

East Porpoise Bay Road Improvements Project 13004-0001 Geotechnical Design for Retaining Walls

PRESENTED TO British Columbia Ministry Transportation and Infrastructure

JANUARY 26, 2024 ISSUED FOR USE FILE: 704-TRN.PAVE03225-08

> Tetra Tech Canada Inc. Suite 1000 – 10th Floor, 885 Dunsmuir Street Vancouver, BC V6C 1N5 CANADA Tel 604.685.0275 Fax 604.684.6241

This page intentionally left blank.

TABLE OF CONTENTS

1.0	INTR	ODUCTION		1
2.0	SITE	DESCRIPTIC	N AND BACKGROUND	1
3.0	SUB	SURFACE EX	PLORATION	2
4.0	SOIL		DWATER CONDITIONS	2
	4.1	Surficial Geolo	gy	2
	4.2	Soil Conditions	3	3
	4.3		Conditions	
	4.4		derations	
	4.5	Engineering Pa	arameters Used	4
5.0	SITE	CLASSIFICA	TION FOR DESIGN	4
~ ~				-
6.0			INING WALLS – GEOTECHNICAL DESIGN	
	6.1	-	Design	
	6.2	-	e Considerations	
	6.3		ing Wall Stability	
	C 4	-	id Pullout Resistance	
	6.4	•	/	
		- 5	n Criteria	
		-	Geometry chnical Material Parameters	
			ty Analysis Results	
			ic Displacement Estimate	
	6.5		ability	
	6.6	•	ity	
	6.7		siderations and Recommendations	
7.0	LIMI	ATIONS OF	REPORT	11
8.0	CLO	SURE		12
REFI	EREN	CES		13

LIST OF TABLES IN TEXT

Table 3-1:	Summary of Boreholes Completed	2
	Spectral Accelerations and PGA for Project Location and Site Class E (from 2020 NBCC	
	Seismic Hazard Calculator)	4
Table 4-2:	Summary of Engineering Properties	4
Table 6-1:	Evaluation of Climate Change Impacted Phreatic Surface	6
Table 6-2:	Design Criteria for Slope Stability under Static Loading	8
Table 6-3:	Results of Stability Modelling	9
Table 6-4:	Seismic Displacement Estimates and Input Parameters	10

APPENDIX SECTIONS

FIGURES

Figure 1 Borehole Location Plan

APPENDICES

- Appendix A Tetra Tech's Limitations on the Use of this Document
- Appendix B SNC Lavalin Inc. Drawings
- Appendix C Borehole Logs
- Appendix D Laboratory Testing Results
- Appendix E Climate Change Design Criteria
- Appendix F Stability Modelling Results

1.0 INTRODUCTION

Tetra Tech Canada Inc. (Tetra Tech) was retained by the British Columbia (BC) Ministry of Transportation and Infrastructure (MoTI) to carry out geotechnical analysis and design for three retaining walls along the west side of the Porpoise Bay Road / Sechelt Inlet Road embankment along a roughly 700 m stretch from Xenichen Avenue and Delta Avenue, in the Sechelt Band Lands. Road upgrades proposed in this location include expansion of the road embankment to the west to accommodate a road realignment and a proposed sidewalk. Several small retaining walls (less than 5 m in height) are proposed along portions of the alignment, where there is insufficient room in the right-of-way (ROW) to accommodate embankment expansion.

The purpose of our assessment was to review the wall designs for conformance with the S6-19 Canadian Highway Bridge Design Code (CHDBC; CSA 2019) and the MoTI (2022) Bridge Standards and Procedures Manual Supplement to the S6-19 CHDBC (referred to herein as the S6-19 Supplement). Design of the road layout, embankments, pavement and drainage are outside of this scope of work; environmental and forestry related aspects of the project are also outside of this scope of work.

This document provides a summary of the project background, subsurface explorations completed to date, inferred soil conditions, and stability analysis results and design recommendations for the retaining walls.

The use of this document is subject to the Limitations on the Use of this Document, attached in Appendix A.

2.0 SITE DESCRIPTION AND BACKGROUND

The project site is located along an approximately 700 m stretch of East Porpoise Bay Road / Sechelt Inlet Road from Xenichen Avenue and Delta Road. The surrounding area outside of the MoTI ROW is part of the Sechelt Band Reserve No. 2.

In the project area, the road generally runs north-south. The topography in the area slopes gently down from east to west, though a noticeable drop-off is present on the west side of the road embankment toward Sechelt Inlet. The topography along the road alignment is gently undulating along the southern 400 m of the proposed improvement corridor, then climbs about 8 m at a grade of about 6.2% to a ridge, which begins to drop off again at the northern end of the project corridor. Land use is variable, consisting primarily of residential and commercial / light industrial, with a small amount of parkland on the west side of the road, south of Schetxwen Road.

The existing road along the improvement corridor consists of two lanes (one in each direction), with relatively narrow paved shoulders, and grass, dirt or parking areas beyond those. There are currently no sidewalks. Two force mains (water and sanitary) run under the existing road.

The proposed road improvements include installation of sidewalks and bike lanes on both sides of the road. These improvements will require the road centerline to shift to the west from its current alignment and will necessitate small retaining walls along several sections. Design drawings prepared by Atkins Réalis / SNC Lavalin Inc. (SNC) showing the proposed improvement, road realignment and retaining wall locations are included in Appendix B. Stations from these drawings will be referenced in this document to describe locations within the improvement corridor.

3.0 SUBSURFACE EXPLORATION

Tetra Tech carried out a subsurface exploration program in May 2022. A total of nine boreholes were drilled using solid stem augers to depths ranging from 1.5 m to 5.3 m. Standard Penetration Tests (SPTs) were carried out in three of the nine boreholes. On completion of drilling, groundwater conditions were recorded in the boreholes, but no groundwater monitoring wells or piezometers were installed in the boreholes. A summary of the boreholes is provided in Table 3-1. The borehole locations are also shown on Figure 1

Barahala ID	Approximate UTM	Coordinates 10U ⁽¹⁾	Collar Elevation	Depth	Groundwater	
Borehole ID	Northing Easting		(masl) ⁽²⁾	(m)	Conditions	
BH22-01	5481270.54	445552.63	10.7	1.52	None observed	
BH22-02	5481463.26	445585.09	11.6	3.05	None observed	
BH22-03	5481572.48	445601.38	17.2	1.52	None observed	
BH22-04	5481777.39	445629.87	17.4	4.57	None observed	
BH22-05	5481674.40	445613.59	18.7	1.52	None observed	
BH22-06	5481366.96	445566.99	9.7	3.05	None observed	
BH22-07	5481193.70	445490.17	9.2	3.05	None observed	
BH22-08	5481119.43	445431.31	10.0	5.33	None observed	
BH22-09	5481776.06	445629.28	17.4	5.33	None observed	

Table 3-1: Summary of Boreholes Completed

Notes:

1) Approximate coordinates (+/- 5 m) using a hand-held GPS unit.

2) Boreholes not surveyed. Elevations estimated based on existing road profiles provided by SNC.

Grab samples of the subsurface material were collected during the exploration program, and returned to Tetra Tech's laboratory in Nanaimo, BC. Index testing, including moisture content and particle size distribution tests, were carried out on select samples.

Additional details on the subsurface exploration program are provided in Tetra Tech's (2022) Pavement Rehabilitation Assessment Report. Borehole logs are provided in Appendix C for reference. Results from relevant laboratory testing are provided in Appendix D.

4.0 SOIL AND GROUNDWATER CONDITIONS

4.1 Surficial Geology

McCammon (1977) completed surficial geology reconnaissance of the Sunshine Coast in 1974 and 1975 to locate sand and gravel deposits. The project area is located in what is described as the Georgia Lowland. In this area, below an elevation of about 300 m, the ground is "mantled with a variety of unconsolidated materials of glacial, glaciomarine, and fluvial origin".

The project site appears to straddle two main deposits: Capilano fluvial deposits and Salish sediments, which are described in greater detail below.

• "Capilano fluvial deposits are composed of sands and gravels that form fans and deltas left by streams above present sea level up to about the 180-metre contour."

 "Salish sediments are materials now being deposited or that been deposited since sea level became more or less stabilized at its present position. These include silt, sand, and gravel that are found in modern stream channels and deltas; sand and gravel on modern beaches; and bog deposits."

Given that East Porpoise Bay Road is typically about 10 m to 15 m above sea level, on a small plateau-like feature, it is likely that the Capilano fluvial deposits dominate the site.

4.2 Soil Conditions

The soil conditions encountered in the boreholes drilled in May 2022 generally consisted of the following:

- ROAD BASE / SUBBASE, consisting of brown sand and gravel, with trace to some silt. The material was
 described as dry to damp and was compact to dense, with N-values from two to three reliable SPTs in this layer
 ranging from 21 to 28. This layer ranged in depth from 1.2 m to 2.3 m.
- SAND (inferred native), light brown, some gravel to gravelly, with trace silt. The material was described as
 damp and was loose to dense, with compaction generally improving with depth. N-values from SPTs carried
 out in this material ranged from 9 to 35. Based on compaction levels, portions of this material are potentially
 liquefiable, if saturated. Boreholes did not penetrate beyond this material (past 5.3 m).

The nature of the inferred native sand corresponds well with the Capilano fluvial deposits, and we have inferred that the road is founded on these materials. However, given the proximity of the road to the shore and the fact that the ground drops off relatively quickly towards the bay, it is possible that the subsurface west of, and below, the current road alignment is made up of looser Salish sediments. The upper, looser native sand may also represent a (relatively) thin layer of Salish sediment overlying the Capilano fluvial deposits. As such, our geotechnical analyses have allowed for the presence of loose Salish sediments (sand) below the road and overlying the compact Capilano gravelly sand deposits under the road subbase.

4.3 Groundwater Conditions

No groundwater monitoring instrumentation was installed as part of the geotechnical exploration. No groundwater was observed during or following drilling, and recovered soil was typically described as dry or damp.

Given the site's proximity to Porpoise Bay, it is likely that the groundwater elevation is tidally influenced. Review of tidal data since 2020 obtained from the Government of Canada (2023) for the Porpoise Bay station indicates that the average tidal elevation in Porpoise Bay was approximately 1.8 m above sea level (masl), with maximum and minimum elevations of approximately 3 m and 0.1 m, respectively.

4.4 Seismic Considerations

No shear wave velocity testing was completed during the geotechnical exploration. Based on the types of materials encountered in the boreholes and the N_{60} values obtained from SPTs, this site would fall under Site Class D or Site Class E, depending on whether or not soil stiffness substantially increased with depth. We have conservatively assumed Site Class E. There is potential for liquefaction in some of the shallow loose sands if they are below the water table; however, based on the inferred groundwater levels, these are not below the water table.

Table 4-1 outlines the 5% damped spectral accelerations, as well as the peak ground acceleration (PGA), for the design seismic events (as discussed in Section 5.0) for Site Class E at the project location, obtained from the 2020 National Building Code of Canada (NBCC) Seismic Hazard Calculator, operated by Natural Resources Canada (2021).

Table 4-1:Spectral Accelerations and PGA for Project Location and Site Class E
(from 2020 NBCC Seismic Hazard Calculator)

Return Period	S _a (0.2)	S _a (0.5)	S _a (1.0)	S _a (2.0)	S _a (5.0)	S _a (10.0)	PGA
475 years	0.602	0.638	0.449	0.240	0.0579	0.0186	0.273

4.5 Engineering Parameters Used

A summary of the engineering parameters for the subsurface are summarized in Table 4-2. These parameters have been assigned based on SPT data collected during the May 2022 exploration program, published correlations and engineering experience with similar materials.

Table 4-2: Summary of Engineering Properties

Soil Unit	Unit Weight (kN/m^3)	Effective Cohesion (kPa)	Effective Friction Angle (°)
Road Base	21	0	38
Road Subbase	20	0	35
Bridge End Fill	20	0	35
Loose Native Sand	18.5	0	34.5 (for σ' _v < 9 kPa)
			30 (for σ' _v > 9 kPa)
Compact Native Sand	19	0	34.5 (for σ' _v < 9 kPa)
			33 (for σ' _v > 9 kPa)

It is noted that bilinear failure envelopes were assigned to the loose and compact sand to account for the higher peak friction angle observed for sands of the same relative density at lower effective overburden stresses. The shear strength assigned to the bridge end fill (BEF) is considered conservative. However, if no triaxial or direct shear testing has been completed on the backfill for a mechanically stabilized earth (MSE) retaining wall, the CHBDC S6-19 limits the angle of friction for backfill to 35° for computation of horizontal forces within a reinforced soil mass (as is required for this design). For consistency, an angle of friction of 35° was used throughout the design for BEF.

5.0 SITE CLASSIFICATION FOR DESIGN

East Porpoise Bay Road is not considered a major or lifeline route. As such, the road is classified as "other" for the purpose of design under the CHBDC S6-19 (CSA, 2019). The seismic ground motion return period for a structure less than 6 m high on an "other" road is 1/475 years.

The road consequence is classified as "typical" consequence, based on guidance provided by MoTI representatives.

The level of understanding at the site is considered "typical", in keeping with the benchmarks outlined in Table 6.2c of the MoTI (2022) Supplement to the Canadian Highway Bridge Design Code (CHDBC; 2019).

The site is considered to be in seismic performance category (SPC) 3, based on the expected ground motions (see Section 4.4) and the requirements outlined in Table 4.10 of the CHBDC S6-19 (CSA, 2019).

6.0 PROPOSED RETAINING WALLS – GEOTECHNICAL DESIGN

Three MSE retaining walls are proposed along the stretch of road upgrades as follows:

- Wall 1: running from stations 101+80 to 102+35, with a maximum height of 3 m (four concrete blocks)
- Wall 2: running from stations 102+90 to 103+50, with a maximum height of 4.5 m (six concrete blocks)
- Wall 3: running from stations 104+80 to 105+10, with a maximum height of 3 m (four concrete blocks)

The design of these walls, including design criteria and analyses, and climate change considerations, is described in the following sections.

6.1 Retaining Wall Design

The retaining walls will be constructed using geogrid with concrete locking block facing. Concrete blocks will be 0.75 m in height and depth, and 1.5 m in length, and will be topped with a pedestrian rail. The walls with have a 10° batter, as shown in the drawings in Appendix B. The concrete blocks will be found on 300 mm levelling pads of well graded base (WGB) fill; for Wall 1 the foundation will be subexcavated 450 mm below the levelling pad and backfilled with compacted BEF, to meet global stability requirements. Geogrid will be cast into the concrete blocks to provide anchored connections in accordance with Clause 6.19.2.1 of the MoTI Supplement to the CHBDC S6-19 (MoTI, 2022). The geogrid will be connected at the mid-height of each concrete block layer, as shown in the drawings in Appendix B.

Exposed geogrid lengths (i.e., measured from the back of the concrete blocks) are 2.4 m for Wall 1 and Wall 3, and 3.15 m for Wall 2, measured from the back of the concrete blocks. The geogrid lengths were selected to meet the criteria outlined below:

- Minimum effective embedment length (Le) of 1.0 m, per Clause 6.19.10.3.2 of the CHBDC S6-19 (CSA, 2019)
- Minimum geogrid length equal to 70% of the wall height, per Clauses 6.19.3.1 and 6.19.3.2 of the CHBDC S6-19 (CSA, 2019)
- Minimum geogrid length of 2.4 m, in keeping with standard practice

The geogrid lengths selected for design were checked against applicable failure mechanisms (limit states) and were found to be satisfactory, as discussed in Section 6.3.

The wall will be backfilled with BEF. The BEF will be extended laterally to the back of the geogrid and to a depth consistent with the base of the levelling pad (or 450 mm below the levelling pad at Wall 1). The limits of the BEF backfill are shown in the drawings in Appendix B. The BEF is expected to be well-draining and will be placed directly against the concrete blocks. A geotextile-wrapped, perforated PVC drain pipe is included at the base of the wall or below, depending on location, as shown in the drawings in Appendix B. It is expected that temporary shoring will be required to protect the existing district of Sechelt force mains located within about 3 m to 5 m of the wall under the road.

In accordance with Clause 6.19.3.3 of the CHBDC S6-19 (CSA, 2019), a minimum embedment of 0.6 m and a minimum horizontal bench of 1 m is provided along the front face of the walls.

6.2 Climate Change Considerations

In accordance with the MoTI (2019a) T-04/19 circular, the impacts of the climate change on the design must be considered, appropriate to the scale of the project. For this project, the impacts of climate change on the geotechnical stability of the proposed retaining walls are generally limited to increases in piezometric levels from sea level rise (which will affect ambient piezometric levels) and from storm/runoff infiltration (which will only impact piezometric levels temporarily), both of which negatively impact stability.

Sea level rise has been assumed to increase groundwater levels by 1.0 m, based on guidance from the BC Ministry of Environment and Climate Change Strategy which indicated that sea levels may rise to this level by the year 2100 (Sunshine Coast Regional District, 2021).

It is estimated that infiltration from a climate change impacted storm event would result in an approximate increase in groundwater levels up to 0.5 m. This is based on the following:

- Information provided by the IDF_CC Tool, Version 6.5 (Simonovic et al., 2015) to the year 2100, which indicates
 that a 100-year return period storm event, corrected for climate change, would result in 119 mm of rainfall over
 24 hours. The IDF_CC Tool does not provide a climate change corrected rainfall value for the 100-year return
 period storm for a 48-hour period, so we have conservatively doubled the 24-hour rainfall (to 238 mm) and used
 this value in the design.
- Approximate runoff coefficient of 0.5 (consistent with terrain with variable forest, residential and commercial land use and rolling hills, per the MoTI (2019b) Supplement to TAC Geometric Design Guide) with no evapotranspiration; and
- Approximate soil porosity of 0.25 to 0.60.

The changes to the piezometric levels that we have adopted for evaluation of climate change impact on stability under various loading conditions are summarized in Table 6-1 below.

Loading	Increase in Phreatic Surface Elevation	Comment
Static	1.5 m	Considers both increase in groundwater table due to sea level rise and a climate change corrected storm event.
Seismic	1.0 m	Considers only increase due to sea level rise, as the likelihood of a 100-year return period storm event occurring concurrently with a with a 475-year return period earthquake is negligible.

Table 6-1: Evaluation of Climate Change Impacted Phreatic Surface

Further discussion of climate change impacts on the geotechnical design is provided in Appendix E.

6.3 Internal Retaining Wall Stability

Internal stability of the MSE walls was evaluated using load resistance factored design (LRFD) in accordance with the CHBDC S6-19 (CGS, 2019). Internal stability was checked for serviceability limit state (SLS) and ultimate limit state (ULS) loading conditions. Resistance factors were assigned based on a "typical" consequence structure and "typical" degree of understanding, as discussed in Section 5.0. Load factors and combinations were used as specified in Tables 3.1 to 3.3 of the CHBDC S6-19 (CGS, 2019).

Maximum soil reinforcement loads were evaluated using the simplified method, in accordance with Clause 6.19.10.2.2 of the CHBDC S6-19 (CGS, 2019), using the unit weight and friction angles for BEF outlined in Section 4.5. Additional reinforcement loads included:

- Live load surcharge of 16 kPa, equivalent to a fill height of 0.8 m, in accordance with Clause 6.12.5 of the CHBDC S6-19 (CGS, 2019). Live loading was omitted from seismic loading consideration.
- Horizontal compaction load, corresponding to light compaction, varying from 12 kPa at surface to 0 kPa at 1.7 m (and below), in accordance with Clause 6.12.3 of the CHBDC S6-19 (CGS, 2019).

Active earth pressure coefficients of 0.271 and 0.495 were used for static and seismic analyses, respectively, based on Rankine theory (for static loading) and Mononobe-Okabe method (for seismic loading), as outlined in the Canadian Foundation Engineering Manual (CFEM; CGS, 2006).

Hydrostatic pressure was assumed to be negligible, as the prevailing groundwater table is below the base elevation of the retaining walls, and the wall backfill will be BEF, which is well draining.

Based on the above loading, a maximum factored tensile load of 30.6 kN/m is expected.

Geogrid with an ultimate tensile or juncture strength greater than 150 kN/m should be used. Reduction factors for installation damage, creep and durability should specified by the manufacturer and should not exceed the following:

- Installation damage reduction factor (RFID) 1.3
- Creep reduction factor (RFCR) 2.7
- Durability reduction factor (RFD) 1.3

Geogrid with higher reduction factor(s) recommended by the manufacturer may be used, if discussed and approved with the project's geotechnical engineer. Larger manufacturer recommended reduction factors will increase minimum required tensile or juncture strength.

Concrete block face units should be interlocking, and tension should be applied in the geogrid during construction to prevent bulging. Geogrid should be embedded at least 0.375 m into the concrete blocks.

6.3.1 Geogrid Pullout Resistance

Pullout resistance for the geogrid at each of the sections varies depending on number of geogrid layers and geogrid lengths. Pullout resistance was evaluated using the following formula in accordance with CHBDC S6-19 (CGS, 2019) guidance:

$$P_{ULT} = L_e F^* \alpha \sigma_v C R_c$$

Where:

P_{ULT} = Pullout Resistance

 L_e = effective embedment length, based on Figure 6.18 of CHDBC (2019)

 $F^* = 0.67^* \tan \Phi'$ (where $\Phi' =$ effective friction angle of the backfill)

 α = scale effect correction factor, equal 0.8 for geogrids (CHDBC, 2019)

 σ_v = vertical effective stress

C = surface area geometry factor, equal to 2 for strip or grid reinforcement (CHDBC, 2019)

 R_c = reinforcement coverage ratio, equal to 1 where geogrid is continuous along the wall (CHDBC, 2019), which is the assumed configuration for the walls considered herein.

Factored pullout resistance was checked against factored horizontal loading and found to be adequate for the minimum lengths of geogrid specified for each wall (2.4 m for Wall 1 and Wall 3, and 3.15 m for Wall 2). The specified geogrid length also met the minimum L_e requirement of 1.0 m.

6.4 Global Stability

Stability was checked at the locations along the walls where the walls are highest, as well as the locations where the slopes below the walls are steepest; this included the following stations:

- 102+00 (Wall 1)
- 102+30 (Wall 1)
- 103+00 (Wall 2)
- 103+20 (Wall 2)
- 104+80 (Wall 3)
- 104+90 (Wall 3)

Stability was evaluated under static and pseudo-static conditions. The stability analyses were carried out using the commercial 2D modelling software, SLOPE/W (GeoSlope International Ltd., 2021), which uses limit equilibrium analysis to calculate an overall Factor of Safety (FoS) for the slope. For this study, the Morgenstern-Price method of slices was used to compute the FoS, which satisfies both force and moment equilibrium.

6.4.1 Design Criteria

The proposed design criteria for slope stability are based on criteria set out in the S6-19 Supplement (MoTI, 2022), for embankments and geotechnical systems.

Design criteria for slope stability under static loading are summarized in Table 6-2.

Table 6-2: Design Criteria for Slope Stability under Static Loading

Item	Minimum FoS
Overall global stability - static loading	1.54
Stability of slope below wall – static loading	1.54

Notes:

FoS = Factor of Safety

(1) Based on Table 6.2b of MoTI (2022) Supplement for a "typical" understanding and "typical" consequence site.

Seismic stability and displacement criteria were developed based on the S6-19 Supplement (MoTI 2022) requirement, Clause 6.14.2.3, which indicates that for geotechnical systems outside of a bridge influence zone and along roads not considered lifeline or major routes, a minimum of 50% of the travelling lanes must be able to be restored for use within one month following an earthquake with a 475-year return period (i.e., 10% probability of exceedance in 50 years). For these types of systems, the MoTI (2022) S6-19 Supplement indicates that a limit equilibrium pseudo-static analysis of the embankment must be undertaken, using minimum horizontal and vertical seismic coefficient of no less than half the PGA. Where the pseudo-static analyses do not provide a minimum FoS of 1.3, either a simplified displacement-based or a rigorous dynamic analysis must be undertaken; however, no guidance on limits on displacement are provided.

Consistent with previous projects similar to this one completed for the MoTI, an approximate seismic displacement limit of 300 mm following a 1 in 475-year return period earthquake was proposed. This was considered sufficiently low to be able to restore functionality of 50% of the lanes within one month.

6.4.2 Model Geometry

The subsurface geometry used to assess stability was based on regional geology information and the conditions encountered in boreholes BH22-01 to BH22-09, advanced in May 2022 by Tetra Tech . The existing and proposed ground geometry was obtained from cross-section drawings provided by SNC (included in Appendix B), and supplemented with LiDAR BC data, where the existing ground survey provided by SNC did not extend sufficiently far. The subsurface model geometry is shown with the results of the stability analyses in Appendix F.

The S6-19 Supplement (MoTI, 2022) does not provide guidance on the groundwater conditions to be used in stability analyses. As discussed in Section 4.3, groundwater was not encountered during drilling and is assumed to be below the lowest drilling level. We have assumed that current ambient groundwater elevation is at about 3 masl, as previously discussed, and applied climate change corrections to the groundwater elevations as discussed in Section 6.2.

6.4.3 Geotechnical Material Parameters

Soil parameters used in the models are discussed in Section 4.5. All soil materials were modelled using a Mohr-Coulomb or Bilinear failure envelope. Concrete blocks were modelled as high strength material, with a unit weight of 24 kN/m³.

Geogrid reinforcement was modelled as a geosynthetic with a specified pullout resistance and tensile capacity for different wall heights (3, 4 and 6 block) represented by the critical sections. Pullout resistance and tensile capacity specific to each wall height were calculated based on the loads and resistance factors outlined in Section 6.3. Specified pullout resistance and tensile capacity are included with the results of the stability analyses in the figures in Appendix F.

6.4.4 Stability Analysis Results

The results of the stability analyses for each of the walls are shown on Figures F1 to F23 in Appendix F and summarized in Table 6-3.

Leastion	Leeding	Torget EoS	Calcu	lated FoS
Location	Loading	Target FoS	Global	Lower Slope
Wall 1 – Station 102+00	Static	1.54	1.65	2.32
Wall 1 – Station 102+00	Seismic	1.3	1.30	1.64
Wall 1 – Station 102+30	Static	1.54	1.93	1.62
Wall 1 – Station 102+30	Seismic	1.3	1.43	1.17
Wall 2 – Station 103+00	Static	1.54	1.56	1.68
Wall 2 – Station 103+00	Seismic	1.3	1.29	1.20
Wall 2 – Station 103+20	Static	1.54	1.57	3.01
Wall 2 – Station 103+20	Seismic	1.3	1.30	1.83
Wall 3 – Station 104+80	Static	1.54	1.60	1.54
Wall 3 – Station 104+80	Seismic	1.3	1.22	1.12
Wall 3 – Station 104+90	Static	1.54	2.00	N/A ⁽¹⁾
Wall 3 – Station 104+90	Seismic	1.3	1.57	N/A ⁽¹⁾

Table 6-3: Results of Stability Modelling

Notes:

FoS shown in red indicates locations where target FoS not met.

1) No slope in front of wall; area is flat.

As shown, global stability meets the target FoS under static loading conditions for all locations. However, the target FoS for pseudo-static loading is not met at several locations. As such, a simplified displacement-based approach was used to estimate displacements resulting from the design seismic event at these locations. This is described in the following section.

6.4.5 Seismic Displacement Estimate

Seismic-induced displacements were estimated using the simplified, probabilistic, empirical methods outlined by Bray and Travasarou (2007) for crustal/intraslab earthquakes and Bray et al. (2018) for subduction earthquakes. The methodology involves calculating the estimated seismic displacement using four main input parameters:

- Yield Coefficient (ky) which was evaluated for each of the sliding masses using GeoStudio's SLOPE/W (GEOSLOPE International Ltd., 2021).
- Initial Fundamental Period (Ts) of the sliding mass which is the ratio of four times the estimated height (H) of the sliding mass under yield conditions to the weighted average shear wave velocity (Vs) of the sliding mass, which was estimated for each material type based on SPT N-values.
- Moment Magnitude (Mw) which was inferred to be 7.0 for crustal/intraslab earthquakes and 9.0 for subduction earthquakes.
- Spectral Acceleration for the degraded period (Sa(1.5Ts)) which was extrapolated on a semi-log scale from the 5%-damped spectral accelerations obtained from the NBCC 2020 (Natural Resources Canada, 2021), provided in Table 4-3 in Section 4.4.

Seismic-induced displacements were estimated at critical sections where FoS under pseudo-static analyses did not meet the target FoS of 1.3 (see Section 6.4.4). A summary of the input parameters used at each of the sections to calculate displacements, along with the estimated displacement, is provided in Table 6-4.

Parameter	Station 102+30 (Lower Slope)	Station 103+00 (Global)	Station 103+00 (Lower Slope)	Station 104+80 (Global)	Station 104+80 (Lower Slope)
Yield Coefficient (ky)	0.208g	0.295g	0.225g	0.255g	0.194g
Height of Sliding Mass (H) ⁽¹⁾	0.5 m	4.6 m	0.7 m	3.1 m	0.75 m
Average Shear Wave Velocity of Sliding Mass (V _s)	100 m/s	220 m/s	100 m/s	189 m/s	100 m/s
Initial Fundamental Period (T _s)	0.02 s	0.11 s	0.03 s	0.07 s	0.03 s
Moment Magnitude (M _w) ⁽²⁾	7.0 / 9.0	7.0 / 9.0	7.0 / 9.0	7.0 / 9.0	7.0 / 9.0
Spectral Acceleration at the Degraded Period (Sa(1.5Ts))	0.53g	0.59g	0.54g	0.565g	0.545g
Estimated Seismic Displacement ⁽²⁾	62 mm	11 mm	53 mm	18 mm	84 mm

Table 6-4: Seismic Displacement Estimates and Input Parameters

Notes:

(1) Yielded sliding masses shown on Figures F9, F12, F15, F18, F24 and F27

(2) Displacements calculated for both crustal/intraslab earthquakes with M_w=7.0 and subduction earthquakes with M_w=9.0. Only the larger of the two calculated displacements are reported (generated by the crustal/intraslab earthquake for all cases).

6.5 Compound Stability

Compound stability of the wall was checked using the same commercial 2D modelling software (SLOPE/W; GeoSlope International Ltd., 2021), and method (limit equilibrium, Morgenstern-Price method of slices) as was used to check global stability. The same design criteria were applied to compound stability as described in Section 6.4.1. Results of the compound stability assessment found that FoS's were higher than for global stability for all cases. As such, the S6-19 CHBDC (CSA, 2019) requirements for compound stability are considered to be met.

6.6 External Stability

In accordance with the S6-19 CHBDC (CSA, 2019), for a typical degree of understanding, retaining walls must be designed based resistance factors of 0.50 for bearing, 0.50 for overturning, and 0.80 for base sliding. Based on the results of our analysis, these external stability requirements are met for Walls 1 and 3 with a geogrid length of 2.4 m and for Wall 2 with a geogrid length of 3.15 m.

6.7 Additional Considerations and Recommendations

The following additional recommendations are provided, pertaining to the geotechnical design:

- It is recommended that uniaxial geogrid be used for the project, as it is able to achieve greater tensile strengths that biaxial geogrid.
- Concrete blocks should be obtained from a manufacturer with experience in similar projects, where geogrid was cast into concrete blocks.
- BEF should be placed in maximum 300 mm thick loose lifts and compacted to at least 98% modified proctor maximum dry density.
- Only manual construction equipment not exceeding 455 kg (1000 lbs) in weight should be used within 1.2 m of the concrete block wall.
- The full length of geogrid required behind the concrete blocks should be cast into the concrete blocks.
- Trees and large shrubs should not be planted in close proximity to the retaining wall, as their root systems may
 impact the wall stability and the drainage system.
- Care should be taken to avoid damaging root systems of existing trees near the retaining walls during
 excavations, as this may damage or kill the tree and cause it to topple. Trees in close proximity to the retaining
 walls which topple are likely to pull up a significant amount of soil with them which could destabilize the walls.

7.0 LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of the British Columbia Ministry of Transportation and Infrastructure and their agents. Tetra Tech Canada Inc. (Tetra Tech) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than the British Columbia Ministry of Transportation and Infrastructure, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this document is subject to the Limitations on the Use of this Document attached in the Appendix or Contractual Terms and Conditions executed by both parties.

8.0 CLOSURE

We trust this report meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech Canada Inc.

Prepared by: Amanda Sheppard, P.Eng. Geotechnical Engineer Direct Line: 236-987-9394 Amanda.Sheppard@tetratech.com

Reviewed by: Chris Longley, M.Eng., P.Eng. Geotechnical Engineer Direct Line: 778-945-5734 Chris.Longley@tetratech.com

FILE FILE: 704-TI FILÉ: 704-TRN.PAVE03225-08

Reviewed by: Donald Gillespie, P.Eng. Senior Geotechnical Consultant Direct Line: 250-653-4722 Donald.Gillespie@tetratech.com

/jmt/sy

PERMIT TO PRACTICE TETRA TECH CANADA INC. PERMIT NUMBER: 1001972

704-TRN.PAVE03225-08 - Porpoise Bay Road - Retaining Walls.docx

REFERENCES

- Bray, Jonathan D., Macedo, Jorge and Travasarou, Thaleia. 2018. Simplified Procedure for Estimating Seismic Slope Displacements for Subduction Zone Earthquakes. Journal of Geotechnical and Geoenvironmental Engineering, Volume 144(3).
- Bray, Jonathan D., and Travasarou, Thaleia. 2007. Simplified Procedure for Estimating Earthquake Induced Deviatoric Slope Displacement. Journal of Geotechnical and Geoenvironmental Engineering, Volume 133(4), 381-392.
- CSA Group. 2019. Canadian Highway Bridge Design Code S6-19. November, 2019.
- GEOSLOPE International Ltd. (GeoSlope). 2021. Geostudio 2021.3 Slope/W, Version 11.0.1.21429.
- Government of Canada. 2023. Porpoise Bay 07852. https://www.tides.gc.ca/en/stations/7852 [accessed on July 6, 2023]
- McCammon, J. W. 1977. Surficial Geology and Sand and Gravel Deposits of Sunshine Coast, Powell River and Campbell River Areas – Bulletin 65. Prepared for: Province of British Columbia Ministry of Mines and Petroleum Resources, 1977. File No.: TN93M3 553.62'0971133.
- MoTI. 2019. Supplement to TAC Geometric Design Guide, MoTI Section 1000, Hydraulic Chapter. April, 2019.
- MoTI. 2022. Bridge Standards and Procedures Manual Volume 1 Supplement to CHBDC S6:19. July, 2022.
- Simonovic, S.P., Schardong, A., Srivastav, R., and Sandink, D. 2015. IDF_CC Web-based Tool for Updating Intensity-Duration-Frequency Curves to Changing Climate – ver 6.5. Western University Facility for Intelligent Decision Support and Institute for Catastrophic Loss Reduction. https://idf-cc-uwo.ca/idfgrid [accessed March 15, 2023].
- Sunshine Coast Regional District. 2021. Community Action Plan. Future Climatic Projections. https://letstalk.scrd.ca/climate?utm_source=coast%20reporter&utm_campaign=coast%20reporter%3A%2 0outbound&utm_medium=referral_[accessed on July 5, 2023]

FIGURES

Figure 1 Borehole Location Plan

APPENDIX A

TETRA TECH'S LIMITATIONS ON THE USE OF THIS DOCUMENT

GEOTECHNICAL

1.1 USE OF DOCUMENT AND OWNERSHIP

This document pertains to a specific site, a specific development, and a specific scope of work. The document may include plans, drawings, profiles and other supporting documents that collectively constitute the document (the "Professional Document").

The Professional Document is intended for the sole use of TETRA TECH's Client (the "Client") as specifically identified in the TETRA TECH Services Agreement or other Contractual Agreement entered into with the Client (either of which is termed the "Contract" herein). TETRA TECH does not accept any responsibility for the accuracy of any of the data, analyses, recommendations or other contents of the Professional Document when it is used or relied upon by any party other than the Client, unless authorized in writing by TETRA TECH.

Any unauthorized use of the Professional Document is at the sole risk of the user. TETRA TECH accepts no responsibility whatsoever for any loss or damage where such loss or damage is alleged to be or, is in fact, caused by the unauthorized use of the Professional Document.

Where TETRA TECH has expressly authorized the use of the Professional Document by a third party (an "Authorized Party"), consideration for such authorization is the Authorized Party's acceptance of these Limitations on Use of this Document as well as any limitations on liability contained in the Contract with the Client (all of which is collectively termed the "Limitations on Liability"). The Authorized Party should carefully review both these Limitations on Use of this Document and the Contract prior to making any use of the Professional Document. Any use made of the Professional Document by an Authorized Party constitutes the Authorized Party's express acceptance of, and agreement to, the Limitations on Liability.

The Professional Document and any other form or type of data or documents generated by TETRA TECH during the performance of the work are TETRA TECH's professional work product and shall remain the copyright property of TETRA TECH.

The Professional Document is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of TETRA TECH. Additional copies of the Document, if required, may be obtained upon request.

1.2 ALTERNATIVE DOCUMENT FORMAT

Where TETRA TECH submits electronic file and/or hard copy versions of the Professional Document or any drawings or other project-related documents and deliverables (collectively termed TETRA TECH's "Instruments of Professional Service"), only the signed and/or sealed versions shall be considered final. The original signed and/or sealed electronic file and/or hard copy version archived by TETRA TECH shall be deemed to be the original. TETRA TECH will archive a protected digital copy of the original signed and/or sealed version for a period of 10 years.

Both electronic file and/or hard copy versions of TETRA TECH's Instruments of Professional Service shall not, under any circumstances, be altered by any party except TETRA TECH. TETRA TECH's Instruments of Professional Service will be used only and exactly as submitted by TETRA TECH.

Electronic files submitted by TETRA TECH have been prepared and submitted using specific software and hardware systems. TETRA TECH makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

1.3 STANDARD OF CARE

Services performed by TETRA TECH for the Professional Document have been conducted in accordance with the Contract, in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions in the jurisdiction in which the services are provided. Professional judgment has been applied in developing the conclusions and/or recommendations provided in this Professional Document. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of the Professional Document.

If any error or omission is detected by the Client or an Authorized Party, the error or omission must be immediately brought to the attention of TETRA TECH.

1.4 DISCLOSURE OF INFORMATION BY CLIENT

The Client acknowledges that it has fully cooperated with TETRA TECH with respect to the provision of all available information on the past, present, and proposed conditions on the site, including historical information respecting the use of the site. The Client further acknowledges that in order for TETRA TECH to properly provide the services contracted for in the Contract, TETRA TECH has relied upon the Client with respect to both the full disclosure and accuracy of any such information.

1.5 INFORMATION PROVIDED TO TETRA TECH BY OTHERS

During the performance of the work and the preparation of this Professional Document, TETRA TECH may have relied on information provided by third parties other than the Client.

While TETRA TECH endeavours to verify the accuracy of such information, TETRA TECH accepts no responsibility for the accuracy or the reliability of such information even where inaccurate or unreliable information impacts any recommendations, design or other deliverables and causes the Client or an Authorized Party loss or damage.

1.6 GENERAL LIMITATIONS OF DOCUMENT

This Professional Document is based solely on the conditions presented and the data available to TETRA TECH at the time the data were collected in the field or gathered from available databases.

The Client, and any Authorized Party, acknowledges that the Professional Document is based on limited data and that the conclusions, opinions, and recommendations contained in the Professional Document are the result of the application of professional judgment to such limited data.

The Professional Document is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site conditions present, or variation in assumed conditions which might form the basis of design or recommendations as outlined in this document, at or on the development proposed as of the date of the Professional Document requires a supplementary exploration, investigation, and assessment.

TETRA TECH is neither qualified to, nor is it making, any recommendations with respect to the purchase, sale, investment or development of the property, the decisions on which are the sole responsibility of the Client.

1.7 ENVIRONMENTAL AND REGULATORY ISSUES

Unless stipulated in the report, TETRA TECH has not been retained to explore, address or consider and has not explored, addressed or considered any environmental or regulatory issues associated with development on the subject site.

1.8 NATURE AND EXACTNESS OF SOIL AND ROCK DESCRIPTIONS

Classification and identification of soils and rocks are based upon commonly accepted systems, methods and standards employed in professional geotechnical practice. This report contains descriptions of the systems and methods used. Where deviations from the system or method prevail, they are specifically mentioned.

Classification and identification of geological units are judgmental in nature as to both type and condition. TETRA TECH does not warrant conditions represented herein as exact, but infers accuracy only to the extent that is common in practice.

Where subsurface conditions encountered during development are different from those described in this report, qualified geotechnical personnel should revisit the site and review recommendations in light of the actual conditions encountered.

1.9 LOGS OF TESTHOLES

The testhole logs are a compilation of conditions and classification of soils and rocks as obtained from field observations and laboratory testing of selected samples. Soil and rock zones have been interpreted. Change from one geological zone to the other, indicated on the logs as a distinct line, can be, in fact, transitional. The extent of transition is interpretive. Any circumstance which requires precise definition of soil or rock zone transition elevations may require further investigation and review.

1.10 STRATIGRAPHIC AND GEOLOGICAL INFORMATION

The stratigraphic and geological information indicated on drawings contained in this report are inferred from logs of test holes and/or soil/rock exposures. Stratigraphy is known only at the locations of the test hole or exposure. Actual geology and stratigraphy between test holes and/or exposures may vary from that shown on these drawings. Natural variations in geological conditions are inherent and are a function of the historical environment. TETRA TECH does not represent the conditions illustrated as exact but recognizes that variations will exist. Where knowledge of more precise locations of geological units is necessary, additional exploration and review may be necessary.

1.11 PROTECTION OF EXPOSED GROUND

Excavation and construction operations expose geological materials to climatic elements (freeze/thaw, wet/dry) and/or mechanical disturbance which can cause severe deterioration. Unless otherwise specifically indicated in this report, the walls and floors of excavations must be protected from the elements, particularly moisture, desiccation, frost action and construction traffic.

1.12 SUPPORT OF ADJACENT GROUND AND STRUCTURES

Unless otherwise specifically advised, support of ground and structures adjacent to the anticipated construction and preservation of adjacent ground and structures from the adverse impact of construction activity is required.

1.13 INFLUENCE OF CONSTRUCTION ACTIVITY

Construction activity can impact structural performance of adjacent buildings and other installations. The influence of all anticipated construction activities should be considered by the contractor, owner, architect and prime engineer in consultation with a geotechnical engineer when the final design and construction techniques, and construction sequence are known.

1.14 OBSERVATIONS DURING CONSTRUCTION

Because of the nature of geological deposits, the judgmental nature of geotechnical engineering, and the potential of adverse circumstances arising from construction activity, observations during site preparation, excavation and construction should be carried out by a geotechnical engineer. These observations may then serve as the basis for confirmation and/or alteration of geotechnical recommendations or design guidelines presented herein.

1.15 DRAINAGE SYSTEMS

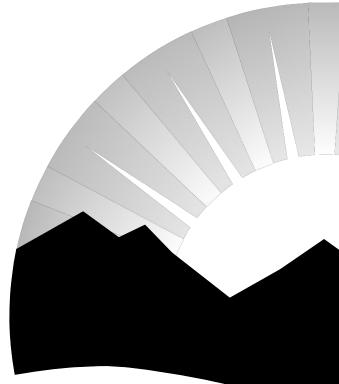
Unless otherwise specified, it is a condition of this report that effective temporary and permanent drainage systems are required and that they must be considered in relation to project purpose and function. Where temporary or permanent drainage systems are installed within or around a structure, these systems must protect the structure from loss of ground due to mechanisms such as internal erosion and must be designed so as to assure continued satisfactory performance of the drains. Specific design details regarding the geotechnical aspects of such systems (e.g. bedding material, surrounding soil, soil cover, geotextile type) should be reviewed by the geotechnical engineer to confirm the performance of the system is consistent with the conditions used in the geotechnical design.

1.16 DESIGN PARAMETERS

Bearing capacities for Limit States or Allowable Stress Design, strength/stiffness properties and similar geotechnical design parameters quoted in this report relate to a specific soil or rock type and condition. Construction activity and environmental circumstances can materially change the condition of soil or rock. The elevation at which a soil or rock type occurs is variable. It is a requirement of this report that structural elements be founded in and/or upon geological materials of the type and in the condition used in this report. Sufficient observations should be made by qualified geotechnical personnel during construction to assure that the soil and/or rock conditions considered in this report in fact exist at the site.

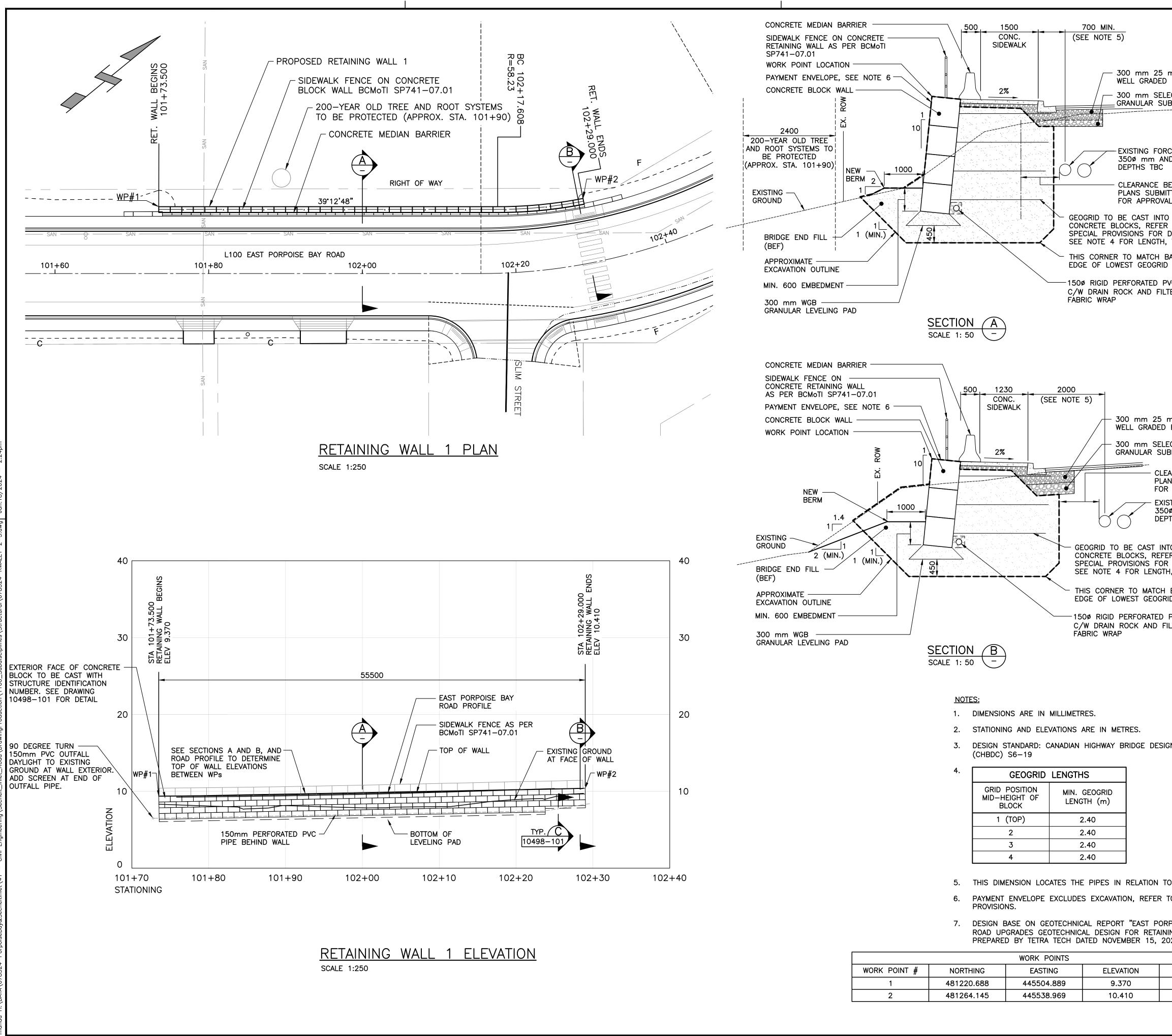
1.17 SAMPLES

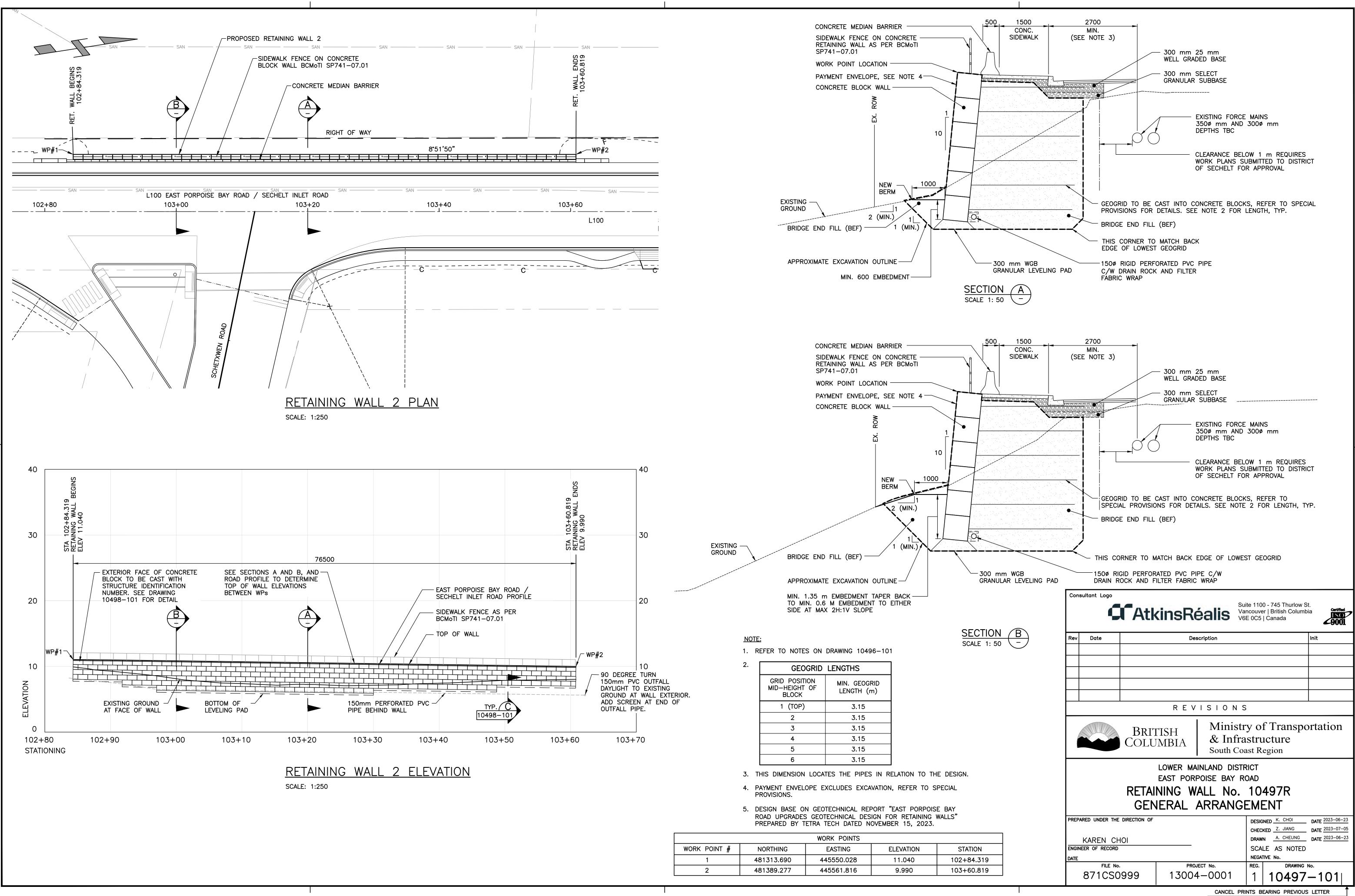
TETRA TECH will retain all soil and rock samples for 30 days after this report is issued. Further storage or transfer of samples can be made at the Client's expense upon written request, otherwise samples will be discarded.


1.18 APPLICABLE CODES, STANDARDS, GUIDELINES & BEST PRACTICE

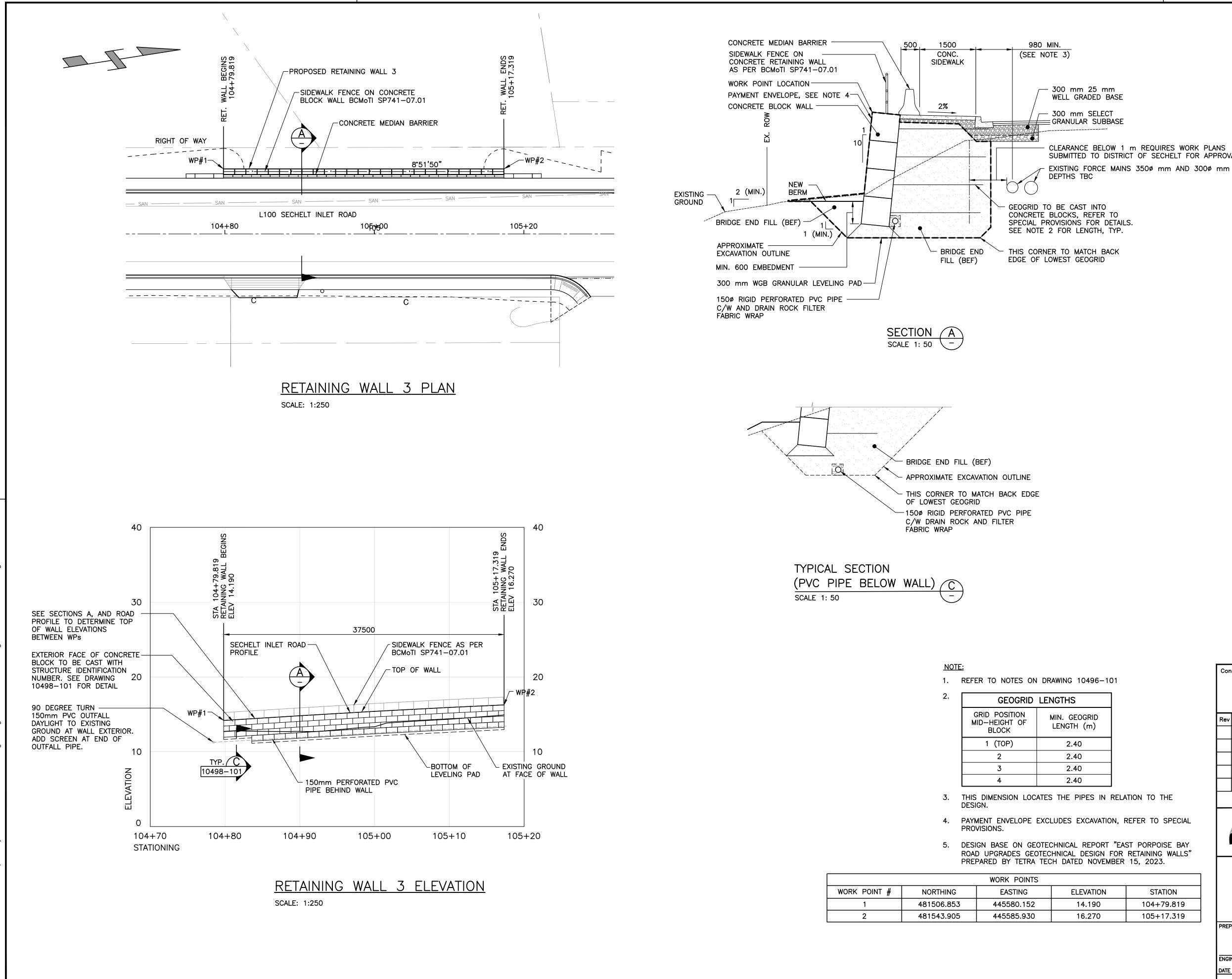
This document has been prepared based on the applicable codes, standards, guidelines or best practice as identified in the report. Some mandated codes, standards and guidelines (such as ASTM, AASHTO Bridge Design/Construction Codes, Canadian Highway Bridge Design Code, National/Provincial Building Codes) are routinely updated and corrections made. TETRA TECH cannot predict nor be held liable for any such future changes, amendments, errors or omissions in these documents that may have a bearing on the assessment, design or analyses included in this report.

APPENDIX B


SNC LAVALIN INC. DRAWINGS


Ministry of Transportation & Infrastructure Lower Mainland District Project No. 13004 - 0001 Retaining Walls No. 10496R / 10497R / 10498R East Porpoise Bay Road

BRITISH COLUMBIA



WORK POINTS							
WORK POINT #	NORTHING	EASTING	ELEVATION				
1	481220.688	445504.889	9.370				
2	481264.145	445538.969	10.410				

mm BASE ECT BBASE				TO HIDDEW GROUE	
CE MAINS D 300ø mm					
ELOW 1 m REQUIRES ITED TO DISTRICT OF L					
TO DETAILS. TYP.				E. PORPOISE BAY ROA	
ACK /C PIPE ER			70/ 10497		
FK		TO SECHE			
nm BASE			3 5 5 ROAD		
CT BBASE			22398 23988 261		
ARANCE BELOW 1 m NS SUBMITTED TO DIS APPROVAL	REQUIRES WORK TRICT OF SECHE	: ELT	RETAINING WALL LOCAT E. PORPOISE BAY ROA IN THE DISTRICT OF SI	D AND SECHELT INLET	ROAD
STING FORCE MAINS Ø mm AND 300Ø mm THS TBC	n		<u>KEY</u> nts	<u>PLAN</u>	
O R TO DETAILS. I, TYP.	[1
BACK		LIS	ST OF DRAW	ING	
- PVC PIPE LTER	DWG. No.	TITLE			-
LIER	10496-101		WALL No. 10496R – G		-
	10497-101 10498-101		WALL No. 10497R – GI 		
		F Atk	kinsRéalis	Suite 1100 - 745 Thurlow S Vancouver British Colum V6E 0C5 Canada	bia Certified
N CODE	Rev Date		Description		Init
			D D D D D D D D D D		
			REVISIO		ortation
			MBIA & In	istry of Transpo frastructure Coast Region	ortation
D THE DESIGN. TO SPECIAL			LOWER MAINLAND	-	
POISE BAY		RETAI	EAST PORPOISE BA		
NG WALLS" 023.	PREPARED UNDER TH	GEN	IERAL ARRAN	NGEMENT	2007.00.07
STATION				DESIGNED K. CHOI CHECKED Z. JIANG DRAWN A. CHEUNG	DATE <u>2023-07-05</u>
101+73.500 102+29.000	KAREN C Engineer of recor			SCALE AS NOTED	
	DATE FILE N 871CS(PROJECT No. 13004–0001	reg. drawing	^{№.} 5—101

WORK POINTS							
WORK POINT #	NORTHING	EASTING	ELEVATION	STATION			
1	481313.690	445550.028	11.040	102+84.319			
2	481389.277	445561.816	9.990	103+60.819			

GEOGRID	LENGTHS
GRID POSITION MID-HEIGHT OF BLOCK	MIN. GEOGRID LENGTH (m)
1 (TOP)	2.40
2	2.40
3	2.40
4	2.40

3. THIS DIMENSION LOCATES THE PIPES IN RELATION TO TH

5. DESIGN BASE ON GEOTECHNICAL REPORT "EAST PORPOIS ROAD UPGRADES GEOTECHNICAL DESIGN FOR RETAINING PREPARED BY TETRA TECH DATED NOVEMBER 15, 2023.

		WORK POINTS		
WORK POINT #	NORTHING	EASTING	ELEVATION	STATIO
1	481506.853	445580.152	14.190	104+79
2	481543.905	445585.930	16.270	105+17

	NUMBER					
	RETAI		. 2 NUMBER	R = 10496R R = 10497R R = 10498R		
	CAST IN 1	17 HIGH NU	JMERALS AS S	CONSTRUCTION HOWN. NUMER F TRANSPORTA	AL	
	STRUC SCALE 1:20		NUMBE	<u>R DETA</u>	<u>\ L</u>	
	Consultant Logo			0		^
		Atl	kinsRé		iite 1100 - 745 Thurlow S Incouver British Columb iE 0C5 Canada	
	Rev Date		Des	cription		Init
TO THE			REV		5	
R TO SPECIAL ORPOISE BAY AINING WALLS"			ГISH JMBIA	& Infra	ry of Transpo astructure ast Region	ortation
2023.				NLAND DISTR OISE BAY R		
STATION 104+79.819 105+17.319				ALL No. ARRANG	10498R EMENT	
	PREPARED UNDER TH KAREN C ENGINEER OF RECORD	HOI			DESIGNED K. CHOI CHECKED Z. JIANG DRAWN A. CHEUNG SCALE AS NOTED	DATE 2023-06-26 DATE 2023-07-05 DATE 2023-06-26
	date File N 871CS			ect №. 	NEGATIVE No. REG. DRAWING 1 10498	
				CANCEL PR	INTS BEARING PREVIOUS	S LETTER

700

10498R-20XX

YFAR

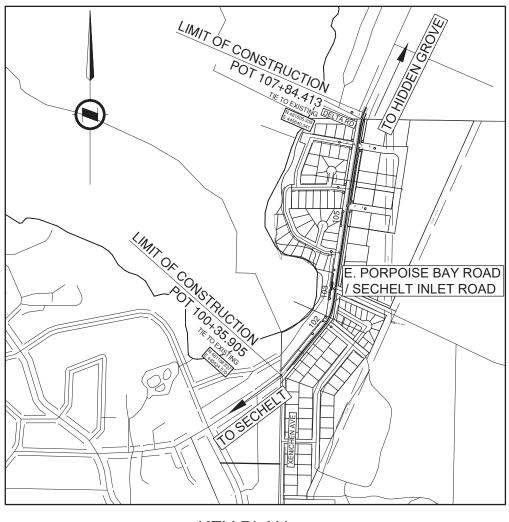
RECESSED 6-

6 CHAMFER—

STRUCTURE

CLEARANCE BELOW 1 m REQUIRES WORK PLANS SUBMITTED TO DISTRICT OF SECHELT FOR APPROVAL

Ministry of Transportation and Infrastructure


PROJECT NO. 13004 - 0001

EAST PORPOISE BAY ROAD IMPROVEMENTS

Ť
DRAWING NUMBER REV
R1-980-000
· · · ·

KEY PLAN SCALE 1:5000

Ministry of Transportation and Infrastructure

PROJECT No. 13004 - 0001

EAST PORPOISE BAY ROAD IMPROVEMENTS

XENICHEN AVENUE TO DELTA ROAD

STA. 100+35.905 TO 107+84.413 STB. 0.749 km

LANDMARK KILOMETRE INVENTORY SEGMENT - NA

	DRAWING INDEX							
R1-980-000	COVER PAGE							
R1-980-001	LOCATION MAP, KEY PLAN AND DRAWING INDEX							
R1-980-002	LEGEND AND CONTROL POINT TABLE							
R1-980-101 TO 103	PLAN							
R1-980-201 TO 202	PROFILE							
R1-980-301 TO 302	TYPICAL SECTIONS							
R1-980-353	DETAILS							
R1-980-401 TO 403	GEOMETRICS, LANING, SIGNAGE AND PAVEMENT MARKINGS							
R1-980-501 TO 503	SPOT ELEVATION							
R1-980-701 TO 703	DRAINAGE DESIGN AND UTILITY RELOCATION - PLAN AND PROFILE							
R1-980-704	SANITARY DESIGN - PLAN AND PROFILE							
R1-980-721	DRAINAGE DETAILS							
R1-980-1101	RE-VEGETATION PLAN							
10496-000	COVER PAGE							
10496-101	RETAINING WALL No. 10496R GENERAL ARRANGEMENT							
10497-101	RETAINING WALL No. 10497R GENERAL ARRANGEMENT							
10498-101	RETAINING WALL No. 10498R GENERAL ARRANGEMENT							

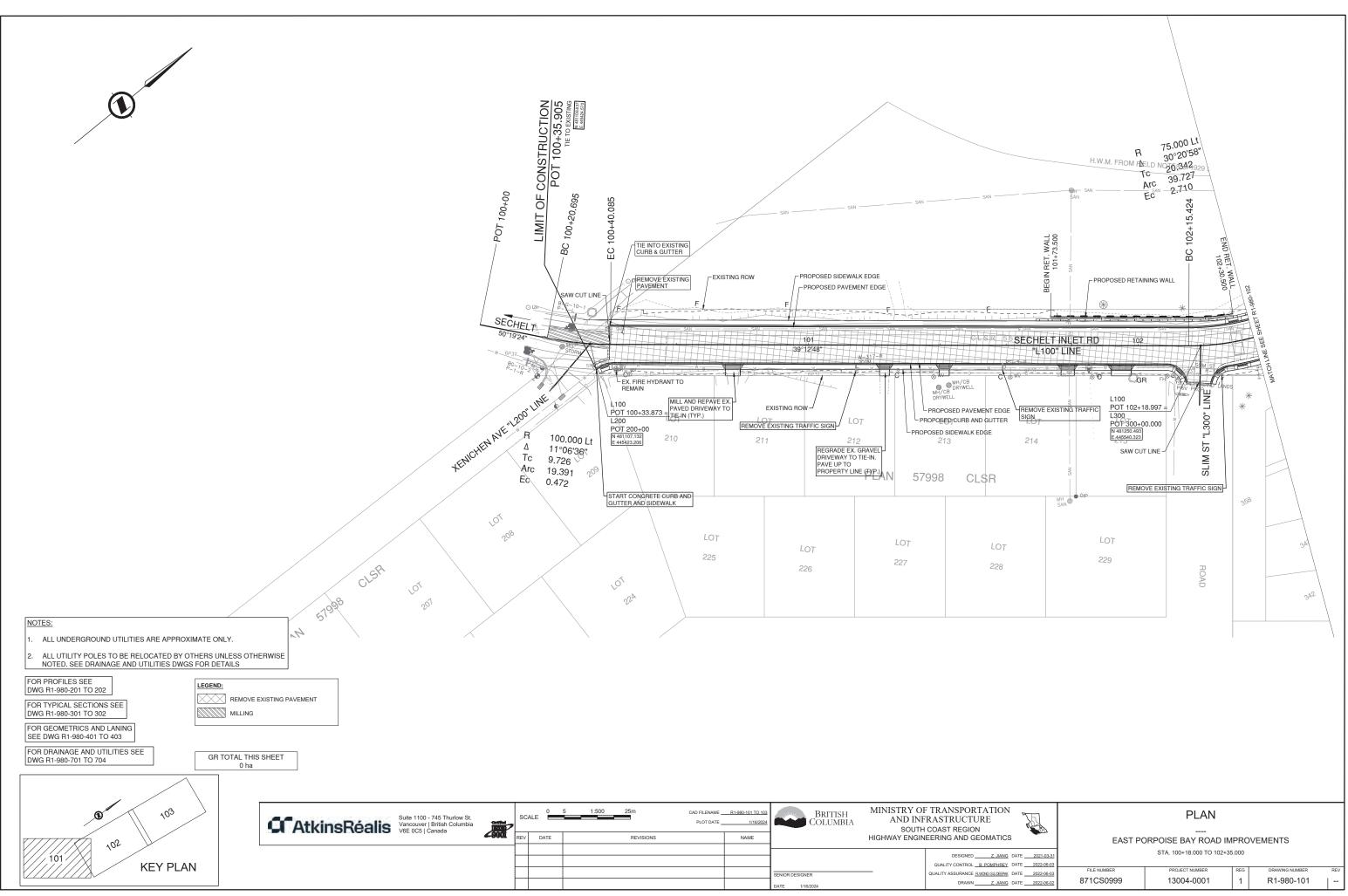
BRITISH COLUMBIA	AND I SOL	NFRAS	TRU ST RE		
Δ	CATION MA ND DRAW DRPOISE BAY	ING II	NDI	ΞX	
REFER TO TENDER DRAV PACKAGE APPROVAL FOI DIRECTOR, ENGINEERING DATE 2022-06-03		PACKAG EXECUTIVE D	E AP	NDER DRAWING PROVAL FORM R, SOUTH COAST REGION	
FILE NUMBER	FILE NUMBER PROJECT NUME				REV
871CS0999	01	1	R1-980-001	1	

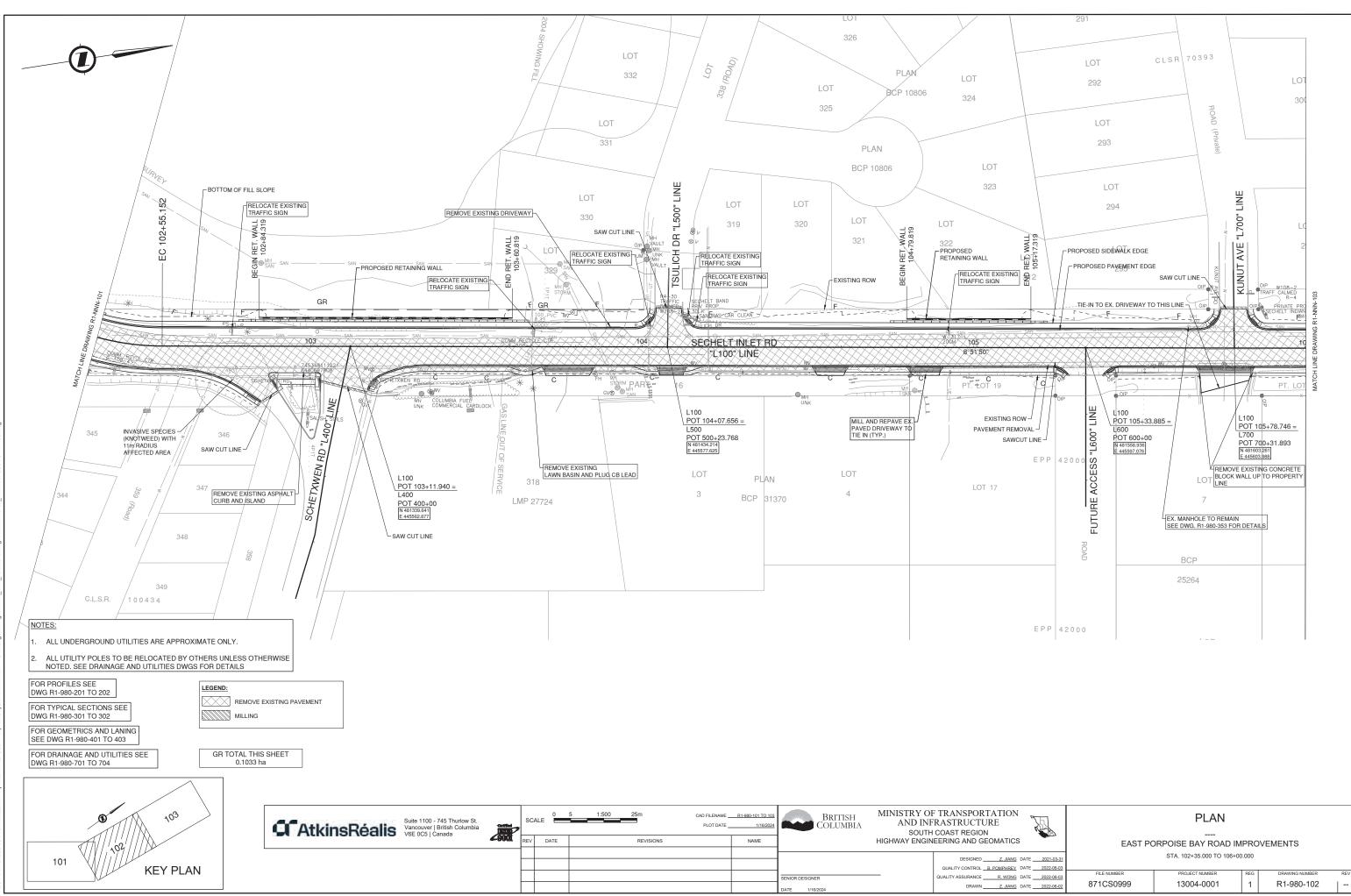
EXISTING LINE TYPES

SHOULDER LEFT OR RIGHT	
GRAVEL	
EDGE OF PAVEMENT	
WHITE LINE	
BROKEN WHITE LINE RURAL	
BROKEN WHITE LINE URBAN	
YELLOW LINE	
DOUBLE YELLOW LINE	
CENTERLINE	·
CURB & GUTTER	
DRIVEWAY	#CIP
BREAK IN GROUND	
BOTTOM OF SLOPE	ols
BUILDING	0 @N
CONCRETE MEDIAN BARRIER	·
POWER LINE	
BUSHES, HEDGES, TREE LINE	۳۳
TOP OF BANK	
DITCH EDGE	• • rei
CULVERT	
FENCE	······································
RETAINING WALL	• •
HEAD WALL	
SITE MISCELLANEOUS	€ ^{M2} Stern

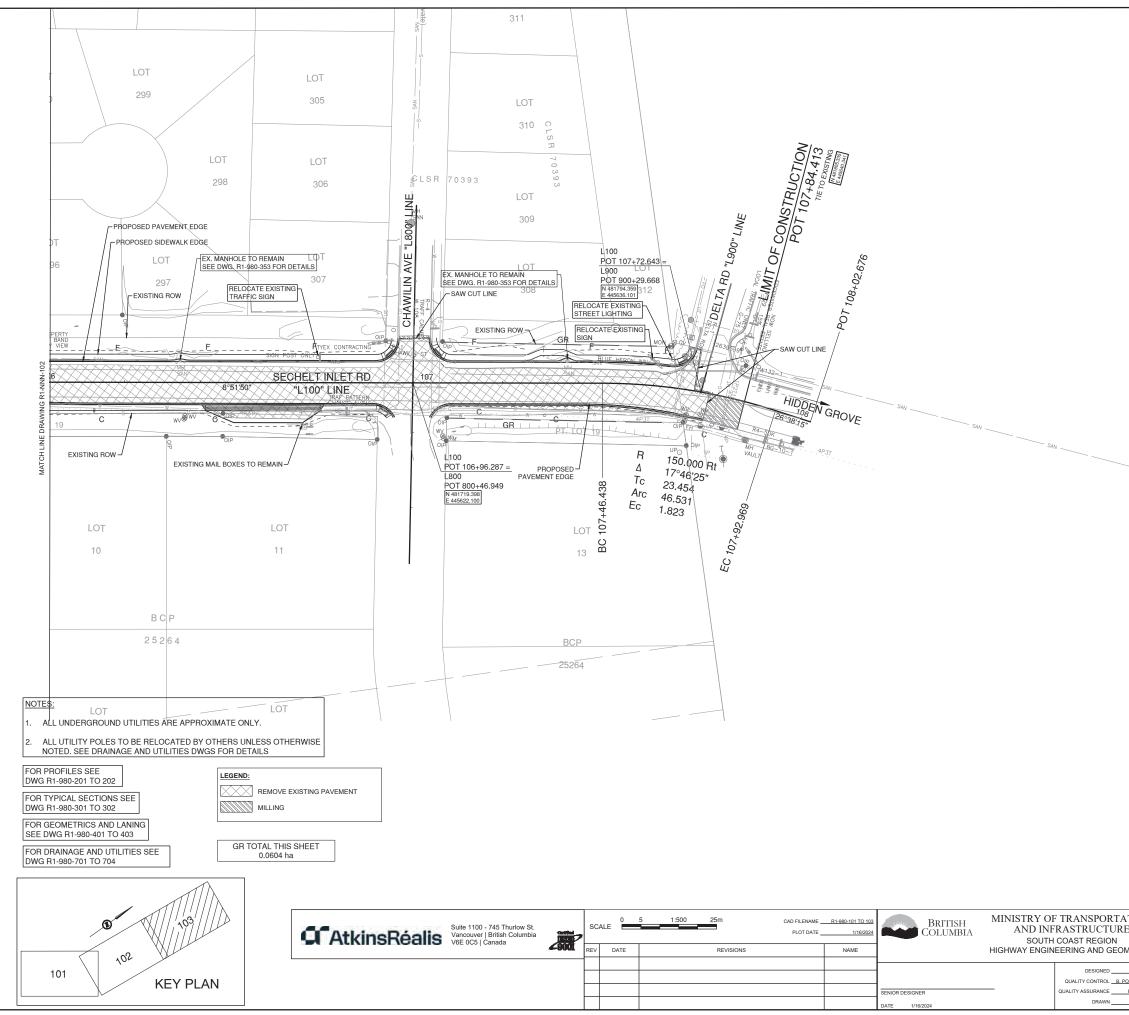
PROPOSED LINE TYPES

MAIN ALIGNMENT	, L100C1 ¹⁰¹
SECONDARY ALIGNMENT	L200C1 201
CONCRETE CURB	
DRIVEWAY	
GRAVEL SHOULDER	
GUTTER	
LANE EDGE	
BROKEN WHITE LINE RURAL	
DECELERATION / ACCELERATION LANE	
LANE EDGE	
MEDIAN	
BROKEN WHITE LINE URBAN	
WHITE LINE	
YELLOW LINE	
EDGE OF PAVEMENT	
RAISED ISLAND / MEDIAN	
RAISED ISLAND / MEDIAN LETDOWNS	
SHOULDER GRAVEL	
CLEARING & GRUBBING BOUNDARY	


Date: Nov.10, 2017 Origin: GCI Project: Sechelt Inlet Road Improvements Horizontal Datum: UTM Z10 NAD 83 CSR5		M 08H2536							
		Tack Point: POPE	YE	ACSF: 0.999636			Ministry of Transportation		
			Vertical Datum:	CGVD28 HT2.0		1		nd Infrastructure	
Point ID	Local Northing	Local Easting	Elevation	UTM Northing	UTM Easting	Ellip. Ht	Combined scale	Survey Method	Comment
ТАСКРТ	481563.918	445610.408		5481563.918	445610.408	0.000	~	÷	4
POPEYE	481563.918	445610.408	17.706	5481563.918	445610.408	0.293	0.999636	STATIC	DESTROYED
08H2536	481916.062	445899.604	28.227	5481915.934	445899,499	10.833	0.999634	SUPPLIED	BRASS CAP
09H2562	480920.694	445103.036	6.478	5480920.928	445103.221	-10.967	0.999639	SUPPLIED	BRASS CAP
CHAWLIN	481727.633	445630.813	18.389	5481727.573	445630.806	0.984	0.999636	STATIC	REBAR
SLIM	481263.783	445557.081	10.543	5481263.892	445557.100	-6.886	0.999637	STATIC	REBAR
XEN	481108.705	445432.478	10.157	5481108.871	445432.543	-7.280	0,999638	TS	NAIL
XENA	481141.747	445459.276	10.376	5481141.901	445459.331	-7.060	0.999638	TS	SPIKE
XENB	481192.537	445500.731	9.132	5481192.672	445500.771	-8.301	0.999638	TS	SPIKE
BAYVIEW	481592.367	445607.837	17.598	5481592.357	445607.838		1	TS	REBAR
TSULICH	481422.448	445571.039	9.599	5481422.499	445571.053	11	and a second second	TS	NAIL
All local coord	inates are derive	d by first scalin	g from the	Tack Point and th	en removing th	e millionth	digit from the No	rthing	Sec. Sub-
To calculate lo	cal coordintes ma	nually, or with	software that	at is unable to use	a tack point, or	if a match	Contraction of the local distribution of the	1.12	
to adjacent pro	jects is required,	the applied No	rthing and E	asting shifts must	be recorded he	re.			
Northing Shift	-5001996.016	5		Local Northing =	(UTM Northing,	ACSF)+Nor	thing Shift		
Easting Shift	-162.261	1		Local Easting = (L	TM Easting/AC	SF)+Easting	Shift		

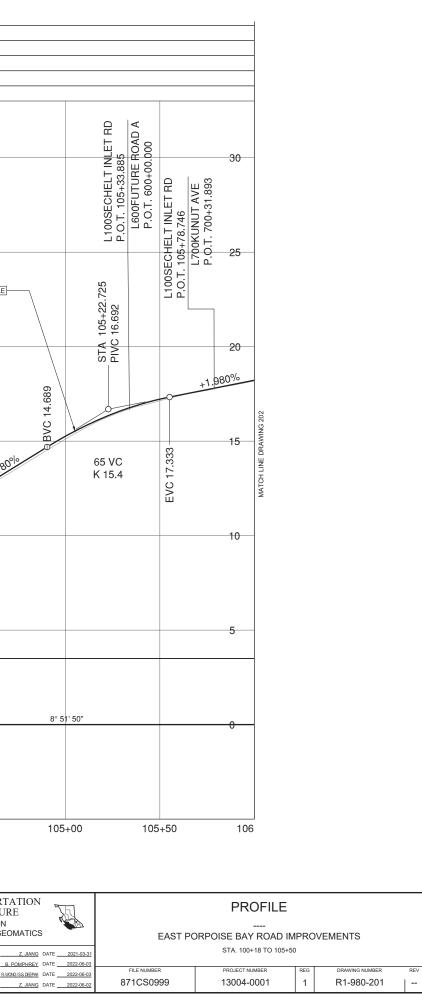

EXISTING SYMBOLS

CONTROL MONUMENT	۲
DETAIL HUB	
OLD IRON PIN	● ^{OP}
POWER POLE	*
LAMP STANDARD	OLS
SERVICE METER	© ⁵⁷
GUY WIRE	\rightarrow
GAS VALVE	® ^{GV}
WATER VALVE	© ^{WV}
TELEPHONE MANHOLE	⊕ ^{MH} Tel
SIGN ONE POST	Þ
DELINEATOR POST	_o DP
MANHOLE	0
CATCH BASIN LAWN	● CB Lown
STORM MANHOLE	● ^{MH} Storm
CATCH BASIN	
PILING	OPting
TESTHOLE	
TREE	*

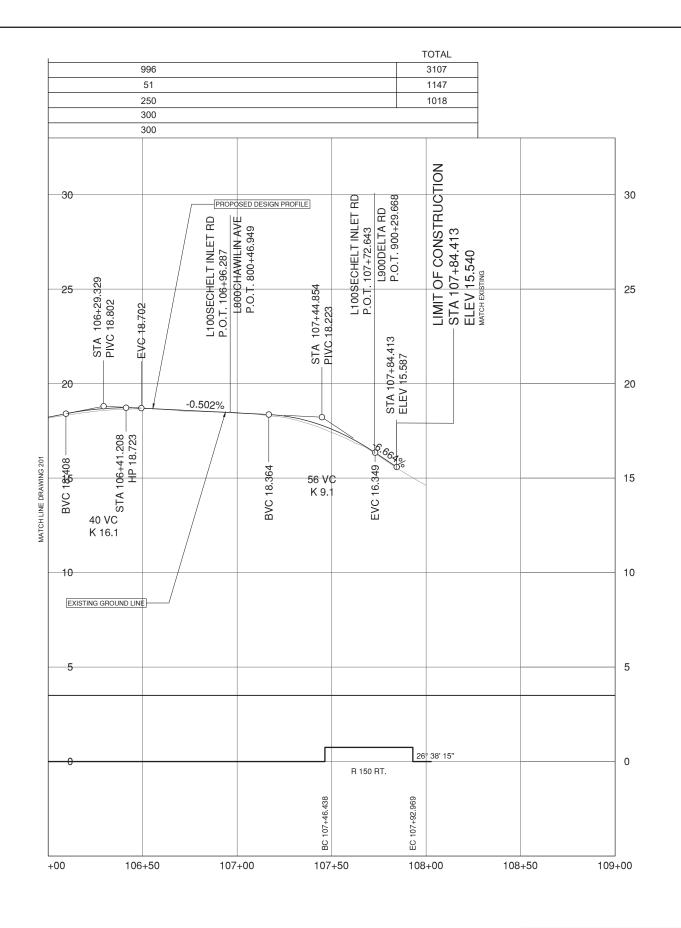

Suite 1100 - 745 Thurlow St. Vancouver British Columbia V6E 0C5 Canada	SCALE	0 5	5 1:500 25m CAD FILENAME PLOT DATE	R1-980-002		TRY OF TRANSPORTATION	LEGEND /	AND CONTROL	POIN	TS TABLE
	REV DA	TE	REVISIONS	NAME		SOUTH COAST REGION Y ENGINEERING AND GEOMATICS	EAST PC	 DRPOISE BAY ROAD II	MPROV	EMENTS
-						DESIGNEDZ. JIANG DATE2021-03-31 QUALITY CONTROLB. POMPHREY_DATE2022-06-03		-		
-					SENIOR DESIGNER DATE 1/16/2024	QUALITY ASSURANCE <u>R.WONG/SS.DEP/W</u> DATE <u>2023-06-03</u> DRAWN <u>Z.JIANG</u> DATE <u>2022-06-02</u>	FILE NUMBER 871CS0999	PROJECT NUMBER 13004-0001	REG 1	R1-980-002

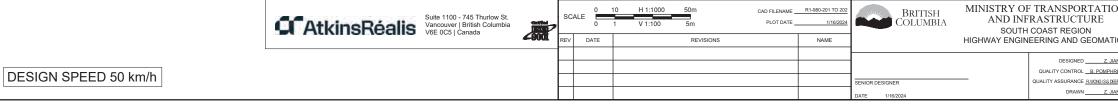
CONTROL POINTS TABLE

-LOT DATE: 2024/01/16 \\sil0262\TxProject\DATA\678324-PorpoiseBay&SecheltInlet(41 - Civil Engineering\Sechelt_Inlet_Road\DrawingProduction\100_Plans\R1-980-101 to

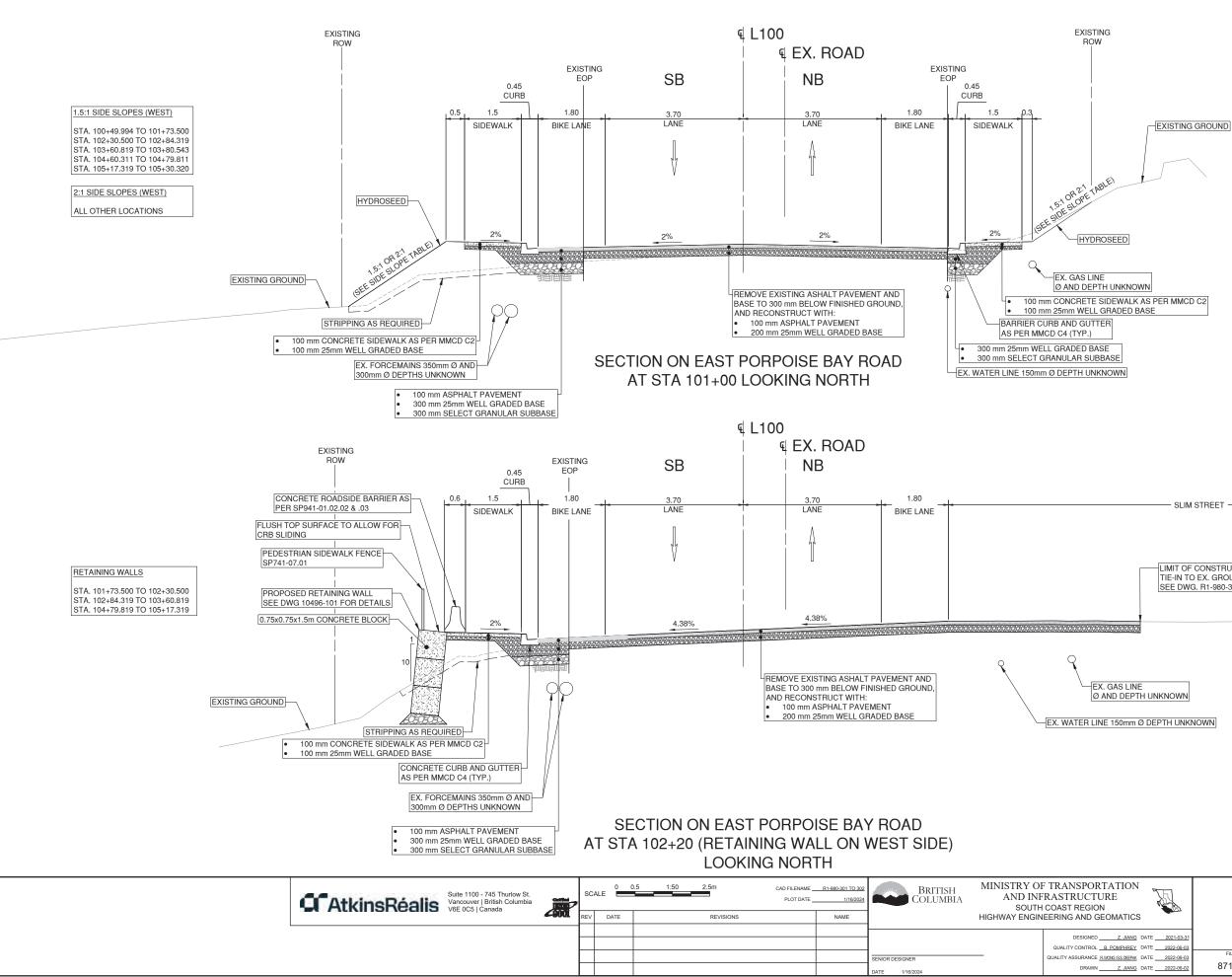


ATION E		PLAN						
MATICS	EAST PORPOISE BAY ROAD IMPROVEMENTS							
Z. JIANG DATE 2021-03-31 <u>2000PHREY</u> DATE 2022-06-03		STA. 106+00.000 TO 107+84.000						
R. WONG DATE 2022-06-03	FILE NUMBER	PROJECT NUMBER	REG	DRAWING NUMBER	REV			
Z. JIANG DATE 2022-06-02	871CS0999	13004-0001	1	R1-980-103				


EXCAVATION EMBANKMENT	т ³ Г т ³									109)9 96						
STRIPPING	 m³									76							
25mm WGB DE										30							
SGSB DEPTH	mm									30							
COOD DEI III																	
	Z																
	<u> </u>																
	L L																
	ST ST							0									
	Z 06						н Н Н	0.00									
	32 C	84						ST +00								PRC	POSED DE
	LIMIT OF CONSTRUCTION STA 100-35.905	ELEV 9.884						L300SLIM ST P.O.T. 300+00.000				þ lu					
	101	LEV 9.8 Atchexistin						OSL .T.				A A					
	I W L	Шŧ					E CH	0.0								다. 12 12 12 12 12 12 12 12 12 12 12 12 12	
	ר ב``	Ш≸					L100SECHELT INLET RD					L100SECHELT INLET RD P.O.T. 103+11.940 L400SCHETXWEN AVE			Ŀ	P.O.T. 104+07.656 L500TSULICH RD P.O.T. 500+23.768	
			HP 10.443 SIA 100+85.205 PIVC 10.683				900	2				툐 칀 匝 3	+0(
STA 100+30.283 ELEV 9.837	L100SECHELT INLET RD P.O.T. 100+33.873 L20DXENICHEN AVE P.O.T. 200+00.000		22.22					-				5 <u>5 5</u>	4		F	121 121 121	
0.2	00.0		9-0-89.0		00.1/	<u> </u>			012			SC - SS	 				
3+3	0 + (I I C F		1010		93 V K 15				54.1				r T		C L	<u>, </u>	
A 10 A 10	500 +3	œ	Z ≥						12+	95.1.3	306						
<u> </u>		BVC 10.298 0+79.066	<u>ମ</u> ଅ	- 84				_	— <u> </u>	PIVC 11.337 STA 102+69.957 HP 10.963	EVC 10.806				STA 103+75.784 LP 9.748 X 8 - 1.02		0
ωш	P.C.	01:00	.44	EVC 10.048 VC 9.707	819				TA	E S S H	ý.			BVC 9.858	5.7		
	0. 0.	3VC		C 1 9.7	63.		0	2	رب ا		Ш			ů Ú	8 3+7		ç
		100 H		– EVC 10.0 BVC 9.707	01+ 96			2		ST				B	10,47.		
		TA			0.1 9.1		L								A 0 F 1 82 , 82 ,	VC	
0	\downarrow \parallel	N 100			STA 101+63.819 _LP 9.196			5%		0		-1	.400%		^ω ^Ξ K1	1.2	
		.34070		-8.542%			+3.3			VC			100%				
	,	5 	0 VC 12.2						K.	16.1				1		-0	
			12.2		- o												
							i o	0/0/01									
																64	
					300) > 0			EXI	ISTING GROUN	ID LINE	_		9.2	
					0, o	5)				_						<u>4</u> ≥	
0. LEFT SE	-0.020 -0.036 -0.036	-0.020	-0.020		101+70.008 DIV/C 8 507	-0.020	-0.020	-0.060	-0.060	-0.020	-0.020					TA 104+02.55 PIVC 9.26	
						- י י ס. ס										STA	
RIGHT SI	E 0.020 0.036 0.036	0.020	-0.020		STA	-0.020	0.020	0.060	0.060	0.020	-0.020						
-0.020																	
0 0	R 100 LT							R 75	LT.								
0000	50° 19' 24"			39° 12' 48"													
250	RC 100+12.139 BC 100+20.695 FS 100+27.695 FS 100+33.085	.641	NC 100+87.530			NC 101+82.758	100.	424	.152	.152	NC 102+87.818						
NC 99+73.250	RC 100+12.139 BC 100+20.695 FS 100+27.695 FS 100+33.085	RC 100+40.005	0+87			1+82	RC 102+06.091 BC 102-15 424	102+29.424	FS 102+41.152	EC 102+55.152 RC 102+64.485	2+87						
66	0 100 100 100	2100	100			101 0	102	102	102	01 05 0 1 05	3 102						
N N	BC FS FS		N			NC	BC BC	FS	E	RC	NC						
	0+00	100+50	101+	00	101+50	1/	02+00		102+	F0	1.0/	3+00		03+50	10	4+00	1(

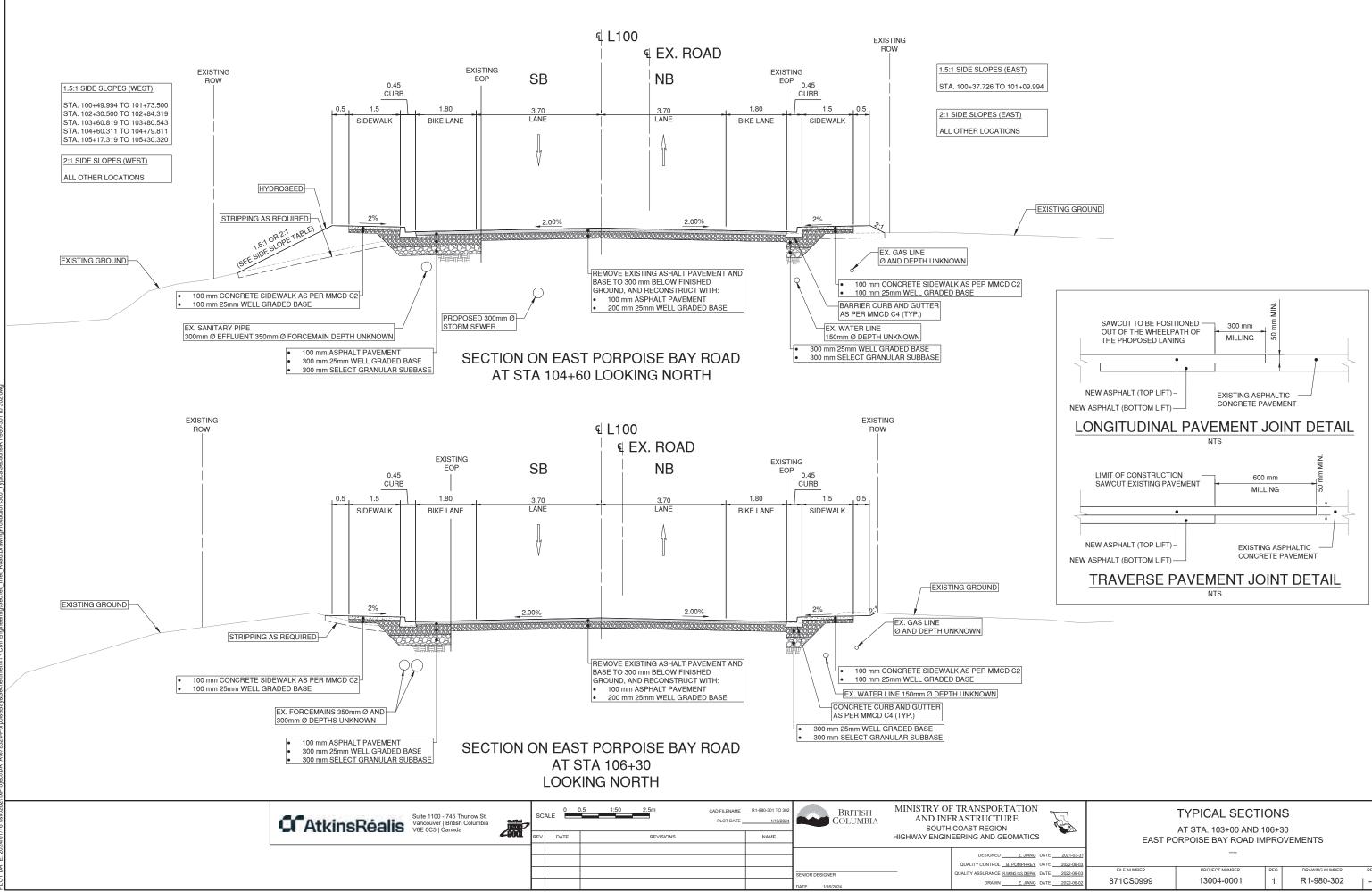

C AtkinsRéalis	Suite 1100 - 745 Thurlow St. Vancouver British Columbia V6E 0C5 Canada	<u>کم</u>	SCA		10 H 1:1000 1 V 1:100	50m 5m	CAD FILENAME	R1-980-201 TO 202 1/16/2024	BRITISH COLUMBIA		TRANSPORT RASTRUCTUI
		49001	REV	DATE		REVISIONS		NAME		HIGHWAY ENGIN	EERING AND GEO
											DESIGNED
											QUALITY CONTROL
									SENIOR DESIGNER		QUALITY ASSURANCE RW
									DATE 1/16/2024		DRAWN

DESIGN SPEED 50 km/h

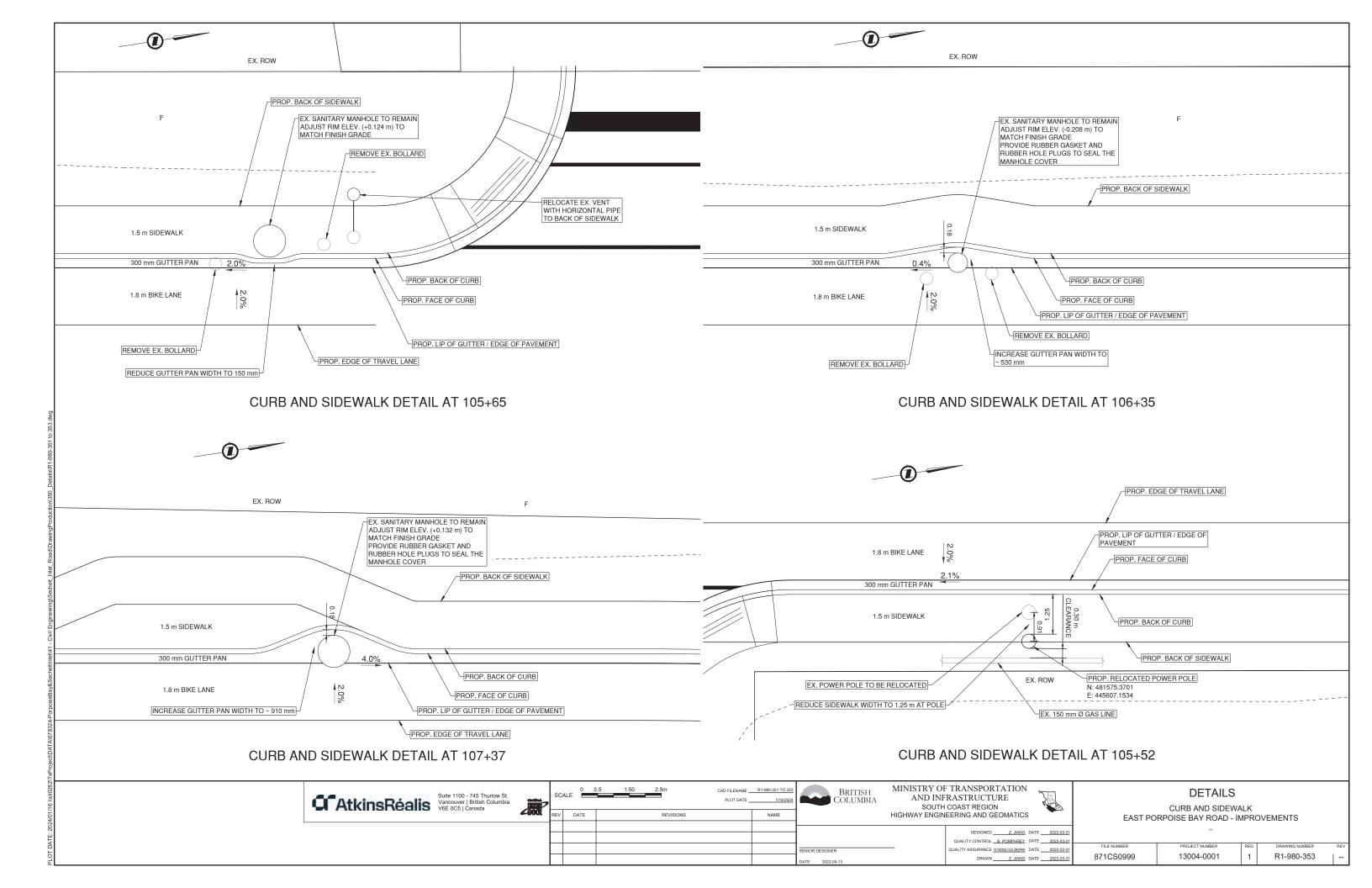


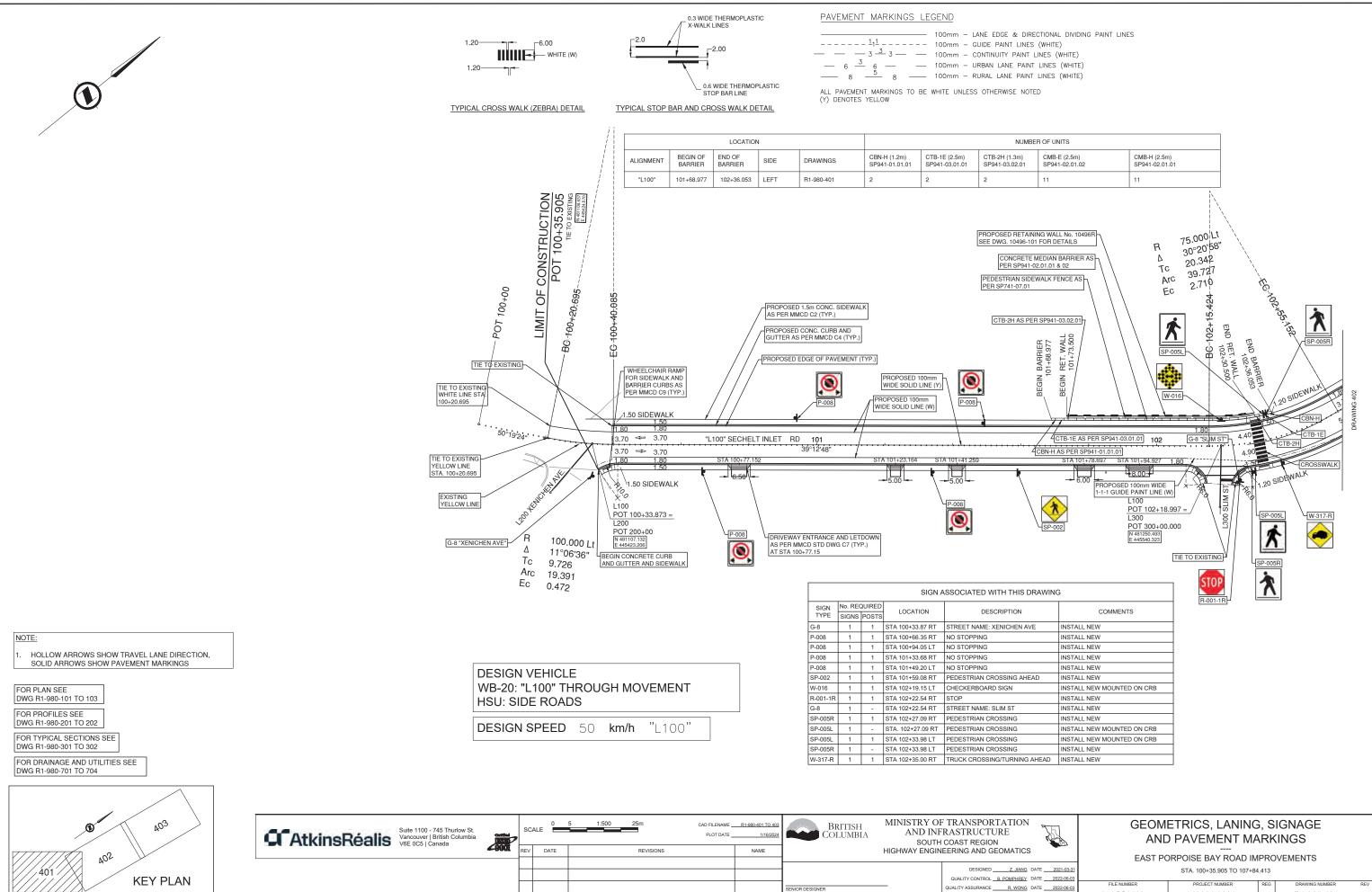
1

ATION E		PROFILES						
MATICS	EAST PORPOISE BAY ROAD IMPROVEMENTS							
Z. JIANG DATE 2021-03-31 POMPHREY DATE 2022-06-03		STA. 105+50 TO 107+8	1					
NG/SS.DEEPAK DATE 2022-06-03 Z. JIANG DATE 2022-06-02	FILE NUMBER 871CS0999	PROJECT NUMBER 13004-0001	REG 1	drawing number R1-980-202	REV			



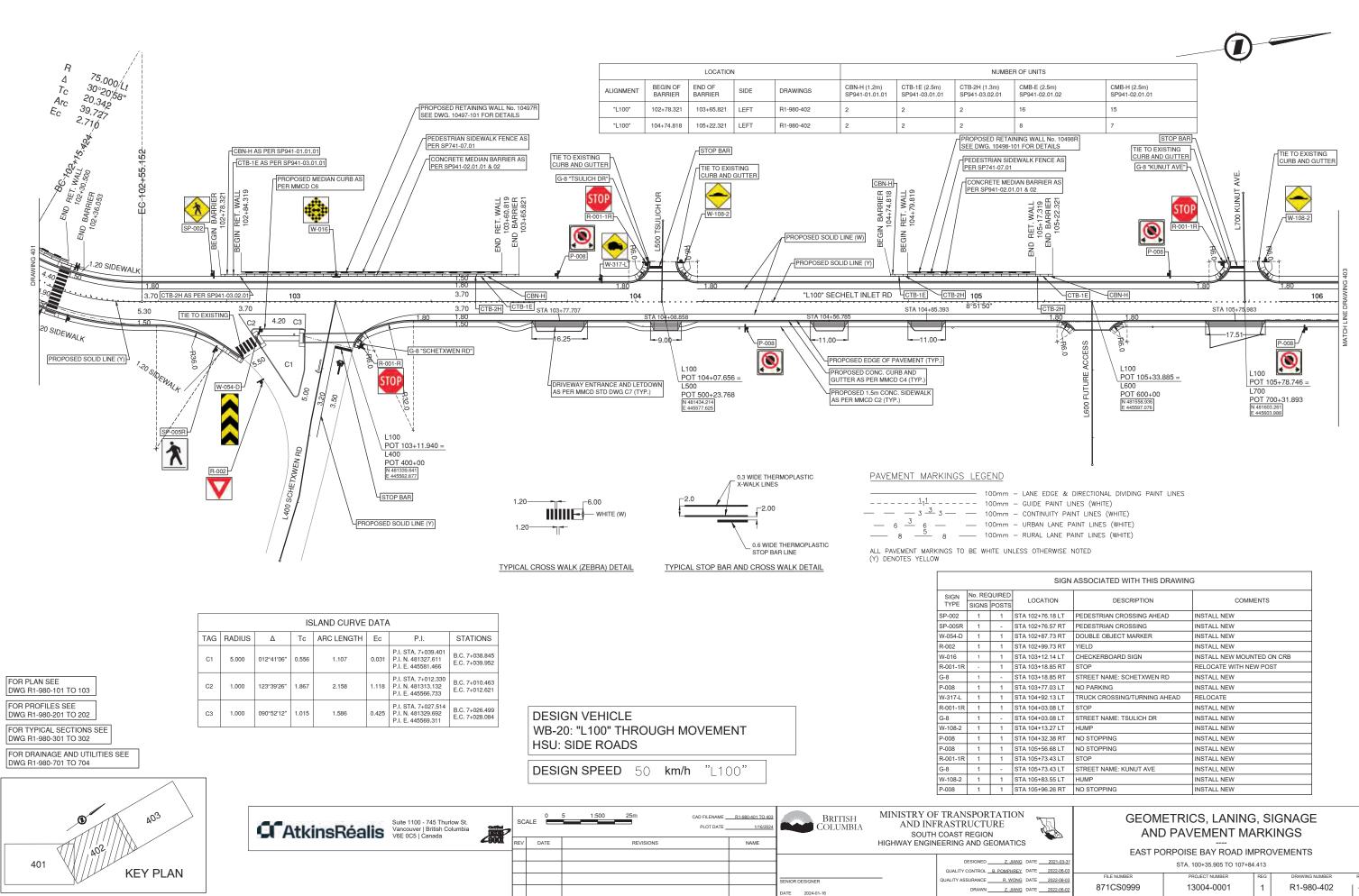
SLIM	STREET				
	CONSTRUCTION D EX, GROUND ON SLIM ST 3. R1-980-302 FOR PAVEME			DUND	
TION				0	
		TYPICAL SECTI	-		
NATICS	EAST PC	AT STA. 101+00 AND 1 DRPOISE BAY ROAD IN			
Z. JIANG DATE					
<u>MPHREY</u> DATE <u>2022-06-03</u> <u>/SS.DEEP/K</u> DATE <u>2022-06-03</u> <u>Z. JIANG</u> DATE <u>2022-06-02</u>	FILE NUMBER 871CS0999	PROJECT NUMBER 13004-0001	REG	DRAWING NUMBER	REV


1.5:1 SIDE SLOPES (EAST) STA. 100+37.726 TO 101+09.994


2:1 SIDE SLOPES (EAST)

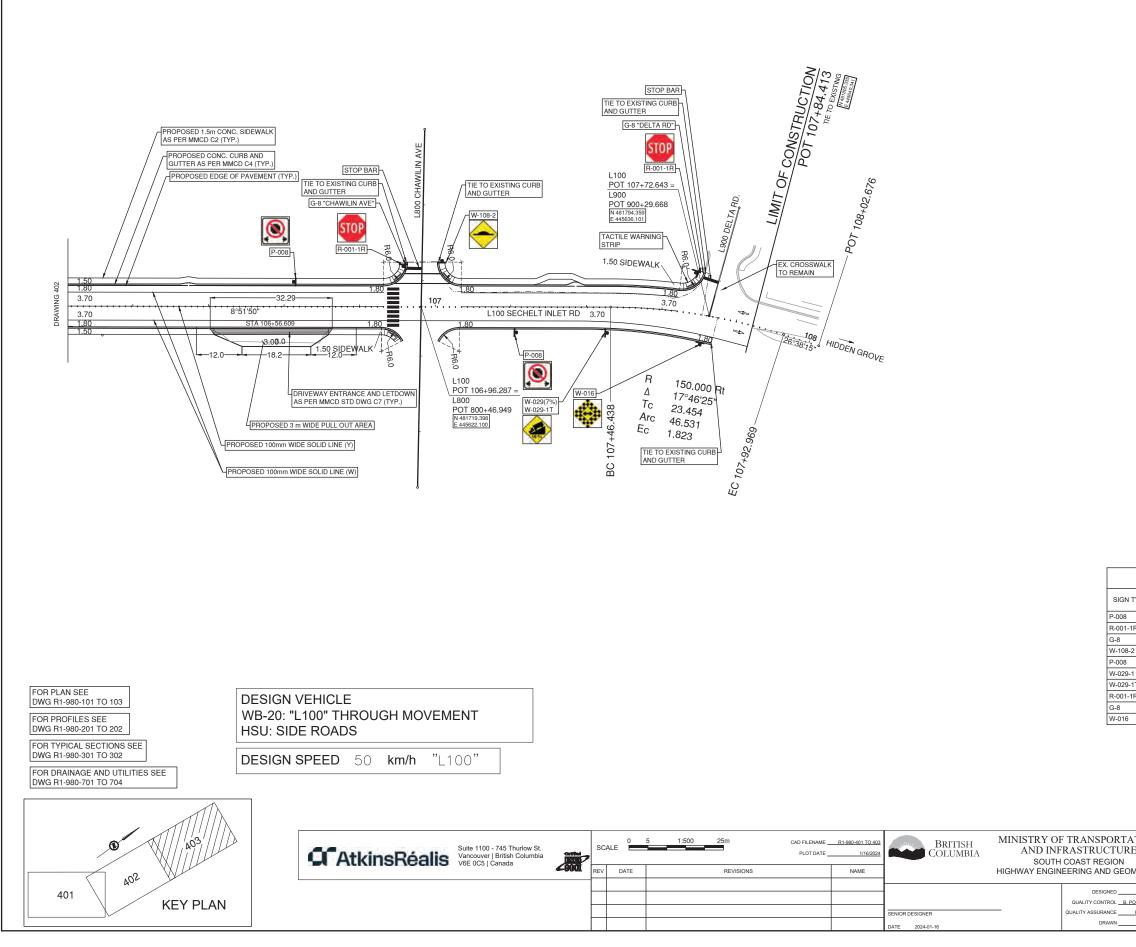
ALL OTHER LOCATIONS

TION		TYPICAL SECT	ION	S	
MATICS		AT STA. 103+00 AND DRPOISE BAY ROAD I		•	
Z. JIANG DATE					
SSDEEPWK DATE2022-06-03	FILE NUMBER	PROJECT NUMBER	REG	DRAWING NUMBER	REV
Z. JIANG DATE 2022-06-02	871CS0999	13004-0001	1	R1-980-302	



871CS0999

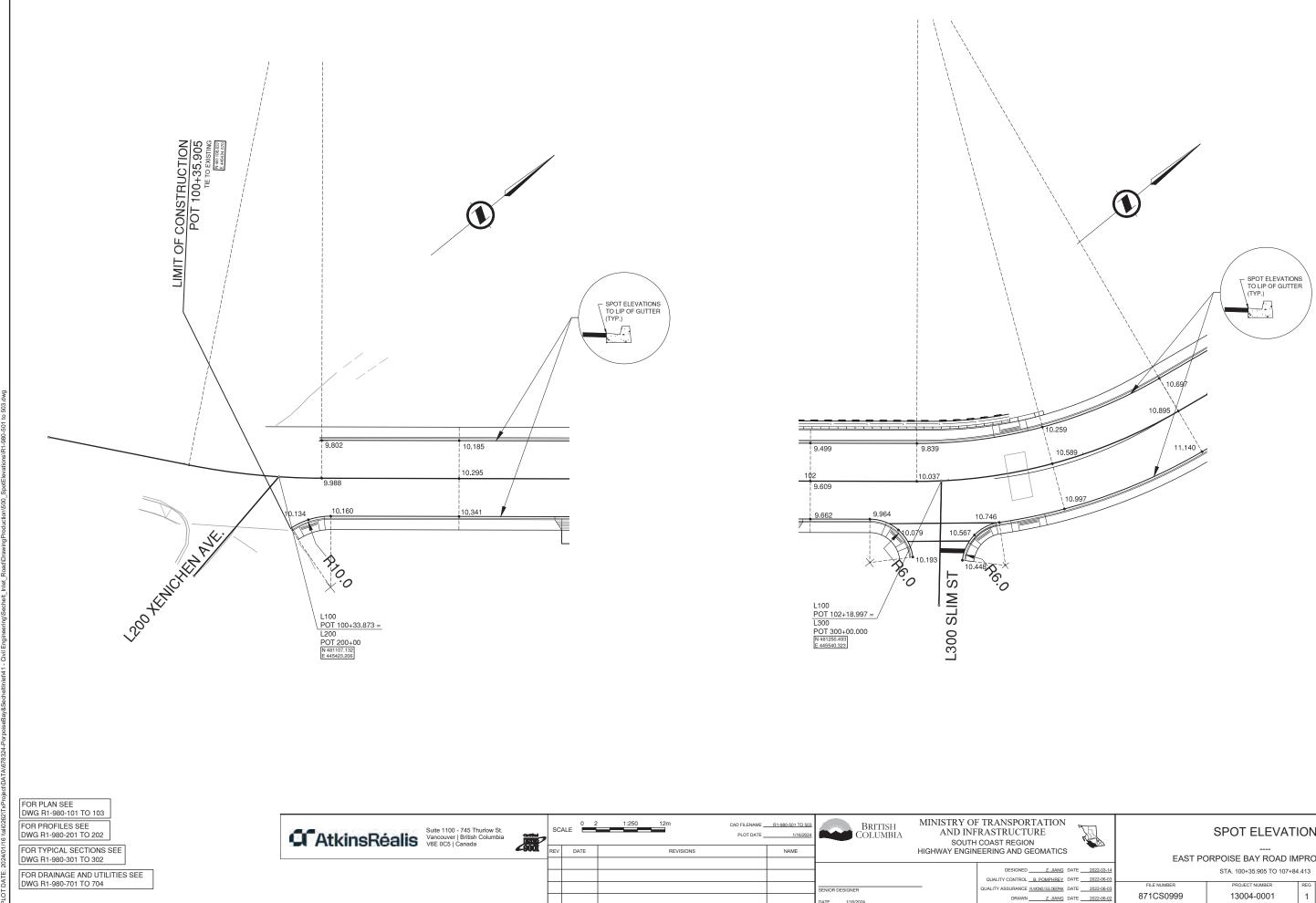
DRAWN Z. JIANG DATE 2022-06-02


13004-0001

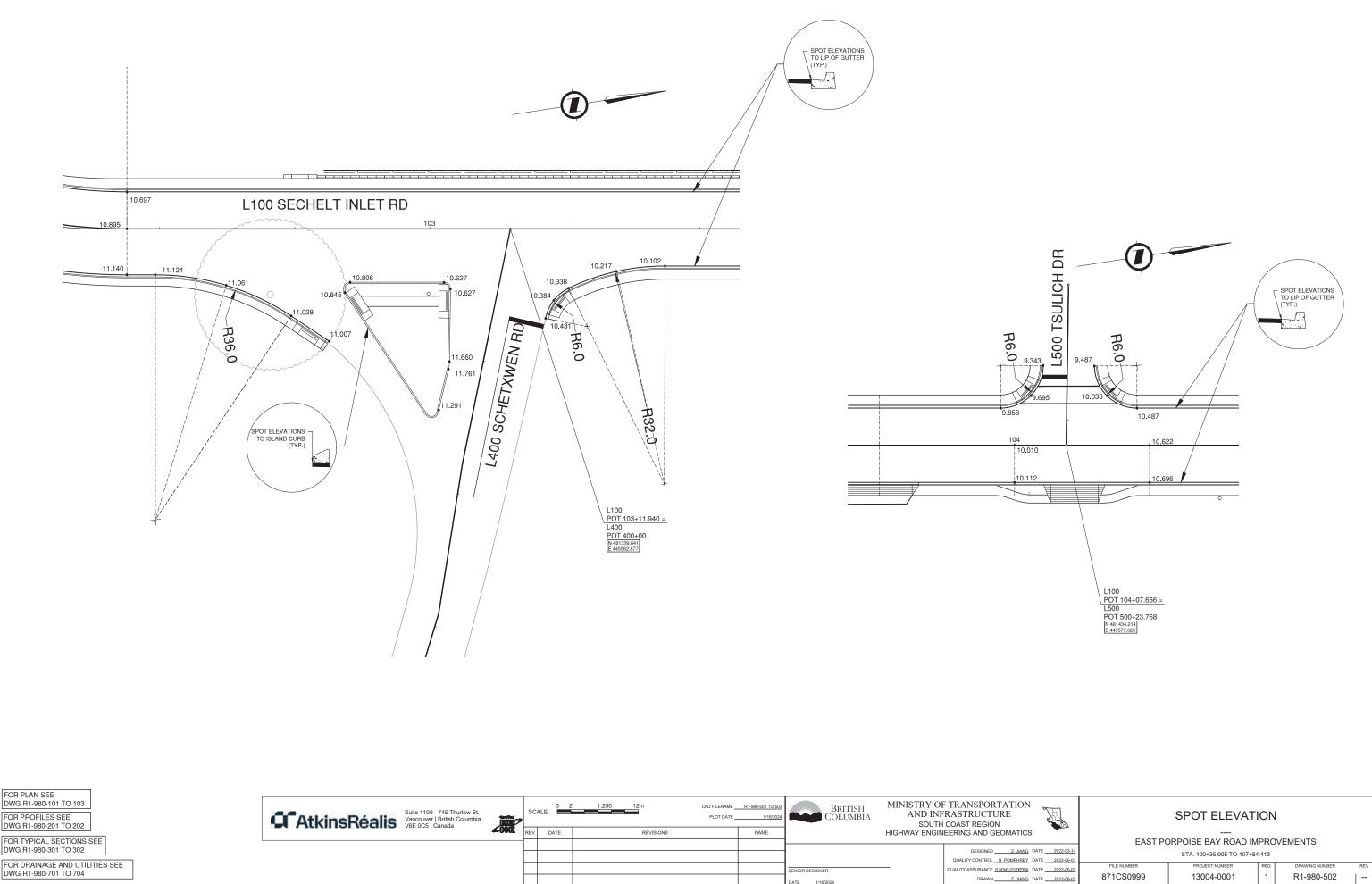
R1-980-401

	SIGN	ASSOCIATED WITH THIS DRAWING	3
RED	LOCATION	DESCRIPTION	COMMENTS
1	STA 102+76.18 LT	PEDESTRIAN CROSSING AHEAD	INSTALL NEW
-	STA 102+76.57 RT	PEDESTRIAN CROSSING	INSTALL NEW
1	STA 102+87.73 RT	DOUBLE OBJECT MARKER	INSTALL NEW
1	STA 102+99.73 RT	YIELD	INSTALL NEW
1	STA 103+12.14 LT	CHECKERBOARD SIGN	INSTALL NEW MOUNTED ON CRB
1	STA 103+18.85 RT	STOP	RELOCATE WITH NEW POST
-	STA 103+18.85 RT	STREET NAME: SCHETXWEN RD	INSTALL NEW
1	STA 103+77.03 LT	NO PARKING	INSTALL NEW
1	STA 104+92.13 LT	TRUCK CROSSING/TURNING AHEAD	RELOCATE
1	STA 104+03.08 LT	STOP	INSTALL NEW
-	STA 104+03.08 LT	STREET NAME: TSULICH DR	INSTALL NEW
1	STA 104+13.27 LT	HUMP	INSTALL NEW
1	STA 104+32.38 RT	NO STOPPING	INSTALL NEW
1	STA 105+56.68 LT	NO STOPPING	INSTALL NEW
1	STA 105+73.43 LT	STOP	INSTALL NEW
-	STA 105+73.43 LT	STREET NAME: KUNUT AVE	INSTALL NEW
1	STA 105+83.55 LT	HUMP	INSTALL NEW
1	STA 105+96.26 RT	NO STOPPING	INSTALL NEW

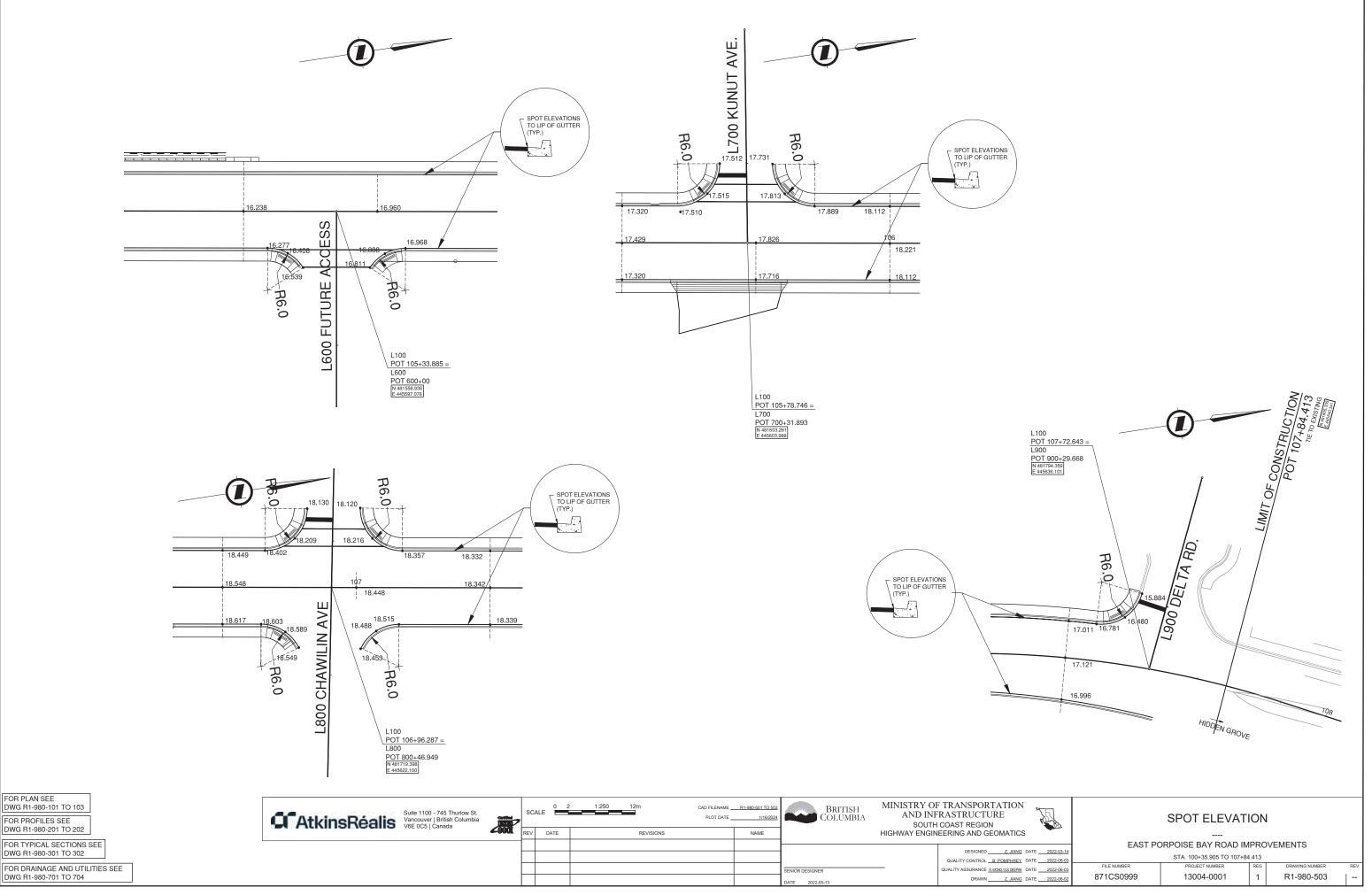
ATIC RE	4			ETRICS, LANIN) PAVEMENT N	,		
	NG DATE		EAST PC	DRPOISE BAY ROAD STA. 100+35.905 TO 107-		OVEMENTS	
POMPHR R WO	REY DATE	2022-06-03	FILE NUMBER	PROJECT NUMBER	REG	DRAWING NUMBER	REV
	NG DATE	2022-06-02	871CS0999	13004-0001	1	R1-980-402	

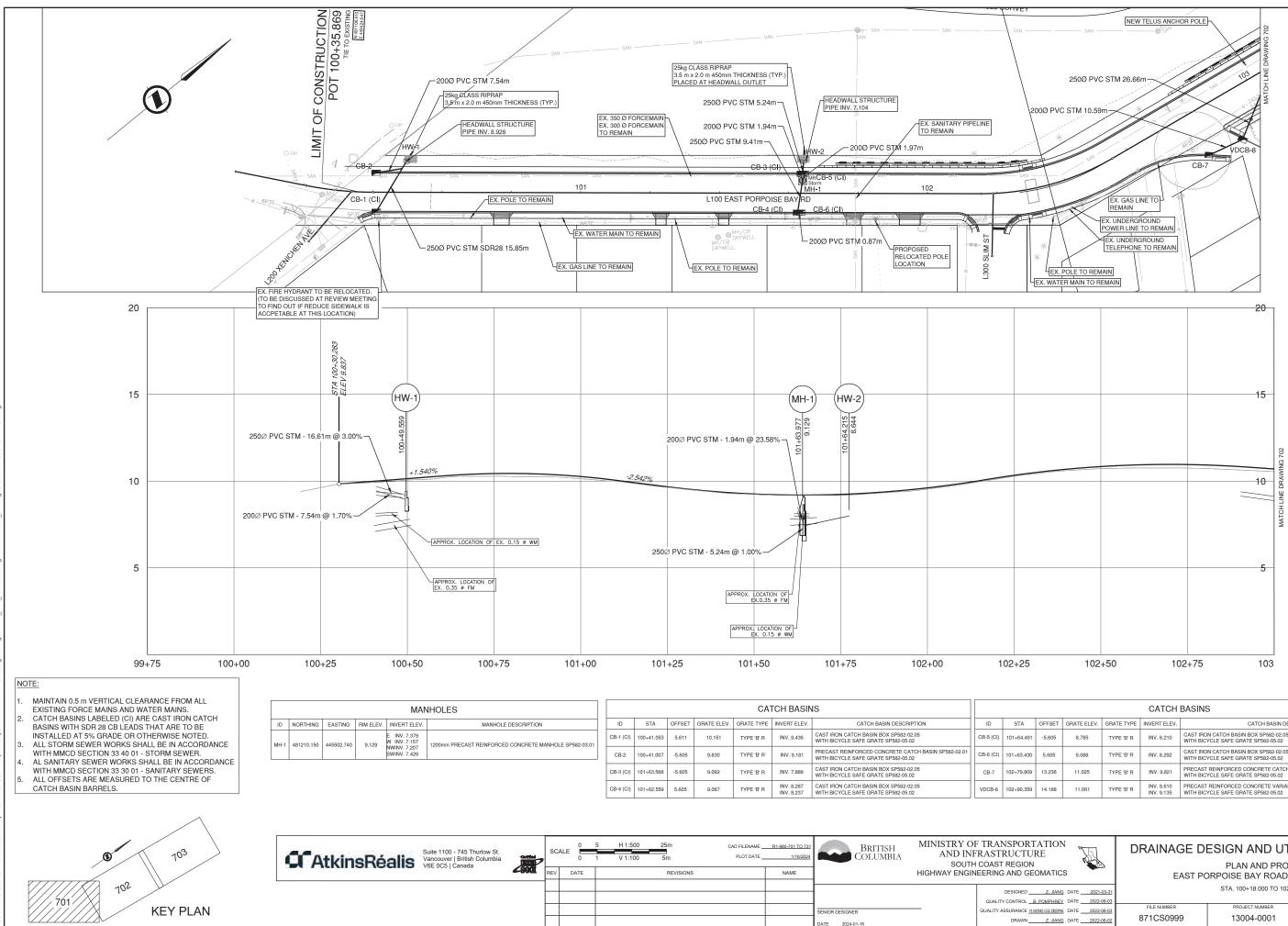


SIGN T P-008 R-001-1F G-8 W-108-2 P-008 W-029-1 W-029-1^{*} R-001-1F G-8 W-016

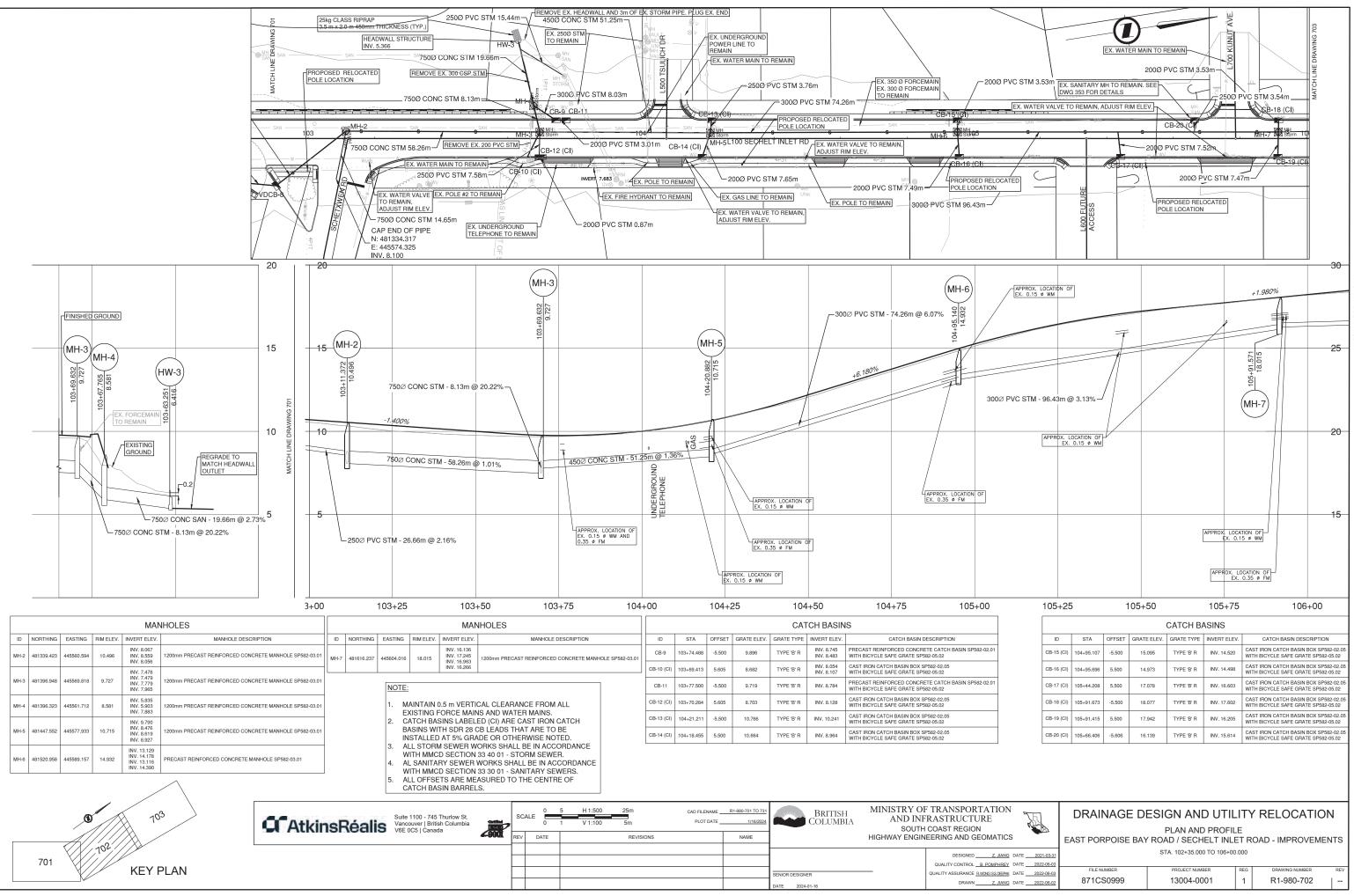


			SIGN A	SSOCIATED WITH THIS DRAWIN	NG
TYPE	No. REC	UIRED	LOCATION	DESCRIPTION	COMMENTS
I I F E	SIGNS	POSTS	LOCATION	DESCRIPTION	COMMENTS
	1	1	STA 106+62.93 LT	NO PARKING	INSTALL NEW
R	1	1	STA 106+91.57 LT	STOP	INSTALL NEW
	1	-	STA 106+91.57 LT	STREET NAME: CHAWILIN AVE	INSTALL NEW
2	1	1	STA 107+01.78 LT	HUMP	INSTALL NEW
	1	1	STA 107+21.10 RT	NO STOPPING	INSTALL NEW
1	1	1	STA 107+45 RT	STEEP GRADE WARNING (7%)	INSTALL NEW
1T	1	1	STA 107+45 RT	TRUCKS GEAR DOWN	INSTALL NEW
R	1	1	STA 107+68.88 LT	STOP	INSTALL NEW
	1	-	STA 107+68.88 LT	STREET NAME: DELTA RD	INSTALL NEW
	1	1	STA 107+71.50 RT	CHECKBOARD SIGN	INSTALL NEW

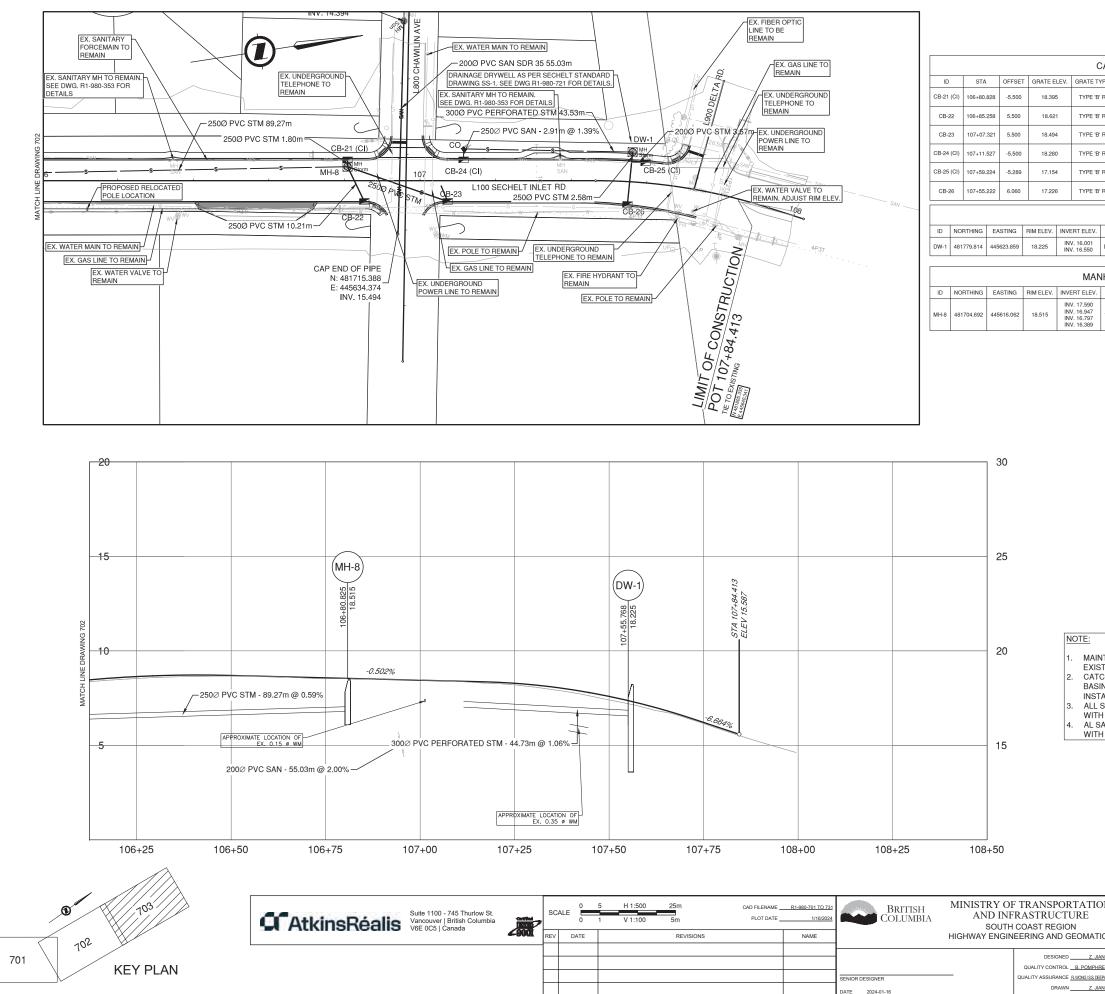

NSPORTATION RUCTURE REGION GAND GEOMATICS		RICS, LANING, S AVEMENT MARI			
	EAST PC	RPOISE BAY ROAD IN	IPRC	VEMENTS	
DESIGNED <u>Z. JIANG</u> DATE <u>2021-03-31</u> (CONTROL B. POMPHREY DATE 2022-06-03		STA. 100+35.905 TO 107+84			
SSURANCE R. WONG DATE 2022-06-03	FILE NUMBER	PROJECT NUMBER	REG	DRAWING NUMBER	REV
DRAWN Z. JIANG DATE 2022-06-02	871CS0999	13004-0001	1	R1-980-403	


TION E		SPOT ELEVAT	ION	1	
MATICS	EAST P	 ORPOISE BAY ROAD IM	IPRO	VEMENTS	
Z. JIANG DATE 2022-0	-	STA. 100+35.905 TO 107+84	1.413		
OMPHREY DATE 2022-0 G(\$\$.00000000000000000000000000000000000	FILE NUMBER	PROJECT NUMBER 13004-0001	REG	drawing number R1-980-501	REV

Z. JIANG DATE2022-06-02	871CS0999	13004-0001	1	R1-980-502		
S&DEEPAK DATE	FILE NUMBER	PROJECT NUMBER	REG	DRAWING NUMBER	REV	L



01 DATE: 2024/01/16 \sil0262\TxProjed\DATA\678324-PorpoiseBay&SechetInhet\41 - Civil Engineering\SechetLinhet_Road\DrawingProduction\500_SpotElevations\R1-980-501

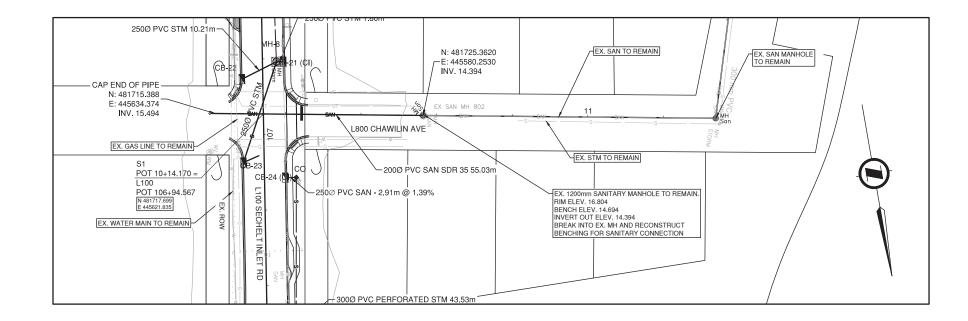


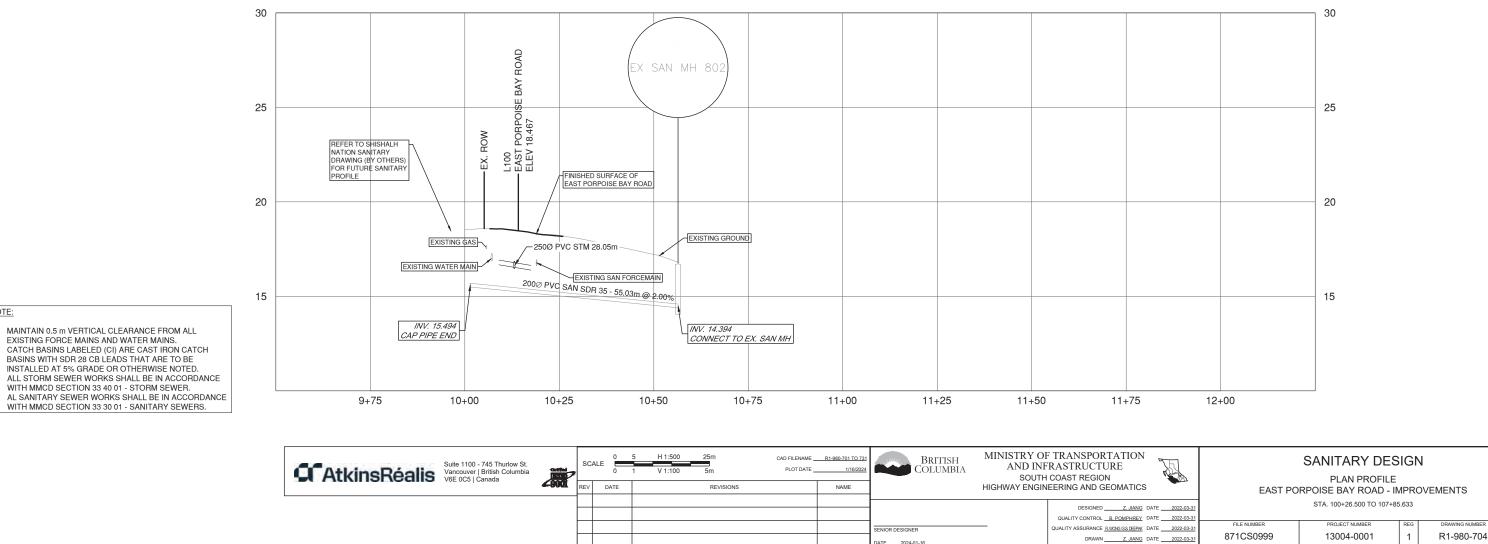
			CATCH	BASINS
DFFSET	GRATE ELEV.	GRATE TYPE	INVERT ELEV.	CATCH BASIN DESCRIPTION
-5.605	8.785	TYPE 'B' R	INV. 8.210	CAST IRON CATCH BASIN BOX SP582-02.05 WITH BICYCLE SAFE GRATE SP582-05.02
5.605	9.088	TYPE 'B' R	INV. 8.292	CAST IRON CATCH BASIN BOX SP582-02.05 WITH BICYCLE SAFE GRATE SP582-05.02
13.236	11.025	TYPE 'B' R	INV. 9.821	PRECAST REINFORCED CONCRETE CATCH BASIN SP582-02.01 WITH BICYCLE SAFE GRATE SP582-05.02
14.188	11.061	TYPE 'B' R	INV. 9.610 INV. 9.135	PRECAST REINFORCED CONCRETE VARIABLE DEPTH CATCH BASIN SP582-02.02 WITH BICYCLE SAFE GRATE SP582-05.02

TION	SE.	DRAINAGE DI	ESIGN AND UTIL	IT).	(RELOCATION	
MATICS	\$	EAST PC	PLAN AND PROFIL PROISE BAY ROAD IM		VEMENTS	
Z. JIANG DAT			STA. 100+18.000 TO 102+35	.000		
OMPHREY DAT	TE	FILE NUMBER	PROJECT NUMBER	REG	DRAWING NUMBER	REV
Z. JIANG DAT		871CS0999	13004-0001	1	R1-980-701	

MATCH LINE DRAWING

CATCH BASINS				
TE TYPE	INVERT ELEV.	CATCH BASIN DESCRIPTION		
PE 'B' R	INV. 17.770	CAST IRON CATCH BASIN BOX SP582-02.05 WITH BICYCLE SAFE GRATE SP582-05.02		
PE 'B' R	INV. 17.351	PRECAST REINFORCED CONCRETE CATCH BASIN SP582-02.01 WITH BICYCLE SAFE GRATE SP582-05.02		
PE 'B' R	INV. 16.669	CAST IRON CATCH BASIN BOX SP582-02.05 WITH BICYCLE SAFE GRATE SP582-05.02		
PE 'B' R	INV. 16.455	CAST IRON CATCH BASIN BOX SP582-02.05 WITH BICYCLE SAFE GRATE SP582-05.02		
PE 'B' R	INV. 16.679	CAST IRON CATCH BASIN BOX SP582-02.05 WITH BICYCLE SAFE GRATE SP582-05.02		
PE 'B' R	INV. 16.383	PRECAST REINFORCED CONCRETE CATCH BASIN SP582-02.01 WITH BICYCLE SAFE GRATE SP582-05.02		

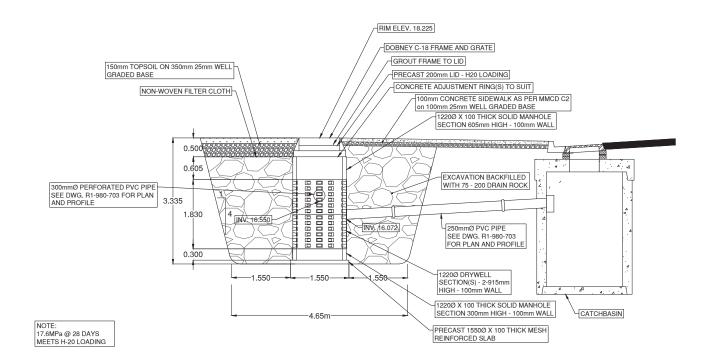

DRYWELLS


LEV.	DRYWELL DESCRIPTION	1
001 50	DRAINAGE DRYWELL MANHOLE AS PER D.O.S. STD. DWG. SS-1. SECHELT MANHOLE FRAME AND COVER PER D.O.S. STD. DWG. SS-4.	

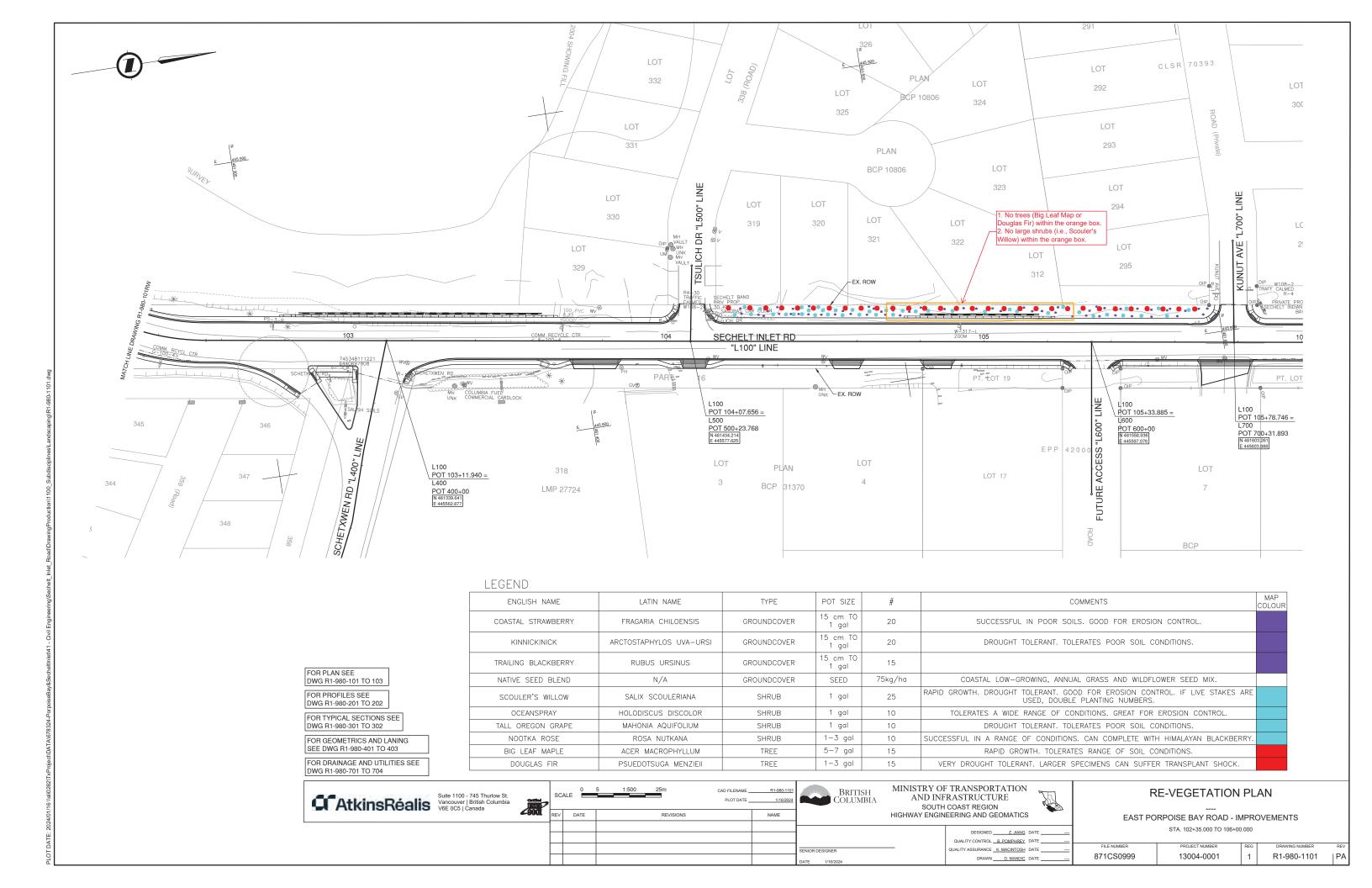
1AN	IANHOLES			
EV.	MANHOLE DESCRIPTION			
90 47 97 89	1200mm PRECAST REINFORCED CONCRETE MANHOLE SP582-03.01			

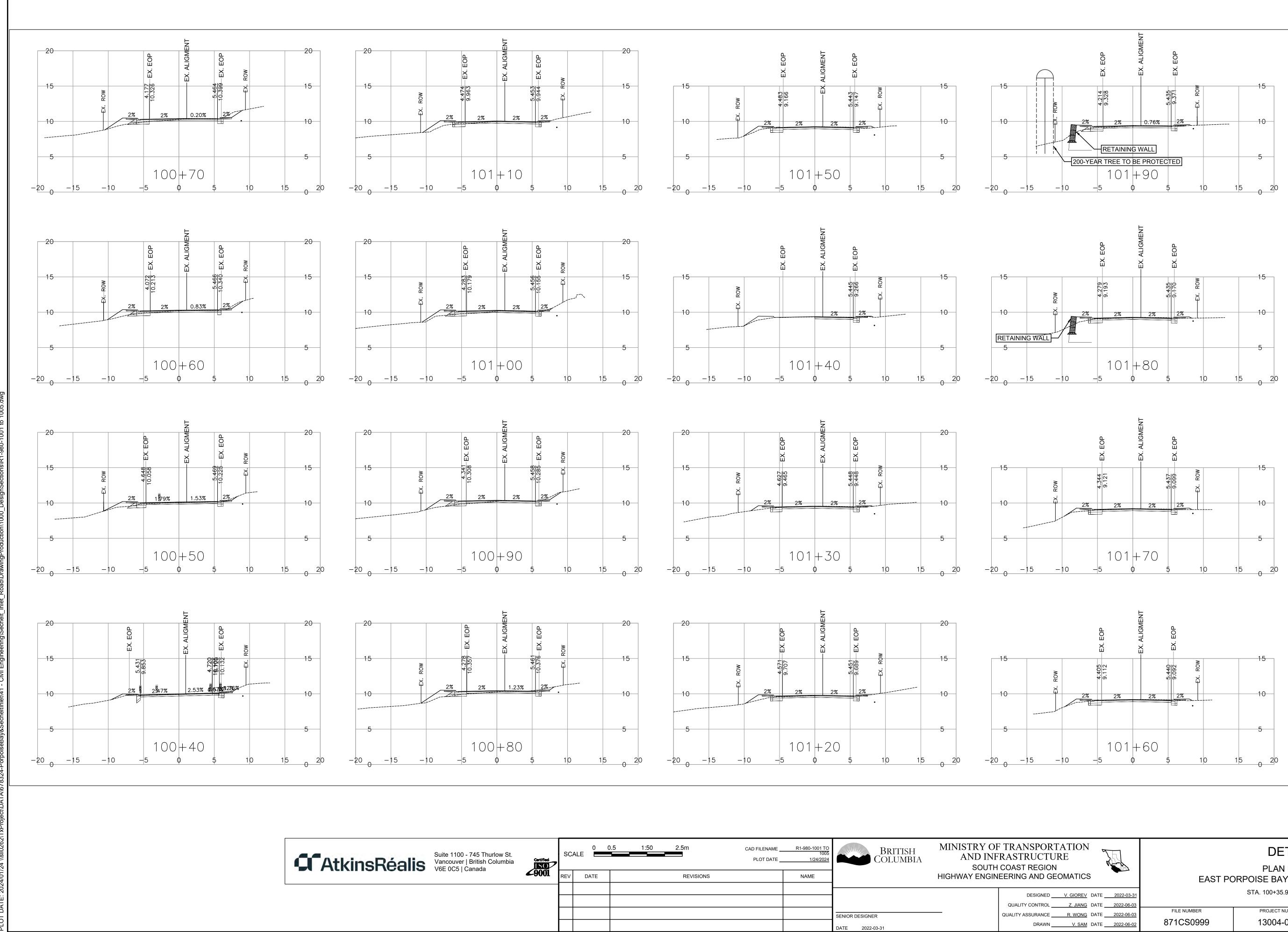
MAINTAIN 0.5 m VERTICAL CLEARANCE FROM ALL EXISTING FORCE MAINS AND WATER MAINS. CATCH BASINS LABELED (CI) ARE CAST IRON CATCH BASINS WITH SDR 28 CB LEADS THAT ARE TO BE INSTALLED AT 5% GRADE OR OTHERWISE NOTED. ALL STORM SEWER WORKS SHALL BE IN ACCORDANCE WITH MMCD SECTION 33 40 01 - STORM SEWER. AL SANITARY SEWER WORKS SHALL BE IN ACCORDANCE WITH MMCD SECTION 33 30 01 - SANITARY SEWERS.

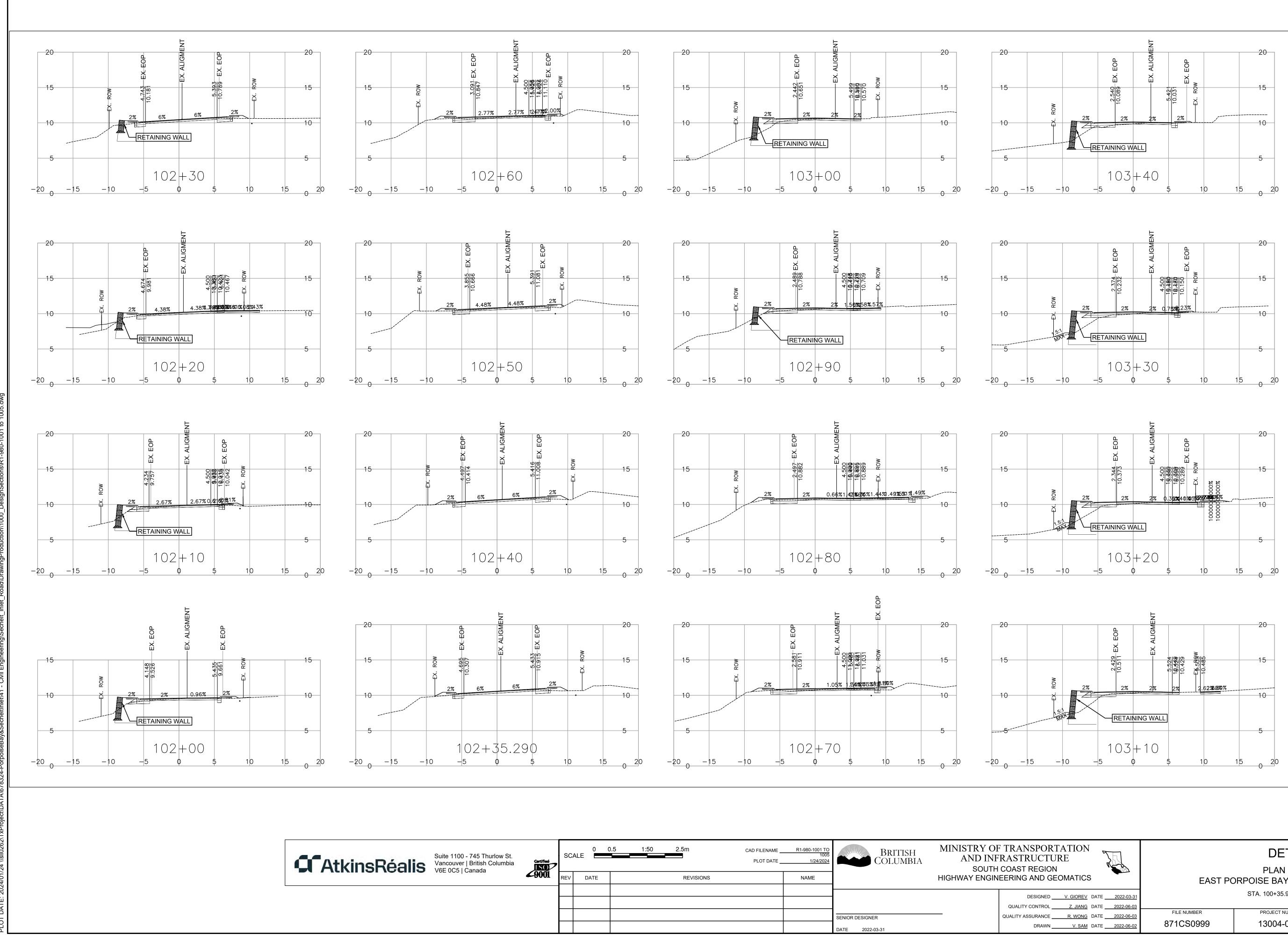
ATION E	DRAINAGE DI	ESIGN AND UTII		Y RELOCATIO	N
MATICS	EAST PC	PLAN AND PROFI		VEMENTS	
Z. JIANG DATE 2021-03-31		STA. 106+00.000 TO 107+8	4.000		
POMPHREY DATE 2022-06-03 NG/SS.DEEPAK DATE 2022-06-03	FILE NUMBER	PROJECT NUMBER	REG	DRAWING NUMBER	REV
Z. JIANG DATE2022-06-02	871CS0999	13004-0001	1	R1-980-703	



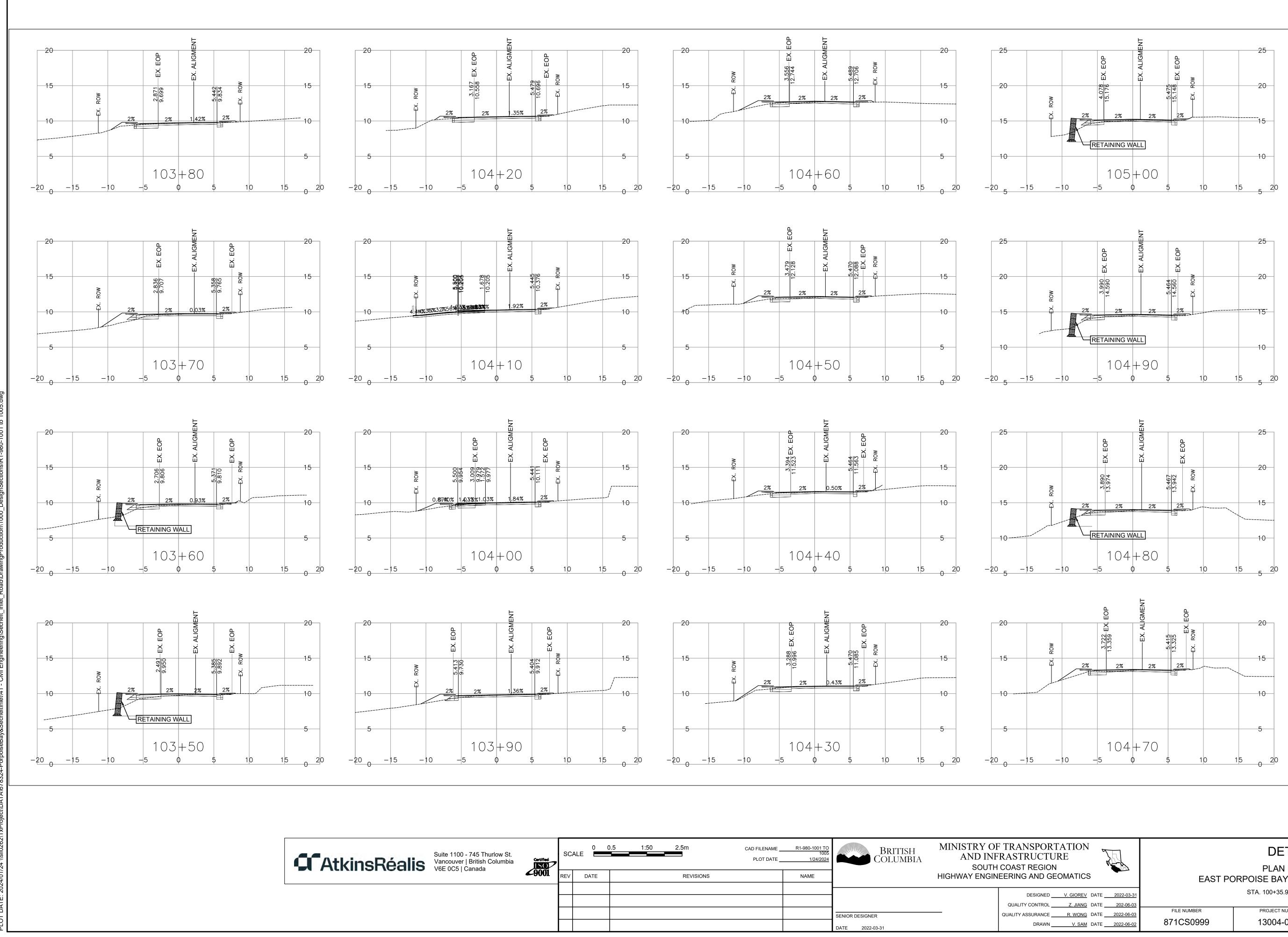
2024-01-16


NOTE:

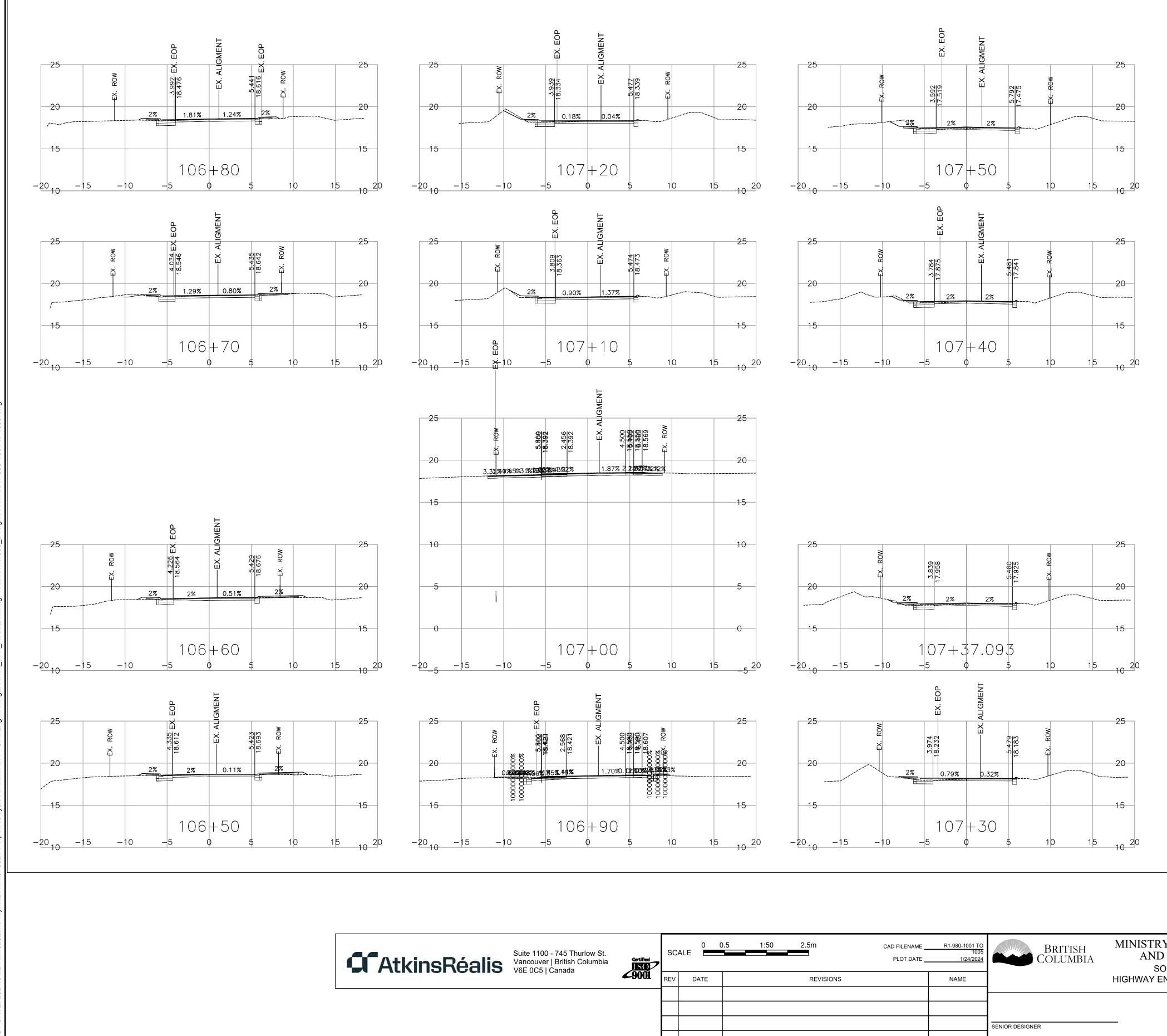

Z. JIANG DATE 2022-03-31		STA. 100+26.500 TO 107+85	5.633		
MPHREY DATE 2022-03-31					
S& DEEPAK DATE 2022-03-31	FILE NUMBER	PROJECT NUMBER	REG	DRAWING NUMBER	REV
Z. JIANG DATE2022-03-31	871CS0999	13004-0001	1	R1-980-704	PA


DRAINAGE DRYWELL DETAIL

01/	AtkinsRéalis	Suite 1100 - 745 Thurlow St. Vancouver British Columbia V6E 0C5 Canada		SCAL		0.5	1:50			AD FILENAME	R1-980-701 TO 731 1/16/2024	BRITISH COLUMBIA	AND IN SOUTI	DF TRANSPORTATION IFRASTRUCTURE TH COAST REGION	<u>N</u>	DRAINAGE D	ESIGN AND UT DRAINAGE - DET		RELOCATIO	ON
			4-90M	REV	DATE			REVISIONS	1		NAME		HIGHWAY ENGI	INEERING AND GEOMATICS		EAST PC	ORPOISE BAY ROAD	IMPRO	/EMENTS	
				\vdash										DESIGNED <u>Z. JIANG</u> DAT QUALITY CONTROL <u>B. POMPHREY</u> DAT						
												SENIOR DESIGNER		QUALITY ASSURANCE RWONG/S&DEEPWK DAT		FILE NUMBER	PROJECT NUMBER	REG	DRAWING NUMBER	REV
												DATE 2024-01-16		DRAWN Z. JIANG DAT	E2022-06-02	871CS0999	13004-0001	1	R1-980-721	



A.St. mbia Scale 0.0.5 1:50 2.5m Cad FileNAME R1:980-1001 TO 1000 AMD INSTRY OF TRANSPORTATION AND INFRASTRUCTURE SOUTH COAST REGION HIGHWAY ENGINEERING AND GEOMATICS DETAILS PLAN PROFILE Rev Date Revisions NAME NAME Designee South Coast Region Highway Engineering and Geomatics PLAN PROFILe PLAN PROFILe PLAN PROFILe V Date Revisions NAME Designeering and Geomatics Name State State PLAN PROFILe <													
Lesson NAME Rev Date Revisions NAMe Indication Indication	v St.	Certified	SCAL	0 (0.5 1:50 2.5m	 1005				DETAILS			
Image: Constraint of the number of the nu	mbia	9001	REV	DATE	REVISIONS		COLUMBIA						
Image: Designed with the series of the se									EAST PC			EMENIS	
SENIOR DESIGNER QUALITY ASSURANCE R. WONG DATE 2022-06-03 971 C \$ 0000 12004 0001 1 D1 090 1001 1													
							SENIOR DESIGNER	 	FILE NUMBER 871CS0999	PROJECT NUMBER 13004-0001	REG 1	DRAWING NUMBER R1-980-1001	REV


St. ıbia	Gertified Stor 9001	SCAL	0 0. E	5 1:50	2.5m	CAD FILENAME PLOT DATE	R1-980-1001 TO 1005 1/24/2024	BRITISH COLUMBIA	AND INF	F TRANSPORTA FRASTRUCTUR	9		DETAILS PLAN PROFI			
	~9001	REV	DATE		REVISIONS		NAME			IEERING AND GEC	MATICS	EAST PO	ORPOISE BAY ROAD		JEMENTS	
		\vdash									V. GIOREV DATE <u>2022-03-31</u> Z. JIANG DATE <u>2022-06-03</u>		STA. 100+35.905 TO 10	7+84.413		
								SENIOR DESIGNER			<u>R. WONG</u> DATE <u>2022-06-03</u>	FILE NUMBER	PROJECT NUMBER	REG	DRAWING NUMBER	REV
								DATE 2022-03-31		DRAWN	V. SAM DATE2022-06-02	871CS0999	13004-0001	1	R1-980-1002	

St. Ibia	ertified SO 001	 DATE	0.5 1	:50 2	.5m REVISIONS	D FILENAME PLOT DATE	R1-980-1001 TO 1005 1/24/2024 NAME		British olumbia	MINISTRY OF TRANS AND INFRASTRU SOUTH COAST R HIGHWAY ENGINEERING A	ICTURE EGION		EAST P	DETAILS PLAN PROFII ORPOISE BAY ROAD	LE	'EMENTS	
												<u>EV</u> DATE <u>2022-03-31</u> NG DATE <u>202-06-03</u>		STA. 100+35.905 TO 10			
	ŀ							SENIOR DESIGNER DATE 2022-03-3	31			NG DATE 2022-06-03 AM DATE 2022-06-02	FILE NUMBER 871CS0999	PROJECT NUMBER 13004-0001	REG 1	drawing number R1-980-1003	REV

[,] St. nbia	Certified	SCALE	0.5 1:50 2.5m	CAD FILENAME	R1-980-1001 TO 1005 1/24/2024	BRITISH COLUMBIA	MINISTRY OF TRANSPORTATION AND INFRASTRUCTURE	SE		DETAILS			
nbia	ISO 9001	REV DATE	REVISIONS		NAME	COLUMBIA	SOUTH COAST REGION HIGHWAY ENGINEERING AND GEOMATICS		EAST DO	PLAN PROFIL PRPOISE BAY ROAD			
							DESIGNED V. GIOREV DA	TE <u>2022-03-31</u>	LAST FC	STA. 100+35.905 TO 107			
							QUALITY CONTROL Z. JIANG DA		FILE NUMBER	PROJECT NUMBER	REG	DRAWING NUMBER	REV
						SENIOR DESIGNER DATE 2022-03-31		TE2022-06-02	871CS0999	13004-0001	1	R1-980-1004	

w St. Imbia	Certified	SCA	0 0.5	5 1:50 2.5m	CAD FILENAME	R1-980-1001 TO 1005 1/24/2024	BRITISH COLUMBIA		F TRANSPORTATION RASTRUCTURE	SE		DETAILS			
imbia	Gertified 9001	REV	DATE	REVISIONS		NAME	COLOMBIA	SOUTH	COAST REGION EERING AND GEOMATICS		EAST DO	PLAN PROFILE RPOISE BAY ROAD II			
									DESIGNED V. GIOREV D		EASTFO	STA. 100+35.905 TO 107+		EMENTS	
										DATE					
							SENIOR DESIGNER			DATE <u>2022-06-03</u> DATE <u>2022-06-02</u>	FILE NUMBER 871CS0999	PROJECT NUMBER 13004-0001	REG	drawing number R1-980-1005	REV
							DATE 2022-03-31								

APPENDIX C

BOREHOLE LOGS

			BRITISH COLUMBIA	Borehole No: BH22-()1					
			COLUMBIA	Project: Geotechnical Investigation	Proj	ect No:	704-TRN.	PAVE0322	5-08	
			Ministry of Transportation	Location: East Porpoise Bay Road						
			& Infrastructure	Sechelt, BC		1. 1155	52 63 E. 5	481270.54	NI: 7 10	
						1. 4455	JZ.05 L, J	+01270.04	IN, Z 10	
o Depth (m)	Method	Core Diameter (mm)		Soil escription	Graphical Representation	Sample Number	Plastic Limit 20	Moisture Content 40 60	Liquid Limit -1 80	⊖ Depth ⊖ (ff)
-			Asphalt 102 mm. SAND and GRAVEL (ROAD BASE), trace silt, dry, de	unse (Inferred) dark brown	8.44. (i	G1				
- - - - - - - - - - - - - - - -	Solid Stem Auger		SAND and GRAVEL (ICOAD DIACE), trace silt, damp, de	inse (Inferred), light brown.		G 2				1 1 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1
-			- Borehole backfilled with cuttings, bentonite (from 1.2	22 to 1.52 m), and patched with cold mix asphalt.						
-			 No groundwater observed upon completion. Borehole location measured using handheld GPS. L 	ocations considered accurate to +/- 5 m horizontal.						6-
- 2			, , , , , , , , , , , , , , , , , , ,							
-										7-
-										
-										8-
-										
-										9-
-										
- 3										10-
F										
-										11-
-										
-										12-
-										
4										13-
-										
-										14-
L										
-										15-
F										
-										16-
— 5 -										
F										17-
F										
-										18-
F										
6										19-
				Contractor: Omega Drilling	Con	pletion	Depth: 1.5	52 m		
			TETRA TECH	Drilling Rig Type: B54 Auger Truck	-		2022 May			
	U			Logged By: EE			Date: 202			
				Reviewed By: KS	Pag	e 1 of 1				

			BRITISH	Borehole No: BH22-)2					
			BRITISH COLUMBIA	Project: Geotechnical Investigation			t No: 7	704-TRN.PAVE03225-	-08	
			Ministry of Transportation & Infrastructure	Location: Sechelt Inlet Road						
				Sechelt, BC	Т	TM:	44558 	5.09 E; 5481463.26 N	; Z 10	
o Depth (m)	Method	Core Diameter (mm)		Soil escription	Graphical Representation	Sample Type	Sample Number	Plastic Moisture Limit Content 20 40 60	Liquid Limit 1 80	⊖ Depth ⊖ (ft)
-			Asphalt 102 mm.	anse (Inferred), dark brown	a		G1			
- - - - - - - - - - - - - - - - - - -	Solid Stem Auger		SAND and GRAVEL (ROAD BASE), trace silt, dry, de SAND and GRAVEL (SUBBASE), trace silt, damp, de SAND (INFERRED NATIVE), some gravel, trace silt,	ense (Inferred), light brown.			G2	•		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
- 3			End of Borehole at 3.05 m. - Borehole backfilled with cuttings, bentonite (from 2. - No groundwater observed upon completion. - Borehole location measured using handheld GPS. L	74 to 3.05 m), and patched with cold mix asphalt. ocations considered accurate to +/- 5 m horizontal.						10 11 12 13 14 15 16 17 17 18 19
6				Contractor: Omega Drilling		 	letion ^I	Depth: 3.05 m		
			TETRA TECH	Drilling Rig Type: B54 Auger Truck	_			2022 May 4		
	t	,	TETRATECH	Logged By: EE	-			Date: 2022 May 4		
				Reviewed By: KS	Pa	age	1 of 1			

			BRITISH	Borehole	No:	Bł	12	22 [.]	-0	3						
			BRITISH COLUMBIA	Project: Geotechnical Inve							iect	No: 7	704-TRN	.PAVE03	225-08	
			Ministry of Transportation	Location: Sechelt Inlet Roa	-						<u>je et .</u>		••••••			
			& Infrastructure	Sechelt, BC						UTI	M: 44	1560	1.38 F: 5	481572	48 N; Z 10	
										articl	e Siz	ze		101012.	1011, 210	
		Ê				Graphical Representation		<u> </u>		Distril						
	٦	er (mm)				sen	ype	Sample Number				t & ′ (%)				
(m)	Method	mete	Soil			sepre	le T	e Nu	(%)	(%)		(/0)				Depth (ft)
	ž	Core Diameter	Descrip	tion		cal F	Sample Type	dmb	Gravel (%)	Sand (%)	()	(%)	Plastic	Moistu	re Liquid	
		S				aphi		S	Q	<i>i</i>	Silt (%)	Clay (%)	Limit	Conter		
0						ß					S	0	20	40 6	60 80	0
-			Asphalt 130 mm.													
-			SAND and GRAVEL (ROAD BASE), trace silt, dry, de SAND and GRAVEL (SUBBASE), trace silt, damp, de			0.00		G1	36	57.2	6.8		•			1_1_
-	e		SAND and GRAVEL (SUBDASE), trace sit, damp, de	ense (mierred), light brown.												
-	Aug															2-
-	E C															
-	Solid Stem Auger															3-
- 1	olid							G 2					•			
-	0														· · ·	4-
L																
-			End of Borehole at 1.52 m.													2-1
-			- Borehole backfilled with cuttings, bentonite (from 1.2	22 to 1.52 m), and patched with	n cold mix											
-			asphalt. - No groundwater observed upon completion.													6-
- 2			- Borehole location measured using handheld GPS. L	ocations considered accurate t	o +/- 5 m											
-			horizontal.													7-
-																
_																8-
-																-
È																9-
-																
- 3 -																10-
-																
F																11-
E																
-																12-
-																
- 4																13-
-																
L																14-
-																
È																15-
-																
- 5																16-
-																17-
F																
F																18-
F																
È																19-
-																
		-		Contractor: Omega Drilling	3					Cor	mple	tion I	Depth: 1.	52 m		
		1	TETRA TECH	Drilling Rig Type: B54 Aug	-					-			022 May			
	t		TETRATECH	Logged By: EE										22 May 4		
				Reviewed By: KS							ge 1			3		

			BRITISH	Borehole N	No:	Bł	12	22	-0	4						
			BRITISH COLUMBIA	Project: Geotechnical Investi		_			-		iect I	No [.] 7	04-TRN	.PAVE032	25-08	
			Ministry of Transportation	Location: Sechelt Inlet Road	-						joori	10. 7			20 00	
			& Infrastructure									1500	0 07 5. 5	481777.3		
				Sechelt, BC					P	artic			9.07 E; 5	401777.3	9 N; Z 10	
						tion				Distril						
Depth (m)	Method	Core Diameter (mm)	Soil Descrip	tion		Graphical Representation	Sample Type	Sample Number	Gravel (%)			t&	Plastic Limit 20	Moisture Content	Limit	Depth (ft)
0			Asphalt 130 mm.										:	: :	:	0
_			SAND and GRAVEL (ROAD BASE), trace silt, dry, co	ompact (Inferred), dark brown.				G 1					÷		-	
-			SAND (SUBBASE), some gravel to gravelly, trace silt		brown.	0.1. 1										1-
L													÷	: :	-	-
-													÷			2-
-																
_																3-
- 1								G 2	22	74.2	30			· · · { · · · · }		
È								GZ	22	/4.Z	3.0					
-																4-
-																
-																5-
_													÷			
-													-	: :	-	6-
-2	ler															
- 2	Auc	1													-	7-
-	Ē												÷		-	
Ľ	Ste															
-	Solid Stem Auger		SAND (INFERRED NATIVE), gravelly, trace silt, dam	p, loose (Inferred), light brown.												8-
-	ပိ							G 3								
Ē													÷	: :	-	9-
-															-	
- 3																10-
-																
-													÷			11-
Ľ													÷			
-																10
-			SAND, some gravel, trace silt, damp, loose (Inferred)	, light brown to orange-brown; coa	arse sand											12-
-													÷		-	
- 4														••••		13-
Ľ								G 4	15	81.2	3.8		•		-	
-																14-
F																14
F		$\left \right $	End of Borehole at 4.57 m.									$\left - \right $				15-
F			- Borehole backfilled with cuttings, bentonite (from 4.2	27 to 4.57m), and patched with co	old mix											
È			asphalt.													16-
- 5			 No groundwater observed upon completion. Borehole location measured using handheld GPS. L 	ocations considered accurate to +	+/- 5 m											
F			horizontal.													47
È																17-
F																
F																18-
F																
F																19-
6																
				Contractor: Omega Drilling			_			Cor	nple	tion [Depth: 4.	57 m		
			TETRA TECH	Drilling Rig Type: B54 Auger	r Truck					Sta	rt Da	te: 2	022 May	4		
	t		TETRATECH	Logged By: EE						-				22 May 4		
				Reviewed By: KS							ge 1 (,		
										1. 06	,~ ' '	.				

			BRITISH COLUMBIA	Borehole No:	Bł	-12	22 [.]	-0	5								
			COLUMBIA	Project: Geotechnical Investigation					Pro	ject	No: 7	704-TRN	PAVE03	225-08			
			Ministry of Transportation	Location: Sechelt Inlet Road						,							
			& Infrastructure	Sechelt, BC					UT	M: 44	4561	3.59 E; 5	481674.4	4 N; Z 10			
				,	E				artic	le Siz	ze	,					
		(mm)			Graphical Representation		5		Distril I	butio							
	p		Call		eser	Sample Type	Sample Number			Clav	t & / (%)				6		
(m)	Method	Core Diameter	Soil	tion	Repr	ple 1	e N	Gravel (%)	Sand (%)						(ft)		
	Σ	ê Di	Descrip	lion	cal I	Sam	amp	rave	and	()	(%)	Plastic	Moistu	re Liquid			
		õ			raph		õ	G	^o	Silt (%)	Clay (%)	Limit F	Conte				
0					Ō					05		20	40 6	60 8 0	0		
-			Asphalt 200 mm.											· · ·			
-			SAND and GRAVEL (ROAD BASE), some silt, dry, d		0 (G1	37	52.7	10.3		•			1-		
-	Jer		SAND (SUBBASE), some gravel, trace silt, damp, de	nse (Inferred), light brown.													
-	Aug	1													2-		
L	en													· · ·			
-	d St					_								· · ·	3-		
- 1	Solid Stem Auger						G 2						• • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·			
-						-									4-		
-														· · ·			
-			End of Borehole at 1.52 m.			-			<u> </u>						2 3 3 4 5 6 7 8 8 9		
F			- Borehole backfilled with cuttings, bentonite (from 1.2	22 to 1.52 m), and patched with cold mix													
			asphalt. - No groundwater observed upon completion.												6-		
- 2			 Borehole location measured using handheld GPS. L horizontal. 	ocations considered accurate to +/- 5 m													
-			nonzontai.												7-		
-																	
-															8-		
-																	
-															9-		
-																	
- 3 -															10-		
L																	
-															11-		
-																	
-															12-		
-																	
- 4															13-		
-																	
															14-		
-															15		
-															15-		
F															16		
- 5																	
F															17-		
-																	
È															18-		
-																	
F															19-		
6																	
		_		Contractor: Omega Drilling					Со	mple	tion I	Depth: 1.	52 m		•		
			TETRA TECH	Drilling Rig Type: B54 Auger Truck					Sta	rt Da	ate: 2	022 May	4				
	U			Logged By: EE							Completion Date: 2022 May 4						
5				Reviewed By: KS						ge 1							

			BRITISH	Borehole I	No:	Bł	12	22 [.]	-0	6							
			BRITISH COLUMBIA	Project: Geotechnical Inves							ject l	No: 7	704-TRN.P.	AVE0322	5-08		
			Ministry of Transportation & Infrastructure	Location: Sechelt Inlet Road	d												
	<u> </u>	П		Sechelt, BC					ΓP	UTI articl			6.99 E; 548	31366.96	N; Z 10		
		_ ٦				Graphical Representation		L		Distrik	putio	n					
_	p	er (mm)	C - il			eseni	ype	admu			Sil Clav	t & ′ (%)				_	
(m)	Method	Diameter	Soil Descrip			Repr	Sample Type	le Nu	(%) lê	(%)	,					Depth (ft)	
	2	Core D	Descrip			hical	San	Sample Number	Gravel (%)	Sand (%)	(%)	Clay (%)		Moisture	Liquid		
		Ő				Grap		0,			Silt (%)	Clay		Content 40 60	Limit		
0			Asphalt 130 mm.										20	40 60	80	0	
-			SAND and GRAVEL (ROAD BASE), trace silt, dry, de SAND (SUBBASE), some gravel, trace silt, damp, de					G 1					•				
F			SAND (SUBDASE), Some graver, trace sitt, damp, de	nse (interreu), light brown.												1	
-															-	2-	
Ę								G 2									
																3-	
- '	5															1	
-	Auger		SAND (INFERRED NATIVE), some gravel, some wor damp, light brown.	od remnants, trace silt, compact	(Inferred),										-	4-	
-	me me		damp, light blown.													5-	
F	Solid Stem																
E	Soli														-	6-	
- 2								G 3								111	
F			SAND, some gravel to gravelly, trace silt, damp, com	pact (Inferred), light brown											-	7-	
-																8	
-								G 4	26	69.1	4.9		•				
E																9-	
- 3																111	
F			End of Borehole at 3.05 m.	741-0.05												1 1 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10	
-			 Borehole backfilled with cuttings, bentonite (from 2.) asphalt. 	74 to 3.05m), and patched with c												11-	
F			 No groundwater observed upon completion. Borehole location measured using handheld GPS. L 	ocations considered accurate to	o +/- 5 m												
F			horizontal.													12-	
E																	
- 4																13-	
-																14-	
-																	
F																15-	
F																	
- 5																16-	
Ę																17-	
F																	
F																18-	
F																	
F																19-	
6				Contractor: Omega Drilling					1	Cor	nple	tion I	Depth: 3.05	im			
			TETRA TECH	Drilling Rig Type: B54 Auger Truck						Start Date: 2022 May 4							
	t	,	TETRATECH	Logged By: EE						Completion Date: 2022 May 4							
J				Reviewed By: KS						Pag	ge 1	of 1					

			BRITISH	Borehole	Nc):	B	H2	2-	07							
			BRITISH COLUMBIA	Project: Geotechnical Inves	stigatio	n				Pro	ject No:	704-TRN	I.PAVE	03225	5-08		
			Ministry of Transportation & Infrastructure	Location: East Porpoise Ba	iy Roa	d											
		, , ,		Sechelt, BC						UT	M: 4454	90.17 E; 5	548119	93.7 N;	Z 10		
o Depth (m)	Method	Core Diameter (mm)	Soil Description		Graphical Representation	Sample Type	Sample Number	(blows SPT	8lowco /300 m 60		Plastic Limit 20		sture ntent 60	Liquid Limit - 1 80	o Depth (ft)	
-			Asphalt 130 mm.					:	:		:		:	:	:		
- - - - - - - - - - - - - - -	er		SAND and GRAVEL (ROAD BASE), trace silt, dry, ve SPT at 0.13 m: 29/42/52/38/17 (N=94) - 100% Recovery - Sample collected from depth range 0.25 - 0.91 m - Gravel clast stuck in spoon SAND (SUBBASE), some gravel, trace silt, damp, de				SPT 1 G 1				□]				1 2 3 4	
- - - - - - - - - - - - - - - - - - -	Solid Stem Auger		SPT at 1.52 m: 29/7/5/5/5 (N=12) - 100% Recovery - Sample collected from depth range 1.52 - 2.28 m SAND (INFERRED NATIVE), some gravel, some silt				SPT 2 G 2					•				3 4 4 5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
- - - - - - - - - - - - - - - - - - -			End of Borehole at 3.05 m. - Borehole backfilled with cuttings, bentonite (from 2. cold mix asphalt. - No groundwater observed upon completion. - Borehole location measured using handheld GPS. L to +/- 5 m horizontal.													9 10 11 12 13 13	
- 4																13-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
6				Contractor: Omega Drilling						Со	mpletion	Depth: 3	.05 m				
			TETRA TECH	Drilling Rig Type: B54 Aug		:k				_		2022 May					
	U			Logged By: EE						Со	Completion Date: 2022 May 4						
J				Reviewed By: KS						Pa	ge 1 of 1						

			BRITISH COLUMBIA	Borehole	Nc):	В	H2	22-	·08						
			COLUMBIA	Project: Geotechnical Inve	stigatio	n				Pr	oiect No	: 704-TRI		03225	-08	
			Ministry of Transportation	Location: East Porpoise Ba	-						0,000,110			00220		
			& Infrastructure	Sechelt, BC	191100	iu Iu				11-	FM: 115/	431.31 E;	5/18111	0/30	ŀ 7 10	
	T			Sechell, DC						10	111. 4434	+J1.J1 L,	J 4 0111	3.43 F	N, Z 10	
o Depth (m)	Method	Core Diameter (mm)	Soil Description		Graphical Representation	Sample Type	Sample Number					Plasti Limit 20	— (Liquid Limit - I 80	o Depth (ff)
-			Asphalt 130 mm.							-	:			÷		1.1.1
- - - - - - - - - - - -			SPT at 0.13 m: 11/11/10/9/7 (N=21) 100% Recovery Sample collected from depth range 0.13 - 0.91 m SAND and GRAVEL (ROAD BASE), trace silt, dry, cc SAND (SUBBASE), some gravel, some silt, damp, cc				SPT 1 G 1									1 1 2 3 4 4 5
-													-		-	5-
- - - - 2	vuger	þ	 SAND (INFERRED NATIVE), some gravel, trace silt, brown. SPT at 1.52 m: 1/4/6/6/7 (N=10) 100% Recovery Sample collected from depth range 1.52 - 2.28 m 	damp, loose to compact, light		V	SPT 2					•				
- - - - - - - - - - - - - -	Solid Stem Auger					/ \	G2									6
- - - - - - - - - - - -			SAND, silty, some gravel, damp, dense, light brown. SPT at 3.05 m: 0/5/19/24/26 (N=24) - 100% Recovery - Sample collected from depth range 3.05 - 3.81 m				SPT 3 G 3					•				10 11 12 13
			SPT at 4.57 m: 5/15/20/23/25 (N=35)													14
- - 5 -	SPT		- 100% Recovery - Sample collected from depth range 4.57 - 5.33 m				SPT 4					•				16
-			 End of Borehole at 5.33 m. Borehole backfilled with cuttings, bentonite (from 4.2 cold mix asphalt. No groundwater observed upon completion. Borehole location measured using handheld GPS. L to +/- 5 m horizontal. 		<u></u>				· · · · · ·		· · · · · · · · · · · · · · · · · · ·			:		18
6				Contractor: Omega Drilling			I	I		C	mpletio	n Depth: 5	5.33 m			
			TETRA TECH	Drilling Rig Type: B54 Aug		ck					-	: 2022 Ma				
	t		TETRATECH	Logged By: EE								n Date: 20	•	4		
				Reviewed By: KS							age 1 of					

VANCOUVER EAST PORPOISE BAY RD, BOREHOLES.GPJ EBA.GDT 22/6/10

			BRITISH COLUMBIA	Borehole	No):	В	Hź	22-	-09							
			COLUMBIA	Project: Geotechnical Inves	stigatio	n				P	roiect No	: 704-TR	N PAV	=03225	5-08		
			Ministry of Transportation	Location: Sechelt Inlet Roa	-	511						. 1011		_00220	-00		
			& Infrastructure		u							00 00 F	= 10.17				
				Sechelt, BC						0	IM: 4456	529.28 E;	; 54817	/6.061	√; Z 10	T	
, Depth (m)	Method	Core Diameter (mm)	Soil Description		Graphical Representation	Sample Type	Sample Number				mm)	Plast Limi 20	it Co	sture ntent 60	Liquid Limit – I 80	Depth (ft)	
0			Asphalt 130 mm.						.0 -					:		0	
- - - - - - - - - - - -			SPT at 0.13 m: 9/13/15/13/12 (N=28) 100% Recovery Sample collected from depth range 0.13 - 0.91 m SAND and GRAVEL (ROAD BASE), trace silt, dry, co SAND (SUBBASE), some gravel, trace silt, damp, co			V	SPT 1 G 1									2-	
- - - - - - - - 2 - - - -	Solid Stem Auger		SPT at 1.52 m: 6/8/12/13/12 (N=20) - 100% Recovery - Sample collected from depth range 1.52 - 2.28 m				SPT 2	: [•				3	
-	olid S		SAND (INFERRED NATIVE), gravelly, trace silt, dam	p, loose, light brown.						-						8	
- - 	0		SPT at 3.05 m: 2/3/6/5/5 (N=9) - 100% Recovery - Sample collected from depth range 3.05 - 3.81 m			V	G 2 SPT 3					•				9	
-			SAND, trace gravel, trace silt, damp, loose, orange-b	rown: coarse sand		$ \rangle \rangle$								-		12-	
- - - 4 - -							G 3									13-	
 - - - 5 -	SPT		SPT at 4.57 m: 3/6/7/9/7 (N=13) - 100% Recovery - Sample collected from depth range 4.57 - 5.33 m				SPT 4					•				15– 16– 17–	
- - - - - - -			 End of Borehole at 5.33 m. Borehole backfilled with cuttings, bentonite (from 4.2 cold mix asphalt. No groundwater observed upon completion. Borehole location measured using handheld GPS. L to +/- 5 m horizontal. 								;					18	
_				Contractor: Omega Drilling						C	ompletio	n Depth:	5.33 m				
			TETRA TECH	Drilling Rig Type: B54 Aug		ck						2022 Ma					
			I E I RA I ECH	Logged By: EE							Completion Date: 2022 May 4						
				Reviewed By: KS							age 1 of						
										I · ·							

VANCOUVER EAST PORPOISE BAY RD, BOREHOLES.GPJ EBA.GDT 22/6/10

APPENDIX D

LABORATORY TESTING RESULTS

		MOIS	TURE CONTENT TEST RES	SULTS	
			ASTM D2216		
Project:	Geotechnical Invest	stigation, Se	chelt Inlet Road	Sample No.:	110
Project No.:	704-TRN.PAVE03	225-08		Date Tested:	May 18, 2022
Client:	MoTI			Tested By:	EE
Project Engin	ieer: Vipin S	iharma		Page:	1 of 1
B.H. Number	Sample Number Depth (m)	Moisture Content (%)	Vist	ual Description of	Soil
BH22-01	G2 @ 0.6 - 0.9	1.2	GRAVEL and SAND, trace	e silt, dry, brown	
BH22-02	G3 @ 2.4 - 2.7	3.0	SAND, trace gravel, trace	silt, damp, light b	prown
BH22-03	G2 @ 0.9 - 1.2	2.5	SAND and GRAVEL, trace		
BH22-06	G1 @ 0.1 - 0.3	3.3	SAND and GRAVEL, trace		
BH22-07	SPT2 @ 1.5 - 2.3	1.9	SAND, trace gravel, trace	silt, dry, light bro	wn
BH22-08	SPT2 @ 1.5 - 2.3	3.4	SAND, trace gravel, damp	, light brown; coa	irse
BH22-08	G3 @ 3.7 - 4.0	3.4	SAND, some silt, trace gra	avel, damp, light l	prown
BH22-08	SPT4 @ 4.6 - 5.3	2.8	SAND, trace silt, damp, lig	ht brown	
BH22-09	SPT2 @ 1.5 - 2.3	2.8	SAND, trace gravel, trace	silt, damp, light b	rown; medium to coarse
BH22-09	SPT3 @ 3.0 - 3.8	3.3	SAND, some gravel, trace	silt, damp, light t	prown; coarse
BH22-09	SPT4 @ 4.6 - 5.3	2.3	SAND, some gravel, trace	silt, damp, orang	je brown; coarse
	· · · · · · · · · · · · · · · · · · ·				
				s - come e distante de la come de	
	·				
			Reviewed I	By: Kuin Au	ASc.T.

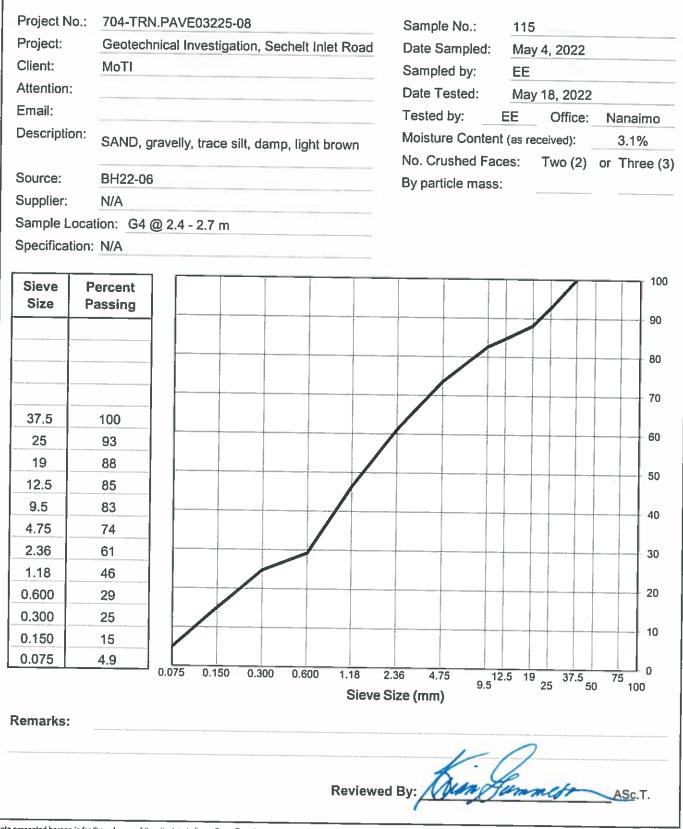
						NALYSI							
				Wa	shed Sie	eve: ASTM	C136 a	ind C117					
Project N	o.: 704-	FRN.PAV	E0322	5-08				Sample	No.:	111			
Project:	Geo	echnical I	nvestig	gation, S	Sechelt	Inlet Roa	ad	Date Sa	ampled:	Ma	y 4, 2022		
Client:	МоТ							Sample	d by:	EE			
Attention:								Date Te	ested:	Ma	y 18, 2022	ŀ	
Email:								Tested	by:	EE	Office:	Nanai	ímo
Descriptio	^{DN:} SAN	D and GR	AVEL,	trace s	ilt, dam	ıp, brown			e Conte Ished Fa	-	eceived):	4.9°	
Source:	BH2	2-03							cle mas		Two (2)		66 (3
Supplier:	N/A						-	-, -, -, -, -, -, -, -, -, -, -, -, -, -					
	ocation:	G1 @ 0.1	- 0.2 n	n									
	tion: N/A						-						
			-				-						
Sieve	Percer	t [100
Size	Passin	3 _											90
											1		30
		_ -										_	80
													- 70
37.5	100												
25	95				(/						60
19	90				_								- 50
12.5	79												
9.5	76												40
4.75	64												
2.36	59				-/-								30
1.18	50												
0.600	34									_			20
0.300	18												10
0.150	11												10
0.075	6.8	0.075	5 0.15	50 0.30	<u> </u>	500 1.18		.36 4.7	10	12.5			Lo
		0.075	, 0.10	0 0.30	JU V.C			.36 4.7 ize (mm)	9.5	12.5 1	9 37.5 25	50 ⁷⁵ 10	00
						3	676 3	יידב (ווווע	,				
lemarks													
								ву: 🟒	1.	1	7		
						Rev	iewer		MAR	The	alla.	ASc	т

SIEVE ANALYSIS REPORT

Washed Sieve: ASTM C136 and C117

Project N Project:		N.PAVE0		n, Sechel	t Inlet Road	Sampl Date S	e No.: ampled:	112 May	4, 2022		
Client:	MoTI					Sample	ed by:	EE			
Attention:						Date T	ested:	May	18, 2022		
Email:						Tested	by: E	E	Office:	Nanaim	0
Descriptic	on: SAND,	gravelly, t	ace silt,	damp, lig	ght brown		re Content ushed Face		eived): Two (2)	3.0% or Three	e (3
Source:	BH22-)4					icle mass:				· · · ·
Supplier:	N/A										
	ocation: G tion: N/A	2 @ 0.9 - 1	.2 m								
Sieve Size	Percent Passing										100
											90
											80
						/				7	70
37.5	100									ų.	
25	95			1						C C	50
19	92		_						_		50
12.5	88			3							
9.5	84	_	-	-							40
4.75	78										
2.36	75									3	30
1.18	58	_									
0.600	25									2	20
0.300	12										0
0.150	6										J.
0.075	3.8	0.075	0.150 (300 0	600 1 19	2.26 4	75 (D	5 10	07.0	0)
emarks:		0.075	0.150 (0.300 0.	600 1.18 Siev	2.36 4. re Size (mm	75 12 9.5)	5 19	25 ^{37.5} 5	75 0 100	,
						ved By:	K. 1	1			
					Review	ved By: 🖊	MAN SU	day	1 pu	ASc.T.	

				SIEV	E ANALY	SIS RE	PORT					
				Washed	Sieve: AST	FM C136 a	and C117					
Project No	.: 704-TR	N.PAVE	03225-0	8			Sample No.		113			
Project:		nical In	vestigati	on, Sech	elt Inlet F	Road	Date Samp			, 2022		
Client:	MoTI						Sampled by	-	EE	,		
Attention:							Date Tester	_		8, 2022		
Email:							Tested by:	El		Office:		imo
Descriptio	n: SAND, s brown	some gr	avel, tra	ce silt, da	amp, light		Moisture Co No. Crushe	ontent (a	as rece	ived):	4.1	%
Source:	BH22-04	4					By particle i		». I	WU (2)	UTIN	ee (a
Supplier:	N/A					_	by particle i	11433.				
	ocation: G4	@ 4.0 -	4.3 m									
Specificatio		<u> </u>										
·												
Sieve	Percent	1 Г										T 100
Size	Passing										<u> </u>	90
									ĺ			
						_						80
											<u>}</u>	70
												60
25	100											00
19	98	. –								<u> </u>		50
12.5	93											
9.5	92					+/						40
4.75	85											
2.36	72					1						30
1.18	24				/	4	ļ					20
0.600	11											
0.300	8											- 10
0.150	6 3.8											
0.070	<u> </u>	0.075	0.150	0.300	0.600 1	1.18 2	.36 4.75	12.5	5 19 2	37.5 15 5	75	00 L 0
						Sieve S	lize (mm)	5.3	2	.u 5	JU 1	UU
Remarks:												
	· ·····											
							11	. ,	0			
					R	eviewec	ву:	W.A	in	Con	ASc	.T.
							1	ALC: Y				



				SIEVE	ANALYS	IS RE	PORT			or- 3		
				Washed S	ieve: ASTM	C136	and C117					
Project N	o.: 704-	TRN.PAVE	03225-0	3			Samp	le No.:	114	4		
Project:	Geo	echnical In	vestigatio	on, Seche	It Inlet Ro	ad	Date S	Sampled:	Ма	y 4, 2022		
Client:	МоТ						Sampl	ed by:	EE			
Attention:							Date 1	fested:	Ma	y 18, 2022		
Email:							Tested	d by:	EE	Office:		naimo
Descriptio	on: SAN	D and GRA	VEL sor	ne silt da	mp brow	n	Moistu	ire Conte	nt (as r	eceived):	3	.7%
					inip, brow		No. Cr	ushed Fa	aces:	Two (2)	or T	Three (3
Source:	BH2	2-05						ticle mas				
Supplier:	N/A											
Sample L	ocation:	G1 @ 0.1 -	0.2 m									
Specificat	tion: N/A					-						
Sieve Size	Percen	·										
Jize	Passin	<u> </u>										
			-									
												- 80
07.5	400											
37.5 25	100								_			
19	85 80		ľ									
12.5	73								_			
9.5	70		ļ									
4.75	63	_							_			-40
2.36	55	- _			_							30
1.18	48	79-19-i-illadas										
0.600	38											20
0.300	25											
0.150	17								_			10
0.075	10.3	Alexander and										
Remarks:		0.075	0.150	0.300 0.	600 1.18 Si		.36 4. Bize (mn	75 9.5 I)	12.5 1	9 37.5 25 5	75	100
			A. I. A		Revi	iewec	i By:	Juin	Gu	mein	Δ	Sc.T.

SIEVE ANALYSIS REPORT

Washed Sieve: ASTM C136 and C117

APPENDIX E

CLIMATE CHANGE DESIGN CRITERIA

Design Criteria Sheet for Climate Change Resilience

Highway Infrastructure Engineering Design and Climate Change Adaptation BC Ministry of Transportation and Infrastructure (Separate Criteria Sheet per Discipline) (Submit all sheets to the Chief Engineers Office at: BCMoTI-ChiefEngineersOffice@gov.bc.ca)

Project:East Porpoise Bay Road ImprovementsType of work:Retaining Wall DesignLocation:East Porpoise Bay Road / Sechelt Inlet Rd (between Xenichen Ave and Delta Rd)Discipline:Geotechnical

Design Component	Design Life or Return Period	Design Criteria + (Units)	Design Value Without Climate Change	Change in Design Value from Future Climate	Design Value Including Climate Change	Adaptation Cost Estimate (\$)	Comments / Notes / Deviations / Variances
Retaining Wall and Embankment Slopes	100 year	Phreatic Surface Elevation (m)	Ambient	+1.5 m	Ambient + 1.5 m	N/A	See below

Explanatory Notes / Discussion:

The stability of the embankment and retaining wall slopes for the project is dependent on the phreatic surface through the slopes. While no guidance is provided by MoTI (2022) in the S6-19 Supplement for the phreatic surface to be used in embankment stability analysis, stability is typically based on ambient conditions of the phreatic surface observed during drilling and/or from monitoring wells/piezometers on site. Climate change has the potential to increase the phreatic surface, resulting in reduced stability. Climate change may also reduce groundwater levels (e.g., due to more prolonged drought), but this would result in improved stability, so is not discussed here.

We have divided potential increases in the phreatic surface due to climate change is divided into 2 components (or causes):

- 1) Infiltration of surface water from a climate change adjusted design storm event (accounts for approximately 0.5 m increase in phreatic surface)
- 2) Increase in groundwater elevation from increase in sea level (accounts for approximately 1.0 m increase in phreatic surface).

Component 1 – Infiltration from storm event

The first component causing a rise in phreatic surface is infiltration from a design storm event. A storm event with return period of 100 years was considered (for a design life extending to 2100) and considered rainfall accumulation over a 2-day (48 hour) period.

- Rainfall intensity estimated for the ungauged project location from the IDF_CC Tool, Version 6.5 (Simonovic et al, 2015) to the year 2100, using a PCIC Bias Corrected CMIP6 climate change model with shared socioeconomic pathway (SSP) 8.5 climate change scenario, which represents a "non-climate" policy pathway.
 - o IDF_CC tool indicates that total 24-hour rainfall for 100-year return period storm under this scenario is 119 mm.
 - IDF_CC tool does not provide 48-hour rainfall intensities. The 24-hour rainfall was doubled to get a 48-hour total rainfall of 238 mm.
- The site is located in an area that is primarily residential and light industrial/commercial and includes a small amount of forested area. The terrain in the area is generally gently rolling to flat (with the exception of the road embankment

drop off where the retaining walls are located). Per MoTI (2019) Supplement to TAC Geometric Design Guide, these areas will have runoff coefficients of 0.4 to 0.8, resulting in 20% to 60% infiltration (assuming no evapotranspiration), with larger infiltration occurring in forested area. For this project, we have assumed an infiltration rate of 50%, which is considered conservative, given the limited amount of forest cover in the area.

• Porosity of the soil materials is variable, but was assumed to range from 0.25 to 0.6, and it was assumed that all the pore space would be filled with water. The lower end porosity was assumed, as this would result in the in the largest increase in phreatic surface elevation.

```
Resulting increase in phreatic surface elevation = (0.238 m) \times (0.5) \div (0.25) = 0.48 m (rounded up to 0.5 m for modelling)

\uparrow \uparrow \uparrow

Rainfall Infiltration Porosity
```

Component 2 – Sea Level Rise

The second component contributing to the rise in the phreatic surface is sea level rise due to climate change. According to the British Columbia Ministry of Environment, it is suggested to consider a sea level rise of 1.0 meter by 2100 (Sunshine Coast Regional District, 2021).

Adaptation Cost Estimate

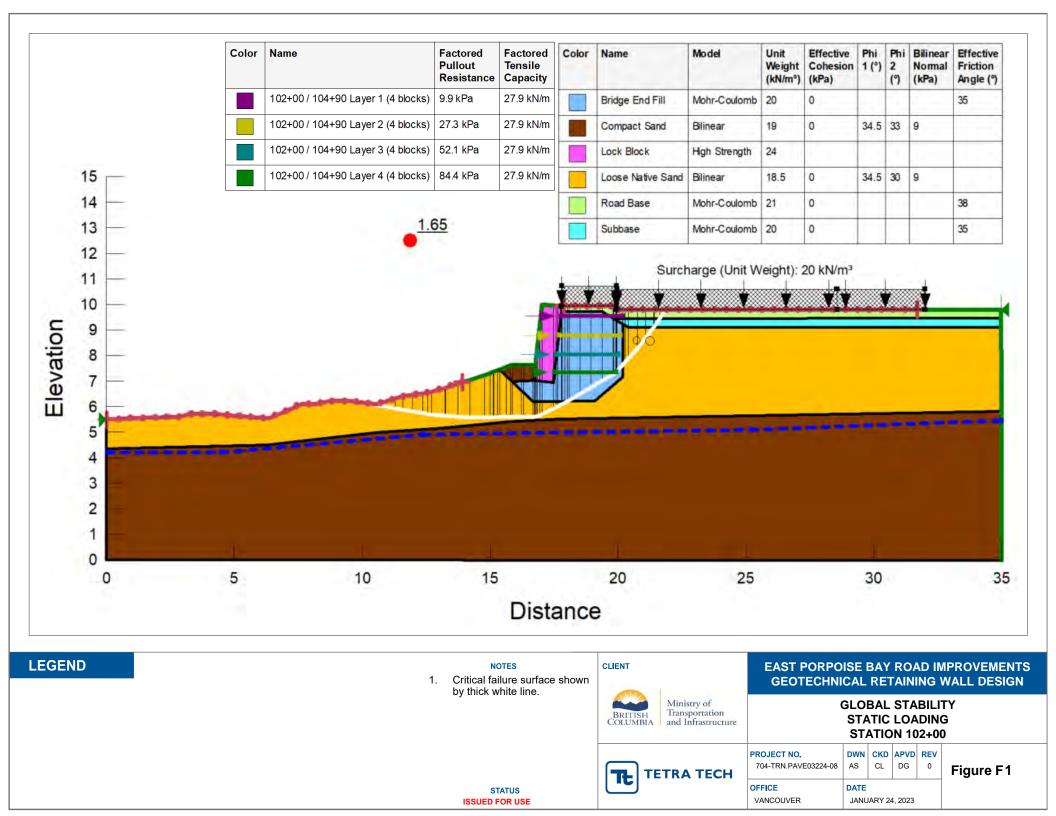
Given the relatively low water table in the area, it was found that even an increase in phreatic surface level of 1.5 m would not significantly impact the wall design. Since this doesn't govern, there is no significant adaptation cost estimate.

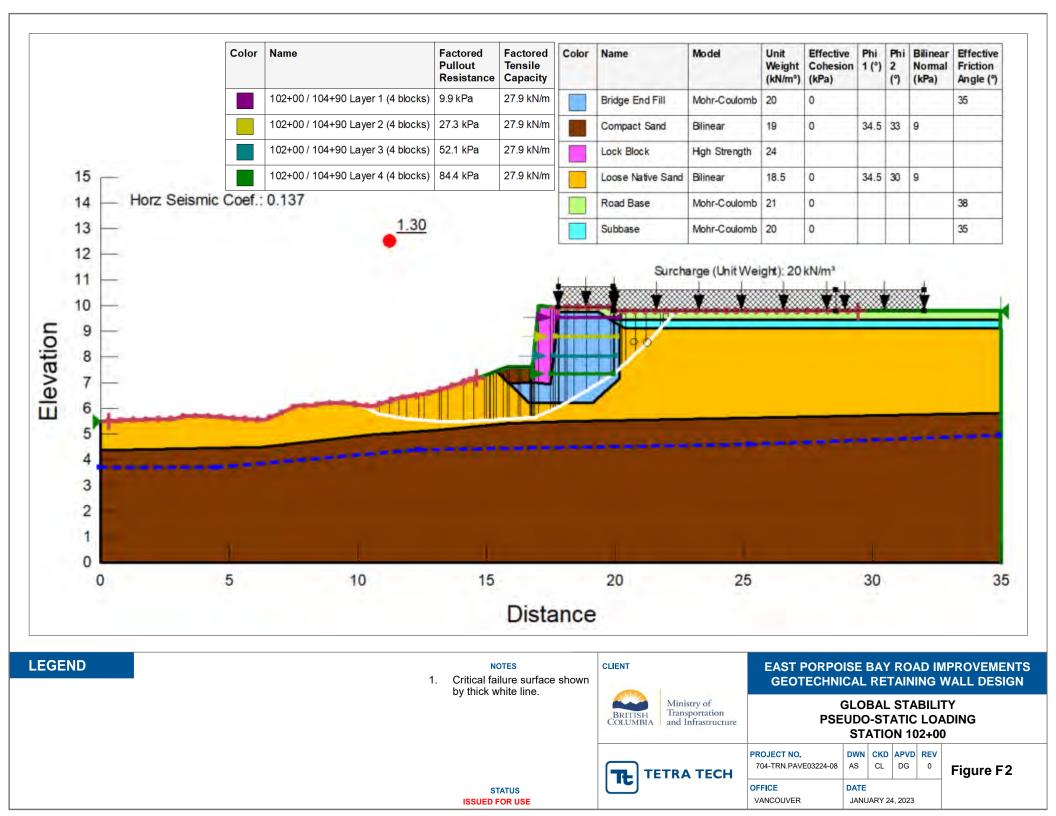
REFRENCES

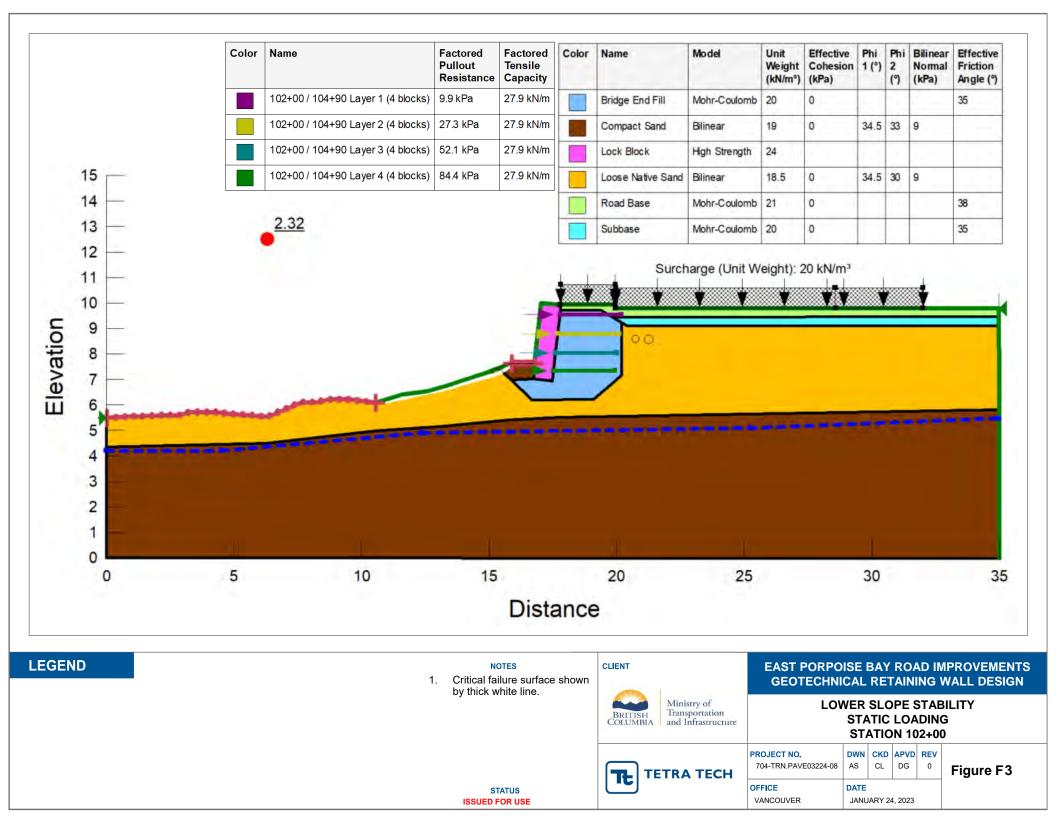
GEOSLOPE International Ltd. (GeoSlope). 2021. Geostudio 2021.3 Slope/W, Version 11.0.1.21429.

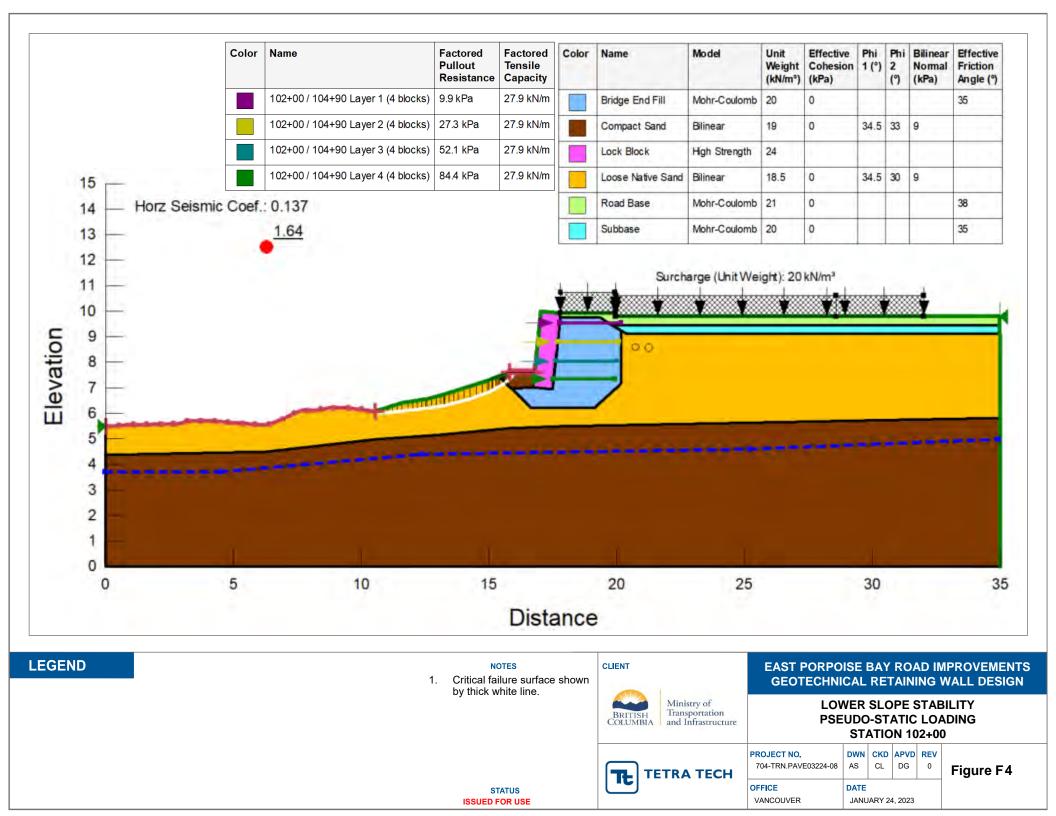
MoTI. 2019. Supplement to TAC Geometric Design Guide, MoTI Section 1000, Hydraulic Chapter. April, 2019.

MoTI. 2022. Bridge Standards and Procedures Manual Volume 1 Supplement to CHBDC S6:19. July, 2022.


- Simonovic, S.P., Schardong, A., Srivastav, R., and Sandink, D. 2015. IDF_CC Web-based Tool for Updating Intensity-Duration-Frequency Curves to Changing Climate – ver 6.5. Western University Facility for Intelligent Decision Support and Institute for Catastrophic Loss Reduction. https://idf-cc-uwo.ca/idfgrid [accessed June 29, 2023].
- Sunshine Coast Regional District. 2021. Community Action Plan. Future Climatic Projections. https://letstalk.scrd.ca/climate?utm_source=coast%20reporter&utm_campaign=coast%20reporter%3A%20outbound &utm_medium=referral [accessed on July 5, 2023]


Recommended by: Engineer of Record:	
Date:	
Engineering Firm:	
Accepted by BCMoTI Consultant Liaison: (For External Design)	
Deviations and Variances Approved by the Chief Engineer: Program Contact: Chief Engineer BCMoTI	


APPENDIX F


STABILITY MODELLING RESULTS

