Road Assessment Harrison Mills – Mt. Currie Addendum prepared for: Land and Water British Columbia Inc. and South Coast Region Ministry of Transportation November 2003 submitted by: in association with: TRILLIUM Business Strategies Inc. ARLINGTON GROUP Planning + Architecture Inc. # **Table of Contents** | Execu | utive Summary | 1 | |-------------------|--|----------| | 1.0 | Introduction | 3 | | 2.0 | Scope of study | 4 | | 3.0 | Existing conditions | 5 | | 3.1
3.2 | In-SHCUK-ch FSR (Lillooet Lake & Lillooet River) | | | 4.0 | Proposed Roadway | 11 | | 4.1 | Design Criteria | 11 | | 5.0 | Social Considerations | 12 | | 5.1
5.2
5.3 | First Nations Parks Archaeological Sites | 12 | | 6.0 | Environmental Considerations | 14 | | 7.0 | Cost Estimate | 15 | | 7.1
7.2
7.3 | Right-of-Way Costs Utility Costs Environmental/Archaeological Mitigation | 16 | | 7.4
7.5 | Detailed Cost Estimate | 17
19 | | 7.6 | Traffic Disruption/Traffic Management Cost | 19 | ### **APPENDICES** Appendix 1 Terrain Types Appendix 2 Conceptual Alignment Maps Appendix 3 Cost Estimates # **Executive Summary** A number of studies have been undertaken which have examined the feasibility of developing a public road to connect Pemberton/Mt. Currie to the Lower Fraser Valley along what has become known as the Sasquatch Corridor. Some of these studies focused on either progressive upgrading of the existing In-SHUCK-ch and Harrison West Forest Service Roads to a two-lane paved roadway, or making localized improvements to these Forest Service Roads (FSRs). In 1999, Infrastructure Systems Ltd. (ISL) completed a study of the Sasquatch corridor for the Ministry of Transportation. The study proposed improvements that would provide a more consistent operating speed and would increase reliability and safety while utilizing as much as possible of the existing roadbed and structures along the corridor. The results of that study are contained in the report titled "Road Assessment – Harrison Mills to Mount Currie". In 2003, the Ministry of Transportation initiated a study to examine the costs and impacts of constructing a two-lane, 60 km/h low traffic volume road along the corridor. This evaluation was confined to the design aspects of the road and did not assess the impact on regional traffic patterns. Key Plan 1 In the 1999 study, ISL estimated the cost of upgrading the road along the Sasquatch Corridor between Mt. Currie and Harrison Mills to be \$200 million. This current study has estimated the total project cost at \$275 million. The updated cost includes the following components that ISL was not asked to include in the 1999 cost estimate: - Replacement of eight single-lane bridges with new two-lane structures - Engineering during design and construction - Property acquisition - Environmental mitigation - Archaeological mitigation - Project management. The 2003 cost estimate is based on the alliance model of project delivery. ### The roadway would: - Provide access to First Nations communities and other residents and businesses in the corridor. - Provide access for new commercial, tourist and recreation land uses. - Offer an alternate access to Pemberton, Whistler, and Lillooet from the lower Fraser Valley. - Provide an emergency route to Vancouver in the event of long term closures of Highway 99 between Horseshoe Bay and Squamish. Development of a road in this corridor needs to be undertaken in a way which recognizes the following important considerations: - First Nations interests. - The rugged mountainous terrain. - Archaeological and environmental impacts. - The location of the hydro transmission line. - The impact of natural hazards on road maintenance. # 1.0 Introduction A number of studies have been undertaken previously to evaluate potential highway routes that would connect Pemberton/Mt. Currie to the Lower Fraser Valley. The 1999 study "Road Assessment - Harrison Mills to Mt. Currie" recommended either an upgrade of the existing forest service roads to two-lane paved roadways (In-SHUCK-ch Road and Harrison West FSR) or a series of progressive localized improvements. The study focused on carrying out improvements that would provide a more consistent operating speed and would increase reliability and safety while utilizing as much as possible the existing roadbed and structures along the corridor. The 1999 study recommended that an alignment that utilizes the In-SHUCK-ch FSR from Hwy. 99 along the east side of the Lillooet Lake and Lillooet River crossing to the west side at the Lillooet Bridge and continuing on the west side until the south end of Harrison Lake. It recommended completion of the connection between Hwy. 99 (Mt. Currie) to Harrison Mills (Hwy. 7) by utilizing the existing paved road which extends from Harrison Mills northward for approximately 11 km and then utilizing the Harrison West FSR. The Harrison West FSR starts approximately 1 km north of the end of the paved section. This study examined the cost and impact of constructing a two-lane paved low traffic volume road along this alignment. For purposes of orientation, the kilometre station used on the plans follows the kilometre markings posted along the In-SHUCK-ch and Harrison West FSRs. # 2.0 Scope of Study The purpose of this study, which is presented as an addendum to the 1999 study, was to update costs for a conceptual alignment of a paved two-lane roadway with a 60 km/h design speed. The roadway would be located along the east side of Lillooet Lake and River and the west side of Harrison Lake. The route extends from Highway 99 (near Mr. Currie) to Highway 7 (near Harrison Mills), a total distance of approximately 160 kilometres. It is intended that the upgraded roadway would provide a safer, more reliable and shorter connection between the existing communities and resources in the Lillooet Valley and the Lower Mainland. It could also function as an alternative network route between the Pemberton Valley and the Lower Mainland. The proposed road upgrade would also make the Lillooet Lake, Lillooet River and Harrison Lake watersheds accessible for recreational use. The objectives of this study were to: - Develop a new cost estimate based on design criteria prescribed by the Ministry of Transportation. - Disaggregate the cost estimate into discreet road sections. # 3.0 Existing Conditions The overall route is 160 km in length. The corridor was divided into eight logical sections. The four sections of the In-SHUCK-ch FSR, starting at the Duffy Lake Road, are: - East side of Lillooet Lake to Tenas Bridge Km. I-0 to I-29.5. - Tenas Bridge to Skookumchuck settlement Km. I -29.5 to I-51. - Skookumchuck settlement to Lillooet River Bridge Km. I-51 to I-76.5. - Lillooet Bridge to north end of Harrison Lake- Km. I-76.5 to I-87. The four sections of the Harrison West FSR four sections, starting at the south end of the Harrison West FSR, are: - End of pavement 11 km north of Harrison Mills to a location where a number of different forestry roads meet – Km H-0 to H-23. - Forestry roads intersection to Twenty Mile Bay access Km H-23 to H-35. - Twenty Mile Bay to Five Mile Bay access Km H-35 to H-59. - Five Mile Bay to north end of Harrison Lake Km H-59 to H-73. The alignment crosses 43 identifiable water courses. Ten of these are either box culverts or rock fords. The remainder are bridge structures of various types ranging from a 6 metre structure to a 45 metre structure across the Lillooet River. All existing structures are single lane and the current roadway width is between 3.5 and 5.0 metres. The existing roadway was originally constructed to build the power line, service the logging industry, and connect communities along the length of the route. In certain locations, the roadway is within the hydro corridor. The terrain along the route can be classified as one of five types: - 1. Rough mountainous. - 2. Mountainous. - 3. Rough glacial. - 4. Smooth glacial. - 5. Level valley bottom. These different terrains are described and shown on plans in Appendix 1. Each section of the route has been broken into parts by terrain type. The breakdown is listed by distance in a spreadsheet in Appendix 1. Appendix 2 contains plans and profiles of the corridor showing the different sections. ### 3.1 In-SHUCK-ch FSR (Lillooet Lake & Lillooet River) Section 1 - East Side of Lillooet Lake - Km. I-0 to I-29.5 The first segment extends southward from Highway 99 along the east side of Lillooet Lake and then along a short section of the Lillooet River to the Tenas Bridge. The road was originally constructed to serve the logging industry and to provide access to the hydro line and access in and out of the Lillooet Valley for First Nations residents. This segment has primarily mountainous terrain interspaced with glacial terrain ending with level terrain adjacent to the Lillooet River. The Tenas Bridge provides the first opportunity to access the west side of the Lillooet River and Lillooet Lake as well as the First Nations community of Skateen. The existing roadway in Section 1, with a width of approximately 6 metres in most locations, has a poor surface structure with many potholes as well as boulders projecting through the surface. *Exhibit 3.1* is a good representation of the road surface condition along the complete corridor. Exhibit 3.1 ### Sections 2 & 3 - East Side of Lillooet River Km I-29.5 to I-51 and Km I-51 to I-76.5 Section 2 extends along the east side of the Lillooet River from the Tenas Bridge to the Skookumchuck settlement (21.5 km) and Section 3 extends from Skookumchuck settlement to the Lillooet Bridge (24.6 km). These two segments parallel the east bank of the Lillooet River on generally level terrain with pockets of glacial till. At a number of locations the adjacent mountainous terrain creates a bench adjacent to the Lillooet River. A number of First Nations communities as well as St.
Agnes Well hotsprings and Skookumchuck hotsprings are located along these sections. ### Section 4 - West side of Lillooet River - Km. I-76.5 to I-86.7 Section 4 extends from the Lillooet River bridge along the west side of the Lillooet River to the north end of Harrison Lake. This 10 km section crosses a smooth glacial till area that is relatively flat, with one mountainous bench adjacent to the Lillooet Bridge. ### 3.2 Harrison West FSR ### Sections 5, 6, 7, and 8 - West side of Harrison Lake The four roadway sections along the west side of Harrison Lake are: - End of pavement 11 km north of Harrison Mills to a location where a number of different forestry roads meet – Km H-0 to H-23. - Forestry roads intersection to Twenty Mile Bay access Km H-23 to H-35. - Twenty Mile Bay to Five Mile Bay access Km H-35 to H-59. - Five Mile Bay to north end of Harrison Lake Km H-59 to H-73. These sections are approximately 74 km in length. These segments of the road have a mix of rugged mountainous and rugged glacial terrain. Exhibit 3.2 The Harrison West FSR connects a number of subsidiary forestry roads. The roadway surface width is between 3 and 6 metres. There are pullouts located along the route for passing oncoming vehicles. Communications between regular users of the road is maintained by radio. Vehicles not equipped with radios have limited opportunity to find a pullout prior to meeting an oncoming vehicle. Exhibit 3.3 Trees, rocks and other material is often very close to the edge of the road as shown on *Exhibits 3.2 & 3.3*. Tree branches regularly hang over the edge of the road. These intrusions reduce the comfort level of the driver and reduce the effective drivable width. The terrain adjacent to the route varies from high overhanging rock to relatively flat sloping terrain. Vertical rock diminishes the clear distance from the edge of the road, and as a result, reduces the comfort level and drivable width of the road. Steep unstable terrain has resulted in landslides that block part or all of the road as shown on *Exhibit 3.4*. Exhibit 3.4 - Landslide The terrain is generally consistent along all four sections of this corridor. Both the In-SHUCK-ch/Harrison West Forest Service Roads pass through rock slides as well as active and historic debris torrents. Rocks and other debris can be encountered on the road at these locations (see *Exhibit 3.5*). Most of the larger structures have been located at an elevation so that debris torrent conditions within the channel do not threaten the structure. Small streams utilize culverts to handle the flow. Shifting or movement of the debris torrent channel has blocked culverts causing the road to wash out. Exhibit 3.5 - Debris Torrent # 4.0 Proposed Roadway ### 4.1 Design Criteria The proposed roadway would be a recreational roadway designed to a low traffic volume standard not specifically matching any Provincial roadway classification. The following design criteria were specified by the Ministry of Transportation. - Roadway Classification No formal classification. - Design Speed 60 km/h (30 km/h with speed advisory where necessary in extreme terrain or to avoid structure costs). - Basic Lanes two lanes paved. - Maximum Grade 12%. - Lane Width 3.5 metres. - Modified Paved Shoulder Width 0.5 metres. - Gravel Shoulder Width 0.5 metres. - Clear Zone and Recovery Slope none. - Rock Catchment Width 1.25 metres. - Bridges primarily single lane. Lane widths of 3.5 metres are consistent with TAC standards for a two-lane rural collector roadway classification. The modified paved shoulder width of 0.5 metres is below the TAC standard of 1.56 metres for a rural collector roadway and below the 1.0 metre standard for rural local roadways. The 1.0 metre composite shoulder width was used for this basic access road. # 5.0 Social Considerations ### 5.1 First Nations There are seven First Nation communities within the Lillooet Valley. Residents are sometimes stranded by washouts and poor road conditions. Currently, all supplies and emergency services come from Pemberton to these remote communities. These people have the highest need for an improved road facility. A paved low volume road would: - Provide improved safety under all weather conditions. - Reduce travel time and vehicle operating costs. - Improve reliability. - Promote business development and employment opportunities. There are many anthropological and archeological sites along the corridor. A search of existing databases should be completed to determine which sites have been catalogued in the corridor. Impact assessments should be done prior to embarking on any short or long term improvements. It should be noted that local communities prefer not to publicize the locations of archaeological and heritage sites, only to identify and protect them. #### 5.2 Parks There are no provincial parks located along this corridor. There are, however, a number of forestry campsites. These sites support amenities such as St. Agnes and Skookumchuck hotsprings and recreation activities such as fishing, hiking, and sightseeing. ### 5.3 Archaeological Sites A number of archaeological sites have been identified along the route including remnants of the gold rush trail. There are at least seven areas with a combined length of approximately 9 km. where the existing road uses the historic trail. There are a number of cemeteries located along the route (see *Exhibit 5.1*). Exhibit 5.1 Other archaeological values include culturally modified trees and painted rock faces. The locations of known archaeological sites are indicated in the maps in *Appendix 2*. A complete inventory of culturally modified trees and pictographs is not available at this time. Further study will be required to determine the impacts to any trees and rocks with heritage value and to establish appropriate mitigation plans. # 6.0 Environmental Considerations The proposed alignment is generally located on the mountain slopes adjacent to the Lillooet Lake, Lillooet River and Harrison Lake. Roads in such topography typically are exposed to such natural hazards as: - Snow avalanches. - Land slides. - Rock falls. - Debris torrents and washouts. - Floods. ### Waterway Impact A recent concern in road construction is the leaching of acid from freshly excavated rock faces. Leachate entering waterways may affect fish. A comprehensive geotechnical survey would be required prior to preliminary design to identify zones where acid-leaching rock is likely to pose a problem. A strategy should be developed to either use the material in embankments or to dispose of the material in stockpiles with appropriate neutralization blankets. ### Fish Impact The existing gravel access road crosses many tributary streams. Many of these streams are fish-bearing and offer ideal fish-rearing habitat. A fish inventory and assessment should be completed as part of the field work leading up to the preliminary design. Culverts at fish-bearing streams should be designed to allow for the passage of fish. # 7.0 Cost Estimate Costs have been calculated using five terrain types described in Appendix 1. The designation of sections of the corridor by the terrain types was based on field reconnaissance and topographical mapping. This cost estimate was prepared using the Ministry of Transportation's elemental parametric highway cost estimating method. This method includes all major items of construction such as site preparation, earthworks, rock slope stabilization, gravelling, paving, drainage, bridge and retaining wall structures, and utility relocations. The sizes of bridge structures and retaining walls were estimated using bridge inspection information and cross-section details from earlier studies. This cost estimate also includes amounts for environmental mitigation, archaeological investigation and mitigation, and property acquisition as well as preliminary and detailed design, project management and construction supervision. The 1999 study of this corridor was based on the assumption that any of the existing single-lane bridges in good condition would not be replaced. This study assumed that eight bridges would be replaced, one in each section. Utilization of the existing bridges will compromise horizontal and vertical geometry at some of the bridge approaches. The following approach will provide a cost-effective roadway: #### Road Structure - 150mm granular sub base layer in areas of rock excavation, 300mm in glacial terrain and 450mm in valley bottoms (reflects an effective allocation of granular materials for a low volume road with a low volume of heavy vehicles). - 150mm of crushed base gravel. - 75mm asphalt pavement. #### Road Rehabilitation - Replace only the most deficient bridges (one per section). - No smooth wall blasting or rock slope stabilization as rock is strong and massive (lower capital cost will result in higher maintenance costs). #### Other Considerations - Alliance delivery model recommended with lower engineering, project management and construction supervision costs. Basic quality control. - Relocate only one high voltage tower at a cost of \$300,000 (Section 1). This approach will provide a cost-effective facility for a low volume of traffic. Higher maintenance costs will be incurred. However, some future maintenance funds can be applied to areas where further improvements are most needed. ### 7.1 Right-of-Way Costs The majority of the corridor is Crown Land. There are a number of private land holdings at the northern end of the project just south of Duffy Lake Road. Some acquisition of private property may be required. The alignment passes through seven First Nations reserves in Sections 2 and 3. Some acquisition of right-of-way may be required. ### 7.2 Utility Costs A BC Hydro high-voltage transmission line shares the corridor with the proposed roadway. Based on discussions with BC Hydro officials, relocation of each hydro transmission tower is estimated to cost approximately \$300,000. While
the proposed 60 km/h design speed affords some flexibility in alignment, there are areas where towers will compromise the alignment. It is anticipated that one tower may require relocation at the north end of the project where the road and the towers would share a narrow bench area through difficult terrain adjacent to Lillooet Lake. ### 7.3 Environmental/Archaeological Mitigation Formal environmental and archaeological assessments of the corridor have not been carried out. However, there are known archaeological sites. There is at least one site in Section 1, six sites in Sections 2 and 3, and two sites along Section 4. The gold rush trail is encountered seven times for a total length of about 9.9 km along Section 2 & 3. Costs for studies and mitigation have been based on known environmental and archaeological evidence along the corridor. ### 7.4 Detailed Cost Estimate The following table provides a summary of the cost estimate prepared using the "Elemental Parametric Method". More detailed itemized section-by-section cost breakdowns are included in Appendix 3. | In-SHUCK-ch FSR | | | | | | | | | | |-------------------|----------------------|------------|------------------------------|----------------------|--|--|--|--|--| | Section | Road
Construction | Structures | Engineering
Project Mgmt. | Construction
Cost | | | | | | | 1 | \$27.1 M | \$4.7 M | \$5.2 M | \$37.0 M | | | | | | | 2 | \$20.7 M | \$1.7 M | \$3.8 M | \$26.2 M | | | | | | | 3 | \$29.6 M | \$5.1 M | \$5.0 M | \$39.7 M | | | | | | | 4 | \$12.1 M | \$1.2 M | \$2.0 M | \$15.3 M | | | | | | | Subtotals | \$89.5 M | \$12.7 M | \$16.0 M | \$118.2 M | | | | | | | Harrison West FSR | | | | | | | | | | | 5 | \$30.8 M | \$12.7 M | \$5.6 M | \$49.1 M | | | | | | | 6 | \$17.7 M | \$6.5 M | \$3.0 M | \$27.2 M | | | | | | | 7 | \$35.2 M | \$8.8 M | \$5.7 M | \$49.7 M | | | | | | | 8 | \$21.4 M | \$6.0 M | \$3.4 M | \$30.8 M | | | | | | | Subtotals | \$105.1 M | \$34.0 M | \$17.7 M | \$156.8 M | | | | | | | Land | | | | \$0.4 M | | | | | | | TOTAL | \$194.6 M | \$46.7 M | \$33.7 M | \$275.4 M | | | | | | The additional cost of replacing all existing single-lane structures with two-lane structures is estimated to be \$15.0 M. No additional retaining wall are included in this estimate. The unit prices used for this cost estimate are based on similar types of highway construction projects in the southwestern part of the province. A general contingency allowance of 20% has been included. The cost estimate is in 2003 dollars. This cost estimate should be adjusted to include escalation between 2003 and the anticipated construction year. The actual construction cost may be affected by the volume of concurrent road construction activity underway at the time of contract tendering. The 2003 cost estimate exceeds the 1999 estimate by \$75.4 M. The 1999 cost estimate was based on a lesser design standard and only reflected construction costs. It did not include the costs associated with the replacement of eight bridges, property acquisition, engineering and project management. The two cost estimates are reconciled as follows: | 1999 Cost Estimate | \$200.0 M | | | |--|-----------|--|--| | Land | \$0.4 M | | | | Environmental | \$3.5 M | | | | Archaeological | \$4.5 M | | | | Structures (including retaining walls) | \$22.6 M | | | | Construction Supervision | \$10.7 M | | | | Engineering / Project Management | \$33.7 M | | | | 2003 Cost Estimate | \$275.4 M | | | ### 7.5 Maintenance Costs Annual maintenance costs for this type of roadway will vary along the length of the route due to the changing conditions. The annual maintenance cost of a two-lane roadway would vary between \$11,000/km for flatter areas to \$16,000/km for more mountainous areas. Based on a blended cost of approximately \$15,000/km/year for the 160 km road, the annual maintenance cost is expected to be about \$2.4 million. ### 7.6 Traffic Disruption/Traffic Management Cost Non-forestry traffic is minimal. Since there are no detour routes, good communications with local residents will be required during construction in order to avoid excessive delays. As the majority of local residents drive 4x4 pickups and SUVs, they will be able to drive through rough construction sites with traffic control. #### **APPENDIX 1** #### **TERRAIN TYPES** The terrain along the Harrison Mills to Mount Currie corridor can be characterized into five types: - rough mountainous, - mountainous, - rough glacial, - smooth glacial, and - level valley bottom. These terrain types are described below and illustrated graphically in a series of diagrams following the text. The corridor has been divided into short pieces by terrain type. The pieces are listed in a spreadsheet at the end of this Appendix. The pieces are shown as coloured line segments on the conceptual alignment plans in Appendix 2. ### Rough Mountainous Terrain - side slopes on one or both sides with rock cuts or future rock cuts between 5 and 10m - can contain grades in excess of 10% necessitating switchbacks - poor horizontal and vertical alignment associated with a design speed of 20 40 km/h #### **Mountainous Terrain** - rock side slopes on one or both sides of approximately 5 m or less - grades usually less than 10% - fewer switchbacks - horizontal and vertical alignment associated with a design speed of approximately 30 – 50 km/h #### Rough Glacial Terrain - high side slopes with slopes of approximately 1.5:1 - granular material with cobble rock mixed in - steep drop-off; on one side - switchback in certain locations - some grades in excess of 10% - horizontal and vertical alignment associated with a design speed of between 20 50 km/h ### **Smooth Glacial Terrain** - back slopes less than 2 m high - material in back slope is glacial granular till with cobble - no switchbacks - horizontal and vertical alignment associated with a design speed of 40 70 km/h ### **Level Terrain** - terrain is flat usually with trees on each side - roadway subgrade is soft due to poor drainage - subgrade material contains more fines (silt) - horizontal and vertical alignment will not pose any constraint for improvements ## **Table of Sections & Terrain Types** | | | | In-SHU | ICK-ch FSR | | | | | |---------|--------------|--------------|-------------|---------------|----------------|-----------------------|-----------|--| | | ROADWAY TYPE | | | | | | | | | SECTION | Sта то Sта | Rock
5-10 | Rock
0-5 | G.T.
Rough | G.T.
Smooth | Flat Valley
Bottom | HV Towers | | | | Class | 5 | 4 | 3 | 2 | 1 | | | | | 0-0.5 | | | 0.5 | | | 1.0 | | | | 0.5-1.5 | | 1.0 | | | | | | | | 1.5-4.5 | | | | 3.0 | | | | | | 4.5-8.0 | | 3.5 | | | | | | | | 8.0-10.5 | | | 2.5 | | | | | | | 10.5-12.0 | | 1.5 | | | | | | | | 12.0-13.0 | | | 1.0 | | | | | | 1 | 13.0-14.5 | | 1.5 | | | | | | | | 14.5-16.5 | | | | 2.0 | | | | | | 16.5-18.5 | | 2.0 | | | | | | | | 18.5-21.5 | | | | 3.0 | | | | | | 21.5-22.0 | | 0.5 | | | | | | | | 22.0-23.5 | | | 1.5 | | | | | | | 23.5-24.0 | | 0.5 | | | | | | | | 24.0-29.5 | | | | | 5.5 | | | | | 29.5-37.0 | | | | | 7.0 | | | | | 37.0-38.0 | 1.0 | | | | | | | | | 38.0-39.5 | | | 1.5 | | | | | | 2 | 39.5-40.5 | 1.0 | | | | | | | | | 40.5-44.0 | | | | | 3.5 | | | | | 44.0-50.0 | | | | | | | | | | 50.0-51.0 | | 0.5 | | 1.0 | 5.5 | | | | | 50.0-57.0 | | | | 7.0 | | | | | | 57.0-62.0 | | | | | 5.0 | | | | | 62.0-68.0 | | | 6.0 | | | | | | 3 | 68.0-69.0 | 1.0 | | | | | | | | | 69.0-74.0 | | | | 5.0 | | | | | | 74.0-74.5 | | 0.5 | | | | | | | | 74.5-76.5 | | | | 2.0 | | | | | 4 | 76.5-77.0 | 0.5 | | | | | | | | | 77.0-87 | | | | 10.0 | | | | | | | | Harriso | n West FSR | | | | | | | 0-4 | | | 4.0 | | | | | | | 4-7 | 3.0 | | | | | | | | 5 | 7-9 | 2.0 | | | | | | | | 5 | 9-16 | | | 7.0 | | | | | | | 16-18 | 2.0 | | | | | | | | | 18-23 | | | 5.0 | | | | | | | 23-26 | | | 3.0 | | | | | | 6 | 26-31 | 5.0 | | | | | | | | | 31-35 | | | 4.0 | | | | | | | 35-42 | | | 7.0 | | | | | | 7 | 42-46 | 4.0 | | | | | | | | , | 46-50 | | | 4.0 | | | | | | | 50-59 | 9.0 | | | | | | | | | 59-62 | 3.0 | | | | | | | | 8 | 62-66 | | | 4.0 | | | | | | | 66-73 | 6.0 | | | | | | | | | | 37.5 | 11.5 | 40.0 | 33.0 | 27.0 | 1 | | ### **APPENDIX 2** ### **APPENDIX 3** *ISL* 26 Printed: 12/22/2003 12:02 PM # *Infrastructure Systems Ltd.* Proj. No. 30133 | | | | | CONC | CEPTUAL EST | IMATE | | | | | | | |---|--|--|---|---|--|--|---|---|---|---|--|--| | ucture Systems Ltd. H
(2003 Dollars) T
ACTIVITY C | adsheets\Cost_Est\[Harr-
larrison Mills-Mt. Currie
wo-Lane Dev't. Road
conceptual Estimate
ST.DATE Oct. 1, 2003
MAIN RD
R2 DATE: Oct. 29, 2003
DESCRIPTION \TOTAL ROADS | SECTION 1
Km 10.0 -
Km 129.5
0
30000
0
30000 | SECTION 2
Km I29.5
Km I51.0
0
21500
0
21500 | SECTION 3
Km I51.0
Km I76.5
0
25500
0
25500 | SECTION 4
Km 176.5
Km 186.7
0
10500
0 | Section 5
Km H0.0
Km H23.0
0
23000
0
23000 | Section 6
Km
H23.0
Km H35.0
0
12000
0
12000 | Section 7
Km H35.0
Km H59.0
0
24000
0
24000 | Section 8
Km H59.0
Km H73.3
0
0
14000 MR
0 OR
14000 TR | SUMMARY
OF
SUMMARIES
ONLY
160500
0
160500 | | Road Types
1. 2In Front
2. 2In Acc F
3. 4In Acc F
4.R4L-4L E
5.R2/3L-4L
6.Retr.4L-4
7.R4L-4LE)
8. New 4L E | | _ | Engineering
Land
Construction
Management Reserve
Escalation | 5,201,612
0
31,882,559
0
0 | 3,754,044
218,250
22,393,880
0
0 | 5,018,719
218,250
34,742,832
0
0 | 1,974,842
0
13,210,807
0 | 5,610,730
0
43,488,225
0
0 | 3,020,203
0
24,072,772
0
0 | 5,647,716
0
44,072,182
0
0 | 3,437,901
0
27,390,335
0 | 33,665,766
436,500
241,253,591
0
0 | 210
3
1503
0
0 | 0. New 42 1 | |
B | Total ASIC QUANTITY SUMMARY Construct.Cost ONLY Per L.M. Land Area Mobilization | 37,084,171
1,063
81.0
675,951 | 26,366,174
 | 39,979,801
 | 15,185,649
1,258
33.7
281,781 | 1,891
88.4
926,371 | 2,006
43.6
512,962 | 49,719,897
 | 30,828,236
 | 275,355,857
 | 1716 | | | _ | Land Cont. Construction Cont. Engineering Cont. Supervision Cont. Total Cont. | 7,002,796
1,200,372
354,717
8,557,886 | 0
4,924,882
866,318
242,936
6,034,136 | 0
7,632,511
1,158,166
385,065
9,175,742 | 2,902,347
455,733
146,301
3,504,381 | 9,541,617
1,294,784
494,127
11,330,528 | 5,283,506
696,970
271,749
6,252,225 | 9,679,487
1,303,319
491,016
11,473,822 | 0
6,015,126
793,362
305,720
7,114,208 | 52,982,274
7,769,023
2,691,632
63,442,929 | 55,673,906 | - | | - | S.G.S.B. C.B.C. Asphalt Concrete Barrier Noise Attentuation Wall | 102,324
53,449
47,144
14,600
0 | 107,802
37,841
32,924
3,600
0 | 101,948
45,717
40,816
16,600
0 | 35,106
18,376
15,971
8,700
0 | 72,583
41,302
37,335
19,800
0 | 36,556
22,594
21,817
10,600
0 | 64,587
42,944
38,969
21,800
0 | 34,797 m3
24,981 m3
22,707 t
13,000 lm
0 m2
0 ea | 555,702
287,202
257,682
108,700
0 | | | | _ | No. of Light Poles
Sidewalk
Curb and Gutter
Signals
Bridge total area | 0
0
0
0
200 | 0
0
0
0
250 | 0
0
0
0
240 | 0
0
0
0
500 | 0
0
0
0
300 | 0
0
0
0
480 | 0
0
0
0
250 | 0 lm
0 lm
0 lm
0 ea
300 m2 | 0
0
0
0
2,520 | | | | | Total Rock
Total OM
Total Stripping
Total Borrow
Total Cut/Excavation | 150,860
716,183
112,079
0
979,122 | 93,696
411,495
53,944
0
559,135 | 291,535
567,884
212,126
0
1,071,545 | 64,884
338,945
45,516
0
449,345 | 302,791
841,186
83,044
0
1,227,021 | 237,892
371,145
36,088
0
645,125 | 561,245
597,964
57,200
0 | 389,303 m3
277,314 m3
25,844 m3
0 m3
692,461 m3 | 2,092,205
4,122,117
625,842
0
6,840,164 | 0 | DIF
2,092,205
4,122,117
625,842
0
6,840,164 | | | Total Fill Surplus or Deficit ENG & PM | 979,122
0
979,122
 | 559,135
0
559,135
 | 1,071,545
0
1,071,545
 | 449,345
0
449,345
 | 1,227,021
0
1,227,021
 | 045,125
0
645,125
 | 1,216,409
0
1,216,409
 | 0 m3
692,461 m3 | 6,840,164

33.666 | 33.667 | | | _
_
_ | LAND CONST. BRIDGES-R/W MANAGEMENT RESERVE ESCALATION | 0.000
27.142
4.741
0.000
0.000 | 0.218
20.678
1.716
0.000
0.000 | 0.218
29.600
5.143
0.000
0.000 | 0.000
12.061
1.150
0.000
0.000 | 0.000
30.739
12.749
0.000
0.000 | 0.000
17.722
6.351
0.000
0.000 | 0.000
35.231
8.841
0.000
0.000 | 0.000
21.400
5.990
0.000
0.000 | 0.437
194.573
46.681
0.000
0.000 | 0.436
194.573
46.681
0.000
0.000 | | | то | TAL (Millions) (2003 Dollars) TOTAL Cost per meter Construction cost per meter | | 26.366
\$ 1,226 \$
\$ 1,042 \$ | | | | | | | 275.357
\$ 1,716
\$ 1,503 | 275.357 | | # *Infrastructure Systems Ltd.* Proj. No. 30133 #### Harrison Mills - Mt. Currie Development Road CONCEPTUAL ESTIMATE Page 2 of 10 176,607,579 1100 Revised Nov. 28, 2003 Printed: 12/22/2003 12:02 PM | H:\projects\ | 20122 | | | 00.1 | O O/ | | | | | I | i | | |-------------------|------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|---------|-----------------------| | | Spreadsheets\Cost Est\[Harr- | SECTION 1 | SECTION 2 | SECTION 3 | SECTION 4 | Section 5 | Section 6 | Section 7 | Section 8 | SUMMARY | Total | Road Types | | • | d. Harrison Mills-Mt. Currie | Km 10.0 - | Km 129.5 | Km I51.0 | Km 176.5 | Km H0.0 | Km H23.0 | Km H35.0 | Km H59.0 | OF | Line | 1. 2ln Front | | | s) Two-Lane Dev't. Road | Km 129.5 | Km 151.0 | Km 176.5 | Km 186.7 | Km H23.0 | Km H35.0 | Km H59.0 | Km H73.3 | SUMMARIES | Cost | 2. 2ln Acc F | | ACTIVITY | Conceptual Estimate | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ONLY | 0031 | 3. 4ln Acc F | | CODE | EST.DATE Oct. 1, 2003 | Ö | Ö | Ö | Ö | Ö | Ö | Ö | Ö | 0.1.2. | C/LM | 4.R4L-4L E | | Conceptual Es | st. MAIN RD | 30000 | 21500 | 25500 | 10500 | 23000 | 12000 | 24000 | 14000 MR | 160500 | | 5.R2/3L-4L | | Blk Est. # 6.14B | R2 DATE: Oct. 29, 2003 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 OR | . 0 | | 6.Retr.4L-4 | | Version Oct.13, 2 | 00 DESCRIPTION \TOTAL ROADS | 30000 | 21500 | 25500 | 10500 | 23000 | 12000 | 24000 | 14000 TR | 160500 | 160500 | 7.R4L-4LE> | | SUMMAR | Y BY ACTIVITY LEVEL | | | | | | | | | | Cost/LM | 8. New 4L E
% of T | | 2000 | PROJECT MANAGEMENT | 1,443,512 | 1,026,311 | 1,556,225 | 591,106 | 1,911,191 | 1,054,602 | 1,935,361 | 1,199,998 | 10,718,305 | 67 | 3.9% | | 2500 | PLANNING | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0% | | 3000 | PRELIMINARY DESIGN | 2,026,775 | 1,444,584 | 1,728,017 | 706,958 | 1,596,912 | 831,751 | 1,645,260 | 963,667 | 10,943,924 | 68 | 4.0% | | 3500 | DETAILED DESIGN | 530,953 | 416,831 | 576,311 | 221,046 | 807,844 | 436,880 | 763,775 | 480,875 | 4,234,515 | 26 | 1.5% | | | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | Total Engineering | 2,557,728 | 1,861,415 | 2,304,328 | 928,003 | 2,404,756 | 1,268,631 | 2,409,036 | 1,444,541 | 15,178,439 | 95 | 5.5% | | 4000 | LAND ACQUISITION | 0 | 218,250 | 218,250 | 0 | 0 | 0 | 0 | 0 | 436,500 | 3 | 0.2% | | 5000 | GRADE CONSTRUCTION | 14.249.665 | 9,237,306 | 16,670,072 | 6,333,926 | 17,488,375 | 10,146,332 | 20,456,152 | 12,530,666 | 107,112,493 | 667 | 38.9% | | 5200 | ROAD SIDE CONSTRUCTION | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0% | | 5300 | OTHER CONSTRUCTION | 139,050 | 2,518,350 | 0 | 314,150 | 0 | 0 | 0 | 0 | 2,971,550 | 19 | 1.1% | | 5500 | STRUCTURAL CONSTRUCTION | 3,445,427 | 1,246,789 | 3,737,973 | 835,073 | 9,264,850 | 4,615,482 | 6,424,677 | 4,353,347 | 33,923,617 | 211 | 12.3% | | 6000 | PAVING CONSTRUCTION | 3,697,826 | 2,584,563 | 3,199,477 | 1,253,837 | 2,925,400 | 1,703,854 | 3,053,395 | 1,779,183 | 20,197,535 | 126 | 7.3% | | 6500 | OPERATIONAL CONSTRUCTION | 1,675,686 | 529,266 | 1,834,183 | 937,506 | 2,126,765 | 1,146,019 | 2,330,736 | 1,387,225 | 11,967,385 | 75 | 4.3% | | 6700 | UTILITY CONSTRUCTION | 135,000 | 300,000 | 0 | 0 | 0 | 0 | 0 | 0 | 435,000 | 3 | 0.2% | | 6800 | RESIDENT ENGINEERING | 1,182,390 | 809,788 | 1,283,551 | 487,669 | 1,647,090 | 905,830 | 1,636,720 | 1,019,068 | 8,972,106 | 56 | 3.3% | | | T (110 (1 (1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 07.40/ | | | Total Construction | 24,525,045 | 17,226,062 | 26,725,255 | 10,162,160 | 33,452,481 | 18,517,517 | 33,901,678 | 21,069,488 | 185,579,686 | 1156 | 67.4% | | 9700 | CONTINGENCY | 8,557,886 | 6,034,136 | 9,175,742 | 3,504,381 | 11,330,528 | 6,252,225 | 11,473,822 | 7,114,208 | 63,442,929 | 395 | 23.0% | | | SUB-TOTAL | 37,084,171 | 26,366,174 | 39,979,801 | 15,185,649 | 49,098,955 | 27,092,975 | 49,719,897 | 30,828,236 | 275,355,857 | 1716 | 100.0% | | 9800 | MANAGEMENT RESERVE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0% | | | TOTAL | 37,084,171 | 26,366,174 | 39,979,801 | 15,185,649 | 49,098,955 | 27,092,975 | 49,719,897 | 30,828,236 | 275,355,857 | 1716 | 100.0% | | 9900 | ESCALATION | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | TOTAL COST | 37,084,171 | 26,366,174 | 39,979,801 | 15,185,649 | 49,098,955 | 27,092,975 | 49,719,897 | 30,828,236 | 275,355,857 | 1716 | | | | | | | | | | | | | | | | 9,674,491 31,805,390 17,611,686 32,264,958 20,050,420 Const. Less Resident Eng. 23,342,655 16,416,274 25,441,704 Printed: 12/22/2003 12:02 PM #### Infrastructure Systems Ltd. Proj. No. 30133 #### Harrison Mills - Mt. Currie Development Road CONCEPTUAL ESTIMATE | Part |
--| | | | Consultant Toronto Strict Consultant | | ACTIVITY Conceptual Estimate CODE ESTLATE Cett. 1,2003 COLT. ACTIVITY ACTIVITY COLT. ACTIVITY ACT | | CODE EST-DÂTE Col. 1, 2003 O O O O O O O O O | | Concentral Est | | Silk Est. # 6.14B R2 DATE: Oct. 29,2003 0 0 0 0 0 0 0 0 0 | | | | New 4LE 2500 PLANNING PLANNING | | Description Part | | 2521 Consultant corridor study 0 0 0 0 0 0 0 0 0 | | 2531 Consultant - functional plan study 0 0 0 0 0 0 0 0 0 | | 2541 Consultant - functional plain. study | | 2502 Consultant - general 0 | | Consultant sub-total 0 | | Client - project ident. 0 0 0 0 0 0 0 0 0 | | 2520 Client - transport, planning study | | 2530 Client - corridor study | | 2530 Client - corridor study | | Client - general 0 | | Client Sub-total 0 | | TOTAL PLANNING | | TOTAL PLANNING 0 0 0 0 0 0 0 0 0 | | TOTAL PLANNING 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | TOTAL PLANNING 0 0 0 0 0 0 0 0 0 | | PRELIMINARY DESIGN 3013 Consultant - aerial base plan 45,000 32,250 38,250 15,750 34,500 18,000 36,000 21,000 420,000 4,815,000 30 30 30 30 30 30 30 | | 3000 PRELIMINARY DESIGN 3013 Consultant - aerial base plan 45,000 32,250 38,250 15,750 34,500 18,000 36,000 21,000 240,750 2 3014 Consultant - prel. design 900,000 645,000 7,970 3,280 7,190 3,750 7,500 420,000 420,000 4,815,000 30 3015 Consultant - environmental impact 450,000 322,500 382,500 157,500 345,000 180,000 360,000 210,000 240,750 15 3031 Consultant - functroad field survey 0 0 0 0 0 0 0 0 0 | | 3013 Consultant - aerial base plan 45,000 32,250 38,250 15,750 34,500 18,000 36,000 21,000 420,000 4,815,000 30 3014 Consultant - prel. design 900,000 645,000 765,000 315,000 690,000 360,000 720,000 420,000 4,815,000 30 3015 Consultant - control survey 9,380 6,730 7,970 3,280 7,190 3,750 7,500 4,370 50,170 0 3021 Consultant - environmental impact 450,000 322,500 382,500 157,500 345,000 180,000 360,000 210,000 2,407,500 15 3031 Consultant - functroad field survey 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3041 Consultant - functional design 300,000 215,000 255,000 105,000 230,000 120,000 240,000 140,000 1,605,000 10 3051 Consultant - funct. structural des. 22,395 8,104 24,297 5,428 60,222 30,001 41,760 28,297 220,504 1 3061 Consultant - right-of-way research 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3071 Consultant - right-of-way research 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 3014 Consultant - prel. design 900,000 645,000 765,000 315,000 690,000 360,000 720,000 420,000 4,815,000 30 30 30 30 30 5 Consultant - control survey 9,380 6,730 7,970 3,280 7,190 3,750 7,500 4,370 50,170 0 30 30 30 30 30 30 30 30 30 30 30 30 | | 3015 Consultant - control survey 9,380 6,730 7,970 3,280 7,190 3,750 7,500 4,370 50,170 0 3021 Consultant - environmental impact 450,000 322,500 382,500 157,500 345,000 180,000 360,000 210,000 2,407,500 15 3031 Consultant - functroad field survey 0 0 0 0 0 0 0 0 0 0 0 0 0 3041 Consultant - functional design 300,000 215,000 255,000 105,000 230,000 120,000 240,000 140,000 1,605,000 10 3051 Consultant - funct. structural des. 22,395 8,104 24,297 5,428 60,222 30,001 41,760 28,297 220,504 1 3061 Consultant - geotechnical design 300,000 215,000 255,000 105,000 230,000 120,000 240,000 140,000 1,605,000 10 3071 Consultant - right-of-way research 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3002 Consultant - general 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Consultant sub-total 2,026,775 1,444,584 1,728,017 706,958 1,596,912 831,751 1,645,260 963,667 10,943,924 68 | | 3021 Consultant - environmental impact 450,000 322,500 382,500 157,500 345,000 180,000 360,000 210,000 2,407,500 15 3031 Consultant - functroad field survey 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 3031 Consultant - functroad field survey 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 3041 Consultant - functional design 300,000 215,000 255,000 105,000 230,000 120,000 240,000 140,000 1,605,000 10 10 10 10 10 10 10 10 10 10 10 10 | | 3051 Consultant - funct. structural des. 22,395 8,104 24,297 5,428 60,222 30,001 41,760 28,297 220,504 1 3061 Consultant - geotechnical design 300,000 215,000 255,000 105,000 230,000 120,000 240,000 140,000 1,605,000 10 3071 Consultant - right-of-way research 0 0 0 0 0 0 0 0 0 0 0 0 3002 Consultant - general 0 0 0 0 0 0 0 0 0 0 0 0 0 Consultant sub-total 2,026,775 1,444,584 1,728,017 706,958 1,596,912 831,751 1,645,260 963,667 10,943,924 68 | | 3061 Consultant - geotechnical design 300,000 215,000 255,000 105,000 230,000 120,000 240,000 140,000 1,605,000 10 3071 Consultant - right-of-way research 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 3002 Consultant - general 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | Consultant sub-total 2,026,775 1,444,584 1,728,017 706,958 1,596,912 831,751 1,645,260 963,667 10,943,924 68 | | | | | | | | 3010 Client - aerial base plan 0 0 0 0 0 0 0 0 0 0 | | 3011 Client - prel. design 0 0 0 0 0 0 0 0 0 | | 3012 Client - control survey 0 0 0 0 0 0 0 0 0 | | 3020 Client - environmental impact 0 0 0 0 0 0 0 0 0 0 0 | | 3030 Client - functroad field survey 0 0 0 0 0 0 0 0 0 0 | | 3040 Client - functional design 0 0 0 0 0 0 0 0 0 | | 3050 Client - funct. structural des. 0 0 0 0 0 0 0 0 0 | | 3060 Client - geotechnical design 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 3070 Client - right-of-way research 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | goriotic gor | | Client Sub-total 0 0 0 0 0 0 0 0 0 0 0 | | 3099 Preliminary design Contingency 608,033 433,375 518,405 212,087 479,073 249,525 493,578 289,100 3,283,177 20 | | 5009 Telliminary design Contingency | | TOTAL PRELIMINARY DESIGN 2,634,808 1,877,959 2,246,422 919,045 2,075,985 1,081,276 2,138,839 1,252,767 14,227,101 89 | | | CONCEPTUAL ESTIMATE | | | | | | | | | | | | |--|---|---|---|---|---|--|--|--|--|--|--
---| | File:
ucture \$
(2
ACTIV
CODI
Cor | E EST.DATE Oct. 1, 2003 | SECTION 1
Km 10.0 -
Km 129.5
0
0
IAIN RD 30000
29, 2003 0 | SECTION 2
Km I29.5
Km I51.0
0
0
21500 | SECTION 3
Km I51.0
Km I76.5
0
0
25500 | SECTION 4
Km 176.5
Km 186.7
0
0
10500 | Section 5
Km H0.0
Km H23.0
0
0
23000 | Section 6
Km H23.0
Km H35.0
0
12000 | Section 7
Km H35.0
Km H59.0
0
24000 | Section 8
Km H59.0
Km H73.3
0
0
14000 MR
0 OR | SUMMARY
OF
SUMMARIES
ONLY
160500 | Cost | Road Types 1. 2In Front 2. 2In Acc F 3. 4In Acc F 4.R4L-4L E 5.R2/3L-4L 6.Retr.4L-4 | | | n Oct.13, 200 DESCRIPTION \TOTAL | | 21500 | 25500 | 10500 | 23000 | 12000 | 24000 | 14000 TR | 160500 | | 7.R4L-4LE> | | 6700
6710
6711 | UTILITIES Util. Prov Hydro Util. Prov Telephone Util. Prov. sub-total | 45,000
90,000
135,000 | 300,000
0
300,000 | 0
0
0 | 0
0
0 | 0
0
0 | 0
0
0 | 0
0
0 | 0
0
0 | 345,000
90,000
435,000 | 2
1
3 | 8. New 4L E | | 6713
6714
6715
6716
6717
6718
6719
6701 | Util.Others | 0
0
0
0
0
0
0 | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 130,500 | 1 | | | | Util.Others Contingency TOTAL UTILITIES | 175,500 | 390,000 | 0 | 0 | 0 | 0 | 0 | 0 | 565,500 | 4 | | | 5000
5032
5033
5034
5031
5039 | GRADE CONSTRUCTION Grade Const- water Grade Const- sanitary Grade Const- storm Grade Const- mobilization Grade Const- utility contingency Grade Const. Utilities Sub-total | 0
0
0
0
0 0
0
0
0 | 0
0
0
0
0 | 0
0
0
0
0 | | | 5020
5030
5040
5050
5051
5060
5061
5062
5063
5064
5090
5005
5001
5099 | Grade Const - site prep./clear,grubbing Grade Const - road grade/exc,placing,fill Grade Const - drainage/pipe,cul. Grade Const - muiltiplate Grade Const - SGSB/produce,place,comp Grade Const - Grade finishing landscaping Grade Const - grade finishing landscaping Grade Const - grade finishing hydro seed. Grade Const - grade finishing fencing Grade Const - noise barriers Grade Const - passing lanes Grade Const - sidewalks,curb & gutter Grade Const - mobilization Grade Const - mobilization Grade Const - Contingency Grade Const - Contingency Grade Construction Sub-total | | 569,936
5,597,428
235,005
0
1,617,032
756,829
0
112,029
0
0
0
80,000
269,048
2,771,192
12,008,497 | 967,650 12,070,771 374,939 0 1,529,220 914,335 0 227,620 0 0 0 100,000 485,536 5,001,022 21,671,093 | 404,115
4,373,366
341,015
0
526,589
367,513
0
96,845
0
0
0
40,000
184,483
1,900,178
8,234,103 | 1,060,518 13,449,663 246,908 0 1,088,745 826,032 0 267,139 0 0 40,000 509,370 5,246,513 22,734,888 | 523,590
8,015,702
145,171
0 548,335
451,873
0 126,136
0 0
0 0
40,000
295,524
3,043,900
13,190,231 | 995,022 16,466,213 289,905 0 968,800 858,873 0 241,528 0 0 40,000 595,810 6,136,845 26,592,997 | 562,506 10,211,324 195,318 0 521,953 499,619 0 134,975 0 0 40,000 364,971 3,759,200 16,289,866 | 6,055,479
79,827,763
2,150,067
0
8,335,528
5,744,044
0
1,419,831
0
0
0
0
460,000
3,119,781
32,133,748
139,246,241 | 38
497
13
0
52
36
0
9
0
0
0
0
0
3
19
200
868 | | | | GRADE CONSTRUCTION COSTS | 18,524,565 | 12,008,497 | 21,671,093 | 8,234,103 | 22,734,888 | 13,190,231 | 26,592,997 | 16,289,866 | 139,246,241 | 868 | | | 3510
3519
6810
6811
6812
6819 | Grade Eng detailed design Grade Eng detailed design/Contingenc Grade Eng general const. supervision Grade Eng quality assurance Grade Eng surveying Grade Eng Residency Contingency Grade Engineering Sub-total | 185,246 | 120,085
36,025
240,170
60,042
120,085
126,089
702,497 | 216,711
65,013
433,422
108,355
216,711
227,546
1,267,759 | 82,341
24,702
164,682
41,171
82,341
86,458
481,695 | 227,349
68,205
454,698
113,674
227,349
238,716
1,329,991 | 131,902
39,571
263,805
65,951
131,902
138,497
771,629 | 265,930
79,779
531,860
132,965
265,930
279,226
1,555,690 | 162,899
48,870
325,797
81,449
162,899
171,044
952,957 | 1,392,462
417,739
2,784,925
696,231
1,392,462
1,462,086
8,145,905 | 9
3
17
4
9
9 | | | | Total Grade Const. & Eng. Costs | 19,608,252 | 12,710,995 | 22,938 /852 m | uald&s,516y50,709a8yl | abo 24,66it ,879 | 13,961,860 | 28,148,687 | 17,242,823 | 147,392,146 | 918 | | | | Flarr-Pem_275M/SUMOFSUMS "Optimistic" | ===== | ======0 | | eficient bridge s r
neral earthwork c | | е†апе ===== | ======================================= | ======= | ===== Revise
Printed: 12/22/ | | | Printed: 12/22/2003 12:02 PM # Infrastructure Systems Ltd. Proj. No. 30133 | H:\projects\30133 | | | | | | | | İ | 1 | | |---|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|------------|----------------| | File: Sasquatch\Spreadsheets\Cost_Est\[Harr- | SECTION 1 | SECTION 2 | SECTION 3 | SECTION 4 | Section 5 | Section 6 | Section 7 | Section 8 | SUMMARY | Total Road Ty | | acture Systems Ltd. Harrison Mills-Mt. Currie | Km 10.0 - | Km 129.5 | Km I51.0 | Km 176.5 | Km H0.0 | Km H23.0 | Km H35.0 | Km H59.0 | OF | Line 1. 2ln Fr | | (2003 Dollars) Two-Lane Dev't. Road | Km 129.5 | Km I51.0 | Km 176.5 | Km 186.7 | Km H23.0 | Km H35.0 | Km H59.0 | Km H73.3 | SUMMARIES | Cost 2. 2ln Ad | | ACTIVITY Conceptual Estimate | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ONLY | 3. 4ln Ad | | CODE EST.DATE Oct. 1, 2003 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ONLI | C/LM 4.R4L-4 | | Conceptual Est. MAIN RE | | 21500 | 25500 | 10500 | 23000 | 12000 | 24000 | 14000 MR | 160500 | 5.R2/3L- | | Blk Est. # 6.14B R2 DATE: Oct. 29, 2003 | | 21300 | 23300 | 0 | 23000 | 0 | 24000 | 0 OR | 0 | 6.Retr.4 | | Version Oct.13, 200 DESCRIPTION \TOTAL ROADS | | 21500 | 25500 | 10500 | 23000 | 12000 | 24000 | 14000 TR | 160500 | 160500 7.R4L-4 | | BEGORII HOR TO THE ROADS | | 21000 | | | 20000 | 12000 | 24000 | | 100000 | 8. New 4 | | | | | | | | | | | | 0.11011 | | 5500 STRUCTURAL CONSTRUCTION | | | | | | | | | | | | 5522 Struct.Const - water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 5523 Struct.Const - sanitary | 0 | 0 | 0 | Õ | 0 | Õ | Õ | 0 | 0 | Õ | | 5524 Struct.Const - storm | 0 | 0 | 0 | Ů. | 0 | ñ | ů. | 0 | Ô | ñ | | 5521 Struct.Const - mobilization | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 5599 Struct.Const - utility contingency | 0 | 0 | 0 | Ů. | 0 | ñ | 0 | 0 | Ô | ñ | | Structural Const. Utilities Sub-total | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ciructural Corist. Ctilities Gub total | | | | | | | | | | | | 5510 Struct.Const - tunnel site preparation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 5511 Struct.Const - tunnel construction | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 5512 Struct.Const - snow shed site prep. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 5513 Struct.Const - snow shed site const. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 5514 Struct.Const - bridge site preparation | 55,200 | 37,600 | 57,600 | 105,750 | 45,000 | 69,300 | 35,800 | 42,300 | 448,550 | 3 | | 5515 Struct.Const - bridge piers | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 5516 Struct.Const - bridge abutments | 168,000 | 126,000 | 132,000 | 180,000 | 135,000 | 189,000 | 108,000 | 108,000 | 1,146,000 | 7 | | 5517 Struct.Const - bridge superstructure | 200,000 | 250,000 | 252,000 | 525,000 | 315,000 | 504,000 | 250,000 | 315,000 | 2,611,000 | 16 | | 5518 Struct.Const - retain, wall site prep. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 5519 Struct.Const - retaining wall const. | 2,921,875 | 796,875 | 3,187,500 | 0 | 8,500,000 | 3,718,750 | 5,843,750 | 3,761,250 | 28,730,000 | 179 | | 5501 Struct.Const - mobilization | 100,352 | 36,314 | 108,873 | 24,323 | 269,850 | 134,432 | 187,127 | 126,797 | 988,067 | 6 | | 5529 Struct.Const - Contingency | 1,033,628 | 374,037 | 1,121,392 | 250,522 | 2,779,455 | 1,384,644 | 1,927,403 | 1,306,004 | 10,177,085 | 63 | | Structural Construction Sub-total | 4,479,055 | 1,620,826 | 4,859,365 | 1,085,594 | 12,044,305 | 6,000,126 | 8,352,079 | 5,659,350 | 44,100,701 | 275 | | STRUCTURAL CONSTRUCTION COSTS | 4,479,055 | 1,620,826 | 4,859,365 | 1,085,594 | 12,044,305 | 6,000,126 | 8,352,079 | 5,659,350 | 44,100,701 | 275 | | 3520 Struct. Eng detailed design | 111,976 | 40,521 | 121,484 | 27,140 | 301,108 | 150,003 | 208,802 | 141,484 | 1,102,518 | 7 | | 3529 Struct. Eng detailed design/Contingency | 33,593 | 12,156 | 36,445 | 8,142 | 90,332 | 45,001 | 62,641 | 42,445 | 330,755 | 2 | | 6820 Struct. Eng general const. supervision | 134,372 | 48,625 | 145,781 | 32,568 | 361,329 | 180,004 | 250,562 | 169,781 | 1,323,021 | 8 | | 6821 Struct. Eng quality assurance | 44,791 | 16,208 | 48,594 | 10,856 | 120,443 | 60,001 | 83,521 | 56,594 | 441,007 | 3 | | 6822 Struct. Eng surveying | 22,395 | 8,104 | 24,297 | 5,428 | 60,222 | 30,001 | 41,760 | 28,297 | 220,504 | 1 | | 6829 Struct. Eng Residency Contingency | 60,467 | 21,881 | 65,601 | 14,656 | 162,598 | 81,002 | 112,753 | 76,401 | 595,359 | 4 | | Structural Engineering Sub-total | 407,594 | 147,495 | 442,202 | 98,789 | 1,096,032 | 546,011 | 760,039 | 515,001 | 4,013,164 | 25 | | Total Structural & Eng. Costs | 4,886,649 | 1,768,321 | 5,301,567 | 1,184,383 | 13,140,337 | 6,546,137 | 9,112,119 | 6,174,351 | 48,113,865 | 300 | | | ======== | ======== | | ======= | ======== | | ======== | | | ====== | Printed: 12/22/2003 12:02 PM #### Infrastructure Systems Ltd. Proj. No. 30133 ### Harrison Mills - Mt. Currie **Development Road** # **CONCEPTUAL ESTIMATE** | | |
 | CON | CEPTUAL ES | I IIVIA I E | | | | | | | |-------|--|-------------------|------------------|---------------------|-------------------|---|-------------------|-------------------|---|----------------------|---------------|----------------------------| | Tile: | H:\projects\30133 | SECTION 1 | SECTION 2 | SECTION 3 | SECTION 4 | Section 5 | Section 6 | Section 7 | Section 8 | SUMMARY | Total | Dood Type | | | Sasquatch\Spreadsheets\Cost_Est\[Harr- | | | | | | | | | | Total | Road Types | | | Systems Ltd. Harrison Mills-Mt. Currie | Km I0.0 - | Km 129.5 | Km I51.0 | Km 176.5 | Km H0.0 | Km H23.0 | Km H35.0 | Km H59.0 | OF
OUT AND DEC | Line | 1. 2ln Front | | ACT | 2003 Dollars) Two-Lane Dev't. Road | Km 129.5
0 | Km I51.0 | Km 176.5
0 | Km 186.7
0 | Km H23.0
0 | Km H35.0
0 | Km H59.0
0 | Km H73.3 | SUMMARIES
ONLY | Cost | 2. 2ln Acc F | | COL | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
0 | ONLY | C/LM | 3. 4ln Acc F
4.R4L-4L E | | | onceptual Est. MAIN RD | 30000 | 21500 | 25500 | 10500 | 23000 | 12000 | 24000 | 14000 MR | 160500 | C/LIVI | 5.R2/3L-4L | | | st. # 6.14B R2 DATE: Oct. 29, 2003 | 0 | 21300 | 23300 | 0 | 23000 | 0 | 24000 | 0 OR | 0 | | 6.Retr.4L-4 | | | on Oct.13, 200 DESCRIPTION \TOTAL ROADS | 30000 | 21500 | 25500 | 10500 | 23000 | 12000 | 24000 | 14000 TR | 160500 | 160500 | 7.R4L-4LE | | | | | | | | | | | | | | 8. New 4L E | | | | | | | | | | | | | | | | 6000 | | | | | | | | | | | | | | | Paving Cons - machine paving asphalt | 3,590,122 | 2,509,285 | 3,106,288 | 1,217,318 | 2,840,195 | 1,654,227 | 2,964,461 | 1,727,363 | 19,609,258 | 122 | | | 6030 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
0 | 0 | 0 | | | | Paving Cons - hot reprofiling Paving Cons - shoulder paving | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 6060 | Paving Cons - shoulder paving Paving Cons - pavement finishing | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 6070 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Paving Cons - mobilization | 107,704 | 75,279 | 93,189 | 36,520 | 85,206 | 49,627 | 88,934 | 51,821 | 588,278 | 4 | | | | Paving Cons - pavement design | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Paving Cons - Contingency | 1,109,348 | 775,369 | 959,843 | 376,151 | 877,620 | 511,156 | 916,018 | 533,755 | 6,059,261 | 38 | | | | | | | | | | | | | | | | | | PAVING CONSTRUCTION COSTS | 4,807,174 | 3,359,932 | 4,159,320 | 1,629,988 | 3,803,021 | 2,215,010 | 3,969,413 | 2,312,938 | 26,256,796 | 164 | | | | | | | 44.500 | 40.000 | | | 00.004 | 00.400 | 000.500 | | | | 3560 | | 48,072 | 33,599
10.080 | 41,593 | 16,300 | 38,030 | 22,150 | 39,694 | 23,129 | 262,568 | 2
0 | | | | Paving Eng detailed design/Contingency Paving Eng general const. supervision | 14,422
96,143 | 67,199 | 12,478
83,186 | 4,890
32,600 | 11,409
76,060 | 6,645
44,300 | 11,908
79,388 | 6,939
46,259 | 78,770
525,136 | 3 | | | 6861 | | 96,143 | 67,199 | 83.186 | 32,600 | 76,060 | 44,300 | 79,388
79,388 | 46,259 | 525,136 | 3 | | | 6862 | Paving Eng quality assurance
Paving Eng surveying | 24,U3b | 16,800 | 20,797 | 8,15U | 70,000
19,015 | 11,075 | 79,300
19,847 | 11,565 | 131,284 | 1 | | | 6869 | Paving Eng Residency Contingency | 64,897 | 45,359 | 56,151 | 22,005 | 51,341 | 29,903 | 53,587 | 31,225 | 354,467 | 2 | | | | Paving Engineering Sub-total | 343,713 | 240,235 | 297,391 | 116,544 | 271,916 | 158,373 | 283,813 | 165,375 | 1,877,361 | 12 | | | | T. (1 D. 1 0 4 D. T 0 4 | | 0.000.407 | 4 450 744 | 4.740.500 | 4.074.000 | 0.070.000 | 4.050.000 | 0.470.04.4 | 00.404.457 | 475 | | | | Total Paving Const. & Eng. Costs | 5,150,887 | 3,600,167 | 4,456,711
====== | 1,746,532 | 4,074,936
==================================== | 2,373,383 | 4,253,226 | 2,478,314
====== | 28,134,157 | 175
====== | 6500 | | | | | | | | | | | | | | | Operat.Cons - lighting | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 6520 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Operat.Cons - signing | 60,000 | 43,000 | 51,000 | 21,000 | 46,000 | 24,000 | 48,000 | 28,000 | 321,000 | 2 | | | | Operat.Cons - guard rail | 1,387,000 | 342,000 | 1,577,000 | 826,500 | 1,881,000 | 1,007,000 | 2,071,000 | 1,235,000 | 10,326,500 | 64 | | | | Operat.Cons - pavement markings | 179,880 | 128,850 | 152,760 | 62,700 | 137,820 | 81,640 | 143,850 | 83,820 | 971,320 | 6 | | | | Operat.Cons - mobilization | 48,806 | 15,416 | 53,423 | 27,306 | 61,945 | 33,379 | 67,886 | 40,405 | 348,565 | 2 | | | 6599 | Operat.Cons - contingency | 502,706 | 158,780 | 550,255 | 281,252 | 638,029 | 343,806 | 699,221 | 416,167 | 3,590,215 | 22 | | | | OPERATIONAL CONSTRUCTION COSTS | 2,178,392 | 688,045 | 2,384,438 | 1,218,758 | 2,764,794 | 1,489,825 | 3,029,956 | 1,803,392 | 15,557,600 | 97 | | | | | | | | | | | | | | | | | 3540 | | 43,568 | 13,761 | 47,689 | 24,375 | 55,296 | 29,796 | 60,599 | 36,068 | 311,152 | 2 | | | 3549 | - p | 13,070 | 4,128 | 14,307 | 7,313 | 16,589 | 8,939 | 18,180 | 10,820 | 93,346 | 1 | | | 6840 | | 87,136 | 27,522 | 95,378 | 48,750 | 110,592 | 59,593 | 121,198 | 72,136 | 622,304 | 4 | | | | Operat. Eng - quality assurance | 10,892 | 3,440 | 11,922 | 6,094 | 13,824 | 7,449 | 15,150 | 9,017 | 77,788 | 0 | | | | Operat. Eng - surveying | 10,892 | 3,440 | 11,922 | 6,094 | 13,824 | 7,449 | 15,150 | 9,017 | 77,788 | 0 | | | 0849 | Operat. Eng - Residency Contingency Operational Enginering Sub-total | 32,676
198,234 | 10,321
62,612 | 35,767
216,984 | 18,281
110,907 | 41,472
251,596 | 22,347
135,574 | 45,449
275,726 | 27,051
164,109 | 233,364
1,415,742 | 1 | | | | | 190,234 | ٠ | ۷۱۵,964 | 110,907 | 201,090
 | 130,074 | 213,120 | 104,109 | 1,415,742 | 9 | | | | Total Operational Const.& Eng.Costs | 2,376,626 | 750,657 | 2,601,421 | 1,329,665 | 3,016,390 | 1,625,399 | 3,305,682 | 1,967,501 | 16,973,342 | 106 | | | ==== | | | | | | | | | ======================================= | | ====== | | #### **Development Road CONCEPTUAL ESTIMATE** | | | 00 | | | CON | CEPTUAL ES | IIMAIE | | | , | i | | | |-------|----------------------------------|---|----------------|------------------|--------------------|---|-------------------|--------------|---|---------------|------------------|------------|--------------------------| | File: | H:\projects\301
Sasquatch\Spr | eadsheets\Cost_Est\[Harr- | SECTION 1 | SECTION 2 | SECTION 3 | SECTION 4 | Section 5 | Section 6 | Section 7 | Section 8 | SUMMARY | Total | Road Types | | | | Harrison Mills-Mt. Currie | Km I0.0 - | Km 129.5 | Km I51.0 | Km 176.5 | Km H0.0 | Km H23.0 | Km H35.0 | Km H59.0 | OF | | 1. 2ln Front | | | | Two-Lane Dev't. Road | Km 129.5 | Km I51.0 | Km 176.5 | Km 186.7 | Km H23.0 | Km H35.0 | Km H59.0 | Km H73.3 | SUMMARIES | | 2. 2ln Acc F | | ACTI\ | | Conceptual Estimate | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ONLY | | 3. 4ln Acc F | | COD | nceptual Est. | EST.DATE Oct. 1, 2003
MAIN RD | 0
30000 | 0
21500 | 0
25500 | 0
10500 | 0
23000 | 0
12000 | 0
24000 | 0
14000 MR | 160500 | | 4.R4L-4L E
5.R2/3L-4L | | | st. # 6.14B | R2 DATE: Oct. 29, 2003 | 0 | 0 | 25500 | 0 | 0 | 0 | 24000 | 0 OR | 0 | | 6.Retr.4L-4 | | | on Oct.13, 200 | DESCRIPTION \TOTAL ROADS | 30000 | 21500 | 25500 | 10500 | 23000 | 12000 | 24000 | 14000 TR | 160500 | | 7.R4L-4LE> | | | | | | | | | | | | | | | 8. New 4L E | | 5200 | 1 | ROAD SIDE CONSTRUCTION | | | | | | | | | | | | | | RoadSide Cr- | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | RoadSide Cr- | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | RoadSide Co- | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
0 | 0 | 0 | | | | | - Utility Contingency | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | onst. Utilities Sub-total | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | =0.40 | 5 10:1 0 | | | | | | | | | | | | | | | RoadSide Co- | - weignscales
- safety rest areas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
0 | 0 | 0 | | | | | - tourist rest & view areas | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 5201 | RoadSide Co- | - mobilization | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 5299 | RoadSide Cr- | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Road Side Co | onstruction Sub-total | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | CONSTRUCTION COSTS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 3550 | | - detailed design | 0 | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | | | | - detailed design/Contingency | Ö | Ö | Ö | Ö | 0 | Ö | 0 | Ö | 0 | 0 | | | | | general const. supervision | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | - quality assurance | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | RoadSide Er- | - surveying
- Residency Contingency | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
0 | 0 | 0 | | | 0009 | | ngineering Sub-total | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Side Const.& Eng.Costs | 0 | | 0 | | | 0 | | 0 | | 0 | | | ==== | | ====================================== | | | | - | - | | - | | ========= | ====== | | | 5300 | , | OTHER CONSTRUCTION | | | | | | | | | | | | | | Other Const - | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Other Const - | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Other Const - | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Other Const | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
0 | 0 | 0 | | | 5309 | | - utility contingency
Utilities Sub-total | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Other Const. | Clinics Cub total | | | | | | | | | | | | | | | - railroads main & spur lines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | - railroad crossings | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Other Const - | - marine work
- environmental mitigations | 0
135,000 | 2,445,000 | 0 | 0
305,000 | 0 | 0 | 0 | 0
0 |
2,885,000 | 0
18 | | | | Other Const - | | 4,050 | 73,350 | 0 | 9,150 | 0 | 0 | 0 | 0 | 86,550 | 1 | | | | Other Const - | | 41,715 | 755,505 | 0 | 94,245 | 0 | 0 | 0 | 0 | 891,465 | 6 | | | | Other Constr | ruction Sub-total | 180,765 | 3,273,855 | 0 | 408,395 | 0 | 0 | 0 | 0 | 3,863,015 | 24 | | | | OTHER CON | ISTRUCTION COSTS | 180,765 | 3,273,855 | 0 | 408,395 | 0 | 0 | 0 | 0 | 3,863,015 | 24 | | | | | - detailed design | 6,327 | 114,585 | 0 | 14,294 | 0 | 0 | 0 | 0 | 135,206 | 1 | | | | | - detailed design/Contingency | 1,898 | 34,375 | 0 | 4,288 | 0 | 0 | 0 | 0 | 40,562 | 0 | | | | | - general const. supervision
- quality assurance | 3,615
1 808 | 65,477
32,739 | 0 | 8,168
4,084 | 0 | 0 | 0 | 0 | 77,260
38,630 | 0 | | | | Other Eng | | 1,808
1,808 | 32,739
32,739 | 0 | 4,084
4,084 | 0 | 0 | 0 | 0 | 38,630
38,630 | 0 | | | | | - Residency Contingency | 2,169 | 39,286 | Ő | 4,901 | ő | ő | ő | Ö | 46,356 | 0 | | | | | ering Sub-total | 17,625 | 319,201 | 0 | 39,819 | 0 | 0 | 0 | 0 | 376,644 | 2 | | | | Total Other (| Const.& Eng.Costs | 198,390 | 3,593,056 | Minn | oad structure red
ual design; 2day l | abour built 0 | 0 | 0 | 0 | 4,239,659 | 26 | | | ==== | Harr-Pem_275 | M\SUMOFSUMS | ======== | =====O | nly structurally d | eficient bridges r | eplaced as single | e Tane ===== | ======================================= | ======= | | d Nov. 28, | | | | "Ontimistic" | | | | 30% ger | neral earthwork o | ontingencies | | | | Printed: 12/22/ | 2003 12:03 | 2 PM | Page 7 of 10 Page 8 of 10 Revised Nov. 28, 2003 Printed: 12/22/2003 12:02 PM Proj. No. 30133 | File: S
ucture Sy
(20
ACTIVI
CODE
Cond
Blk Est. | EST.DATE Oct. 1, 2003 ceptual Est. MAIN RD | SECTION 1
Km 10.0 -
Km 129.5
0
0
30000
0
30000 | SECTION 2
Km 129.5
Km 151.0
0
0
21500
0
21500 | SECTION 3
Km I51.0
Km I76.5
0
0
25500
0
25500 | SECTION 4
Km 176.5
Km 186.7
0
0
10500
0
10500 | Section 5
Km H0.0
Km H23.0
0
0
23000
0
23000 | Section 6
Km H23.0
Km H35.0
0
0
12000
0
12000 | Section 7
Km H35.0
Km H59.0
0
0
24000
0
24000 | Section 8
Km H59.0
Km H73.3
0
0
14000 MR
0 OR
14000 TR | SUMMARY
OF
SUMMARIES
ONLY
160500
0
160500 | Line
Cost
C/LM
160500 | Road Types 1. 2In Front 2. 2In Acc F 3. 4In Acc F 4.R4L-4L E 5.R2/3L-4L 6.Retr.4L-4 7.R4L-4LE) 8. New 4L F | |---|---|---|--|--|--|---|--|--|---|---|--------------------------------|--| | 3539 | DETAILED DESIGN from 3510,3520,3540,3550,3570 Geotech. En - detailed design Geotech. En - Contingency | 513,745
135,765
40,729
 | 419,316
94,280
28,284
541,880 | 555,720
148,834
44,650
749,204 | 213,785
56,596
16,979
287,359 | 808,317
186,062
55,818
1,050,197 | 434,008
103,028
30,909
 | 747,533
188,750
56,625
992,908 | 472,654
117,295
35,188
 | 4,165,077
1,030,610
309,183
5,504,870 | 26
6
2
3 | 0. New 4E I | | ==== =
6800 | RESIDENT ENGINEERING from 6810,6820,6840,6850,6860,6870 | 0 1,537,107 | 0
1,052,724 | 1,668,616 | 0 633,969 | 2,141,218 | 0
1,177,580 | 0
2,127,736 | 0
1,324,788 | 11,663,738 | ====== | | | T ==== = | TOTAL RESIDENT ENG. COSTS | 1,537,107

0
0 | 1,052,724
=========
0
0 | 1,668,616
======
0
0 | 633,969

0
0 | 2,141,218

0
0 | 1,177,580
 | 2,127,736

0
0 | 1,324,788
=======
0
0 | 11,663,738
==================================== | 73
===== | | | ==== = | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | CONSTRUCTION ENGINEERING & SUPERVISION CONTRACTUAL CONTINGENCY | 23,342,655
3,740,119
8,124,832
0 | 16,416,274
2,671,203
5,726,243
0 | 25,441,704
3,587,879
8,708,875
0 | 9,674,491
1,415,672
3,327,049
0 | 31,805,390
4,051,846
10,757,171
0 | 17,611,686
2,174,462
5,935,844
0 | 32,264,958
4,045,755
10,893,214
0 | 20,050,420
2,463,609
6,754,209
0 | 176,607,579
24,150,545
60,227,437
0 | 1100
150
375
0 | | | C | CONSTRUCTION COST TOTAL | 35,207,606 | 24,813,720 | 37,738,458 | 14,417,212 | 46,614,407 | 25,721,992 | 47,203,928 | 29,268,239 | 260,985,561 | 1626 | | Printed: 12/22/2003 12:02 PM ### *Infrastructure Systems Ltd.* Proj. No. 30133 #### Harrison Mills - Mt. Currie Development Road CONCEPTUAL ESTIMATE | CONCEPTUAL ESTIMATE | | | | | | | | | | | | | |--|---|---|--|--|---|---|---|--|---|---|--|--| | ACTIVITY CODE Conceptual Est. Blk Est. # 6.14B Version Oct.13, 200 | readsheets\Cost_Est\[Harr-
Harrison Mills-Mt. Currie
Two-Lane Dev't. Road
Conceptual Estimate
EST.DATE Oct. 1, 2003
MAIN RD
R2 DATE: Oct. 29, 2003
DESCRIPTION\TOTAL ROADS | SECTION 1
Km I0.0 -
Km I29.5
0
0
30000
0
30000 | SECTION 2
Km 129.5
Km 151.0
0
0
21500
0
21500 | SECTION 3
Km 151.0
Km 176.5
0
0
25500
0
25500 | SECTION 4
Km 176.5
Km 186.7
0
10500
0
10500 | Section 5
Km H0.0
Km H23.0
0
0
23000
0
23000 | Section 6
Km H23.0
Km H35.0
0
12000
0
12000 | Section 7
Km H35.0
Km H59.0
0
0
24000
0
24000 | Section 8
Km H59.0
Km H73.3
0
0
14000 MR
0 OR
14000 TR | SUMMARY
OF
SUMMARIES
ONLY
160500
0
160500 | Total Road Types Line 1. 2In Front Cost 2. 2In Acc F 3. 4In Acc F C/LM 4.R4L-4L E 5.R2/3L-4L 6.Retr.4L-4 160500 7.R4L-4LE) | | | 2062 Project Man.
2063 Project Man.
2061 Project Man. | PROJECT MANAGEMENT - office costs wages - office costs - expenses - printing costs - general ager Sub-total | 704,152
176,038
0
0
880,190 | 500,639
125,160
0
0
625,799 | 759,134
189,784
0
0
948,918 | 288,344
72,086
0
0
360,430 | 932,288
233,072
0
0
1,165,360 | 514,440
128,610
0
0
643,050 | 944,079
236,020
0
0
1,180,098 | 585,365
146,341
0
0
731,706 | 5,228,441
1,307,110
0
0
6,535,552 | 33
8
0
0
41 | | | 2010 Client 2012 Client 2030 Client 2011 Client Client Sub-to | - office costs wages
- office costs - expenses
- printing costs
- general
otal | 352,076
176,038
0
0
528,114 | 250,320
125,160
0
0
375,480 | 379,567
189,784
0
0
569,351 | 144,172
72,086
0
0
216,258 | 466,144
233,072
0
0
699,216 | 257,220
128,610
0
0
385,830 | 472,039
236,020
0
0
708,059 | 292,682
146,341
0
0
439,024 | 2,614,221
1,307,110
0
0
3,921,331 | 16
8
0
0
24 | | | 2072 Public Rel.2073 Public Rel.2071 Public Rel. | - wages & expenses - adv., media, displays - opening ceremonies - general ions Sub-total | 0
0
0
0
0 | 0
0
0
0
0 | 0
0
0
0
0 | 0
0
0
0
0 | 0
0
0
0 | 0
0
0
0
0 | 0
0
0
0
0 | 0
0
0
0
0 | 0
0
0
0
0 | 0
0
0
0
0 | | | 2040 Legal Costs
2041 Legal Costs
Legal Costs | - general | 35,208
0
35,208 | 25,032
0
25,032 | 37,957
0
37,957 | 14,417
0
14,417 | 46,614
0
46,614 | 25,722
0
25,722 | 47,204
0
47,204 | 29,268
0
29,268 | 261,422
0
261,422 | 2
0
2 | | | 2080 Insurance
2081 Insurance
Legal Costs | | 0
0
0 | | 2099 Project Mana | agement Contingency | 433,054 | 307,893 | 466,868 | 177,332 | 573,357 | 316,381 | 580,608 | 359,999 | 3,215,491 | 20 | | | | DJECT MANAGEMENT COSTS | 1,876,565 | 1,334,204 | 2,023,093 | 768,437
==================================== | 2,484,548 | 1,370,982 | 2,515,969 | 1,559,997 | 13,933,796
======= | 87
====== | | | | LAND
-Mrkt,ROW,Serv,Imp.V,Ease.C,T
Sub-total | 0
0
0 0 0 | | | 4030 Land(Code 4
4040 Land(Code 4
4050 Land(Code 4
4060 Land(Code 4
4070 Land(Code 4 | 4-Pro.Man,P.Tax,Util,Security
4-Not Used
4-Not
Used
4-Acq.F,M/Sal,TrvIV,Cntr.S,Appr. | 0
0
0
0
0
0 | 0
0
0
0
0
0 | 0
0
0
0
0
0 | 0
0
0
0
0
0
0 | 0
0
0
0
0
0 | 0
0
0
0
0
0 | 0
0
0
0
0
0
0 | 0
0
0
0
0
0
0 | 0
0
0
0
0
0
0 | 0
0
0
0
0
0
0 | | | | costs-sub-total | 0
0
0
0 | 0 0 0 0 | 0 0 0 0 0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0 0 0 | 0
0
0
0 | | | 4099 Land Conting | | 0 | 218,250 | 0

218,250 | 0
0 | 0 | 0
0 | 0
0 | 0
0 | 436,500 |
3 | | #### Infrastructure Systems Ltd. Proj. No. 30133 Harrison Mills - Mt. Currie **Development Road** ### **CONCEPTUAL ESTIMATE** | H:\projects\30133 | | | | | | | | | ı | | | | |---|--|---------------|---|---|---|---|---|---|------------|--|--------|--------------| | File: Sasquatch\Spreadsheets\Cost_Est\[Harr- | SECTION |)N 1 S | ECTION 2 | SECTION 3 | SECTION 4 | Section 5 | Section 6 | Section 7 | Section 8 | SUMMARY | Total | Road Types | | ucture Systems Ltd. Harrison Mills-Mt. Curi | | | Km 129.5 | Km I51.0 | Km 176.5 | Km H0.0 | Km H23.0 | Km H35.0 | Km H59.0 | OF | Line | 1. 2ln Front | | | | | | | | | | | | - | | | | (2003 Dollars) Two-Lane Dev't. Road | Km I2 | 9.5 | Km I51.0 | Km 176.5 | Km 186.7 | Km H23.0 | Km H35.0 | Km H59.0 | Km H73.3 | SUMMARIES | Cost | 2. 2ln Acc F | | ACTIVITY Conceptual Estimate | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ONLY | 0/1.84 | 3. 4ln Acc F | | CODE EST.DATE Oct. 1, 2003 | | • | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 400500 | C/LIVI | 4.R4L-4L E | | Conceptual Est. | MAIN RD 3000 | | 21500 | 25500 | 10500 | 23000 | 12000 | 24000 | 14000 MR | 160500 | | 5.R2/3L-4L | | | Oct. 29, 2003 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 OR | 0 | 400500 | 6.Retr.4L-4 | | Version Oct.13, 200 DESCRIPTION \TO | TAL ROADS 3 | 80000 | 21500 | 25500 | 10500 | 23000 | 12000 | 24000 | 14000 TR | 160500 | 160500 | 7.R4L-4LE> | | 9800 MANAGEMENT RESER |
o\/⊏ | Λ | | | | 0 | | 0 | 0 | | | 8. New 4L E | | MAN. RES planning | KVE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | MAN. RES preliminary design | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | MAN. RES preliminary design | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | MAN. RES grade construction | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | MAN. RES structural construction | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | MAN. RES structural construction | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | MAN. RES paving construction | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | MAN. RES roadside construction | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | MAN. RES other construction | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | MAN. RES project management | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | MAN. RES project management | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | MAN. RES detailed eng. | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | MAN. RES detailed eng. MAN. RES residency eng. | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | MAN. RES risk contingency | | U | U | U | U | U | U | U | U | U | U | | | TOTAL MANAGEMENT RESERVE | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | ==== ================================== | | ==== === | ======================================= | ======================================= | | ======================================= | | ======================================= | | =========== | ====== | | | TOTAL LESS ESCALATION | | | | | | | | | | | | | | FISCAL | | | | | | | | | | | | | | 9900 ESCALATION | | | | | | | | | | | | | | YEAR PROJECTED ESCA | LATION | | | | | | | | | | | | | 2002-2003 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 2003 - 2004 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 2004-2005 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 2005-2006 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 2006-2007 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 2007-2008 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 2008-2009 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 2009-2010 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 2010-2011 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | | | TOTAL ESCALATION | | 0
 | 0
===== = | 0
==================================== | 0
==================================== | 0 | 0
==================================== | 0 | 0 | 0 | 0 | | | PART 2 SUMMARY NON-CONSTR | | ==== ===
0 |
0 | 0 | 0 | | 0 | 0 | 0 | | | | | Non-Construction | | 3,512 | 1,244,561 | 1,774,475 | 591,106 | 1,911,191 | 1,054,602 | 1,935,361 | 1,199,998 | 11,154,805 | 70 | | | Non-Const. Contingency | | 3,054 | 307,893 | 466,868 | 177,332 | 573,357 | 316,381 | 580,608 | 359,999 | 3,215,491 | 20 | | | | | · | | | | | | | | | | | | TOTAL NON-CONSTRU | JCTION COS 1,870 | 6,565 | 1,552,454 | 2,241,343 | 768,437 | 2,484,548 | 1,370,982 | 2,515,969 | 1,559,997 | 14,370,296 | 90 | | | DIVISION TOTAL FOR ROAD TYPE | ====================================== | ==== ===
4 | ======= =
26,366,174 | 39,979,801 | ======== :
15,185,649 | 49,098,955 | 27,092,975 | 49,719,897 | 30,828,236 | ====================================== | 1716 | | | DIVIDION TOTAL FOR ROAD TIPE | . 37,004 | T, 1 / 1 | 20,300,174 | 33,313,001 | 13,103,049 | +5,050,533 | 21,032,373 | -5,115,091 | 30,020,230 | 213,333,031 | 17 10 | |