Climate Change and Engineering Adaptation

Dirk Nyland, P.Eng. – Chief Engineer, BCMoTI (Chair, PIEVC Roads and Associated Structures Expert Working Group)

> The Road to Resilience: MoTI-FLNR Engineering and Climate Adaptation February 20, 2015

Ministry of Transportation and Infrastructure

Climate Risk & Adaptation Context

- Climate change impacts regardless of emission reductions
- Examine future climate risk and historical patterns
- Developing adaptation strategies for climate risk include economic, social and environmental implications

Climate Change in BC - Projected Warming

Average Temperature Anomalies in BC

Extreme Precipitation Events

Atmospheric River - Bella Coola Event (September 25, 2010)

Extreme Weather Events & Infrastructure (Risk with Climate Change)

Hagensburg Channel Bella Coola (Sept 2010)

Bella Coola (Sept 2010) Bitter Creek Bridge Stewart (Sept 2011)

Bella Coola

(Sept 2010)

Extreme Weather Events at BC Locations

Site	Watershed Size km ²	Rainfall Intensity mm/24hrs*	Return Period Rainfall Yr [estimated]	Return Period Streamflow Yr [estimated]
Bitter Creek (Stewart) Sept 2011	276	120	20	20
Medby Creek (Bella Coola) Sept 2010	2	192	>100	25
Fisher Creek (Pine Pass) June-July 2011	44.8	103	100	25-40
Fur Thief Creek (Pine Pass) June 2011	9.3	103	100	20-30

Extreme Weather Events, Risk Analysis & Adaptation

- Recent extreme weather events affecting BC Transportation:
 - Coastal: Bella Coola -- \$45M damage to transportation infrastructure (Sept 2010), Stewart (Sept 2011);
 - Interior: Pine Pass -- \$70M damage to transportation infrastructure (June-July 2011)*
- Risk analysis for future climate change and extreme weather events
- Climate adaptation implications from risk analysis Impacts on transportation (management, planning, engineering design, operations and maintenance)

BCMoTI and PIEVC Risk Tool

- Shifts in climate and extreme weather events may affect reliability of infrastructure
- Require Civil Engineering risk assessment tool
- BCMoTI involved in the development of PIEVC Protocol (Public Infrastructure Engineering Vulnerability Committee)

BC Highway Risk Study Locations

10

PIEVC Protocol: A Five Step Process

Data Gathering Infrastructure Components

 Examples of infrastructure components in BCMoTI risk studies (up to 40)

- Surface asphalt
- Bridges
- Ditches

- Catch basins
- Culverts
- Third-party utilities

FLNR Component List

Road Infrastructure Components	Environmental Features
Road surfacing	River hydraulics and flood plain migration
Structures that cross streams	Landslide features
Bridges	Avalanche Zones
Major culverts	Flood Zone
Other culverts	Riparian habitat/Fish sensitive streams
Culvert cross drains	
Signage	Miscellaneous
Ditches	Administration/Personnel & Engineering
Road Prism - Embankments/Cuts	Winter Maintenance
Natural hillslopes	Summer Maintenance
River training works	Ancillary buildings and utilities and yards
Retaining walls	Gravel/rock pits
 MSE/GRS walls/fills 	
Third party utilities	
 Hydro poles/towers 	
Hydro lines	
Communication/utility towers	
Invasive plants & pests	
Archeological sites	

Climate Factors

- Climate parameters based on design considerations and location
- Relevance:
 - Climate or weather effects on infrastructure component
 - Combinations of events
 - Climate or weather effects related to design specifications, operations and maintenance
- Availability of data

Climate Parameters

#	Climate Parameter	Infrastructure Indicator
1	High Temperature	Number of Days with max. temp. exceeding 30°C
2	Low Temperature	Days with min. temp. below -24ºC
3	Temperature Variability	Daily temperature variation of more than 24°C
4	Freeze / Thaw	17 or more days where max. temp. > 0°C and min. temp < 0°C
5	Frost Penetration	Assessed through empirical analysis of forecast climate conditions
6	Frost	47 or more days where min. temp <0⁰C
7	Extreme Rainfall Intensity Over One Day	Determined empirically. PCIC used . 76mm over 24 hrs.
8	Magnitude of Severe Storm Driven Peak Flows	Determined empirically. PCIC used directional wind speed, temperature and precipitation all > median values.
9	Frequency of Severe Storm Driven Peak Flow Events	Determined empirically. PCIC used directional wind speed, temperature and precipitation all>. median value for three consecutive days in autumn.
10	Rain on Snow	10 or more days where rain falls on snow
11	Freezing Rain	1 or more days with rain that falls as liquid and freezes on contact
12	Snow Storm / Blizzard	8 or more days with blowing snow
13	Snow (Frequency)	Days with snowfall > 10 cm
14	Snow Accumulation	5 or more days with a snow depth > 20 cm
15	High Wind / Downburst	Wind speed > 80.5 km/hr
40		

Climate Models & Downscaling

Climate Projections - PCIC at UVic (Pacific Climate Impacts Consortium)

- Yellowhead six climate models A2 scenario (Coquihalla three models)
- Example of model:
- Climate Change Scenario A2
 - Independently operating, self-reliant nations;
 - Continuously increasing population;
 - Regionally oriented economic development; and
 - Slower and more fragmented technological changes and improvements to per capita income
- Sensitivity analysis

Yellowhead Climate Projection Example (2050, 2100)

Warmer conditions

- decreasing strong frost periods (very likely)
- increasing hot extremes (very likely)
- decreasing diurnal temperature range (very likely)

Wetter conditions

- total precipitation increasing (likely)
- heavier and more sustained precipitation (likely)
- More extreme conditions
 - moderate (10y) to extreme (>100y) events increasing

Model Past and Projected Precipitation

Location	Indicator	Past (1971- 2000) from Model	Future (2041- 2070) from Model	% Change
Stowart	Annual mm	1290	1477	14
Stewart	25Yr mm/24hr	75	96	28
Bella Coola	Annual mm	673	744	11
	25Yr mm/24hr	44	60	36
Pine Pass	Annual mm	653	734	12
	25Yr mm/24hr	41	51	24

PIEVC Engineering Analysis Vulnerability Evaluation

Infrastructure Component	Design Standard	Total Load	Total Capacity	Vulnerability	
	Return period Max-min temp	L _T	CT	$V_{R+} = L_T / C_T$	
Road Surfaces & 24-hrs Duration Extreme Precipitation (mm/24hrs)	1:5				
Coquihalla 2050s		101	88	1.15	
Median & Roadway Drainage Appliances & 24-hrs Duration Extreme Precipitation (mm/24hrs)	1:10 to 1:25 (use 1:25)				
Coquihalla 2050s		153	121	1.26	
Catch Basins & 24-hrs Duration Extreme Precipitation (mm/24hrs)					
Coquihalla (Storm Sewers) 2050s	1:10 to 1:25 (use 1:25)	139	117	1.19	
Yellowhead (Stormwater Inlets) 2050s	1:5	33.8	27.8	1.21	
Yellowhead (Stormwater Inlets) 2010s	1:5	41.4	27.8	1.49	
Culverts < 3 m & 24-hour Duration Extreme Precipitation (mm/24hrs)	1:100				
Yellowhead 2050s		56.6	42.8	1.32	
Yellowhead 2100s		73.8	42.8	1.73	
Concrete Bridges & Extreme High Temperature (°C)	Max-min temp (Forecast event 1:50)				
Yellowhead 2050s		35.7	34.4	1.04	
Yellowhead 2100s		37.5	34.4	1.09	
Concrete Bridges & Extreme Low Temperature (°C)	Max-min temp (Forecast event 1:50)				
Yellowhead 2050s		-48.8	-45.0	1.08	
Yellowhead 2100s		-53.4	-45.0	1.19	

Vulnerability Assessment Conclusions

- Based on the risk assessments, BC Highways are generally resilient to climate change
- Extreme precipitation events could overload drainage infrastructure
- Extreme temperature effects on highway components require further analysis
- Review engineering design guidelines for highway infrastructure for future climate data parameters to achieve a robust and reliable highway system

PIEVC Risk Studies in Canada (5 MoTI + 20 others)

- Extreme precipitation risks (atmospheric rivers etc.)
- Terrain and combination events
- Quality climate data (recent, local, past events)
- Ensemble of climate models
- Data + expert judgement

Lessons Learned

- Develop awareness of climate and extreme weather changes and implications
- Include adaptation in organizational practice
- Use multidisciplinary teams for projects
- Use qualified professionals with local knowledge (climate, meteorological, hydrologic, hydrotechnical)
- Investigation of future climate/weather parameters: including visibility (fog) and high wind/downburst
- Adaptation education for professionals, consultants, staff & students

Best Practices

- Monitor data used in codes and standards
- Use quantitative data and/or professional judgement
- Review guidance (professional associations, etc.)
- Understand risks and uncertainties
- Apply sensitivity analysis
- Adaptation for lifespan and location over time (maintenance programs etc.)

Technical Circular

BCMoTI guidance for ensuring transportation engineering design is resilient and adapted to climate change

- Climate change analysis project, design, lifespan
- Location specific climate data and projections
- Climate information from recognized source (e.g. PCIC web portal)
- Design sheet with climate information consulted

Technical-Circular Development

- Members:
 - BCMoTI; PCIC (climate scientists)
 - ACEC-BC Reps consultants from various disciplines
 - APEG-BC
- Screening process modified risk analysis
- At functional and/or detail design stage
- Climate data sources and cost
- How much prescriptive and initial info does MoTI provide?
- Draft T-Circular end of January

PCIC Portal – Plan2Adapt

Notes

References

PLAN2ADAPT

PCIC Home | Contact Us

	Summary of Climate Change for British Columbia in the 2050s				
Summary		Season ·	Projected Change from 1961-1990 Baseline		
Region & Time	Climate Variable		Ensemble Median	Range (10th to 90th percentile)	
Tomporatura	Mean Temperature (°C)	Annual	+1.8 °C	+1.3 °C to +2.7 °C	
		Annual	+6%	+2% to +13%	
Precipitation	Precipitation (%)	Summer	-1%	-8% to +7%	
Snowfall		Winter	+8%	-2% to +15%	
Growing DD	Spowfall* (%)	Winter	-10%	-17% to +2%	
Heating DD	Showian (76)	Spring	-58%	-71% to -11%	
5 15 0	Growing Degree Days* (degree days)	Annual	+283 degree days	+177 to +429 degree days	
Frost-Free Days	Heating Degree Days* (degree days)	Annual	-648 degree days	-955 to -454 degree days	
Impacts	Frost-Free Days* (days)	Annual	+20 days	+12 to +29 days	
	The table above shows projected changes in average (mean) temperature, precipitation and several derived climate				

variables from the baseline historical period (1961-1990) to the 2050s for the British Columbia region. The ensemble median is a mid-point value, chosen from a PCIC standard set of Global Climate Model (GCM) projections (see the 'Notes' tab for more information). The range values represent the lowest and highest results within the set. Please note that this summary table does not reflect the 'Season' choice made under the 'Region & Time' tab. However, this setting does affect results obtained under each variable tab.

* These values are derived from temperature and precipitation. Please select the appropriate variable tab for more information.

© 2012 Pacific Climate Impacts Consortium

Climate Resources

IPCC (Intergovernmental Panel on Climate Change)

http://www.ipcc.ch/

• PCIC (Climate Data)

http://www.pacificclimate.org/

Climate Change & Adaptation

Thank You

FAT

BCMoTI Study Links: http://www.th.gov.bc.ca/climate_action/adaptation.html http://www.pievc.ca/e/index_.cfm

Q & A

 If you have a question for our presenter, type it into the Q&A panel, then hit "ASK"

FLNR Engineering, Roads and Bridges Climate Adaptation PIEVC Pilot Project

Part 2

Climate Change and Projections for In-SHUCK ch FSR

February 24, 2015 – 1:00 to 3:00pm