Technical Summary

February 2024

Pit Name: Swift River

Provincial Pit Number: 1500

Location: The pit is located approximately 29.5km east of the Highway 97/26 junction in Quesnel, then 800 metres south of Highway 26 off of the east side of Ranch Road. (Figure 1).

Legal Land Description: The pit is legally described as That Part of District Lot 443 together with that tract of land in the vicinity of District Lot 433, Cariboo District. The pit is covered by a Crown Land Act Section 16 Map Reserve No. 5401199 in the name of the Ministry of Transportation and Infrastructure. The Map Reserve is 180.09 hectares, more or less. The geographical coordinates are Universal Transverse Mercator Grid Zone 10, 559773 Easting, 5875732 Northing. The layout of the Map Reserve boundary is shown in the pit plan (Figure 2).

Subsurface Investigation: Subsurface investigations at Swift River Pit were carried out in September 2023, November 2017 and August 2014 by the Ministry of Transportation & Infrastructure.

In 2023 sixteen (16) test pits were excavated to depths ranging from 1.5 to 5.4m, in 2017 two (2) test pits were excavated to depths of 4.5m, and in 2014, seventeen (17) test pits were excavated to depths ranging from 2.0m to 5.5m. During the test pitting, subsurface soil and groundwater conditions were logged and representative samples of the granular materials were collected for laboratory testing and future reference. Laboratory testing was carried out on all sixteen (16) 2023 samples and twelve (12) of the 2014 samples at WSP laboratories to assess the gradation and durability characteristics. The tests completed were wet sieve analysis, micro-deval, sand equivalent, relative density, and absorption.

Based on the results of the 2023 and 2014 investigations, a suitable granular area for mining has been defined (Figure 3). The detailed results of the subsurface testing are provided in the Test Pit Summaries and test pit locations are shown on the Pit Development Plan (Figure 3).

Material Gradation: Table 1 shows the gradation as a percentage by weight of the fines (silts and clays), sand and gravel components as well as the Unified Soil Classification (USC [included after test pit summary]) for the samples tested from 2023 and 2014.

Table 1: Pit Run Gradation

Test Pit	Depth (m)	Fines (%)* <0.075mm	Sand (%)* 0.075- 4.75mm	Gravel (%)* 4.75-75mm	USC
	1	20	23		
23-01	0-2.2	2.4	50.6	47	SP
23-01A	3.1-5.4	9.4	72.9	17.7	SPSM
23-02	0.2-3.7	1.7	43.8	54.5	GP
23-03	0.1-3.2	3.3	41.8	59.4	GP
23-04	0-3.7	3.1	36.6	60.4	GP
23-05	0-2	2.1	30.9	67	GW
23-05A	2-3	13.1	71.1	15.8	SM1
23-06	1-4.8	75.3	23.9	0.9	FINE
23-07	1-5.2	71	29	0	FINE
23-08	0.2-2.4	8.4	34.6	57	GW-GM
23-09	0-4.8	1.8	38.4	59.8	GP
23-10	1.2-5.1	58	35.2	6.8	FINE
23-11	0.1-1.5	6.8	41.3	51.9	GW-GM
23-12	0.3-1.8	22.6	74	3.4	SM2
23-13	0.2-2.8	2.4	44.1	53.5	GP
23-14	0.12-2.9	2.4	43.2	54.4	GP
23-15	0-5	1.7	39.7	58.6	GP
23-16	0.1-1.4	1.7	36.8	61.5	GP
Ave	rage	16	43.8	40.5	SM1
		20	14		
14-01	0.4-3.5	5.5	36.7	57.8	GP-GM
14-04	0.1-5.2	2.3	30.6	67.1	GP
14-05	0.3-5.2	1.1	39	59.9	GP
14-06	0.4-5.2	1.8	38.1	60.1	GP
14-07	0.3-3.1	2	30.7	67.3	GW
14-10	0.3-5.2	1.5	35.8	62.7	GP
14-11	0.3-5.2	1.4	25.4	73.2	GW
14-12	0.3-5.2	2.2	33.4	64.4	GP
14-13	0.3-5.5	1.7	28.8	69.5	GW
14-14	0.3-5.2	1.1	31.6	67.3	GW
14-15	0.3-5.2	1.3	31.9	66.8	GW
14-16	0.3-4	1.8	30.5	67.7	GW
Ave	rage	2	32.7	65.3	GP

Oversize Field Estimates: Table 2 shows the estimated percent of oversize rock as noted in the field during exploration.

Table 2: Oversize Field Estimates

2023

Classification:	Average (%)	Range (%)			
Boulders (>375mm)	0	0			
Cobbles (150-375mm)	1.4	0-3			
Cobbles (75-150mm)	4.4	1-12			

Maximum rock size observed was 270mm.

2014

Classification:	Average (%)	Range (%)			
Boulders (>375mm)	0	0			
Cobbles (150-375mm)	4.7	0-10			
Cobbles (75-150mm)	9.8	5-15			

Maximum rock size observed was 350mm.

Material Durability: Table 3 shows the results of the durability tests as well as the specifications as required in the Standard Specifications for Highway Construction.

Table 3: Durability Test Results

Test Pit	Sand	Micro Deval	Absoi	rption	Relative Density						
	Equivalent	C/F	Coarse	Fine	Coarse	Fine					
2023											
TP23-02	75										
TP23-13			1.33	1.83	2.595	2.694					
TP23-15		10.4/15.1									
			2014								
TP14-05	76	12.3/16.8									
TP14-06			1.74	1.91	2.595	2.565					
TP12-14	77	10.7/17.5									
		BC MoT	l Specificat	ions							

0 15 1 1	≥40 for Base Course and fine aggregates for Asphalt Mix Aggregates
Sand Equivalent	≥20 for Surfacing, Sub-Base and Bridge End Fill
	aggregates
	≤30% for Sub-Base and Bridge End Fill aggregates
Micro Deval	≤25% for Surfacing & Base Course Aggregates
Micro Devai	≤18% for Class 1 Pavement asphalt mix aggregates
	≤20% for Class 2 Pavement asphalt mix aggregates
	<2.0% for coarse paving aggregates
Absorption	≤1.0% for coarse and ≤1.5% for fine Graded Aggregate
·	Seal Coat aggregates
Relative Density	~2.65 for all aggregate products

Material Suitability: Based on the 2023 investigation results, the material in the proposed suitability area is judged to be suitable for the following purposes:

Table 4: Suitability

	Pit Run	Crush
Swift River Suitability area	Bridge End Fill SGSB HFSA Winter Abrasive	25-50mm WGB Coarse & Medium Asphalt Mix Aggregates

The samples tested meet the gradation, sand equivalent, and micro-deval specifications for Base Course, SGSB, Bridge End Fill and Coarse/Fine Asphalt Mix Aggregate. Based on the absorption results the samples meet the specification for coarse paving aggregate.

Sulphate and Chloride Testing: Sulphate and Chloride testing was conducted in October 2023 by CARO Analytical Services with the results coming back as having a low/moderate (S3) degree of exposure.

Table 5: S/CL Results

General Parameters	Result	RL (%)
Sulfate, Water-Soluble	<0.050	0.050
Chloride, Water-Soluble	<0.002	0.002

Volume Estimates: Table 6 shows the volume estimates that can be expected for topsoil, overburden and gravel from the proposed suitability area. This is based

on the measured depths encountered during the subsurface investigation. The potential volumes of granular material were calculated by averaging the total thickness of granular material encountered in test pits and multiplying by the estimated surface area.

Table 6: Volume Estimates

Section 16 Area

Suitability Area ~1.6ha.	Topsoil	Asphalt (pit floor that has previously been paved)	Granular Material		
Average Layer Thickness (m)	0.2	0.1	3.0		
Volume (m³)	2,740	1,370	47,900		

Pit Development Notes

- All development must be carried out in accordance with the Health, Safety, and Reclamation Code for Mines in British Columbia, BC Ministry of Energy and Mines (2022, or later edition), the Standard Specifications for Highway Construction, BC Ministry of Transportation and Infrastructure (2020, or later edition) and the Aggregate Operators Best Management Practices Handbook for BC.
- All trees, vegetation, and overburden are to be removed within 2m of the top of the pit faces. Topsoil, overburden, and aggregate cannot be removed within five meters of the reserve boundary.
- The crusher is recommended to be located on the lower floor as identified on the Pit Development Plan (southwest of TP 23-02), with mining proceeding in a northern and northeastern direction.
- Processed aggregate may be stockpiled to the south of the production site, where space permits as indicated on the Pit Development Plan.
- No dumping of debris or petroleum products will be permitted, and the site must be left in a clean and safe condition.
- Some minor stripping may be required prior to mining and aggregate stockpiling. Ideally any overburden is stockpiled along the west side of the pit where previous overburden has been placed as a visual berm along Ranch Road. If additional development is required, it shall conform to the

requirements of the pit development plan or be completed as directed by the Ministry Representative.

- At the completion of the pit development operations, but prior to the depletion of the pit, the sides of the pit faces, waste piles, and overburden stockpiles must be trimmed to a 1.5H:1V slope. Active pit faces must be reshaped with native granular materials.
- Upon depletion of the pit, all disturbed areas are to be reclaimed. The minimum reclamation procedure should include re-sloping of the pit faces and waste piles to a 2H:1V slope, contouring the area for appropriate drainage, spreading of overburden followed by topsoil, and seeding.
- Should any of the above conditions conflict with the Health, Safety, and Reclamation Code for Mines in British Columbia, then the Code will prevail.

Closure

The findings of this report and the soil conditions noted above are inferred from the extrapolation of limited surface and subsurface data collected during the site investigation. It should be noted that different and possibly poorer soil conditions may exist between the test pit locations and volume estimates may vary from those reported in this report.

Prepared by: Reviewed by:

Samantha Kinniburgh Steven Lee

Sr. Aggregate Resource Specialist Sr. Aggregate Resource Specialist

Enclosures

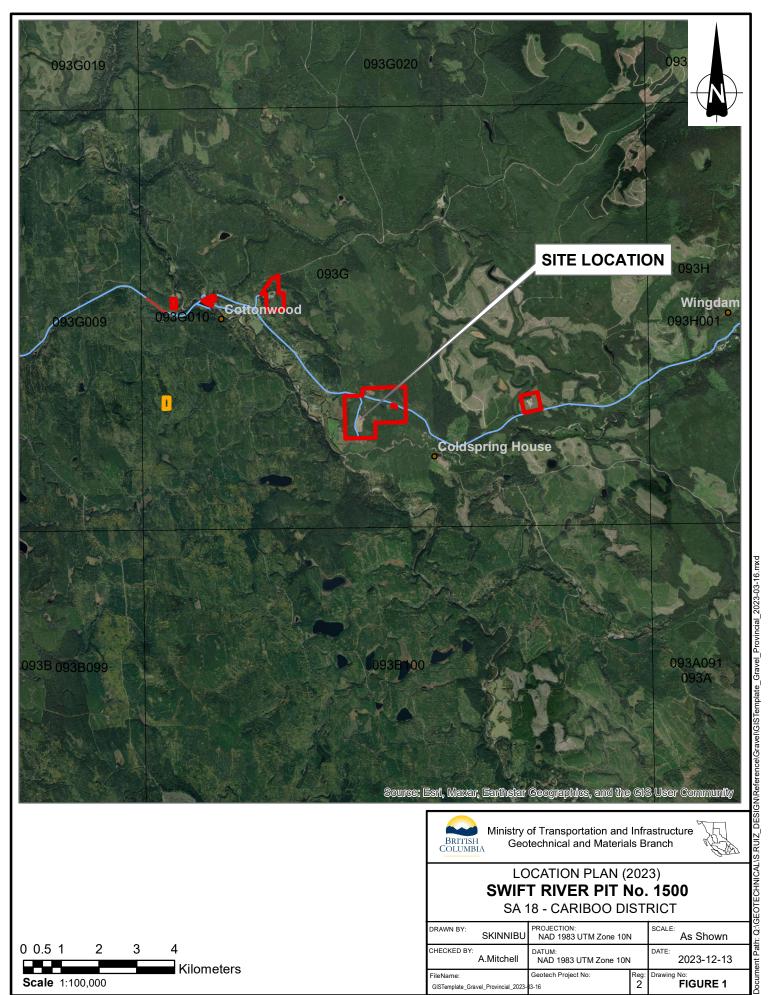
Figures:

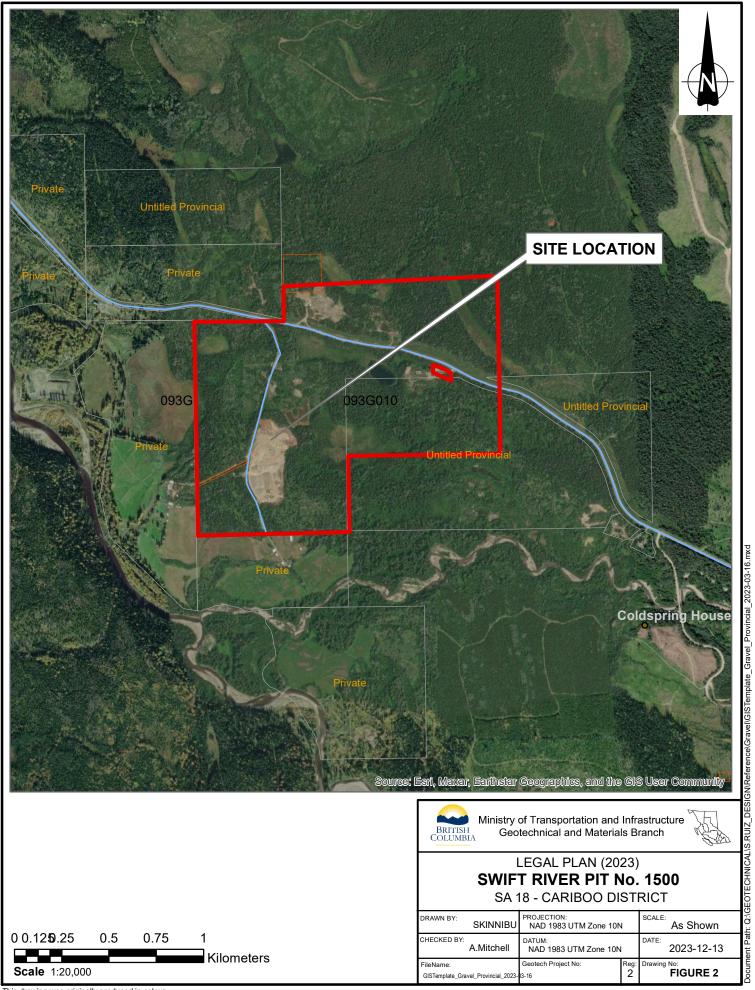
Figure 1 - Location Plan

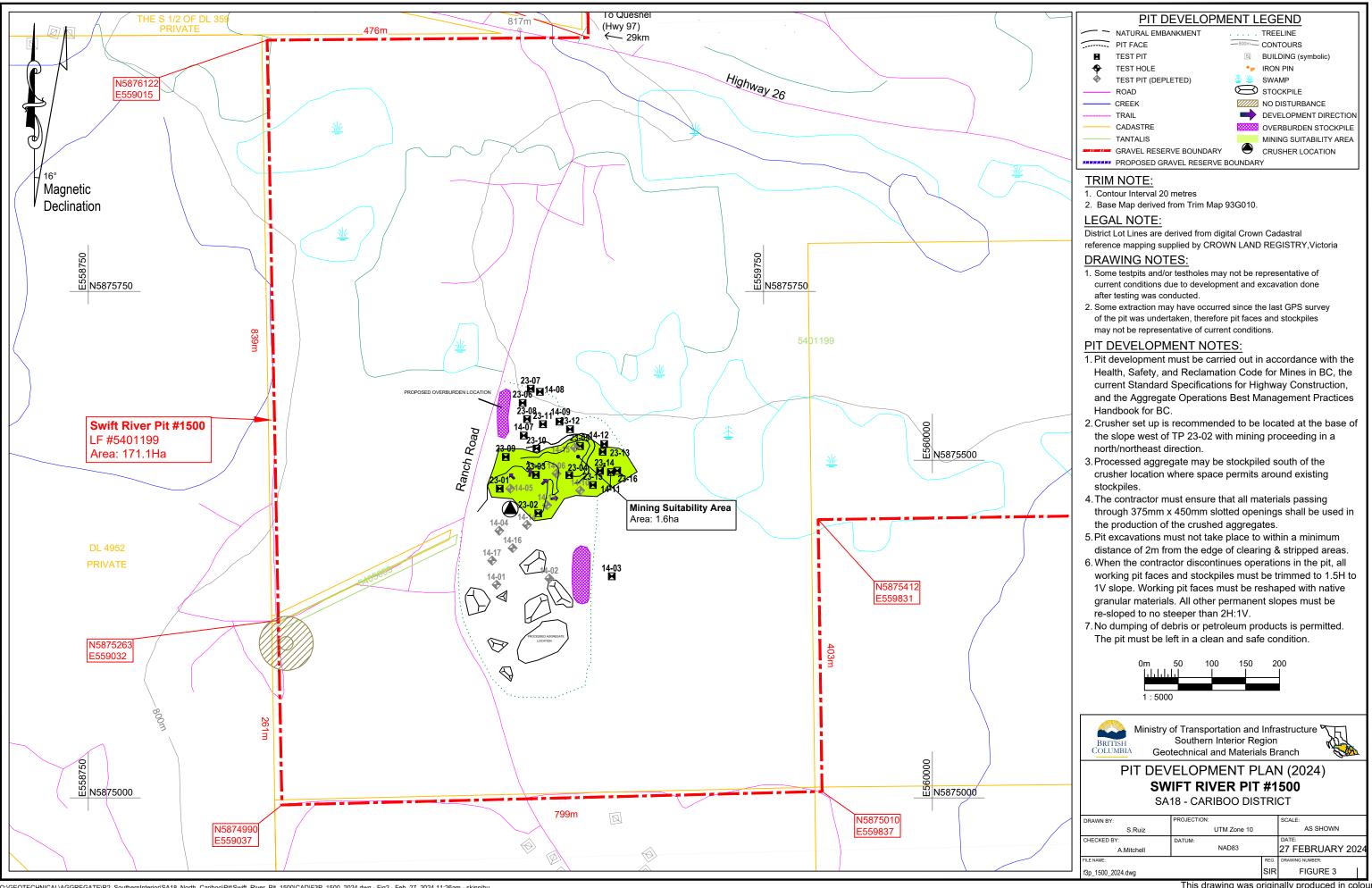
Figure 2 - Legal Plan

Figure 3 - Development Plan

Test Pit Logs (2023, 2017 and 2014)


Wet Sieve Analysis Chart (2023)


Aggregate Gradation Charts (2023)


USC Legend

Photos

Figures

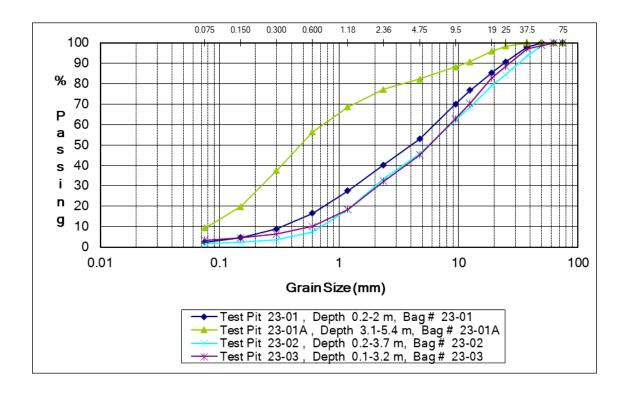
Test Pit Summaries

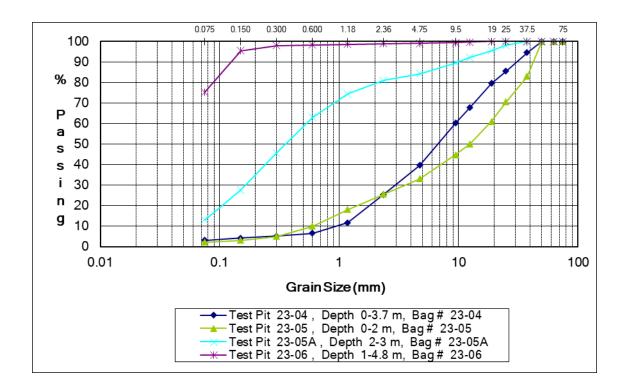
						-	ĀGG	REG	ΑTI	E L	OG				
PROJE	ECT:		8600	14 - Swi	ft Rive	r		S	AMP	LED	BY:	Samantha Kinniburgh			
Р	IT #:			1500				-	М	ETH	OD:	Excavator			
DISTR	ICT:		1	8 - Cari	boo			•		DA	TE:		Sept 21 2023		
												1			
TEST PIT	DEP EST PIT		SAMPLE	SOILS		RADATIO		ESTIMA	TED RO	CK 75	im m	SAND TYPE	REMARKS		
NO.	FROM	то	BAG NO.	CLASS	G	s	F	MAX SIZE	75mm - 150mm	150mm 375mm	>375m m	F M C	Lab Sieve		
	0	0.2		Floor											
	0.2	2	23-01	GP	60	37	3						Packed pit floor on top, sloughing		
22.04		2.2		SP	47	50.6	2.4	160	3			M	immediately underneath and hit water at 4.8m. Layered gravel and		
23-01	2.2	3.1		SP GP	33 60	63 37	3	160	3	2	0	IVI	water at 4.6m. Layered graver and sands.		
	3.1	5.4	23-01A	SP	34	60	6						SP - G47/ S 50.6/ F 2.4		
	0.1	0.7	200171	SPSM	17.7	72.9	9.4						SPSM - G17.7/ S72.9/ F9.4		
	0	0.2		Floor											
	0.2	3.7	23-02	GP	62	35	3	200	3	2	0	M-C	Hit blue clay below 3.7m, sloughing		
23-02				GP	54.5	43.8	1.7						below 0.5m, consistent coarse sandy		
23-02	3.7	4.8		ML	62	35	3						gravel, not a lot of OS		
													GP - G54.5/ S43.8/ F1.7		
	0	0.1		Floor				470					On the Art OD by London		
23-03	0.1	3.2	23-03	GP GP	65 54.9	32 41.8	3 3.3	170	3	1	0	M-C	Consistent GP below floor, coarse sandy gravel, with blue clay at bottom		
23-03	3.2	4.8		ML	54.9	41.0							GP - G54.9/ S41.8/ F3.3		
				!!!									01 - 000/ 041.0/ 10.0		
	0	3.7	23-04	GP	GE.			120				M-C	Wat group access distribution and		
23-04	U	3.1	23-04	GP	65 60.4	30 36.6	5 3.1	120	5	0	0	IVI-C	Wet gravel, seems dirty with mud, sloughing within 1m in depth		
20 04	3.7	5		ML		30.0	~ <u>~</u>				~~~~		Sloughing Within 111 in depth		
		<u>v</u>											GP - G60.4/ S 36.6/ F3.1		
	0	2	23-05	GP GP	65 67	32 30.9	3 2.1						Wet gravel and rock in top 2m, then beach sand then same blue clay.		
	2	3	23-05A	SP	35	60	4. 1	140	5	0	0	M-C	then beach sand then same blue clay.		
23-05			20.00/1	SM1	15.8	71.1	13.1	170	-		-		GP - G67/ S30.9/ F2.1		
	3	4.8		ML				**********				***********	SM1 - G15.8/ S71.1/ F13.1		
	0	0.1		OB											
23-06	0.1	1		SP	40	55	5						1m of dirty rock and sand, no sloughing		
	1	4.8	23-06	SM1	1	84	15	160	2	1	0	M-F	then clumpy beach sand to the end		
				ML	0.9	23.9	75.3						ML - G 0.9/ S 23.9/ F 75.3		
	0	0.2		OB											
23-07	0.2	1		SP	42	53	5						Same as TP 23-06, no sloughing,		
20-01	1	5.2	23-07	SM1	2	82	16	210	1	1	0	M-F	clumping sand all the way down		
	L_			ML	0	29	71						ML - G0/ S 29/ F71		
	0	0.2	00.00	OB			ļ <u>.</u>	ļ	ļ				Thicker layer of sandy rock and		
22.00	0.2	2.4	23-08	SP	46	48	6						gravel, then same SM1 as previous.		
23-08		E		GM SM1	57	34.6	8.4	330					No sloughing. GM - G57/ S34.6/ F8.4		
	2.4	5		SM1	2	82	16	230	3	2	0	IVI-F	GIVI - G3// 534.0/ F8.4		
				Ь			<u> </u>	<u> </u>	<u> </u>				<u> </u>		

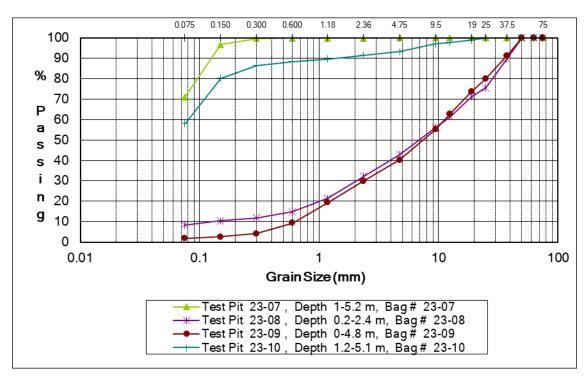
						A	GG	REG	ATE	EL	OG		
PROJI	ECT:		860	04 - Swif	t River	-		S	AMP	LED	BY:		Samantha Kinniburgh
Р	IT #:			1500					M	ETH	OD:		Excavator
DISTR			1		000			-		DA	ATE:		Sept 21 2023
								-					
TEST PIT	DEI	РТН	SAMPLE	SOILS		RADATIO		ESTIMA	TED RC	OCK 7	5m m	SAND TYPE	REMARKS
NO.	FROM	то	BAG NO.	CLASS	G	s	F	MAX SIZE	75mm - 150mm	150mm 375mm	>375m m	F M C	Lab Sieve
23-09	0	4.8	23-09	GP	53	42	5	100	5	0	0	M-C	Lots of sloughing immediately,
23-09		~~~~		GP	59.8	38.4	1.8						sandy gravels. GP - G59.8/ S38.4/ F1.8
23-10	0 0.2 1.2	0.2 1.2 5.1	23-10	OB SP SM1	40	53 85	7	200	2	1	0	M-F	Some OS in top layer, no sloughing, clumping sand underneath, same as
				ML	6.8	35.2	58						previous 3 TPs. ML - G6.8/ S 35.2/ F58
23-11	0 0.1 1.5	0.1 1.5 4.8	23-11	Floor SP SM1 GPGM	48 3 51.9	48 83 41.3	4 13 6.8	220	3	1	0	M	No OS in lower 1.5m, no sloughing, sandy with OS in top 1.5m GPGM - G51.9/S41.3/F6.8
23-12	0 0.3 1.8	0.3 1.8 5.2	23-12	OB SPSM ML SM2	38	55 74	7 22.6	80	1	0	0	M-F	No real OS, sandy layer then SM-ML, thick clay layers in spoil pile SM2 - G3.4/ S74/F22.6
23-13	0 0.2 2.8	0.2 2.8 5.2	23-13	OB GP SP	55 38 53.5	42 58 44.1	3 4	270	7	3	0	M-C	Lots of sloughing below OB, finer gravels and sand, more gravelly in top 3m, more OS here GP - G53.5/S44.1/F2.4
23-14	0 0.12 2.9	0.12 2.9 5	23-14	OB GP SP GP	60 40 54.4	36 56 43.2	4 4 2.4	220	8	2	0	M-C	Sloughing after 1m, sandy gravel, finer layer under coarser layer GP - G54.4/ S43.2/ F2.4
23-15	0	5	23-15	GP GP	60 58.6	36 39.7	4 1.7	250	8	3	0	M-C	Uniform with some sandier bands, lots of sloughing, most OS yet GP - G58.6/ S39.7/ F1.7
23-16	0 0.1 4	0.1 4 5	23-16	OB GP SP GP	66 46 61.5	31 50 36.8	3 4 1.7	270	12	3	0	M-C	Lots of OS, gets finer with depth, gravelly sand below 4m GP - G61.5/ S36.8/ F1.7

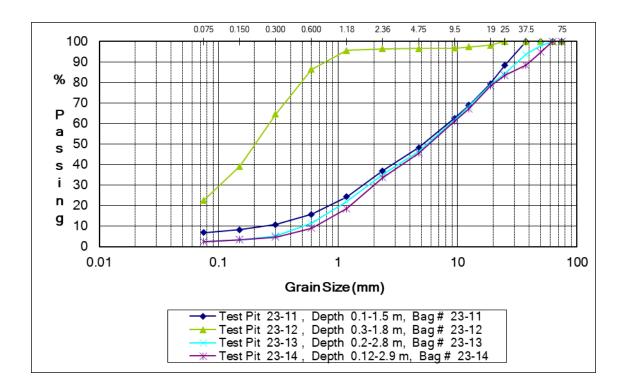
1	OF	1							I				
					AGC	GRE	GΑ	TE	LO	G			
PRO	JECT:	S	wift River f	Pit				S	AMF	LED	BY:		Bryan James
	PIT#:		1500						N	/ETH	IOD:		Excavator
DIS.	TRICT:		Cariboo							DATE:			November18, 2017
TP	DEI	РТН	SAMPLE	SOILS CLASS		STIMATE ADUATI		ESTIN	MATED ROCK 75mm		75mm	SAND TYPE	REMARKS
	FROM	то	BAG No.		G	s	F	MAX SIZE	75mm 150mm	150mm - 375mm	>375mm	F M C	
17-01	0	0.3		TS									
	0.3	4.5		GP	55	43	2	200	10	5	0	MC	Hole Sluffing in
17-02	0	0.3		TS									
	0.3	4.5		GP	55_	43	2	200	10	5	0	MC	Hole Sluffing in

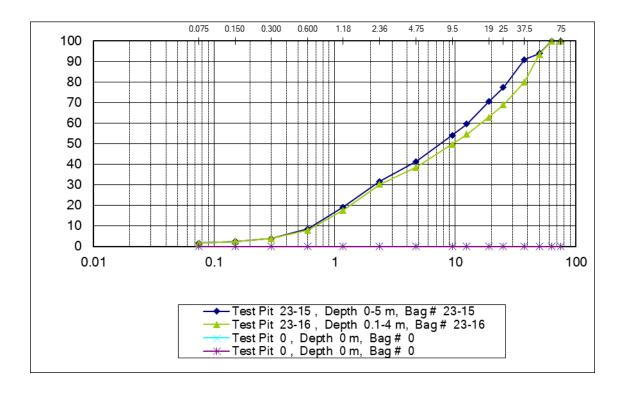
					AGC	BRE	GΑ	TE	LO	G			
PROJECT:		s	wift River I	Pit				S	AMF	LEC	BY:		Bryan James
	PIT#:		1500						N	NETH	HOD:		Excavator
DIS	TRICT:		Cariboo							D.	ATE:		August 11, 12, 2014
TP	DEF	TH	SAMPLE	SOILS CLASS		STIMATE ADUATI		ESTIN	MATED ROCK 75mm			SAND	REMARKS
	FROM	то	BAG No.		G	s	F	MAX SIZE	75mm 150mm	150mm 375mm	>375mm	F M	C Lab Sieve
14-01	0	0.4		TS									
	0.4	3.5	12	GPGM	55	40	5	200	5	5	0	С	GPGM (G 57.8, S 36.7, F 5.
													Water at 3.5m
14-02	0	0.7		TS									
14-02	0.7	1.1		GPGM	50	45	5	200	5	5	0	С	
	1.1	2.8		CL	0	0	100						Blue Clay, water at 2.3m
14-03	0	1.1		TS									
	1.1	2.0		GM1	60	25	15	200	5	5	0	С	Blue fines, water at 2.0m
14-04	0	0.1		TS									
	0.1	5.2	1	GP	60	38	2	150	5	0	0	FMC	GP (G 67.1, S 30.6, F 2.3
14-05	0	0.3		TS									
	0.3	5.2	491	GP	58	41	2	350	10	5	0	С	GP (G 59.9, S 39.0, F 1.1)
14-06	0	0.4		TS									
	0.4	5.2	481	GP	55	43	2	200	10	5	0	MC	GP (G 60.1, S 38.1, F 1.8)
14-07	0	0.3		TS									
	0.3	3.1	708	GP	60	38	2	350	15	10	0	С	GP (G 67.3, S 30.7, F 2.0)
	3.1	4.5		SM3	0	70	30						


1	ŌF	2												
					AGO	GRE	GA	TE	LO	G				
PRO	JECT:	S	wift River F	Pit				S	AMF	LED	BY:		Bryan James	
	PIT#:		1500						METHOD:			Excavator		
DISTRICT:			Cariboo							DA			August 11, 12, 2014	
14-08	0	0.3		TS										
14-00	0.3	1.0		GP	60	38	2	250	10	10	0	С		
	1.0	3.9		SM3	0	70	30	250	10	10				
14-09	0	0.3		TS										
	0.3	2.0		GP	60	38	2	250	10	10	0	С		
	2	3		SM3	0	70	30						Water at 2.0m	
14-10	0	0.3		TS										
	0.3	5.2	389	GP	60	38	2	200	10	5	0	С	GP (G 62.7, S 35.8, F 1.5)	
14-11	0	0.3		TS										
	0.3	5.2	288	GP	60	38	2	250	10	5	0	С	GP (G 73.2, S 25.4, F 1.4)	
14-12	0	0.3		TS										
	0.3	5.2	555	GP	60	38	2	250	10	5	0	С	GP (G 64.4, S 33.4, S 2.2)	
14-13	0	0.3		TS										
	0.3	5.5	294	GP	60	38	2	250	15	5	0	С	GP (G 69.5, S 28.8, F 1.7)	
14-14	0	0.3		TS										
	0.3	5.2	856	GP	60	38	2	250	10	5	0	С	GP (67.3, S 31.6, F 1.1)	
14-15	0	0.3		TS										
	0.3	5.2	410	GP	60	38	2	250	10	5	0	С	GP (G 66.8, S 31.9, F 1.3)	
14-16	0	0.3		TS										
	0.3	4	S2243	GP	60	38	2	250	3	0	0	С	GP (G 67.7, S 30.5, F 1.8)	
14-17	0	0.3		TS										
	0.3	1.5		SP	45	53	2	50				М		
	1.5	2.7		SM3	0	70	30	ļ					J	


Wet Sieve Analysis


2023


PROJEC	T REPOI	RT OF															
SIEVE ANALYSIS SUMMARIES									PERCENT PASSING								
Project:			0						F	roject No.:			86004				
Sample Source:		Swift River								Client:			MoTI				
Material:			PIT RUN							Date:			Sept 21 20	23			-
San	nple Informa	ation							Pe	rcent Passi	ing						
Test Pit Depth		Bag #							Pit Run Sieve Sizes (mm)								
	(m)		75	63	50	37.5	25	19	12.5	9.5	4.75	2.36	1.18	0.6	0.3	0.15	0.075
23-01	0.2-2	23-01	100.0	100.0	100.0	98.0	90.8	85.3	76.8	70.1	53.0	40.2	27.5	16.5	8.9	4.6	2.4
23-01A	3.1-5.4	23-01A	100.0	100.0	100.0	100.0	98.4	95.9	90.7	88.2	82.3	77.3	68.6	56.4	37.5	19.8	9.4
23-02	0.2-3.7	23-02	100.0	100.0	98.7	93.7	84.4	78.8	68.4	62.3	45.5	33.3	18.2	7.5	3.5	2.3	1.7
23-03	0.1-3.2	23-03	100.0	100.0	98.7	97.2	88.5	82.7	70.3	62.9	45.1	32.3	18.4	10.1	6.3	4.5	3.3
23-04	0-3.7	23-04	100.0	100.0	100.0	94.5	85.4	79.6	67.9	60.2	39.6	25.3	11.7	6.5	5.1	4.1	3.1
23-05	0-2	23-05	100.0	100.0	100.0	83.0	70.5	61.0	50.1	44.8	33.0	25.5	18.0	9.9	4.9	3.0	2.1
23-05A	2-3	23-05A	100.0	100.0	100.0	100.0	98.1	95.5	92.1	89.5	84.2	80.9	74.4	63.0	45.7	27.6	13.1
23-06	1-4.8	23-06	100.0	100.0	100.0	100.0	100.0	100.0	99.7	99.4	99.1	98.9	98.6	98.2	97.9	95.5	75.3
23-07	1-5.2	23-07	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.9	99.9	99.9	99.7	96.7	71.0
23-08	0.2-2.4	23-08	100.0	100.0	100.0	89.9	75.7	71.1	61.4	56.1	43.0	32.3	21.4	14.9	11.8	10.5	8.4
23-09	0-4.8	23-09	100.0	100.0	100.0	91.4	80.1	73.6	62.8	55.1	40.2	29.9	19.4	9.4	4.2	2.6	1.8
23-10	1.2-5.1	23-10	100.0	100.0	100.0	100.0	100.0	98.9	97.9	97.0	93.2	91.5	89.6	88.4	86.5	80.2	58.0
23-11	0.1-1.5	23-11	100.0	100.0	100.0	100.0	88.4	79.4	68.9	62.5	48.1	37.0	24.3	15.7	10.7	8.2	6.8
23-12	0.3-1.8	23-12	100.0	100.0	100.0	100.0	100.0	98.2	97.3	96.8	96.6	96.4	95.6	86.4	64.5	39.2	22.6
23-13	0.2-2.8	23-13	100.0	100.0	97.9	93.7	84.4	78.7	68.5	61.8	46.5	35.0	21.9	11.4	5.3	3.3	2.4
23-14	0.12-2.9	23-14	100.0	100.0	94.9	88.5	83.4	78.3	67.2	61.1	45.6	33.7	18.5	9.0	4.6	3.3	2.4
23-15	0-5	23-15	100.0	100.0	93.9	91.0	77.4	70.5	59.6	54.1	41.4	31.7	19.1	8.6	3.8	2.4	1.7
23-16	0.1-4	23-16	100.0	100.0	93.5	80.0	68.9	62.8	54.6	49.8	38.5	30.3	17.6	7.9	3.8	2.4	1.7


Aggregate Gradation Charts

USC Legend

MATERIALS CLASSIFICATION LEGEND

	JOR IONS	SYMBOL	SOIL TYPE							
(0	LS	GW	WELL GRADED GRAVELS OR GRAVEL—SAND MIXTURES, < 5% FINES							
	L AND Y SOILS	GP	POORLY-GRADED GRAVELS OR GRAVEL-SAND MIXTURES, < 5% FINES							
S	GRAVEL GRAVELLY	GM*	SILTY GRAVELS, GRAVEL—SAND—SILT MIXTURES							
GRAINED SOILS	GR GR	GC*	CLAYEY GRAVELS, GRAVEL—SAND—CLAY MIXTURES							
GR/	SAND AND SANDY SOILS	SW	WELL-GRADED SANDS OR GRAVELLY SANDS, < 5% FINES							
SE		SP	POORLY—GRADED SANDS OR GRAVELLY SANDS, < 5% FINES							
COARSE		SM*	SILTY SANDS SAND-SILT MIXTURES							
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	SC*	CLAYEY SANDS SAND-CLAY MIXTURES							
(0	ND <50	ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY							
SOILS	SILTS AND CLAYS w _L <	CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS							
NED YED		OL	ORGANIC SILTS AND ORGANIC SILT-CLAYS OF LOW PLASTICITY							
GRAINED SOILS	AND L >50	МН	INORGANIC SILTS, MICACEOUS OR DIATOM— ACEOUS FINE SANDY OR SILTY SOILS, PLASTIC SILTS							
U Z L	(СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS							
	SILTS	ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS							
	ANIC ILS	Pt	PEAT AND OTHER HIGHLY ORGANIC SOILS							
	SOIL	TS	TOPSOIL WITH ROOTS, ETC.							
	BLES	SB	ROCK FRAGMENTS AND COBBLES, PARTICLE SIZE 75mm TO 300mm							
1	RGE .DERS	LB	BOULDERS, PARTICLE SIZE OVER 300mm							
BEDF	ROCK	BR	BEDROCK							
*GM1; GM2; GM3;	FOR SOILS HAVING 5 - 12% PASSING .075 SIEVE, USE DUAL SYMBOL *GM1; GC1; SM1; SC1; 12 - 20% GM2; GC2; SM2; SC2; 20 - 30% GM3; GC3; SM3; SC3; 30 - 40% GM4; GC4; SM4; SC4; 40 - 50% PASSING .075mm SIEVE									
			REV. 90-04-26							

PROVINCE of BRITISH COLUMBIA MINISTRY OF TRANSPORTATION & HIGHWAYS Geotechnical & Materials Engineering

UNIFIED SOIL CLASSIFICATION LEGEND

Drawn: LU Date: JULY'97 Scale:

File No.: ACAD File: ACADSTDS ACADSTDS

Photos

Looking southwest over potential crusher set up area, October 2023.

West-looking view of potential crusher set up area, October 2023.

TP 23-02, October 2023.

TP 23-04 Spoil pile, October 2023.

TP 23-09, October 2023.

TP 23-13, October 2023.

TP 23-15, October 2023.

TP 23-16, October 2023.