# DAWSON CREEK TSA PHASE II VRI STATISTICAL ADJUSTMENT REPORT

Prepared for:

Ministry of Forests, Lands and Natural Resource Operations Forest Analysis and Inventory Branch 7<sup>th</sup> Floor, 727 Fisgard Street P.O. Box 9512 Stn Prov Gov Victoria, BC V8W 9C2

> Attention: Sam Otukol Ph: (250) 542-2042 sam.otukol@gov.bc.ca



March 2012



Ministry of Forests, Lands and Natural Resource Operations Forest Analysis and Inventory Branch 7<sup>th</sup> Floor, 727 Fisgard Street P.O. Box 9512 Stn Prov Gov Victoria, BC V8W 9C2

Attention: Sam Otukol

#### Subject: Dawson Creek TSA Phase II VRI Statistical Adjustment Report

Dear Sam:

Please find enclosed the final report for the Phase II VRI Statistical Adjustment for the Dawson Creek TSA. This report accompanies the following additional deliverables and together completes the requirements of the current contract for this project:

- The adjusted inventory file projected to 2012; (adjusted\_att\_toDoug.csv);
- The VDYP input file used in the inventory projection (vdyp\_2012\_in.csv);
- Digital versions of the analysis data and summaries (p2\_data.xlsx)

Please do not hesitate to call if you have any questions on the report or associated work.

Yours Truly,

Jay Greenfield, RPF Senior Resource Analyst



Prince George, BC jay.greenfield@ecora.ca (250) 614-8171



### **EXECUTIVE SUMMARY**

With the completion of the Phase I VRI for the Dawson Creek Timber Supply Area (TSA) and the need for an adjusted inventory in the upcoming timber supply review process, the Ministry of Forests, Lands and Natural Resource Operations (MFLNRO) has commissioned a statistical adjustment of the Dawson Creek TSA Phase I VRI using Phase II ground sample data.

Following the process outlined in the Vegetation Resources Inventory Interim Procedures and Standards for Statistical Adjustment of Baseline VRI Timber Attributes Version 1.1 January 2008 (MoFR, 2008) (the adjustment procedures), pre-compiled Phase II VRI sample data has been combined with Phase I VRI interpreted attributes to calculate attribute adjustment ratios for the six VRI attributes identified in the adjustment procedures.

The results of this analysis show that on average, net merchantable volume may be underestimated by approximately 2.4% with a sampling error of +/- 17.4% (95% probability). Overall, the adjustment results in very little change in average stand age; small reductions in average stand height and lorey height and slight increases in basal area. Stems per hectare and net volume all increased by between 2 and 7%. (Table i).



| Attribute                                                    | Overall |
|--------------------------------------------------------------|---------|
| Sample Size                                                  | 165     |
| Stand Age                                                    |         |
| Average Phase II Measured Age                                | 97.1    |
| Average Phase I Interpreted Age                              | 97.1    |
| Ratio of Averages                                            | 1.0003  |
| Average Stand Height                                         |         |
| Average Phase II Measured Height                             | 15.1    |
| Average Phase I Interpreted Height                           | 15.6    |
| Ratio of Averages                                            | 0.9653  |
| Lorey Height                                                 |         |
| Average Phase II Measured Lorey Height                       | 14.3    |
| Average Phase I Interpreted Lorey Height                     | 14.7    |
| Ratio of Averages                                            | 0.9747  |
| Basal Area                                                   |         |
| Average Phase II Measured Basal Area                         | 29.0    |
| Average Phase I Interpreted Basal Area                       | 28.6    |
| Ratio of Averages                                            | 1.0128  |
| Stems Per Hectare                                            |         |
| Average Phase II Measured SPH                                | 1,173.0 |
| Average Phase I Interpreted SPH                              | 1,114.1 |
| Ratio of Averages                                            | 1.0529  |
| Attribute Adjusted Net Volume                                |         |
| Average Phase II Measured Net Volume                         | 150.4   |
| Average Phase I Interpreted Adjusted <sup>1</sup> Net Volume | 139.3   |
| Ratio of Averages                                            | 1.0792  |
| Unadjusted Net Volume                                        |         |
| Average Phase II Measured Net Volume                         | 151.2   |
| Average Phase I Interpreted Net Volume                       | 147.7   |
| Ratio of Averages                                            | 1.0239  |

| Table i: Overall Adjustment | Statistics |
|-----------------------------|------------|
|-----------------------------|------------|

When assessed at the TSA-level, the inventory adjustment increases the overall inventory volume by approximately 1.2% as shown in Figure i. On average, stand volumes increases by 1.7  $m^3$ /ha, increasing the inventory volume by approximately 2.5 million  $m^3$ .

<sup>&</sup>lt;sup>1</sup> Photo Adjusted Net Volume is based on adjusted age, height, basal area and sph attributes. <sup>2</sup> <u>http://www.for.gov.bc.ca/hts/tsa/tsa41/map.gif</u>







## TABLE OF CONTENTS

| 1  | Introduction1                      |                                                                                                     |             |  |  |
|----|------------------------------------|-----------------------------------------------------------------------------------------------------|-------------|--|--|
| 2  | Description of The Inventory Unit  |                                                                                                     |             |  |  |
| 3  | Sum                                | mary of Phase I and Phase II Issues                                                                 | 5           |  |  |
| 4  | Data                               | a Screening                                                                                         | 7           |  |  |
|    | 4.1                                | Stratification and Weighting                                                                        | 7           |  |  |
| 5  | Res                                | ults 1                                                                                              | 0           |  |  |
|    | 5.1<br>5.2<br>5.3                  | Adjustment Ratios       1         Leading Species Comparison       1         Sampling Error       1 | 0<br>3<br>4 |  |  |
| 6  | 6 Discussion                       |                                                                                                     |             |  |  |
| 7  | 7 References                       |                                                                                                     |             |  |  |
| Ap | Appendix I – Adjustment Data 18    |                                                                                                     |             |  |  |
| Ap | Appendix II – Adjustment Summaries |                                                                                                     |             |  |  |
| Ap | Appendix III – Sampling Plan       |                                                                                                     |             |  |  |

## **TABLE OF TABLES**

| Area by Reference Year                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Land Classification Summary              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BGC Zone Summary                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Plot Summary                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Strata Summary                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Plot-Strata Summary                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Age Adjustment Ratio                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Height Adjustment Ratio                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Basal Area Adjustment Ratio              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Stems per Hectare (SPH) Adjustment Ratio | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Lorey Height Adjustment Ratio            | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Net Volume per Hectare Adjustment Ratio  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Leading Species Comparison               | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Standard Error and Sampling Error        | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Adjustment Data                          | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Adjustment Summary Statistics            | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                          | Area by Reference Year<br>Land Classification Summary<br>BGC Zone Summary<br>Plot Summary<br>Strata Summary<br>Plot-Strata Summary<br>Age Adjustment Ratio<br>Height Adjustment Ratio<br>Basal Area Adjustment Ratio<br>Stems per Hectare (SPH) Adjustment Ratio<br>Lorey Height Adjustment Ratio<br>Net Volume per Hectare Adjustment Ratio<br>Leading Species Comparison<br>Standard Error and Sampling Error<br>Adjustment Data<br>Adjustment Summary Statistics |



# TABLE OF FIGURES

| Figure 1:  | Map of the Dawson Creek TSA                                            | . 3 |
|------------|------------------------------------------------------------------------|-----|
| Figure 2:  | Strata Plot Distribution versus Land Base Distribution.                | . 9 |
| Figure 3:  | Adjusted and Unadjusted Total Net Volume and Net Volume Per Hectare B  | y   |
| -          | Stratum                                                                | 15  |
| Figure 4:  | Adjusted and Unadjusted Area, Total Volume and Total Volume Per Hectar | e   |
|            | By ageclass (adjusted portion of the TSA only)                         | 16  |
| Figure 5:  | Ground Age vs. Photo Age                                               | 23  |
| Figure 6:  | Ground Height vs. Photo Height                                         | 24  |
| Figure 7:  | Ground BA vs. Photo BA                                                 | 25  |
| Figure 8:  | Ground Stems per Hectare vs. Photo Stems per Hectare                   | 26  |
| Figure 9:  | Ground Lorey Height vs. Photo (VDYP 7) Lorey Height Using Adjusted     |     |
|            | Attributes                                                             | 27  |
| Figure 10: | Ground Net Volume vs. Unadjusted Photo (VDYP 7) Volume                 | 28  |
| Figure 11: | Ground Net Volume vs. Photo (VDYP 7) Volume Using Adjusted Attributes  | 29  |
| Figure 12: | Age Outliers                                                           | 30  |
| Figure 13: | Height Outliers                                                        | 31  |
| Figure 14: | BA Outliers                                                            | 32  |
| Figure 15: | Lorey Height Outliers                                                  | 33  |
| Figure 16: | Stems per Hectare Outliers                                             | 34  |
| Figure 17: | Unadjusted Volume Outliers                                             | 35  |
| Figure 18: | Attribute Adjusted Net Volume Outliers                                 | 36  |



### **1 INTRODUCTION**

According to the Dawson Creek Vegetation Resources Inventory (VRI) Strategic Inventory Plan (VSIP) (Timberline, 2006), the Phase I VRI for the Dawson Creek Timber Supply Area (TSA) was initiated in the winter of 2003 for a portion of 62 British Columbia Geographic System (BCGS) map sheets, representing approximately 37% of the total area of the TSA. This portion of the VRI was completed in October 2005 with the remainder of the TSA (approximately 1.5 million ha) to be completed between 2006 and 2016. The reference year summary shown in Table 1 demonstrates that less than 3% of the area has a reference year earlier than 2001 and that most of the area was inventoried using 2006 photography. This confirms that the Phase I VRI was completed earlier than the 2016 schedule and that this analysis uses the complete Phase I VRI.

| Table 1:       | Area by Reference Year |                        |  |
|----------------|------------------------|------------------------|--|
| Reference Year | Area (ha)              | Percent of Area<br>(%) |  |
| 1960s          | 12                     | 0%                     |  |
| 1970s          | 583                    | 0%                     |  |
| 1980s          | 10,661                 | 1%                     |  |
| 1990s          | 25,426                 | 1%                     |  |
| 2000           | 52                     | 0%                     |  |
| 2001           | 543,472                | 31%                    |  |
| 2002           | 89                     | 0%                     |  |
| 2003           | 2,546                  | 0%                     |  |
| 2004           | 3,611                  | 0%                     |  |
| 2005           | 228,046                | 13%                    |  |
| 2006           | 912,952                | 52%                    |  |
| 2007           | 16,575                 | 1%                     |  |
| 2008           | 8,850                  | 1%                     |  |
| 2009           | 1,189                  | 0%                     |  |
| Total          | 1,754,065              |                        |  |

There have been two interim VRI analyses completed by the Ministry of Forests and Range (MoFR) for the Dawson Creek TSA. The first interim analysis, completed in 2000, utilizes the "Fraser Protocol" to calculate attribute adjustment ratios based on the 106 Phase II samples that had been collected prior to 2000. This analysis utilizes the old forest cover inventory.

The 2002 analysis utilizes a total of 128 Phase II samples and includes net volume adjustment factor (NVAF) measurements. This analysis also appears to utilize the old forest cover inventory.

The Ministry of Forests, Lands and Natural Resource Operations (MFLNRO) has commissioned this third Phase II VRI Adjustment to:

1



- 1. Calculate adjustment ratios as defined in the Vegetation Resources Inventory Interim Procedures and Standards for Statistical Adjustment of Baseline VRI Timber Attributes. Version 1.1 January 2008,
- 2. Apply these adjustment ratios to the recently completed Phase I VRI for the TSA, and
- 3. Project this inventory to 2012 for use in the upcoming timber supply review (TSR).

According to the 1997 *Dawson Creek TSA Vegetation Resources Inventory Ground Sampling Plan Revised Final Report* (J.S. Thrower & Associates) (the VPIP), there are two primary objective of the Phase II inventory:

- 1. Estimate overall vegetation totals and averages for the District; provide initial conditions for measuring indicators of sustainable management; and provide a framework for sub-unit inventories. The number of samples will aim to target a sampling error of +/- 10% (95% probability) for timber volume in the treed portion of the District, and allow for calculation of sampling errors for other VRI attributes.
- 2. To conduct supplemental decay sampling across the District to estimate merchantability (net volume and value) of specific old-growth forest types identified of the MOF and the licencee.



#### **2 DESCRIPTION OF THE INVENTORY UNIT**

The Dawson Creek TSA (shown in Figure 1) is located along the B.C.-Alberta border in the northeastern portion of British Columbia and is approximately 2.3 million hectares in size. Tree Farm Licence (TFL) is encompassed by the TSA and represents an additional 636,000 ha that has been excluded from this analysis. According to the 2002 Dawson Creek TSA Analysis Report (Ministry of Forests):

"The Dawson Creek TSA is bounded to the north by the Peace River and to the east by the Alberta border. To the west are the Hart Ranges and to the far south lie the Front Ranges, which are characterized by the mountainous terrain and steep valleys of the Rocky Mountains. The TSA also encompasses the rolling terrain of the Peace and Hart Foothills, and the relatively flat Kiskatinaw Plateau. Major tributaries of the Peace River that flow through the TSA include the Pine, Moberly, Sukunka, Murray and Kiskatinaw rivers."



<sup>&</sup>lt;sup>2</sup> <u>http://www.for.gov.bc.ca/hts/tsa/tsa41/map.gif</u>



As shown in Table 2, the gross area of the inventory file is approximately 3.0 million ha. This includes approximately 652,000 ha of TFL 48, most of which is un-classified in the inventory. Approximately 1.48 million hectares of the TSA is classified as treed. Of this approximately 92,000 ha has an age less than 30 years and is removed from the adjusted land base. Overall the adjustment is applied to approximately 1.38 million ha as shown in Table 2.

| Land Classification                  | Area (ha) |  |  |  |  |
|--------------------------------------|-----------|--|--|--|--|
| Gross Area on File                   | 2,989,893 |  |  |  |  |
| TFL 48                               | 652,269   |  |  |  |  |
| Non-Crown Ownership                  | 583,559   |  |  |  |  |
| Crown TSA Land Base                  | 1,754,065 |  |  |  |  |
| Non-Vegetated Lake / Wetland         | 57,838    |  |  |  |  |
| Un-Classified                        | 90        |  |  |  |  |
| Vegetated Non-Treed                  | 219,510   |  |  |  |  |
| Vegetated Treed – < 30 years         | 92,601    |  |  |  |  |
| Vegetated Treed – Adjusted Land Base | 1,384,026 |  |  |  |  |

 Table 2:
 Land Classification Summary

Table 3 shows the distribution of BGC zones for the crown portion of the Dawson Creek TSA.

| Table 3: | BGC Zone Summary |                        |  |
|----------|------------------|------------------------|--|
| BGC Zone | Area (ha)        | Percent of<br>Area (%) |  |
| BAFA     | 56,497           | 3%                     |  |
| BWBS     | 1,015,706        | 58%                    |  |
| ESSF     | 576,536          | 33%                    |  |
| SBS      | 105,326          | 6%                     |  |
| Total    | 1,754,065        |                        |  |



## **3** SUMMARY OF PHASE I AND PHASE II ISSUES

The Phase II ground samples were collected prior to the completion of the Phase I inventory and therefore plot locations were determined based on the existing forest cover inventory polygons. With the new Phase I line work now available, MFLNRO staff reviewed the Phase II plot clusters in relation to the new line work to ensure that plot clusters reasonably reflected the new Phase I polygons. Phase II plot data was recompiled by MFLNRO to exclude any auxiliary plots that fell outside the Phase I polygon.

Phase I VRI data was originally provided by the MFLNRO at the onset of the project in the form of an MS Access database. The inventory file had been projected to 2010 and contained only projected attributes; interpreted attributes required for the analysis were not included in the file. This inventory file included all of TFL 48 with no attributes available to exclude this portion of the land base and ownership information was also not included. As defined in the VPIP and interim analyses, the adjusted land base is described as the crown-treed portion of the TSA. In order to adequately define the *adjusted land* base and complete the analysis, other data sources had to be acquired and linked to the inventory file as described below.

MFLNRO staff directed the use of the Variable Density Yield Prediction (VDYP) input file (VEG\_VDYP\_Input)<sup>3</sup> from its GeoBC website in order to link the interpreted attributes to the inventory file. Using feature\_id to link this data set to the original MS Access inventory file it was determined that the VEG\_VDYP\_Input file was not a complete match to the MS ACCESS version of the inventory file provided. Through subsequent analysis it was determined that the version on the GeoBC website was not up-to-date. A version from the MFLNRO's internal database was then provided. This version of the inventory file was then used throughout the analysis.

This version of the inventory still included all of TFL 48 and did not identify non-crown land within the TSA. An Interim data file from the timber supply review process was provided and was used to determine the non-TFL crown-land area for each VRI polygon in the inventory file. This data was linked to the inventory file using feature\_id and was used to determine the adjusted land base.

The Variable Density Yield Prediction program version 7 (VDYP7) was used to project inventory attributes back to the year 1999 – the year in which the majority of the Phase II ground samples were measured.

Phase II data was collected through a series of Phase II projects between 1998 and 2001. Planning for these projects was undertaken through the preparation of the *Dawson Creek Forest District Vegetation Resources Inventory Ground Sampling Plan Revised Final Report* (J.S. Thrower & Associates, 1997). The sampling plan document does not include a list of selected samples but rather proposes an approach to sample

<sup>&</sup>lt;sup>3</sup>https://apps.gov.bc.ca/pub/geometadata/metadataDetail.do?recordSet=ISO19115&recordUID=5 8019



selection. The sampling plan identifies the target population as the entire Dawson Creek District land base, both vegetated and non-vegetated and suggests that samples are to be selected systematically from a sorted list that includes all polygons in the District.

Compiled plot data for the Dawson Creek TSA was provided by the MFLNRO in Microsoft Excel format. As discussed above, Phase II plot selection and location was conducted before the Phase I VRI was complete, using an older forest cover inventory. Therefore, the opportunity exists for Phase II plots to be located in two or more Phase I VRI polygons. To address this, the Phase II plot data was re-compiled by the MFLNRO to exclude any auxiliary plots that did not fall within the same polygon as the integrated plot centre. This re-compiled plot data was provided in MS Excel format and was used in the analysis. Phase II plot data consists of three different project ids sampled over four different measurement years (Table 4).

| Project | Number of Plots By Sample Year |      |      |      |       |
|---------|--------------------------------|------|------|------|-------|
| ID      | 1998                           | 1999 | 2000 | 2001 | Total |
| DDCX    | 18                             | 49   | 18   | 8    | 93    |
| DDCY    | 23                             | 41   | 23   | 11   | 98    |
| DDCZ    |                                |      |      | 24   | 24    |
| Total   | 41                             | 90   | 41   | 36   | 215   |



## 4 DATA SCREENING

This Phase II VRI Adjustment for the Dawson Creek TSA has been carried out according to the procedures detailed in the *Vegetation Resources Inventory Interim Procedures and Standards for Statistical Adjustment of Baseline VRI Timber Attributes Version 1.1 January 2008* (MoFR, 2008) as provided in Schedule C of the request for tenders. The procedure includes a description of the recommended process for data screening and the calculation of Phase II adjustment ratios and descriptive statistics.

Based on the inability of VDYP to generate heights and volumes for young stands and through direction from MFLNRO staff, the sample population was limited to stands with an age (in 2002) greater than 30 years and therefore nine samples were dropped. In addition, one monitoring plot (DDCX-0006-Q 1) was dropped and one duplicate measurement was dropped. A review of plot notes conducted by MFNLRO staff (Will Smith, pers. comm.) indicated that two plots had been incorrectly tagged to the Dawson Creek TSA and one plot was located in the wrong polygon and was to be dropped. An additional 36 plots were outside the VT land base and where dropped<sup>4</sup>. The remaining 165 plots have been subjected to a more detailed data screening process as described below.

As described in the above referenced adjustment procedures, the matching of Phase I ages and heights with Phase II age and height measurements is carried out through a series of five steps that compare the Phase I leading and secondary species with the Phase II leading species to determine which heights and ages to use in the calculation of adjustment ratios. In the event that none of the first four rules apply to a particular sample then the procedures specify that the age and height measurements be dropped from the analysis.

A total of 165 plots were incorporated into the analysis. Each observation was assessed and a review of outliers was undertaken. Outliers were defined as any observation with a ratio outside three standard deviations of the mean. All observations including outliers are shown in Figures 12 to 18 in Appendix II.

A plot by plot review of the Phase I and Phase II data was undertaken in conjunction with MFNRO staff on several occasions on how to address missing plot data as well as the inability of VDYP to generate volumes for young and / or very short stands. The results of these discussions are summarized in the comments column in Appendix I.

## 4.1 Stratification and Weighting

The VRI Phase I land base was post-stratified according to leading species, stand age and site index creating a total of seven strata as defined in Table 5. Options for including age breaks within each stratum were examined however only the ATAC stratum contained enough plots to support age breaks in the stratum definition. Based on this, and in consultation with MFLNFO staff, strata were combined to those shown in Table 5.

<sup>&</sup>lt;sup>4</sup> A listing of all plots with notes and comments is included in Appendix I (Table 15).





| Strata                          | Leading Species   | Age<br>Criteria<br>(yrs) | Site Index<br>Criteria | Phase I VRI<br>Area (ha) | Percent of<br>Area (%) |
|---------------------------------|-------------------|--------------------------|------------------------|--------------------------|------------------------|
| ATAC_imm                        | AT, AC, ACT, ACB  | <=80 & > 30              | All                    | 189,623                  | 13%                    |
| ATAC_mat                        | AT, AC, ACT, ACB  | >80                      | All                    | 173,788                  | 12%                    |
| BL_all                          | BL, B             | > 30                     | All                    | 179,684                  | 12%                    |
| OTHER_all                       | SB, LW, L, LA, LT | > 30                     | All                    | 141,511                  | 10%                    |
| PL_good                         | PLI, P, PL        | > 30                     | >12                    | 177,097                  | 12%                    |
| PL_poor                         | PLI, P, PL        | > 30                     | <=12                   | 204,111                  | 14%                    |
| SX_all                          | SW, S, SE, SX     | > 30                     | All                    | 318,212                  | 22%                    |
| None Remainder of VT land base  |                   |                          |                        | 92,601                   | 6%                     |
| Total Vegetated-Treed (VT) Area |                   |                          | 1,476,626              |                          |                        |

Although not identified in the original (1997) sampling plan, a review of the interim analysis reports, as well as the sample distributions relative to the land base strata distribution, suggest that the ATAC strata may have been preferentially selected in subsequent sample selections indicating that stratum weights should be used in calculating overall land base statistics. As shown in Table 6 and Figure 2, 22% of the plots were allocated to the ATAC\_mat stratum, which represents only 13% of the land base. Strata weights are calculated by dividing the total area per stratum by the number of plots per stratum producing the area represented by each plot. Area per plot is applied to each stratum in calculating overall land base statistics but does not affect the ratio or statistics for each individual stratum.

| Strata    | Number of<br>Plots | % of Plots | Land Base<br>Area (ha) | % of Land<br>Base | Area / Plot |  |  |  |
|-----------|--------------------|------------|------------------------|-------------------|-------------|--|--|--|
| ATAC_imm  | 26                 | 16%        | 189,623                | 13%               | 7,293       |  |  |  |
| ATAC_mat  | 37                 | 22%        | 173,788                | 12%               | 4,697       |  |  |  |
| BL_all    | 24                 | 15%        | 179,684                | 12%               | 7,487       |  |  |  |
| OTHER_all | 11                 | 7%         | 141,511                | 10%               | 12,865      |  |  |  |
| PL_good   | 16                 | 10%        | 177,097                | 12%               | 11,069      |  |  |  |
| PL_poor   | 22                 | 13%        | 204,111                | 14%               | 9,278       |  |  |  |
| SX_all    | 29                 | 18%        | 318,212                | 22%               | 10,973      |  |  |  |
|           | 165                |            | 1,384,026              |                   |             |  |  |  |

Table 6:Plot-Strata Summary





Figure 2: Strata Plot Distribution versus Land Base Distribution.



## **5 RESULTS**

As defined in the adjustment procedures, a total of six Phase I VRI attributes are adjusted based on the ratio of means (ROM) of the ground measured Phase II data to the Phase I interpreted attributes. The adjusted attributes described below are:

- 1. Stand Height;
- 2. Stand Age;
- 3. Number of trees per hectare at 7.5cm+ dbh utilization level;
- 4. Basal area at 7.5 cm+ dbh utilization level;
- 5. Lorey Height at 7.5cm+ dbh utilization level; and
- 6. Volume net top, stump, decay, waste and breakage at 12.5 cm+ dbh utilization level.

All inventory attributes have been projected to the year 1999, the date in which the majority of the Phase II data was collected. Adjustment ratios are calculated according to the *Vegetation Resources Inventory Interim Procedures and Standards for Statistical Adjustment of Baseline VRI Timber Attributes Version 1.1 January 2008* (MoFR, 2008).

### 5.1 Adjustment Ratios

Adjustment ratios for age, height, basal area and stems per hectare are calculated first and applied to the Phase I inventory attributes. Net volume and lorey height are then calculated using the adjusted attributes as inputs to VDYP 7. This attribute adjusted net volume and lorey height are then compared with the Phase II ground measured volume and lorey height to determine the final volume adjustment ratios for these attributes. These ratios are then applied to the attribute adjusted volume and lorey height to determine the final net volume for each adjusted polygon.

The following section provides a summary of each of the adjusted attributes by stratum as well as for the land base as a whole. Appendix I provides the Phase I and Phase II attributes used in these calculations. Appendix II provides a table of summary statistics for each stratum. Plots showing the relationship between each of the Phase I and Phase II observations as well as the calculation of outliers are also included in Appendix II.

Overall, the analysis shows almost no change in the Phase I ages on average (Table 7). Individually, the adjustments vary from stratum to stratum with the largest increase in the OTHER\_all stratum. The OTHER\_all stratum had the most variability in the observations and the largest sampling error.

| Stratum   | Phase II Ground<br>Measured Age<br>(years) | Phase I<br>Interpreted Age<br>(years) | Ratio of<br>Averages |
|-----------|--------------------------------------------|---------------------------------------|----------------------|
| ATAC_imm  | 60.8                                       | 64.8                                  | 0.9373               |
| ATAC_mat  | 83.6                                       | 102.2                                 | 0.8177               |
| BL_all    | 149.1                                      | 140.3                                 | 1.0630               |
| OTHER_all | 94.7                                       | 76.9                                  | 1.2310               |
| PL_good   | 91.3                                       | 92.9                                  | 0.9826               |
| PL_poor   | 105.2                                      | 103.5                                 | 1.0156               |
| SX_all    | 96.0                                       | 96.2                                  | 0.9970               |
| Overall   | 97.1                                       | 97.1                                  | 1.0003               |

Phase I heights have been overestimated by approximately 4% (or 0.5m) compared with the Phase II measurements (Table 8). With the exception of the BL\_all stratum, height ratios showed a similar trend to the age ratios with ATAC\_imm, ATAC\_mat, PL\_good, and SX\_all strata getting younger and shorter as a result of the adjustment. The OTHER\_all and PL\_poor strata got older and taller while the BL\_all stratum got older and shorter.

| Stratum   | Phase II Ground<br>Measured Average<br>Height (m) | Phase I<br>Interpreted<br>Average Height<br>(m) | Ratio of<br>Averages |
|-----------|---------------------------------------------------|-------------------------------------------------|----------------------|
| ATAC_imm  | 15.7                                              | 16.9                                            | 0.9269               |
| ATAC_mat  | 19.0                                              | 22.4                                            | 0.8493               |
| BL_all    | 14.3                                              | 14.3                                            | 0.9994               |
| OTHER_all | 11.8                                              | 10.4                                            | 1.1308               |
| PL_good   | 17.9                                              | 18.9                                            | 0.9477               |
| PL_poor   | 14.8                                              | 13.9                                            | 1.0652               |
| SX_all    | 13.1                                              | 13.5                                            | 0.9697               |
| Overall   | 15.1                                              | 15.6                                            | 0.9653               |

Table 8:Height Adjustment Ratio

Basal area is a significant driver for VDYP 7 volumes and, on average, is approximately 1.3% higher than the Phase I interpreted values (Table 9). Consistent with other analyses, basal area shows considerably more variability than age and height, as this attribute is not directly photo interpreted. The OTHER\_all stratum showed a substantial increase in basal area and also had the greatest variability in the observations.



| Table 5. Basal Alea Aujustillent Ratio |                                                    |                                               |                      |  |  |  |  |  |
|----------------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------|--|--|--|--|--|
| Stratum                                | Phase II Ground<br>Measured Basal<br>Area (cm2/ha) | Phase I<br>Interpreted Basal<br>Area (cm2/ha) | Ratio of<br>Averages |  |  |  |  |  |
| ATAC_imm                               | 22.9                                               | 28.5                                          | 0.8016               |  |  |  |  |  |
| ATAC_mat                               | 28.3                                               | 34.3                                          | 0.8243               |  |  |  |  |  |
| BL_all                                 | 36.9                                               | 24.7                                          | 1.4959               |  |  |  |  |  |
| OTHER_all                              | 21.5                                               | 17.4                                          | 1.2376               |  |  |  |  |  |
| PL_good                                | 32.4                                               | 32.4                                          | 0.9987               |  |  |  |  |  |
| PL_poor                                | 35.6                                               | 29.9                                          | 1.1905               |  |  |  |  |  |
| SX_all                                 | 25.7                                               | 29.8                                          | 0.8622               |  |  |  |  |  |
| Overall                                | 29.0                                               | 28.6                                          | 1.0128               |  |  |  |  |  |

| Table | 9: | Basal | Area | Adj | justment | Ratio |  |
|-------|----|-------|------|-----|----------|-------|--|
|       |    |       |      |     |          |       |  |

Stems per hectare is a difficult attribute to photo interpretation consistently and accurately and therefore there is considerable variability in the both the Phase I attributes and the adjustment ratios. Stems per hectare has been overestimated in the ATAC imm, ATAC mat SX all strata while being underestimated in the BL all, PL good and PL poor strata. The OTHER all stratum receives very little adjustment. Overall, the Phase II values are, on average, 5% higher that the Phase I interpreted values (Table 10).

|           |                                                  | ()                                             |                      |
|-----------|--------------------------------------------------|------------------------------------------------|----------------------|
| Stratum   | Phase II Ground<br>Measured Stems<br>Per Hectare | Phase I<br>Interpreted<br>Stems Per<br>Hectare | Ratio of<br>Averages |
| ATAC_imm  | 1,047.5                                          | 1,313.3                                        | 0.7976               |
| ATAC_mat  | 804.5                                            | 909.5                                          | 0.8846               |
| BL_all    | 1,476.5                                          | 895.4                                          | 1.6490               |
| OTHER_all | 1,500.2                                          | 1,493.9                                        | 1.0042               |
| PL_good   | 1,383.2                                          | 1,168.2                                        | 1.1840               |
| PL_poor   | 1,728.5                                          | 1,354.5                                        | 1.2761               |
| SX_all    | 659.0                                            | 876.8                                          | 0.7516               |
| Overall   | 1,173.0                                          | 1,114.1                                        | 1.0529               |

Table 10. Stems per Hectare (SPH) Adjustment Ratio

Lorey height is another attribute that is not directly photo interpreted but is derived by VDYP 7 based on other attributes. In this analysis, lorey height, as measured through the Phase II samples is approximately 3% higher than the values derived through VDYP based on Phase I adjusted attributes (Table 11).



| Stratum   | Phase II Ground<br>Measured Lorey<br>Height (m) | Phase I<br>Interpreted Lorey<br>Height (m) | Ratio of<br>Averages |
|-----------|-------------------------------------------------|--------------------------------------------|----------------------|
| ATAC_imm  | 13.5                                            | 14.9                                       | 0.9103               |
| ATAC_mat  | 19.3                                            | 19.5                                       | 0.9908               |
| BL_all    | 11.7                                            | 10.9                                       | 1.0762               |
| OTHER_all | 9.9                                             | 10.1                                       | 0.9778               |
| PL_good   | 15.5                                            | 16.4                                       | 0.9476               |
| PL_poor   | 14.7                                            | 14.5                                       | 1.0122               |
| SX_all    | 14.6                                            | 15.3                                       | 0.9526               |
| Overall   | 14.3                                            | 14.7                                       | 0.9747               |

| Table 11: Lorey Height Adju | stment Ratio |
|-----------------------------|--------------|
|-----------------------------|--------------|

On average, the Phase I attribute adjusted net volumes are underestimated by approximately 8% in comparison with Phase II net volume measurements (Table 12). With the exception of the PL\_good and SX\_all strata, all other strata show an increase in net volume with the largest increase in the BL\_all stratum.

| Stratum   | Phase II Ground<br>Measured Attribute<br>Adjusted Net Volume<br>(m3/ha) | Phase I Interpreted<br>Attribute Adjusted<br>Net Volume<br>(m3/ha) | Ratio of<br>Averages |
|-----------|-------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------|
| ATAC_imm  | 106.0                                                                   | 87.7                                                               | 1.2098               |
| ATAC_mat  | 183.2                                                                   | 153.6                                                              | 1.1922               |
| BL_all    | 164.0                                                                   | 133.4                                                              | 1.2295               |
| OTHER_all | 70.2                                                                    | 63.1                                                               | 1.1120               |
| PL_good   | 180.3                                                                   | 181.4                                                              | 0.9937               |
| PL_poor   | 184.9                                                                   | 177.4                                                              | 1.0425               |
| SX_all    | 151.8                                                                   | 155.2                                                              | 0.9780               |
| Overall   | 150.4                                                                   | 139.3                                                              | 1.0792               |

 Table 12:
 Net Volume per Hectare Adjustment Ratio

#### **5.2 Leading Species Comparison**

The accuracy of the Phase I leading species was assessed relative to the Phase II observed leading species. Table 13 shows that on average, Phase I leading species is correct approximately 60% of the time. SX\_all has the lowest accuracy for leading species. However, if differences between S, SE and SW are ignored the accuracy of this stratum increases to 52% and the overall accuracy increased to 63%.



Dawson Creek TSA Phase II VRI Statistical Adjustment

| Phase 1            | Phase II Leading Species |    |    |    |    |   |    |    |    | %  |         |       |         |
|--------------------|--------------------------|----|----|----|----|---|----|----|----|----|---------|-------|---------|
| Leading<br>Species | AC                       | ΑΤ | BL | LT | PL | S | SB | SE | SW | SX | (blank) | Total | Correct |
| AC                 | 2                        | 2  |    |    |    |   |    |    |    |    |         | 4     | 50%     |
| AT                 | 16                       | 36 |    |    | 5  |   |    |    | 2  |    |         | 59    | 61%     |
| BL                 |                          |    | 19 |    |    | 1 |    | 4  |    |    |         | 24    | 79%     |
| PLI                | 1                        | 3  | 1  |    | 23 | 1 | 3  | 3  | 2  | 1  |         | 38    | 61%     |
| SB                 |                          | 1  |    | 3  | 1  |   | 5  |    | 1  |    |         | 11    | 45%     |
| SE                 |                          | 1  | 3  |    | 1  |   |    | 6  |    |    | 1       | 12    | 50%     |
| SW                 | 3                        |    | 2  |    | 1  | 1 |    | 3  | 3  | 1  | 3       | 17    | 18%     |
| Total              | 22                       | 43 | 25 | 3  | 31 | 3 | 8  | 16 | 8  | 2  | 4       | 165   | 57%     |

 Table 13:
 Leading Species Comparison

### 5.3 Sampling Error

Sampling error with 95% probability is calculated for the entire population as well as for each individual stratum using the calculations described in the procedures manual. Table 14 demonstrates that the target of achieving a 10% sampling error (95% probability) on overall net volume has not been achieved.

|                               |          |          |         |           |         | -       | -       |           |
|-------------------------------|----------|----------|---------|-----------|---------|---------|---------|-----------|
| Strata                        | ATAC_imm | ATAC_mat | BL_all  | OTHER_all | PL_good | PL_poor | SX_all  | Overall   |
| Strata Sample Size            | 26       | 37       | 24      | 11        | 16      | 22      | 29      | 165       |
| Total Area                    | 189,623  | 173,788  | 178,972 | 141,511   | 177,097 | 204,111 | 317,741 | 1,382,841 |
| Stand Age                     | 0        | 0        | 0       | 0         | 0       | 0       | 0       | 0         |
| VRI Standard Error of Ratio   | 0.0544   | 0.0416   | 0.0493  | 0.1845    | 0.0914  | 0.0787  | 0.1000  | 0.0358    |
| VRI Sampling Error Pct(%)     | 11.4     | 10.0     | 9.1     | 29.4      | 18.2    | 15.2    | 19.7    | 7.0       |
| Stand Height                  | 0        | 0        | 0       | 0         | 0       | 0       | 0       | 0         |
| VRI Standard Error of Ratio   | 0.0511   | 0.0439   | 0.0494  | 0.1807    | 0.0918  | 0.0789  | 0.0463  | 0.0291    |
| VRI Sampling Error Pct(%)     | 10.8     | 10.1     | 9.7     | 31.3      | 19.0    | 14.5    | 9.4     | 5.8       |
| Lorey Height                  | 0        | 0        | 0       | 0         | 0       | 0       | 0       | 0         |
| VRI Standard Error of Ratio   | 0.0613   | 0.0530   | 0.0630  | 0.1580    | 0.0819  | 0.0600  | 0.0679  | 0.0296    |
| VRI Sampling Error Pct(%)     | 13.2     | 10.5     | 11.5    | 31.7      | 16.9    | 11.6    | 14.0    | 5.9       |
| Basal Area                    | 0        | 0        | 0       | 0         | 0       | 0       | 0       | 0         |
| VRI Standard Error of Ratio   | 0.0815   | 0.0693   | 0.2079  | 0.2352    | 0.0849  | 0.1073  | 0.0706  | 0.0462    |
| VRI Sampling Error Pct(%)     | 19.9     | 16.5     | 27.2    | 37.2      | 16.7    | 17.7    | 16.1    | 8.7       |
| Stems per Hectare             | 0        | 0        | 0       | 0         | 0       | 0       | 0       | 0         |
| VRI Standard Error of Ratio   | 0.0825   | 0.1422   | 0.3118  | 0.1581    | 0.2015  | 0.1526  | 0.0804  | 0.0621    |
| VRI Sampling Error Pct(%)     | 20.3     | 31.5     | 37.1    | 30.9      | 33.3    | 23.4    | 21.0    | 11.6      |
| Unadjusted Net Volume         | 0        | 0        | 0       | 0         | 0       | 0       | 0       | 0         |
| VRI Standard Error of Ratio   | 0.1230   | 0.0896   | 0.2414  | 0.8428    | 0.1302  | 0.1654  | 0.0911  | 0.1007    |
| VRI Sampling Error Pct(%)     | 26.8     | 20.7     | 27.6    | 91.9      | 27.9    | 25.2    | 21.3    | 17.4      |
| Attribute Adjusted Net Volume | 0        | 0        | 0       | 0         | 0       | 0       | 0       | 0         |
| VRI Standard Error of Ratio   | 0.1686   | 0.1232   | 0.1705  | 0.5047    | 0.1475  | 0.1356  | 0.1057  | 0.0717    |
| VRI Sampling Error Pct(%)     | 27.3     | 20.2     | 27.2    | 89.0      | 29.1    | 25.5    | 21.2    | 12.8      |

 Table 14:
 Standard Error and Sampling Error



## **6 DISCUSSION**

Inventory adjustment ratios have been applied by stratum to the Dawson Creek TSA inventory file provided by the MFLNRO. The following shows the impacts of the inventory adjustment at the TSA level.

Overall the average volume per hectare across the entire TSA increases by 1.7 m<sup>3</sup>/ha (1.2%). Total volume across the land base increases by the same percentages. Figure 3 shows the volume per hectare and total net volume changes by stratum. The BL\_all, OTHER\_all and PL\_poor strata all showed a positive volume increase with the largest volume per hectare increase observed in the BL\_all and PL\_poor strata. The ATAC\_imm, ATAC\_mat, PL\_good and SX\_all strata all showed reductions in net merchantable volume with the largest decrease in the in the ATAC\_mat and SX\_all strata. In terms of overall volume on the land base, the adjustment increased the total net merchantable volume by approximately 2.5 million m<sup>3</sup>.



#### Figure 3: Adjusted and Unadjusted Total Net Volume and Net Volume Per Hectare By Stratum

Figure 4 compares net volume per hectare and total volume by ageclass for the adjusted land base. These figures show the combined effects of the age and volume adjustments and provide a general assessment of the overall impact of the adjustment on inventory volume and potentially timber supply.



Dawson Creek TSA Phase II VRI Statistical Adjustment



#### Figure 4: Adjusted and Unadjusted Area, Total Volume and Total Volume Per Hectare By Ageclass (adjusted portion of the TSA only)

The OTHER\_all stratum, due to its inherrent complexity and diversity, coupled with the low number of plots, has a large sampling error. While this stratum represents predominantly black spurce and larch-leading stands which may be of marginal economic value, it represents approximately 10% of the adjusted land base and therefore increases the overall sampling error for the analysis. Removing uneconomic species from the adjusted land base and re-assessing the adjustment ratios would provide a more localized reflection of the timber harvesting land base and may reduce the overall sampling error.

The results of this analysis suggest that overall volume in the existing Phase I inventory may be underestimated by approximately 1.2% with sampling error of +/- 17.4% (95% probability). The Forest Analysis and Inventory Branch supports the application of Phase II VRI adjustments as an improvement in the overall inventory. However, given the size of the adjustment relative to the sampling error, care should be taken in assessing the implications of this adjustment on the timber supply of the TSA. In understanding the potential implications of the adjustment it is important to understand the impacts of both the positive and negative ranges of the sampling error on existing stand volumes. Furthermore, the adjustment has the potential to affect both the size of the timber harvesting land base as well as the yield curves associated with natural stands; the implications of which should also be considered in assessing the timber supply.



### 7 **REFERENCES**

- J.S. Thrower & Associates. 1997. *Dawson Creek Forest District Vegetation Resources Inventory Ground Sampling Plan Revised Final Report.* 8 October 1997. 44pp.
- Ministry of Forests. 2000. Dawson Creek Timber Supply Area Documentation of Vegetation Resources Inventory Interim Analysis. June 22<sup>nd</sup>, 2000. 81pp.
- Ministry of Forests. 2002. Dawson Creek Timber Supply Area Analysis Report October 2002. 155pp.
- Ministry of Forests and Range. 2008. Schedule C: Vegetation Resources Inventory Interim Procedures and Standards for Statistical Adjustment of Baseline VRI Timber Attributes. Version 1.1 January 2008. 46pp.
- Ministry of Sustainable Resource Management. 2002. Dawson Creek Timber Supply Area Documentation of Vegetation Resources Inventory Addendum No. 2. March 2002. 23pp.
- Timberline Forest Inventory Consultants Ltd. 2006. Dawson Creek Timber Supply Area Vegetation Resources Inventory Strategic Inventory Plan. 21pp.



# **APPENDIX I – ADJUSTMENT DATA**

Table 15:Adjustment Data

|                         |                                | Phase II Measured |              |        |               | Data Pha     |                 |               |          | e I Inte    | rpret        | ed Da        | ata (Pr       | ojecte    | d to 20         | 002)          |               |                                        |
|-------------------------|--------------------------------|-------------------|--------------|--------|---------------|--------------|-----------------|---------------|----------|-------------|--------------|--------------|---------------|-----------|-----------------|---------------|---------------|----------------------------------------|
| Stratum                 | Cluster ID                     | SPP1              | Age          | Height | Basal<br>Area | SPH          | Lorey<br>Height | Net Vol.      | SPP1     | SPP2        | Age          | . Height     | Basal<br>Area | SPH       | Lorey<br>Height | Net Vol.      | Net Vol<br>AA | Comment                                |
| ATAC_imm                | DDCX-0048-O 1                  | AT                | 56.3         | 15.1   | 9.8           | 776          | 13.8            | 24.2          | AT       | AC          | 78.0         | 19.7         | 34.4          | 1,386     | 16.6            | 149.8         | 110.1         |                                        |
| ATAC_imm                | DDCX-0055-OO1                  | SW                | 39.6         | 12.8   | 19.3          | 1,322        |                 | 80.1          | AT       | SW          | 38.0         | 6.7          | 3.0           | 580       |                 | -             | -             | set to zero vol; Iht dropped no vdyp   |
| ATAC_imm                | DDCX-0129-001                  | PL                | 39.7         | 9.3    | 9.0           | 1,296        | 8.2             | 10.1          | AT       | sw          | 53.0         | 16.7         | 26.5          | 1,558     | 14.6            | 93.8          | 73.5          |                                        |
| ATAC_imm                | DDCX-0196-001                  | AT                | 62.5         | 14.4   | 15.0          | 984          | 12.4            | 44.3          | AT       |             | 33.0         | 13.8         | 16.6          | 1,506     | 11.3            | 24.5          | 17.6          |                                        |
| ATAC_imm                | DDCX-0502-001                  | PL                | 59.8         | 17.9   | 10.0          | 127          | 18.6            | 69.1          | AT       | SW          | 68.0         | 15.7         | 19.4          | 895       | 14.1            | 69.9          | 53.1          |                                        |
| ATAC_IMM                | DDCX-0531-001                  | AT<br>AT          | 68.3         | 24.0   | 23.8          | 448<br>863   | 21.5<br>12.7    | 159.5         | AC<br>AT | A I<br>DI I | /1.0         | 10.0         | 42.0<br>18.7  | 1,294     | 14.9            | 33.2          | 27.1          |                                        |
| ATAC_imm                | DDCX-0569-001                  | AT                | 113.5        | 26.3   | 48.6          | 844          | 22.7            | 340.6         | AT       |             | 73.0         | 22.0         | 42.6          | 1,000     | 18.5            | 255.0         | 184.3         |                                        |
| ATAC_imm                | DDCY-0032-Q 1                  | AT                | 58.5         | 18.2   | 10.8          | 333          | 12.8            | 63.7          | AT       | AC          | 78.0         | 18.7         | 29.5          | 1,080     | 15.6            | 115.2         | 86.7          |                                        |
| ATAC_imm                | DDCY-0070-Q 1                  | SW                | 66.3         | 16.6   | 12.5          | 360          | 15.1            | 61.1          | AT       | SW          | 68.0         | 20.7         | 39.2          | 1,336     | 17.4            | 202.3         | 156.2         |                                        |
| ATAC_imm                | DDCY-0104-QO1                  | AC                | 60.2         | 14.5   | 14.8          | 781          | 6.9             | 56.1          | AT<br>AT | SE          | 73.0         | 16.1         | 13.9          | 576       | 14.5            | 44.8          | 34.8          |                                        |
| ATAC_IIIIII<br>ATAC_imm | DDCY-0218-QO1                  | AC                | 54.0         | 14.0   | 36.4          | 1,930        | 12.3            | 120.5         | AT       | AC          | 68.0         | 10.9         | 29.3          | 1,392     | 14.0            | 104.6         | 78.6          |                                        |
| ATAC_imm                | DDCY-0309-QO1                  | AC                | 78.4         | 17.9   | 28.0          | 1,174        | 15.8            | 141.6         | AT       | PLI         | 73.0         | 22.0         | 33.2          | 985       | 18.5            | 197.6         | 144.2         |                                        |
| ATAC_imm                | DDCY-0361-QO1                  | AT                | 78.0         | 21.5   | 42.0          | 847          | 20.2            | 262.8         | AT       | SW          | 68.0         | 16.7         | 29.2          | 1,628     | 14.1            | 94.8          | 68.8          |                                        |
| ATAC_imm                | DDCY-0509-QO1                  | AT                | 67.3         | 25.5   | 39.7          | 986          | 16.7            | 209.5         | AT       | AC          | 63.0         | 20.8         | 37.0          | 1,402     | 17.8            | 197.4         | 143.7         |                                        |
| ATAC_imm                | DDCY-0514-Q01                  | AI                | 68.8         | 22.5   | 28.8          | 694<br>1 025 | 21.7            | 192.4         | AI<br>AC | ΛТ          | 63.0         | 19.8         | 36.7          | 1,464     | 16.2            | 1/5.6         | 123.0         |                                        |
| ATAC_imm                | DDCY-0529-QO1                  | AC                | 69.8         | 13.3   | 24.0          | 1,923        | 12.9            | 74.8          | AT       | AC          | 78.0         | 17.7         | 29.4          | 1.529     | 15.0            | 99.9          | 73.3          |                                        |
| ATAC_imm                | DDCY-0534-QO1                  | AC                | 41.0         | 15.9   | 27.5          | 1,301        | 15.6            | 112.3         | AT       |             | 68.0         | 17.7         | 29.2          | 1,532     | 14.5            | 102.1         | 73.3          |                                        |
| ATAC_imm                | DDCY-0536-QO1                  | AT                | 48.8         | 6.2    | 5.8           | 600          | 6.8             | 15.6          | AT       | AC          | 63.0         | 21.7         | 32.6          | 995       | 19.2            | 184.7         | 140.3         |                                        |
| ATAC_imm                | DDCY-0538-001                  | AC                | 75.3         | 19.2   | 39.2          | 971          | 21.0            | 232.4         | AT       | AC          | 63.0         | 21.7         | 41.8          | 1,362     | 18.5            | 239.1         | 174.9         |                                        |
| ATAC_IMM                | DDCY-0548-Q01                  | AT<br>AC          | 52.5<br>25.8 | 13.1   | 3.0           | 250          | 13.6            | 9.1           | AI<br>AT | SVV<br>AC   | 78.0<br>43.0 | 19.7<br>17.2 | 29.5          | 1,279     | 17.0            | 134.3         | 99.4<br>75.1  | height excluded - no p2 ht             |
| ATAC_imm                | DDCY-0570-QO1                  | AT                | 56.7         | 13.5   | 25.2          | 2.620        | 9.0             | 42.3          | AT       | ΛU          | 53.0         | 16.7         | 26.1          | 1,946     | 13.4            | 67.2          | 46.3          |                                        |
| ATAC_imm                | DDCY-0575-QO1                  | AT                | 61.0         | 14.8   | 18.3          | 1,099        | 10.1            | 56.6          | AT       | AC          | 58.0         | 16.6         | 29.0          | 1,430     | 14.6            | 91.8          | 70.7          |                                        |
| ATAC_mat                | DDCX-0024-001                  | AT                | 92.3         | 27.2   | 45.5          | 466          | 27.6            | 432.7         | AT       | SW          | 124.0        | 28.6         | 19.8          | 196       | 24.0            | 157.6         | 114.3         |                                        |
| ATAC_mat                | DDCX-0049-0 1                  | AT                | 77.2         | 23.8   | 37.8          | 738          | 21.9            | 255.0         | AT       | AC          | 93.0         | 29.2         | 49.0          | 954       | 24.0            | 406.0         | 291.3         |                                        |
| ATAC_mat                |                                | ΔT                | 82.8         | 20.1   | 22.0<br>42.8  | 1,054        | 20.7            | 123.3         | ΔΤ       | AC<br>AC    | 98.0         | 24.3<br>23.8 | 24.4<br>44.6  | 303       | 19.5            | 264.0         | 105.0         |                                        |
| ATAC mat                | DDCX-0088-001                  | AC                | 41.9         | 15.1   | 20.0          | 2,322        | 10.4            | 28.3          | AT       | AC          | 88.0         | 21.8         | 5.9           | 145       | 19.3            | 34.0          | 24.8          |                                        |
| ATAC_mat                | DDCX-0135-001                  | AT                | 100.9        | 24.9   | 37.0          | 1,508        | 18.9            | 217.3         | AT       |             | 83.0         | 21.2         | 14.4          | 320       | 16.6            | 77.5          | 52.8          |                                        |
| ATAC_mat                | DDCX-0166-001                  | AT                | 104.6        | 24.5   | 60.8          | 1,746        | 22.5            | 380.5         | AT       | SW          | 123.0        | 26.5         | 44.4          | 1,023     | 20.8            | 296.5         | 207.8         |                                        |
| ATAC_mat                | DDCX-0195-001                  | A I<br>A T        | 83.8         | 27.5   | 49.5          | 746          | 26.0            | 412.2         | AI<br>AT |             | 88.0         | 23.8         | 39.6          | 1,085     | 18.7            | 237.9         | 164.3         |                                        |
| ATAC_mat                | DDCX-0230-001                  | AC                | 126.5        | 21.0   | 16.8          | 129          | 18.5            | 138.0         | AT       | SW          | 103.0        | 20.3         | 34.2          | 934       | 18.2            | 195.8         | 134.1         |                                        |
| ATAC_mat                | DDCX-0510-001                  | AT                | 104.5        |        | 21.0          | 304          | 23.1            | 158.0         | AT       | PLI         | 98.0         | 22.8         | 44.7          | 1,227     | 18.3            | 275.3         | 199.6         | height excluded - no p2 ht             |
| ATAC_mat                | DDCX-0528-001                  | AC                | 113.8        | 25.7   | 34.2          | 652          | 24.7            | 233.2         | AC       | AT          | 83.0         | 26.0         | 43.5          | 1,078     | 20.7            | 280.1         | 200.1         |                                        |
| ATAC_mat                | DDCX-0541-001                  | AC                | 59.8         | 17.4   | 27.5          | 811          | 13.1            | 136.0         | AT       |             | 103.0        | 22.4         | 39.0          | 1,197     | 18.6            | 193.7         | 144.1         |                                        |
| ATAC_mat                | DDCX-0547-001                  | AT                | 83.0         | 10.0   | 29.0          | 832          | 18.4            | 135.5         |          | AC          | 93.0         | 23.3         | 29.0          | 1 159     | 18.4            | 225.6         | 145.9         | height excluded - no p2 ht             |
| ATAC_mat                | DDCX-0556-001                  | AT                | 54.5         | 10.5   | 4.0           | 96           | 26.4            | 27.1          | AT       | AC          | 91.0         | 23.5         | 31.0          | 2,349     | 17.1            | 112.7         | 69.0          |                                        |
| ATAC_mat                | DDCX-0567-001                  | AT                | 86.8         | 20.7   | 17.0          | 195          | 22.2            | 124.7         | AC       | AT          | 98.0         | 23.8         | 24.8          | 693       | 19.9            | 133.7         | 101.4         |                                        |
| ATAC_mat                | DDCX-0578-001                  | AT                | 102.8        | 26.7   | 51.8          | 858          | 19.3            | 350.3         | AT       | PLI         | 98.0         | 24.8         | 39.7          | 1,026     | 19.9            | 276.7         | 199.0         |                                        |
| ATAC_mat                |                                | ΔT                | 90.8         | 21.0   | 40.5          | 902          | 20.0            | 37.1<br>272.7 | ΔΤ       | 911<br>DII  | 98.0         | 27.5         | 39.0<br>39.7  | 1 073     | 22.0            | 270.9         | 207.2         |                                        |
| ATAC mat                | DDCY-0075-Q 1                  | AT                | 63.3         | 14.6   | 23.0          | 1,953        | 12.3            | 58.6          | AT       | AC          | 103.0        | 27.3         | 44.2          | 999       | 22.3            | 339.7         | 242.3         |                                        |
| ATAC_mat                | DDCY-0076-Q 1                  | AC                | 120.3        | 24.9   | 35.0          | 315          | 25.7            | 281.6         | AT       | AC          | 104.0        | 24.4         | 39.3          | 887       | 20.1            | 238.2         | 177.1         |                                        |
| ATAC_mat                | DDCY-0156-QO1                  | AC                | 74.6         | 8.4    | 27.9          | 300          | 9.6             | 237.7         | AT       | AC          | 138.0        | 31.9         | 30.0          | 190       | 26.8            | 262.9         | 187.5         |                                        |
| ATAC_mat                | DDCY-0214-QO1                  | AT                | 92.3         | 24.6   | 21.0          | 279          | 20.4            | 150.2         | AT<br>AT | C14/        | 113.0        | 25.4         | 44.2          | 1,101     | 19.3            | 275.7         | 185.3         |                                        |
| ATAC_mat                | DDC1-0210-Q01<br>DDCY-0253-001 | AC                | 93.4         | 25.0   | 22.4          | 378          | 19.6            | 402.0         |          | 300         | 83.0         | 25.4         | 48.3          | 1 1 1 1 7 | 21.1<br>19.7    | 352.4         | 229.6         |                                        |
| ATAC mat                | DDCY-0267-QO1                  | AT                | 108.6        | 25.3   | 42.0          | 439          | 24.2            | 334.9         | AT       | sw          | 108.0        | 24.8         | 39.8          | 844       | 21.3            | 274.4         | 207.6         |                                        |
| ATAC_mat                | DDCY-0525-001                  | AC                | 115.0        | 29.1   | 21.0          | 172          | 23.8            | 166.4         | AT       |             | 113.0        | 23.4         | 34.3          | 931       | 17.7            | 186.0         | 125.4         |                                        |
| ATAC_mat                | DDCY-0526-QO1                  | AC                | 94.9         | 23.7   | 15.8          | 89           | 24.6            | 130.1         | AT       |             | 93.0         | 21.3         | 33.8          | 999       | 16.0            | 168.8         | 111.3         |                                        |
| ATAC_mat                | DDCY-0532-Q01                  | AI                | 36.5         | 16.3   | 26.6          | 2,304        | 10.5            | 80.6          | AI<br>AT | SW          | 83.0         | 22.1         | 33.6          | 970       | 18.5            | 203.0         | 145.7         | height excluded no n? ht               |
| ATAC_mat                | DDCY-0545-001                  | PI                | 101.5        | 22.2   | ∠3.0<br>5.8   | 65           | 9.0<br>21 1     | 44.5          | AT       | SW          | 108.0        | 23.8         | 24.7<br>34.8  | 872       | 18.8            | 209 1         | 146.0         | noight excluded - no p2 fit            |
| ATAC_mat                | DDCY-0546-QO1                  | AT                | 69.0         | 16.8   | 32.4          | 715          | 16.2            | 199.1         | AT       | AC          | 88.0         | 19.8         | 29.6          | 1,277     | 15.3            | 128.4         | 86.5          |                                        |
| ATAC_mat                | DDCY-0553-QO1                  | AC                | 100.2        | 29.8   | 27.0          | 233          | 27.0            | 241.3         | AT       | PLI         | 123.0        | 25.5         | 39.2          | 1,006     | 21.5            | 266.7         | 211.3         |                                        |
| ATAC_mat                | DDCY-0562-001                  | AT                | 49.9         | 11.1   | 23.3          | 1,994        | 8.2             | 46.3          | AT       | SW          | 88.0         | 19.8         | 29.6          | 1,278     | 15.3            | 127.9         | 86.3          | manual edit to feature_id (WS 07mar12) |
| ATAC_mat                |                                | AT<br>AC          | 80.7<br>23 5 | 19.5   | 11.5          | 1/2          | 27.3            | 102.3         | Α1<br>ΔΤ | AC<br>2R    | 128.0        | 24.9         | 14.9<br>34 4  | 226       | ∠0.1<br>20.7    | 94.9<br>23/ 1 | 09.0          |                                        |
| BL_all                  | DDCX-0007-001                  | BL                | 209.5        | 16.6   | 52.2          | 2,312        | 12.2            | 214.1         | BL       | SE          | 173.0        | 17.4         | 29.6          | 840       | 15.2            | 145.3         | 199.7         |                                        |



|                    |                                | Phase II Meas |               |              |               | ured I       | Data            |                | Р          | hase       | e I Inte      | rpre         | ted Da        | ata (Pr | ojecte          | d to 2         | 002)          |                                                      |
|--------------------|--------------------------------|---------------|---------------|--------------|---------------|--------------|-----------------|----------------|------------|------------|---------------|--------------|---------------|---------|-----------------|----------------|---------------|------------------------------------------------------|
| Stratum            | Cluster ID                     | SPP1          | Age           | Height       | Basal<br>Area | SPH          | Lorey<br>Height | Net Vol.       | SPP1       | SPP2       | Age           | Height       | Basal<br>Area | SPH     | Lorey<br>Height | Net Vol.       | Net Vol<br>AA | Comment                                              |
| BL_all             | DDCX-0043-O 1                  | SE            | 130.5         | 17.3         | 45.6          | 1,024        | 13.4            | 258.9          | BL         | SE         | 63.0          | 15.0         | 48.6          | 1,222   | 14.1            | 211.0          | 311.2         |                                                      |
| BL_all<br>BL_all   | DDCX-0045-0-1<br>DDCX-0127-001 | BL<br>SF      | 147.5<br>69.7 | 16.2         | 21.0          | 366          | 10.0            | 124.1<br>55.2  | BL<br>RI   |            | 174.0<br>64.0 | 15.5<br>7 9  | 34.3<br>5.0   | 1,215   | 10.7            | 112.5          | 151.6         | set to zero vol                                      |
| BL all             | DDCX-0132-001                  | SE            | 109.0         | 8.5          | 13.3          | 628          | 7.0             | 53.2           | BL         | SE         | 74.0          | 11.0         | 12.1          | 708     | 9.4             | 29.2           | 42.0          |                                                      |
| BL_all             | DDCY-0031-QO1                  | S             | 55.9          | 7.9          | 19.0          | 1,278        | 6.4             | 58.1           | BL         |            | 74.0          | 9.0          | 5.7           | 560     | 6.7             | 5.8            | 8.3           | manual edit to feature_id (WS 07mar12)               |
| BL_all             | DDCY-0038-Q 1                  | BL            | 211.5         | 16.1         | 23.4          | 932          | 14.1            | 104.0          | BL         | SE         | 214.0         | 19.6         | 39.9          | 1,003   | 14.1            | 181.5          | 248.1         |                                                      |
| BL_all             | DDCZ-0003-QO1                  | BL            | 194.5         | 16.4         | 33.3          | 1 1 1 4 1    | 16.2            | 227.7          | BL<br>BI   | SE<br>SF   | 154.0         | 17.4         | 24.5<br>24.1  | 526     | 15.0            | 124.5          | 174.5         |                                                      |
| BL_all             | DDCZ-0006-QO1                  | BL            | 173.9         | 26.5         | 45.0          | 739          | 24.4            | 314.9          | BL         | SE         | 213.0         | 21.6         | 45.0          | 904     | 17.8            | 270.1          | 368.0         |                                                      |
| BL_all             | DDCZ-0007-QO1                  | BL            | 160.8         | 13.3         | 63.0          | 4,018        | 10.8            | 160.7          | BL         |            | 144.0         | 9.5          | 2.3           | 208     | 7.3             | 3.0            | 4.1           |                                                      |
| BL_all             | DDCZ-0009-QO1                  | BL            | 147.5         | 10.7         | 15.0          | 210          | 11.5            | 43.5           | BL         | oг         | 143.0         | 17.3         | 14.5          | 377     | 12.4            | 57.3           | 77.9          |                                                      |
| BL_all             | DDCZ-0010-QO1<br>DDCZ-0026-QO1 | BL            | 167.5         | 21.0         | 33.6          | 404          | 14.0            | 210.7          | BL<br>BI   | SE<br>SF   | 194.0         | 20.5         | 34.7<br>44 8  | 1,109   | 12.5            | 258.7          | 354.7         |                                                      |
| BL_all             | DDCZ-0029-QO1                  | BL            | 122.2         | 10.8         | 40.0          | 1,610        | 10.0            | 171.9          | BL         | SE         | 114.0         | 13.3         | 22.6          | 981     | 9.9             | 64.2           | 89.3          |                                                      |
| BL_all             | DDCZ-0032-QO1                  | BL            | 215.2         | 22.2         | 33.8          | 747          | 21.1            | 216.6          | BL         | SE         | 133.0         | 14.3         | 32.2          | 1,525   | 11.8            | 109.5          | 153.5         |                                                      |
| BL_all             | DDCZ-0034-QO1                  | BL            | 79.9          | 11.3         | 22.0          | 3 602        | 13.0            | 107.6          | BL         | PLI        | 93.0          | 8.2          | 15.0          | 1,200   | 7.6             | 67.7           | 34.7          | set to zero vol                                      |
| BL all             | DDCZ-0030-QO1<br>DDCZ-0037-QO1 | SE            | 145.1         | 9.4          | 44.3          | 2.093        | 7.7             | 145.7          | BL         |            | 154.0         | 14.4         | 33.6          | 1,399   | 9.9             | 101.9          | 135.9         |                                                      |
| BL_all             | DDCZ-0041-QO1                  | BL            | 88.3          | 9.7          | 35.0          | 3,928        | 7.5             | 40.2           | BL         |            | 93.0          | 9.1          | 8.9           | 840     | 6.7             | 9.6            | 13.6          |                                                      |
| BL_all             | DDCZ-0042-QO1                  | BL            | 202.2         | 17.7         | 51.8          | 1,868        | 12.5            | 243.1          | BL         |            | 154.0         | 17.4         | 34.2          | 1,125   | 12.1            | 133.7          | 177.6         |                                                      |
| BL_all             | DDCZ-0044-QO1                  | BL            | 113.1         | 5.8          | 38.0          | 3,493        |                 | 69.7           | BL         |            | 93.0          | 4.5          | 1.0           | 600     |                 | -              | -             | ht aa: Iht dropped no p2 Iht                         |
| BL_all             | DDCZ-0048-QO1                  | BL            | 112.3         | 7.7          | 15.4          | 780          | 2.3             | 56.8           | BL         |            | 114.0         | 13.3         | 18.1          | 637     | 9.4             | 51.1           | 70.1          | ···· <u>_</u> ,                                      |
| BL_all             | DDCZ-0050-QO1                  | BL            | 231.5         | 16.3         | 49.0          | 1,317        | 12.2            | 244.8          | BL         | 0.147      | 153.0         | 14.4         | 33.4          | 1,275   | 9.9             | 101.0          | 133.7         |                                                      |
| OTHER_all          | DDCX-0044-0-1                  | SB            | 123.0         | 12.2         | 21.6          | 2,287        | 9.5             | 27.4           | SB         | SW         | 88.0<br>88.0  | 6.8<br>9.8   | 9.0<br>17.4   | 1,400   | 6.1<br>9.0      | 153            | 5.5<br>29.7   | set to zero vol                                      |
| OTHER all          | DDCX-0005-001                  | SB            | 102.5         | 12.7         | 29.4          | 1,681        | 12.0            | 108.6          | SB         | SW         | 123.0         | 13.3         | 14.1          | 980     | 12.4            | 35.7           | 57.8          |                                                      |
| OTHER_all          | DDCX-0131-001                  | SW            | 74.7          | 13.1         | 26.0          | 1,591        | 10.4            | 84.7           | SB         | PLI        | 88.0          | 13.7         | 24.3          | 1,610   | 14.2            | 87.4           | 127.6         |                                                      |
| OTHER_all          | DDCX-0133-001                  | AT            |               |              | 11.7          | 881          | 14.8            | 29.1           | SB         | SW         | 68.0          | 7.8          | 9.0           | 1,300   | 7.2             | -              | 7.7           | set to zero vol age / height excluded -<br>spp match |
| OTHER_all          | DDCX-0139-001                  | SB            | 91.8          | 11.6         | 33.8          | 2,993        | 11.9            | 72.9           | SB         | SW         | 94.0          | 14.2         | 23.2          | 1,304   | 12.8            | 69.0           | 107.0         |                                                      |
| OTHER_all          | DDCX-0576-001                  | LT            | 144.0         | 17.6         | 8.8           | 356          |                 | 35.6           | SB         | LT         | 43.0          | 4.2          | 4.0           | 1,000   |                 | -              | -             | ht_aa; Iht dropped no p2 lht                         |
| OTHER_all          | DDCY-0034-Q 1                  | LT            | 71.3          | 10.2         | 14.0          | 1,542        | 6.9             | 11.9           | SB         | SW         | 108.0         | 15.8         | 29.5          | 1,718   | 14.3            | 99.5           | 152.4         |                                                      |
| OTHER_all          | DDCY-0069-QO1                  | SB            | 166.5         | 0.9<br>19.7  | 49.0          | 1,390        | 19.7            | 319.4          | SB         | SW         | 78.0          | 11.7         | 20.0          | 1,646   | 12.0            | 33.0           | 56.5          |                                                      |
| OTHER_all          | DDCY-0073-Q 1                  | LT            | 96.5          | 11.6         | 12.3          | 1,343        | 8.7             | 10.0           | SB         | PLI        | 73.0          | 12.9         | 21.8          | 1,860   | 13.0            | 51.5           | 84.9          |                                                      |
| PL_good            | DDCX-0002-001                  | PL            | 35.5          | 9.0          | 18.7          | 757          | 6.8             | 118.8          | PLI        | SW         | 103.0         | 20.5         | 24.7          | 802     | 17.8            | 179.2          | 165.6         |                                                      |
| PL_good            | DDCX-0003-001                  | PL<br>PI      | 85.8<br>94.4  | 19.5<br>17 7 | 37.8          | 1,383        | 17.4            | 202.9          | PLI<br>PLI | SVV<br>AT  | 103.0         | 19.5         | 29.5          | 1,055   | 17.0<br>17.9    | 191.0<br>269.8 | 249.3         |                                                      |
| PL good            | DDCX-0122-001                  | PL            | 104.1         | 14.7         | 45.0          | 3,112        | 11.8            | 176.5          | PLI        |            | 93.0          | 16.4         | 33.4          | 1,468   | 13.1            | 142.1          | 121.9         |                                                      |
| PL_good            | DDCX-0128-001                  | BL            | 139.2         | 15.1         | 45.0          | 1,828        | 14.8            | 193.8          | PLI        | SE         | 74.0          | 15.3         | 32.8          | 1,510   | 13.5            | 135.7          | 123.9         |                                                      |
| PL_good            | DDCX-0513-001                  | PL            | 53.1          | 15.6         | 15.0          | 639          | 13.9            | 63.8           | PLI        | AT         | 53.0          | 13.7         | 29.6          | 1,821   | 11.7            | 94.5           | 79.8          |                                                      |
| PL_good            | DDCX-0374-001                  | PI            | 96.0          | 19.3         | 40.5          | 2 071        | 20.3            | 203.5          | PLI        | AT         | 93.0          | 25.5         | 33.9          | 400     | 13.3            | 400.5          | 135.4         |                                                      |
| PL_good            | DDCY-0067-Q 1                  | AC            | 74.5          | 10.4         | 9.0           | 917          | 10.0            | 3.4            | PLI        | AT         | 78.0          | 20.8         | 34.6          | 969     | 18.7            | 242.5          | 227.1         |                                                      |
| PL_good            | DDCY-0068-Q 1                  | PL            | 96.9          | 23.6         | 43.2          | 784          | 20.7            | 314.6          | PLI        | AT         | 138.0         | 23.9         | 40.0          | 861     | 21.0            | 317.0          | 299.8         |                                                      |
| PL_good            | DDCY-0109-QO1                  | SW            | 133.5         | 32.8         | 43.2          | 386          | 22.6            | 395.8          | PLI        | A I<br>SW/ | 108.0         | 19.9<br>21 0 | 34.8          | 1,267   | 17.5            | 224.5          | 204.1         |                                                      |
| PL good            | DDCY-0111-Q01                  | SB            | 45.1          | 7.7          | 13.0          | 1,498        | 8.3             | 11.9           | PLI        | AT         | 74.0          | 15.3         | 14.3          | 591     | 12.9            | 64.6           | 58.0          |                                                      |
| PL_good            | DDCY-0113-QO1                  | SX            | 147.5         | 28.7         | 33.0          | 860          | 25.6            | 240.7          | PLI        | SW         | 74.0          | 18.2         | 33.6          | 1,491   | 15.5            | 192.2          | 173.5         |                                                      |
| PL_good            | DDCY-0148-QO1                  | PL            | 94.1          | 21.7         | 39.6          | 1,312        | 18.9            | 281.6          | PLI        | ΛТ         | 103.0         | 17.5         | 33.8          | 1,406   | 13.9            | 161.3          | 139.1         |                                                      |
| PL_good<br>PL_poor | DDC1-0579-Q01                  | SE            | 79.3          | 10.3         | 27.5          | 5,474<br>635 | 10.2            | 20.2<br>110.5  | PLI        | A I<br>BI  | 70.0<br>93.0  | 13.4         | 9.7           | 466     | 14.7            | 90.9<br>30.5   | 38.0          |                                                      |
| PL_poor            | DDCX-0005-001                  | PL            | 71.3          | 13.1         | 15.0          | 1,779        | 9.3             | 32.5           | PLI        | SB         | 118.0         | 20.9         | 39.9          | 1,219   | 18.6            | 272.9          | 335.7         |                                                      |
| PL_poor            | DDCX-0010-0 1                  | SW            | 151.5         | 17.0         | 38.3          | 1,698        | 15.1            | 183.4          | PLI        | SB         | 138.0         | 19.9         | 35.0          | 1,366   | 17.8            | 218.2          | 270.6         |                                                      |
| PL_poor            | DDCX-0011-001                  | PL            | 168.0         | 19.0         | 47.3          | 1,100        | 18.3            | 306.1          | PLI        | SB         | 108.0         | 20.9         | 44.8          | 1,321   | 16.7            | 266.6          | 323.3         |                                                      |
| PL poor            | DDCX-0012-01                   | PL            | 88.5          | 14.8         | 24.8          | 717          | 14.6            | 162.0          | PLI        | SE         | 113.0         | 20.5         | 39.0          | 1.243   | 18.9            | 257.7          | 325.2         |                                                      |
| PL_poor            | DDCX-0082-001                  | PL            | 49.9          | 11.7         | 28.0          | 3,750        | 10.3            | 22.8           | PLI        | SB         | 78.0          | 14.8         | 34.3          | 1,536   | 13.0            | 143.8          | 179.3         |                                                      |
| PL_poor            | DDCY-0029-QO1                  | PL            | 46.0          | 11.1         | 19.3          | 2,269        | 7.8             | 28.0           | PLI        | SB         | 48.0          | 11.6         | 18.6          | 1,494   | 10.2            | 30.3           | 36.6          | baight avaluded in a -0 bt                           |
| PL_poor            | DDCT-0033-Q01<br>DDCY-0058-001 | PL<br>PI      | 140.8<br>69.8 | 17.9         | 45.0<br>24 8  | 1,070        | 10.5<br>13.4    | ∠78.9<br>151.8 | PLI        | ов<br>SF   | 83 0          | 10.0<br>11.4 | 04.0<br>13.6  | 1,419   | 10.5            | 24.5           | 208.9<br>29.6 | neigni excluaea - no p2 ht                           |
| PL_poor            | DDCY-0059-QO1                  | ຣັ            | 74.0          | 11.5         | 29.8          | 831          | 11.0            | 148.8          | PLI        | śŴ         | 103.0         | 14.5         | 28.5          | 1,287   | 13.4            | 107.2          | 132.7         |                                                      |
| PL_poor            | DDCY-0065-Q 1                  | SB            | 167.5         | 17.9         | 74.3          | 3,826        | 13.6            | 327.1          | PLI        | SB         | 133.0         | 14.8         | 34.5          | 1,474   | 13.3            | 144.1          | 163.9         |                                                      |
| PL_poor            |                                | ۲L            | 88.8          | 17.9         | 53.7          | 2,437        | 12.0            | 247.3          | PLI        | SW         | 138.0         | 18.9         | 34.9          | 1,315   | 17.3            | 212.7<br>102 F | 258.5         |                                                      |
| PL poor            | DDCY-0078-Q 1                  | PL            | 43.2          | 11.8         | 20.0          | 1,853        | 23.3<br>9.2     | 69.9           | PLI        | SB         | 53.0          | 11.8         | 24.0          | 1,796   | 10.9            | 56.3           | 68.8          |                                                      |
| PL_poor            | DDCY-0100-QO1                  | ΡL            | 198.5         | 14.4         | 60.0          | 3,610        | 12.4            | 286.5          | PLI        | BL         | 103.0         | 15.5         | 33.4          | 1,506   | 13.9            | 130.9          | 163.4         |                                                      |
| PL_poor            | DDCY-0102-QO1                  | ΡL            | 95.0          | 18.1         | 50.4          | 1,999        | 15.9            | 287.2          | PLI        | SB         | 103.0         | 16.5         | 34.0          | 1,478   | 13.7            | 153.0          | 186.7         | l                                                    |



#### Dawson Creek TSA Phase II VRI Statistical Adjustment

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Phase                                              |                                                                                                                                                                                                  |                                                                                                                                                     | ase II Measured Data                                                                                                                                                                      |                                                                                                                                                                           |                                                                                                                                                                       |                                                                                                                                                                                                          | Phase I Inter                          |                                                                                            |                                                                                                                                                                                                                    |                                                                                                                                                                                                    | ed Da                                                                                                                                                                                                                                   | ta (Pr                                                                                                                                                                                                                                                                                | ojecte                                                                                                                                                                                            | d to 2                                                                                                                                                                                                      | 002)                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stratum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cluster ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SPP1                                               | Age                                                                                                                                                                                              | Height                                                                                                                                              | Basal<br>Area                                                                                                                                                                             | SPH                                                                                                                                                                       | Lorey<br>Height                                                                                                                                                       | Net Vol.                                                                                                                                                                                                 | SPP1                                   | SPP2                                                                                       | Age                                                                                                                                                                                                                | Height                                                                                                                                                                                             | Basal<br>Area                                                                                                                                                                                                                           | SPH                                                                                                                                                                                                                                                                                   | Lorey<br>Height                                                                                                                                                                                   | Net Vol.                                                                                                                                                                                                    | Net Vol<br>AA                                                                                                                                                                                                | Comment                                                                                                                                                                                                                                                                                                       |
| PL_poor<br>PL_poor<br>PL_poor<br>PL_poor<br>PL_poor<br>SX_all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DDCY-0103-QO1<br>DDCY-0105-QO1<br>DDCY-0106-QO1<br>DDCY-0120-QO1<br>DDCY-0535-OO1<br>DDCY-0001-OO1                                                                                                                                                                                                                                                                                                                                                                                                        | SB<br>PL<br>SE<br>PL<br>AT                         | 147.5<br>94.1<br>81.8<br>92.5<br>117.2                                                                                                                                                           | 12.8<br>17.3<br>23.5<br>26.7                                                                                                                        | 28.8<br>25.2<br>28.0<br>36.0<br>39.6                                                                                                                                                      | 1,820<br>762<br>566<br>702<br>659                                                                                                                                         | 14.2<br>17.8<br>19.1<br>22.1<br>26.8                                                                                                                                  | 101.5<br>159.4<br>188.4<br>321.3<br>300.8                                                                                                                                                                | PLI<br>PLI<br>PLI<br>PLI<br>SE         | SB<br>SB<br>SW<br>AT<br>BL                                                                 | 123.0<br>93.0<br>113.0<br>94.0<br>128.0<br>193.0                                                                                                                                                                   | 13.6<br>14.4<br>20.5<br>19.5<br>21.9<br>19.6                                                                                                                                                       | 28.9<br>26.4<br>24.4<br>29.4<br>39.9<br>8.0                                                                                                                                                                                             | 1,923<br>1,624<br>773<br>1,049<br>1,164<br>162                                                                                                                                                                                                                                        | 12.2<br>10.9<br>17.7<br>18.5<br>19.1                                                                                                                                                              | 74.6<br>72.5<br>137.4<br>191.4<br>260.5<br>38.7                                                                                                                                                             | 91.1<br>95.2<br>174.3<br>236.5<br>328.0<br>33.3                                                                                                                                                              | height excluded - no p2 ht<br>age / height excluded; ba/sph/vph=0 lht<br>dropped no p2 lht                                                                                                                                                                                                                    |
| SX_all<br>SX_all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DDCX-0008-O 1<br>DDCX-0015-OO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SE<br>AC                                           | 219.3<br>95.9                                                                                                                                                                                    | 21.5<br>27.2                                                                                                                                        | 42.0<br>42.0                                                                                                                                                                              | 707<br>475                                                                                                                                                                | 17.5<br>27.1                                                                                                                                                          | 269.7<br>292.6                                                                                                                                                                                           | SW<br>SW                               | BL<br>AC                                                                                   | 113.0<br>123.0                                                                                                                                                                                                     | 23.0<br>27.1                                                                                                                                                                                       | 39.0<br>49.1                                                                                                                                                                                                                            | 912<br>983                                                                                                                                                                                                                                                                            | 18.9<br>24.1                                                                                                                                                                                      | 251.0<br>360.6                                                                                                                                                                                              | 207.2<br>309.4                                                                                                                                                                                               | manual edit to feature_id (WS                                                                                                                                                                                                                                                                                 |
| SX_all         SX_all | DDCX-0026-O 1<br>DDCX-0042-OO1<br>DDCX-0083-OO1<br>DDCX-0124-OO1<br>DDCX-0126-OO1<br>DDCY-0146-QO1<br>DDCY-0147-QO1<br>DDCY-0147-QO1<br>DDCY-0147-QO1<br>DDCY-0150-QO1<br>DDCY-0153-QO1<br>DDCY-0249-QO1<br>DDCY-0249-QO1<br>DDCY-0573-QO1<br>DDCY-0573-QO1<br>DDCY-0573-QO1<br>DDCY-0573-QO1<br>DDCY-0573-QO1<br>DDCY-0573-QO1<br>DDCY-0573-QO1<br>DDCY-0573-QO1<br>DDCY-0573-QO1<br>DDCY-0073-QO1<br>DDCZ-0002-QO1<br>DDCZ-0022-QO1<br>DDCZ-0022-QO1<br>DDCZ-0024-QO1<br>DDCZ-0024-QO1<br>DDCZ-0024-QO1 | S BLAT BLACE BLE SEW AC SWPLE BLX SEPLES           | 48.9<br>234.0<br>54.5<br>211.9<br>90.0<br>119.0<br>119.0<br>119.0<br>119.0<br>128.5<br>73.1<br>146.0<br>97.5<br>76.5<br>135.5<br>72.5<br>33.5<br>138.4<br>251.7<br>72.1<br>61.8<br>103.5<br>72.2 | 14.8<br>25.3<br>12.9<br>21.3<br>27.5<br>19.7<br>17.8<br>9.8<br>25.2<br>20.8<br>19.2<br>19.2<br>19.2<br>19.2<br>12.3<br>27.2<br>13.3<br>20.5<br>11.6 | -<br>23.8<br>25.2<br>5.9<br>42.0<br>32.2<br>37.8<br>43.2<br>29.3<br>63.0<br>-<br>-<br>33.3<br>39.6<br>17.5<br>8.0<br>23.8<br>46.7<br>15.0<br>23.8<br>46.7<br>15.0<br>14.0<br>39.2<br>19.0 | -<br>752<br>629<br>434<br>845<br>374<br>1,106<br>381<br>9197<br>200<br>728<br>1,898<br>-<br>773<br>677<br>513<br>677<br>332<br>1,816<br>695<br>530<br>553<br>1,117<br>766 | -<br>14.0<br>26.6<br>5.9<br>18.3<br>21.7<br>20.8<br>22.2<br>15.9<br>18.1<br>6.7<br>20.8<br>18.0<br>22.9<br>27.7<br>12.8<br>10.0<br>8.88<br>9.1<br>9.6<br>15.3<br>10.2 | -<br>131.5<br>152.7<br>22.4<br>244.6<br>219.1<br>209.0<br>21.4<br>209.6<br>21.9<br>174.1<br>408.9<br>-<br>201.6<br>-<br>163.2<br>320.0<br>76.2<br>28.9<br>61.1<br>320.9<br>63.0<br>62.7<br>224.2<br>75.7 | S SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | BL<br>PBLATLI<br>BATLI<br>BBL<br>BBL<br>BBL<br>BBL<br>BBL<br>BBL<br>BBL<br>BBL<br>BBL<br>B | 214.0<br>113.0<br>234.0<br>73.0<br>158.0<br>233.0<br>203.0<br>203.0<br>203.0<br>203.0<br>124.0<br>113.0<br>98.0<br>78.0<br>128.0<br>93.0<br>78.0<br>144.0<br>93.0<br>78.0<br>144.0<br>93.0<br>73.0<br>93.0<br>73.0 | 29.6<br>18.9<br>26.8<br>9.8<br>21.8<br>29.8<br>17.5<br>24.1<br>18.7<br>24.4<br>9.6<br>23.3<br>27.0<br>25.0<br>22.6<br>18.5<br>27.8<br>22.7<br>20.5<br>17.5<br>20.9<br>14.4<br>11.7<br>13.8<br>13.5 | 35.2<br>33.4<br>45.1<br>12.5<br>39.8<br>45.1<br>29.5<br>39.2<br>30.4<br>9.0<br>44.0<br>49.2<br>9.8<br>39.6<br>7.8<br>49.8<br>39.6<br>7.8<br>49.8<br>39.6<br>7.8<br>49.8<br>38.6<br>134.2<br>29.3<br>38.6<br>19.1<br>8.9<br>17.7<br>13.1 | 530<br>1,334<br>778<br>1,272<br>1,260<br>703<br>1,373<br>888<br>1,056<br>926<br>926<br>926<br>1,094<br>982<br>110<br>898<br>178<br>970<br>942<br>979<br>979<br>9709<br>1,126<br>680<br>947<br>681<br>947<br>682<br>947<br>942<br>970<br>970<br>970<br>970<br>970<br>970<br>970<br>970 | 25.0<br>16.0<br>22.0<br>9.7<br>18.1<br>23.6<br>15.0<br>20.2<br>14.9<br>8.5<br>18.4<br>22.6<br>18.5<br>24.2<br>24.2<br>24.2<br>24.2<br>18.2<br>9.0<br>13.6<br>16.7<br>11.9<br>10.6<br>11.4<br>11.5 | 287.2<br>171.0<br>319.7<br>14.3<br>246.6<br>340.5<br>122.8<br>283.8<br>10.3<br>280.8<br>384.4<br>77.5<br>241.6<br>41.9<br>382.7<br>258.2<br>216.6<br>13.1<br>118.3<br>209.1<br>64.1<br>18.0<br>54.1<br>41.9 | 241.4<br>150.5<br>276.7<br>16.9<br>211.7<br>294.7<br>111.7<br>237.8<br>119.9<br>222.8<br>314.7<br>65.1<br>202.5<br>35.4<br>324.5<br>230.1<br>186.9<br>13.9<br>105.9<br>175.3<br>58.0<br>18.0<br>50.6<br>38.7 | ormar12)age / height excluded;<br>ba/sph/vph=0<br>height excluded - no p2 ht<br>height excluded - no p2 ht<br>age / height excluded; ba/sph/vph=0 lht<br>dropped no p2 lht<br>age / height excluded - spp match<br>age / height excluded; ba/sph/vph=0 lht<br>dropped no p2 lht<br>height excluded - no p2 ht |
| 30<br>drop age LT<br>30<br>drop age LT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DDCX-0014-O 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AC                                                 | 94.8                                                                                                                                                                                             | 25.4                                                                                                                                                | 49.5                                                                                                                                                                                      | 688                                                                                                                                                                       | 21.3                                                                                                                                                                  | 337.2                                                                                                                                                                                                    | PL                                     | S                                                                                          | 19.0                                                                                                                                                                                                               | 3.2                                                                                                                                                                                                | 45.0                                                                                                                                                                                                                                    | 1,572                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                   |                                                                                                                                                                                                             |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                               |
| 30<br>drop age LT<br>30<br>drop age LT<br>30<br>drop age LT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DDCX-0069-001<br>DDCX-0517-001<br>DDCY-0061-Q 1                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PL                                                 | 44.3<br>16.0<br>29.7                                                                                                                                                                             | 6.3<br>5.3                                                                                                                                          | 4.0<br>10.8                                                                                                                                                                               | 720<br>1,038                                                                                                                                                              | 5.3<br>5.2                                                                                                                                                            | - 12.6                                                                                                                                                                                                   | AT<br>SE                               | AC<br>AC<br>EP                                                                             | 23.0                                                                                                                                                                                                               | 5.7                                                                                                                                                                                                | 15.0                                                                                                                                                                                                                                    | 1,700                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                   |                                                                                                                                                                                                             |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                               |
| 30<br>drop age LT<br>30<br>drop age LT<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DDCY-0063-Q 1<br>DDCY-0511-QO1<br>DDCY-0560-QO1                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AC                                                 | 56.2<br>25.5                                                                                                                                                                                     | 22.3                                                                                                                                                | 0.3<br>3.4<br>-                                                                                                                                                                           | 20<br>100<br>-                                                                                                                                                            | 8.3<br>17.8<br>4.5                                                                                                                                                    | 0.5<br>18.6                                                                                                                                                                                              | AT<br>AT                               | PLI                                                                                        | 3.0<br>4.0                                                                                                                                                                                                         | 1.0<br>0.3                                                                                                                                                                                         | 1.0<br>1.0                                                                                                                                                                                                                              | 3,100<br>3,374                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                   |                                                                                                                                                                                                             |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                               |
| drop age LT<br>30<br>drop duplicate<br>drop<br>monitoring<br>drop non-tsa<br>drop not VT<br>drop not VT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DDCY-0571-001<br>DDCX-0006-Q 1<br>DDCX-0022-M01<br>DDCX-0028-O1<br>DDCX-0028-O1<br>DDCX-0016-O 1<br>DDCX-0018-O01<br>DDCX-0018-O01<br>DDCX-0018-O01<br>DDCX-0020-M01<br>DDCX-0020-O01<br>DDCX-0022-O01<br>DDCX-0047-O 1                                                                                                                                                                                                                                                                                   | SW<br>SE<br>BL<br>AC<br>PL<br>SX<br>BL<br>PL<br>BL | 49.2<br>107.5<br>157.3<br>28.5<br>22.0<br>134.3<br>77.7<br>115.9<br>117.0<br>128.3<br>124.3<br>144.8                                                                                             | 19.4<br>6.5<br>20.8<br>12.3<br>12.4<br>21.3<br>22.9<br>27.3<br>21.3<br>21.0<br>19.6                                                                 | 39.7<br>2.5<br>28.6<br>12.0<br>21.3<br>49.0<br>24.3<br>36.0<br>41.7<br>37.8<br>39.0                                                                                                       | 2,692<br>147<br>500<br>675<br>671<br>1,167<br>801<br>1,673<br>1,551<br>1,376<br>1,455                                                                                     | 18.8<br>6.5<br>12.4<br>9.8<br>2.4<br>15.2<br>22.7<br>11.8<br>18.4<br>16.7<br>18.1<br>11.6                                                                             | 163.0<br>3.4<br>177.7<br>32.7<br>134.7<br>358.6<br>160.0<br>188.6<br>302.2<br>229.2<br>209.0                                                                                                             | AT<br>BL<br>SE<br>PLI<br>PLI           | SW<br>SE<br>BL<br>SB<br>SB                                                                 | 23.0<br>213.0<br>143.0<br>48.0<br>48.0                                                                                                                                                                             | 10.3<br>21.6<br>14.4<br>11.6<br>11.6                                                                                                                                                               | 3.6<br>45.0<br>19.1<br>18.6<br>18.6                                                                                                                                                                                                     | 416<br>904<br>921<br>1,494<br>1,494                                                                                                                                                                                                                                                   | 17.8<br>11.9<br>10.2<br>10.2                                                                                                                                                                      | 2.5<br>270.1<br>64.1<br>30.3<br>30.3                                                                                                                                                                        | 368.0<br>58.0<br>36.6<br>36.6                                                                                                                                                                                | same feature id as DDCZ-0006-QO1<br>monitoring plot<br>WS 07mar2012<br>WS 07mar2012                                                                                                                                                                                                                           |



#### Dawson Creek TSA Phase II VRI Statistical Adjustment

|                    |               | Phase II Measured Data |       |        |               |         |                 |          | Р    | hase | e I Inte | rpret  | ted Da        | ita (Pi | ojecte          | d to 2   | 002)          |              |
|--------------------|---------------|------------------------|-------|--------|---------------|---------|-----------------|----------|------|------|----------|--------|---------------|---------|-----------------|----------|---------------|--------------|
| Stratum            | Cluster ID    | SPP1                   | Age   | Height | Basal<br>Area | SPH     | Lorey<br>Height | Net Vol. | SPP1 | SPP2 | Age      | Height | Basal<br>Area | SPH     | Lorey<br>Height | Net Vol. | Net Vol<br>AA | Comment      |
| drop not VT        | DDCX-0050-MO1 | PL                     | 32.8  | 10.7   | 15.4          | 1,026   | 9.3             | 39.2     |      |      |          |        |               |         |                 |          |               |              |
| drop not VT        | DDCX-0050-001 | PL                     | 29.8  | 10.7   | 7.7           | 600     | 8.2             | 17.7     |      |      |          |        |               |         |                 |          |               |              |
| drop not VT        | DDCX-0051-MO1 | BL                     | 109.5 | 12.2   | 24.8          | 901     | 9.0             | 83.6     |      |      |          |        |               |         |                 |          |               |              |
| drop not VT        | DDCX-0051-001 | BL                     | 97.5  | 13.4   | 20.3          | 463     | 11.9            | 100.0    |      |      |          |        |               |         |                 |          |               |              |
| drop not VI        | DDCX-0052-0 1 | AI                     | 45.5  | 12.9   | 11.7          | 1,304   | 10.7            | 28.5     |      |      |          |        |               |         |                 |          |               |              |
| drop not VI        | DDCX-0053-MO1 | S                      | 189.5 | 14.6   | 47.2          | 1,826   | 10.7            | 202.4    |      |      |          |        |               |         |                 |          |               |              |
| drop not VT        | DDCX-0053-001 | SE                     | 2//.1 | 19.7   | 31.5          | 1,434   | 10.9            | 130.1    |      |      |          |        |               |         |                 |          |               |              |
| drop not VT        | DDCX-0054-001 | DI<br>DI               | 104.8 | 21.4   | 50.4          | 1,209   | 17.4            | 284.7    |      |      |          |        |               |         |                 |          |               |              |
| drop not VT        |               | BL                     | 6U.S  | 13.9   | 2.9           | 100     | 9.1             | 12.7     |      |      |          |        |               |         |                 |          |               |              |
| drop not VT        |               | ы                      | 101.0 | 13.9   | 24 5          | 1 / 1 2 | 80              | 75 1     |      |      |          |        |               |         |                 |          |               |              |
| drop not VT        | DDCX-0123-001 | DL                     | 101.0 | 15.0   | 24.5          | 1,412   | 0.9             | 75.1     | ٨т   |      |          |        |               |         |                 |          |               |              |
| drop not VT        | DDCX-0500-001 | ΔТ                     | 76.0  | 10.3   | 35.0          | 1 833   | 20.7            | 150 0    |      |      |          |        |               |         |                 |          |               |              |
| drop not VT        | DDCX-0513-001 |                        | 70.0  | 13.5   | 55.0          | 1,000   | 20.1            | 155.0    | ΔΤ   |      |          |        |               |         |                 |          |               |              |
| drop not VT        | DDCX-0040-001 | РI                     | 79.8  | 18.3   | 19.3          | 228     | 22.6            | 158 1    |      |      |          |        |               |         |                 |          |               |              |
| drop not VT        | DDCY-0035-QO1 | AT                     | 68.0  | 21.3   | 39.2          | 1 135   | 19.2            | 227 5    |      |      |          |        |               |         |                 |          |               |              |
| drop not VT        | DDCY-0040-Q 1 | sw                     | 122.8 | 26.8   | 36.0          | 443     | 25.8            | 282 1    |      |      |          |        |               |         |                 |          |               |              |
| drop not VT        | DDCY-0062-Q 1 | SE                     | 187.5 | 19.4   | 36.0          | 847     | 14.0            | 200.3    |      |      |          |        |               |         |                 |          |               |              |
| drop not VT        | DDCY-0064-FO1 | BL                     | 194.6 | 17.8   | 42.2          | 1.601   | 10.7            | 199.7    |      |      |          |        |               |         |                 |          |               |              |
| drop not VT        | DDCY-0064-Q 1 | SE                     | 282.5 | 21.5   | 32.4          | 759     | 14.4            | 194.4    |      |      |          |        |               |         |                 |          |               |              |
| drop not VT        | DDCY-0079-Q 1 | PL                     | 31.0  | 8.1    | 12.0          | 887     | 8.0             | 15.2     |      |      |          |        |               |         |                 |          |               |              |
| drop not VT        | DDCY-0080-Q 1 | SE                     | 262.3 | 17.8   | 45.6          | 857     | 18.1            | 264.4    |      |      |          |        |               |         |                 |          |               |              |
| drop not VT        | DDCY-0107-QO1 | PL                     | 118.5 | 13.7   | 57.0          | 2,039   | 14.6            | 325.9    | BL   | SX   |          |        |               |         |                 |          |               |              |
| drop not VT        | DDCY-0154-QO1 | PL                     | 99.3  | 24.6   | 28.0          | 545     | 23.2            | 213.0    |      |      |          |        |               |         |                 |          |               |              |
| drop not VT        | DDCY-0189-QO1 | AC                     | 96.7  | 24.2   | 37.8          | 531     | 22.8            | 245.4    | AT   | AC   |          |        |               |         |                 |          |               |              |
| drop not VT        | DDCY-0550-QO1 | SW                     | 74.8  | 21.1   | 42.0          | 1,437   | 22.4            | 245.5    |      |      |          |        |               |         |                 |          |               |              |
| drop not VT        | DDCY-0555-QO1 | AT                     | 87.3  | 29.7   | 32.4          | 471     | 28.0            | 248.3    | AT   |      |          |        |               |         |                 |          |               |              |
| drop wrong<br>polv | DDCX-0041-001 | SE                     | 130.0 | 22.2   | 47.3          | 886     | 20.7            | 335.1    | BL   |      | 93.0     | 9.1    | 8.9           | 840     | 6.7             | 9.6      | 13.6          | WS 07mar2012 |



# **APPENDIX II – ADJUSTMENT SUMMARIES**

| Та                                      | able 16: | Adjustm  | ent Sun | nmary Sta | tistics   |         |         |           |
|-----------------------------------------|----------|----------|---------|-----------|-----------|---------|---------|-----------|
| Strata                                  | ATAC_imm | ATAC_mat | BL_all  | OTHER_all | PL_good   | PL_poor | SX_all  | Overall   |
| Strata Sample Size                      | 26       | 37       | 24      | 11        | 16        | 22      | 29      | 165       |
| Total Area                              | 189,623  | 173,788  | 178,972 | 141,511   | 177,097   | 204,111 | 317,741 | 1,382,841 |
| Stand Age (at_m_tls)                    |          |          |         |           |           |         |         |           |
| Average: at_m_tls (Ground Age)          | 60.8     | 83.6     | 149.1   | 94.7      | 91.3      | 105.2   | 96.0    | 97.1      |
| Average: age_match (Photo Age)          | 64.8     | 102.2    | 140.3   | 76.9      | 92.9      | 103.5   | 96.2    | 97.1      |
| Ratio of Averages                       | 0.9373   | 0.8177   | 1.0630  | 1.2310    | 0.9826    | 1.0156  | 0.9970  | 1.0003    |
| VRI Standard Error of Ratio             | 0.0544   | 0.0416   | 0.0493  | 0.1845    | 0.0914    | 0.0787  | 0.1000  | 0.0358    |
| VRI Sampling Error Pct(%)               | 11.4     | 10.0     | 9.1     | 29.4      | 18.2      | 15.2    | 19.7    | 7.0       |
| Average: ht m the (Cround Lleight)      | 15.7     | 10.0     | 14.2    | 11.0      | 17.0      | 14.0    | 10.1    | 15 1      |
| Average: ht_m_tis (Ground Height)       | 10.7     | 19.0     | 14.3    | 11.0      | 17.9      | 14.0    | 13.1    | 15.1      |
| Retiage. III_INALCH (Photo Reight)      | 0.0260   | 0.8403   | 0 0004  | 1 1 2 0 9 | 10.9      | 10652   | 13.5    | 0.0653    |
| VPI Standard Error of Patio             | 0.9209   | 0.0493   | 0.9994  | 0 1807    | 0.9477    | 0.0789  | 0.9097  | 0.9055    |
| VRI Sampling Error Pct(%)               | 10.8     | 10 1     | 9.7     | 31.3      | 19.0      | 14.5    | 9.4     | 5.8       |
| Lorev Height (ht mean1)                 | 10.0     | 10.1     | 0.1     | 01.0      | 10.0      | 11.0    | 0.1     | 0.0       |
| Average: ht mean175 (Ground Height)     | 13.5     | 19.3     | 11.7    | 9.9       | 15.5      | 14.7    | 14.6    | 14.3      |
| Average: Iht aa (Photo Height)          | 14.9     | 19.5     | 10.9    | 10.1      | 16.4      | 14.5    | 15.3    | 14.7      |
| Ratio of Averages                       | 0.9103   | 0.9908   | 1.0762  | 0.9778    | 0.9476    | 1.0122  | 0.9526  | 0.9747    |
| VRI Standard Error of Ratio             | 0.0613   | 0.0530   | 0.0630  | 0.1580    | 0.0819    | 0.0600  | 0.0679  | 0.0296    |
| VRI Sampling Error Pct(%)               | 13.2     | 10.5     | 11.5    | 31.7      | 16.9      | 11.6    | 14.0    | 5.9       |
| Basal Area (ba_ha)                      |          |          |         |           |           |         |         |           |
| Average: ba_ha (Ground Basal Area)      | 22.9     | 28.3     | 36.9    | 21.5      | 32.4      | 35.6    | 25.7    | 29.0      |
| Average: ba1999 (Photo Basal Area)      | 28.5     | 34.3     | 24.7    | 17.4      | 32.4      | 29.9    | 29.8    | 28.6      |
| Ratio of Averages                       | 0.8016   | 0.8243   | 1.4959  | 1.2376    | 0.9987    | 1.1905  | 0.8622  | 1.0128    |
| VRI Standard Error of Ratio             | 0.0815   | 0.0693   | 0.2079  | 0.2352    | 0.0849    | 0.1073  | 0.0706  | 0.0462    |
| VRI Sampling Error Pct(%)               | 19.9     | 16.5     | 27.2    | 37.2      | 16.7      | 17.7    | 16.1    | 8.7       |
| Stems per Hectare (stems_ha)            | 4.047.5  | 0045     | 4 470 5 | 4 500 0   | 1 0 0 0 0 | 4 700 5 | 050.0   | 4 470 0   |
| Average: stems_ha (Ground SPH)          | 1,047.5  | 804.5    | 1,476.5 | 1,500.2   | 1,383.2   | 1,728.5 | 659.0   | 1,173.0   |
| Average: spn1999 (Photo SPH             | 1,313.3  | 909.5    | 895.4   | 1,493.9   | 1,108.2   | 1,354.5 | 07516   | 1,114.1   |
| VPL Stondard Error of Potio             | 0.7970   | 0.0040   | 0.2110  | 1.0042    | 1.1040    | 1.2701  | 0.7510  | 1.0529    |
| VRI Sampling Error Pct(%)               | 20.3     | 31.5     | 37.1    | 30.9      | 33.3      | 23.4    | 21.0    | 11.6      |
| Net Unadjusted Volume (vbt_nwb)         | 20.0     | 01.0     | 57.1    | 00.0      | 00.0      | 20.4    | 21.0    | 11.0      |
| Average: vht_nwb (Ground Net Volume)    | 106.0    | 183.2    | 164.0   | 70.2      | 180.3     | 184.9   | 151.8   | 151.2     |
| Average: vol dbw1999 (Unadjusted)       | 117.0    | 045.0    | 05.7    | 20.4      | 407.4     | 140 7   | 101.1   | 4 4 7 7   |
| Photo Net Volume                        | 117.9    | 215.3    | 95.7    | 39.1      | 197.4     | 143.7   | 181.1   | 147.7     |
| Ratio of Averages                       | 0.8997   | 0.8508   | 1.7144  | 1.7966    | 0.9134    | 1.2870  | 0.8382  | 1.0239    |
| VRI Standard Error of Ratio             | 0.1230   | 0.0896   | 0.2414  | 0.8428    | 0.1302    | 0.1654  | 0.0911  | 0.1007    |
| VRI Sampling Error Pct(%)               | 26.8     | 20.7     | 27.6    | 91.9      | 27.9      | 25.2    | 21.3    | 17.4      |
| Net Attribute Adjusted Volume (vht_nwb) |          |          |         |           |           |         |         |           |
| Average: vht_nwb (Ground Net Volume)    | 106.0    | 183.2    | 164.0   | 70.2      | 180.3     | 184.9   | 151.8   | 150.4     |
| Average: vol_aa (Attribute Adjusted)    | 87.7     | 153.6    | 133.4   | 63.1      | 181.4     | 177.4   | 155.2   | 139.3     |
| Patio of Averages                       | 1 2009   | 1 1022   | 1 2205  | 1 1120    | 0 0037    | 1 0/25  | 0 0780  | 1 0702    |
| VRI Standard Error of Ratio             | 0 1686   | 0 1232   | 0 1705  | 0 5047    | 0.9937    | 0 1356  | 0.3700  | 0 0717    |
| VRI Sampling Error Pct(%)               | 27.3     | 20.2     | 27.2    | 89 0      | 29.1      | 25.5    | 21.2    | 12.8      |
|                                         | =:       | <b>_</b> |         |           | ==        | ==::0   |         |           |





Photo Age vs. Ground Age (Outliers Removed)

Figure 5: Ground Age vs. Photo Age





Photo Height vs. Ground Height (Outliers Removed)

Figure 6: Ground Height vs. Photo Height





Photo BA vs. Ground BA (Outliers Removed)

Figure 7: Ground BA vs. Photo BA





Photo SPH vs. Ground SPH (Outliers Removed)







Photo (Attrib. Adj.) Lorey Ht. vs. Ground Lorey Ht. (Outliers Removed)

Figure 9: Ground Lorey Height vs. Photo (VDYP 7) Lorey Height Using Adjusted Attributes





Photo VPH vs. Ground VPH (Unadjusted) (Outliers Removed)

Figure 10: Ground Net Volume vs. Unadjusted Photo (VDYP 7) Volume





Photo (Attrib. Adj.) VPH vs. Ground VPH (Outliers Removed)

Figure 11: Ground Net Volume vs. Photo (VDYP 7) Volume Using Adjusted Attributes





Plot Age Ratio (Outliers Included)

Figure 12: Age Outliers





Plot Height Ratio (Outliers Included)







Plot BA Ratio (Outliers Included)

Figure 14: BA Outliers





Plot Attrib. Adj. Lorey Ht Ratio (Outliers Included)







Plot SPH Ratio (Outliers Included)

Figure 16: Stems per Hectare Outliers



Plot VPH Ratio (Outliers Included)





35





Plot Attrib. Adj. VPH Ratio (Outliers Included)

Figure 18: Attribute Adjusted Net Volume Outliers



## APPENDIX III – SAMPLING PLAN

The following VPIP report can be accessed from the MFLNRO website using the links provided:

 J.S. Thrower & Associates. 1997. Dawson Creek Forest District Vegetation Resources Inventory Ground Sampling Plan Revised Final Report. 8 October 1997. 44pp. <u>http://www.for.gov.bc.ca/hts/vri/planning\_reports/tsa\_vpips/dawsoncrkfd\_vrigs\_vpip.pdf</u>