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1. INTRODUCTION

1.1 General

Terrain stability mapping involves mapping the terrain to delineate areas that are stable and areas
of existing and potential landslides, assessing the probability of those landslides occurring, and
may include assessing the associated landslide risks. Landslide hazard and risk mapping, or
simply landslide hazard mapping, are other terms commonly used to describe terrain stability

mapping.

In British Columbia terrain stability mapping is used for resource development planning (for
example in the forest industry); for land use and development planning; and for planning of linear
projects such as for roads, railways, pipelines, and transmission lines.

The Earth Science Task Force of the British Columbia Resources Inventory Committee retained
Thurber Engineering (Robert Gerath and Oldrich Hungr), in association with VanDine Geological
Engineering (Doug VanDine), to review terrain stability mapping methods currently used in
British Columbia, the Northwest United States and elsewhere in the world, and to suggest
methods appropriate for a wide range of uses. This report is a summary of the review and the
suggested methods.

The purposes of establishing standard methods are:

o to define reasonably uniform procedures, levels of effort and expertise for professionals
involved in mapping projects;

e to develop common terminology, classifications, and symbols to improve communications
among professionals involved in mapping, and between mappers and non-professionals
who use such maps; and

e to prepare for technological changes, such as the introduction of computerized data bases
and Geographical Information Systems (GIS).

1.2 Method and Scope
The review included a literature review and discussions with individuals experienced in terrain

stability mapping and with map users. The suggested methods are based on the findings of the
literature review, the discussions, and the collective experience of the authors.
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Chapter 2 introduces landslides and the concepts of landslide hazards, consequences and risks.
Chapters 3 and 4 provide a summary of the findings of the review. Chapter 5 presents general
aspects of the suggested terrain stability mapping methods. Chapter 6 discusses specific aspects
of terrain stability mapping in the context the forest industry, land use planning and linear project
planning. The documents reviewed and referenced are listed in the bibliography in Chapter 7.
Throughout the text a number of examples are referenced. The referenced examples are by no
means exhaustive, and have purposely been limited.

Terrain stability mapping is based partly on scientific principles and partly on the intuition and
experience of the mapper. It is therefore difficult to codify and standardize. The most valuable
insights in terrain stability mapping are often obtained by experienced mappers with a flexible
imagination. The suggested methods outlined in this report are intended to aid the work of the
mapper, not stifle it by the imposition of rigid procedures. The authors hope that this report will
serve as a summary of useful procedures and as a guide for improved communication between
mappers and map users.

Although this report specifically addresses landslide hazards, many of the findings and
suggestions can be applied to other forms of mass movement, such as snow avalanches and
surface soil erosion, as well as other natural hazards.

The authors wish to acknowledge the numerous individuals who have contributed to this study
and report in many different ways.
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2. LANDSLIDES, HAZARDS, CONSEQUENCES AND RISKS

This Chapter introduces landslides in general (Section 2.1), landslides in British Columbia
(Section 2.2), and the concepts of landslide hazards, consequences and risks as they pertain to
terrain stability mapping (Section 2.3).

2.1 Landslides

A landslide event is defined as "the movement of a mass of rock, debris or earth down a slope"
(Cruden 1991). The word 'landslide’ also refers to the geomorphic feature that results from the
event. Other terms used to refer to landslide events include 'mass movements', 'slope failures',
'slope instability' and 'terrain instability'. In spite of the simple definition, landslide events are
complex geological/geomorphological processes and are therefore difficult to classify. The
classification system most commonly used in North America, and used in this report, is modified
from Varnes (1978) to reflect the common usage in British Columbia (Table 2.1). The
classification is based upon material type and type of movement, and is similar to the updated
classification of slope movements suggested by Cruden and Varnes(1996).

2.1.1 Material Type

The material involved in a landslide is classified into two groups, 'bedrock’ and 'soil'. Soil, which
is generally unconsolidated surficial material, is further subdivided into 'debris' and 'earth’
depending upon its texture.

Bedrock refers to earth materials that have lithified by some rock-forming process. Its strength
depends not only on the rock type but also on the degree of weathering and the density and
orientation of the discontinuities, which are generally the planes of weakness in the rock mass.
For instance, if a strong, hard granite contains many fractures, the rock mass may be no stronger
than a coarse grained soil.

Debris is composed of predominantly coarse grained soil (bouldery through to gravel and sand-
sized materials), or as mentioned above, can also include highly fractured bedrock. The strength
of coarse grained soil is generally derived from friction between the grains. Woody debris such
as trees or logs, or other organic material, is sometimes incorporated with the inorganic debris.

Earth refers to predominantly fine grained soil (primarily of silt and clay sized materials). The
strength of fine grained soil is generally derived from cohesion, the chemical and electrical
bonding between the small particles.
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2.1.2 Type of Movement

Falls take place rapidly by free-fall, bouncing, or rolling, and may develop into either slides or
flows.

Topples consist of the rapid rotation of a unit of rock or soil about some pivot point. Toppling
may not lead to either falls, slides or flows.

Slides involve the movement along one or more distinct surfaces. Slides are subdivided into
'rotational slides' and 'translational slides', depending upon the shape of the failure plane.

Rotational slides, also referred to as slumps, involve movement along a curved failure
plane. Often the failure plane did not exist before movement occurred. Rotational slides
usually involve relatively few distinct rock or soil units.

Translational slides involve the movement of many rock or soil units along a plane. If
few distinct units are involved, the movement is referred to as a 'translational block slide'.
Often the failure plane existed before movement occurred.

Most rotational and translational slides occur rapidly, however, some earth slumps and slumps in
weak rocks can occur slowly, over many days or even years.

Lateral spreads are dominated by lateral extension of the ground, accompanied by shear or
tensile forces, and a general subsidence of the ground surface. They generally occur relatively
slowly.

Flows describe movement that resembles a viscous fluid. Some flows occur slowly, others occur
rapidly. Velocity within the flowing mass is usually decreases with depth and laterally. In most
cases, water is an integral component. Creep is a type of flow that occurs very slowly.

Complex landslides involve the combination of two or more types of movement. Commonly one
type of movement starts the material moving, such as a debris slide, and once underway the
material takes on the character of another type of movement, such as a debris flow. The name of
the complex movement is a combination of the types of movement, in order of occurrence, such
as a debris slide-debris flow. The rate of movement depends on the types of movements and
material types involved.

2.2 Landslides in British Columbia

At present there is no comprehensive inventory of landslides in British Columbia, however, most
types of landslides occur in the province. A number of the publications that review landslides in
the province include Eisbacher (1979); Evans and Gardiner (1989); Evans (1991); Evans (1992);
VanDine (1992); BC Ministry of Energy, Mines and Petroleum Resources (1993), and BC
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Rock falls and rock topples are associated with steep, near vertical or overhanging natural
bedrock bluffs and steep bedrock excavations. Where they occur frequently, the bedrock is
usually moderately to highly fractured with intersecting fractures. Rock falls and rock topples
vary in size from a single piece of rock to many thousands of cubic metres. They often occur
rapidly without warning. Rock falls and rock topples occur in all areas of British Columbia.
Small rock falls are common along many of the province's transportation routes.

Debris and earth falls and topples are associated with steep, near vertical or overhanging natural
soil bluffs or excavations. They vary in size from a single boulder or block of soil to many
hundreds of cubic metres. They often occur rapidly and without warning. Debris and earth falls
and topples occur throughout the province, wherever the appropriate vertical relief exists. They
are common in the dryer southern interior and are a concern along a number of the interior
transportation routes.

Rock slumps most frequently involve large tracts of land, up to several kilometres across. They
are usually located along river banks or along steep valley sides and are generally associated with
weak, fine textured bedrock types. Glacier unloading is postulated as one triggering mechanism
of rock slumps. They can occur moderately fast, all at once, or slowly and progressively. Large
slow-moving rock slumps are commonly found bordering river valleys, in particular in
northeastern British Columbia, for example along the Peace River and Laird River valleys.

Rock block slides and rock slides are generally associated with stronger rock types that fail along
pre-existing planes of weakness. They usually occur rapidly in strong rocks and more slowly in
weak rocks. Once the initial failure has occurred they can continue to move slowly and/or
intermittently. They can vary in size from very small, involving one or several blocks of rock, to
extremely large.

Rock block slides and rock slides occur in all mountain ranges within the province. An example
of a large rock block slide is Downie Slide north of Revelstoke along the Columbia River valley.
Hope Slide east of Hope, which occurred in January 1964, is an example of a large rock slide.
Some rock slides can have extremely long runout zones and become debris flows. The resulting
complex landslide is often referred to as a 'rock slide-avalanche', or simply a 'rock avalanche'. An
example of a rock slide with a long runout is the 1959 Pandemonium Creek rock avalanche in the
Southern Coast Ranges which travelled nearly 8 km along a stream valley inclined at only 6° to
90,

Earth slumps are usually located along river banks, road cuts or steep valley sides. They can
involve the displacement of one or more rotational blocks of weak, predominantly fine grained
soil. They can occur extremely slowly to rapidly, all at once, or slowly but progressively. They
can stabilize then remobilize, and often retrogress with time. Earth slumps vary in size from
small, involving several cubic metres, to large, involving many hundreds of thousands of cubic
metres.
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Earth slumps are common in glaciolacustrine sediments along the interior valleys of the
province, in particular the Thompson, Columbia and Okanagan valleys. Many spectacular
examples of large rapid earth slumps were triggered by flood irrigation of silt benches at the turn
of the century. With today's restrained irrigation techniques, landslides of this type occur less
frequently. Earth slumps also occurr underwater, as submarine earth slumps, within delta fronts.
Examples are those which occurred along Howe Sound and Douglas Channel, near Kitimat.

Debris slides are common in areas with steep slopes and high rainfall. They often occur during
periods of intense rainfall. They tend to be shallow failures and usually occur along planes of
weakness between looser, overlying soil such as colluvium or weathered till, and denser,
underlying material, such as unweathered till or bedrock. Debris slides are also common along
road fills. They vary greatly in size from very small, involving an area a few square metres, to
large, involving up to many hectares. Once started, they usually travel rapidly and can develop
into debris flows. Debris slides are ubiquitous in all parts of the Coast Mountains, Vancouver
Island and the Queen Charlotte Islands. They also frequently occur in the wetter parts of the
interior of the province, such as the Columbia Mountains.

Debris flows can occur on open slopes or in pre-existing channels. Open slope debris flows are
also referred to as 'debris avalanches'. Channellized debris flows have in the past been referred
to as 'debris torrents'. Both open slope and channelized debris flows involve the rapid movement
of liquefied, predominantly coarse grained soil and sometimes large organic debris, on steep
terrain. They may be initiated by debris slides or rock slides. The volume of the debris often
increases downslope as a result of slope erosion and/or channel scouring. Debris flows occur in
surges and often come to rest many hundreds to thousands of metres from the initiation zone.
Debris flows are common in all mountain regions of British Columbia. They can vary from
small, involving several tens of cubic metres, to large, involving many thousands of cubic
metres.

Earth flows are large, slow or rapid moving landslides of predominantly fine grained soil and/or
weathered volcanic bedrock. They usually involve relatively large tracts of land. Earth flows are
common in the Interior Plateau. The 1993 Mink Creek slide near Terrace is an example of a
rapid earth flow in glaciomarine sediments.

Soil creep is a shallow, slow-moving form of an earth flow involving thin layers of near-surface
soil. Where permafrost is involved, the movement is referred to as 'solifluction'. Soil creep is
found throughout the province, while solifluction is found in northern British Columbia and in
the higher alpine regions of the province.

2.3 Landslide Hazards, Consequences and Risks
The following summarizes some of the terms relating to terrain stability or landslide hazard and

risk assessment. It is adapted from Morgan et al (1992), Fell (1994) and Sobkowicz et al (1995).
Common abbreviations are included in parenthesis.
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2.3.1 Landslide Hazards

The word 'hazard' is derived from the Arabic word for 'a die' (singular of dice) and is often related
to 'chance or probability', as in the phrase 'to hazard a guess'. This definition is reflected in the
United Nations definition of natural hazard: "the probability of occurrence of a potentially
damaging natural phenomenon" (Varnes 1984). In reference to landslides, Fell (1994) defines
'hazard' as "the magnitude of the event times the probability of its occurrence".

In British Columbia, however, 'hazard' is also often used to describe the damaging phenomenon,
as in 'natural hazard', 'geological hazard', landslide hazard', or a specific type of landslide hazard,
such as, a 'debris flow hazard'.

Hazard (H), as used in this report, is a condition or event that puts something or someone, in a
position of loss or injury, or in a position of potential loss or injury. A landslide hazard results
from a potential or actual landslide occurrence.

Probability of occurrence (P) is the chance or probability that a landslide hazard will occur. It
can be expressed in relative (qualitative) terms or probabilistic (quantitative) terms. Examples of
relative terms are 'very high', 'high', 'moderate' and 'low', or 'very frequent', 'frequent’, 'infrequent’
and 'seldom'.

Probability of occurrence can be expressed as an 'annual probability of occurrence' (P,), or a 'long
term probability of occurrence' (Px), where 'x' is a given number of years. The following
statistical equation converts Py to Py:

(Py) = 1-(1-P)*

For example, the probability of occurrence of a landslide hazard in a 50 year period given an
annual probability of occurrence of 1 in 475 is:

1-(1-(1/475))50
0.10
10%

P50)

For natural hazards that occur frequently in the same location such as floods, a statistical
probability of occurrence can be determined by rigorous analysis. Landslide hazards, however,
usually occur infrequently in a given location, therefore an estimated probability of occurrence is
often determined by judgement combined with empirical evidence. Such estimates may be
arrived at by consensus among a number of specialists and are referred to as Bayesian-like prior
probability estimates, or simply '‘Baysian-like estimates'. True Baysian estimates can only be
tested if events have a relatively high frequency of reoccurrence, for example snow avalanches
(McClung and Tweedie). Baysian statistics are described in texts such as (Freund 1973 and
Lapin 1983).
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The results of Bayesian-like estimates are often presented as ranges. The ranges presented in
Table 2.2 are useful benchmarks in that they decrease in a regular stepped manner and they relate
to some physical factors as well as to existing hazard acceptance.

Magnitude (M) is the volume of displaced material involved in a landslide hazard. The
magnitude can be expressed qualitatively by words such as 'small', 'medium' or 'large’, or
quantitatively as an actual volume or range of volumes. It should be emphasized that some
landslide events, such as debris flows, may take place as a number of separate smaller events or
surges, and the magnitude of the surge versus the total magnitude of the event must be
differentiated. From air photos it is often difficult to estimate the actual or potential thickness of
a landslide Therefore the area affected by the landslide hazard, with some assumption of
thickness, is sometimes used as a rough estimate of magnitude.

As in earthquake engineering, the magnitude of a landslide hazard can be related with the
probability of occurrence of that hazard. An example of a single 'magnitude-probability of
occurrence' relation is:

a colluvial fan that is subject to debris flow with an estimated magnitude of 10,000 m3,
with an estimated annual probability of occurrence of 1:200.

Intensity (I) is a collection of physical parameters that describe the destruction or destructive
potential of a landslide hazard, such the downslope velocity, the thickness of the landslide debris
and/or the impact forces. Intensity can also be expressed qualitatively, by words such as 'slow’,
'moderate’, and 'fast', or low', 'moderate’ and 'high', or quantitatively. Intensity varies with
location along and across the path of the landslide and therefore it should ideally be described
using a spatial distribution function.

As in earthquake engineering, the intensity of a landslide hazard at a given location can be related
to probability of occurrence of that hazard. An example of a single 'intensity-probability of
occurrence' relation is:

a specific site on a colluvial fan that is subject to debris flows with estimated velocities >
5 m/sec and an estimated debris deposition thickness > 2 m, with an estimated annual
probability of occurrence of 1:400.

For a range of magnitudes or intensities, and the corresponding range of probabilities of
occurrence, the relation can be graphed (Figures 2.1). The two curves represent the ranges in
confidence or uncertainty in assigning the parameters. The area beneath the magnitude (or
intensity)-probability of occurrence curve is the product of the magnitude (or intensity) and the
probability of occurrence, and represents the 'total hazard' as defined by Fell (1994).
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2.3.2 Landslide Consequences

Landslides hazards can result in a wide variety of downslope consequences, including
environmental, social and/or economic. To have a consequence, there must be something or
someone vulnerable to loss or injury, as described below.

Elements at risk (E) include any land, resources, environmental values, buildings, economic
activities and/or people in the area that may be affected by the landslide hazard. The elements at
risk can be quantified by placing a dollar value, or some other form of value, on them. Specialists
are often required to identify and/or evaluate certain elements at risk. For instance a fisheries
biologist should determine whether or not a stream is a fish stream and detemine the value of that
resource.

Vulnerability (V) is the degree of damage caused by a landslide hazard to the elements at risk. It
is usually expressed in relative terms, using words such as 'no damage', 'some damage', 'major
damage', 'and total loss', or by a numerical scale between 0 (no damage) and 1 (total loss). An
assessment of vulnerability often requires specialist input, such as engineers for structures and
resource managers for natural resources.

Vulnerability can also be subdivided, for example into spatial vulnerability (Vg -- will a particular
area be affected by the event?), temporal vulnerability (V¢ -- will the area be occupied by a person
at the time of the event?), and life vulnerability (V] -- will there be loss of life due to the event).
When expressed by a numerical scale, the subdivided vulnerabilities can be multiplied together to
obtain the total vulnerability (V = Vg x V¢ x V) (Morgan et al 1992).

Consequence (C) is the resulting loss or injury, or the potential loss or injury. It is the product of
the elements at risk and the vulnerability (E x V), and can be quantified if the element at risk is
expressed as a value and the vulnerability is expressed numerically.

When a consequence is expressed qualitatively, it is sometimes referred to as a 'consequence
rating'. The phrase, 'there is a high probability that landslide debris will reach the creek, cause
siltation and damage fish habitat', is an example of a consequence rating.

2.3.3 Landslide Risks
Landslide risk considers both the landslide hazards and the consequences. Simply stated, risk is
the product of the probability that a landslide hazard will occur and the consequence of that

occurrence:

R =PxC
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Specific risk (Rg) is the product of the annual probability of occurrence and the vulnerability (Rg
= P4 x V) for a specific element at risk. Depending on the quality of the data and the methods
used to express annual probability of occurrence and vulnerability, specific risk can be expressed
qualitatively or quantitatively.

Total risk (R) is the sum of the specific risks, or the sum of the product of the annual probability
of occurrence, the elements at risk and the vulnerability (R = P, x E x V). As for specific risk,
depending on the methods used to express annual probability of occurrence, elements at risk and
vulnerability, total risk can be expressed qualitatively or quantitatively.

Risk cost (R) is the annual cost, or annualized cost, of the expected losses from the landslide
hazard.

In many cases involving landslide hazards, public safety is an overriding consideration. The
following 'risk to life' concepts are modified from Morgan et al (1992).

Probability of death of an individual (PDI), also known as 'risk to life', is the probability that a
specific person will be killed as a result of a specific landslide hazard. It is a variation of the risk
procedures described above. PDI is the product of the annual probability of the hazard, the
person being spatially in the path of the event when it occurs, the person being temporally in the
path of the event when it occurs and the person being killed as a result. Mathematically, PDI is
expressed as:

PDI = PaxPgxPixP|
where
P, = annual probability of occurrence of the hazard;
Py = spatial probability of impact: that is, if the hazard occurs, the probability that

the  path of the event intersects the location where the person could be;

P; = temporal probability of impact: that is, if the hazard occurs and if the path of

the  event intersects the location where the person could be, the probability that the
person is there; and

P = probability of loss of life: that is if the hazard occurs, if the path of the event

intersects where the person could be, and if the person is there at the time, the probability

that the person would die.

If a given area is potentially subject to more than one type of independent landslide hazard, the
individual PDIs are additive.

Probability of death of a group (PDG) is the probability that a specific hazard will result in a
minimum number of casualties. Because the numbers of people vary in space and time, PDG is
much more complex to determine.

Severity (S) is sometimes used in association with PDI and PDG, and is the product of Pg x P x
P}, described above. It is somewhat analogous to consequence (C).
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As for the other parameters, PDI, PDG and severity can be expressed qualitatively by words such
as 'low', 'moderate’ or 'high', or quantitatively as an actual number.

For a range of consequences or severities, and the corresponding range of probabilities of
occurrence, the relation can be graphed (Figures 2.2). The two curves on each figure represent
the ranges in confidence or uncertainty in assigning the parameters. The area beneath the
consequence (or severity)-probability of occurrence curve is the product of the consequence (or
severity) and the probability of occurrence, and represents the 'total risk' as defined by Morgan et
al (1992) and Fell (1994).

The final stage in landslide risk assessment is to determine the acceptability of the estimated risk.
In the case of environmental or economic risks, acceptability is often carried out by means of a
cost-benefit analysis, comparing estimated annual risk costs with annual capital and maintenance
costs of any or all remedial measures. In the case of risks to life, comparisons of estimated PDI
or PDG are made against accepted societal standards. It is the responsibility of the terrain
stability mapper to provide technical input. It is not the mapper's responsibility to determine the
acceptability of the risk.

2.3.4 Applications and Limitations

As discussed above, many of the landslide hazard, consequence and risk parameters can be
expressed in relative (qualitative) or numerical (quantitative) terms. If reliable data is available
quantitative terms are preferred, as they provide the most precise, objective mapping. Because
landslide hazards occur relatively infrequently in the same location, unlike other natural hazards
such as floods, probabilities of occurrence and other quantitative assessments cannot be based on
standard statistical methods, and are usually based on Baysian-like estimates--essentially
'subjective estimates' that cannot be tested, but can be critically reviewed. Even when quantiative
terms are used, numerical ranges are useful to convey the degree of uncertainty perceived by the
mapper. For example, a statement such as 'moderate sized debris flows, with a magnitude range
of 10,000 to 20,000 m3, can occur frequently, with an estimated annual probability of occurrence
of 1:100 to 1:500', conveys the degree of uncertainty. Quantitative results can easily be applied to
cost-benefit analyses to aid decision making.

Unless users of such quantitative assessments understand the limitations of the methods,
however, they may be misguided by the apparent precision provided by the numbers.

With less reliable data, qualitative estimates can be made and qualitative terms can be used to
express the landslide hazard and risk parameters. If using a qualitative scale, it is recommended
that the same principles of landslide hazard and risk assessment should be kept in mind. A
drawback to using qualitative terms is that terms such as 'low', 'medium' and 'high' mean different
things to different people, and hence map users may interpret different meanings than intended by
the mapper.



Table 2.1 Abbreviated Classification of Landslides
Material Type Bedrock Predonnnanﬂy Coarse Predonunantly Fine
W B e K
pe of Movement
Rock falls Debris falls Earth falls
Rock topple Debris topple Earth topple
Slides Rotational Rock slumps Debris slumps Earth slumps
Translational |Rock block slides Debris block slides Earth block slides
Rock slides Debris slides Earth slides
Rock spreads Debris spreads Earth spreads
Flows Rock flows (deep creep) Debris flows Earth flows (soil creep,
solifluction)

Combination of two or more types of movement

(Modified from Varnes 1978)

Table 2.2. Example of Relative Terms and Ranges of Annual Probability of Occurrence

Relative Range of Annual Comments
Term Probability of
of Probabili Occurrence (P,

Very high >1/20 P, of1/20 indicates the hazard is imminent, and well within the lifetime
of a person or typical structure. Landslides occurring with a return
interval of 1/20 or less generally have clear and relatively fresh signs of
disturbance.

1/100 to 1/20 | P, of 1/100 indicates that the hazard can happen within the approximate
lifetime of a person or typical structure. Landslides are clearly
identifiable from deposits and vegetation, but may not appear fresh.
1/500 to 1/100 | P, of 1/500 indicates that the hazard within a given lifetime is not likely,
but possible. Signs of previous landslides, such as vegetation damage
may not be easily noted. 1/475 is used by BC Ministry of Transportation
and Highways as an acceptable probability of occurrence for life-
threatening hazards, and is used by BC Hydro to define the Design Basis
Earthquake for dams.

1/2500 to 1/500 | P, of 1/2500 indicates the hazard is of uncertain significance. A similar
probability was at one time used to define the Maximum Credible
Earthquake for dams, but this definition has been dropped.

Maoderate

<1/2500
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Table 6.3. Approximate relationship between Terrain Stability Class, frequencies and likelihood of
landslides following timber harvesting and road construction for BC coastal conditions.

Terrain | Likelihood of Landslide Polysans with Landslide Frequencies | Landslide Frequencies

Stability | Initiation following Landslides following following Road following Timber
Timber Harvesting or | Timber Harvesting or Construction Harvesting
Road Construction Road Construction
(%) (#lkm) (#ha)
Negligible 0% 0 0
Very Low 5% 0<0.1/km <0.02/ha
Low 5-30% 0.1-1/km 0.02-0.10/ha
Moderate 30-70% 1-3/km 0.10-0.50/ha
High 70-100% >3/km >0.50/ha

These relationships are generalized from limited data for several coastal study areas, for the period 5 to 15 years after
logging (Howes 1987, Rollerson 1992, and Rollerson and Sondheim 1985). They may not be applicable to other
climatic regions or longer time periods. The table addresses landslides = 0.05 ha, and sidecast road construction
practices. Some terrain types will have a different likelihood of failure for road-building compared to timber
harvesting. (modified from BC Ministry of Forests 1995a)
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3. TERRAIN STABILITY MAPS

This Chapter summarizes various aspects of terrain stability maps: uses (Section 3.1), types
(Section 3.2), terrain attributes (Section 3.3), map scales (Section 3.4), and map units (Section
3.5). The following Chapter summarizes various methods of terrain stability mapping.

3.1 Uses
Terrain stability maps are used for a variety of purposes that can be compiled into three groups:

e resource development planning;
e land use and development planning; and
e linear project planning.

3.1.1 Resource Development Planning

Presently in British Columbia, of all resource industries, the forest industry makes the greatest use
of terrain stability maps for development planning.

The forest industry uses these maps:

e to assist with establishing cutblock boundaries, road alignments, and timber harvesting
systems to minimize future landslides;

e to predict areas where landslides may occur and/or to predict the severity of landslides in
response to road construction, or during or following logging;

e to assist with road deactivation plans; and

e to locate forestry camps, mill sites and other facilities.

The first systematic method of terrain stability mapping in British Columbia was developed by
MacMillan Bloedel Ltd for coastal areas (Bourgeois 1978). Over the years the BC Ministry of
Forests and other forest companies have adopted and adapted similar mapping methods. The
"Mapping and Assessing Terrain Stability Guidebook" associated with the Forest Practices Code
(BC Ministry of Forests 1995a) has recently summarized and standardized this method of
mapping. Similar methods are used elsewhere in the Pacific Northwest. See for example Duncan
(1989).

Since the early 1980s, research has been carried out in coastal British Columbia on the prediction
of landslides in clear cut areas based on the study of a variety of terrain attributes. Examples
include Rollerson and Sondheim (1985), Howes (1987) and Rollerson (1992). It is anticipated
that such 'terrain attribute studies' will help refine the methods of pre-logging terrain stability

mapping.
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Gully sidewall and channel stability, as well as erosion and sediment delivery to streams, are also
concerns of the forest industry. Methods have been suggested in the province and elsewhere to
map and assess gully sidewall and channel stability, and erosion potential and the potential for
sediment delivery of the eroded material to streams. Examples include Hogan and Wilford
(1989) and the California State Board of Forestry (1990). These methods, although not yet
routine, are gaining general acceptance. The "Gully Assessment Procedure Guidebook"
associated with the Forest Practices Code (BC Ministry of Forests 1995b) is an initial attempt to
standardize the assessment of gully sidewall and channel stability.

Recently terrain stability mapping in the forest industry has been included as a component of the
multi-disciplinary approach to 'cumulative effect' assessments that also include sediment
production, effects on wildlife and vegetation, fire hazards, soil degradation and other
environmental concerns. Examples include Acres International Ltd (1993) and Washington
Forest Practices Board (1993). Landslide hazards constitute one of the most important
components of cumulative effects of forestry activity.

3.1.2 Land Use and Development Planning

The purpose of terrain stability mapping in land use and development planning is to delineate
areas where existing and/or land development may be affected by landslide hazards, and where
land development may affect slope stability. These areas include land on steeper slopes, at the
breaks in slope, along the base of slopes and land on colluvial and alluvial fans. The ultimate aim
of such mapping is to assist with the planning or regulation of land use and development.

Many regional terrain stability mapping programs for land use planning were implemented in
Europe and the United States in the 1970s and 1980s. Tippett and Roberts (1992) reviewed such
programs in Austria and France. Since 1975, Austria has required the preparation of plans of
natural hazards including debris flows, snow avalanches and flooding. France in the late 1970s
published a series of terrain stability maps at 1:10,000 to 1:25,000 scales, locally referred to as
ZERMOS (zones exposed to risk of soil and sub-soil movement) maps. Since 1982 a French law
has required natural hazard prediction (PER) maps at 1:2,000 to 1:10,000 scales be prepared for
areas prone to natural hazards. Each map is accompanied by a report and four additional maps: a
land use map, a process inventory map, a probability of occurrence map, and a 3-class zoning
map (Perrot 1988).

In San Mateo County, California in the early 1970s a detailed terrain stability map using a 7-class
zoning system was prepared to reduce new development in hazardous areas and to encourage site
specific studies (Brabb et al 1972). The program was extended to include the entire San
Francisco Bay region. Separate zoning maps addressed landslides (Brabb 1991), debris flows
(Mark 1992) and seismically triggered landslides (Wieczorek et al 1985).

Table 6.1 Reconnaissance Terrain Stability Classification

Stability Class
s

e Stable. There is a negligible to low likelihood of landslide initiation following
can be unspecified timber harvesting or road-building.
Potentially unstable.
e Expected to contain areas with a moderate likelihood of landslide initiation
following timber harvesting or road construction.
e Unstable. Natural landslide scars present.
Expected to contain areas where there is a high likelihood of landslide initiation
following timber harvesting or road construction.
(Modified from BC Ministry of Forests 1995a)

Table 6.2 Detailed Terrain Stability Classification

e No significant stability problems exist.

e There is a very low likelihood of landslides following timber harvesting or road
construction.

e Minor slumping is expected along road cuts, especially for 1 or 2 years following
construction.

e Minor stability problems can develop.

e Timber harvesting should not significantly reduce terrain stability. There is a low
likelihood of landslide initiation following timber harvesting.

e Minor slumping is expected along road cuts, especially for 1 or 2 years following
construction. There is a low likelihood of landslide initiation following road-
building.

e A field inspection by a terrain specialist is usually not required.

v e Expected to contain areas with a moderate likelihood of landslide initiation
following timber harvesting or road construction. Wet season construction will
significantly increase the potential for road related landslides.

e A field inspection of these areas should be made by a qualified terrain specialist
prior to any development, in order to assess the stability of the affected area.

v e Expected to contain areas where there is a high likelihood of landslide initiation
following timber harvesting or road construction. Wet season construction will
significantly increase the potential for road related landslides.

e A field inspection of these areas should be made by a qualified terrain specialist
prior to any development, in order to assess the stability of the affected area.

The classification addresses landslides >0.05 ha. (Modified from Chatwin et al 1994 and BC Ministry of Forests 1995a.)



application was originally intended for residential areas and had limited application for
agriculture,
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industry, forestry and recreation. Around the linear segments of a reservoir, BC Hydro's 'impact
lines' delineate the potential upslope and downslope extent of various hazards such as flooding,
erosion, groundwater and landslides.

For existing or proposed residential areas adjacent to a reservoir where lives may be threatened,
the 'landslide impact line' is defined as the boundary landward of which there is less than a
1:10,000 annual probability of occurrence of the area being subject to landsliding, either due to
the reservoir, or due to existing instabilities not affected by the reservoir (BC Hydro 1993). The
effects of toe erosion and seismic activity on slope stability are also considered. BC Hydro
realizes that to determine an annual probability of occurrence of 1:10,000, extensive geotechnical
investigations are required. BC Hydro suggests that "different", presumably greater, annual
probabilities of occurrence may be selected for specific projects.

In non-residential areas, BC Hydro suggests the landslide impact line be determined in a similar
manner as for a residential area, but that it can have a lesser degree of confidence, and
presumably a greater probability of occurrence, due to less data and non-life threatening
consequences. The degree of confidence and annual probability of occurrence can vary with land
use, but if land use changes, the impact line should be reviewed.

BC Hydro (1993) suggests that for reservoir projects, shoreline stability should initially be
classified in terms of existing, pre-flooding stability. For preliminary studies, post-flooding
shoreline stability can be derived from judgement based on experience from existing reservoirs.
As studies advance from preliminary to final design and with more data, numerical factors of
safety determined by stability analyses can be determined for typical or critical shoreline
segments. These, along with experience, can be used to classify the stability of shoreline
segments for first flooding of the reservoir, normal reservoir operation and for rapid reservoir
drawdown.

It is possible to extend BC Hydro's 'impact lines' by showing degrees of confidence and annual
probabilities of occurrence on the map as a band or series of lines. Impact line maps can also be
used as the basis for cost-benefit analyses to aid with the planning and design processes.

e Both corridor and linear segment terrain stability mapping should be carried out using a
phased approach going from a regional (medium scale), through to a project (large scale), to a
detailed scale.

e For corridor mapping, terrain stability maps should address both the initiation and runout
zones, and address how the landslide hazards will change once the project has been
constructed and is in operation.

o For linear segment mapping, terrain stability mapping, similar to 'impact line mapping', as
described by BC Hydro (1993) for existing and future reservoirs, should be considered an
appropriate method.
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In British Columbia, the BC Ministry of Transportation and Highways, which has jurisdiction
over subdivisions in unorganized areas, carried out a number of pilot terrain stability mapping
projects in the 1970s and 1980s. For examples see Buchanan (1977, the South Thompson Valley)
and Haughton (1978, the Columbia Valley).

In organized areas of the province, residential subdivision and building permit approval
procedures are mandated by the Municipal Act. This act is implemented by the appropriate
ministries, regional districts and/or municipalities. Currently joint provincial-community funding
supports terrain stability mapping for communities that adopt Official Community Plans (OCP).
Terrain stability maps are used to delineate areas where restrictions should be applied under the
act and where site specific assessments are required. For example see Cave (1992, Fraser-Cheam
Regional District).

The extensive 1:50,000 scale terrain mapping carried out by the BC Ministry of Environment in
the 1970s and 1980s, following Environment and Land Use Secretariat (1976) and Ryder and
Howes (1984), has been used to derive terrain stability information for land use planning. For
examples see Maynard (1979) and Ryder and MacLean (1980). This derived information is
intended for guidance, without direct administrative or regulatory implications.

Many site-specific terrain stability mapping projects have also been carried out throughout the
province, usually by geotechnical engineers and geoscientists, to aid land use planning and
regulation.

3.1.3 Linear Project Planning

Terrain stability maps are usually produced prior to the location of a linear project, such as a road,
railway, pipeline or transmission line, to help choose the optimal alignment. Examples include
Buchanan (1990, a highway), Thurber Engineering Ltd (1989, a resource road), and Pacific Hydro
Consultants Ltd (1989, a transmission line). These types of terrain stability maps often include
project-specific interpretative comments.

Terrain stability maps are also often produced for planning purposes along linear geomorphic
features such as streams, shorelines and reservoirs. Such mapping has been applied to BC
Hydro's reservoir shorelines since the early 1970s to assess existing terrain stability and to predict
terrain stability after reservoir flooding. Examples include Morgan (1982), Enegren and Moore
(1990) and BC Hydro (1993). These maps often delineate a 'safe line', 'break line', and/or 'impact
line' (described in Section 6.3) along the crests or toes of bluffs, or along existing or future
shorelines.

Snow avalanche 'atlases' serve similar planning purposes. Several have been prepared for specific
highways in the province by the BC Ministry of Transportation and Highways, for example the
Coquihalla Highway (BC Ministry of Transportation and Highways 1980), and by Environment
Canada, for example the Rogers Pass section of the Trans-Canada Highway (Schleiss 1989).
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Linear terrain stability maps are also prepared during the operation of certain facilities to help
monitor landslide activity and establish priorities for maintenance. An example is the rock fall
hazard map for an active French road, produced by the French Road Research Laboratory
(Einstein, 1988).

3.2 Types

There are a number of different types of maps that can provide information on terrain stability.
For the purpose of this study they are grouped into seven types. Types 1 through 5 are maps that
delineate the distribution of particular landslide data, or terrain attributes, and may be
accompanied by some form of data base. When interpreted or combined with other information
these map types can become, or can be used as, terrain stability maps that address either landslide
hazards or risks. Type 6 is a specific type of terrain stability map that addresses landslide
hazards. Type 7 is a specific type of terrain stability map that extends the landslide hazard
assessment by considering the consequences of the hazards, and therefore is a landslide risk map.

Type 1 -- Geology maps delineate bedrock and/or surficial geology units, usually on the basis of
relative geological age. Certain map units, specific symbols and/or marginal notes may indicate,
or be used as a rough guide to indicate, the distribution of landslide hazards.

Bedrock structure and lithology are often significant in controlling the character of large bedrock
landslides. In glaciated terrain, landslide hazards commonly occur in association with certain
surficial geology units.

Type 2 -- Terrain maps delineate surface units based on a number of terrain attributes, including
material genesis and texture, surface expression and geomorphic process. Several terrain mapping
systems have been developed in Canada, beginning with Fulton et al (1974), and in other
countries, for example Finlayson (1984, Australia).

In this province, the BC Terrain Classification System (Howes and Kenk 1996; Resources
Inventory Committee 1996a) is the provincial standard and is a versatile system to produce terrain
maps from a scale of 1:10,000 to 1:250,000. An early data base format for this system was
introduced by Kenk et al (1987). Resources Inventory Committee (1996b) summarizes the most
recent data base format.

Medium scale terrain maps (1:20,000 to 1:50,000) can be used as preliminary terrain stability
maps with suitable annotation of landslide hazards for each type of unit. Ryder and MacLean
(1980), Howes and Swanston (1994) and Resources Inventory Committee (1996a) provide
examples for use with the BC Terrain Classification System.

Type 3 -- Engineering geology maps delineate, interpret and annotate surficial or bedrock units
or terrain units to provide information relevant to engineering issues, such as material usability,
soil plasticity, foundation conditions, groundwater conditions, swelling potential, and/or
landslides.
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approach is taken, it should be carefully justified in the project report. Particular situations, such
as undercutting or piping, will also require that downslope h<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>