BG Performance Standaris

Numeracy GRADE 6

- Numeracy in Grade 6 . . . 153

Quick Scale . . . 155
Rating Scale .. . 156
Sample 1: Lifestyle Data (Data Analysis) . . . 158
Sample 2: Designing a Box to Hold CDs (Measurement)... 177

Numeracy in Grade 6

By Grade 6, students are expected to complete a variety of numeracy tasks based on their own research, as well as simulated tasks provided by their teachers. The following briefly describes typical Grade 6 numeracy tasks. For quick reference, these examples have been grouped according to purpose. In practice, a single numeracy task or problem may often address more than one purpose.

MONEY TASKS

- Find the most economical prices for school supplies.
- Choose something they would like to purchase and compare prices from three different sources.
- Compare prices of products expressed in different units (e.g., .69/g, $\$ 3.90 / \mathrm{kg}, 0.32 / 100 \mathrm{~g}, \$ 3.99 / 500 \mathrm{~g})$.

CHANCE TASKS

- Determine whether or not a coin-toss game is fair.
- Design games involving chance.

DATA ANALYSIS

- Record, display, and analyze data to draw conclusions about own lifestyle.
- Design and conduct surveys, display and analyze resulting data, and draw conclusions.
- Analyze television commercials for number, type, and target audience.
- Analyze graphs from magazines, newspapers, or web sites, and evaluate the appropriateness of the population sample used.

MEASUREMENT AND OTHER APPLICATIONS OF SHAPE AND SPACE

- Design a container for compact disks.
- Create a "personal" box: calculate the surface area, choose material, and determine the most economical way to use material to cover the box.
- Given a set of parameters, design the shortest fence to enclose a skateboard park.
- Estimate and measure volume and mass of various types of rocks as part of a science study; draw conclusions.

Wherever possible, students should demonstrate numeracy through real situations and problems that can be solved in a variety of ways. Students should be expected to explain their procedures and results, and to suggest other situations where similar methods might be useful. In most cases, these tasks will require an extended amount of time. Relatively short questions with one correct procedure and answer are not appropriate for performance assessment.

Quick Scale: Grade 6 Numeracy

This Quick Scale is a summary of the criteria described in detail in the Rating Scale that follows. These criteria
may apply at any time of the year, depending when specific skills or concepts are introduced.

Aspect	Not Yet Within Expectations	Meets Expectations (Minimal Level)	Fully Meets Expectations	Exceeds Expectations
SNAPSHOT	The student is unable to meet basic requirements of the task without close, ongoing assistance. Unable to provide a relevant extension.	The work satisfies most basic requirements of the task, but it is flawed or incomplete in some way. May produce a simple extension with help.	The work satisfies basic requirements. If asked, the student can produce a relevant extension or further illustration.	The work is complete, accurate, and efficient. The student may volunteer an extension, an application, or a further illustration.
CONCEPTS AND APPLICATIONS* - recognizing mathematics - grade-specific concepts,skills - patterns, relationships	- unable to identify mathematical concepts or procedures needed - does not apply relevant mathematical concepts and skills appropriately;major errors or omissions - often unable to describe patterns or relationships	- identifies most mathematical concepts and procedures needed - applies most relevant mathematical concepts and skills appropriately; some errors or omissions - may need help to describe and use patterns and relationships	- identifies mathematical concepts and procedures needed - applies mathematical concepts and skills appropriately; may be inefficient, make minor errors or omissions - describes and uses basic patterns and relationships	- identifies mathematical concepts and procedures needed; may offer alternatives - applies mathematical concepts and skills accurately and efficiently; thorough - independently describes and uses patterns and relationships
StRATEGIES AND APPROACHES - procedures - estimates to verify solutions	- appears unsystematic and inefficient - results or solutions are often improbable	- generally follows instructions without adjusting or checking - may need reminding to verify results or solutions; estimates are generally logical	- follows logical steps; may be inefficient - makes logical, relatively accurate estimates to verify results or solutions	- structures the task efficiently; may find a shortcut - makes logical estimates to verify results or solutions
ACCURACY - recording, calculations	- often includes major errors in recording or calculations	- may include some errors in recording or calculations; generally "close"	- recording and calculations are generally accurate; may include minor errors	- recording and calculations are accurate; may use mental math
REPRESENTATION AND COMMUNICATION - presenting work - constructing charts, diagrams, displays - explaining procedures, results	- work is often confusing, with key information omitted - often omits required charts, diagrams, or graphs, or makes major errors - explanations are incomplete or illogical	- most work is clear; may omit some needed information - creates required charts, diagrams, or graphs; some features may be inaccurate or incomplete - explanations may be incomplete or imprecise	- work is generally clear and easy to follow - uses required charts, diagrams, or graphs appropriately; may have minor errors or flaws - explains procedures and results logically in own words	- work is clear, detailed, and logically organized - uses required charts, diagrams, or graphs effectively and accurately - explains procedures and results clearly and logically; may include visuals

[^0]
Rating Scale: Grade 6 Numeracy

These criteria may apply at any time of the year, depending when specific skills or concepts are introduced. *

Aspect	Not Yet Within Expectations	Meets Expectations (Minimal Level)
SNAPSHOT	The student is unable to meet basic requirements of the task without close, ongoing assistance. The student is unable to provide a relevant extension.	The work satisfies most basic requirements, but it is flawed or incomplete. The student may produce an extension by making a minor variation in the original task. Often needs some help.
CONCEPTS AND APPLICATIONS** - recognizing mathematics - grade-specific concepts, skills - patterns, relationships	- unable to identify mathematical concepts or procedures needed to solve a problem or complete a task - does not apply relevant mathematical concepts and skills appropriately;major errors or omissions - often unable to describe patterns or relationships	- identifies most mathematical concepts and procedures needed to solve a problem; may oversimplify or miss some aspects of the task - applies most relevant mathematical concepts and skills appropriately; some errors or omissions - describes and uses some patterns and relationships; may need some help
STRATEGIES AND APPROACHES - procedures - estimates to verify solutions	- appears unsystematic and inefficient - results or solutions are often improbable, suggesting that the student is unable to make logical estimates	- generally follows instructions without adjusting or checking procedures - may need reminding to use estimation to verify results or solutions; estimates are generally logical
ACCURACY - recording, calculations	- often includes major errors in recording or calculations	- may include some errors in recording or calculations; generally answer or solution is "close"
REPRESENTATION AND COMMUNICATION - presenting work - constructing charts, diagrams, displays - explaining procedures, results	- work is often confusing, with key information omitted - often omits required charts, diagrams, or graphs, or makes major errors - explanation of procedures or results is incomplete or illogical; uses little or no mathematical language	- most work is clear, although some necessary information may be omitted - creates required charts, diagrams, or graphs, but some features may be inaccurate or incomplete (e.g., diagrams not to approximate scale; inappropriate intervals) - explanations of procedures and results may be incomplete or imprecise; uses little mathematical language

* Student performance that falls within the wide range of expectations for Grade 6 generally matches the Level 3 descriptions in Evaluating Mathematical Development Across Curriculum.
**Some of the curriculum concepts and skills students are expected to apply in completing numeracy tasks are specific to the type of task. The shaded charts below the Rating Scale show some of the concepts and skills most likely to apply in Grade 6.

MONEY TASKS

- percentage
- equality

CHANCE TASKS

- experimental and theoretical probability of single events
- identify relationships between number of faces and probability of a single event, using various polyhedrons and dice

Fully Meets Expectations	Exceeds Expectations
The work satisfies basic requirements of the task. If asked, the student can produce a relevant extension or further illustration.	The work is complete, accurate, and efficient. The student may volunteer an extension, application, or further illustration of the same mathematical idea.
- identifies the mathematical concepts and procedures needed to solve a problem or complete a task - applies relevant mathematical concepts and skills appropriately; may be somewhat inefficient or make minor errors or omissions - describes and uses basic patterns and relationships (e.g., how surface area affects volume; comparison of two results); may need prompting	- identifies the mathematical concepts and procedures needed to solve a problem or complete a task; may offer alternative methods - applies relevant mathematical concepts and skills accurately and efficiently; thorough - independently describes and uses patterns and relationships (e.g.,how surface area affects volume; comparison of two results)
- structures the task into logical steps or stages; may be inefficient - makes logical and relatively accurate estimates to verify results or solutions	- structures the task efficiently; may find a shortcut for the procedure modelled or offer alternative ways to address the task - makes logical estimates to verify results or solutions
- recording and calculations are generally accurate; may be minor errors	- recording and calculations are accurate; may use mental math
- work is generally clear and easy to follow - uses required charts, diagrams, or graphs appropriately; these may have minor errors or flaws (e.g., missing units, title, or axis labels) - explains procedures and results logically in own words; uses some mathematical language	- work is clear, detailed, and logically organized - uses required charts, diagrams, or graphs effectively and accurately - explains procedures and results clearly and logically in own words; uses mathematical language; may include visuals

DATA ANALYSIS

- formulate questions
- identify appropriate data sources
- select data collection method
- choose population sample
- display data (including histograms, double-bar graphs,stem-and-leaf plots)
- interpret graphs;describe distributions
- analyze data to make comparisons and test predictions

MEASUREMENT

- perimeter
- area
- surface area
- volume
- measurement of angles

OTHER APPLICATIONS OF SHAPE AND SPACE

- create, analyze, and describe designs
- draw designs
- recognize and describe optical illusions
- sketch 3-D solids and skeletons

Sample 1: Lifestyle Data (Data Analysis)

CONTEXT

This task was a mathematics component within an integrated unit on
"Healthy Lifestyles" for Personal Planning.

MATHEMATICAL CONCEPTS

- compare and order improper fractions and decimal fractions
- calculate with whole numbers, decimal fractions, and percentage
- display data by hand or by computer in a variety of ways
- read and interpret graphs
- describe the general distribution of data

PROCESS

Students were given written instructions to follow a five-step process, as summarized here.

Step 1

Use a chart provided to record the time spent (rounded to the nearest 15-minute interval) in a 24 -hour period on each of the following activities:

- exercising
- sleeping
- watching TV
- other activities

Step 2

Use recorded data to:

- calculate the total amount of time in each category
- check that the total added up to 24 hours (If the total was not 24 hours, students discussed what they might have done wrong and solicited advice from other students.)

Step 3

Represent data by:

- constructing a 24-hour strip graph using the template provided and a different colour for each category of activity
- construct a circle graph with the same data

NOTE:

In order to help students construct a circle graph without using protractors, the teacher ironed basket coffee filters flat and had students figure out different ways of finding the centre (folding, using a compass). She then had the students tape the ends of their strip graphs together into circular bracelets. Students placed their bracelets on the circles so that each section was an equal distance from the centre of the circle and marked the boundaries of each category from the strip graphs onto the circle graphs.

Step 4

Suggest alternative methods of representing the information, choose the one most appropriate, explain the choice, and represent the information in this form as well.

Step 5

Respond to a series of questions designed to help interpret the data. (See student samples for the questions.)

NOTE:

In the following examples, students used colour coding in their charts and graphs. This is not always easy to see in the reproduction.

NOT YET WITHIN EXPECTATIONS

Teacher's Observations

This student required ongoing assistance to record data, graph it, interpret it, and answer questions. She was unable to do the calculations involving fractions and percentage, or to represent the data in a way that had not been modelled in class.

- unable to identify mathematical concepts or procedures needed
- appears unsystematic and inefficient
- key information omitted
- explanation of procedures and results is incomplete; uses little mathematical language

24 Hour Activity Chart

Alterate Wiassio Reqresent lafemation

$$
\begin{aligned}
& \text { - numbercharts } \\
& \text { - Witing tharts } \\
& \text { - blackschart } \\
& \text {-stripchart }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Inerfernunnber Gharts becu- } \\
\text { chereitou dest have to varte }
\end{array} \\
& \begin{array}{l}
\text { nier you, } \sin \text { st have to varte } \\
\text { num cloruing. }
\end{array}
\end{aligned}
$$

Irterpostirg the Data and Loeking at Your Lifeitile

 The slezegryhnught that I geep alot int blat I Lonitsothat suprised theatot.
 grelind anwent at Amp
Other was the greatest amount oftime.
 Ie strgirg a miniman of 18 houn in a 24 hoer peried. Ilow does fias axeste af time thet poe shept exepore to the recreverentid ancert? In the a ferty. byool hetsint of aleep er you to get in a dap?
445 min adday.
4. If you were to lock on thin der an ith over, what changes it awy would you wale so pour daly activities to active a moot bulused ar wably lientyler Woabl it
 ast week Evplis your awnen
Iwould wach t.v. domy work.
then go to sleep!
5. Whet quatians do pwe have aboue the profect)
could we have more opptions: can we bok or slee pover Pep NoIdont

I whach tiv. a lot. I sleeplittel

MEETS EXPECTATIONS (MINIMAL LEVEL)

Teacher's Observations

This student was able to interpret his results with some prompting. Some of the calculations of percentage are inaccurate. The circle graph is constructed carelessly, and he did not represent his data in an additional way.

	Not Yet	Meets	Fully	Exceeds
SNAPSHOT				
CONCEPTS				
STRATEGIES				
ACCURACY				
REPRESENTATION				

- identifies most mathematical concepts and procedures needed
- describes and uses some patterns and relationships; needs some help
- some errors in calculations; the answer is "close"
- creates required graphs, but some features are inaccurate or incomplete
- explanations of procedures and results are incomplete; uses little mathematical language

$\operatorname{stg} 2$
(1) excrais: 4 hairs

$$
s h q=11 \text { hours }
$$

$$
\begin{aligned}
& \text { Lefirison }=3 \text { hours } \\
& \text { other }=6 \text { hours }
\end{aligned}
$$

3. The strgtagies fluidised were to use a wrath and time evoupthing 1 lid.
poll woald toll. Them to sechae their paper
Sty 3.

step 4

- Fora differpent way bould make a bar graph to show tro anformetion or a tally graph
Q1 I would choose the tally graph.
(2) 1 chope this puthad because its a botter way of shourng the time.
- step 5
- epwas rupried that my 1.2 . peripa yas sootit becuas it seaned liaticict ald of
(2) Hhe ned is $\frac{4}{4} 25 \%$ The preen tool $\mu \mathrm{k}$ He suglew is: 60% most of the tone. He yellowis: 16.5% The Slue 5 走 12.5%
(3) My sleer time compares oreth well, lalpt bo "tpouss.
My sup onange form homewoid or the walends
(4) P spent 4 howss excurising

Ol spent 3 howrs watehing J IV.
Q l wonld malspts pure that l got alat more excocias lecouse its hestry for your body.

FULLY MEETS EXPECTATIONS

Teacher's Observations

This student approached the task confidently and completed all aspects of the task correctly, although she was unable to suggest an extension.

- identifies the mathematical concepts and procedures needed
- applies relevant mathematical concepts and skills appropriately

	Not Yet	Meets	Fully	Exceeds
SNAPSHOT				
CONCEPTS				
STRATEGIES				
ACCURACY				
REPRESENTATION				

- describes and uses basic patterns and relationships
(e.g., comparison of results)
- recording and calculations are generally accurate
- uses required graphs appropriately
- explains procedures and results logically in own words; uses some mathematical language

ALTERNATE WAYS TO REPRESENT THIS INFORMATION：
－THIS INPORMATION COULD BE SHOWN IN A BAR GRAPH 目目目
－THIS INFORMATION COULD BE SHOWN IN A LINE GRAPH
－THIS INFORMATION COULD SE SHOWN ON A CHART
－THIS INFORMATION COLD BE SHOWN IN A PIE GRAPH（B）
－THIS INFORMATION COULD BE SHOWN IN A WRITE－UP NE

CONCLUSION

I thought that this information wads shown the lost In a bar graph．I thought this because a bar graph is simple and easy to read

BAR GRAPH

Interpreting the data and looking at your lifestyle

1) It surprised me that school and sleep took up so much time in my life. After that, excercise was what I did much more than anything else. The other category is made up of all other activities that I do, and I even excercise more than all of those things put together.
2.) Sleep took up the most of my time. I slept from 9:00 pm - 6:30 zm .
3.) I sleep very close to ten hours a night. I sleep nine hours and thirty minutes every night. This is a fairly typical amount of sleep per day. This amount of sleep may change if I am ill and go to bed earlier, or if I have a late night. It may also change if I have a nap during the day.
4.) I spend 1 and a half to 2 and a half hours excercising every day.
5.) I don't spend and time watching T.V. during the day.
6.) If I could change my day I would become more active, join a club or do more after school activities. I think that I should do more activities, and that I should excercise more.
2) If a person was wondering if they needed to moke changes to their lifestyle it would only be fair to look at their activities in a week. After all, what if you caught them on a bad day when all they did was watch T.V.? You would think they were lazy. But if you got them on a day when they excercised blot you would think they were a jock. That is why it is fir to look at a week not a day.
8.) I don't have any.
9.) No.
ia)

EXCEEDS EXPECTATIONS

Teacher's Observations

This student collected exceptionally detailed data and offered logical conclusions. All work is correct, accurate, detailed, and thorough.

- applies relevant mathematical concepts and skills accurately and efficiently; thorough

	Not Yet	Meets	Fully	Exceeds
SNAPShot				
Concepts				
Strategies				
accuracy				
Representation				

- independently describes and uses patterns and relationships involved (e.g., comparisons of results)
- structures the task efficiently
- recording and calculations are accurate
- uses required charts and graphs effectively and accurately
- explains procedures and results clearly and logically, in own words;
uses mathematical language; includes visuals

Step 2
3) Stradagies - The stradagies 1 used were
simple. Wadded each catagory by counting the number
 in Exersise / have: is

15	
45	$=45 \times 1$.
15	$=60 \times 1=$
30	
30	$=15 \times 3=$
15	$=30 \times 2=$
60	4

Then I caculated each of these and divided them by 60 .

$$
\begin{aligned}
& 45 \times 1=45+60=45 \text {. min. } \\
& 60 \times 1=60 \div 60=1 \text { hour. } \\
& 16 \times 3=45 \div 60=45 \text {. min. } . \\
& 30 \times 2=60 \div 60=1 \text { hour. }
\end{aligned}
$$

Then I did a grand total and calculated each of the remaining min./hours.

$$
\begin{array}{r}
45 \text { min } \\
1 \text { hour } \\
45 \text { min } \\
+1 \quad 1 \quad \text { hour } \\
\hline 3 \mathrm{~h} 30 \mathrm{~m}
\end{array}
$$

1 followed this process throughout the other catagories
4a) The advise I would give someone would be that at whatever time you go to bed (the day before) you must go untill then the next okay. example: I go to bed at 9:00 ph and finished my day at 9100 pm .

Pie Graph

Step 5
1.) What 1 was surprised with the fact that after completing it 1 was pretty happy with myself. I realize that afew of my questions are incorrect, being myself, I know I am not a mathamatition. (o rya speller.)

2) | | Function | oPerant |
| :--- | :--- | :--- |
| Excise - | $\frac{3.39}{24}$ | 3.30% |
| Sleeping- | 0 | 0% |
| Other | $\frac{2}{24}$ | 9% |
| | $\frac{10,75}{24}$ | 10.75% |

My OTHER Catagory took up the majority of my time.
3.) 1 sleep 9 hours a day. (Yes 1 know my bedtime's early for a grade six), but I LOVE my bed. On school days, 1 got to bed at 9,00 and wake up at 7:00 (except on Mondays when I have to get up at 0:30 for badminton at $7: 30$.)
4.) I spent 3 hours 30 min exercising during the $d_{a y}$.
9.) I do not watch T,V, on Monday.
a.) I don't twink that there is a need to change anything. 1 spend a healthy time excersising, a healthy time sleeping, (well, maybe a little too healthy of a time.), bot when it comes down to it I don't want to change any thing.
7) think it would be better to look it someone activities in a week because someone could have more or lass of something in a week.
r. I don't have any questions, exept for the fact of why OUR CLASS had to do this.
a No. 1 do however think you should explain what you want w to do a lithe more clearly.
10. Two important things I learnt from doing this was: a.) how to work together with some one b.) how to use logic on solving these problems.

Sample 2: Designing a Box to Hold CDs (Measurement)

CONTEXT

Students had previous instruction and practice in calculating surface area and volume using exploration, guess, and test techniques. The teacher reviewed these concepts, along with SI (metric) units and how to use measurement tools with precision.

MATHEMATICAL CONCEPTS

- calculations involving whole numbers and decimal fractions
- using SI units for length and capacity
- calculation of volume
- calculation of surface area
- describing patterns and relationships (i.e., how different dimensions affect volume)

PROCESS

Students were asked to:

- design one or more boxes to hold 12 CDs
- draw and label the dimensions of the box(es)
- calculate the volume of each box
- calculate the surface area for one box
- provide a written explanation of their thinking processes and how they went about designing their boxes
- explain how different dimensions affect the volume

NOT YET WITHIN EXPECTATIONS

Teacher's Observations

This student was able to measure a CD accurately, but unable to consistently use the correct SI units of measurement (i.e., sometimes recording length in cm , sometimes in cm^{3}). He was unable to complete the remaining parts of the task.

	Not Yet	Meets	Fully	Exceeds
SNAPShot				
Concepts				
Strategies				
accuracy				
Representation				

- does not apply relevant mathematical concepts and skills appropriately
- unable to describe patterns or relationships
- appears unsystematic and inefficient
- includes major errors in calculations
- omits required diagrams and makes major errors

$$
\begin{aligned}
& H=12 \mathrm{~cm} \\
& \mathrm{~W}=1 \mathrm{~cm} \\
& \mathrm{~L}=14 \mathrm{~cm}
\end{aligned}
$$

MEETS EXPECTATIONS (MINIMAL LEVEL)

Teacher's Observations

This student was able to complete the basic steps of the task. However, some calculations are missing (i.e., surface area) and diagrams are not to approximate scale. She was unable to give a clear explanation of how different dimensions affect volume.

- applies most relevant mathematical concepts and procedures needed; misses some aspects of the task
- follows instructions without adjusting or checking procedures
- includes some errors in recording and calculations; the answer or solution is "close"
- most work is clear, although some necessary information is omitted
- creates required diagrams (but not to approximate scale)

Different dimensions do effect the volume because I did so 2 different desighrs. And haw you space them out and how you put them in also changes the volume.

FULLY MEETS EXPECTATIONS

Teacher's Observations

This student designed three CD boxes, accurately calculating volume in each case. Diagrams are to approximate scale and clearly labelled using appropriate units. Her explanation of the effect of different dimensions on volume demonstrates a good spatial understanding.

	Not Yet	Meets	Fully	Exceeds
SNAPSHOT				
CONCEPTS				
STRATEGIES				
ACCURACY				
REPRESENTATION				

- applies relevant mathematical concepts and skills appropriately
- describes and uses basic patterns and relationships
- recording and calculations are generally accurate
- uses required diagrams appropriately
- explains procedures and results logically in own words; uses some mathematical language

EXCEEDS EXPECTATIONS

Teacher's Observations

This student designed four CD boxes, accurately calculating volume in each case. The diagrams are to approximate scale and clearly labelled, using appropriate units. His explanation of his approach and the effect of the dividers and external dimensions on volume demonstrates an excellent spatial understanding.

	Not Yet	Meets	Fully	Exceeds
SNAPSHOT				
CONCEPTS				
STRAteGES				
AcCuRaCY				
REPRESENtation				

- applies relevant mathematical concepts and skills accurately and efficiently; thorough
- independently describes and uses patterns and relationships (e.g., how surface area affects volume; comparison of results)
- structures the task efficiently; offers alternative ways to address the task
- work is clear, detailed, and logically organized
- uses required diagrams effectively and accurately
- explains procedures and results clearly and logically in own words; uses mathematical language

(3) Height $=18 \mathrm{~cm}$

Width $=12.2 \mathrm{~cm}$
Depth $=14.3 \mathrm{~cm}$
Volume $=3140.28$
(4) Height $=24.9 \mathrm{~cm}$

Width $=6 \mathrm{~cm}$
Depth $=14.3 \mathrm{~cm}$

$$
\text { Volume }=2136.42 \mathrm{~cm}^{3}
$$

Since th how the dimentions of "CD case (1 cmh right $\times 12.2 \mathrm{~cm}$ width $x 14.3 \mathrm{~cm}$ dep (t), Cl was able to design four $\mathcal{C} D$ boxes.

The depth of one case is 14.3 cm, to d somatically know the dep ts of the boga will be 14.3 cm . The lughat of one case is 1 cm , sol stacked 4 canes on ton of euchother with 5 mm dividers un between toeas. Then p put three piles of four together to get $12 C$ © is. Io get the wroth, , malijal 12.2×3 to get 36.6 cm which in tho met. There are no divider inietween the piles. That is how el designed box \#1.

Once again, the depth is 14.3 cm , which is the depth of ane ease. . Ins tad of 3 stack of 4 cases, 1 made 2 stacks of 6 oasesponce again meth 5 mm dividers in betimes the cased. For the width, multiplied 12.2×2 and added km $\mathrm{fo}_{\mathrm{G}} \rightarrow \mathrm{t}$ th divider between th two piled, which gave me 21 cm This is how il designed box $\# 2$.
 The height in ism because, ch tided thrall in the pile ait t 5 mim dividers inletween thenased. The widthiaicm because il only has one pile and that is the wide of one ape. This is how designed box *3.

I his box also had width of 14.3 cm . The fright i 24.9 cm because (l stood the cases on and, c eases on the top and 6 on theottom. el had a 5 mm divides between the 6 cases on the top and c on the bottom since ce stacked them on end, the width is 6 cm with no dividers.

The dividers are what affect the volume. et also depends on your piles. How mane these are and how high then are also affect the volume of the lox:

[^0]: * You may want to list key curriculum concepts or skills for a particular task.

