

Specifications: The Interior Market Pricing System

Table of Contents

1 Source Data .. 2
2 Calculating The Mps Stumpage Rate ... 3
Appendix 1: Explanation Of Variables Used In The Auction Dataset But Not In Implementation

Appendix 2: Deciduous Volume And The Prorating Of Forest Management Administration And

 Road Management TOAs ... 12Appendix 3: Applicable Volume And The Calculation Of Development Cost Estimates 13

Specifications: The Interior Market Pricing System

Disclaimer:

This document is for information only and has no legal authority. It is intended to complement the IAM by providing additional technical details such as rounding rules. If there are any inconsistencies between this document and the IAM then the IAM shall prevail. If there are any rounding or other calculation differences between this document and GAS then GAS shall prevail.

1 SOURCE DATA

Naming conventions for source data used throughout this document are as follows.
\(\left.\begin{array}{ll}PAR \& =\quad 3 month average market values and other parameters published

quarterly.\end{array}\right) \quad\)| Interior Appraisal Manual. |
| :--- |

Specifications: The Interior Market Pricing System

2 CALCULATING THE MPS STUMPAGE RATE

		Units	$\begin{array}{r} \text { Decimal } \\ \text { Places } \end{array}$	Source/ Value	Rounding
2.1	selling price	\$/m ${ }^{3}$	2		yes
$=$	stand value			S 2.1.2	
1	CONVOL			S 2.1.1	
2.1.1	CONVOL	m^{3}	0		
=	sum of coniferous species cruise volumes	m^{3}		Mark	
2.1.2	stand value	\$	2		
=	sum of species values	\$		S 2.1.3	
2.1.3	species value	\$	2		
=	species selling price	\$/m ${ }^{3}$		S 2.1.4	
*	species cruise volume	m^{3}	0	Mark	
2.1.4	species selling price	\$/m ${ }^{3}$	2		
=	species appraisal LRF	$\mathrm{fbm} / \mathrm{m}^{3}$		S 2.1.5	
*	species lumber AMV	\$/fbm		S 2.1.6	
2.1.5	species appraisal LRF	$\mathrm{fbm} / \mathrm{m}^{3}$	0		
=	species cruise LRF ${ }^{1}$	$\mathrm{fbm} / \mathrm{m}^{3}$	0	Mark	
+	species LRF add-on	$\mathrm{fbm} / \mathrm{m}^{3}$	0	IAM	
2.1.6	species lumber AMV (fbm)	\$/fbm	3		
=	species lumber AMV (Mbm)	\$/Mbm	0	PAR	
1	1000				
2.2	layp fraction	fraction	4		yes
$=$	layp volume	m^{3}	0	S 2.2.1	
1	CONVOL			S 2.1.1	
2.2.1	layp volume	m^{3}	0		
=	larch cruise volume	m^{3}	0	Mark	
+	yellow pine cruise volume	m^{3}	0	Mark	
2.3	CVPH	m3/ha			no
$=$	CONVOL			S 2.1.1	
1	net merchantable area	ha	1	Mark	
2.4	hembal fraction	fraction	4		yes
$=$	hembal volume	m^{3}	0	S 2.4.1	
1	CONVOL			S 2.1.1	

[^0]
Specifications: The Interior Market Pricing System

		Units	$\begin{gathered} \text { Decimal } \\ \text { Places } \end{gathered}$	Source/ Value	Rounding
2.4.1	hembal volume	m^{3}			
=	hemlock cruise volume	m^{3}	0	Mark	
+	balsam cruise volume	m^{3}	0	Mark	
2.5	final cedar fraction	fraction	4		yes
=	intermediate cedar fraction	fraction		S 2.5.2	
*	(1-Zone6)			S 2.5.1	
2.5.1	Zone6				
=	1 if Zone 6, 0 otherwise		0	Mark	
2.5.2	intermediate cedar fraction	fraction	4		yes
=	preliminary cedar fraction	fraction		S 2.5.3	
*	(1 - cedar decay/100)	fraction	2	Mark	yes
2.5.3	preliminary cedar fraction	fraction	4		yes
=	cedar cruise volume	m^{3}	0	Mark	
1	CONVOL			S 2.1.1	
2.6	dry firyp fraction	fraction	4		Yes
$=$	firyp fraction			S 2.6.1	
*	dry fraction			S 2.6.2	
2.6.1	firyp fraction	fraction	4		yes
$=$	firyp volume	m^{3}	0	S 2.6.3	
1	CONVOL			S 2.1.1	
2.6.2	dry fraction		2		
	fraction of top 2 BEC zone/subzone/variant that is dry, if district is DMH or DRM then dry fraction $=1$	fraction	2	Mark/IAM3.3	yes
2.6.3	firyp volume	m^{3}	0		
=	Douglas fir cruise volume	m^{3}	0	Mark	
+	yellow pine volume	m^{3}	0	Mark	
2.7	LOGVOL		4		yes
=	natural logarithm (EFFVOL/1000)			S 2.7.1	
2.7.1	EFFVOL		0		yes
=	Effective coniferous volume			IAM3.3	
2.8	LOGVPT		4		yes
$=$	natural logarithm (VPT)		2	Mark	
2.10	decay fraction	fraction	4		yes
=	sum of species decay percent prorates	\%		S 2.10.1	
1	100				
2.10 .1	species decay percent prorate	\%	0		
=	species decay percent	\%	0	Mark	
	species cruise volume		0	Mark	
/	CONVOL			S 2.1.1	

Specifications: The Interior Market Pricing System

Specifications: The Interior Market Pricing System

		Units	$\begin{array}{r} \text { Decimal } \\ \text { Places } \end{array}$	Source/ Value	Rounding
$\begin{array}{r} 2.24 \\ = \end{array}$	GSS15 (GSS15CC *ground skidding clearcut volume + GSS15PC *ground skidding partial cut volume) /(ground skidding clearcut volume + ground skidding partial cut volume)		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 2.24 .1 \\ \text { Mark } \\ 2.24 .2 \\ \text { Mark } \end{array}$	no
$\begin{array}{r} 2.24 .1 \\ = \end{array}$	GSS15CC (minimum value $=0$) ground skidding clearcut slope 15		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Mark	
$\begin{array}{r} 2.24 .2 \\ = \\ - \end{array}$	GSS15PC (minimum value $=0$) ground skidding partial cut slope 15		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Mark	
$\begin{array}{r} 2,24,3 \\ = \\ + \\ \text { / } \end{array}$	GS fraction (ground skidding clearcut volume ground skidding partial cut volume) HARVOL		4	$\begin{array}{r} \text { Mark } \\ \text { Mark } \\ \text { S 2.13.1 } \end{array}$	yes
2.25 $=$	grey attack fraction lodgepole pine grey attack volume CONVOL	fraction m^{3}	$\begin{aligned} & 4 \\ & 0 \end{aligned}$	$\begin{array}{r} \text { Mark } \\ \text { S 2.1.1 } \end{array}$	yes
$\begin{array}{r} 2.25 .1 \\ = \end{array}$	lag 0 if mark is in zone 5 , zone 6 or Cariboo-Chilcotin District or Quesnel District, 2 otherwise.		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { S } 2.27 .1 \\ & 0 \end{aligned}$	Mark
${ }^{2.26}=$	cruise based indicator 1 if cruise based, 0 otherwise				
2.27	$\begin{aligned} & \text { RG35 } \\ & 1 \text { if RG35 fraction is greater than or equal } \\ & \text { to } 0.35,0 \text { otherwise } \end{aligned}$				
$\begin{array}{r} 2.27 .1 \\ = \\ \text { / } \end{array}$	RG35 fraction RG volume CONVOL	m^{3}	0	$\begin{array}{r} \text { S 2.27.2 } \\ \text { S 2.1.1 } \end{array}$	no
$\begin{array}{r} 2.27 .2 \\ = \\ + \end{array}$	RG volume MPB red attack volume MPB grey attack volume	$\begin{aligned} & \mathrm{m}^{3} \\ & \mathrm{~m}^{3} \\ & \mathrm{~m}^{3} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	Mark Mark	
$\begin{gathered} 2.28 \\ \\ = \end{gathered}$	CPIF current CPI base CPI	ratio	$\begin{aligned} & 4 \\ & 1 \end{aligned}$	$\begin{gathered} \text { PAR } \\ 141.7 \end{gathered}$	yes

Specifications: The Interior Market Pricing System

		Units	Decimal	Source/ Value	Rounding
3.1	real selling price contribution	\$/m ${ }^{3}$	2		yes
$=$	real selling price	\$/m ${ }^{3}$		S 3.1.1	
*	selling price coefficient			0.1769	
3.1.1	real selling price		4		Yes
=	selling price	\$/m ${ }^{3}$		S 2.1	
1	CPIF	\$/m ${ }^{3}$		S 2.28	
3.2	layp contribution	\$/m ${ }^{3}$	2		yes
$=$	layp fraction			S 2.2	
*	layp fraction coefficient			-11.52	
3.3	CVPH contribution	\$/m ${ }^{3}$	2		yes
=	CVPH			S 2.3	
*	CVPH coefficient			0.002137	
3.4	hembal contribution	\$/m ${ }^{3}$	2		yes
$=$	hembal fraction			S 2.4	
*	hembal fraction coefficient			-19.53	
3.5	cedar contribution	\$/m ${ }^{3}$	2		yes
$=$	final cedar fraction			S 2.5	
*	cedar fraction coefficient			16.04	
3.6	dry firyp contribution	\$/m ${ }^{3}$	2		yes
$=$	dry firyp fraction			S 2.6	
*	dry firyp fraction coefficient			-13.32	
3.7	LOGVOL contribution	\$/m ${ }^{3}$	2		yes
=	LOGVOL			S 2.7	
*	LOGVOL coefficient			1.850	
3.8	LOGVPT contribution	\$/m ${ }^{3}$	2		yes
=	LOGVPT			S 2.8	
*	LOGVPT coefficient			9.532	
3.10	decay contribution	\$/m ${ }^{3}$	2		yes
=	decay fraction			S 2.10	
*	decay fraction coefficient			-45.58	
3.11	slope contribution	\$/m ${ }^{3}$	2		yes
=	slope	\%	0	Mark	
*	slope coefficient			-0.02717	
3.12	partial cut contribution	\$/m ${ }^{3}$	2		yes
$=$	partial cut fraction			S 2.12	
*	partial cut coefficient			-5.011	

Specifications: The Interior Market Pricing System

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \& Units \& Decimal Places \& Source/ Value \& Rounding

\hline \multirow[t]{3}{*}{3.13} \& cable yarding contribution \& \multirow[t]{3}{*}{\$/m ${ }^{3}$} \& 2 \& \& \multirow[t]{3}{*}{yes}

\hline \& \multirow[t]{2}{*}{cable yarding fraction ${ }^{\text {cable yarding fraction coefficient }}$} \& \& \& S 2.13 \&

\hline \& \& \& \& -22.08 \&

\hline 3.16 \& fire damage contribution \& \multirow[t]{3}{*}{\$/m ${ }^{3}$} \& 2 \& \& \multirow[t]{3}{*}{yes}

\hline \& fire damage fraction \& \& \& S 2.16 \&

\hline * \& fire damage fraction coefficient \& \& \& -6.338 \&

\hline \multirow[t]{3}{*}{3.17

$*$} \& cycle time contribution \& \multirow[t]{3}{*}{\$/m ${ }^{3}$} \& \multirow[t]{3}{*}{2} \& \& \multirow[t]{3}{*}{yes}

\hline \& effective cycle time \& \& \& S 2.17 \&

\hline \& cycle time coefficient \& \& \& -1.992 \&

\hline \multirow[t]{3}{*}{3.18} \& deciduous fraction contribution \& \multirow[t]{3}{*}{\$/m ${ }^{3}$} \& \multirow[t]{3}{*}{2} \& \& \multirow[t]{3}{*}{yes}

\hline \& deciduous fraction \& \& \& S 2.18 \&

\hline \& deciduous fraction coefficient \& \& \& -17.89 \&

\hline \multirow[t]{2}{*}{3.20} \& Fort Nelson Peace contribution \& \multirow[t]{3}{*}{\$/m ${ }^{3}$} \& \multirow[t]{3}{*}{2} \& \& \multirow[t]{3}{*}{yes}

\hline \& Fort Nelson Peace \& \& \& S 2.20 \&

\hline * \& Fort Nelson Peace coefficient \& \& \& -10.62 \&

\hline \multirow[t]{2}{*}{$3.21=$} \& 2015 auctions contribution \& \multirow[t]{3}{*}{\$/m ${ }^{3}$} \& 2 \& \& \multirow[t]{3}{*}{yes}

\hline \& 2015 auctions \& \& \& S 2.21 \&

\hline * \& 2015 auctions coefficient \& \& \& 11.37 \&

\hline \multirow[t]{2}{*}{3.22} \& DANB contribution \& \multirow[t]{3}{*}{\$/m ${ }^{3}$} \& \multirow[t]{3}{*}{2} \& \& \multirow[t]{3}{*}{yes}

\hline \& DANB \& \& \& S 2.22 \&

\hline * \& DANB coefficient \& \& \& 1.150 \&

\hline \multirow[t]{3}{*}{3.23

$*$} \& decked contribution \& \multirow[t]{3}{*}{\$/m ${ }^{3}$} \& \multirow[t]{3}{*}{2} \& \& \multirow[t]{3}{*}{yes}

\hline \& decked fraction \& \& \& S 2.23 \&

\hline \& decked coefficient \& \& \& 68.18 \&

\hline \multirow[t]{4}{*}{3.24

$*$} \& \multirow[t]{2}{*}{ground skidding slope contribution
GSS15^2} \& \$/m ${ }^{3}$ \& 2 \& \& \multirow[t]{4}{*}{yes}

\hline \& \& \& \& S 2.24 \&

\hline \& ground skidding slope coefficient \& \& \& -0.01099 \&

\hline \& ground skidding fraction \& \& \& S 2.24.3 \&

\hline \multicolumn{6}{|l|}{Note: the value of GSS15 is capped at 35}

\hline 3.25 \& grey attack contribution \& \$/m ${ }^{3}$ \& 2 \& \& yes

\hline = \& grey attack fraction \& \& \& S 2.25 \&

\hline * \& (2016.5-2008-lag) \& \& \& S 2.25 .1 \&

\hline * \& cruise based indicator \& \& \& S 2.26 \&

\hline * \& rg35 \& \& \& S 2.27 \&

\hline * \& grey attack coefficient \& \& \& -2.076 \&

\hline 3.26 \& cruise based contribution \& \$/m ${ }^{3}$ \& 2 \& \& yes

\hline $=$ \& cruise based indicator \& \& \& S 2.26 \&

\hline \& cruise based coefficient \& \& \& S 3.26.1 \&

\hline 3.26 .1 \& cruise based coefficient \& \$/m ${ }^{3}$ \& 2 \& \& yes

\hline $=$ \& -6.198*(1-rg35) - 5.850*rg35 \& \& \& S 2.27 \&

\hline
\end{tabular}

Specifications: The Interior Market Pricing System

Specifications: The Interior Market Pricing System

		Units	Decimal Places	Source/ Value	Rounding
5.1	final TOA	\$/m ${ }^{3}$	2		yes
$=$	TOA subtotal 2		2	S 5.1.1	
+	return to forest management		2	S 5.1.5	
-	MLRC subtotal 1		2	S 5.1.8	
5.1.1	TOA subtotal 2	\$/m ${ }^{3}$	2		yes
$=$	total TOA	\$/m ${ }^{3}$	2	S 5.1.2	
1	high grade fraction		4	S 5.1.4	
5.1.2	total TOA	\$/m ${ }^{3}$	2		yes
=	TOA subtotal 1	\$/m ${ }^{3}$	2	S 5.1.3	
*	CBCPIF			S 5.2	
5.1.3	TOA subtotal 1	\$/m ${ }^{3}$	2		yes
$=$	final forest management administration	\$/m ${ }^{3}$	2	APP2.1	
+	total development	\$/m ${ }^{3}$	2	APP3.1	
$+$	final road management and road use	\$/m ${ }^{3}$	2	APP2.2	
+	total silviculture	\$/m ${ }^{3}$	2	Mark/IAM	
$\begin{array}{r} 5.1 .4 \\ = \end{array}$	high grade fraction (1)	fraction	4		yes
-	LG)	\$/m ${ }^{3}$	4	Mark/IAM	yes
5.1.5	return to forest management	\$/m ${ }^{3}$	2		yes
=	TOA subtotal 2		2	S 5.1.1	
*	0.035		3	IAM	
5.1.6	MLRC subtotal 1	\$/m ${ }^{3}$	2		yes
=	MLRC	\$/m ${ }^{3}$	2	1.30	
1	high grade fraction			S 5.1.4	
5.1.7	MLC	\$/m ${ }^{3}$	2		yes
=	MLRC subtotal 1	\$/m ${ }^{3}$	2	S 5.1.6	
+	MLSO	\$/m ${ }^{3}$	2	0.07	
5.1.8	MLC subtotal 1	\$/m ${ }^{3}$	2		yes
=	MLC	\$/m ${ }^{3}$	2	S 5.1.7	
*	CBCPIF			S 5.2	
5.2	CBCPIF		4		yes
	current CPI		1	PAR	
1	cost base average CPI		1	139.5	
6.1.	Reserve Stumpage Rate maximum of: 0.25 or	\$/m ${ }^{3}$	2		yes
	final estimated winning bid			S 4.4	
	final TOA			S 5.1	

Specifications: The Interior Market Pricing System

APPENDIX 1: EXPLANATION OF VARIABLES USED IN THE AUCTION DATASET BUT NOT IN IMPLEMENTATION

Highway Transportation and $1^{\text {st }}$ and 2 nd Quarters --- the average values of these variables have been built into the constant.

2012, 2013 and 2014 Annual Dummy Variables --- 1 if the sale was sold during these years, zero otherwise --- These variables do not apply in implementation because MPS applies the dummy variable from the latest year (2015) to all permits.

Specifications: The Interior Market Pricing System

APPENDIX 2: DECIDUOUS VOLUME AND THE PRORATING OF FOREST MANAGEMENT ADMINISTRATION AND ROAD MANAGEMENT TOAS

		Units	Decimal Places	Source/ Value	Rounding
APP2.1	final forest management admin. (FFMA)	\$/m ${ }^{3}$	2		yes
=	forest management admin. (FMA)	\$/m ${ }^{3}$		Mark/IAM4.2.1	
*	HARVOL			S 2.13 .1	
)	CONVOL	m^{3}		S 2.1.1	
APP2. 2	final road management and road use (FRM)	\$	2		yes
$=$	final road management	\$/m ${ }^{3}$		APP2.2.1	
+	final road use	\$/m ${ }^{3}$		APP2.2.2	
APP2.2.1	final road management	\$	2		yes
$=$	road management (RM)			Mark/IAM4.4.2	
*	HARVOL	m^{3}		S 2.13.1	
1	CONVOL	m^{3}		S 2.1.1	
APP2.2.2	final road use	\$	2		yes
=	road use (RU)			Mark/IAM4.4.2	
*	HARVOL	m^{3}		S 2.13.1	
1	CONVOL	m^{3}		S 2.1.1	

Specifications: The Interior Market Pricing System

APPENDIX 3: CALCULATION OF DEVELOPMENT AND SILVICULTURE COST ESTIMATES

The calculation of development cost estimates involves a proration with applicable volume as follows:

		Units	$\begin{array}{r} \text { Decimal } \\ \text { Places } \end{array}$	Source/ Value	Rounding
APP3.1	total development cost	\$/m ${ }^{3}$	2		yes
$=$	total applicable cost	\$		APP3.2	
	(ADJ_CR_VOL if scale based, or	m^{3}		APP4.1	
	CONVOL if cruise based)	m^{3}		S2.1.1	
APP3.2$=$	total applicable cost	\$	2		yes
	sum of applicable type 1 costs and type 2 costs	\$	2	APP3.3	
APP3.3	applicable type 1 cost	\$	2		
=	typel cost	\$	2	Mark/IAM	yes
*	CONVOL	m^{3}	0	S 2.1.1	
1	project applicable volume	m^{3}	0	Mark	yes
APP3.4	type2 cost	\$	2	Mark/IAM	
APP3.5	total silviculture cost	\$/m3	2		Yes
	total silviculture dollars	\$	2	Mark/IAM	
	(ADJ_CR_VOL if scale based, or	m^{3}		APP4.1	
	HARVOL if cruise based)	m^{3}		S2.13.1	

Note: Type 1 costs are tabular roads and tabular culverts and ECE's. Type 2 costs are cattle guards, pipeline crossings and fencing (items without a project applicable cost).

Specifications: The Interior Market Pricing System

APPENDIX 4: CALCULATION OF ADJUSTED CRUISE VOLUME DENOMINATOR FOR DEVELOPMENT AND SILVICULTURE COST ESTIMATES

	Units	Decimal Places	Source/ Value	Rounding No	
APP4.1 ADJ_CR_VOL	m^{3}				
If selling price zone $=5$ then:			Mark/IAM		
ADJ_CR_VOL	m^{3}				
$=$ balsam cruise volume * 0.860	m^{3}		Mark	No	
+ cedar cruise volume * 0.864	m^{3}		Mark	No	
+ fir cruise volume * 1.204	m^{3}		Mark		No
+ hemlock cruise volume * 0.990	m^{3}		mark		No
+ larch cruise volume * 0.943	m^{3}		Mark		No
+ lodgepole pine cruise volume * 1.035	m^{3}		Mark		No
+ spruce cruise volume * 0.968	m^{3}		Mark		No
+ white pine cruise volume * 0.481	m^{3}		Mark		No
+ yellow pine cruise volume * 1.190	m^{3}		Mark		No
If selling price zone $=6$ then:	\$		Mark/IAM		
ADJ_CR_VOL	m^{3}				
$=$ balsam cruise volume * 0.662	m^{3}		Mark		No
+ cedar cruise volume * 0.930	m^{3}		Mark		No
+ fir cruise volume * 0.998	m^{3}		Mark		No
+ hemlock cruise volume * 0.988	m^{3}		mark		No
+ larch cruise volume * 0.943	m^{3}		Mark		No
+ lodgepole pine cruise volume * 0.744	m^{3}		Mark		No
+ spruce cruise volume * 0.827	m^{3}		Mark		No
+ white pine cruise volume * 0.481	m^{3}		Mark		No
+ yellow pine cruise volume * 1.190	m^{3}		Mark		No
If selling price zone $=7$ then:	\$		Mark/IAM		
ADJ_CR_VOL	m^{3}				
$=$ balsam cruise volume $* 0.816$	m^{3}		Mark		No
+ cedar cruise volume * 0.859	m^{3}		Mark		No
+ fir cruise volume * 0.962	m^{3}		Mark		No
+ hemlock cruise volume * 0.900	m^{3}		mark		No
+ larch cruise volume * 0.941	m^{3}		Mark		No
+ lodgepole pine cruise volume * 0.867	m^{3}		Mark		No
+ spruce cruise volume * 0.975	m^{3}		Mark		No
+ white pine cruise volume * 0.481	m^{3}		Mark		No
+ yellow pine cruise volume * 1.190	m^{3}		Mark		No

Specifications: The Interior Market Pricing System

Section APP4.1 continued:

If selling price zone $=8$ then:	\$	Mark/IAM	
ADJ_CR_VOL	m^{3}		
$=$ balsam cruise volume * 0.818	m^{3}	Mark	No
+ cedar cruise volume * 0.864	m^{3}	Mark	No
+ fir cruise volume * 1.126	m^{3}	Mark	No
+ hemlock cruise volume * 0.959	m^{3}	mark	No
+ larch cruise volume * 0.943	m^{3}	Mark	No
+ lodgepole pine cruise volume * 0.957	m^{3}	Mark	No
+ spruce cruise volume * 1.074	m^{3}	Mark	No
+ white pine cruise volume * 0.481	m^{3}	Mark	No
+ yellow pine cruise volume * 1.190	m^{3}	Mark	No
If selling price zone $=9$ then:	\$	Mark/IAM	
ADJ_CR_VOL	m^{3}		
$=$ balsam cruise volume * 0.891	m^{3}	Mark	No
+ cedar cruise volume * 0.864	m^{3}	Mark	No
+ fir cruise volume * 0.998	m^{3}	Mark	No
+ hemlock cruise volume * 0.959	m^{3}	mark	No
+ larch cruise volume * 0.943	m^{3}	Mark	No
+ lodgepole pine cruise volume * 0.867	m^{3}	Mark	No
+ spruce cruise volume * 0.984	m^{3}	Mark	No
+ white pine cruise volume * 0.481	m^{3}	Mark	No
+ yellow pine cruise volume * 1.190	m^{3}	Mark	No

Note: The coefficients in this Appendix are updated annually. See the appropriate version of the Interior Appraisal Manual for a stumpage rate calculation effective July 1, 2017 or later.

[^0]: ${ }^{1}$ If cruise LRF for lodgepole pine has been reduced for Mountain Pine Beetle volume, the reduction must be added back in as follows (rounded to zero decimal places): final Cruise LRF = Cruise LRF + (green attack volume*3+red attack volume*33+grey attack volume*83)/lodgepole pine net volume

