI < 20		CC	79	779	1,151	0	1,151
580	EM	PL	ESSF	GE1	40	≥20		CC	66	780	81	0	81
599	EM	DE_PA	All	GE1	All	All		CC	79	599	2	0	2
601	EM	FD	nonESSF	GE2	0	10 ≤ SI < 15		СС	88	701	27	0	27
				•	•	-		•				•	

AU	State	Lead Species	BEC	Genetic Era	Slope	SI	2017 Fire	Treatment	MHA	Regen AU	THLB (ha)	NHLB (ha)	Total (ha)
602	EM	FD.	nonESSF	GE2	0	15 ≤ SI < 20		СС	86	702	1,027	0	1,027
603	EM	FD	nonESSF	GE2	0	≥20		СС	80	703	236	0	236
605	EM	SB	nonESSF	GE2	All	15 ≤ SI < 20		CC	80	705	1,262	0	1,262
606	EM	SB	nonESSF	GE2	All	≥20		CC	80	706	286	0	286
607	EM	СН	nonESSF	GE2	All	All		CC	80	707	2	0	2
609	EM	PL	nonESSF	GE2	0	15 ≤ SI < 20		CC	72	709	11,571	0	11,571
610	EM	PL	nonESSF	GE2	0	≥20		CC	64	710	4,082	0	4,082
613	EM	LW	nonESSF	GE2	All	15 ≤ SI < 20		CC	80	713	1,725	0	1,725
614	EM	LW	nonESSF	GE2	All	≥20		CC	80	714	3,207	0	3,207
622	EM	FD	ESSF	GE2	0	15 ≤ SI < 20		CC	88	722	18	0	18
624	EM	SB	ESSF	GE2	All	10 ≤ SI < 15		CC	107	724	62	0	62
625	EM	SB	ESSF	GE2	All	15 ≤ SI < 20		CC	87	725	3,758	0	3,758
629	EM	PL	ESSF	GE2	0	15 ≤ SI < 20		CC	79	729	7,673	0	7,673
630	EM	PL	ESSF	GE2	0	≥20		CC	66	730	550	0	550
633	EM	LW	ESSF	GE2	All	15 ≤ SI < 20		CC	80	733	274	0	274
634	EM	LW	ESSF	GE2	All	≥20		CC	80	734	244	0	244
652	EM	FD	nonESSF	GE2	40	15 ≤ SI < 20		CC	81	752	152	0	152
653	EM	FD	nonESSF	GE2	40	≥20		CC	80	753	53	0	53
659	EM	PL	nonESSF	GE2	40	15 ≤ SI < 20		CC	73	759	1,140	0	1,140
660	EM	PL	nonESSF	GE2	40	≥20		CC	63	760	438	0	438
672	EM	FD	ESSF	GE2	40	15 ≤ SI < 20		CC	86	772	26	0	26
679	EM	PL	ESSF	GE2	40	15 ≤ SI < 20		CC	78	779	1,483	0	1,483
680	EM	PL	ESSF	GE2	40	≥20		СС	66	780	51	0	51
1101	EN_Fire	FD	nonESSF	N/A	0	10 ≤ SI < 15	Low	CC	*	201	13	0	13
1102	EN_Fire	FD	nonESSF	N/A	0	15 ≤ SI < 20	Low	CC	*	202	55	0	55
1104	EN_Fire	SB	nonESSF	N/A	All	10 ≤ SI < 15	Low	CC	*	204	25	0	25
1105	EN_Fire	SB	nonESSF	N/A	All	15 ≤ SI < 20	Low	CC	*	205	66	0	66
1107	EN_Fire	СН	nonESSF	N/A	All	All	Low	СС	*	207	3	0	3
1108	EN_Fire	PL	nonESSF	N/A	0	10 ≤ SI < 15	Low	СС	*	208	61	0	61
1109	EN_Fire	PL	nonESSF	N/A	0	15 ≤ SI < 20	Low	CC	*	209	124	0	124
1110	EN_Fire	PL	nonESSF	N/A	0	≥20	Low	СС	*	210	58	0	58
1111	EN_Fire	PL_PFT	nonESSF	N/A	0	All	Low	CC	*	208	12	0	12
1112	EN_Fire	LW	nonESSF	N/A	All	10 ≤ SI < 15	Low	CC	*	212	10	0	10
1113	EN_Fire	LW	nonESSF	N/A	All	15 ≤ SI < 20	Low	CC	*	213	134	0	134
1114	EN_Fire	LW	nonESSF	N/A	All	≥20	Low	CC	*	214	1	0	1
1116	All_Fire	OFpc, FdPy, Py	All	N/A	All	All	Low	PC	*	216	6	0	6
1121	EN_Fire	FD	ESSF	N/A	0	10 ≤ SI < 15	Low	CC	*	221	3	0	3
1122	EN_Fire	FD	ESSF	N/A	0	15 ≤ SI < 20	Low	CC	*	222	2	0	2
1124	EN_Fire	SB	ESSF	N/A	All	10 ≤ SI < 15	Low	CC	*	224	313	0	313
AA													

AU	State	Lead Species	BEC	Genetic Era	Slope	SI	2017 Fire	Treatment	МНА	Regen AU	THLB (ha)	NHLB (ha)	Total (ha)
1125	EN Fire	SB	ESSF	N/A	All	15 ≤ SI < 20	Low	СС	*	225	439	0	439
1126	EN_Fire	SB	ESSF	N/A	All	≥20	Low	CC	*	226	11	0	11
1128	EN_Fire	PL	ESSF	N/A	0	10 ≤ SI < 15	Low	CC	*	228	16	0	16
1129	EN_Fire	PL	ESSF	N/A	0	15 ≤ SI < 20	Low	CC	*	229	46	0	46
1130	EN_Fire	PL	ESSF	N/A	0	≥20	Low	CC	*	230	13	0	13
1131	EN_Fire	PL_PFT	ESSF	N/A	All	All	Low	CC	*	228	34	0	34
1132	EN_Fire	LW	ESSF	N/A	All	10 ≤ SI < 15	Low	CC	*	232	2	0	2
1133	EN_Fire	LW	ESSF	N/A	All	15 ≤ SI < 20	Low	CC	*	233	41	0	41
1134	EN_Fire	LW	ESSF	N/A	All	≥20	Low	CC	*	234	1	0	1
1151	EN_Fire	FD	nonESSF	N/A	40	10 ≤ SI < 15	Low	CC	*	251	1	0	1
1152	EN_Fire	FD	nonESSF	N/A	40	15 ≤ SI < 20	Low	CC	*	252	10	0	10
1158	EN_Fire	PL	nonESSF	N/A	40	10 ≤ SI < 15	Low	CC	*	258	4	0	4
1159	EN_Fire	PL	nonESSF	N/A	40	15 ≤ SI < 20	Low	CC	*	259	30	0	30
1160	EN_Fire	PL	nonESSF	N/A	40	≥20	Low	CC	*	260	20	0	20
1171	EN_Fire	FD	ESSF	N/A	40	10 ≤ SI < 15	Low	CC	*	271	3	0	3
1172	EN_Fire	FD	ESSF	N/A	40	15 ≤ SI < 20	Low	CC	*	272	14	0	14
1178	EN_Fire	PL	ESSF	N/A	40	10 ≤ SI < 15	Low	CC	*	278	5	0	5
1179	EN_Fire	PL	ESSF	N/A	40	15 ≤ SI < 20	Low	CC	*	279	8	0	8
1180	EN_Fire	PL	ESSF	N/A	40	≥20	Low	CC	*	280	20	0	20
1503	EM_Fire	FD	nonESSF	GE1	0	≥20	Low	CC	*	703	1	0	1
1505	EM_Fire	SB	nonESSF	GE1	All	15 ≤ SI < 20	Low	CC	*	705	49	0	49
1506	EM_Fire	SB	nonESSF	GE1	All	≥20	Low	CC	*	706	26	0	26
1507	EM_Fire	СН	nonESSF	GE1	All	All	Low	CC	*	707	2	0	2
1509	EM_Fire	PL	nonESSF	GE1	0	15 ≤ SI < 20	Low	CC	*	709	29	0	29
1510	EM_Fire	PL	nonESSF	GE1	0	≥20	Low	CC	*	710	109	0	109
1513	EM_Fire	LW	nonESSF	GE1	All	15 ≤ SI < 20	Low	CC	*	713	1	0	1
1514	EM_Fire	LW	nonESSF	GE1	All	≥20	Low	CC	*	714	15	0	15
1522	EM_Fire	FD	ESSF	GE1	0	15 ≤ SI < 20	Low	CC	*	722	6	0	6
1524	EM_Fire	SB	ESSF	GE1	All	10 ≤ SI < 15	Low	CC	*	724	5	0	5
1525	EM_Fire	SB	ESSF	GE1	All	15 ≤ SI < 20	Low	CC	*	725	225	0	225
1529	EM_Fire	PL	ESSF	GE1	0	15 ≤ SI < 20	Low	СС	*	729	17	0	17
1534	EM_Fire	LW	ESSF	GE1	All	≥20	Low	CC	*	734	2	0	2
1559	EM_Fire	PL	nonESSF	GE1	40	15 ≤ SI < 20	Low	CC	*	759	0	0	0
1560	EM_Fire	PL	nonESSF	GE1	40	≥20	Low	CC	*	760	8	0	8
1572	EM_Fire	FD	ESSF	GE1	40	15 ≤ SI < 20	Low	CC	*	772	15	0	15
1579	EM_Fire	PL	ESSF	GE1	40	15 ≤ SI < 20	Low	CC	*	779	1	0	1
1609	EM_Fire	PL	nonESSF	GE2	0	15 ≤ SI < 20	Low	CC	*	709	40	0	40
1610	EM_Fire	PL	nonESSF	GE2	0	≥20	Low	CC	*	710	4	0	4
1613	EM_Fire	LW	nonESSF	GE2	All	15 ≤ SI < 20	Low	CC	*	713	8	0	8
		•	•	•	•	•	•	•	•				

AU	State	Lead Species	BEC	Genetic Era	Slope	SI	2017 Fire	Treatment	MHA	Regen AU	THLB (ha)	NHLB (ha)	Total (ha)
1614	EM_Fire	LW	nonESSF	GE2	All	≥20	Low	СС	*	714	3	0	3
1624	EM Fire	SB	ESSF	GE2	All	10 ≤ SI < 15	Low	СС	*	724	6	0	6
1625	EM_Fire	SB	ESSF	GE2	All	15 ≤ SI < 20	Low	CC	*	725	1	0	1
1629	EM_Fire	PL	ESSF	GE2	0	15 ≤ SI < 20	Low	CC	*	729	11	0	11
1630	EM_Fire	PL	ESSF	GE2	0	≥20	Low	CC	*	730	1	0	1
1659	EM_Fire	PL	nonESSF	GE2	40	15 ≤ SI < 20	Low	CC	*	759	3	0	3
1660	EM_Fire	PL	nonESSF	GE2	40	≥20	Low	CC	*	760	1	0	1
1679	EM_Fire	PL	ESSF	GE2	40	15 ≤ SI < 20	Low	CC	*	779	10	0	10
1680	EM_Fire	PL	ESSF	GE2	40	≥20	Low	CC	*	780	1	0	1
2101	EN_Fire	FD	nonESSF	N/A	0	10 ≤ SI < 15	Moderate	CC	*	201	12	0	12
2102	EN_Fire	FD	nonESSF	N/A	0	15 ≤ SI < 20	Moderate	CC	*	202	14	0	14
2104	EN_Fire	SB	nonESSF	N/A	All	10 ≤ SI < 15	Moderate	CC	*	204	15	0	15
2105	EN_Fire	SB	nonESSF	N/A	All	15 ≤ SI < 20	Moderate	CC	*	205	37	0	37
2108	EN_Fire	PL	nonESSF	N/A	0	10 ≤ SI < 15	Moderate	CC	*	208	165	0	165
2109	EN_Fire	PL	nonESSF	N/A	0	15 ≤ SI < 20	Moderate	CC	*	209	91	0	91
2110	EN_Fire	PL	nonESSF	N/A	0	≥20	Moderate	CC	*	210	28	0	28
2112	EN_Fire	LW	nonESSF	N/A	All	10 ≤ SI < 15	Moderate	CC	*	212	6	0	6
2113	EN_Fire	LW	nonESSF	N/A	All	15 ≤ SI < 20	Moderate	CC	*	213	86	0	86
2114	EN_Fire	LW	nonESSF	N/A	All	≥20	Moderate	CC	*	214	1	0	1
2121	EN_Fire	FD	ESSF	N/A	0	10 ≤ SI < 15	Moderate	CC	*	221	1	0	1
2122	EN_Fire	FD	ESSF	N/A	0	15 ≤ SI < 20	Moderate	CC	*	222	0	0	0
2124	EN_Fire	SB	ESSF	N/A	All	10 ≤ SI < 15	Moderate	CC	*	224	85	0	85
2125	EN_Fire	SB	ESSF	N/A	All	15 ≤ SI < 20	Moderate	CC	*	225	179	0	179
2126	EN_Fire	SB	ESSF	N/A	All	≥20	Moderate	CC	*	226	6	0	6
2128	EN_Fire	PL	ESSF	N/A	0	10 ≤ SI < 15	Moderate	CC	*	228	13	0	13
2129	EN_Fire	PL	ESSF	N/A	0	15 ≤ SI < 20	Moderate	CC	*	229	51	0	51
2130	EN_Fire	PL	ESSF	N/A	0	≥20	Moderate	CC	*	230	3	0	3
2131	EN_Fire	PL_PFT	ESSF	N/A	All	All	Moderate	СС	*	228	1	0	1
2132	EN_Fire	LW	ESSF	N/A	All	10 ≤ SI < 15	Moderate	CC	*	232	2	0	2
2133	EN_Fire	LW	ESSF	N/A	All	15 ≤ SI < 20	Moderate	CC	*	233	41	0	41
2134	EN_Fire	LW	ESSF	N/A	All	≥20	Moderate	CC	*	234	0	0	0
2151	EN_Fire	FD	nonESSF	N/A	40	10 ≤ SI < 15	Moderate	CC	*	251	0	0	0
2152	EN_Fire	FD	nonESSF	N/A	40	15 ≤ SI < 20	Moderate	CC	*	252	0	0	0
2158	EN_Fire	PL	nonESSF	N/A	40	10 ≤ SI < 15	Moderate	CC	*	258	2	0	2
2159	EN_Fire	PL	nonESSF	N/A	40	15 ≤ SI < 20	Moderate	CC	*	259	35	0	35
2160	EN_Fire	PL	nonESSF	N/A	40	≥20	Moderate	CC	*	260	10	0	10
2171	EN_Fire	FD	ESSF	N/A	40	10 ≤ SI < 15	Moderate	CC	*	271	2	0	2
2172	EN_Fire	FD	ESSF	N/A	40	15 ≤ SI < 20	Moderate	CC	*	272	1	0	1
2178	EN_Fire	PL	ESSF	N/A	40	10 ≤ SI < 15	Moderate	СС	*	278	1	0	1
	_												

AU	State	Lead Species	BEC	Genetic Era	Slope	SI	2017 Fire	Treatment	MHA	Regen AU	THLB (ha)	NHLB (ha)	Total (ha)
2179	EN_Fire	PL	ESSF	N/A	40	15 ≤ SI < 20	Moderate	CC	*	279	18	0	18
2180	EN_Fire	PL	ESSF	N/A	40	≥20	Moderate	CC	*	280	8	0	8
2502	EM_Fire	FD	nonESSF	GE1	0	15 ≤ SI < 20	Moderate	CC	*	702	0	0	0
2505	EM_Fire	SB	nonESSF	GE1	All	15 ≤ SI < 20	Moderate	CC	*	705	43	0	43
2506	EM_Fire	SB	nonESSF	GE1	All	≥20	Moderate	CC	*	706	13	0	13
2507	EM_Fire	СН	nonESSF	GE1	All	All	Moderate	CC	*	707	0	0	0
2509	EM_Fire	PL	nonESSF	GE1	0	15 ≤ SI < 20	Moderate	CC	*	709	39	0	39
2510	EM_Fire	PL	nonESSF	GE1	0	≥20	Moderate	CC	*	710	156	0	156
2513	EM_Fire	LW	nonESSF	GE1	All	15 ≤ SI < 20	Moderate	CC	*	713	2	0	2
2514	EM_Fire	LW	nonESSF	GE1	All	≥20	Moderate	CC	*	714	4	0	4
2522	EM_Fire	FD	ESSF	GE1	0	15 ≤ SI < 20	Moderate	CC	*	722	13	0	13
2525	EM_Fire	SB	ESSF	GE1	All	15 ≤ SI < 20	Moderate	CC	*	725	217	0	217
2529	EM_Fire	PL	ESSF	GE1	0	15 ≤ SI < 20	Moderate	CC	*	729	27	0	27
2533	EM_Fire	LW	ESSF	GE1	All	15 ≤ SI < 20	Moderate	CC	*	733	5	0	5
2559	EM_Fire	PL	nonESSF	GE1	40	15 ≤ SI < 20	Moderate	CC	*	759	1	0	1
2560	EM_Fire	PL	nonESSF	GE1	40	≥20	Moderate	CC	*	760	5	0	5
2579	EM_Fire	PL	ESSF	GE1	40	15 ≤ SI < 20	Moderate	CC	*	779	4	0	4
2605	EM_Fire	SB	nonESSF	GE2	All	15 ≤ SI < 20	Moderate	CC	*	705	2	0	2
2609	EM_Fire	PL	nonESSF	GE2	0	15 ≤ SI < 20	Moderate	CC	*	709	165	0	165
2610	EM_Fire	PL	nonESSF	GE2	0	≥20	Moderate	CC	*	710	39	0	39
2613	EM_Fire	LW	nonESSF	GE2	All	15 ≤ SI < 20	Moderate	CC	*	713	12	0	12
2614	EM_Fire	LW	nonESSF	GE2	All	≥20	Moderate	CC	*	714	12	0	12
2625	EM_Fire	SB	ESSF	GE2	All	15 ≤ SI < 20	Moderate	CC	*	725	0	0	0
2629	EM_Fire	PL	ESSF	GE2	0	15 ≤ SI < 20	Moderate	CC	*	729	91	0	91
2630	EM_Fire	PL	ESSF	GE2	0	≥20	Moderate	CC	*	730	1	0	1
2659	EM_Fire	PL	nonESSF	GE2	40	15 ≤ SI < 20	Moderate	CC	*	759	32	0	32
2660	EM_Fire	PL	nonESSF	GE2	40	≥20	Moderate	CC	*	760	15	0	15
2679	EM_Fire	PL	ESSF	GE2	40	15 ≤ SI < 20	Moderate	CC	*	779	41	0	41
2680	EM_Fire	PL	ESSF	GE2	40	≥20	Moderate	СС	*	780	3	0	3
9000	NHLB	All	All	All	All	All	All	FIRE	0	9000	0	490,351	490,351
Total											375,314	490,351	865,665

*Operability window becomes active when the total volume (standing after fire + emerging after fire) reaches the same volume as the volume at MHA of the corresponding original AU. For example, AU 1101 corresponding original AU is 101 (1101-1000). The THLB area includes the in-block retention.

Appendix 3 TIPSY Regeneration Assumptions

AU	BEC	Regen	Proportion	Density	Delay	OAF2	Species Comp	SI Spp1	GW Spp1	SI Spp2	GW Spp2	SI Spp3	GW Spp3	SI Spp4	GW Spp4	SI Spp5	GW Spp5
201	MS	Р	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Sw10	3001 17.39	3 3 3	3002	sppz 5	3003 17.81	3003	5004 19.4	3004	Shha	Shh2
201	MS	N	0.75	2500	2	0.892	Fd60 Pl20 Lw20	17.39	3	17.7	5	17.81	27	19.4	27		
201	MS	P	0.25	1300	2	0.892	Fd45 Pl30 Lw15 Sw10	17.58	3	17.7	5	17.73	27	19.91	27		
202	MS	N	0.25	2500	2	0.892	Fd60 Pl20 Lw20	17.58	5	17.7		17.73	27	19.91	27		
203	MS	P	0.85	1300	2	0.892	Fd35 Pl35 Lw15 Sw15	17.77	3	17.8	5	17.48	27	20.4	27		
203	MS	N	0.15	2500	2	0.892	Fd45 Lw20 Pl20 Sw15	17.77		17.48		17.8		20.4			
204	MS	Р	1	1300	2	0.95	Sw40 BI35 PI25	19.33	27	18.32		19.75	5				
205	MS	Р	1	1300	2	0.95	Sw35 PI35 BI30	19.42	27	19.76	5	18.3					
206	MS	Р	1	1300	2	0.95	Sw35 PI35 BI30	19.57	27	20.28	5	18.74					
207	ICH	Р	1	1300	2	0.95	Sw50 Fd30 Cw10 Bl10	19.82	27	20.73	3	15.98		18.78			
208	MS	Р	1	1300	3	0.913	PI50 Sw35 BI15	18.99	5	18.73	27	17.82					
209	MS	Р	0.8	1300	2	0.913	PI50 BI15 Sw15 Lw10 Fd10	19.03	5	18.05		18.93	27	19.63	27	18.86	3
209	MS	N	0.2	3000	2	0.913	Pl60 Sw20 Fd10 Lw10	19.03		18.93		18.86		19.63			
210	MS	Р	0.9	1300	2	0.913	PI55 Sw20 Lw10 Fd10 BI5	19.49	5	19.04	27	20.23	27	19.25	3	18.25	
210	MS	N	0.1	3000	2	0.913	PI70 Lw15 Fd10 Sw5	19.49		20.23		19.25		19.04			
212	MS	Р	1	1300	2	0.95	Pl40 Lw30 Fd15 Sw15	18.74	5	19.59	27	18.77	3	18.93	27		
213	MS	Р	1	1300	2	0.95	Pl40 Lw30 Fd15 Sw15	18.86	5	19.74	27	19.09	3	19.26	27		
214	MS	Р	1	1300	2	0.95	Pl45 Lw35 Fd15 Sw5	19.45	5	20.62	27	19.61	3	19.16	27		
221	ESSF	Р	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Se10	17.45	3	17.73	5	18	27	16.3	27		
221	ESSF	N	0.25	2500	2	0.892	Fd60 Pl20 Lw20	17.45		17.73		18					
222	ESSF	Р	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Se10	17.89	3	18.15	5	19.02	27	16.54	27		
222	ESSF	Ν	0.25	2500	2	0.892	Fd60 Pl20 Lw20	17.89		18.15		19.02					
223	ESSF	Р	0.85	1300	2	0.892	Fd35 Pl35 Lw15 Se15	16.39	3	17.09	5	21.68	27	16.2	27		
223	ESSF	Ν	0.15	2500	2	0.892	Fd45 Lw20 Pl20 Se15	16.39		21.68		17.09		16.2			
224	ESSF	Р	1	1300	2	0.95	Se40 BI35 PI25	16.82	27	15.85		18.06	5				
225	ESSF	Р	1	1300	2	0.95	Se35 PI35 BI30	17.27	27	18.36	5	16.22					
226	ESSF	Р	1	1300	2	0.95	Se35 PI35 BI30	17.98	27	19.05	5	17.9					
227	ESSF	Р	1	1300	2	0.95	Se50 Fd30 Cw10 Bl10	16.59	27	19.93	3	16.02		17.62			
228	ESSF	Р	1	1300	2	0.913	PI50 Se35 BI15	17.82	5	16.78	27	15.49					
229	ESSF	Р	0.8	1300	2	0.913	PI50 BI15 Se15 Lw10 Fd10	18.18	5	15.79		16.99	27	17.92	27	17.71	3
229	ESSF	N	0.2	3000	2	0.913	Pl60 Se20 Fd10 Lw10	18.18		16.99		17.71		17.92			
230	ESSF	Р	0.9	1300	2	0.913	PI55 Se20 Lw10 Fd10 BI5	18.88	5	17.82	27	19.31	27	18.67	3	17.08	
230	ESSF	N	0.1	3000	2	0.913	PI70 Lw15 Fd10 Se5	18.88		19.31		18.67		17.82			
232	ESSF	Р	1	1300	2	0.95	Pl40 Lw30 Fd15 Se15	18.59	5	18.48	27	18.14	3	16.91	27		
233	ESSF	Р	1	1300	2	0.95	Pl40 Lw30 Fd15 Se15	18.78	5	18.77	27	18.38	3	17.14	27		
234	ESSF	Р	1	1300	2	0.95	Pl45 Lw35 Fd15 Se5	19.14	5	19.47	27	18.97	3	17.7	27		

AU	BEC	Regen	Proportion	Density	Delav	OAF2	Species Comp	SI	GW	SI	GW	SI	GW	SI	GW	SI	GW
			•		,	-	· ·	Spp1	Spp1	Spp2	Spp2	Spp3	Spp3	Spp4	Spp4	Spp5	Spp5
251	MS	Р	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Sw10	17.64	3	18.23	5	18.59	27	19.01	27		
251	MS	N	0.25	2500	2	0.892	Fd60 Pl20 Lw20	17.64		18.23		18.59					
252	MS	Р	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Sw10	18.68	3	18.92	5	19.53	27	19.13	27		
252	MS	N	0.25	2500	2	0.892	Fd60 Pl20 Lw20	18.68		18.92		19.53					
253	MS	Р	0.85	1300	2	0.892	Fd35 Pl35 Lw15 Sw15	18.73	3	19.1	5	19.85	27	20.24	27		
253	MS	Ν	0.15	2500	2	0.892	Fd45 Lw20 Pl20 Sw15	18.73		19.85		19.1		20.24			
258	MS	Р	1	1300	3	0.913	PI50 Sw35 BI15	18.87	5	18.55	27	17.43					
259	MS	Р	0.8	1300	2	0.913	PI50 BI15 Sw15 Lw10 Fd10	19.35	5	17.75		19.01	27	20.31	27	19.16	3
259	MS	Ν	0.2	3000	2	0.913	Pl60 Sw20 Fd10 Lw10	19.35		19.01		19.16		20.31			
260	MS	Р	0.9	1300	2	0.913	PI55 Sw20 Lw10 Fd10 BI5	19.76	5	19.63	27	20.81	27	19.79	3	18.17	
260	MS	Ν	0.1	3000	2	0.913	PI70 Lw15 Fd10 Sw5	19.76		20.81		19.79		19.63			
271	ESSF	Р	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Se10	17.4	3	17.78	5	18.31	27	16.27	27		
271	ESSF	N	0.25	2500	2	0.892	Fd60 Pl20 Lw20	17.4		17.78		18.31					
272	ESSF	Р	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Se10	17.8	3	17.75	5	19.76	27	16.32	27		
272	ESSF	N	0.25	2500	2	0.892	Fd60 Pl20 Lw20	17.8		17.75		19.76					
273	ESSF	Р	0.85	1300	2	0.892	Fd35 Pl35 Lw15 Se15	17.45	3	16.94	5	21.96	27	15.58	27		
273	ESSF	N	0.15	2500	2	0.892	Fd45 Lw20 Pl20 Se15	17.45		21.96		16.94		15.58			
278	ESSF	Р	1	1300	2	0.913	PI50 Se35 BI15	17.98	5	16.68	27	15.33					
279	ESSF	Р	0.8	1300	2	0.913	PI50 BI15 Se15 Lw10 Fd10	18.2	5	15.98		17.15	27	18.31	27	17.82	3
279	ESSF	N	0.2	3000	2	0.913	Pl60 Se20 Fd10 Lw10	18.2		17.15		17.82		18.31			
280	ESSF	Р	0.9	1300	2	0.913	PI55 Se20 Lw10 Fd10 BI5	18.45	5	17.03	27	18.92	27	18.29	3	16.88	
280	ESSF	N	0.1	3000	2	0.913	PI70 Lw15 Fd10 Se5	18.45		18.92		18.29		17.03			
501	MS	Р	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Sw10	14.77	0	16.84	3	16.31	4	20.73	12		
501	MS	N	0.25	2500	2	0.892	Fd60 Pl20 Lw20	14.77	-	16.84		16.31					
502	IDF	Р	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Sw10	17.34	0	17.77	3	17.61	4	19.69	12		
502	IDF	N	0.25	2500	2	0.892	Fd60 Pl20 Lw20	17.34		17.77		17.61					
503	MS	Р	0.85	1300	2	0.892	Fd35 Pl35 Lw15 Sw15	20.95	0	20	3	21.79	4	19.53	12		
503	MS	N	0.15	2500	2	0.892	Fd45 Lw20 Pl20 Sw15	20.95	-	21.79	_	20		19.53			
505	MS	Р	1	1300	2	0.95	Sw35 PI35 BI30	18.95	12	19.56	3	18.19					
506	MS	P	1	1300	2	0.95	Sw35 PI35 BI30	20.57	12	20.88	3	18.97					
507	ICH	Р	1	1300	2	0.95	Sw50 Fd30 Cw10 Bl10	19.5	12	20.93	0	15.33		19.09			
508	MS	P	1	1300	3	0.913	PI50 Sw35 BI15	12	3		12						
509	MS	P	0.8	1300	2	0.913	PI50 BI15 Sw15 Lw10 Fd10	18.56	3	17.92		18.77	12	19.17	4	18.43	0
509	MS	N	0.2	3000	2	0.913	PI60 Sw20 Fd10 Lw10	18.56		18.77		18.43		19.17	•	10.10	
510	MS	P	0.2	1300	2	0.913	PI55 Sw20 Lw10 Fd10 BI5	20.39	3	19.56	12	21.13	4	20.19	0	18.61	
510	MS	N	0.5	3000	2	0.913	PI70 Lw15 Fd10 Sw5	20.39	5	21.13	12	20.19	-+	19.56	<u> </u>	10.01	
513	MS	P	1	1300	2	0.915	PI40 Lw30 Fd15 Sw15	18.08	3	18.2	4	17.89	0	18.51	12		
513	MS	P	1	1300	2	0.95	PI45 Lw35 Fd15 Sw5	19.86	3	21.58	4	20.09	0	18.95	12		
514	1013	l r	1	1300	Z	0.95		19.00	3	21.30	4	20.09	0	10.93	12		

AU	BEC	Regen	Proportion	Density	Delay	OAF2	Species Comp	SI	GW	SI	GW	SI	GW	SI	GW	SI	GW
				,	,			Spp1	Spp1	Spp2	Spp2	Spp3	Spp3	Spp4	Spp4	Spp5	Spp5
522	ESSF	Р	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Se10	17.26	0	18.11	3	17.38	4	16.7	12		
522	ESSF	N	0.25	2500	2	0.892	Fd60 Pl20 Lw20	17.26	-	18.11		17.38					
523	ESSF	Р	0.85	1300	2	0.892	Fd35 Pl35 Lw15 Se15	20.03	0	20.6	3	21	4	19.68	12		
523	ESSF	N	0.15	2500	2	0.892	Fd45 Lw20 Pl20 Se15	20.03		21		20.6		19.68			
524	ESSF	Р	1	1300	2	0.95	Se40 Bl35 Pl25	13.75	12	13.47		16.79	3				
525	ESSF	Р	1	1300	2	0.95	Se35 PI35 BI30	17.29	12	18.32	3	16.12					
526	ESSF	Р	1	1300	2	0.95	Se35 PI35 BI30	20.68	12	20.68	3	20.32					
527	ESSF	Р	1	1300	2	0.95	Se50 Fd30 Cw10 Bl10	19.86	12	19.38	0	18		18.73			
528	ESSF	Р	1	1300	2	0.913	PI50 Se35 BI15	14.82	3	10.47	12	11.47					
529	ESSF	Р	0.8	1300	2	0.913	Pl50 Bl15 Se15 Lw10 Fd10	17.92	3	15.54		16.9	12	17.67	4	17.55	0
529	ESSF	Ν	0.2	3000	2	0.913	Pl60 Se20 Fd10 Lw10	17.92		16.9		17.55		17.67			
530	ESSF	Р	0.9	1300	2	0.913	PI55 Se20 Lw10 Fd10 BI5	20.44	3	19.11	12	20.98	4	20.59	0	19.84	
530	ESSF	Ν	0.1	3000	2	0.913	PI70 Lw15 Fd10 Se5	20.44		20.98		20.59		19.11			
533	ESSF	Р	1	1300	2	0.95	Pl40 Lw30 Fd15 Se15	18.23	3	17.24	4	17.26	0	16.63	12		
534	ESSF	Р	1	1300	2	0.95	Pl45 Lw35 Fd15 Se5	19.28	3	21.04	4	20.16	0	18.4	12		
551	MS	Р	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Sw10	14.81	0	16.84	3	15.96	4	20.59	12		
551	MS	Ν	0.25	2500	2	0.892	Fd60 Pl20 Lw20	14.81		16.84		15.96					
552	IDF	Р	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Sw10	18.6	0	18.97	3	19.95	4	18.57	12		
552	IDF	Ν	0.25	2500	2	0.892	Fd60 Pl20 Lw20	18.6		18.97		19.95					
553	MS	Р	0.85	1300	2	0.892	Fd35 Pl35 Lw15 Sw15	21.09	0	20.39	3	22	4	19.8	12		
553	MS	N	0.15	2500	2	0.892	Fd45 Lw20 Pl20 Sw15	21.09		22		20.39		19.8			
559	MS	Р	0.8	1300	2	0.913	PI50 BI15 Sw15 Lw10 Fd10	18.65	3	17.41		18.54	12	19.6	4	18.71	0
559	MS	N	0.2	3000	2	0.913	PI60 Sw20 Fd10 Lw10	18.65		18.54		18.71		19.6			
560	MS	Р	0.9	1300	2	0.913	PI55 Sw20 Lw10 Fd10 BI5	20.51	3	19.4	12	21.87	4	20.41	0	18.66	
560	MS	N	0.1	3000	2	0.913	PI70 Lw15 Fd10 Sw5	20.51		21.87		20.41		19.4			
572	ESSF	Р	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Se10	17.87	0	18.8	3	18.93	4	16.96	12		
572	ESSF	N	0.25	2500	2	0.892	Fd60 Pl20 Lw20	17.87		18.8		18.93					
578	ESSF	Р	1	1300	2	0.913	PI50 Se35 BI15	14.82	3	10.47	12	11.47					
579	ESSF	Р	0.8	1300	2	0.913	PI50 BI15 Se15 Lw10 Fd10	17.99	3	15.84		17.02	12	18.12	4	17.68	0
579	ESSF	N	0.2	3000	2	0.913	Pl60 Se20 Fd10 Lw10	17.99	-	17.02		17.68		18.12			
580	ESSF	P	0.9	1300	2	0.913	PI55 Se20 Lw10 Fd10 BI5	20.55	3	18.95	12	20.96	4	20.58	0	19.71	
580	ESSF	N	0.1	3000	2	0.913	PI70 Lw15 Fd10 Se5	20.55		20.96		20.58		18.95			
601	MS	P	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Sw10	14.77	2	16.84	3	16.31	23	20.73	24		
601	MS	N	0.25	2500	2	0.892	Fd60 Pl20 Lw20	14.77	_	16.84	-	16.31					
602	MS	P	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Sw10	17.34	2	17.77	3	17.61	23	19.69	24		
602	MS	N N	0.25	2500	2	0.892	Fd60 Pl20 Lw20	17.34	-	17.77	5	17.61	23	15.05	<u> </u>		
603	MS	P	0.85	1300	2	0.892	Fd35 Pl35 Lw15 Sw15	20.95	2	20	3	21.79	23	19.53	24		
603	MS	N	0.05	2500	2	0.892	Fd45 Lw20 Pl20 Sw15	20.95	2	21.79	5	21.75	23	19.53	2-4		
003	1015		0.13	2500	2	0.092		20.95		21.19		20		19.95			

AU	BEC	Regen	Proportion	Density	Delav	OAF2	Species Comp	SI	GW								
70	DLC	Ŭ	Troportion	Density	1	UAI 2		Spp1	Spp1	Spp2	Spp2	Spp3	Spp3	Spp4	Spp4	Spp5	Spp5
605	MS	Р	1	1300	2	0.95	Sw35 PI35 BI30	18.95	24	19.56	3	18.19					<u> </u>
606	MS	Р	1	1300	2	0.95	Sw35 Pl35 Bl30	20.57	24	20.88	3	18.97					
607	ICH	Р	1	1300	2	0.95	Sw50 Fd30 Cw10 Bl10	19.5	24	20.93	2	15.33		19.09			
608	MS	Р	1	1300	3	0.913	PI50 Sw35 BI15	12	3		24						
609	MS	Р	0.8	1300	2	0.913	PI50 BI15 Sw15 Lw10 Fd10	18.56	3	17.92		18.77	24	19.17	23	18.43	2
609	MS	Ν	0.2	3000	2	0.913	Pl60 Sw20 Fd10 Lw10	18.56		18.77		18.43		19.17			
610	MS	Р	0.9	1300	2	0.913	PI55 Sw20 Lw10 Fd10 BI5	20.39	3	19.56	24	21.13	23	20.19	2	18.61	
610	MS	Ν	0.1	3000	2	0.913	PI70 Lw15 Fd10 Sw5	20.39		21.13		20.19		19.56			
613	MS	Р	1	1300	2	0.95	Pl40 Lw30 Fd15 Sw15	18.08	3	18.2	23	17.89	2	18.51	24		
614	ICH	Р	1	1300	2	0.95	Pl45 Lw35 Fd15 Sw5	19.86	3	21.58	23	20.09	2	18.95	24		
622	ESSF	Р	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Se10	17.26	2	18.11	3	17.38	23	16.7	24		
622	ESSF	N	0.25	2500	2	0.892	Fd60 Pl20 Lw20	17.26		18.11		17.38					
623	ESSF	Р	0.85	1300	2	0.892	Fd35 Pl35 Lw15 Se15	20.03	2	20.6	3	21	23	19.68	24		
623	ESSF	N	0.15	2500	2	0.892	Fd45 Lw20 Pl20 Se15	20.03		21		20.6		19.68			
624	ESSF	Р	1	1300	2	0.95	Se40 BI35 PI25	13.75	24	13.47		16.79	3				
625	ESSF	Р	1	1300	2	0.95	Se35 PI35 BI30	17.29	24	18.32	3	16.12					
626	ESSF	Р	1	1300	2	0.95	Se35 Pl35 Bl30	20.68	24	20.68	3	20.32					
627	ESSF	Р	1	1300	2	0.95	Se50 Fd30 Cw10 Bl10	19.86	24	19.38	2	18		18.73			
628	ESSF	Р	1	1300	2	0.913	PI50 Se35 BI15	14.82	3	10.47	24	11.47					
629	ESSF	Р	0.8	1300	2	0.913	PI50 BI15 Se15 Lw10 Fd10	17.92	3	15.54		16.9	24	17.67	23	17.55	2
629	ESSF	Ν	0.2	3000	2	0.913	Pl60 Se20 Fd10 Lw10	17.92		16.9		17.55		17.67			
630	ESSF	Р	0.9	1300	2	0.913	PI55 Se20 Lw10 Fd10 BI5	20.44	3	19.11	24	20.98	23	20.59	2	19.84	
630	ESSF	N	0.1	3000	2	0.913	PI70 Lw15 Fd10 Se5	20.44		20.98		20.59		19.11			
633	ESSF	Р	1	1300	2	0.95	Pl40 Lw30 Fd15 Se15	18.23	3	17.24	23	17.26	2	16.63	24		
634	ESSF	Р	1	1300	2	0.95	Pl45 Lw35 Fd15 Se5	19.28	3	21.04	23	20.16	2	18.4	24		
651	MS	Р	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Sw10	14.81	2	16.84	3	15.96	23	20.59	24		
651	MS	Ν	0.25	2500	2	0.892	Fd60 Pl20 Lw20	14.81		16.84		15.96					
652	MS	Р	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Sw10	18.6	2	18.97	3	19.95	23	18.57	24		
652	MS	Ν	0.25	2500	2	0.892	Fd60 Pl20 Lw20	18.6		18.97		19.95					
653	MS	Р	0.85	1300	2	0.892	Fd35 Pl35 Lw15 Sw15	21.09	2	20.39	3	22	23	19.8	24		
653	MS	N	0.15	2500	2	0.892	Fd45 Lw20 Pl20 Sw15	21.09		22		20.39		19.8			
659	MS	Р	0.8	1300	2	0.913	PI50 BI15 Sw15 Lw10 Fd10	18.65	3	17.41		18.54	24	19.6	23	18.71	2
659	MS	N	0.2	3000	2	0.913	Pl60 Sw20 Fd10 Lw10	18.65		18.54		18.71		19.6			
660	MS	Р	0.9	1300	2	0.913	PI55 Sw20 Lw10 Fd10 BI5	20.51	3	19.4	24	21.87	23	20.41	2	18.66	
660	MS	N	0.1	3000	2	0.913	PI70 Lw15 Fd10 Sw5	20.51		21.87		20.41		19.4			
672	ESSF	Р	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Se10	17.87	2	18.8	3	18.93	23	16.96	24		
672	ESSF	N	0.25	2500	2	0.892	Fd60 Pl20 Lw20	17.87		18.8		18.93					
678	ESSF	Р	1	1300	2	0.913	PI50 Se35 BI15	14.82	3	10.47	24	11.47					
			-											1			

AU	BEC	Regen	Proportion	Density	Delav	OAF2	Species Comp	SI	GW								
		Ŭ	•		,	-		Spp1	Spp1	Spp2	Spp2	Spp3	Spp3	Spp4	Spp4	Spp5	Spp5
679	ESSF	Р	0.8	1300	2	0.913	Pl50 Bl15 Se15 Lw10 Fd10	17.99	3	15.84		17.02	24	18.12	23	17.68	2
679	ESSF	N	0.2	3000	2	0.913	Pl60 Se20 Fd10 Lw10	17.99		17.02		17.68		18.12			
680	ESSF	Р	0.9	1300	2	0.913	Pl55 Se20 Lw10 Fd10 Bl5	20.55	3	18.95	24	20.96	23	20.58	2	19.71	
680	ESSF	N	0.1	3000	2	0.913	PI70 Lw15 Fd10 Se5	20.55		20.96		20.58		18.95			
701	MS	Р	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Sw10	14.77	3	16.84	5	16.31	27	20.73	27		
701	MS	N	0.25	2500	2	0.892	Fd60 Pl20 Lw20	14.77		16.84		16.31					
702	IDF	Р	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Sw10	17.34	3	17.77	5	17.61	27	19.69	27		
702	IDF	N	0.25	2500	2	0.892	Fd60 Pl20 Lw20	17.34		17.77		17.61					
703	MS	Р	0.85	1300	2	0.892	Fd35 Pl35 Lw15 Sw15	20.95	3	20	5	21.79	27	19.53	27		
703	MS	Ν	0.15	2500	2	0.892	Fd45 Lw20 Pl20 Sw15	20.95		21.79		20		19.53			
705	MS	Р	1	1300	2	0.95	Sw35 PI35 BI30	18.95	27	19.56	5	18.19					
706	MS	Р	1	1300	2	0.95	Sw35 PI35 BI30	20.57	27	20.88	5	18.97					
707	ICH	Р	1	1300	2	0.95	Sw50 Fd30 Cw10 Bl10	19.5	27	20.93	3	15.33		19.09			
708	MS	Р	1	1300	3	0.913	PI50 Sw35 BI15	12	5		27						
709	MS	Р	0.8	1300	2	0.913	Pl50 Bl15 Sw15 Lw10 Fd10	18.56	5	17.92		18.77	27	19.17	27	18.43	3
709	MS	Ν	0.2	3000	2	0.913	Pl60 Sw20 Fd10 Lw10	18.56		18.77		18.43		19.17			
710	MS	Р	0.9	1300	2	0.913	Pl55 Sw20 Lw10 Fd10 Bl5	20.39	5	19.56	27	21.13	27	20.19	3	18.61	
710	MS	Ν	0.1	3000	2	0.913	PI70 Lw15 Fd10 Sw5	20.39		21.13		20.19		19.56			
713	MS	Р	1	1300	2	0.95	Pl40 Lw30 Fd15 Sw15	18.08	5	18.2	27	17.89	3	18.51	27		
714	ICH	Р	1	1300	2	0.95	Pl45 Lw35 Fd15 Sw5	19.86	5	21.58	27	20.09	3	18.95	27		
722	ESSF	Р	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Se10	17.26	3	18.11	5	17.38	27	16.7	27		
722	ESSF	N	0.25	2500	2	0.892	Fd60 Pl20 Lw20	17.26		18.11		17.38					
723	ESSF	Р	0.85	1300	2	0.892	Fd35 Pl35 Lw15 Se15	20.03	3	20.6	5	21	27	19.68	27		
723	ESSF	N	0.15	2500	2	0.892	Fd45 Lw20 Pl20 Se15	20.03		21		20.6		19.68			
724	ESSF	Р	1	1300	2	0.95	Se40 BI35 PI25	13.75	27	13.47		16.79	5				
725	ESSF	Р	1	1300	2	0.95	Se35 Pl35 Bl30	17.29	27	18.32	5	16.12					
726	ESSF	Р	1	1300	2	0.95	Se35 Pl35 Bl30	20.68	27	20.68	5	20.32					
727	ESSF	Р	1	1300	2	0.95	Se50 Fd30 Cw10 Bl10	19.86	27	19.38	3	18		18.73			
728	ESSF	Р	1	1300	2	0.913	PI50 Se35 BI15	14.82	5	10.47	27	11.47					
729	ESSF	Р	0.8	1300	2	0.913	PI50 BI15 Se15 Lw10 Fd10	17.92	5	15.54		16.9	27	17.67	27	17.55	3
729	ESSF	N	0.2	3000	2	0.913	Pl60 Se20 Fd10 Lw10	17.92		16.9		17.55		17.67			
730	ESSF	Р	0.9	1300	2	0.913	PI55 Se20 Lw10 Fd10 BI5	20.44	5	19.11	27	20.98	27	20.59	3	19.84	
730	ESSF	N	0.1	3000	2	0.913	PI70 Lw15 Fd10 Se5	20.44		20.98		20.59		19.11			
733	ESSF	Р	1	1300	2	0.95	Pl40 Lw30 Fd15 Se15	18.23	5	17.24	27	17.26	3	16.63	27		
734	ESSF	Р	1	1300	2	0.95	Pl45 Lw35 Fd15 Se5	19.28	5	21.04	27	20.16	3	18.4	27		
751	MS	P	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Sw10	14.81	3	16.84	5	15.96	27	20.59	27		
751	MS	N	0.25	2500	2	0.892	Fd60 Pl20 Lw20	14.81		16.84		15.96					
752	IDF	Р	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Sw10	18.6	3	18.97	5	19.95	27	18.57	27		
									-								

AU	BEC	Bogon	Proportion	Doncity	Delav	OAF2	Spacios Comp	SI	GW								
AU	DEC	Regen	Proportion	Density	Delay	UAFZ	Species Comp	Spp1	Spp1	Spp2	Spp2	Spp3	Spp3	Spp4	Spp4	Spp5	Spp5
752	IDF	Ν	0.25	2500	2	0.892	Fd60 Pl20 Lw20	18.6		18.97		19.95					
753	MS	Р	0.85	1300	2	0.892	Fd35 Pl35 Lw15 Sw15	21.09	3	20.39	5	22	27	19.8	27		
753	MS	Ν	0.15	2500	2	0.892	Fd45 Lw20 Pl20 Sw15	21.09		22		20.39		19.8			
759	MS	Р	0.8	1300	2	0.913	PI50 BI15 Sw15 Lw10 Fd10	18.65	5	17.41		18.54	27	19.6	27	18.71	3
759	MS	Ν	0.2	3000	2	0.913	Pl60 Sw20 Fd10 Lw10	18.65		18.54		18.71		19.6			
760	MS	Р	0.9	1300	2	0.913	PI55 Sw20 Lw10 Fd10 BI5	20.51	5	19.4	27	21.87	27	20.41	3	18.66	
760	MS	Ν	0.1	3000	2	0.913	PI70 Lw15 Fd10 Sw5	20.51		21.87		20.41		19.4			
772	ESSF	Р	0.75	1300	2	0.892	Fd45 Pl30 Lw15 Se10	17.87	3	18.8	5	18.93	27	16.96	27		
772	ESSF	Ν	0.25	2500	2	0.892	Fd60 Pl20 Lw20	17.87		18.8		18.93					
778	ESSF	Р	1	1300	2	0.913	PI50 Se35 BI15	14.82	5	10.47	27	11.47					
779	ESSF	Р	0.8	1300	2	0.913	PI50 BI15 Se15 Lw10 Fd10	17.99	5	15.84		17.02	27	18.12	27	17.68	3
779	ESSF	Ν	0.2	3000	2	0.913	Pl60 Se20 Fd10 Lw10	17.99		17.02		17.68		18.12			
780	ESSF	Р	0.9	1300	2	0.913	PI55 Se20 Lw10 Fd10 BI5	20.55	5	18.95	27	20.96	27	20.58	3	19.71	
780	ESSF	Ν	0.1	3000	2	0.913	PI70 Lw15 Fd10 Se5	20.55		20.96		20.58		18.95			

LU NUMBER	LU NAME	BEO	NDT	LU GROUP
C01	Moyie Lake	Intermediate	NDT2	5
C01	Moyie Lake	Intermediate	NDT3a	5
C01	Moyie Lake	Intermediate	NDT3b	5
C01	Moyie Lake	Intermediate	NDT4	5
C02	Perry - Moyie	High	NDT1	11
C02	Perry - Moyie	High	NDT2	11
C02	Perry - Moyie	High	NDT3a	11
C02	Perry - Moyie	High	NDT3b	11
C02	Perry - Moyie	Low	NDT2	11
C02	Perry - Moyie	Low	NDT3a	11
C02	Perry - Moyie	Low	NDT3b	11
C02	Perry - Moyie	Low	NDT4	11
C03	Lamb Creek	Intermediate	NDT1	5
C03	Lamb Creek	Intermediate	NDT2	5
C03	Lamb Creek	Intermediate	NDT3a	5
C03	Lamb Creek	Intermediate	NDT3b	5
C03	Lamb Creek	Intermediate	NDT4	5
C04	Hellroaring - Meachen	High	NDT1	11
C04	Hellroaring - Meachen	High	NDT2	11
C04	Hellroaring - Meachen	High	NDT3a	11
C04	Hellroaring - Meachen	High	NDT3b	11
C04	Hellroaring - Meachen	Low	NDT2	11
C04	Hellroaring - Meachen	Low	NDT3a	11
C04	Hellroaring - Meachen	Low	NDT3b	11
C04	Hellroaring - Meachen	Low	NDT4	11
C05	Redding Creek	Intermediate	NDT1	6
C05	Redding Creek	Intermediate	NDT2	6
C05	Redding Creek	Intermediate	NDT3b	6
C06	Upper St. Marys	Intermediate	NDT1	6
C06	Upper St. Marys	Intermediate	NDT2	6
C06	Upper St. Marys	Intermediate	NDT3b	6
C07	White Creek	Intermediate	NDT1	6
C07	White Creek	Intermediate	NDT2	6
C07	White Creek	Intermediate	NDT3b	6
C07	White Creek	Intermediate	NDT4	6
C08	Kimberley Watershed	Intermediate	NDT1	7
C08	Kimberley Watershed	Intermediate	NDT2	7
C08	Kimberley Watershed	Intermediate	NDT3a	7
C08	Kimberley Watershed	Intermediate	NDT3b	7
C08	Kimberley Watershed	Intermediate	NDT4	7
C09	Yahk River	Low	NDT1	1
C09	Yahk River	Low	NDT2	1
C09	Yahk River	Low	NDT3a	1
C09	Yahk River	Low	NDT3b	1
C10	Bloom - Caven	Low	NDT2	1
C10	Bloom - Caven	Low	NDT3a	1
C10	Bloom - Caven	Low	NDT3b	1
C10	Bloom - Caven	Low	NDT4	1
C11	Teepee Creek	Low	NDT1	1
C11	Teepee Creek	Low	NDT2	1

Appendix 4 Grouping Landscape Units

LU NUMBER	LU NAME	BEO	NDT	LU GROUP
C11	Teepee Creek	Low	NDT3a	1
C11	Teepee Creek	Low	NDT3b	1
C11	Teepee Creek	Low	NDT4	1
C12	Cranbrook Watershed	Intermediate	NDT2	5
C12	Cranbrook Watershed	Intermediate	NDT3a	5
C12	Cranbrook Watershed	Intermediate	NDT3b	5
C12	Cranbrook Watershed	Intermediate	NDT4	5
C13	Galton Range	Low	NDT4	3
C13	Galton Range	Intermediate	NDT3a	14
C13	Galton Range	Intermediate	NDT3b	14
C13	Galton Range	Low	NDT3a	14
C13	Galton Range	Low	NDT3b	14
C14	Wigwam River	High	NDT3a	12
C14	Wigwam River	High	NDT3b	12
C15	Lodgepole - Bighorn	High	NDT2	12
C15	Lodgepole - Bighorn	High	NDT3a	12
C15	Lodgepole - Bighorn	High	NDT3b	12
C15	Lodgepole - Bighorn	High	NDT4	12
C15	Lodgepole - Bighorn	Intermediate	NDT1	12
C15	Lodgepole - Bighorn	Intermediate	NDT2	12
C15	Lodgepole - Bighorn	Intermediate	NDT3a	12
C15	Lodgepole - Bighorn	Intermediate	NDT3b	12
C16	West Flathead	Intermediate	NDT3a	9
C16	West Flathead	Intermediate	NDT3b	9
C17	Upper Flathead	Intermediate	NDT3a	9
C17	Upper Flathead	Intermediate	NDT3b	9
C18	East Flathead	Intermediate	NDT3a	9
C18	East Flathead	Intermediate	NDT3b	9
C19	Corbin Creek	Low	NDT1	15
C19	Corbin Creek	Low	NDT2	15
C19	Corbin Creek	Low	NDT3a	15
C19	Corbin Creek	Low	NDT3b	15
C20	Alexander - Line	Intermediate	NDT3a	10
C20	Alexander - Line	Intermediate	NDT3b	10
C21	Fording River	Intermediate	NDT3a	10
C21	Fording River	Intermediate	NDT3b	10
C22	Upper Elk	Intermediate	NDT3a	10
C22	Upper Elk	Intermediate	NDT3b	10
C23	West Elk	Intermediate	NDT2	4
C23	West Elk	Intermediate	NDT3a	4
C23	West Elk	Intermediate	NDT3b	4
C23	West Elk	High	NDT1	13
C23	West Elk	High	NDT2	13
C23	West Elk	High	NDT3a	13
C23	West Elk	High	NDT3b	13
C24	Lower Elk	High	NDT1	13
C24	Lower Elk	High	NDT2	13
C24	Lower Elk	High	NDT3a	13
C24	Lower Elk	High	NDT3b	13
C24	Lower Elk	High	NDT4	13
C25	Sand Creek	Intermediate	NDT1	8
C25	Sand Creek	Intermediate	NDT2	8

LU NUMBER	LU NAME	BEO	NDT	LU GROUP
C25	Sand Creek	Intermediate	NDT3a	8
C25	Sand Creek	Intermediate	NDT3b	8
C25	Sand Creek	Intermediate	NDT4	8
C26	Iron - Sulphur	Intermediate	NDT1	8
C26	Iron - Sulphur	Intermediate	NDT2	8
C26	Iron - Sulphur	Intermediate	NDT3a	8
C26	Iron - Sulphur	Intermediate	NDT3b	8
C26	Iron - Sulphur	Intermediate	NDT4	8
C27	Upper Bull	Intermediate	NDT1	8
C27	Upper Bull	Intermediate	NDT2	8
C27	Upper Bull	Intermediate	NDT3a	8
C27	Upper Bull	Intermediate	NDT3b	8
C28	Galbraith - Dibble	Intermediate	NDT1	8
C28	Galbraith - Dibble	Intermediate	NDT2	8
C28	Galbraith - Dibble	Intermediate	NDT3a	8
C28	Galbraith - Dibble	Intermediate	NDT3b	8
C28	Galbraith - Dibble	Intermediate	NDT4	8
C29	Wildhorse - Steeples	Intermediate	NDT1	8
C29	Wildhorse - Steeples	Intermediate	NDT2	8
C29	Wildhorse - Steeples	Intermediate	NDT3a	8
C29	Wildhorse - Steeples	Intermediate	NDT3b	8
C29	Wildhorse - Steeples	Intermediate	NDT4	8
C30	Cranbrook	Low	NDT3a	2
C30	Cranbrook	Low	NDT3b	2
C30	Cranbrook	Low	NDT4	2
C31	Lost Dog - Mather	Low	NDT4	2
C31	Lost Dog - Mather	Intermediate	NDT3a	7
C31	Lost Dog - Mather	Low	NDT3b	16
C32	St. Marys Prairie	Low	NDT3b	2
C32	St. Marys Prairie	Low	NDT4	2
C33	Wasa - Picture Valley	Intermediate	NDT4	3
C33	Wasa - Picture Valley	Low	NDT3b	3
C33	Wasa - Picture Valley	Low	NDT4	3
C34	Jaffray - Baynes Lake	Low	NDT3b	3
C34	Jaffray - Baynes Lake	Low	NDT4	3
C35	Tobacco Plains	Low	NDT4	3
C36	Mayook - Wardner	Intermediate	NDT4	3
C36	, Mayook - Wardner	Intermediate	NDT3a	5
C36	, Mayook - Wardner	Intermediate	NDT3b	5
C37	Linklater - Englishman	Low	NDT3a	1
C37	Linklater - Englishman	Low	NDT3b	1
C37	Linklater - Englishman	Low	NDT4	3
C38	East Elk	Low	NDT3a	4
C38	East Elk	Low	NDT3b	4
102	Buhl/Bradford	High	NDT3b	17
106	Blackfoot/Thunder	Low	NDT3a	18
				10