Building the Future: Net Zero & Net Zero Ready

2016 PUBLIC SECTOR CLIMATE ACTION LEADERSHIP SYMPOSIUM NOVEMBER 22, 2016 BRITTANY COUGHLIN | P.ENG, BEMP, CPHC

- \rightarrow What is net zero and net zero ready?
- → Case study: Net Zero
- → Case study: Passive House
- → Case study: Net Zero Ready Strategy Development

Net Zero and the Climate Leadership Plan

- → "Promote more energy efficient buildings", "developing requirements to encourage net zero ready buildings"
- → Accelerating increased energy requirements in the BC Building Code by taking incremental steps to make buildings ready to be net zero by 2032;
- → Developing energy efficiency requirements for new buildings that go beyond those in the BC Building Code, called Stretch Codes, that interested local governments could implement in their communities

What is Net Zero? Net Zero Ready?

- → Net Zero: Facility generates *on-site* all the energy required to power its functioning through the course of the year
- \rightarrow Any project can be Net Zero
 - \rightarrow Provided you have enough \$\$\$

→ Or modest expectations for comfort, environmental quality, amenities, etc.

Toward Net Zero the "Right Way"

Toward Net Zero the "Right Way"

Net Zero Rules of Thumb

 \rightarrow Achieve Base building less than 100 ekWh/m²-year

	Single Floor	2 Floors	4 Floors							
	Number of Flat or Sloped Roofs Required for PV									
100 ekWh/m²	1.4 flat / 1.2 shed	2.8 / 2.4	5.6 / 4.8							
70 ekWh/m²	1.0 / 0.8	1.9 / 1.7	3.9 / 3.4							
50 ekWh/m²	0.7 / 0.6	1.4 / 1.2	2.8 / 2.4							

Net Zero Rules of Thumb

Mohawk College Net Zero: Joyce Centre for Partnership and Innovation

- → Client: Mohawk College
- → Architects: B+H Architects, McCallum Sather (joint venture)
- \rightarrow Energy and Enclosure Consultant: RDH
- \rightarrow Mechanical: The Mitchell Partnership
- \rightarrow Electrical: Mulvey and Banani International Inc.

mcCallumSather

→ CaGBC Pilot Project for "Zero Carbon Buildings Initiative"

The Building

- → 90,000 sqft
- \rightarrow 4 storeys
- \rightarrow 2 large lecture theatres
- \rightarrow 8 electronics labs
- → Commons/ collaboration space
- \rightarrow Café space

Mission: Net Zero

- \rightarrow Definition: Net zero energy on annual basis
 - \rightarrow Roof top generation will equal consumption
 - Solar PV (~550 kW)
 - > Solar thermal for domestic hot water
 - \rightarrow (No Renewable Energy Credits or offsets purchased)

The Process

- → Preliminary exercise to define an "Energy Budget" (75 kWh/m²)
- \rightarrow Preliminary energy models, conceptual design
- \rightarrow Pushed the envelope
- \rightarrow Energy efficient HVAC

	Preliminary Energy Budget Estimates					Curren	nt Modelled			
		3		4		7		4		
		5	Wate	er Source	Air Sou	rce VRF	Water	Source VRF		
	Wate	er Source	VRF	+ GHSP +	Hea	ting /	+ GH	SP + Solar		
End Use	VRF	+ GHSP	Solar	Thermal	Co	oling	Т	hermal		
Interior Lighting		10.7		10.7		10.7		12.4		
Receptacle and Process		19.3		19.3		19.3		18.9		
Space Heating - Heat pumps		13.7		9.6		21.4		13.0		
Space Cooling - Heat pumps		6.4		6.4		8.7		1.5		
Pumps and Aux		6.7		8.2		0.0		8.8		
Fans		11.3		11.3		11.3		12.5		
DHW		4.5		2.3		4.5		1.2		
Boiler		0.0		0.0		0.0		0.0		
Elevator Estimate								0.8		
Microgrid Losses								0.3		
Exterior Lighting								1.0		F 111
Total (ekWh/m²)		72.5		67.6		75.9		70.5		EUI
Rank (lowest to highest)	+	3		2		4			┛╵	Estimates
Net Solar Thermal Effect (ekWh/m ²)				-4.9				-0.9		
Total ol/Wh		624.000		592.000		652.000		607 000		
Appual Eportu Cost	e (74 990	ć	60 940	ć	79 260	ć	72 840		
Annual Energy Cost	2	/4,000	ş	03,840	Ŷ	76,500	, ,	12,040		
Size of PV Array (kWp)		567		529.09		594		545		
Size of PV Array (m ²)		4,727		4,409		4,947		4,542		
Flat Roof Area (m ²)		9,455		8,818		9,894		9,084		
Cost of PV	\$	1,420,000	\$	1,330,000	\$1	,490,000	\$	1,370,000		
NREL Recommended O&M / year	\$	10,650	\$	9,975	\$	11,175	\$	10,275		PV Costs
Linear m of Borehole		5.000		5.000				5.000		
# of 600' boreholes		27		27				27		
m ² Area of Field using 6 m spacing		984		984				984		
Weeks to install		2.3		2.3				2.3		Other Maior
Cost of Borehole	\$	250,000	\$	250,000			\$	250,000		System Costs

The Design

Enclosure:

- \rightarrow R-40 roof: 2-ply modbit, polyiso
- \rightarrow R-10 overall for window + wall
 - \rightarrow R-30 target for opaque wall elements
 - > Spandrel glass system with thermal clips, roxul, interior sprayfoam
 - > Precast sandwich panel with XPS; sprayfoam inboard
 - \rightarrow Triple glazed windows with 3 low-e coatings
 - \rightarrow ~40% window-wall ratio
- → Sensitivity analysis on nearly all aspects

The Design

Mechanical:

- \rightarrow Separate ventilation (DOAS) with ERV
- \rightarrow Distributed heating/cooling VRF, zone-to-zone heat recovery

 \rightarrow Connected to geoexchange field

→ Demand controlled systems (ventilation, heating/cooling) to handle variable occupancy

Electrical

 \rightarrow LED lighting

- \rightarrow Occupancy and daylight sensors
 - \rightarrow Daylight glazing panels
- \rightarrow Process loads?

The Energy Step Code and Net Zero Ready

\rightarrow Proposed step code introduces targets for

- \rightarrow Thermal Energy Demand Intensity (TEDI)
- \rightarrow Total Energy Use Intensity (EUI)
- \rightarrow Airtightness

Passive House: Net Zero Ready?

→ Step code's TEDI, EUI, airtightness requirements follow Passive House principles

Passive House: Net Zero Ready?

- \rightarrow Passive House as a path to Net Zero
- → ~90% reduction in heating energy compared to typical building, low annual energy consumption
- \rightarrow Higher levels of certification include renewables

Passive House in North America

Developing a Path to Net Zero

- \rightarrow Archetype energy modelling studies
- → Organizations setting strategic goals to achieve net zero energy & carbon in the next 5 to 15 years
- \rightarrow Important to develop a road map to get there

ECMs Using Readily Available Technology

→ Net Present Value (NPV) ranked from highest to lowest using utility energy prices

ECMs Using Readily Available Technology

→ Net Present Value (NPV) ranked from highest to lowest using renewable energy prices

Combining Measures into Bundles

\rightarrow NPV using **utility** energy prices

Combining Measures into Bundles

→ NPV using **renewable** energy prices

Developing a Path to Net Zero

- → Energy conservation is typically more cost effective than renewable supply
- \rightarrow Economics are good for long term building owners/operators
- \rightarrow Road map to zero energy & carbon new buildings
 - \rightarrow Establish goals for 2020, 2025, 2030 and beyond
 - \rightarrow Identify capacity building and market transformation needs

Discussion + Questions

BCOUGHLIN@RDH.COM WWW.RDH.COM

