Molecular methods in forestry: From seeds to trees

Connections Through SeedSurrey, BC17 October, 2018

Jon Degner

PhD candidate Centre for Forest Conservation Genetics University of British Columbia jonathan.degner@ubc.ca

2

Outline

- The state of molecular tools
- An example from:
 - Seeds: pedigree reconstruction
 - Seedlings: genomic selection
 - Trees: understanding natural adaptation
- The challenge of conifer genomics

The state of molecular tools

- All biological systems are machines
- Molecular tools let us see "under the hood"

Phenotype

• Looks like a baby tree

Genotype

- Doesn't like the cold
- Will grow tall
- Likes jazz music

Phenotype

• Looks like a baby tree

Genotype

- Disease-resistant
- Sets bud early
- Enjoys long walks on the beach

Phenotype

• Looks like a baby tree

Genotype

- Very cold-hearty
- Prone to lammas
- Hates broccoli

Phenotype

• Looks like a baby tree

Genotype

- Will grow short and fat
- flushes late
- Doesn't play well with others

The state of molecular tools

to energian Generality

- 1970s 2000s: Genetics
 - Neutral markers
 - 1 few
 - Time consuming
- 2010s present: Genomics
 - Markers neutral or under natural selection
 - Causal markers, or nearby
 - 1,000s 1,000,000s
 - Fast!

Cost per Raw Megabase of DNA Sequence

• The power of molecular tools

- An example from:
 - Seeds: pedigree reconstruction
 - Seedlings: genomic selection
 - Trees: understanding natural adaptation
- The challenge of conifer genomics

consolution Genetics

Pedigree reconstruction

• Using genetic markers to reconstruct parentage from bulk seed

Molecular tools: Seeds

Pedigree reconstruction

• Using genetic markers to reconstruct parentage from bulk seed

	80% Gametic Contribution			Gene Flow	Overall
Year	Q (%)	ර (%)	♀+♂ (%)	(%)	Selfing (%)
2005 ^c	23	45	37	10	15
2007 ^d	39	55	52	13	12
2008 ^e	57	59	64	28	16
2009 ^f	39	45	49	18	17

Modified from Song et al. (2018) Sci. Rep. 8:11593

Genomic selection

 Using marker-trait associations to accelerate breeding

field trial

progeny screening

Molecular tools: Seedlings

Genomic selection

• Using marker-trait associations to accelerate breeding

Predicted breeding value

Modified from Bartholomé et al. (2016) BMC Genomics 17: 604

Advances in genomics of plant genetic resources **10**

Molecular tools: Trees

Understanding natural adaptation

 Using marker-environment associations to infer natural selection

Natural populations

Understanding natural adaptation

Using marker-environment associations
 to infer natural selection

Aridity-related climate variables

Frost-related climate variables

Modified from Lotterhos et al. (In Press) Gen. Biol.

- The power of molecular tools
- An example from:
 - Seeds: pedigree reconstruction
 - Seedlings: genomic selection
 - Trees: understanding natural adaptation
- The challenge of conifer genomics

The challenge of conifer genomics

- Genomic methods are "simple" if your organism has:
 A small genome
 - A complete reference genome
 - Standardized lab methods
 - No sex chromosomes
- Conifer genomics is... complicated.

6 ACTORECTED AT TAGES CONTROL TARATAGE DESCRIPTION OF THE DESC TRATEGOLIES TO STATE LESTACISTAGENERATION CONCENTRATION CONCENTRA SERVICE AND A DESCRIPTION OF A DESCRIPTI

Interior spruce 2000 pages

Molecular methods are developing rapidly

• There is potential at every stage of reforestation

• Molecular methods for conifers are difficult, but improving.

The challenge of conifer genomics

- Conifer genomics is... complicated.
- Genomic methods are easy if your organism has:
 A small genome
 A complete reference genome
 Standardized lab methods
 No sex chromosomes

Human reference genome

- 300 pages
- 23 chapters
- Complete sentences
- Words spelled correctly

Spruce reference genome

- 5 million scraps of paper
- 0-50 words per scrap

 Molecular methods are developing rapidly, both in scale and accessibility

• There is potential at every stage of reforestation

Molecular methods for conifers are difficult, but improving