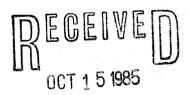
NSBG LIBRARY COPY ONLY

MULTIELEMENT GEOCHEMISTRY


OF THE

MEAGER CREEK GEOTHERMAL SYSTEM

PREPARED FOR

NEVIN/SADLIER-BROWN/GOODBRAND, LTD

SUITE 401 134 ABBOTT STREET, VANCOUVER B.C.

PETROLEUM RESOURCES

Earth Science Laboratory DIVISION

University of Utah Research Institute 420 Chipeta Way, Suite 120 Salt Lake City, Utah 84108 (801) 581-5283

This report was prepared for the British Columbia Hydro and Power Authority ("BC Hydro"). BC Hydro does not:

- (a) represent, guarantee or warrant to any third party, either expressly or by implication: (i) the accuracy, completeness or usefulness of; (ii) the intellectual or other property rights of any person or party in; or (iii) the merchantability, safety or fitness for purpose of; any information, product or process disclosed, described or recommended in this report,
- (b) assume any liability of any kind arising in any way out of the use by a third party of any information, product or process disclosed, described or recommended in this report, or any liability arising out of reliance by a third party upon any information, statements or recommendations contained in this report.

Should third parties use or rely on any information, product or process disclosed, described or recommended in this report, they do so entirely at their own risk.

Summary

The geochemistry and mineralogy of drill core and discharge sinters from the Meager Creek geothermal field suggest that at least two hydrothermal events have affected this area. The earliest of these events is characterized by chalcopyrite mineralization and widespread propylitic alteration of the quartz diorite and metamorphic rocks. A younger event resulted in the deposition of sphalerite, pyrite, clays, carbonates, and chlorite in the hypabyssal dikes of the Meager Mountain Volcanic Complex and appears to be related to the present geothermal system.

The distribution of the geochemical association Hg + Zn + As and of Hg appears to provide the clearest expression of geothermal activity at Meager Creek. The distribution of Sr is not yet well understood, but enrichments in the high-temperature portion of the field suggest that it may be a useful pathfinder element as well.

Concentrations of Hg + Zn + As occur in the altered dikes in the nighest temperature portion of the thermal anomaly and are associated with sphalerite mineralization. The distribution of these elements suggests that fractures related to the dikes have been important fluid channels in the past. In contrast the concentrations of these elements in the Mesozoic quartz diorite and metamorphic rocks are limited to a few widely spaced fracture zones. These observations indicate that permeabilities in the upper parts of the geothermal system have characteristically been low.

The depositon of chalcopyrite is associated with enrichments in Hg, Zn, Pb, Ba, K and depletions in Sr in the quartz diorite and older metamorphic rocks. This geochemical association is also typical of the porphyry copper deposits of the Guichon Creek batholith described by Olade and Fletcher (1976).

Introduction

Significant quantities of many rock forming and trace elements are frequently found in the discharge sinters and thermal fluids of high-temperature geothermal systems. Recent studies of the Broadlands geothermal field in New Zealand and of Basin and Range geothermal systems in the western United States indicate that these elements are also redistributed at depth and that the distribution of these elements can be correlated with the physical and chemical properties of the geothermal systems.

Ewers and Keays (1977) published the first comprehensive study of trace element distributions in an active geothermal system. Their work, based principally on the chemistry of hot spring deposits, well bore precipitates and geothermally altered rocks from two drill holes in the Broadlands geothermal area of New Zealand, documented a crude metalliferous zoning characterized by enrichments of As, Sb, Au and Tl in the near-surface parts of the field and higher concentrations of Ag, Se, Te, Bi, Pb, Zn, Cu and Co at depth. More recent studies have substantially expanded upon this earlier work. For example, Bamford and others (1980) and Christensen and others (1980) showed that concentrations of Hg, As and Li are diagnostic of geothermally altered granitic and metamorphic rocks of the Roosevelt Hot Springs thermal system in Utah, and that the dispersion patterns of these elements at depth can provide information on temperatures and the distribution of fluid channels in the reservoir rocks. This information can aid in drill completion decisions. Trace element distribution studies of deep wells in The Geysers (J.N. Moore, unpublished data) and in geothermal systems throughout the Basin and Range have now

confirmed the application of multielement studies in a variety of geologic terrains.

Trace element analyses of the hot spring deposits, discharge precipitates and the thermal waters, collected during 1981, showed that many of these same elements were also actively being redistributed by the geothermal fluids at Meager Creek. This paper presents the results of a reconnaissance geochemical investigation of core from the Meager Creek thermal system. The investigation was designed to test the applicability of using trace element distributions in the reservoir rocks to help quide the ongoing exploration programs. The investigation was commissioned by Nevin/Sadlier-Brown/Goodbrand Ltd., for the B.C. Hydro and Power Authority.

Analytical Procedures

The analytical work described here was directed mainly toward documenting trace element distributions developed within rocks of the Meager Creek thermal field. Whole-rock trace element determinations were made on 270 samples of drill core taken at 10 or 20 m intervals from wells M7-79D, M8-79D, M9-80D, M10-80D, M12-80D and M13-81D. Each sample represents 0.5 m of core. These data are supplemented by chemical analyses of the thermal waters, deposits formed by fluids discharged from the hot springs and well M1-79D, and veins contained within the core.

The solid samples were prepared for analysis by pulverizing to -200 mesh in a tungsten carbide shatter box. The concentrations of Na, K, Ca, Mg, Fe, Al, Ti, P, Sr, Ba, V, Cr, Mn, Co, Ni, Cu, Mo, Pb, Zn, Cd, Ag, Au, Sb, Bi, U, Te, Sn, Li, Be, Zr, La, Ce, and Th, were determined by inductively coupled argon plasma (ICP) spectrometry after digestion in a

mixture of hydrofluoric, perchloric, hydrochloric and nitric acids. In addition, the solid samples were analyzed for Hg using a gold film detector and As was determined colorimetrically. The concentrations of V, Mo, Cd, Au, Sb, Bi, U, Te, Sn, and Th were below detection in most samples. The detection limits are presented in Table 1. Analytical data for W and B in the solid samples are not reported because of possible contamination during sample preparation and loss of B during sample analysis. In general, analytical precision for the trace elements is $\pm 10\%$ at ten times the detection limit. Analytical precision for the major elements is $\pm 15\%$.

Geology

The country rocks of the Meager Creek geothermal system consist predominantly of fractured crystalline and metamorphic rocks of the Mesozoic Coast Range Plutonic Complex. Isolated outcrops of the basement rocks occur in the geothermal area but elsewhere they are overlain by lava flows, breccias and tuffs of the Pliocene to Recent Meager Mountain Volcanic Complex. The geological relationships, illustrated in Figure 1, have been described by Read (1979) and Fairbank and others (1981). The subsurface geology has been studied and summarized by Read (unpublished data) and Nevin/Sadlier-Brown/Goodbrand Ltd. (unpublished lithologic logs).

To date, fifteen diamond drill holes and one deep rotary well have tested various portions of the geothermal field. The six diamond drill holes chosen for this study provide an illustrative cross section of the thermal anomaly. Two of these wells (M7-79D and M10-80D) are located in the central portions of the anomaly, two (M13-81D and M9-80D) are located on the high-temperature margins, and two (M8-79D and M12-80D) are located

Table 1. Detection Limits

Element		Working	Detection Li	mit (ppm)
		SOLIDS		WATERS
Na		100		1.25
K		100		2.5
Ca -		100		0.25
Mg		100		0.5
Fe		100		0.025
A1		100		0.625
Si		•		0.25
Ti	·	5		0.125
P	•	25		0.625
Sr		1		0.013
Ba		. 25		0.625
٧		150		1.25
Cr		2		0.05
Mn		10		0.25
Co	•	1		0.025
Ni	•	5		0.125
Cu		5		0.063
Мо		50		1.25
Pb	· ·	10		0.25
Zn		5		0.125
Cd		5		0.063
Ag	• •	- 2		0.05
Au		4		0.1
As		25		0.625
Sb		1		0.75
Bi		100		2.5
U		2000		6.25
Te		50 .		1.25
Sn '		5		0.125
W		10		0.125
Li		- 2		0.05
Be		.5		0.005
В		400		0.125
Zr		5		0.125
La		5		0.125
Се		10		0.25
Th		150		2.5
Hg		5 (.p	pb)	. •

in the cooler, peripheral portions of the anomaly. The temperature distribution in these wells is presented in Figure 2. Well M7-79D recorded the highest temperature (202°C), and both M7-79D and M12-80D produced small quantities of thermal fluid.

The country rocks penetrated in the wells consist predominantly of variably foliated Cretaceous quartz diorite. Mesozoic metamorphic rocks, intruded by the quartz diorite, comprise the bulk of the samples in well M8-79D, on the western edge of the field, and occur near the base of M9-80D. The metamorphic rocks include gneiss, migmatite, greenstone and amphibolite. The lithologies of the chemically analyzed samples are summarized in Figure 3.

The quartz diorite and metamorphic rocks have been intruded by silicic to intermediate composition dikes. These dikes occur widely throughout the field and are probably of several different ages. Fairbank and others (1981) have suggested that dikes of dacite, feldspar porphyry and rhyolite are related to Quaternary volcanism and are correlative with the volcanic rocks on Pylon Peak. Other dikes, such as the quartz-feldspar porphyry sampled in M10-80D at a depth of 860 m, contain chalcopyrite and may be related to intrusion of the quartz diorite. No attempt, however, was made to correlate the dikes on the basis of chemistry or lithology in this study.

Hydrothermal activity has resulted in widespread propylitic and argillic alteration at depth and the deposition of quartz, clays, gypsum, barite, base-metal sulfides, calcite and hematite in fractures within the reservoir rocks. Detailed descriptions of the hydrothermally altered rocks at depth have not yet been published. The mineralogic relationships

discussed in this paper are based on the unpublished data of Read, the lithologic logs of the wells prepared by geologists of Nevin/Sadlier-Brown/Goodbrand Ltd., and our own observations.

Surface deposits related to the active thermal system at Meager Creek include carbonate and siliceous sinters associated with hot springs located along Meager Creek between Meager Main Springs and well M1-74D, carbonate deposits formed from fluids discharged from well M1-74D, and carbonate deposits formed around the Carbonate Springs (Fig. 1). The composition of these deposits and the associated fluids are given in Tables 2 and 3. The concentrations of Sr, Ba, Mn, Zn, Pb, As and Hg, although variable are significant and similiar in magnitude to the concentrations of these elements found in discharge precipitates from other high-temperature thermal systems (Table 2).

Analytical Results

The trace and major element concentrations of the country rocks penetrated in the wells are given in Appendix 1. The distributions of many of the elements present in the discharge sinters are summarized in Figures 4-12. These diagrams were prepared for the quartz diorite by plotting the distribution of samples whose concentrations differed from local "background" means by more than one standard deviation. In general, three intervals of elemental concentration are shown for the quartz diorite. The threshold values for the lower two intervals are mean + one standard deviation and mean + 1 + two standard deviations. The highest interval represents values within the upper $2\frac{1}{2}$ % of the data.

Local background values, calculated from the analytical data of the

Table 2. Geochemistry of Sinters

E1 eme	nt	1	2	3	4	5	6	7	8	9	10
Na ₂ 0	(%)			.7	6	.2	1.4	1.35	0.2	2.4	
K ₂ 0 (1				•		•-	.6	.5	0.2	3.8	
CaO (60.2	63.0	52.8	58.07	53.8	11.1	24.6	0.2	0.5	
MgO (1		.2	.2	.2	.1	1.2	2.9	2.1	<0.02	0.2	
Fe ₂ 0 ₃		•	•-	6.9	.8		2.6	2.9	< .03	1.1	
A1 20 3		.1			.1	.1	8.1	5.5	0.2	9.8	
T102		•		.1			.3	.3	< .01	.09	
P ₂ O ₅						••	.1	.1		.15	
	ppm)	707	664	13800 1	4500	5250	1890	2520	33	386	
Ba0 (.012	.009		.010	.009	.074	.030		5.47	
	ppm)										
	ppm)							6		9	
MnO (.004		.034	.114	.004	1.58	.076	.05	24.3	
	ppm)	• "				4	24	11		28	
	ppm)										
	ppm)						17	9		231	
	ppm)									5	
	ppm)			24						68	25
	ppm)	14	35	58	15		28	28	1	23	70
	ppm)									4	
	ppm)									1	500
Au (ppm)								4	.1	85
As (ppm)		5	8750	375	80	100	60	145	858	400
Sb (ppm)								243	291	-10%
Bi (ppm)	238	252		263	230				•	
U (ppm)								•		
Te (ppm)			•							
Sn (ppm)				4						
W (ppm)									2940	
Li (ppm)			6	6	9	17	18	11	17	
Be (ppm)			3.9			.6		99.8	18.6	
B (ppm)	•									
	ppm)	23	23	68	24	22	11	16		17	
	ppm)	72	74		71	65				37	
	ppm)									42	
	ppm)										
Hg (1	ppb)	48	7	7	17	15	77	80	352	2210	2000

- 1) Travertine, Carbonate Springs, Meager Creek
- 2) Travertine, Carbonate Springs, Meager Creek
- 3) Travertine, discharge precipitate, well M1-74D (74-H-1), Meager Creek
- 4) Travertine, discharge precipitate, well M1-74D (74-H-1), Meager Creek
- 5) Travertine, hot spring between Meager Main Springs and 74-H-1 (M1-74D), Meager Creek
- 6) Siliceous Sinter, Meager Main Springs, Meager Creek
- 7) Siliceous Sinter, Meager Main Springs, Meager Creek
- 8) Siliceous Sinter, Roosevelt Hot Springs, Utah (Bamford and others, 1980)
- 9) Manganese-cemented alluvium, Roosevelt Hot Springs, Utah (Bamford and others, 1968)
- 10) Siliceous Sinter, Broadlands, New Zealand, parital analysis (Weissberg, 1969)

 A blank in columns 1-9 = not detected

Table 3. Fluid Chemistry

	1	2	3
El ement	PPM	PPM	PPM -
Na	2103	348	393
K	93	44	48
Ca	380	98	100
Mg	93	26	39
Fe	3.3		0.5
Al			
8i0 ₂	31	92	119
Ti			
P			
Sr	11.8	3.0	3.2
Ba			
٧	•		
Cr			
Mn	0.6		1.0
Co			
Ni Cu			
Cu Mo	•		
Pb		•	
Zn			
Cd		·	
Ag			
Au			
As			
Sb		•	
Bi			
U		· · · · · · · · · · · · · · · · · · ·	
Te			
Sn			
W			
Li	3.5	1.1	1.1
Be _.			
В	26.6	4.1	4.7
Zr			
La	•		•
Ce			
Th			
Hg		2502	58°C
Temp	58°C	35°C	38 L

¹⁾ Well 74-H-1 (M1-74D)

²⁾ Hot spring between 74-H-1 (M1-74D) and Meager Main Springs

³⁾ Well EMR-301-1

least altered samples of quartz diorite, are tabulated in Table 4. These samples were selected on the basis of lithologic descriptions given in the geologic logs and on low metal and Hg values. Background values for the other rock types were not calculated because of the small number of samples and the extreme chemical and lithologic variability among the samples. Consequently, the concentration intervals were qualitatively chosen.

The chemical analyses of the quartz diorite indicate that the altered samples are characterized by higher concentrations of metals, Ba, Hg, and K, and lower concentration of the major and minor elements. The concentrations of Mg, Fe, Ti, P, Co, Ni, Be, are similiar in both the altered and unaltered rocks.

Mercury

Mercury is an important pathfinder element in many high-temperature geothermal systems because of its widespread occurrence and high mobility, even at relatively low temperatures. At Meager Creek, trace amounts of Hg are widely distributed in the discharge sinters (Table 2), soils (Fairbank and others, 1981), and the country rocks at depth (Fig. 4a and 4b). Mercury concentrations in the country rocks range from less than 5 ppb to 1000 ppb. Because of the extreme range in the concentration of Hg, the distribution of intermediate values between 120 and 700 ppb is also shown on Figure 4. A threshold value of 120 ppb was determined from an evaluation of the distribution of Hg concentrations in the quartz diorite (Lepeltier, 1969; Sinclair 1976).

The distribution of Hg appears to be independent of rock type. In general, the highest concentrations of Hg occur in wells near the central

Table 4. Summary of Geochemical Data

	Fresh	Fresh Quartz Diorite	rite				Altered (Altered Quartz Diorite	rite
		(n = 112)					ב)	(n = 88)	
Element (ppm)	Minimum	Maximum	Mean	Standard Deviation	Element (ppm)	Minimum	Maximum	Mean	Standard Deviation
Na	16,000	28,100	24,760	1,948	Na	1,030	29,100	21,030	6,045
⊻	2,460	18,000	6,546	1,658	<u>~</u>	2,470	31,900	9,819	2,967
Ca	31,600	53,200	45,100	4,567	Ca	15,400	74,900	41,470	10,070
Mg	4,980	11,800	9,589	1,334	Mg	1,510	22,300	9,114	2,911
Fe	23,800	38,500	33,020	2,585	Fe	6,450	62,300	32,180	7,829
A1	65,100	113,000	95,830	8,512	A1	44,000	114,000	88,960	11,360
I	1,910	3,130	2,648	200	Ξ	335	4,140	2,509	583
۵.	638	1,030	891	89	a .	44	1,530	840	226
Sr	430	904	754	70	S	147	1,600	; 634	222
Ва	233	911	209	108	Ва	135	2,030	611	
చ	7	4	2	.2	చ	2	13	က	
M	713	1,710	983	111	Mn	459	23,100	1,663	
S	23	29	41	6	23	9	101	40	
z	, 5	9	ß	-:	Ž	, 5	18	9	2
r,	, 5	43	7	ស	ng	۰ ح	765		85
Pb	10	. 35	10	5	Pb	10	1,120		125
Zn	40	369	62	31	Zn	24	21,500	329	2,284
I	က	23	80	m	ב	4	28		9
Be	ω.	1.9	9 1.1	.1	Be		1.6		7.
Zr		ر د ع	< 5		Zr	۸ ئ	28	9	m
La	v	34	12	4	La	۸ ت	27	12	4
Ce	10	44	14	9	లు	10	33	13	S
As		9	_	. 7.	As	-	က	က	4
(qdd) 6H	. ×	35	9	•	(ddd) gH	V	1,000	62	170
	/								

portion of the thermal anomaly. Wells located on the margins of the field are, in contrast, characterized by relatively low concentrations of Hg. For example, samples from well M12-80D contain less than 40 ppb, whereas only one sample from well M8-79D has a Hg concentration that exceeds 10 ppb (Fig. 4a, 4b). Concentrations of Hg in veins containing high concentrations of base metals frequently exceed several hundred ppb and provide a possible explanation for the high Hg content in some of the samples (Table 5; Appendix 2). For example, veins intersected in well M12-80D are characterized by low concentrations of Hg, whereas veins penetrated in wells M7-79D and M10-80D are associated with high Hg contents.

The chemistry of the veins, although highly variable, also suggests a close relationship between Hg and Zn. This relationship is perhaps more clearly displayed by the strong correlation between Hg and Zn in the hypabyssal dikes (r=+.9). Olade and Fletcher (1976) have observed a similar relationship between Hg and Zn in sphalerite-bearing rocks associated with a fault zone near the Lornex porphyry copper deposit in the Guichon Creek batholith of Canada.

Arsenic

Despite the very low quantities of As in the fluids discharged from the wells and hot springs, effective concentrating mechanisms have resulted in locally high concentrations of As in the discharge sinters (Table 2). These concentrations are up to several orders of magnitude higher than those in the reservoir rocks and veins. The enrichment of As in the surface deposits compared to the rocks at depth is characteristic of many geothermal systems. At depth, concentrations of As greater than 4 ppm

Table 5. Geochemistry of Veins

Well		M7-79D	M10-80D	M10-80D	M12-80D
Dept	L	180 m	860 m	880 m	420 m
Depti	11	100			
E1 em	ent				
Na 20	(%)	<.1	.1	2.4	2.5
K ₂ 0	(%)	1.2	2.1	0.9	0.7
Ca0	(%)	34.5	17.4	9.2	10.9
	(%)	0.7	1.5	0.2	1
-	3 (%)	1.4	4.3	5.0	6.5
A1 20		6.2	8.8	17.7	19.9
TiO ₂		0.06	0.18	0.17	0.35
	(%)	0.01	0.08	0.06	0.19
Sr	(ppm)	205	391	588	881
Ba O	(%)	0.03	0.03	0.04	0.04
٧	(ppm)	< 250	< 250	< 250	< 250
Cr	(ppm)	< 2	< 2	< 2	< 2
MnO	(%)	0.94	2	0.24	0.12
Co	(ppm)	42	64	63	43
Ni	(ppm)	< 5	8	< 5	< 5
Cu	(ppm)	7	400	6	29
Мо	(ppm)	< 50	< 50	< 50	< 50
Pb	(ppm)	433	< 10	< 10	< 10
Zn	(ppm)	811	23000	25	40
Cd	(ppm)	< 5	133	< 5	< 5
Ag	(ppm)	< 2	12	· 7	< 2
Au	(ppm)	< 4	< 4	< 4	< 4
As	(ppm)	14	< 1	< 1	< 1
Sb	(ppm)	< 30	< 30	< 30	< 30
Bi	(ppm)	< 100	< 100	< 100	< 100
U	(ppm)	< 2500	< 2500	< 2500	< 2500
Te	(ppm)	< 50	< 50	< 50	< 50
Sn	(ppm)	< 5	< 5	< 5	6
W	(ppm)	< 1200	< 1200	< 1200	< 1200
Li	(ppm)	22	15	2	8
Ве	(ppm)	0.8	1.1	1.0	1.1
В	(ppm)	< 400	< 400	< 400	< 400
Zr	(ppm)	22	< 5	< 5	< 5
La	(ppm)	< 5	10	11	8
Ce	(ppm)	< 10	13	< 10	10
Th	(ppm)	< 150	< 150	< 150	< 150
Hg	(ppb)	700	815	200	20
9	(222)				

Table 5. (cont.) Geochemistry of Veins

11.99		M13-81D	M13-81D	M13-81D
Well		80 m	360 m (a)	360 m (b)
Depth	*	00 III		
E1 eme	nt			< 0.1
Na ₂ 0	(%)	2.9	0.1	1.1
K ₂ 0	(%)	0.3	0.5	4.0
Ca O	(%)	8.4	38.4	1
MgO	(%)	3.2	1.3	8.3
	(%)	7.5	2.2	5.0
	(%)	20.7	2.5	0.10
TiO ₂	(%)	0.85	0.06	0.05
P ₂ O ₅	(%)	0.37	0.03	50
Sr	(ppm)	867	399	
BaO	(%)	0.02	0.05	0.01
٧	(ppm)	< 250	< 250	< 250
Cr	(ppm)	15	< 2	< 2
MnO	(%)	0.21	0.74	2.83
Co	(ppm)	50	16	· 31
Ni ·	(ppm)	11	< 5	9
Cu	(ppm)	304	242	7937
Mo	(ppm)	< 50	< 50	< 50
Pb	(ppm)	< 10	316	2000
Zn	(ppm)	83	4830	11.5 (%)
Cd	(ppm)	< 5	26	406
	(ppm)	< 2	4	56
Ag A	(ppm)	< 4	< 4	< 4
Au	(bbw)	< 1	8	12
As		< 30	< 30	31
Sb	(ppm)	< 100	< 100	< 100
Bi 	(ppm)	< 2500	< 2500	< 2500
U T-	(ppm)	< 50	< 50	. < 50
Te	(ppm)	< 5	< 5	< 5
Sn	(ppm)	< 1200	< 1200	< 1200
W	(ppm)	6	8	16
Li	(ppm)	1.2	0.7	0.9
Be	(ppm)	< 400	< 400	< 400
В	(ppm)	7	· 7	< 5
Zr	(ppm)	14	< 5	7
La	(ppm)	·	< 10	· < 10
Ce	(ppm)	16	< 150	< 150
Th	(ppm)	< 150	660	3850
Hg	(ppb)	115	000	

occur in the Mesozoic crystalline and metamorphic rocks in wells M7-79D, M8-79D, M10-80D and M13-81D and in the hypabyssal dikes in wells M7-79D and M10-80D (Fig. 5a, 5b). The highest concentration (30 ppm) is associated with the hypabyssal dike penetrated at 150 m in well M7-79D.

Arsenic displays a sympathetic relationship with Hg (r=+.7) in the hypabyssal dikes but, in contrast to Hg, is not strongly correlated with Zn. These observations suggest that the distribution of As and Hg may be controlled by different mechanisms. Pyrite, for example, is an important carrier of trace amounts of As in many geothermal and hydrothermal systems. At Roosevelt Hot Springs, electron microprobe analyses indicate that pyrite related to the geothermal system contains up to 2% As in places (Bamford and others, 1980). The distribution of As in pyrite, however, is extremely variable, and some pyrite is characterized by low concentrations of As. Pyrite is also widespread in the altered rocks at Meager Creek. Its association with samples characterized by high As concentrations suggests that pyrite is also a likely host for As here.

Lithium

Lithium is frequently used as a pathfinder element in geochemical studies of geothermal systems because of its extreme mobility in the thermal fluids. In the reservoir rocks Li is characteristically associated with clays and micas that form during hydrothermal alteration in the fluid channels (Bamford and others, 1980). At Meager Creek, trace amounts of Li occur in both the thermal fluids (Table 3) and in the sinters (Table 2) formed from fluids discharging from well M1-74D and the hot springs located along Meager Creek. At depth, concentrations of Li greater than 24 ppm form widely scattered geochemical anomalies, primarily in wells M9-80D,

M10-80D and M13-81D (Fig. 6). No strong correlations are, however, apparent between the distribution of Li and the other elements studied in detail or to the shape of the thermal anomaly.

Strontium

Strontium is an important trace constituent in all of the discharge sinters and occurs in measurable quantities in the thermal waters. Although the relationship between Sr and geothermal activity is not well known, the occurrence of Sr in sinters formed by relatively low-temperature thermal waters suggests that it may also be a useful pathfinder element at Meager Creek. At depth both enrichments (mean + one standard deviation and upper $2\frac{1}{2}$ % of the data) and depletions (mean - one standard deviation, mean - 1 - two standard deviations and lower $2\frac{1}{2}$ % of the data) in the Sr contents of the quartz diorite are apparent (Fig. 7). For example, substantial depletions in Sr occur in well M13-81D and M10-80D. Enrichments in Sr occur erratically throughout the thermal field but are most abundant in the weakly altered interval between 190 and 320 m of well M7-79D.

Zinc

Trace quantities of Zn are characteristic of the discharge sinters. At depth, Zn forms isolated geochemical anomalies in the Mesozoic crystalline and metamorphic rocks in wells M7-79D, M8-79D, M10-80D and M13-81D (Fig. 8a). Concentrations of Zn in excess of 125 ppm occur only in the hypabyssal dikes penetrated in wells M7-79D, M10-80D and at the base of M9-80D (Fig. 8b), despite their widespread occurrence in the thermal area.

Concentrations of Zn in the country rocks are locally associated with sphalerite. In the Mesozoic basement rocks, sphalerite is frequently

accompanied by chalcopyrite, galena, and pyrite. Chemical analyses of the base metal-bearing veins are presented in Table 5 (M13-81D, 360 m a, b; M7-79D, 180 m; M10-80D, 860 m). In contrast, sphalerite is associated with pyrite, carbonate, clays, and chlorite in the hypabyssal dikes penetrated in well M7-79D (Read, pers. comm.). Detailed mineralogical data is not yet available for the other wells. However, the low Cu concentrations of the dikes and the lithologic descriptions suggest that, with the exception of a quartz-feldspar porphyry sampled at 860 m in well M10-80D, chalcopyrite is not an important phase in the hydrothermally altered dikes. The differences between mineralization hosted by the quartz diorite and by the hypabyssal dikes, as well as the probable difference in ages between most of the dikes and the intrusive rocks, suggest that at least two distinct episodes of sphalerite mineralization have affected the Meager Creek area. The youngest of these episodes appears to have resulted in the deposition of sphalerite in the dikes.

Concentrations of Zn related to sphalerite mineralization may also be more common than are indicated by the geochemical data. For example, Read (pers. comm.) has identified sphalerite in the altered quartz diorite penetrated at depths of 204 and 302 m in well M7-79D. The similarity between the mineralization in the quartz diorite and in the hypabyssal dike penetrated at 225 m in this well suggests that sphalerite deposition may be related to the same event.

Copper

Despite its low concentration in most of the surface precipitates, Cu is broadly distributed at depth, particularly in wells M8-79D, M13-81D and M10-80D (Fig. 9a, b). The highest concentrations of Cu are associated with

the quartz diorite and older metamorphic rocks. Chalcopyrite occurs widely in the basement rocks and is probably the major source of Cu in these samples. Copper is strongly correlated with Pb in the altered rocks (r=+.7), reflecting the deposition of chalcopyrite and galena in many of the base metal veins. This relationship is highlighted by the chemistry of the veins penetrated in well M13-81D and at a depth of 360 (b) m (Table 5).

Barium

Trace amounts of Ba occur in all of the discharge sinters sampled. At depth, Ba is broadly distributed in the quartz diorite in the lower parts of M10-80D but its distribution is erratic in other parts of the thermal field (Fig. 10).

The lithologic logs of the wells suggest that the distribution of Ba may be controlled by several different processes. In well M7-79D, for example, enrichments in Ba at 290 m appear to reflect barite mineralization in the quartz diorite (Read, pers. comm.). In contrast, barite does not appear to be a common hydrothermal mineral in the lower portions of well M10-80D. Here, the country rocks are characterized by locally intense alteration, enrichments in K and Cu (Fig. 11), and depletions in Sr. The distribution of Ba in these rocks may be related to the strong geochemical affinity between Ba and K and the formation of potassium-bearing minerals in these rocks.

The distribution of Ba with respect to Sr is not uniform. In well M10-80D, enrichments in Ba are associated with depletions in Sr. Enrichments in Ba in well M9-80D at a depth of 690 m are, in contrast, associated with high concentrations of Sr.

Manganese

Manganese reaches concentrations of nearly 1.6% (as MnO) in the discharge sinter from Meager Main Springs. At depth, Mn is broadly enriched in the quartz diorite penetrated in wells M8-80D, M10-80D and M13-81D (Fig. 12) but is not strongly correlated with any of the other elements. The distribution of Mn in the other wells is erratic.

Discussion

The geochemistry and mineralogy of the reservoir rocks and veins indicate that, at depth, the elements enriched in the discharge sinters can be grouped into several distinct geochemical associations. These include:

Hg + Cu + Zn + Pb + Ba + K + (Sr depletions)
Hg + Zn + As
Hg + low metal values
Sr + low metal values

The association Hg + Cu + Pb + Pb + Ba + K is characteristic of the altered quartz diorite and metamorphic rocks, which display widespread propylitic and argillic alteration. Lithologic logs suggest that the alteration is most intense in wells M10-80D and M13-81D where base metal mineralization is common. Similarly altered rocks occur in wells M12-80D and M8-79D on the margins of the thermal field. These observations and the absence of significant Cu enrichments in most of the hypabyssal dikes suggest that Cu mineralization preceded emplacement of the dikes.

The trace element distributions in the altered quartz diorite at Meager Creek are similar to those found in the copper porphyry deposits of

the Guichon Creek batholith of British Columbia by Olade and Fletcher (1976). There, the dispersion patterns of K, Sr, Ba, Zn, and Mn were strongly influenced by the type and intensity of wall-rock alteration. In general, Sr, Zn, and Mn were depleted in zones of intense alteration involving the destruction of plagioclase and mafic minerals and redeposited on the periphery of the system. Potassium was enriched as a result of feldspar, sercite formation. The distributions of Ba tended to be erratic, decreasing in concentration toward the core of intense alteration in some deposits and increasing in others.

The geochemical association Hg + Zn + As is characteristic of the mineralized hypabyssal dikes. The distribution of these elements is presented in Figure 13. This diagram suggests that these elements are crudely zoned with respect to the present thermal anomaly. Dikes characterized by enrichments in Hg + Zn + As occur in the high-temperature portion of the thermal anomaly in wells M7-79D and M10-80D, whereas dikes enriched only in Zn and Zn occur in well M9-80D. Only two samples of quartz diorite enriched in these elements and containing low concentrations of Zn of Zn were found. One containing high concentrations of Zn of Zn was sampled at a depth of Zn m in M7-79D. The other, from Zn m in M10-80D, is enriched in Zn in Zn of these samples is, however, compatible with the chemistry of the dikes.

Sphalerite is associated with the dikes in M7-79D and is a common base metal sulfide in other high-temperature systems. Its distribution and occurrence in the Broadlands thermal field of New Zealand have been studied in detail by Browne (1971). There, sphalerite is the most abundant base metal sulfide at depth and is typically associated with pyrite, pyrrhotite,

galena, calcite, chlorite, illite, quartz and adularia. Chalcopyrite is rare, occurring primarily as inclusions within the spalerite.

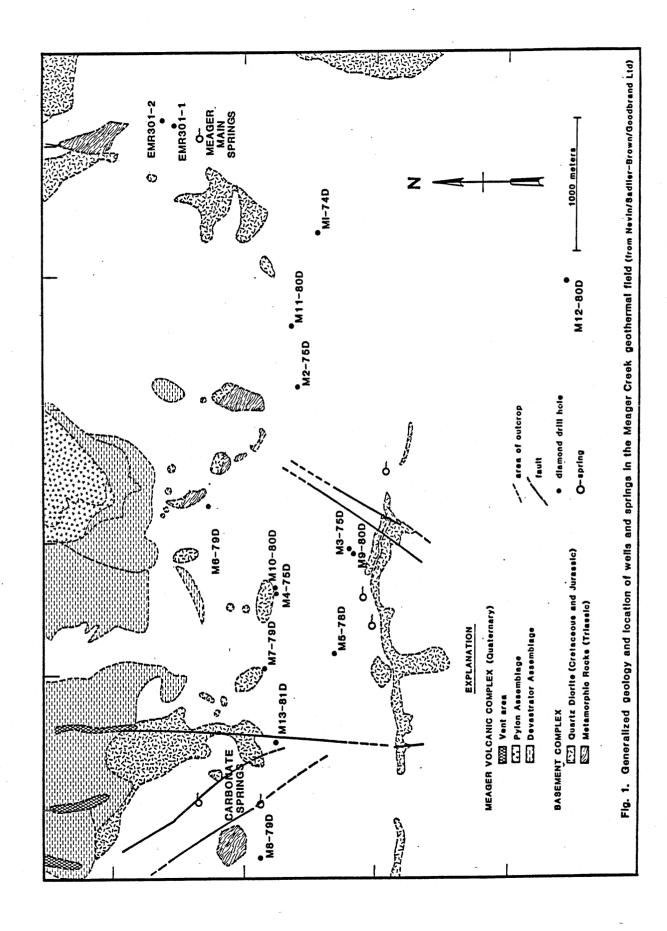
Homogenization temperatures of fluid inclusions occurring in sphalerite and quartz at Broadlands indicate that sphalerite deposition occurred between 201 and 293°C. Downhole temperatures associated with base metal mineralization at Broadlands presently range from 120-298°C but are typically between 265-298°C.

Although the age of Zn mineralization is not known at Meager Creek, its occurrence in dikes of probable Late Cenozoic age, the close similarity between the present temperature distribution and distribution of mineralized dikes in the wells, and a temperature regime compatible with the deposition of sphalerite all suggest that deposition of Hg + Zn + As could be related to the present geothermal system.

Mercury is extremely mobile in active geothermal systems and has proven to be an important indicator of permeability in crystalline reservoir rocks. Christensen and others (1980) have shown that, despite the high mobility of mercury in high-temperature systems, its distribution at depth may be severely limited by low permeabilities of the reservoir rocks. At Roosevelt Hot Springs, this has resulted in generally low Hg contents of the crystalline and metamorphic basement rocks in some of the wells, while other wells with similar temperatures (200°C) were broadly enriched. No relationship between the productivity of the wells and Hg enrichments has been recognized.

A similiar relationship between permeability and Hg concentrations in the reservoir rocks at Meager Creek is suggested by the results of the thermal gradient program and geochemical investigations. For example, weak enrichments of Hg characterize broad intervals of the country rock containing fluid channels in well M7-79D (220-240 m) and M12-80D (420-450 m). The fluid channels in these zones occur at a depth of 233 m in M7-79D and at 441 m in M12-80D. The rocks in wells M9-80D and M10-80D are unproductive but characterized by relatively high temperatures. The limited distribution of Hg in these wells is consistent with their low permeabilities. Well M13-81D is also dry but characterized by high Hg enrichments throughout its length, suggesting that this portion of the reservoir may have been more permeable in the past.

Weak enrichments of Sr occurring in relatively unaltered quartz diorite also define a broad geochemical halo in the upper portion of the thermal anomaly. The origin of these enrichments is, however, not yet well understood. Although a relationship to Cu mineralization cannot be discounted, the broad enrichment in M7-79D and the extreme mobility of Sr in the geothermal fluids suggest that the distribution of Sr may at least in part be related to the geothermal system.


Recommendations

The geochemical data and the lithologic logs suggest a close relationship between the trace element geochemistry of the reservoir, the present thermal anomaly, the mineralogy of the hydrothermal alteration assemblages, and the ages of the various hydrothermal and intrusive events. Sufficiently detailed data, however, are not yet available to clearly relate the trace element geochemistry to either megascopic properties of the country rocks or to their ages. It has been our experience that the integration of this data can rapidly lead to an improved understanding of the geothermal system and a more cost-effective exploration and development

program. Consequently, we suggest the following: 1) complete petrologic studies designed to characterize the mineralogy of the alteration assemblages related to geothermal activity, 2) identify the mineralogic hosts for the trace element signatures defined in this investigation, 3) complete petrologic and geochemical correlations of the hypabyssal dikes encountered in the wells, 4) date selected dikes and alteration assemblages using K-Ar and fission track techniques.

REFERENCES

- Bamford, R.W., Christensen, O.D., and Capuano, R.M., 1980, Multielement geochemistry of solid materials in geothermal systems, Part I: The hot water system at the Roosevelt Hot Springs KGRA, Utah: University of Utah Research Institute, Earth Science Laboratory Report 30, 168 p.
- Browne, P.R.L., 1971, Mineralization in the Broadlands geothermal field, Taupo Volcanic Zone, New Zealand: Society Mining Geology of Japan, Special Issue 2, p. 64-75.
- Christensen, O.D., Moore, J.N., and Capuano, R.M., 1980, Trace element zoning in the Roosevelt Hot Springs thermal area, Utah: Geothermal Resources Council Transactions, v. 4, p. 149-152.
- Ewers, G.R., and Keays, R.R., 1977, Volatile and precious metal zoning in the Broadlands geothermal field, New Zealand: Economic Geology, v. 72, p. 1337-1354.
- Fairbank, B.D., Openshaw, R.E., Souther, J.G., and Stauder, J.J., 1981, Meager Creek geothermal project, An exploration case history: Geothermal Resources Council Bulletin, July, 1981 p. 3-7.
- Lepeltier, C., 1969, A simplified statistical treatment of geochemical data by graphical representation: Economic Geology, v. 64, p. 538-550.
- Olade, M.A., and Fletcher, W.K., 1976, Trace element geochemistry of the Highland Valley and Guichon Creek Batholith in relation to prophyry copper mineralization: Economic Geology, v. 71, p 733-748.
- Read, P.B., 1979, Geology, Meager Creek geothermal area, British Columbia: Geological Survey of Canada, Open File 603.
- Sinclair, A.J., 1976, Application of probability graphs: Mineral Exploration Geochemists Special Paper no. 4, 95 p.
- Weissberg, B.G., 1969, Gold-silver ore-grade precipitates from New Zealand thermal waters: Economic Geology, v. 64, p. 95-108.

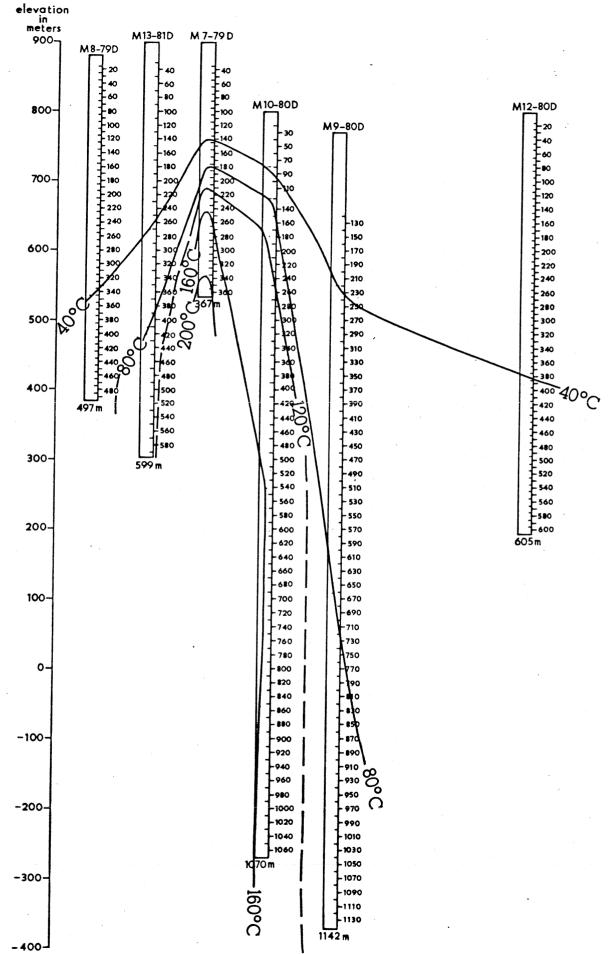


Fig. 2 Temperature distributions in thermal gradient wells M7-79D, M8-79D, M9-80D, M10-80D, M12-80D, and M13-81D.

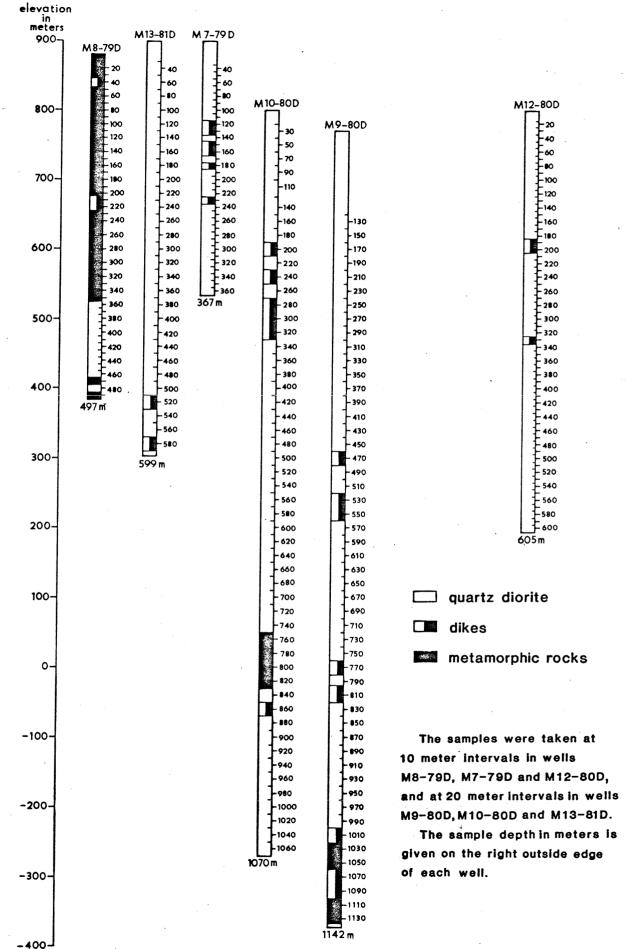


Fig. 3. Distribution of lithologies sampled in thermal gradient wells

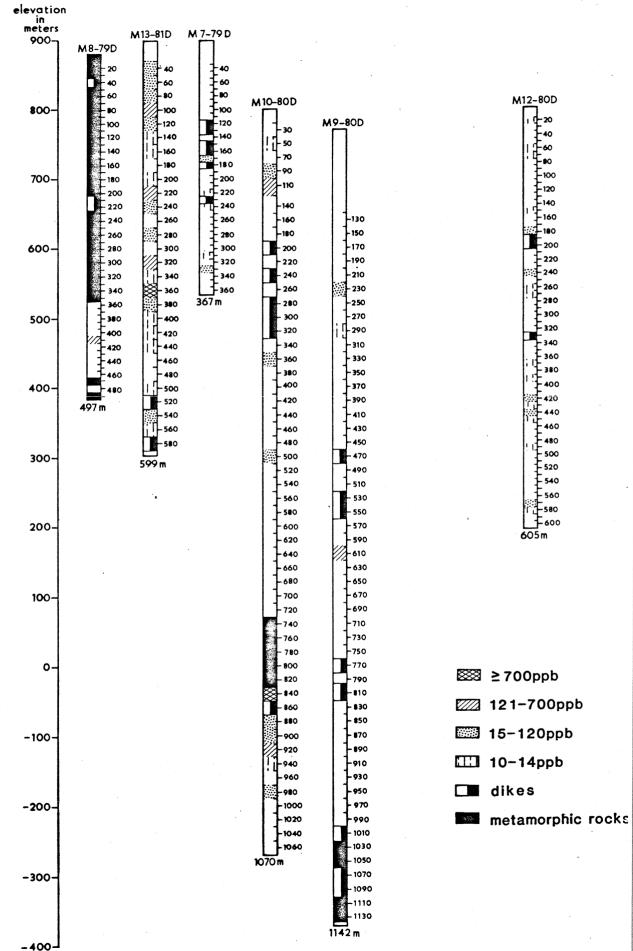


Fig. 4a. Distribution of Hg in the quartz diorite

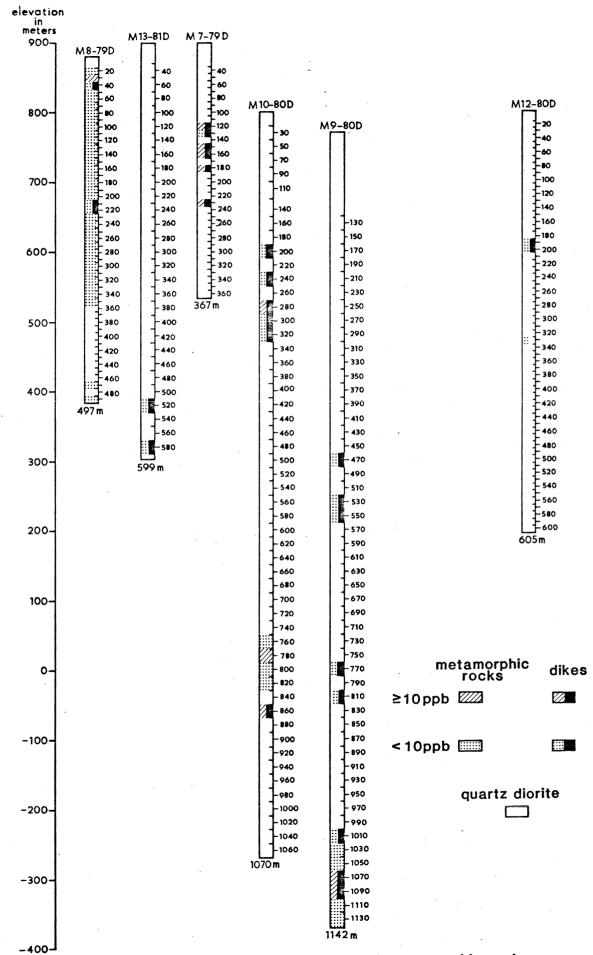
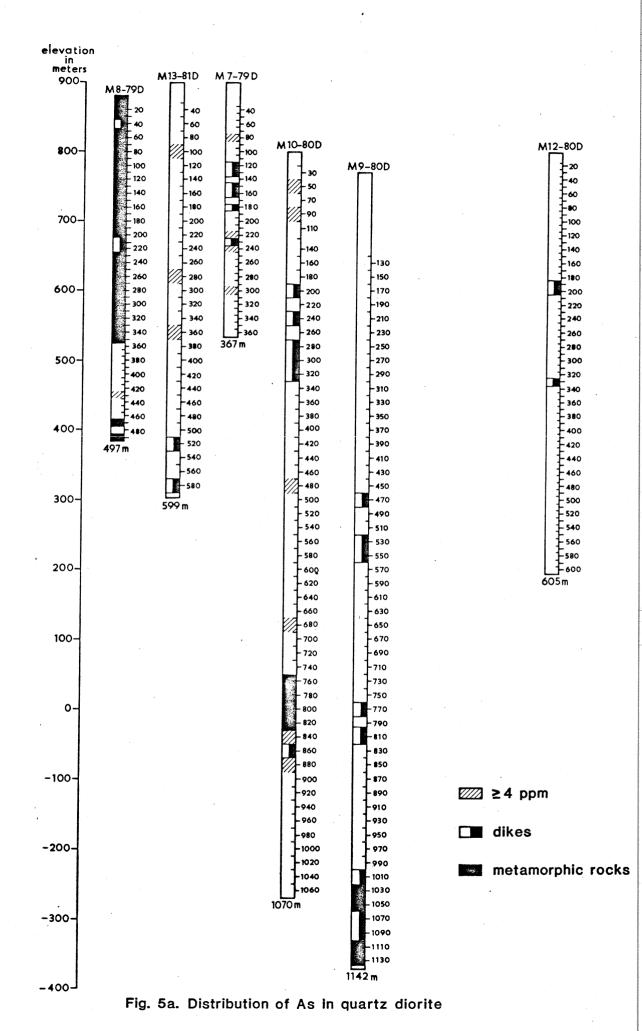



Fig. 4b. Distribution of Hg in dikes and metamorphic rocks

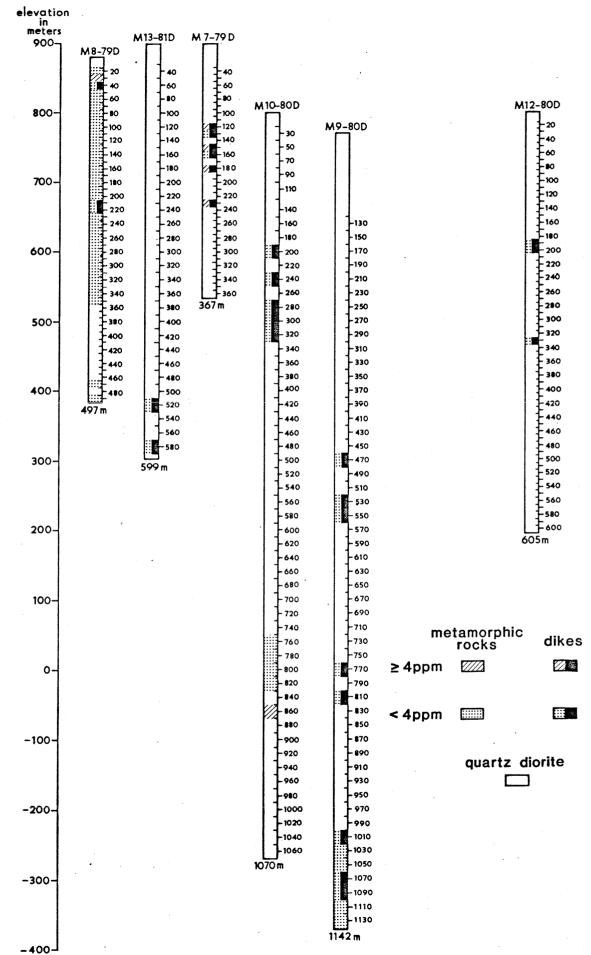


Fig. 5b. Distribution of As in dikes and metamorphic rocks

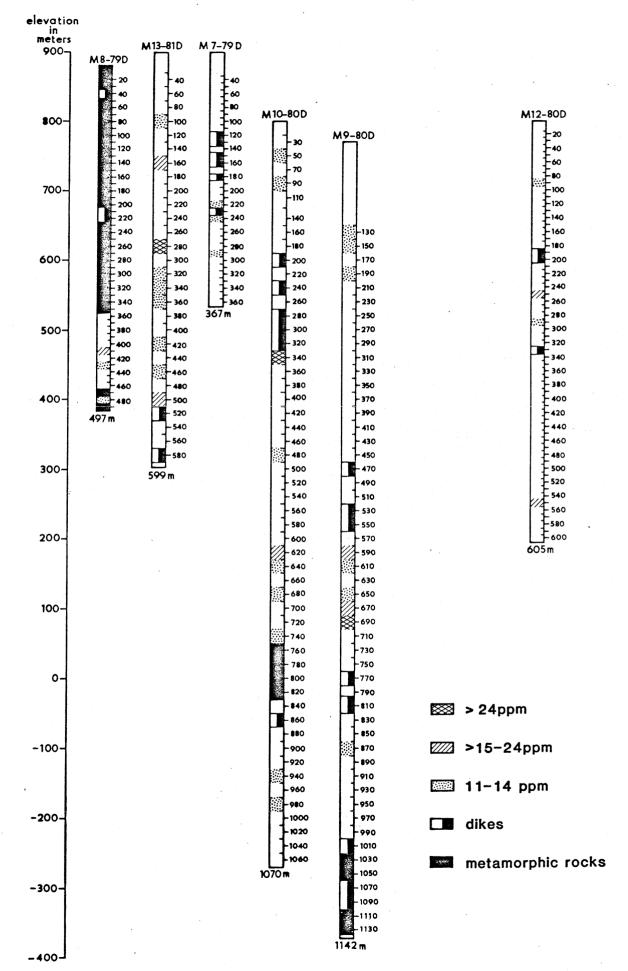


Fig. 6. Distribution of Li in quartz diorite

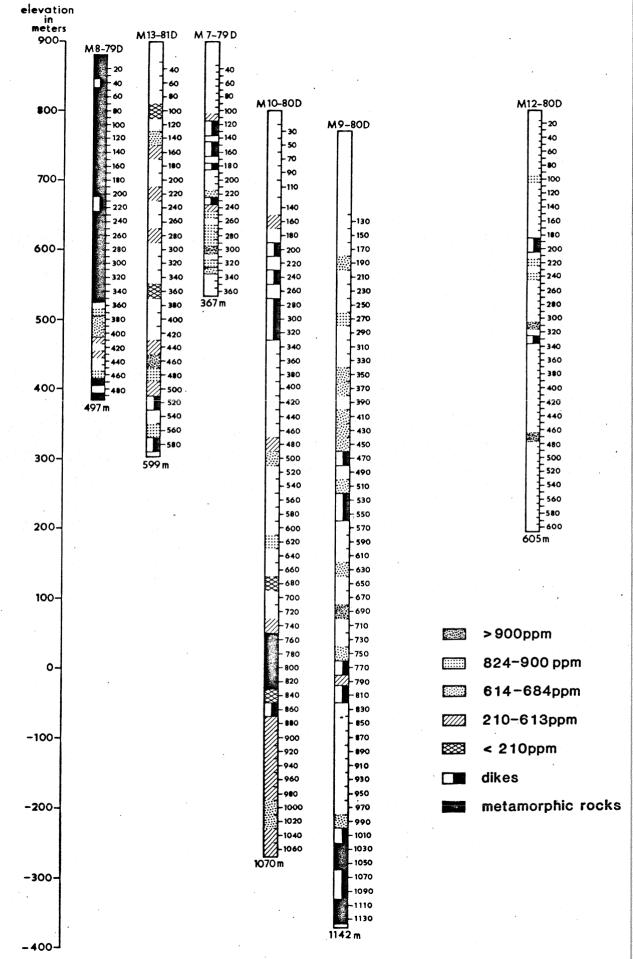


Fig. 7. Distribution of Sr in quartz diorite

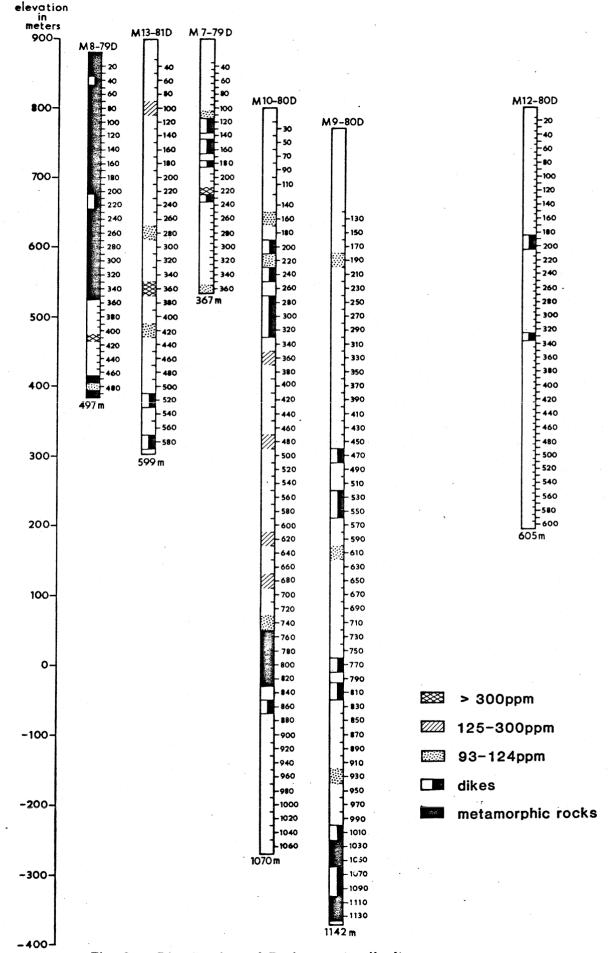


Fig. 8a. Distribution of Zn in quartz diorite

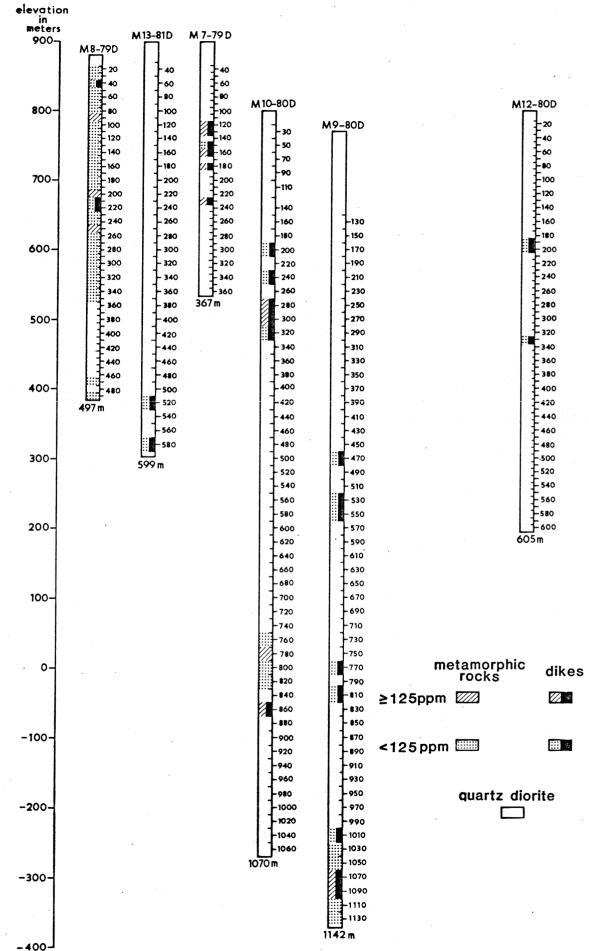


Fig. 8b. Distribution of Zn in dikes and metamorphic rocks

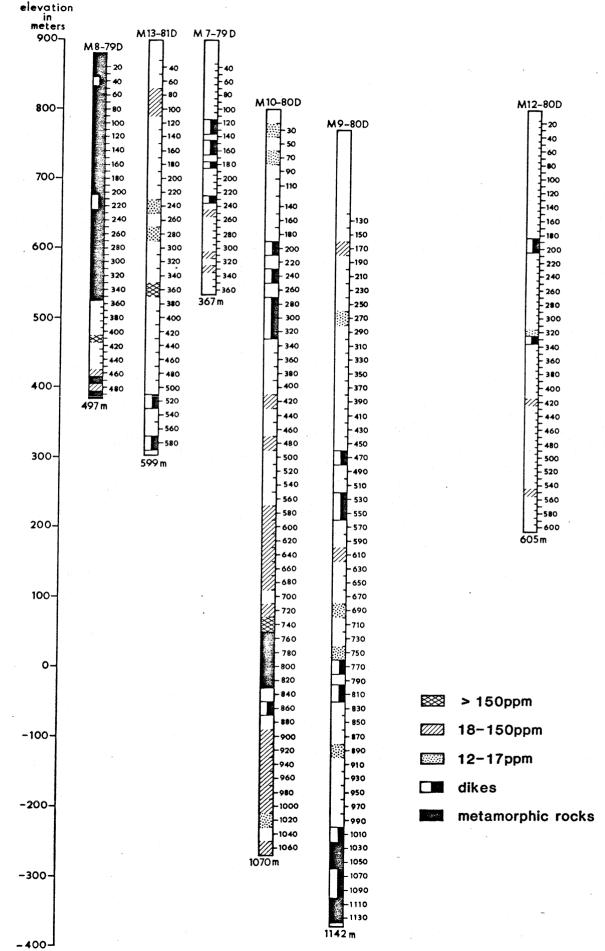


Fig. 9a. Distribution of Cu in quartz diorite

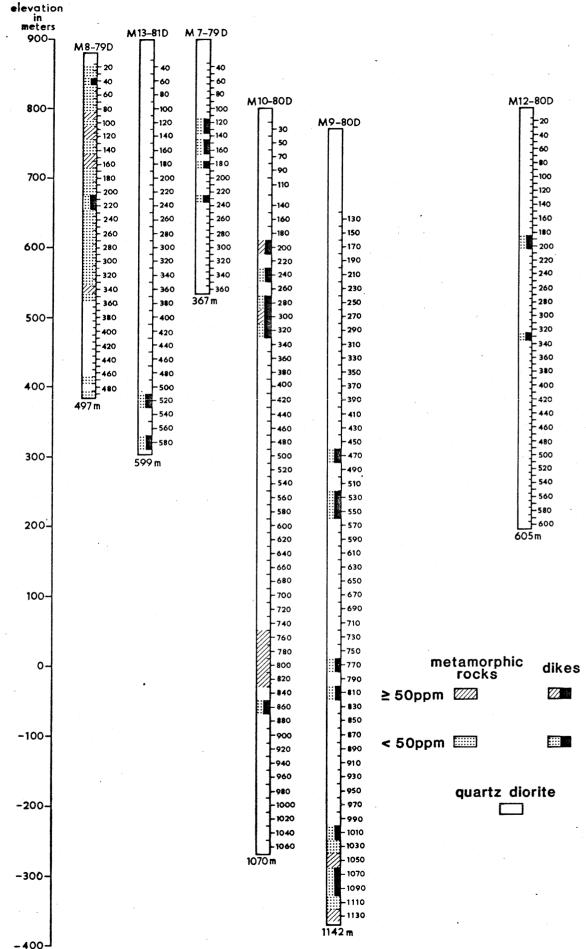


Fig. 9b. Distribution of Cu in dikes and metamorphic rocks

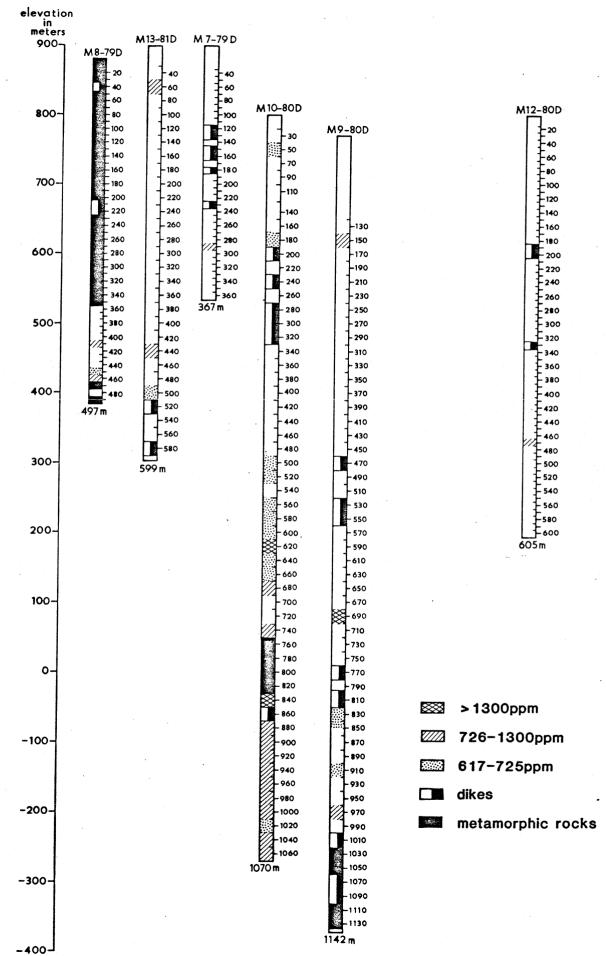


Fig. 10. Distribution of Ba in quartz diorite

Fig. 11. Distribution of K in quartz diorite

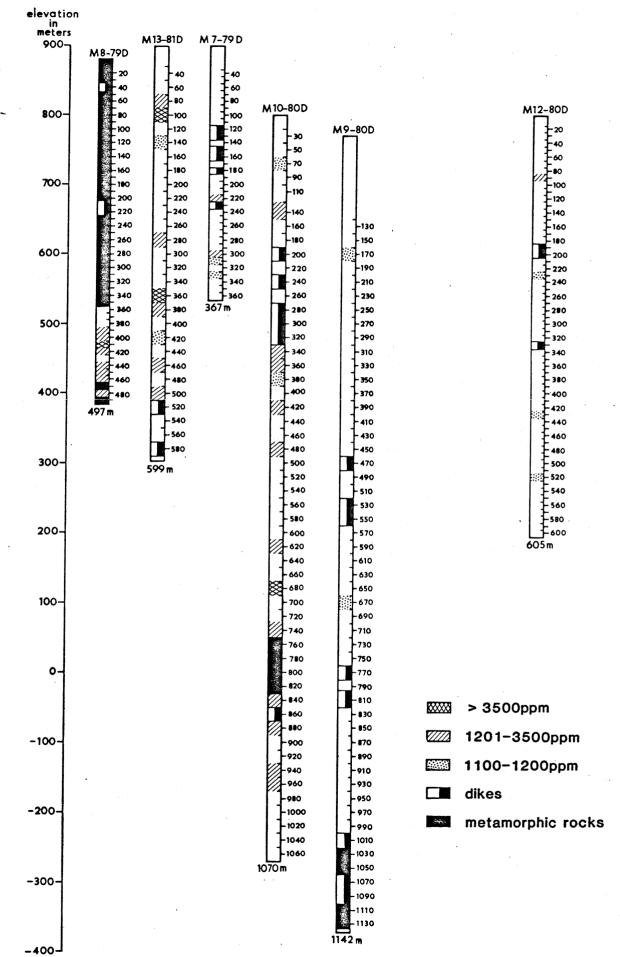
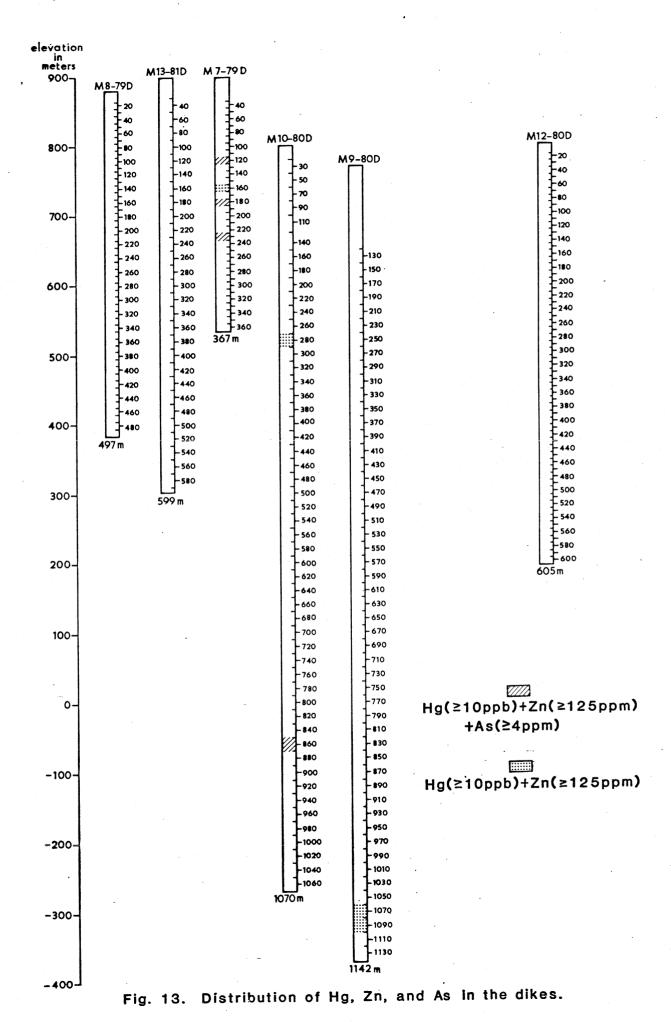
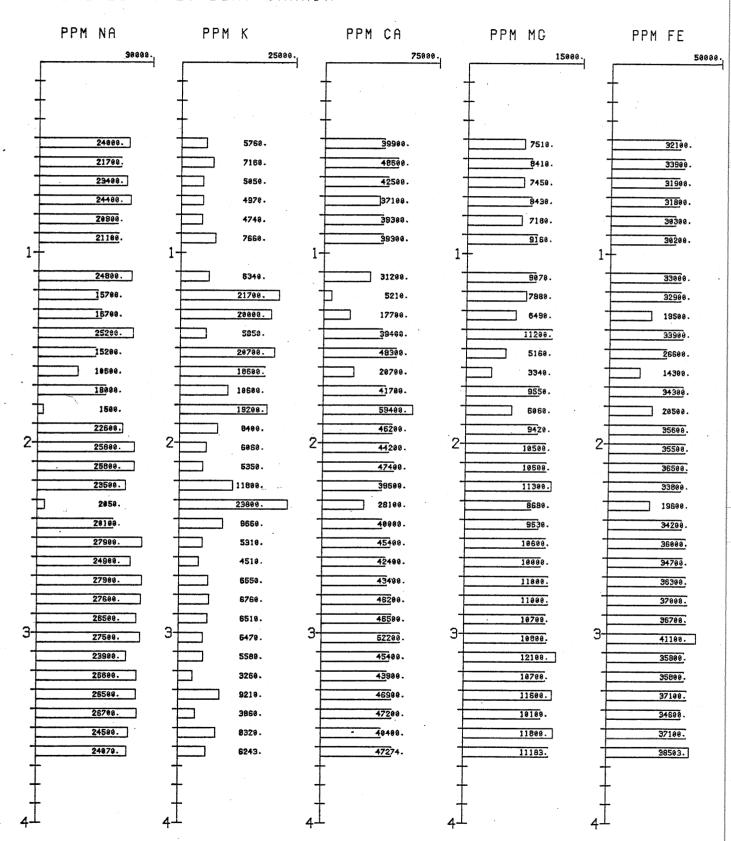



Fig. 12. Distribution of Mn in quartz diorite



Appendix I Geochemical Analyses of Drill Core

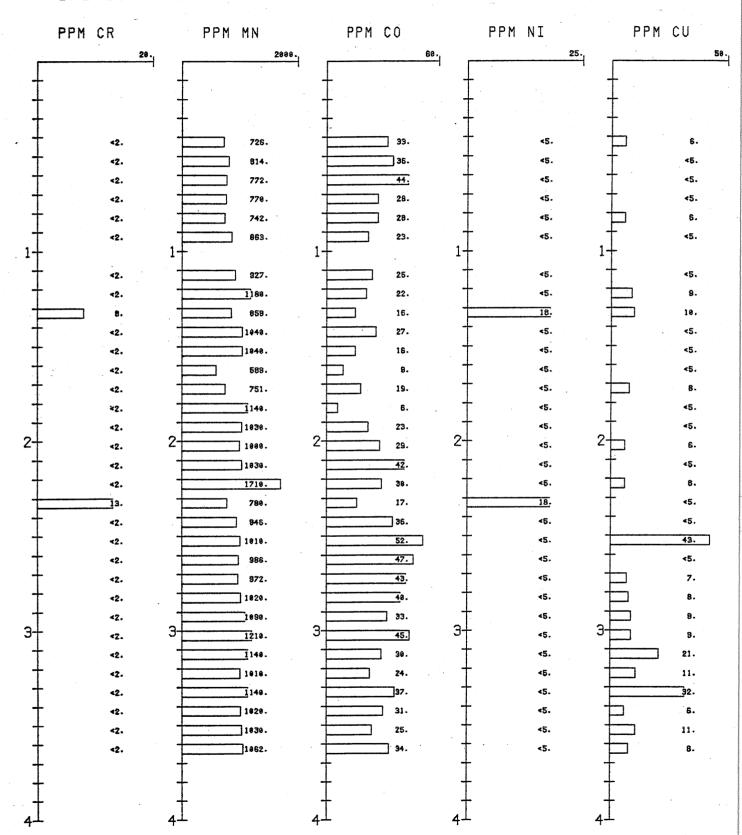
FIGURE 1/M7-79D

DH M7-79D

MEAGER CREEK BRITISH COLUMBIA. CANADA

FIGURE 2/M7-79D

DH M7-79D


MEAGER CREEK British Columbia, Canada SAMPLE TYPE: WHOLE ROCK
VERT. SCALE: 20.0 M./CM.
(DEPTH SHOWN IN 100 METER UNITS)

PPM SR PPM BA PPM TI PPM P PPM AL 1000. 1900. 2500., 120000. 5000. 824. 783. 375. 2284. 77788. 776. 802. 459. 87200. 2250. B24. 775. 419. 75568. 2148. 892. 749. 385. 2590. 84200. 819. 833. 248. 87108. 2488. 828. 688. 258. 83900 2478. 1 B94. 600. 349. 85100. 72580. 2438. 856. 220. 1660. 91800. 287. **525.** 68400. 2320. 503. 2630. 862. 780. 435. 93298. 694. 336. 2030. 83308. 2150. 232. 891. 71986. 1638. 426. 185888. 2768. 922. 685. 344. 395. 147. 402. 75168. 1488. 839. 299. 866. 191008. 2590. 2 2 2 827. 2794. 871. 489. 182888. 857. 402. 2778. 899. 184888. 541. 184909. 2928. 942. 559. 506. 256. 615. 2278. 81400. 606. 467. 867. 109000. 2580. 889. 2908. 879. 475. 108000.]2650. 854. 810. 407. 99000. 188898. 2884. 818. B62. 518. 889. 2916. 895. 554. 109000. 2780. 845. 829. 929. 108000. 3 3-3 3. 3 983. 954. 422. 113000. 3248. 98294. 2978. 925. 802. 410. 827. 338. 2748. 898. 99700. 619. 917. 549. 192999. 2680. 894. 819. 329. 101000. 2778. 745. 545. 967. 101000. 2850. 749. 3077. 960. 513. 100245.

FIGURE 3/M7-79D

DH M7-79D

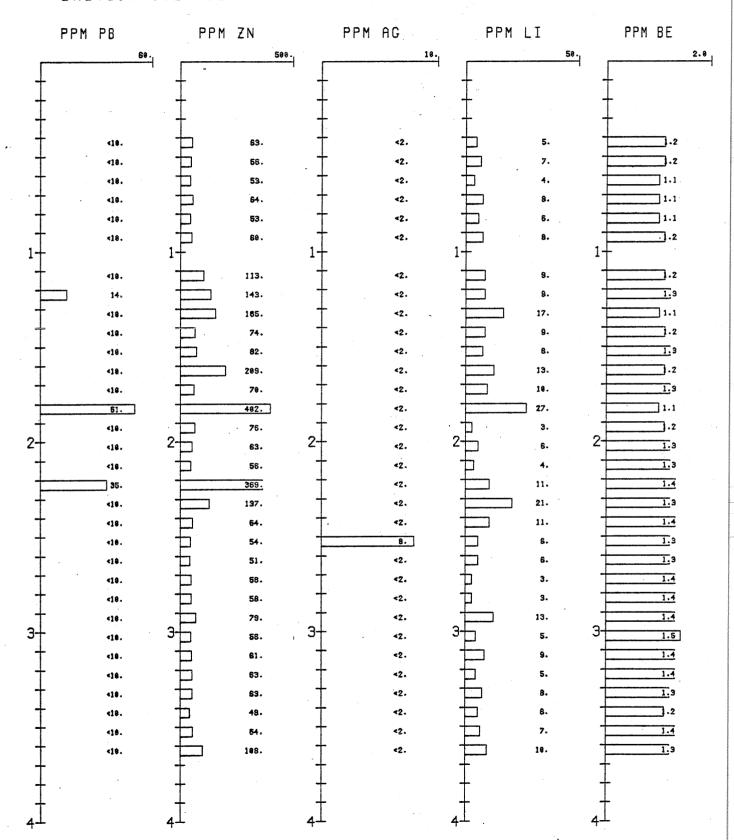

MEAGER CREEK BRITISH COLUMBIA, CANADA

FIGURE 4/M7-79D

DH M7-79D

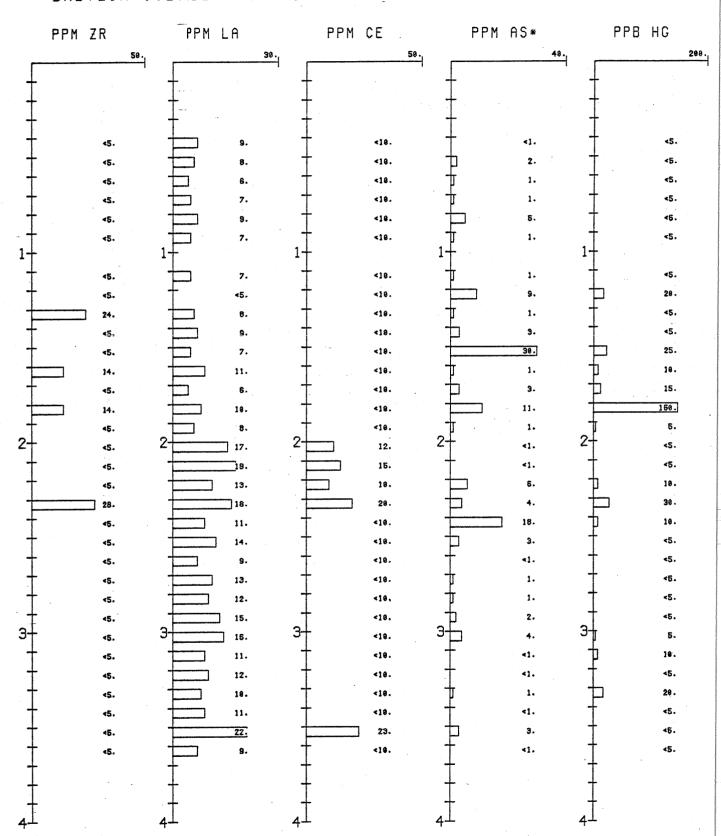

MEAGER CREEK BRITISH COLUMBIA, CANADA

FIGURE 5/M7-79D

DH M7-79D

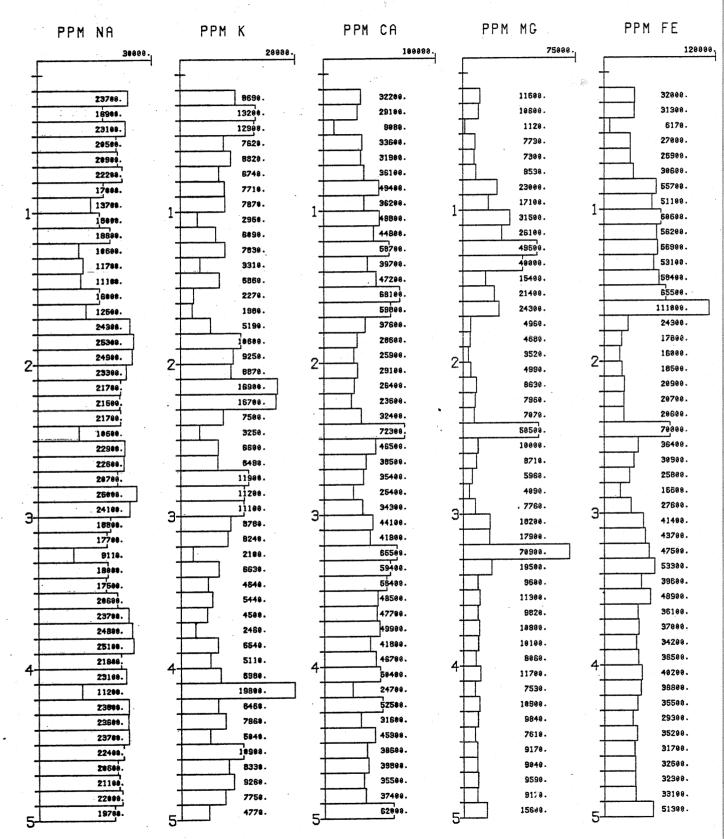

MEAGER CREEK BRITISH COLUMBIA, CANADA

FIGURE 1/M8

DH M8

MEAGER CREEK BRITISH COLUMBIA, CANADA

M8 DH

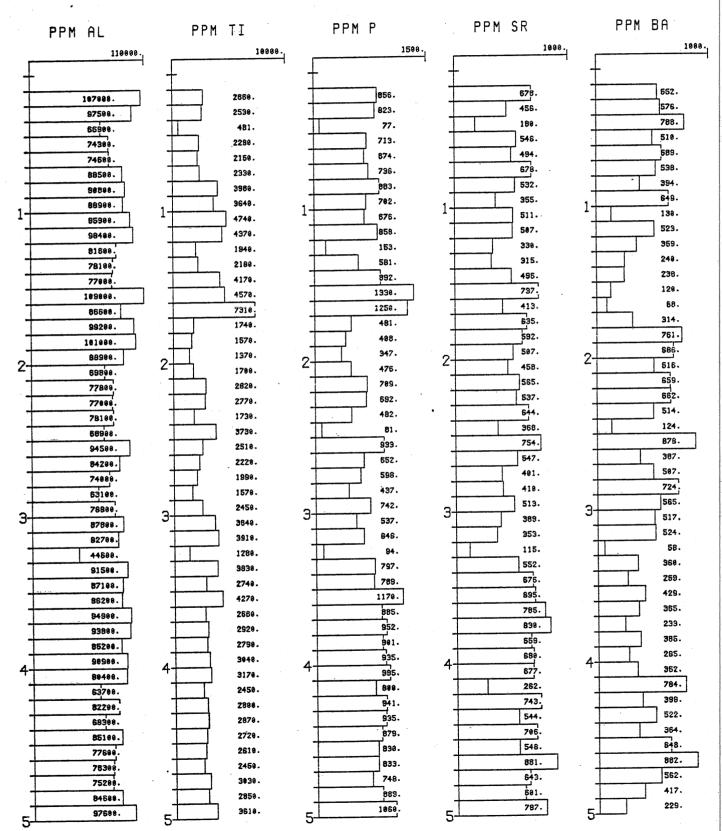

MEAGER CREEK BRITISH COLUMBIA, CANADA

FIGURE 2/M8

SAMPLE TYPE: WHOLE ROCK

25.0 M./CM. VERT. SCALE:

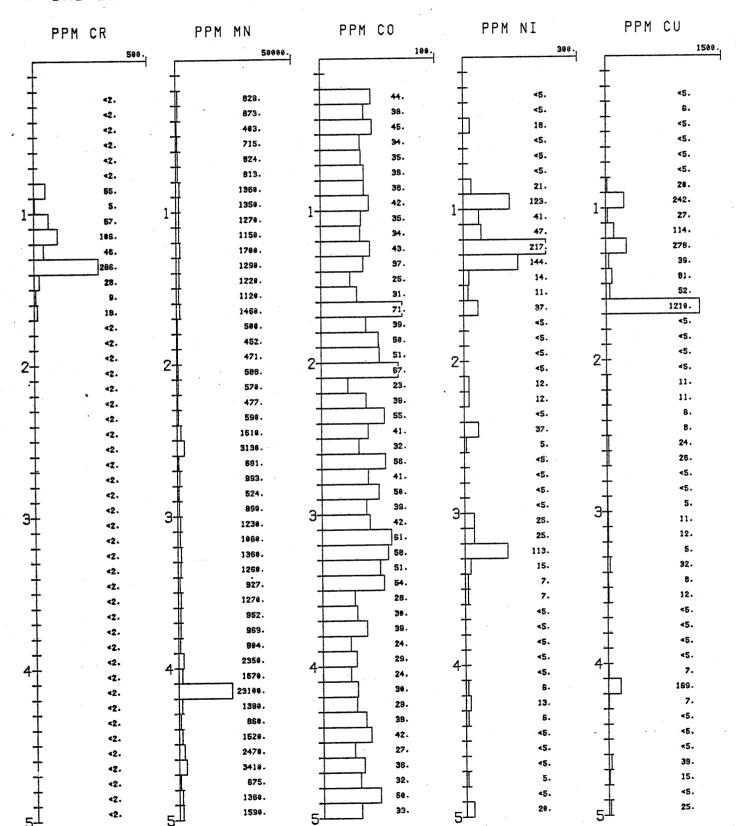

(DEPTH SHOWN IN 100 METER UNITS)

FIGURE 3/M8

DH M8

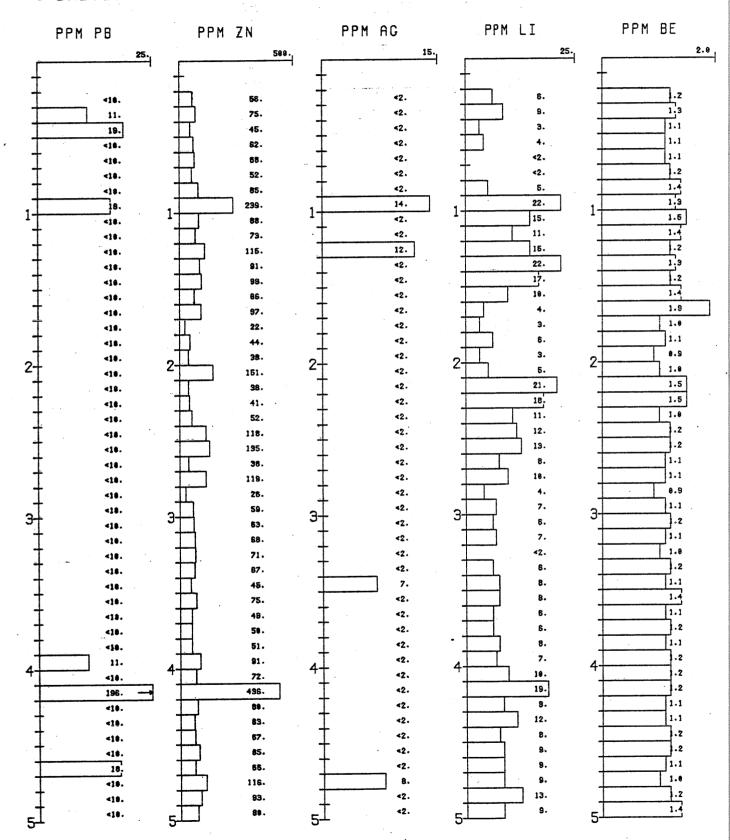

MEAGER CREEK BRITISH COLUMBIA, CANADA

FIGURE 4/M8

DH M8

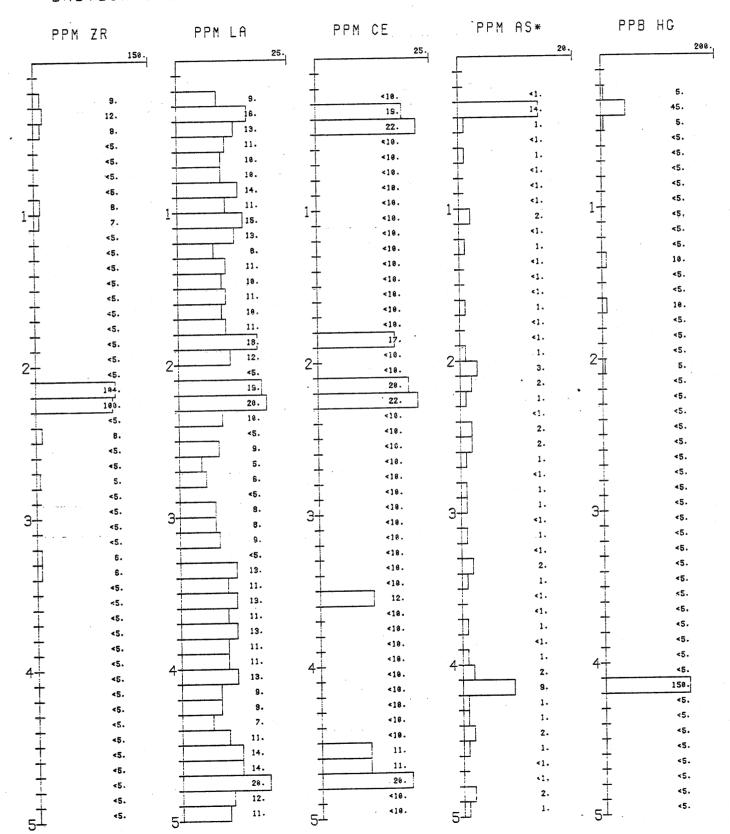
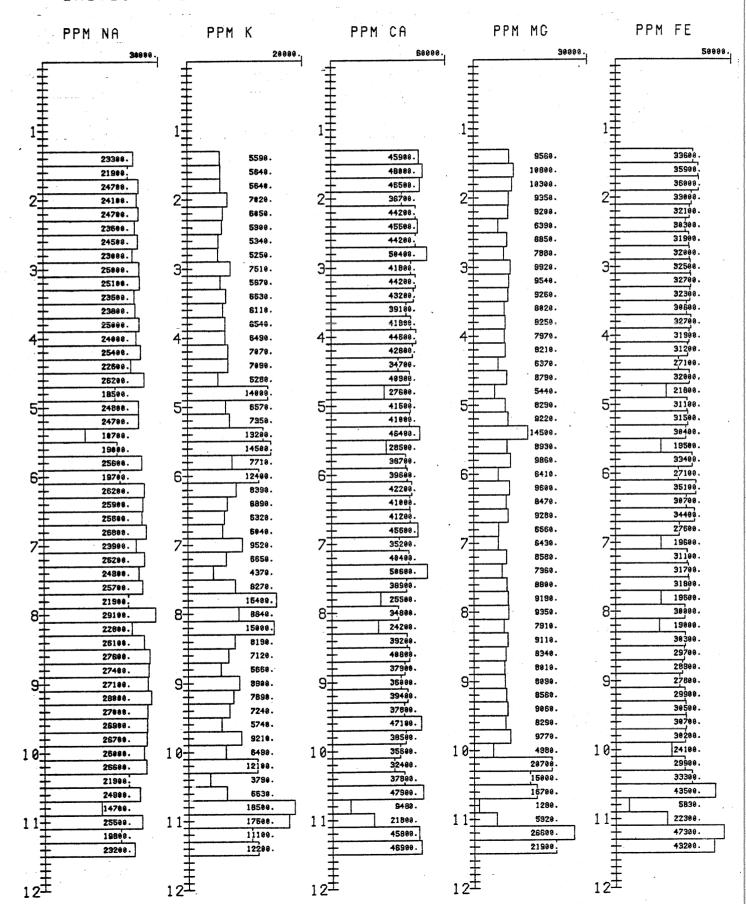

MEACER CREEK BRITISH COLUMBIA, CANADA

FIGURE 5/M8

DH M8


MEAGER CREEK BRITISH COLUMBIA, CANADA

DH M9

MEAGER CREEK BRITISH COLUMBIA, CANADA

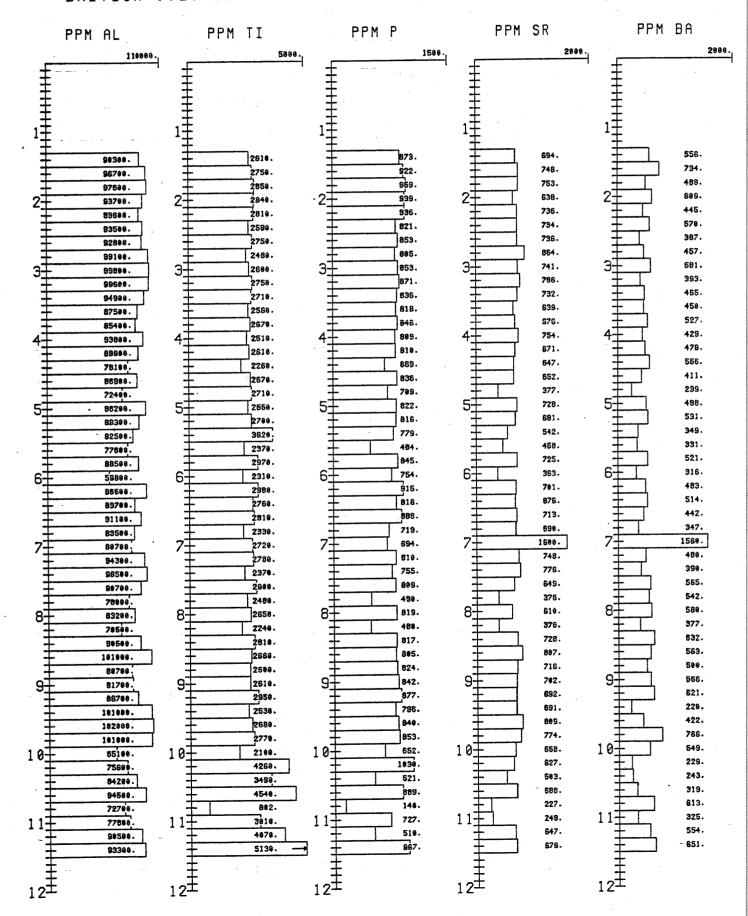

FIGURE 1/M9

FIGURE 2/M9

DH M9

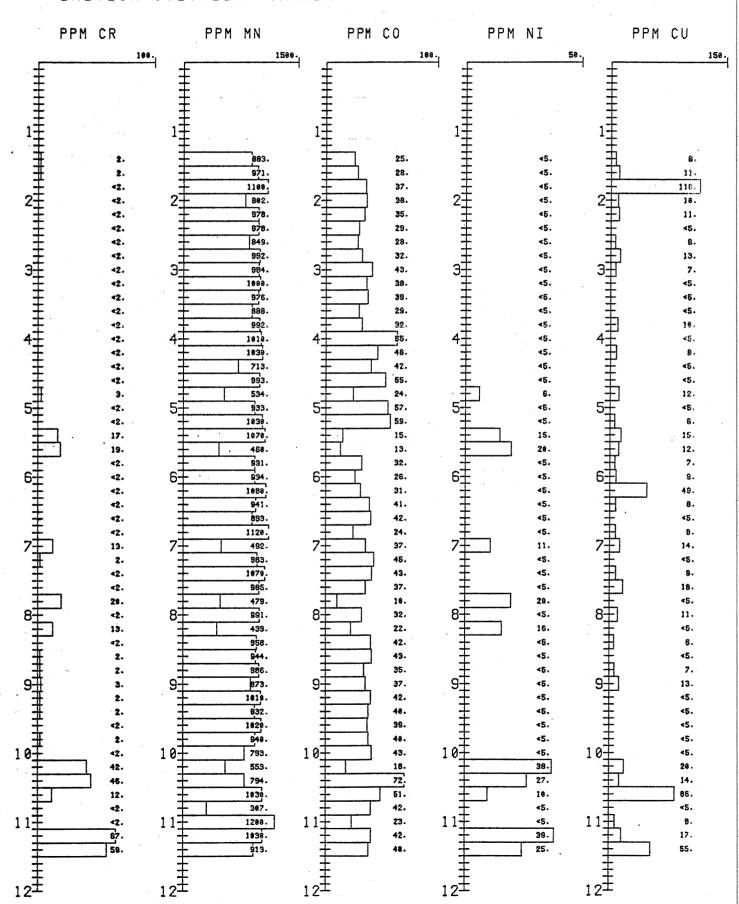

MEAGER CREEK BRITISH COLUMBIA, CANADA

FIGURE 3/M9

DH M9

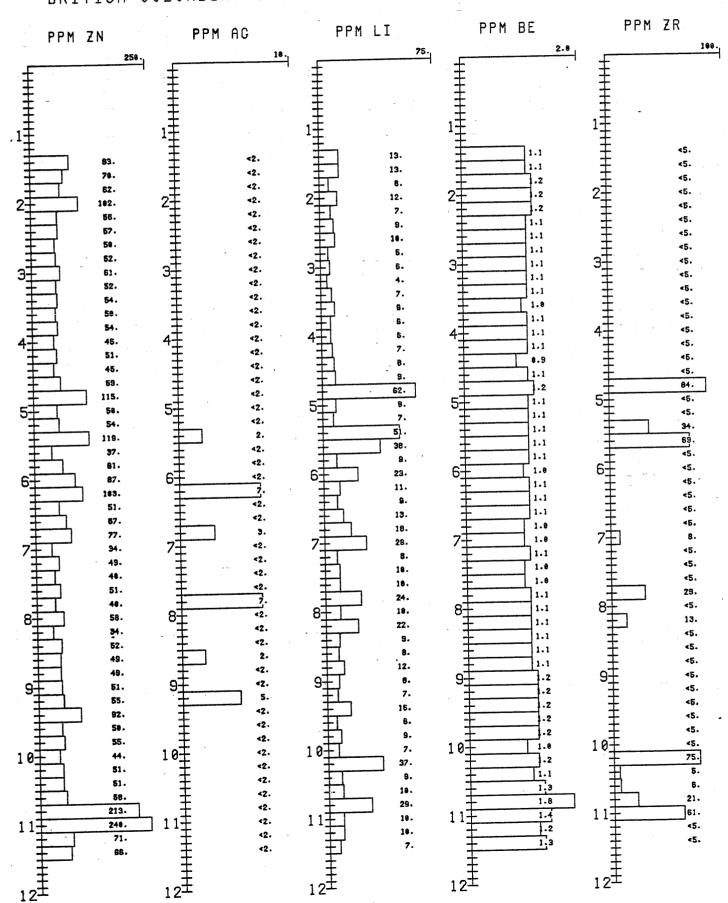

MEAGER CREEK BRITISH COLUMBIA, CANADA

FIGURE 4/M9

DH M9

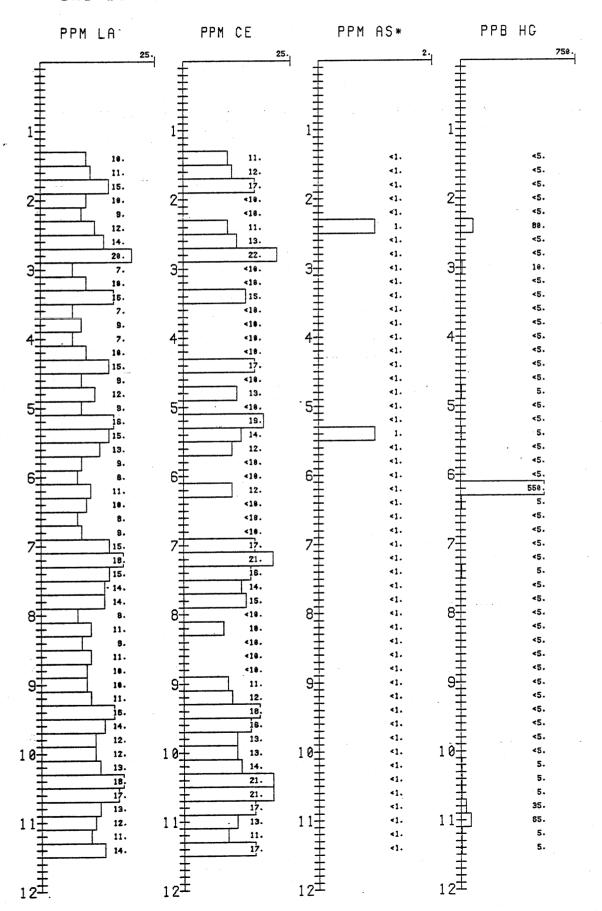

MEACER CREEK BRITISH COLUMBIA, CANADA

FIGURE 5/M9

DH M9

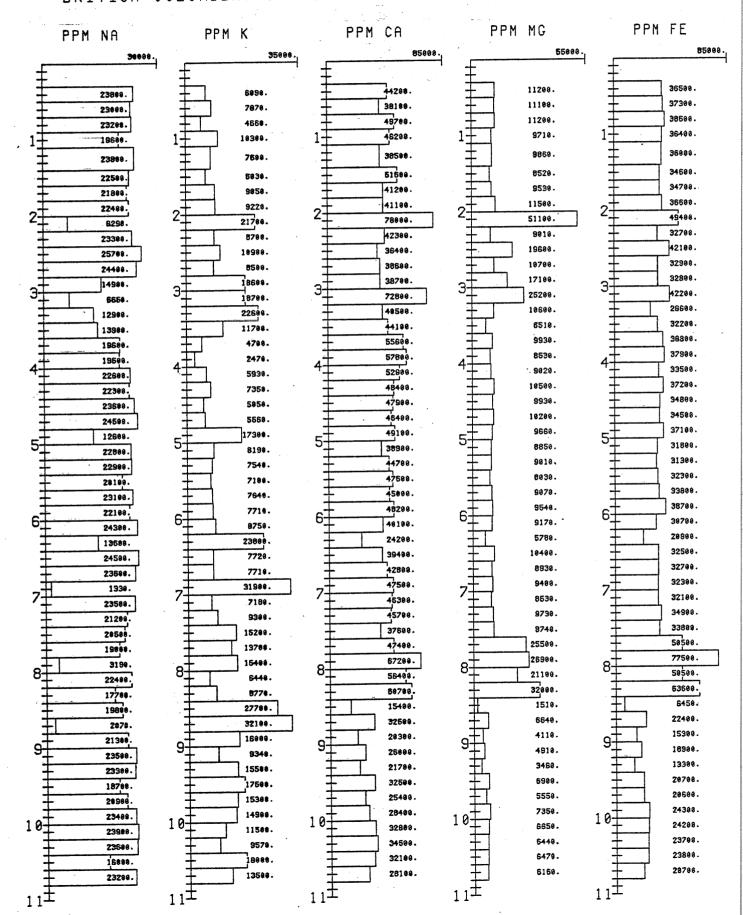

MEAGER CREEK BRITISH COLUMBIA. CANADA

FIGURE 1/M10-80D

DH M10-80D

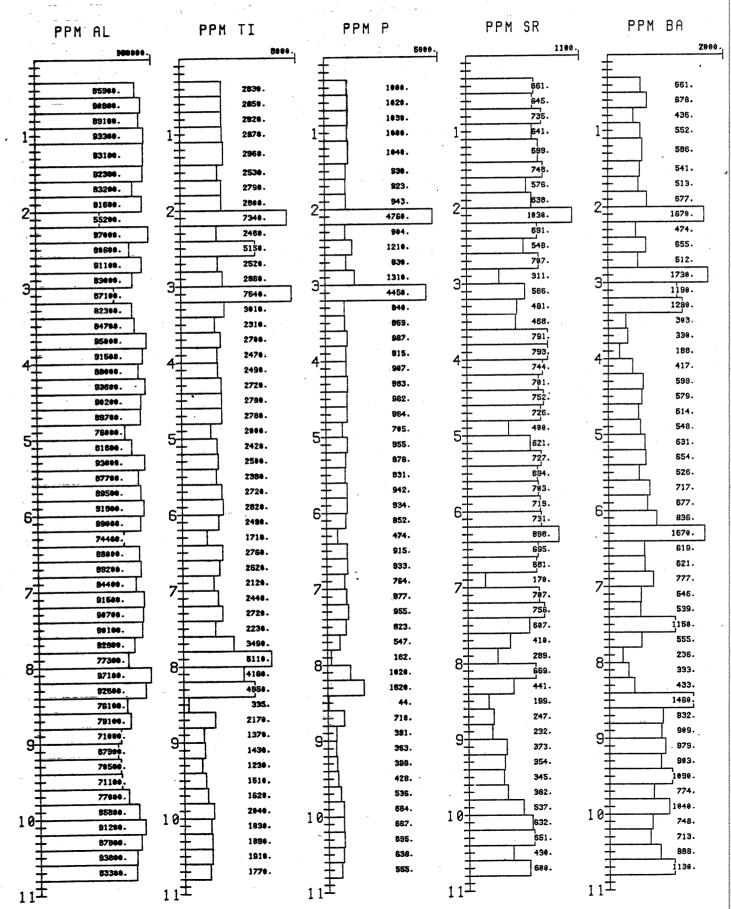

MEAGER CREEK BRITISH COLUMBIA, CANADA

FIGURE 2/M10-80D

DH M10-80D

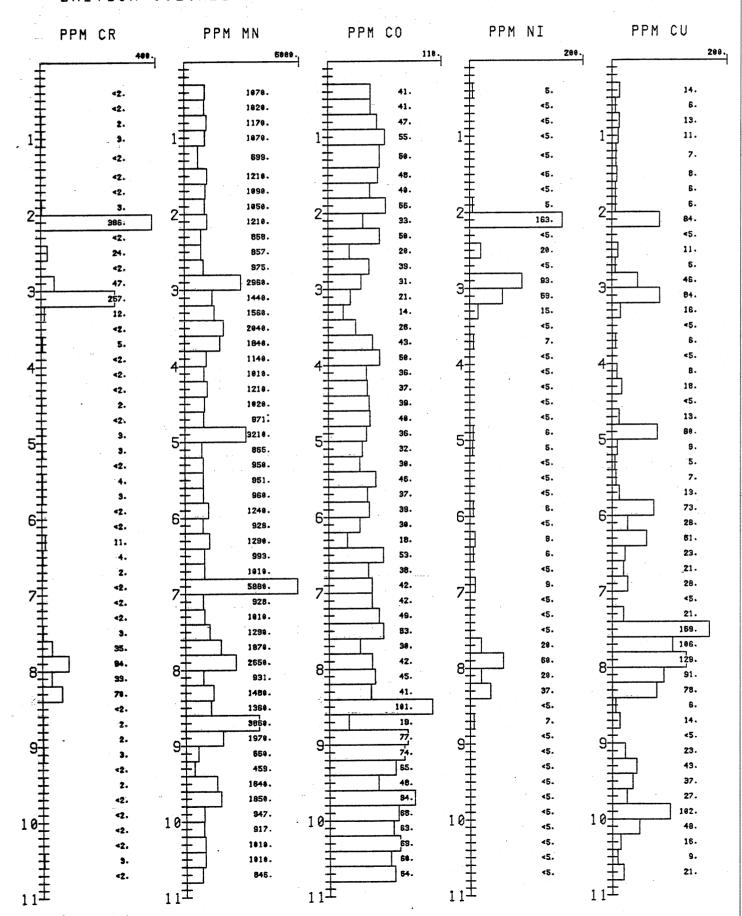

MEAGER CREEK BRITISH COLUMBIA, CANADA

FIGURE 3/M10-80D

DH M10-80D

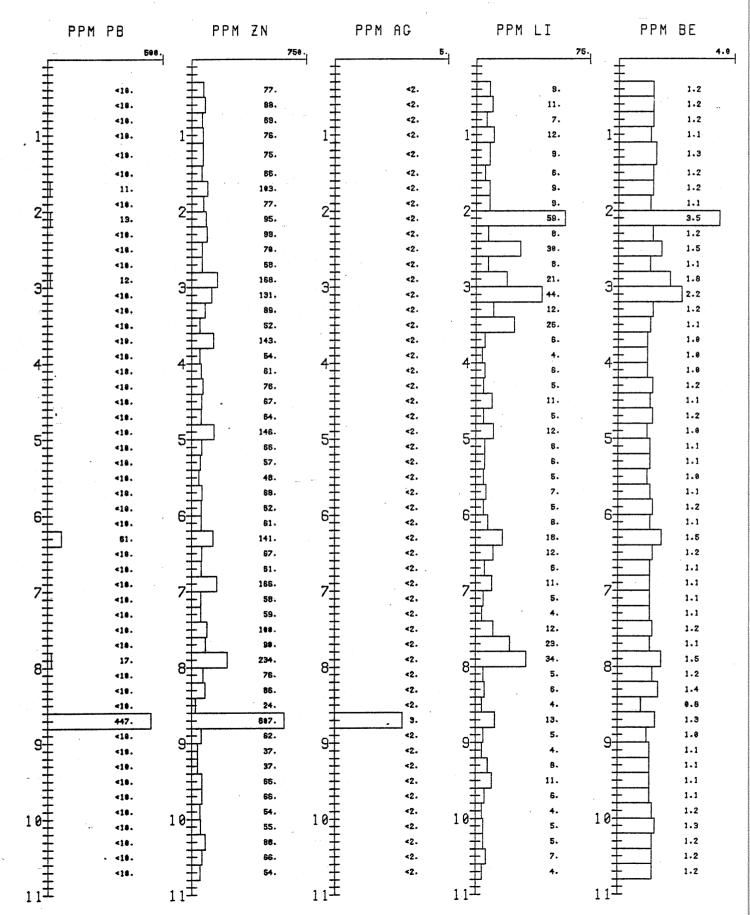

MEAGER CREEK BRITISH COLUMBIA, CANADA

FIGURE 4/M10-80D

DH M10-80D

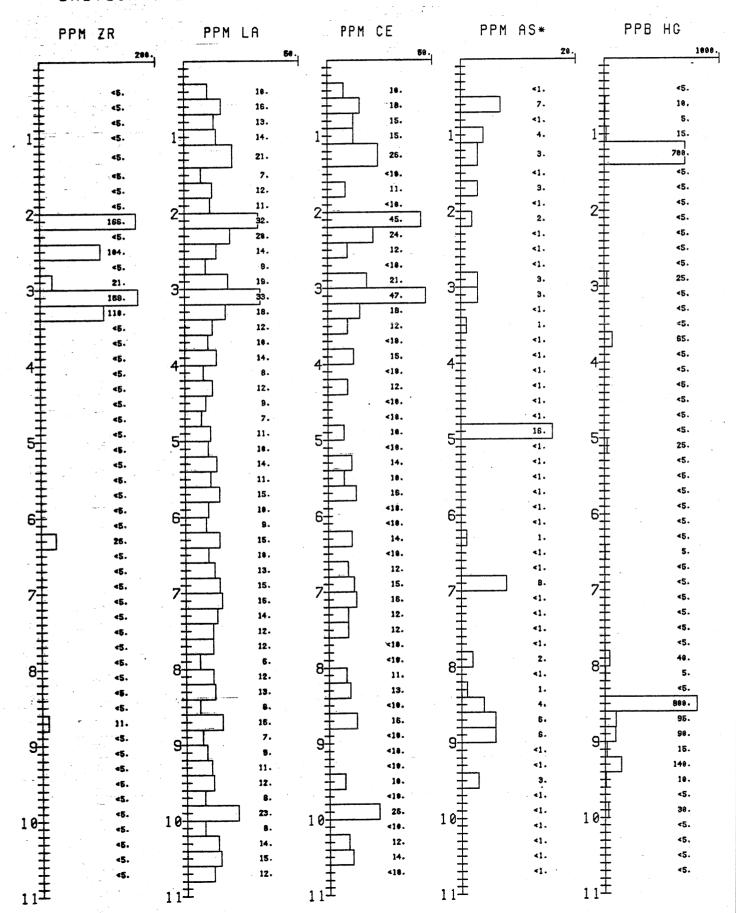

MEAGER CREEK BRITISH COLUMBIA, CANADA

FIGURE 5/M10-80D

DH M10-80D

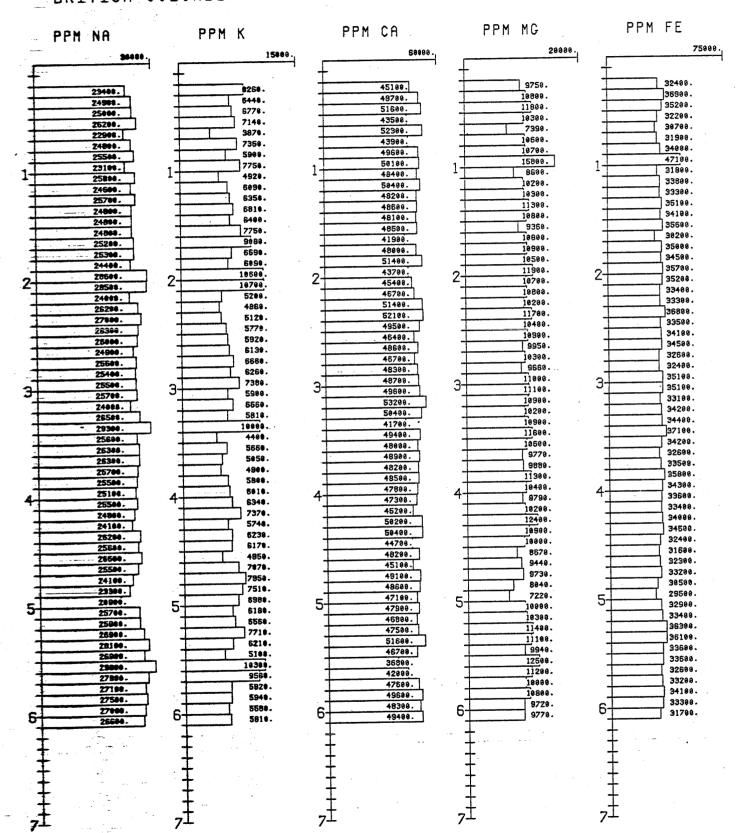

MEAGER CREEK BRITISH COLUMBIA, CANADA

FIGURE 1/M12

DH M12

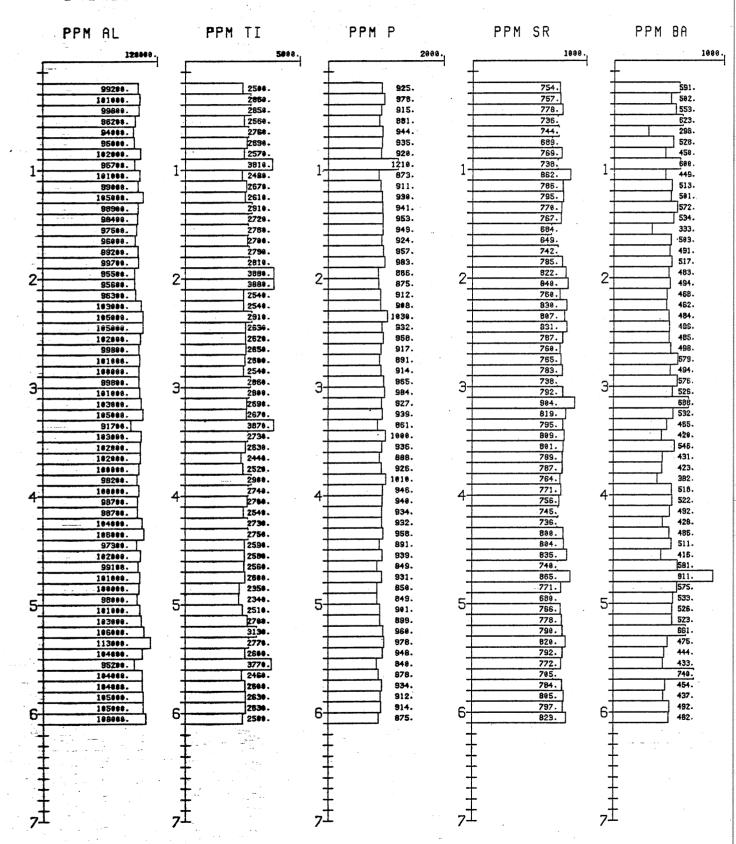

MEAGER CREEK BRITISH COLUMBIA. CANADA

FIGURE 2/M12

DH M12

MEAGER CREEK
BRITISH CÓLUMBIA, CANADA

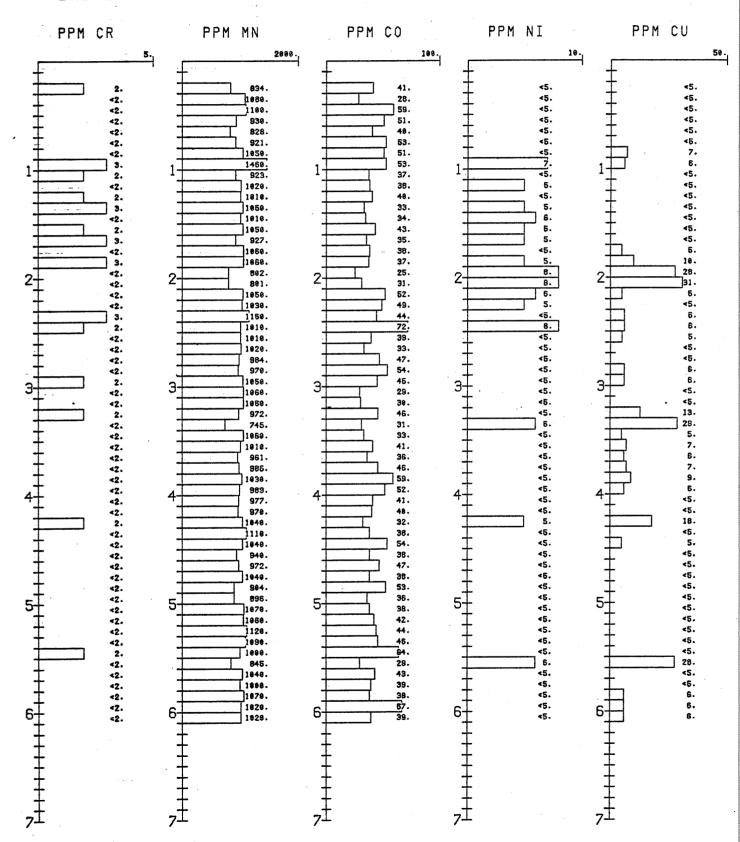


FIGURE 3/M12

DH M12

MEAGER CREEK BRITISH COLUMBIA, CANADA SAMPLE TYPE: WHOLE ROCK VERT. SCALE: 35.0 M./CM.

(DEPTH SHOWN IN 100 METER UNITS)

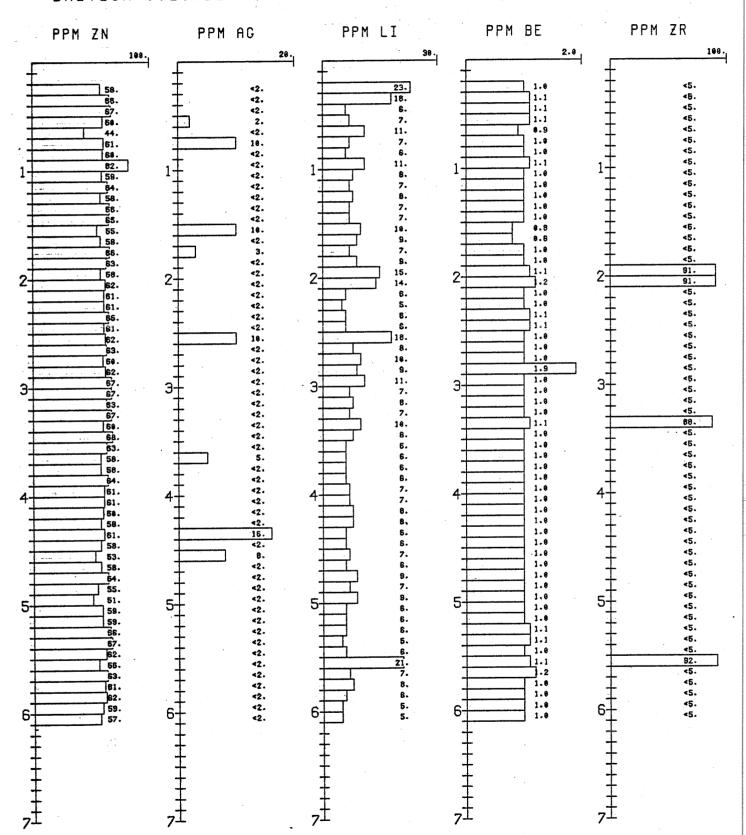


FIGURE 4/M12

DH M12

MEAGER CREEK BRITISH COLUMBIA, CANADA SAMPLE TYPE: WHOLE ROCK
VERT. SCALE: 35.0 M./CM.

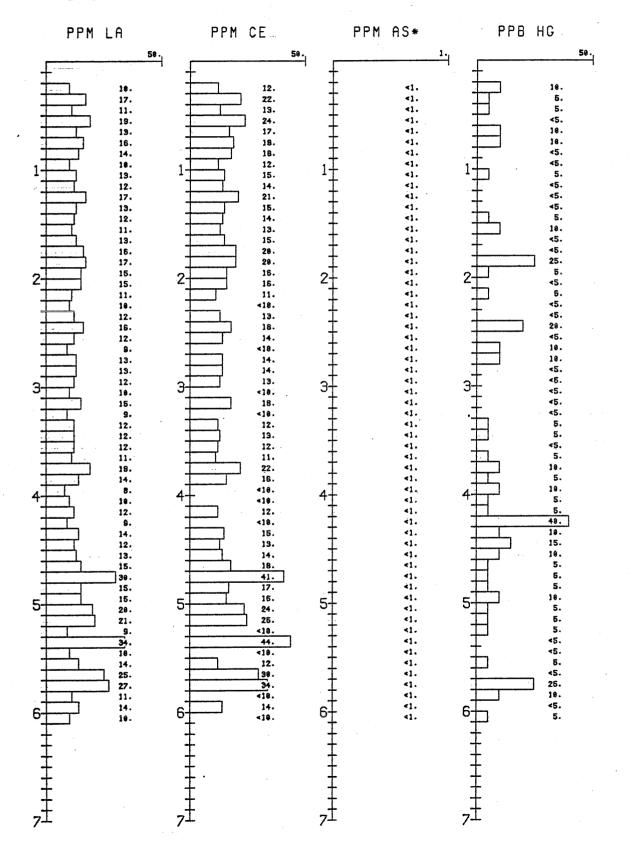

(DEPTH SHOWN IN 100 METER UNITS)

FIGURE 5/M12

DH M12

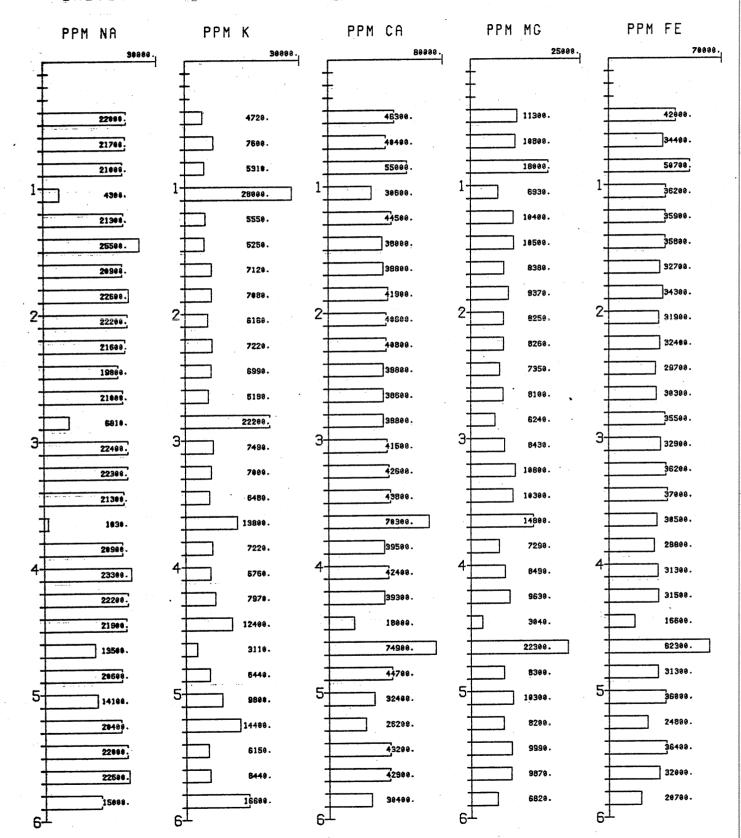
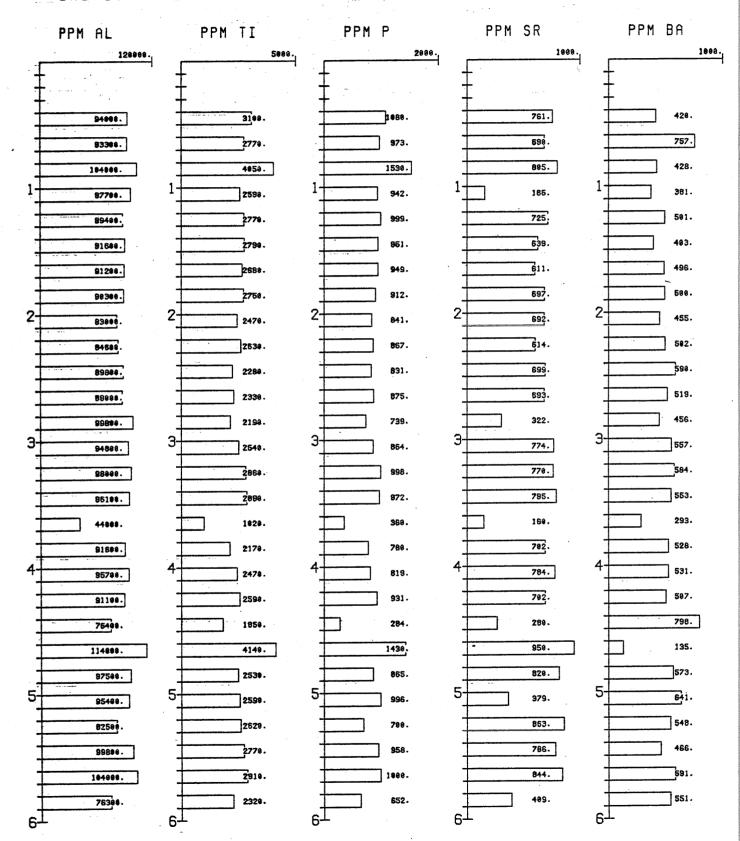

MEAGER CREEK BRITISH COLUMBIA, CANADA

FIGURE 1/M13


DH M13

MEAGER CREEK BRITISH COLUMBIA. CANADA

DH M13

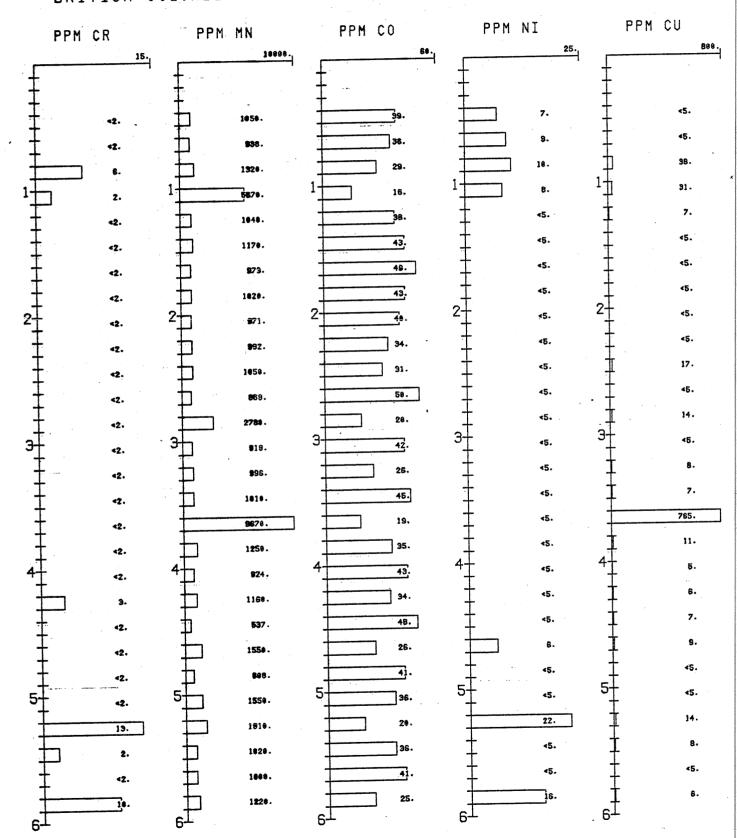

MEACER CREEK BRITISH COLUMBIA, CANADA

FIGURE 3/M13

DH M13

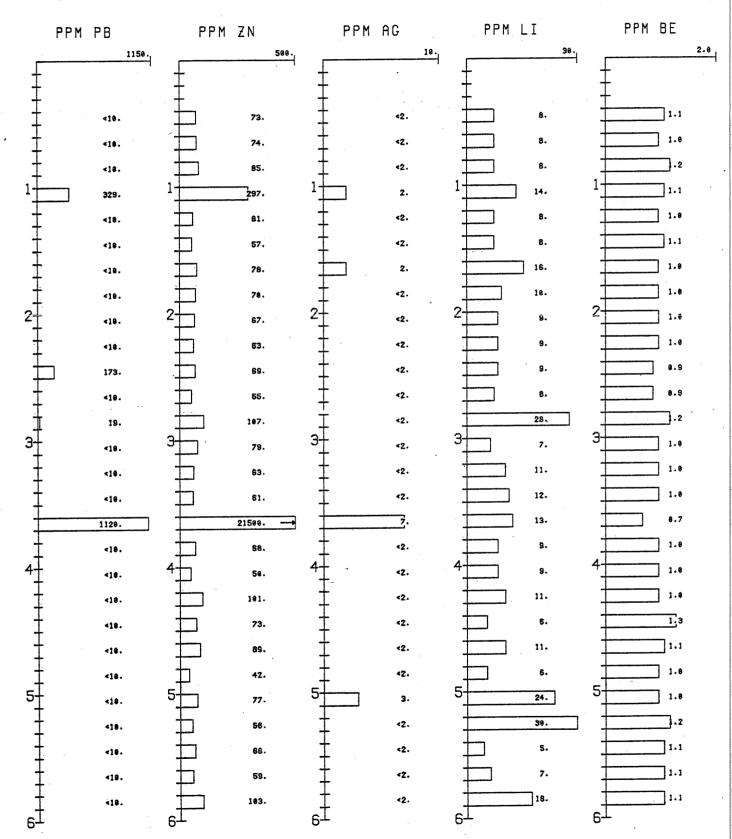

MEAGER CREEK BRITISH COLUMBIA, CANADA SAMPLE TYPE: WHOLE ROCK VERT. SCALE: 30.0 M./CM. (DEPTH SHOWN IN 100 METER UNITS)

FIGURE 4/M13

DH M13

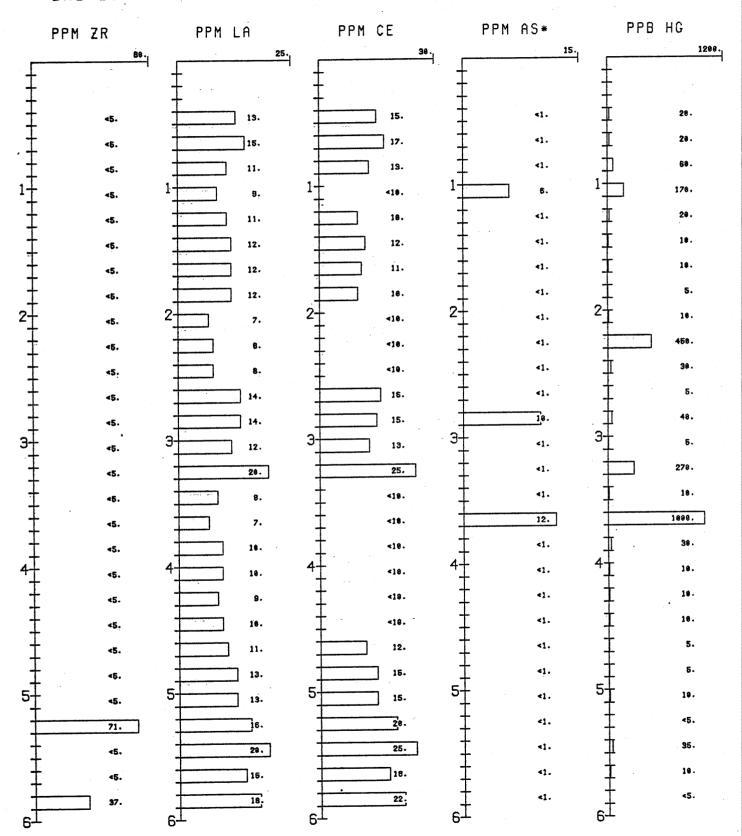

MEAGER CREEK BRITISH COLUMBIA, CANADA SAMPLE TYPE: WHOLE ROCK
VERT. SCALE: 30.0 M./CM.
[DEPTH SHOWN IN 100 METER UNITS]

FIGURE 5/M13

DH M13

MEAGER CREEK BRITISH COLUMBIA, CANADA SAMPLE TYPE: WHOLE ROCK
VERT. SCALE: 30.0 M./CM.
(DEPTH SHOWN IN 100 METER UNITS)

Appendix II
Geochemical Analyses of Veins

ELEMENT				CO	NCENTRATION
NA	% OX.				2.49
K	% OX.				1.46
1CA	% OX.	,			7.32
MG	% OX.				1.87
FE	Z OX.				4.89
AL	Z OX.				14.99
SI	% OX.			<.	1.60
ΤI	% OX.				0.291
*F'	% OX.				0.145
SR	PPM				530
BA	% OX.				0.075
V	PPM			< <	250 2.00
CR	PPM			٠٠.	0.227
MN	% OX.			,	58
CO	PPM			<	5.00°
NI	PPM		*	<.	5.00 .
CU	PPM			<	50.0
MO	PPM PPM			<	10.0
PB				****	85
ZN	PPM			<	5.00
CD	PPM PPM			<	2.00
AG	PPM			<	16.0
AU	PPM			****	1
AS	PPM			<	30.0
SB	PPM			<	100
BI	PPM			<	2500
TE	PPM			<	50.0
SN	PPM	•		<	5.00
W	PPM			<	1200
L I	FFM			•	12
BE	PPM				1.1
B	PPM			<	400
ŽR	PPM			<	5.00
LA	PPM			•	17
CE	PPM				11
TH	PPM			4.	150
HG	PPB		•	<	5

ELEMENT			100	VCENTRATION
NA	% OX.			0.046
ĸ	% ÖX.			1.28
CA	% OX.			34.47
MG	% OX.			0.780
FE	% 0×.			1.40
AL	% 0X.	•		6.20
SI	% OX.		<	1.60
ΤÏ	% OX.			0.069
F.	% 0×.			0.018
SR	PPM			205
BA	% OX.			0.037
V	PPM		<.	250
ĊR	PPM		<	2.00
MN	% 0X.			0.938
co .	. PPM			42
NI	PPM		<	5.00
СÜ	PPM			7
MO	PPM		<	50.0
FB	PPM	•		433
ZN	PPM			811
CD	PPM		<.	5.00
AG	PPM		<.	2.00
ΑU	PPM			1.9
AS	PPM			14
SB	PPM		<.	30.0
ΒĪ	PPM	•	<	100
Ü	PPM		<.	2500
TE	PPM		<	50.0
SN	PPM		<	5.00
W	PPM		<	1200
LI	PPM			22
BE	PPM			0.8
B	PPM		<	400
ZR	PPM			22
LA	PPM		<	5.00
ĈE	PPM	•		10.0
TH	PPM		<	150
HG	PPB'			700

220~m

ELEMENT	• .	CC	NCENTRATION
			-
NA K	% OX.		3.02 1.26
íca mg	% OX.		6.61 2.51
FE	% OX.		4.80
AL	% OX.		15.92
SI	% OX.	<	1.60
TI	% OX.		0.408
P	% OX.		0.177
SR	PPM		515
BA	% OX.		0.161
V	PPM	< <	250
CR	PPM		2.00
MN	% OX.		0.386
CO	PPM	<	70
NI	PPM		5₊00
CU	PPM	< < < < < < < < < < < < < < < < < < <	5.00
MO	PPM		50.0
F'B	PFM	i kanala ka	10.0
ZN	PPM	·	146
CD	PPM	<	5.00
AG	PPM	< <	2.00
AU	PPM		16.0
AS	PPM		2
SB	PPM	<	30.0
BI	PPM	<	100
TE	PPM	<	2500
	PPM	<	50.0
SN	PPM		5.00
W	PPM	٠,	1200
L I	PPM		12
BE	PPM PPM	<u> </u>	1.3 400
ZR	PPM	į.	5.00 10
LA CE	PPM PPM	<	10.0
TH	PPM	<	150
HG	PPB	<	5

ELEMENT	٠	COt	NCENTRATION
ELENT A AGELII RA RNOIUOBNDGUSBI EN IE RA KCMFASTPSBVCMCNCMPNOGUSBI EN IE RA	**************************************	COt	1.72 2.31 8.90 1.20 4.65 16.17 1.60 0.179 422 0.055 250 2.00 10.0 50.0 10.0 59 5.00 10.0 59 5.00 10.0 22 30.0 10.0 22 30.0 10.0 2500 2500 2500 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1
CE TH	PPM PPM	< <	10.0 150
HG	PPB		10

340 m

ELEMENT		CO	NCENTRATION
NA	% OX+		2.27
K	% OX.		0.117
CA	% OX.		9.85 0.615
MG	% OX.		5.36
FE	% OX.		18.49
AL	% OX.	<	1.60
SI	% OX.	**	0.333
Ţ.I.	% ÖX.		0.137
P	% OX. PPM		1019
SR			0.010
BA	% OX. PPM	<	250
V	PPM	<	2,00
CR		•	0.148
MN	% OX. PPM		61
CC	PPM	<	5.00
NI	PPM	~	5,00
CU	PPM	~	50.0
MO	rrn PPM		10.0
PB	PPM	•	21
ZN	PPM	<	5.00
CD	PPM	<	2.00
AG AU	PPM	<	16.0
AS .	PPM	<u>`</u>	1
SB	PPM	·	30.0
BI	PPM	<	100
n n	PPM	~	2500
TE	PPM	~	50.0
SN	PPM	~	5.00
₩ ₩	PPM	<	1200
LI	PPM	<u> </u>	2.00
PE	PPM	•	1.0
e B	PPM	· · · · · · · · · · · · · · · · · · ·	400
ŽR	PPM	~	5.00
LA	PPM	•	7
CE	PPM	<	10.0
TH	PPM	į.	150
HG	PPB	<	5

ELEMENT		co	NCENTRATION
NA K	% OX.		0.338 0.827
CA	% 0X.		35.78
MG	% OX.		1.01
FE	% OX.		5.55
AL.	% OX.		5.55
SI	% OX.	/<	1.60
TI	% OX.	,	0.143
F.	% OX.		0.024
SR	PPM		340
BA	% OX.		0.109
V	PPM	<	250
CR	FFM	<	2.00
MN	% OX.	•	1.20
CO	PPM	•	24
NI	PPM	.	5.00
CU	PPM		5.00
MO	FPM	. <	50.0
FB	FFM		37
ZN	PPM		108
CD	PPM	<	5.00
AG	PPM	<	2.00
AU	PPM		27
AS	PPM		2
SB	PPM		30.0 100
BI	PPM PPM	<	2500
U TE	PPM	~	50.0
SN	PPM	~	5.00
₩ ₩	PPM	~	1200
LI	PPM	*	5
BE	FFM		0.8
B	PPM	<	400
ZR	PPM	•	18
LA	PPM		35
CE	PPM	,	42
TH	PPM	<	150
HG	PPB	·	10
HQ.	11,0		

ELEMENT			CO	NCENTRATION
				*
NA	% OX*			3.13
K	% OX.			0.440
· CA	% OX.			9.16
MG	% 0X.	1		2.35
FE	% CX+			7.94
AL.	% OX.			20,26
SI.	% OX.		<.	1.60
TI.	% OX.			0.704
· P	% OX.			0.326
SR	PPM			832
BA	% OX.			0.032
V .	PPM			250
CR	PPM		40	2.00
MN	% OX.			0.198
CO	PPM			41
NI	PPM			<u>ა</u> 9
CU	PPM			
MO	PPM		< <	50.0
FB	PPM PPM		٠.,	10.0 76
ZN CD	FFM		<	5.00
AG	PPM ·		<	2.00
AU	PPM		٠.	5
AS	PPM	•		1
SB	PPM		-:	3 <mark>0</mark> .0
ΒÏ	PPM			100
Ü	PPM		<	2500
TE	PPM			50.0
SN	PPM		*:	5.00
W	PPM	1	<	1200
L. I	PPM			9
BE	PPM			1.5
B	PPM		**	400
ZR	PPM		40	5.00
LA	PPM			1.4
CE	PPM			1.7
TH	PPM		4.	150
HG	PPB		<	5
	TOTAL			46.145

ELEMENT			. CC)NCENTRATION
XI A	% OX.			1.39
NA K	% OX. % OX.			0.306
	% OX.			12.80
CA	% OX.			0.711
MG FE	% U∧ ∘ % OX ∘			7.14
AL.	% OX.			18:87
	97 C) M		1 <	1.60
SI TI	% OX*	•	•	0.408
1 .l. C1	% OX.			0.146
SR	PPM			889
BA	% 0X.			0.010
A. W.	PPM		<	250
ČR	PPM		· .	2.00
MN	% 0X.		*	0.151
CO	PPM			46
NI	PPM			7
CÜ	PPM		<.	5.00
MO	PPM		<	50.0°
PB	PPM		< .	10.0
ZN	PPM			1.4
CD	PPM		<	5.00
AG	PPM			9
AU	PPM		<	4.00
AS	PPM			2
SB	PPM		*	30.0
BI	PPM		<	100
U	PPM		<	2500
TE	PPM		<	50.0
SN	PPM	•	<	5.00
W	PPM		<	1200
L. I.	FFM			8
BE	PPM			0.9
B	PPM		<	400
ZR	PPM		<	5.00
LA	PPM			10
CE	PPM		<.	10.0
TH	PPM		<	150
HG	PPB		<	5 .
	TOTAL			43.536

LEMENT			00	NCENTRATION
	•			
NA	% OX.,			0.597
K	% OX.			1.08
CA	% OX.			27.13
MG	· % OX.			. 3.66
r E	% OX.			5.43
AL.	. % OX.			8.38
5 I	: % OX.		<.	1.60
TI	`% OX.			0.112
P	% OX.			0.043
SR	PPM			3.3.3
BA	% OX.			0.052
Λ	PPM		<. ·	250
CR	PPM		<	2.00
MN .	% OX.			1.22
CO	PPM			13
NI	PPM		< <	5.00
CU	PPM			5.00
MO	PPM	•		50.0
PB	PPM		,	18
ZN	PPM			208
ĊD	PPM		<.	5.00
AG	PPM	• *		2.00 19
AU AS	PPM PPM			3 3
SB	PPM			30.0
BI	PPM		<	100
U.	PPM		<	2500
TE	PPM		** *{	50.0
SN	PPM		<	5.00
W	PPM		Š	1200
	PPM		٠,	19
BE	PPM			0.9
E	PPM .			400
ZR	PPM		<	5.00
LA	PPM		•	• 15
CE	PPM			27
TH	PPM		4,	150
HG	PPB			10
	TOTAL			47.311

ELEMENT				CO	NCENTRATION
NA	% OX.				1.93
K	% OX.				0.175
CA	% OX.				7.13
MG	% OX.				7.05
	% OX.				4.53
AL.	% OX.				10.58
SI	% OX.			<	1.60
TI	% OX.				0.159
E.	% OX.				0.027
SR	FFM				208
BA	% OX.				0.007
V	PPM			<.	250
CR	PPM			<	2.00
MN	% OX*				0.121
CO	. PPM				109
NI	PPM				74
CU	PPM				5.00
MO	FFM			<	50.0
PB	PPM		•	<.	10.0
ZN	PPM	2			45
CD	PPM			*:	5.00
ΑG	PPM				12
AU	PPM				7
AS	FFM			<.	1
SB	PPM			<.	30.0
BI	PPM			*:	100
IJ	PPM .			< 1	2500
TE	PPM			<	50.0
SN	PPM			<.	5.00
W	PPM			<	1200
L. I.	PPM				3
BE	PPM		,		0.9
В	PPM			<.	400
ZR	PPM				7
LA	PPM				9
CE.	PPM			<	10.0
TH	PPM			<	150
HG	PPB	•		. <	5
	TOTAL	•			33.316

EL	EMENT			CO	NCENTRATION
, .	NA K CA MG	% OX. % OX. % OX. % OX.	•		2.81 0.484 3.37 0.921
	FE	% OX.			1.69
	AL	% OX.			9.53
	SI	% OX.		. <	1.60
	TI	% OX.			0.225
	E,	z ox.			0.030
	SR	PPM			339
	BA	% OX.			0.034
	V	PPM		< .	250
	CR	PPM		<.	2,00
÷ .	MN	% OX.			0.034
	CO	PPM			89 7
	NI	PPM	•		66
	CU	PPM PPM		<	50.0
	MO FB	PPM		Š	10.0
	ro ZN	PPM		••	30
	CD	PPM.		<	5.00
	AG	PPM		<u>`</u>	2.00
	AU	PPM		•	7
	AS	PPM		<	1
•	SB	PPM		<	្វៈី∙០
	BI	PPM		<	100
	IJ.	FFM		<_	2500
	TE	PPM		<	50.0
	SN .	FFM		<[5.00
	W	PPM			1200
	L. I.	PPM			5
	BE	PPM		_	0.7
	B	PPM		< .	400
	ZR	PPM		<.	5.00
	LA	PPM			6
	CE	PPM		< <	10.0 150
	TH	PPM			
	HG	PPB		<	5
		TOTAL		•	20.718

ELEMEN	IT	CO	NCENTRATIO	N
NA	% OX.		3.02	
K	% OX.		0.914	
CA	% OX∙		3.90	
MG	% OX.	-	1.34	
FE	% OX.		2.57	
AL.	% OX.		12.83	
SI	% OX.	<	1.60	
TI	% OX.		0.323	
į:	% OX.		0.053	
SR	PPM		369	
BA	" OX.		0.052	
V	PPM	<	250	
CR	PPM	<.	2.00	
MN	% OX.		0.067	
CO	PPM	i	129	
ΝI	PPM		12	
CU	PPM		6	
MO	PPM	<	50.0	
FB	PPM	<	10.0	
ZN	PPM		29	
cn	PPM	<	5.00	
ΑG	PPM		2.00	
AU	PPM		6	
AS	PPM	-	1	
SB	PPM	< .	30.0	٠
BI	PPM	<	100	
U	PPM	<	2500	
TE	PPM	< .	50.0	
SN	PPM	<	5.00	
W	PPM	<	1200	
LI	PPM		9	
BE	PPM		1.0	
B	PPM	<	400	
ZR	PPM	<	5.00	
LA	PPM		13	
CE	PPM	<	10.0	
TH	PPM	<	15Ö	
HG	PPB	<	5	
	TOTAL		26.673	

ELEMENT			CON	CENTRATION
NA K CA MG FE	% 0%. % 0%. % 0%. % 0%.			2.24 2.24 5.32 1.57 4.93
AL SI TI P	% 0X. % 0X. % 0X. % 0X.		<	17.09 1.60 0.536 0.204
SR BA V CR MN	PPM % OX. PPM PPM % OX.		< <	273 0.079 250 2.00 0.205
CO NI CU MO	PPM PPM PPM PPM		< < <	22 9 5.00 50.0 10.0
PB ZN CD AG AU	PPM PPM PPM PPM PPM		< < <	10.0 232 5.00 2.00 4.00
AS SB BI U	PPM PPM PPM	•	< < < < < < < < < < < < < < < < < < <	4 30.0 100 2500 50.0
TE SN W LI BE	PPM PPM PPM PPM PPM		< <	5.00 1200 32 1.5
B ZR LA CE	PPM PPM PPM PPM		< < < < < < < < < < < < < < < < < < <	400 5.00 11 10.0 150
TH HG ,	PPM PPB TOTAL		<	5 38.055

:: <u>;</u>	EMENT				CO	NCENTRATION
		•				
	NA	% OX.				5.2%
	K	% OX.				0.149
•	CA	% 0X.				7,24
	MG	% OX.				0,980
	F E	% OX.				1.48
	AL.	% OX:		٠		16.00
	SI	% OX.			40	1.60
	TI.	% OX.				. 0.219
	<u>.</u>	% OX.			•	0.007
	SR	PEM				1117
	BA	% 0X.				0.011
	Ų	PPM			<.	250
	CR	PFM				2.00
	MN	% OX.				0.028
	CO	PPM				35
	NI	PPM				5.00
	CU.	PPM			<	5.00
	MO	PPM			<	50.0
	PP	PPM			< .	10.0
	ZN	PPM.				5.00
	CD	PPM	•		<	5.00
	A 0	PPM			<.	2.00
	AU	PPM				<u></u>
	AS	PPM			<.	1
	SB	PPM			<.	30.0
	BI	PPM			< .	100
	1.)	PPM				2500
	TE	PPM .			<	50.0
	SN	PPM			<	5.00
	W	PPM			< <	1200
		PPM				2.00 0.7
	SE	PPM			•	400
	D .	PPM			<	9
	Z9	PRM				5.00
	LA	PPM			- <	
	CE .	1 1 1 1	<i>.</i> *		<	10.0
	TH	PPM			<.	150
	HG	PPB			. <	5
		TOTAL				32.752-

ELEMENT	·		co	NCENTRATION
NA K	% OX.			0.356 1.28
CA	% OX.			18.02
MG	% OX.	•		0.939
FE	% OX.			2.36
AL	% OX.			7.63
SI	% OX.		<	1.60
TI	% OX.			0.102
F'	% OX.			0.015
SR	PPM			325
BA	% OX.			0.032
V	PPM		<	250
CR	PPM	M.	<.	2.00
MN	% OX.			0.271
CO	PPM			118
NI	PPM		<	5.00
CU	PPM			5.00
MO	PPM		<	50.0
FB	PPM		:	10.0
ZN	PPM	•		40
CD	PPM		*.	5.00
AG -	PPM		<.	2.00
AU	PPM		<	16.0
AS	PPM		<	1
SB	PPM		<	30+0
BI	PPM		<	100
IJ	PPM		:	2500
TE	PPM		<	50.0
SN	PPM		**	5.00
W	PPM			1200
LI	PPM			3
BE	PPM		<	0.500
B	PPM		<	400
ZR	PPM		<.	5.00
LA	PPM		<	5.00
CE	PPM		<	10.0
TH	PPM		<.	150
HG	PPB		<	5

ELEMENT			COi	VCENTRATION
MA	% OX.			1.59
NA	% OX. % OX.			1.40
K Ca	% OX+			8.96
MG	% OX •			1.22
FE	% OX •			8.95
AL.	% OX.			20.43
SI	% OX+		<	1.60
TI	% OX+		•	0.372
E, I'T	% OX •			0.090
SR	PPM			590
BA	% OX.			0.057
V	PPM		<	250
ČR	PPM		•	(2)
MN	% OX.			0.124
co	PPM		•	44
NI	PPM			7
CÜ	PPM			12
мо	PPM		<	50.0
PB	PPM		<	10.0
ZN	PPM			28
CD	PPM		<	5.00
AG	PPM		<	2.00
AU	PPM		<	16.0
AS	PPM .			1
SB	FFM		<.	30.0
BI	FFM		<	100
U	FFM		<	2500
TE	P'P'M		<	50.0
SN	FFM		<	5.00
W	PPM		<	1200
LI	PPM			20
BE	PPM			1.2
B	PPM		<	400
ZR	PPM		<	5.00
LA	PPM	•		9
CE	PPM		<	10.0
TH	PPM		<	150
HG	PPB		, <	5

•				
			co	NCENTRATION
% OX.		-		1.93
				0.084
				4.24
				3.04
				2.75
% OX.			•	11.93
% OX.			<	1.60
% OX.	•			0.060
% OX.				0.441
FFM				343
% OX.				0.006
		•	<	250
				159
% OX.				0.081
				81
PPM				116
				5.00
				50.0
			<	10.0
· PPM				43
				5.00
				2.00
			<.	16.0
				1
				30.0
				100
				2500
				50.0
				5.00
			<.	1200
				16
				0.7
				400
			<.	5.00
				10
				10.0
				150
PP B			. <	5
	% OX. % OX. PPM % OX. PPM PPM PPM PPM PPM PPM	% COXX. % COXX	% OX. % OX. % OX. % OX. % OX. % POXM PPOXM	% OX. PPM PPM PPM PPM PPM PPM PPM PPM PPM PP

100 m

ELEMENT			•	co	NCENTRATION
NA K CA	% OX. % OX.				1.94 0.598 6.96
MG	% OX.				2.51
FE	% OX.				8.03
AL.	% OX.				15.15
SI	% OX.			<	1.60
ŢI	% OX.				0.479
F ST	% OX.				0.131
SR	PPM				527
BA	% OX.			<	0.030 250
V	PPM			٠.,	50
CR	PPM "		•		0.113
MN	% OX. PPM				68
CO NI	PPM				31
CU	PPM				33
MO	PPM			<	50.0
PB _	PPM		•	<	10.0
ZN -	PPM			•	55
CD	PPM			<	5.00
AG	PPM			· .	2.00
AU	PPM	٠.		À	16.0
AS	PPM			•	2
SB	FFM			<	30.0
BI	FFM				100
Ü	FFM				2500
TE	PPM			<	50.0
SN	PPM			<	5.00
W	PPM			<	1200
LI	PPM				10
BE	PPM	3			1.3
В	PPM	,		<	400
ZR	FPM			<	5.00
LA	FFM				8
CE	FFM			<	10.0
TH	PPM			<	150
HG	PPB			. <	5

ELEMENT				CONCENTRATION	
NA	% 0X.			1.468	
K	% ÖX.			0.100	
CA	% 0X.			13.17	
MG	% OX.			0.208	
FE	% OX.			6.83	
AL	% OX.			19.75	
.81	% O×.			< 1.60	
TI.	% OX.			0.419	
þ.	% OX.			0.162	
SR	PPM			1281	
BA	2 ox.			0,008	
V	PPM			< 250	
CR	PPM			< 2.00	
MN	% OX.			0.212	
CO	PPM			42	
NI	PPM			5.00	
CU -	PPM			5.00	
MO	PPM			50.0	
E. E.	PPM			< 10.0	
ZN	PPM	•		9 = ^^	
co ·	PPM			< 5.00 - 2.00	
AG	PPM			< 2.00 < 4.00	
AU	PPM PPM			1	
AS				30.0	
SB BI	PPM PPM			< 100	
u U	PPM			< 2500	
TE	PPM			< 50.0	
SN	PPM			5.00	
W	PPM			1200	
L. I	PPM			2.00	
EE	PPM			1.0	
2. <u>1.</u>	PPM			< 400	
ZR	PPM			7	
LA	PPM			44	
CE	PPM			72	
TH	PPM			150	
				< 5	
			,		
	TOTAL			44.151	

ELEMENT			CONCENTRATION
			2.15
NA	% OX.		0.583
K	% OX.		0.94
CA	% OX.		
MG	% OX.		0.486 5.86
F.E.	% OX.		
AL	% OX.		19.76
SI	% OX:		1.60
TI.	% OX.		0.386
F	%_OX.		0.185
SR	PPM		1010 0.012
BA	%_OX.		
V	PPM		< 250 < 2.00
CR	PPM		0.138
MN	% OX.		32
C O -	FFM		
NI	PPM		
CU	PPM		
MO	PPM		
PB	· PPM	•	10.0
ZN	PPM		
cn	PPM		
AG	PPM		< 2.00 < 4.00
AU	PPM		< 1
AS	PPM		< 30.0
SB	PPM	•	< 100
BI	PPM		< 2500
U	PPM		< 50.0
TE	PPM		< 5.00
SN	PPM PPM		< 1200
W			8
LI	PPM PPM		1.0
BE	PPM		< 400
B			< 5.00
ZR	P.P.M moss		·
L.A	PPM		< 10.0
CE	PPM		< 150
TH	PPM		< 5 5
	• •		` '
	TOTAL.	-	41.100

ELEMENT		C	CONCENTRATION
NA K : CA	% 0X. % 0X. % 0X.		1.30 0.808 16.69
MG	% 0X.		7.55
in st	% OX.		4.69
A:	% OX.		6.50
SI	% OX.	<	1.60
T.	% OX.		0,141
F	% OX.		0.041
SR	FFM		3300
DA.	% OXV		0.624
V	PPM	:	
· With	PPM		10
24 A4 1 1 1 1 1	-% OX • n		0.368
CO	PPM		22
NI.	PPM		15
for any significant of the signi	PPM		. 7
MON	PPM	₹	
PW	PPM	<	
ZN	PPM nnw	ا.	ACTY TYCH BEC AND
CD	PPM	<	
AO AU	PPM .PPM	< <	2.00
AS	rrn PPM		
- SD	PPM	\ <	
e de la companya de l	PPA	``````````````````````````````````````	
u. U	PPM		
	PPM	Š.	
SN	PPM	<	
W	PPM	<	
ĿI	PPM		8
EE	PPM		0.8
. B	PPM	<	400
ZR	PPM		10
L A	PPM		1 7
CE	PPM		1.6
TH	PPM	<	150
		<	5
	TOTAL		40.314

iii. I	LEMENT			CO	NCENTRATION
	NA K CA	% 0×. % 0×. % 0×.			3.34 1.11 5.47
	M0	% OX.			1.42
	T I	% OX «			4.25
	AL.	% OX.			19.46 1.60
	SI	% 0X. % 0X.			1.6V 0.394
	TI P	% OX.			0.184
		PPM			0 * 1 0 - 4 7 3
	82 84	7 0X.			0.053
	on V	PPM		<.	250
	OR	PPM			2.00
	MN	Z OX.		٠.	0.130
	m m Solve	PPM			
	NI	PPM		<.	5.00
	CU	PPM		•	
	MO	PPM		<.	50.0
	2B	PPM	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		10.0
	ZN	PFM			40
	CZ	рфм		::	5.00
	AG	DE M		•:	2.00
	AU	PPM		<.	4.00
	AS	PPM			2
	58	PPM		<(3010
•	BI	pp p		:(`	100
	T. F. Note:	PPM		4.	2500
	YE	ρ¢Μ		₹,	50.0
	SN	PPM		4.	5.00
	A.	PPM			1200
	<u>I. I</u>	PPM	,		12
	See	P P M	,		1.2
	3	FPM		<	400
	ZP	PPM		<.	5.00
	LA	PPM		.•	9
	CE	PPM			10.0
	TH	PPM		1,	150
					5
		TOTAL			37.143

ELEMENT			CONCENTRATION
NA K CA MG FE	% OX. % OX. % OX. % OX.	•	2.74 0.655 4.76 1.94 2.96
AL SI TI F SR BA	% OX. % OX. % OX. % OX. PPM % OX.		13.97 < 1.60 - 0.340 0.048 633 0.031
V CR	PPM PPM	·	< 250 33
MN CO NI CU	% OX. PPM PPM PPM		0.059 96 19 7
MO PB ZN	PPM PPM PPM		< 50.0 < 10.0 34
CD AG AU	PPM PPM PPM PPM		< 5.00 < 2.00 9
AS SB BI U	PPM PPM PPM		\ 30.0 < 100 < 2500
TE SN	PPM PPM PPM		< 50.0 < 5.00 < 1200
LI BE B	PPM PPM PPM		6 0.9 < 400
ZR LA CE	PPM PPM PPM		< 5.00 8 < 10.0
TH	PPM		30
	TOTAL		29.108

ELEMENT			CO	NCENTRA	TION
МА	% OX.			1.7	
NA K	% OX.			0.1	
CA '	% OX.			10.0	
MG	% OX.			0.5	
ru FE	% OX •			5.4	
AL.	% 0X.			16.9	
SI	% OX.		<	1.6	
TI	% OX.		**	0.2	
F	% OX.			0 , 1	
SR	PPM			918	
BA	% 0X.			0.0	10
V	PPM			250	
ĆR	PPM			2	
MN	% OX.			0 . 1	62
CO	PPM			50	
NI	PPM		<	5.0	0
CU	. PPM	•	<	5.0	
MO	PPM		<.	50.0	
FB	PPM		<	10.0	
ΖŃ	PPM			25	
CD ·	PPM		<.	5.0	
ΑG	PPM.		<.	2.0	
AU	PPM		<.	4.0	O _.
, AS	PPM		<	1	
SB	PPM		<.	30.0	
BI	PPM		<	100	
U	PPM		<.	2500	
ΥŒ	PPM		<	50.0	а
SN	PPM		<.	5.0	V
W	PPM		<.	1200	
:	PPM			2	
PE	PPM			0.8	
P	PPM		<	400	Ä
ZR	PPM 552		<	5.0	
LA	FPM		<	5.0	V
CE	PPM PPM		< <	10.0 150	
TH HG	PPB		<	150 5	
114					
:	TOTAL			37,1	50

ELEMENT			CO	VCENTRATIO	N_{i}
NA	% OX.			1.81	
K ×	% OX.			0.134	
CA '	% OX.		~	13.66	
MG	% OX.			0.328	
FE	% OX.			6.48	
AL	% OX.			18.87	
SI	% OX.		<	1.60	
TI	% OX.			0.326	
P	% OX.			0.146	
SR	PPM			1118	
BA	% OX.			0.012	
V	PPM		<	250	
CR	PPM.		<	2.00	
MN	% OX.			0.186	
CO	PPM	•		84	
NI	PPM			5,00	
CU	PPM			5	
MO	PPM		<	50.0	
PB	PPM		<.	10.0	
ZN	PPM			1.7	
CD	PPM		. <	5.00	
AG	PPM	•	<	2.00	
AU	PPM		<	4.00	
AS	PPM		4.	1	
SB	PPM		< <u>'</u>	30.0	
BI	PPM		<	100	
Ü	PPM		<	2500	
TE	PPM		<	50.0	
SN	PPM		<_	5.00	
W	PPM		<	1200	
LI	PPM		<	2.00	
T/ :	PPM			1.0	
E	FFM		` <	400	
ZR	PPM		<.	5.00	
ĹΛ	PPM			8	
CE	P'P'M		<	10.0	
TH	FFM		<	150	
1			<	5	
	TOTAL		<u>.</u> .	43.556	

E	LEMEN.	Υ Ι			CC)NCENTRATION
		٠				
	NA .		% OX.			2 + 97
	K		% OX.			0.096
	CA		% OX.			14,30
	MG		% OX.			0.187
	FE		% OX.			6.84
	AL.		% OX.			20,06
	SI		% 0X.,		. <	1.60
	TI-		% OX.			0.205
	<u> </u> :-		% OX.			0.106
	SR		PPM			1170
	BA		% OX.			0.016
	V		PPM		40	250
	CR		FFM		<	2.00
	MŃ		% OX.			0.129
	CO		PPM			20
	ΝI		PPM		<	5.00
	CU		PPM			10
•	MO		PPM	•	<	50.0
	PB		PPM ·		<	10.0
;	ZN		PPM			24
	CD		PPM		<	5.00
	AG		PPM		<	2.00
	AU		PPM		<	4.00
	AS		PPM		<	1 .
	SB		PPM		<	30.0
	BI		FFM		<	100
	U		PPM		<	2500
	TE		PPM		<	50.0
	SN		PPM		<	5.00
	W		PPM		<	1200
	LI		PPM		<	2.00
•	ΒE		PPM			1.3
	B		PPM		<	400
	ZR		PPM		<	5.00
	L.A		PPM		<	5.00
	CE		PPM	•	<	10.0
	TH		PPM			150
					<	5
			7" (7) 7" A I			A 2 - 574 A
:			TOTAL			46.514

ELEMENT		CC	NCENTRATION
NA	% OX.		2.26
K	% OX.		0.303
CA 1	% OX .		11.24
MG	% OX.	•	0.594
FE	Z OX.		5.85
AL.	% OX « °		18.30
81	% OX.	<	1.60
TI	% OX.		0.345
p.	% OX.		0.183
SR	PPM		1055
BA	% 0×.	•	0.022
V	PPM	<	250
CR	PPM	4 (2.00
MN	% OX.	• •	0 , 134
	PPM		42
NI	PPM	<_	5.00
CU	PPM	•	5
MO	PPM	< .	50.0
le B	PPM	<	10.0
ZN	PPM		25
CD	PPM	<	5.00
AG	PPM	<i>√</i> <	2.00
ΑU	PPM	· <	4.00
AS	PPM	<	1
SB	PPM	. <	30.0
BI	PPM	< <	100
IJ	PPM	<	2500
TE	PPM	<	50.0
SN	PPM	<	5.00
· W	PPM	. <	1200
L. I	PPM	<	2.00
EE	PPM		1.0
B	PPM	<	400
ZR	PPM	<	5.00
L.A	PPM		6
CE	PPM	<	10.0
TH	PPM	<	150
	PPB	<	5
•	TOTAL		40.833

ELEMENT		CO	NCENTRATION
NA	% OX.		1.02
K	% OX.		3.62
CA	% OX.		2.97
MG	% OX.		2.15
F	% OX.		5.42
AL.	% OX.		17.40
SI	% OX.	<	1.60
TI	% OX.	·	0.809
!:: '	%_OX*		0.222
SR.	PPM		274
BA	% OX:		0.061
V	PPM	<	250
CR	PPM "/ AN		46
MN	% OX. PPM		0.173
CO	erm PPM		2 %
NI CU	PPM		30 39
MO	PPM	<	50.0
PB	PPM		13
ZN	PPM		272
CD.	PPM	<	5.00
AG	PPM	į.	2,00
ΑÜ	PPM		4.00
AS	PPM		2
SB	PPM	<	30.0
BI	PPM	<	100
U	PPM		2500
TE	PPM	<	50.0
SN	FFM	<	5.00
W	PPM	<	1200
L. I	PPM		24
BE	PPM		2.1
B	PPM	<	400
ZR	PPM		63
LA	PPM		1.2
CE	PPM	<	10.0
TH	PPM	< -	150
		< .	5
	TOTAL		35.447

ELEMENT		CC	DNCENTRATION
NA	% OX.	•	2,48
K	% 0/. % 0/.		0.518
CA	% OX.		8.80
MG	% OX.		0.703
FE	% OX.		5.45
AL	% OX.		17.71
SI	% OX.	<	1.60
TI	% OX.	*•	0.384
r .i.	% OX .		0.222
SR	PPM		835
BA	% OX.		0.037
V	PPM	•	250
ČR	PPM		2.00
MN	% OX •	•	0.137
CO	PPM		49
NI	PPM	<	5.00
CÜ	PPM	·	188
MO	PPM	<	50.0
PB	PPM	<	1.0 . 0
ZN	PPM		34
CD	PPM	<.	5.00
AG	PPM	<	2.00
AU	PPM	<.	4.00
AS	PFM	<	1
SB	PPM	<	30.0
BI	PPM	<	100
IJ	PPM	<	2500
7 12	PPM	<	50.0
SN'	· PPM	<	5.00
W	PPM	<	1200
LI.	FPM .		3
BE	PPM '		$1 \cdot 1$
В	PPM		400
ZR	PPM	<.	5.00
L.A	PPM		21
CE	PPM		24
TH	PPM		150
		<	5
	TOTAL		38.242

ELEMENT			CO	NCENTRATION
	W CAN	•		0.112
NA K	% OX. % OX.			3.91
CA '	% OX »			6.42
MG	% OX.			1.77
FE	% OX.			4.71
AL	% ÖX.			16.43
SI	% OX.		<	1.60
ΤÏ	% ÖX.		•	0.288
p p	% OX.			0.182
SR	PPM			179
BA	% OX.			0.094
. V	PPM		<.	250
CR	FPM		<	2.00
MN	% OX.			0.593
CO	PPM			26
NI	PPM .		<.	5.00
CU	PPM			13
MO	PPM		<.	50.0
_/ PB	PPM		<.	10.0
ZN	PPM			182
CD	PPM		< .	5.00
AG	PPM		<.	2.00
AU	PPM		<.	4.00
AS	PPM			16
SR	PPM		<	30.0 100
BI	PPM		< .	2500
U	PPM PPM		~	2500 50.0
TE SN	PPM		`` 	5.00
W	PPM		<	1200
L. I	PPM		•	12 .
BE	PPM			1 . 1
	PPM		<.	400
ZR	PPM		<	5.00
Ī. A	PPM		•	12
CE	PPM		<	10.0
TH	PPM		<	150
				5
	TOTAL.			36.109

EL	EMENT						CC	MOENTRATION
i	NA		% OX.					0.062
	Κ ,		% 0X.			•		2.11
	CA		% OX.					17.40
	MG		% OX.					1.54
	FE		%_0X.					4.26
	AL.		% OX.					8.85
	SI		% OX.				:	1.60
	ΤI		% OX.					0.180
	P		% OX.					0.082
	SR		PPM					391
	BA		% OX*					0.027
	V		FFM				•:	250
	CR		PPM				40	2.00
	MN		% OX.					2.07
	CO		eeM					64
	NI		PPM					8
	cu		PPM					400
	MO		PPM				·:[50.0
	FB		PPM				*:	10.0
	ZN		PPM			•		23000
:	CD		PPM					133
	AG		PPM					· 꼊
	AU		PPM					4.00
	AS		PPM				<	1
	SB	_	PPM				<.	30.0
	BI	•	PPM				<.	100
	U		PPM				<.	2500
	TE		PPM				<. `	50.0
	SN		PPM				<.	5.00
!	W		FFM				<	1200
	LI		PPM					1.5
	BE		PPM					1 , 1
	B		PPM				:	400
	ZR		PPM					5.00
	LA		PPM.					10
1	CE		PPM					13
	TH		PPM		•		<.	150
	HG		PPB					815
			TOTAL	,				38.186

୫ଟ**୦ m**

ELE	MENT			CON	CENTRATION
K C M	A 0 E	% 0% . % 0% . % 0% . % 0% . % 0% .	•		2.43 0.867 9.24 0.225 4.97
5 T E	R IA	% OX. % OX. % OX. % OX. PPM % OX.		<	1.60 0.173 0.064 588 0.043
) / C N	R IN IO II	PPM PPM Z OX+ PPM PPM PPM		< <	2.00 2.00 0.236 63 5.00
	.0 10 18 1N 15	PPM PPM PPM PPM	·	< < <	50.0 10.0 -25 5.00
	NU 185 186 187 187	PPM PPM PPM PPM PPM		< < < < < < < < < < < < < < < < < < <	4.00 1 30.0 100 2500
S		PPM PPM PPM PPM PPM		< < < < < < < < < < < < < < < < < < <	50.0 5.00 1200 2 1.0 400
	: CR .A CE CH IG	PPM PPM PPM PPM PPB			5.00 11 10.0 150 200
•		TOTAL			37,599

ELEMENT			į	CONC	ENTRATI	ON
NA	% OX.				0.731	
K	% OX.				1.35	
CA .	Z OX.				16,45	
MG	% 0X.				1.96	
FE	% ÖX.	-			5.99	
AL.	% OX.				8.74	
81	Z OX.			:	1.60	
TI	% OX.			•	0.137	
p ·	% OX.			•	0:049	
SR	"PPM	/			275	
BA	% OX.		-	•	0.030	
V	PPM		٠.		250	
ČR	PPM				2.00	
MN	% 0X.			•	2.55	
CO	"PPM				98	
NI	PPM			<	5.00	
CU	PPM			•	9	
MO MO	PPM			<	50.0	
PB	PPM			•	16	
ZN	PPM				199	
. (75 Yr) . (27 Ar)	PPM			<	5.00	
AG	PPM			<	2.00	
AU	PPM			Ċ	4.00	
AS	PPM			Ċ.	1	
SB	FFM				30.0	
BI	PPM				100	
Ü	PPM				500	
TE	PPM			<	50.0	
SN	PPM			•	23	
W	PPM			< 1	200	
LI	PPM				13	
BE	PPM				0.8	
B	PPM			<	400	
ZR	PPM				5.00	
LA	PPM				18	
CE	PPM				23	
TH	PPM			<	150	
HG	PPB		•	<	5	
	TOTAL	•			39.507	

ELEMENT				CC	ONCENTRATION
NA	% OX.				4 4 1
K	% OX.				1,10 0,946
CA .	% OX:				
					1.90
MG	% OX.				0.328
FE	% OX *				1.02
AL.	% OX.				7.08
SI	% OX.			<	1.60
T I	% OX.				0.093
P'	% OX.				0.054
SR	PPM				170
BA	%_OX+				0.076
V 	FFM			1	250
CR	PPM			<.	2.00
MN	% OX.				0.037
CO	PPM				101
NI	PPM			<.	5.00
CU	PPM				26
MO.	PPH	• .		<.	50.0
PD	PPM .			<.	10.0
ZN	· PPM	•			1.6
CD	PPM			:	5.00
AG	PPM			4.	2.00
ΑU	PPM,			<	4.00
AS	PPM			<	1
SB	PPM			<.	30.0
BI	PPM			40	100
U	PPM			<	2500
TE	PPM			<	50.0
SN	PPM			<.	5.00
W	PPM	•	•	<	1200
LI	PPM				3
PE	PPM			<	0.500
P	PPM			<	400
ZR	PPM			<.	5.00
LA	PPM			•	6
CE	PPM			<	10.0
TH .	PFM			<	150
HG	PPB			•	10
	TOTAL				14.238

1060

ELEMENT		co	NCENTRATION
	• .		
NA	% OX↓		2.31
. K	% OX.	,	0.583
CA	% OX.		8.77
MG	% OX.		0.239
FE	% OX.	•	4.24
AL	% OX.		16:81
SI	% OX.	<	1.60
ΤÏ	% ÖX.	•	0.204
P	% OX.		0.097
SR	PPM		921
BA	% OX.		0.057
V	PPM	<	250
CR	PPM	<	2.00
MN	χ οχ.	•	0.169
co	PPM		63
NI	PPM	< 1	5.00
cū	PPM	į.	5.00
MO	PPM	<	50.0
PB	PPM	<	10.0
ZN	PPM.		11
CD.	FPM	<	5.00
ΑĞ	PPM		2.00
AU	PPM	<	4.00
AS	PPM	<.	1
SB	PPM	. <	30.0
BI	PPM		100
U	PPM	<	2500
TE	PPM	<	50.0
SN	PPM	i k	5.00
W	PPM	<	1200
LI	FFM	<	2.00
BE	PPM		1.0
B	PPM	<	400
ZR	PPM		8
LA	PPM		11.
ĈE	PPM	<.	10.0
TH	PPM		150
HG	PPB	<	5
	TOTAL		35.073

ELEMENT		CONCENTRATION
NA	% OX.	1.31
K	% OX.	0.166
CA	% OX.	30.20
MG	Z OX.	0.642
FE	Z OX.	1.62
AL	% OX.	8.19
SI	% OX.	1.60
TI	% OX.	0.1 51
P	% OX.	0.081
SR	PPM	3335
BA.	% OX.	0.031
V	PPM	< 250
CR	PPM	< 2.00
MN	% OX.	0.685
CO	PPM	30
NI	PPM	< 5.00
CU	PPM	< 5.00
MO	PPM	< 50.0
PB	PPM	< 10.0
ZN	PPM	21
CD	PPM	< 5.00
AG	PPM	< 2.00
AU AS	PPM	< 16.0 < 1
SB	PPM	< 30.0
BI	PPM	< 100
U	PPM	< 2500
TE	PPM	< 50.0
SN	PPM	< 5.00
W	PPM	< 1200
L. I	PPM	2
BE	PPM	< 0.500
B	PPM	< 400
ZR	PPM	< 5.00
LA	PPM	< 5.00
CE	PPM	17
T'H	PPM	< 150
HG	PPB	10

ELEMENT			CO	NCENTRATION
	•			
NA	% OX.			2.48
K	% OX.			0.390
CA	% · 0X •	•		5.97
MG	% OX.			1.02
FE	% OX.			1.95
AL.	% OX.			14.01
SI	% OX.		<	1.60
. TI	% OX.			0.124
P	% OX.			0.103
SR	PPM			629
BA	% OX.			0.032
V.	PPM		<	250
CR	PPM		<	2.00
MN	% OX.			0.080
CO	PPM			180
NI	PPM		<	5.00
CU	FFM		<	5.00
MO	PPM		<.	50.0
F.B	PPM		. • .	10.0
- ZN	PPM			37 ·
CD	PPM		<.	5.00
ΑG	PPM		4.	2.00
AU	PPM		*: <u>`</u>	16.0
AS	PPM		<	1
SB	PPM.	•	<	30.0
BI	PPM		<	100
IJ	PPM		<	2500
TE	FPM		<	50.0
SN	PPM		<	5.00
- W	PPM		<.	1200
LI	PPM			ó .
BE	PPM			0.7
B	PPM .		<	400
ZR	PPM		<	5.00
LA	PPM			8
CE	PPM	•	*	10.0
TH	PPM		**	150
HG	PPB	. •		25

ELEMENT			CO	NCENTRATION
NA	% OX.			2.21
K	% OX.			0,797
CA	% OX.			9.39
MG	% OX.			0.673
FE	% OX.			5.89
AL.	% OX.			20,28
SI	% OX.		•:	1.60
TI	% OX.			0,335
P	% OX.			0.162
SR	PPM			813
BA	‰ OX.			0.037
V	PPM		<	250
CR	PPM		<	2.00
MN	% OX.			0.105
CO	. PPM			56°
NI	PPM		<	5.00
CU	PPM		<	5.00
MO	PPM		<	50.0
PB ·	PPM	e.	<.	10.0
ZN	PPM			38
CD	PPM		*.	5.00
AG	PPM		<	2.00
AU	PPM		<	16.0
AS	PPM			2
SB	PPM		< <	30°0
BI	PPM		<_	100
U	PPM		<	2500
TE	PPM		<	50.0
SN	PPM	•		15
Ш	PPM		<	1200
LI	PPM			20
BE	PPM			1.1
E	PPM		<	400
ZR	PPM		Š	5.00
LA	PPM		•	6
CE	PPM		<	10.0
TH	PPM		<	150
HG	PPB		•	
110	FFD			5

ELEMENT	•		CC	NCENTRATION
NA	% OX.			2.69
K	% OX.			0.743
CA	% OX.			8.97
MG	% OX.	•		1.45
FE	% OX.			5.51
AL.	% OX.			19.55
SI	% OX.			1.60
TI	% OX.			0.468
P.	% OX.			0.226
SR	PPM			909
BA	% OX.			0.043
V	PPM	•	<	250
CR	· PPM		<	2.00
MN	% OX.			0.172
CO	PPM			58
NI	PPM			5
CU	PPM	•		5.00
MO	PPM		< '	50.0
PB	PPM		<	10.0
ZN	PPM		.•	48
CD	PPM		<	5.00
AG	PPM		<	2.00
AU	PPM		<	16.0
AS	PPM		< <	1
SB	PPM PPM		<	30.0 100
n Pr	PPM		<	2500
TE	PPM		<	50.0
SN	PPM		À	5.00
W	PPM		<	1200
LI	PPM		**	11
BE	PPM			1.3
В	FPM	•	<	400
ZR	FFM		Ċ.	5.00
LA	PPM		•	8
CE	PPM		<	10.0
TH	PPM		<	150
HG	PPB		-	.5
	-			•

ELEMENT	ŗ	CONCENTRATIO	N
NA K	% OX. % OX.	2.49 0.739	
CA	% OX.	10.91	
MG	% OX.	1.03	
FE	% OX.	6.54	
AL.	% OX.	19.95	
SI	% OX.	< 1.60	
ΥI	% OX.	0.356	
P	‰ O×.	0.193	
SR	PPM	881	
BA	% OX.	0.037	
Ų	PPM	< 250	
CR	PPM	< 2.00	
MN	% OX.	0.124	
CO	PPM	43	
ТИ	PPM	< 5.00	
CU	PPM	29	
MO	PPM	< 50.0	
PB	PPM	< 10.0	
ZN	PPM	40	
CD	PPM	< 5.00	
AG	PPM	< 2.00	
AU	PPM	< 16.0	
AS	PPM	< 1	
SB	PPM	< 30.0	
BI	PPM	< 100	
U	PPM	< 2500	
TE	PPM	< 50.0	
SN	PPM	<u>&</u>	
W	PPM	< 1200	
LI	PPM	8	
BE	PPM	1.1	
B	PPM	< 400	
ZR	PPM	< 5.00	
LA	PPM	8	
CE	PFM	10	
TH	PPM	< 150	
HG	PPB	20	

	*		
ELEMENT		CO	NCENTRATION
NA	% O×.		3.34
K	% OX.		0.858
ĈA	% OX.		8,09
MG	% OX.	•	1.60
FE	% OX.		5.18
AL	% OX.		18.44
SI	% OX.	<	1.60
TI	% OX.	•	0.444
p	% OX.		0.217
SR	PPM.		826
BA	% OX.	•	0.065
V	PPM	<	250
ČR	FFM	į.	2.00
MN	% OX.		0.155
CO	PPM		80
NI	PPM	<	5.00
cü	PPM	<	5.00
MÖ	PPM	<	50.0
FB	PPM	<	10.0
ZN .	PPM		53
CD	PPM	·	5.00
AG	FPM	<	2.00
AU	PPM	· · · · · · · · · · · · · · · · · · ·	16.0
AS	PPM	<	1 .
SB	PPM	<	30.0
BI	PPM	<	100
U	PPM	<	2500
TE	PPM	<	50.0
SN	PPM	,	7
W	PPM .	<	1200
LI	PPM		8 .
BE	PPM		1.0
B	PPM	<	400
ZR	FFM	<.	5.00
LA	PPM		8
CE	PPM	<	10.0
TH	PPM	<	150
HG	PPB		5

ELEMENT				CO	NCENTRATION
				•	
NA	% OX.				0.057
K	× X OX.				0.497
CA	% OX:				38.36
. MG	% .OX *				1.33
FE	% OX.				2.24
AL.	% OX.	ļ			2.52
SI	% OX.			<	1.60
TI	% OX.				0.055
P	% OX∘				0.029
SR	P'P'M				399
BA	% OX.				0:047
1 V	PPM				250
CR	PPM			<.*	2.00
MN	% OX∗				0.744
'co	PPM				16
NI	PPM			4.	5.00
cu ·	PPM				242
MO .	PPM.				50.0
PB	PPM		•		316
ZN '	PPM		•		4827
CD	PPM				26
1 A 72	. PPM				4
AU	PPM		-		1. 1.
AS	PPM				8
SB	PPM			<.	30.0
BI	PPM			40	100
¹ U	PPM			*.	2500
TE	PPM			<.	50.0
SN	PPM				5.00
W	PPM			<.	1200
LI	PPM				8
BE	PPM				0 . 7
B	PPM -				400
ZR	PPM	٠			7
LA	PPM		•	<	5.00
CE	PPM			**	10.0
TH	PPM			<	150
HG	PPB	. *			660
	TOTAL				47.485

520 m .

ELEMENT			- CO	NCENTRATION
NA.	% OX÷			3.30
* K	% OX.			1.44
CA	% OX.	•		3.02
MG	% OX.			1,20
FE	% OX.			2.97
AL	% OX.			16.99
SI	" " " " " " " " " " " " " " " " " " "		<	1.60
ΥΙ	% OX.			0.502
P	% OX.			0.179
SR	PPM			234
BA	% OX∙			0.041
V	PPM		<	250
CR	PPM			14
MN	% OX.			0.362
CO	PPM		•	23
ΝI	PPM			18 20
CU	PPM			50.0
MO	PPM		< <	10.0
PB	PPM		•	27
ZN	PPM		<	5.00
CD	PPM	•	~	2.00
AG	PPM PPM	•	•	6
AU AS	PPM		<	1
SB	PPM		<	30.0
BI	PPM		· Č	100
n.	PPM		· ·	2500
TE	PPM		<	50.0
SN	PPM		<	5.00
W	PPM		<	1200
ĹI	PPM			40
BE	PPM			1.0
B	FFM	•	<	400
ZR	FPM			90
LA	FFM			14
CE	PPM			15
TH	PPM		<	150
HG	PPB			5
	TOTAL			31.594

460 m

ELEMENT				·co	NCENTRATION
NA K CA MG FE AL SI TI	% OX. % OX. % OX. % OX. % OX. % OX. % OX.			<.	1.10 0.076 16.80 1.13 8.96 20.93 1.60
P SR BA V CR MN	% OX. PPM % OX. PPM PPM % OX.	•		: <	· 0.256 1333 0.004 250 2.00 0.153
CO NI CU MO PB ZN	PPM PPM PPM PPM PPM PPM			< < < < < < < < < < < < < < < < < < < <	28 5.00 11 50.0 10.0
CD AG AU AS SB BI	PPM PPM PPM PPM PPM PPM	, .	•	< < < < < < < < < < < < < < < < < < <	5.00 2.00 4.00 1 30.0 100
U TE SN W LI BE	PPM PPM PPM PPM PPM PPM			< < < < < < < < < < < < < < < < < < <	2500 50.0 5.00 1200 7
ZR ZR LA CE TH	PPM PPM PPM PPM PPM			< < < < < < < < < < < < < < < < < < <	400 5.00 3 13 150
HG	PPB TOTAL		1		5 51.480

ELEMENT			CONCE	NTRATIC)N
ELEMENT NK AGE ASI PRA CMONUO BN COMPRASI PRA CMONUO BN COMPRASI EN	% OX. % OX. % OX. % OX. % OX. % OX. % OX. % PPM % PPM % PPM PPM PPM PPM PPM PPM PPM PPM PPM		< 2 < 79 < 19 1148 < 25	0.037 1.12 3.96 1.04 8.31 5.04 1.60 0.105 0.052 50 2.00 2.83 31 9 37 50.0 200 10 12 31	N
W LI BE B ZR LA CE TH HG	PPM PPM PPM PPM PPM PPM PPM PPM PPM	•	< 4 <	16 0.9 00 5.00 7 10.0	
	TOTAL.			24.118	

ELEMENT			CONCENTRATION		
NA	% 0×.			2.90	
K	% OX.			0.340	
1 ĈA	% OX.			8.37	
MG	% OX.			3.19	
FE	% OX.			7,50	
AL	% OX.	•		20.66	
SI	% OX.		<	1.60	
ΤÏ	% OX.		•	0.852	
p.	% OX.			0.369	
SR	PPM			867	
BA	% 0×.			0.019	
V	PPM		<	250	
CR	PPM			1.5	
MN	% OX.			0.210	
CO	PPM	•		50	
NI	PPM			1.1.	
CU	PPM			304	
MO	PPM		:	50.0	
FB	PPM			10.0	
ZN ·	PPM	•		83	
CD	PPM		*:	5.00	
AG	PPM	•	<	2.00	
AU	PPM			4	
AS	PPM			1	
SB	PPM		<	30.0	
BI	PPM		<	100	
U	PPM		<	2500	
TE	PPM		<.	50.0	
SN	PPM		*	5.00	
W	EPM		<	1200	
LI.	PPM		•	6	
BE	PPM			1.2	
B	PPM		<	400	
ZR	PPM			7	
LA	PPM			14	
CE	PPM			16	
TH	PPM		<	150	
HG	PPB	•		115	
	TOTAL			46.018	