WATER QUALITY INVENTORY

OF THE

NITINAT RIVER AND SAN JUAN RIVER WATERSHEDS

VANCOUVER ISLAND, BRITISH COLUMBIA

1997

Prepared by:

Barbara G. Lucas Lucas Research Sooke, BC

Prepared for:

Ministry of Environment, Lands and Parks Contract No: 1070-20/WM 8-023 Funding for this contract and the overall project were provided by the Aquatic Envelope Committee of CLIB (Common Land Inventory Base)

March 1998

Summary

To provide information on water resources in six major watersheds on the west coast of Vancouver Island, a water quality inventory was conducted between May and November, 1997. The project was designed to provide information on any limitations to drinking water or other potential water uses (*e.g.* recreation, fish habitat). The quantity aspects of water resources are being addressed in a separate report.

Sixty-one sites were identified and each sampled four times through the period, representing spring, summer, and fall. At each station, samples were collected for a wide variety of characteristics: *Giardia*, *Cryptosporidium*, fecal coliforms, and a wide range of water chemistry parameters.

In terms of suitability for drinking water, the majority of sites had limitations of some kind. An important result was the relatively high fecal coliform bacteria levels in many of the streams in this relatively uninhabited and undeveloped area. The periodic high bacteria levels would indicate the need for treatment beyond the normal disinfection typically used for drinking water supplies. High fecal coliforms appear to be somewhat associated with relatively high turbidity or non-filterable residue concentrations. Lake sites had some advantages over stream sites as potential drinking water sources because of low non-filterable residues and fecal coliforms compared to streams.

Concentrations of *Giardia* and *Cryptosporidium* were low but there were occurrences found throughout the study area at different times. Again this was an unexpected result in this area with a low human population and where the major activity is forestry harvesting. It appears that the most frequent presence was in the watershed with the highest human population (Nitinat) but these two protozoans can, on the results of this study, be expected to occur in all streams in the study area, even those which would otherwise be considered to be undisturbed or unaffected by human activity or presence.

The water chemistry characteristics that exceeded criteria for drinking water at some sites included color, iron, organic carbon, and some metals. These are important in some cases and of secondary consideration in other cases. There was a fairly wide variation in the levels of a number of characteristics that were measured - due primarily to fluctuations in stream flow.

There was considerable variation from the weather normals during this year. In general the summer was quite wet (stream flows were relatively high) and there was no marked autumn freshet brought on by fall storms as is usually the case.

This report provides a regional characterization of water quality that should provide a baseline for future sampling and a reference by which to judge any changes that might occur. The major constraints to use as drinking water are the protozoan pathogens, microbial pathogens that are indicated by the presence of fecal coliforms, suspended sediments (which affect disinfection efficiency and general appearance of the water), and dissolved organic carbon (which reacts with chlorine disinfectant to form trihalomethanes which are known carcinogens). There do not appear to be any major constraints to recreation due to water quality and no obvious effects on aquatic life that are due to the water quality parameters that were measured.

Table of Contents

Summary		ii
List of Tal	oles	vi
List of Fig	ures	ix
Acknowle	dgements	x
Introducti	on	1
Methods		1
Sites		1
Parameters		2
Sampling		3
Quality Assu	rance/Quality Control	3
Water Qualit	y Guidelines	3
Results		5
Quality Assu	rance/Quality Control	5
Region Wide	Results	7
	er Monitoring Group	
E226191	Gorge Mainline Creek at Gorge Mainline Bridge	
E226192 E226193	West Fork Klanawa River at Newstead Mainline Bridge Klanawa River at N400 on Newstead Mainline	
E226193 E226194	Dorothy Creek at Northfork Main	
E226194 E226196	Klanawa River at Central South Main	
E226197	Bagley Creek at Upper Klanawa Main	
E226198	East Klanawa River at Bridge between Upper Klanawa and Upper Klanawa Main	9
	River Monitoring Group	10
E226199	Flora Lake at Nitinat	
E226201	Darlington Lake at Franklin South Main	
E226202	Francis Lake at Franklin South Main Boat Ramp	
E226203	Little Nitinat River at Nadira Main Little Nitinat River on East Side Franklin South Main	
E226204 E226206	Little Nitinat River on East Side Franklin South Main	
E226206 E226207	Little Nitinat River at Nitinat Mainline u/s Hatchery	
Nitinat River	Monitoring Group	
E226208	Nitinat River near Rift Creek	

E226211	Granite Creek at Carmanah Main	
E226214	Worthless Creek at Summit BR100	
E226215	Worthless Creek at BR60	
E226216	Nitinat River at One-Way West	
E226217	Jasper Creek at One-Way West	
E226218	Upper Jasper Creek at Washout	
E226219	Nitinat River at Carmanah Mainline	
E226221	Nitinat River downstream of Hatchery	
E226223	Small Creek near Nitinat Gravel Quarry	
Rosander Mo	onitoring Group	
E226247	Rosander Creek at Rosander Main	
E226249	South Fork Marchand Creek at Rosander Main	
E226251	Doobah Creek downstream of Doobah Lake at Rosander Main	
E226253	Sprise Lake near Nitinat	
E226254	UnID'ed Creek #2 flowing into Cheewhat Lake at Rosander Main	14
E226255	UnID'ed Creek #3 near Cheewhat Lake at Rosander Main	
E226256	Carmanah Creek near Heaven's Grove	14
•	er Monitoring Group	
E226225	Malachan Creek at Carmanah Mainline	
E226225	Caycuse River near Nitinat Campsite	
E226227	Upper Seven Mile Creek at F1A	
E226228	Lower Seven Mile Creek at Caycuse Mainline	
E226231	Caycuse River at Hatton Mainline	
E226232	Cedar Creek at Caycuse 9	
E226234	Mistery Creek at McLure Mainline	
E226235	McLure River at McLure Mainline & M10	
E226236	McLure River at McLure Mainline Bridge	
E226237	Upper Hatton Creek at H500	16
C I D'		16
	r Monitoring Group	
E226238	Gordon River u/s Gordon River Camp	
E226239	Upper Gordon River at Gordon River Mainline	
E226240	Gordon River at TR4	
E226241	Gordon River at TR10	
E226242	Loup Creek at Gordon River Mainline	
E226244	Gordon River at Baird Creek	
E226246	Brown's Creek at Gordon River Mainline	
San Ivan Di-	or Monitoring Crown	17
E226190	er Monitoring Group Bavis Creek at Red Creek Mainline	/ I 18
E226190	Fairy Creek at Harris Creek Mainline	
E226408	Mosquito Creek at Red Creek Mainline	
E226548	Renfrew Creek at Harris Creek Mainline	
E226548 E226549	Harris Creek at Harris Creek Mainline	
E226549 E226550	Upper Lens Creek at Lens Main West	
E226550 E226551	Upper Lens Creek at Lens Main West & TR8	
	Lens Creek at Lens Mainline & Modeste Main	
E226552 E226553	Lens Creek at Lens Mainline & Modeste Main	
E226554 E226556	San Juan River at San Juan River Bridge Campsite	
	Garbage Creek at Shawnigan Mainline San Juan River u/s Williams Creek	
E226560		
E226561	Fleet River at Fleet Mainline	

Discussion	
Recommendations	21
Literature Cited	23
Appendix	

List of Tables

Table 1. Water quality guidelines for protecting the most sensitive water use in the Nitinat
watershed inventory study
Table 2. Contamination of metals trip blanks (mg/L). 5
Table 3. Summary of replicates for fecal coliform samples. 6
Table 4. G/C split sample replication results showing number of cysts found/100 mL.
Hyperion Research Ltd. and Health Canada laboratories analyzed the filters7
Table 5. Ambient water quality data for site E226191 Gorge Mainline Creek at Gorge
Mainline Bridge (May – November 1997)
Table 6. Ambient water quality data for site E226192 West Fork Klanawa River at Newstead
Mainline Bridge (May – November 1997)
Table 7. Ambient water quality data for site E226193 Klanawa River at N400 on Newstead
Mainline (May – November 1997)
Table 8. Ambient water quality data for site E226194 Dorothy Creek at Northfork Main
(May – November 1997)
Table 9. Ambient water quality data for site E226196 Klanawa River at Central South Main
(May – November 1997)
Table 10. Ambient water quality data for site E226197 Bagley Creek at Upper Klanawa
Main (May – November 1997)
Table 11. Ambient water quality data for E226198 East Klanawa River at Bridge between
Upper Klanawa and Upper Klanawa Main (May – November 1997)
Table 12. Ambient water quality data for site E226199 Flora Lake at Nitinat (May –
November 1997)
Table 13. Ambient water quality data for site E226201 Darlington Lake at Franklin South
Main (May – November 1997)
Table 14. Ambient water quality data for site E226202 Francis Lake at Franklin South Main
Boat Ramp (May – November 1997)
Table 15. Ambient water quality data for site E226203 Little Nitinat River at Nadira Main
(May – November 1997)
Table 16. Ambient water quality data for site E226204 Little Nitinat River on East Side
Franklin South Main (May – November 1997)
Table 17. Ambient water quality data for site E226206 Little Nitinat River at Rock Cut (May
– November 1997)
Table 18. Ambient water quality data for site E226207 Little Nitinat River at Nitinat
Mainline upstream Hatchery (May – November 1997)
Table 19. Ambient water quality data for site E226208 Nitinat River near Rift Creek (May -
November 1997)
Table 20. Ambient water quality data for site E226211 Granite Creek at Carmanah Main
(May – November 1997)
Table 21. Ambient water quality data for site E226214 Worthless Creek at Summit BR100
(May – November 1997)
Table 22. Ambient water quality data for site E226215 Worthless Creek at BR60 (May -
November 1997)
Table 23. Ambient water quality data for site E226216 Nitinat River at One-Way West (May
– November 1997)

Table 24. Ambient water quality data for site E226217 Jasper Creek at One-Way West (May
– November 1997)
Table 25. Ambient water quality data for site E226218 Upper Jasper Creek at Washout (May – November 1997)
Table 26. Ambient water quality data for site E226219 Nitinat River at Carmanah Mainline
(May – November 1997)
Table 27. Ambient water quality data for site E226221 Nitinat River downstream of
Hatchery (May – November 1997)
Table 28. Ambient water quality data for site E226223 Small Creek near Nitinat Gravel
Quarry (May – November 1997)
Table 29. Ambient water quality data for site E226247 Rosander Creek at Rosander Main
(May – November 1997)
Table 30. Ambient water quality data for site E226249 South Fork Marchand Creek at
Rosander Main (May – November 1997)
Table 31. Ambient water quality data for site E226251 Doobah Creek downstream Doobah
Lake at Rosander Main (May – November 1997)
Table 32. Ambient water quality data for site E226253 Sprise Lake near Nitinat (May –
November 1997).
Table 33. Ambient water quality data for site E226254 UnID'ed Creek #2 flowing into
Cheewhat Lake at Rosander Main (May – November 1997)
Table 34. Ambient water quality data for site E226255 UnID'ed Creek #3 near Cheewhat
Lake at Rosander Main (May – November 1997)
Table 35. Ambient water quality data for site E226256 Carmanah Creek near Heaven's
Grove (May – November 1997)
Table 36. Ambient water quality data for site E226130 Malachan Creek at Carmanah Mainling (May, Nevember 1997)
Mainline (May – November 1997)
Table 37. Ambient water quality data for site E226225 Caycuse River near Nitinat Campsite
(May – November 1997)
Table 38. Ambient water quality data for site E226227 Upper Seven Mile Creek at F1A 24. 25.
(May – November 1997)
Table 39. Ambient water quality data for site E226228 Lower Seven Mile Creek at Caycuse
Mainline (May – November 1997)
Table 40. Ambient water quality data for site E226231 Caycuse River at Hatton Mainline
(May – November 1997)
Table 41. Ambient water quality data for site E226232 Cedar Creek at Caycuse 9 (May –
November 1997)
Table 42. Ambient water quality data for site E226234 Mistery Creek at McLure Mainline
(May – November 1997)63
Table 43. Ambient water quality data for site E226235 McLure River at McLure Mainline
and M10 (May – November 1997)64
Table 44. Ambient water quality data for site E226236 McLure River at McLure Mainline
Bridge (May – November 1997)65
Table 45. Ambient water quality data for site E226237 Upper Hatton Creek at H500 (May-
November 1997)
Table 46. Ambient water quality data for site E226238 Gordon River upstream Gordon
River Camp (May – November 1997)67

Table 47. Ambient water quality data for site E226239 Upper Gordon River at Gordon
River Mainline (May – November 1997)
Table 48. Ambient water quality data for site E226240 Gordon River at TR4 (May-
November 1997)69
Table 49. Ambient water quality data for site E226241 Gordon River at TR10 (May –
November 1997)
Table 50. Ambient water quality data for site E226242 Loup Creek at Gordon River
Mainline (May – November 1997)
Table 51. Ambient water quality data for site E226244 Gordon River at Baird Creek (May –
November 1997)72
Table 52. Ambient water quality data for site E226246 Brown's Creek at Gordon River
Mainline (May – November 1997)
Table 53. Ambient water quality data for site E226190 Bavis Creek at Red Creek Mainline
(May – November 1997)74
Table 54. Ambient water quality data for site E226408 Fairy Creek at Harris Creek
Mainline (May – November 1997)75
Table 55. Ambient water quality data for site E226410 Mosquito Creek at Red Creek
Mainline (May – November 1997)76
Table 56. Ambient water quality data for site E226548 Renfrew Creek at Harris Creek
Mainline (May – November 1997)77
Table 57. Ambient water quality data for site E226549 Harris Creek at Harris Creek ML
(May – November 1997)
Table 58. Ambient water quality data for site E226550 Upper Lens Creek at Lens Main
West (May – November 1997)
Table 59. Ambient water quality data for site E226551 Upper Lens Creek at Lens Main
West and TR8 (May – November 1997)
Table 60. Ambient water quality data for site E226552 Lens Creek at Lens Mainline and
Modeste Main (May – November 1997)
Table 61. Ambient water quality data for site E226553 Lens Creek at Lens Mainline and
Harris Creek Mainline (May – November 1997)
Table 62. Ambient water quality data for site E226554 San Juan River at San Juan River
Bridge Campsite (May – November 1997)
Table 63. Ambient water quality data for site E226556 Garbage Creek at Shawnigan
Mainline (May – November 1997)
Table 64. Ambient water quality data for site E226560 San Juan River upstream Williams
Creek (May – November 1997)
Table 65. Ambient water quality data for site E226561 Fleet River at Fleet River Mainline
(May – November 1997)

List of Figures

Figure 1.	Klanawa River, Little Nitinat River, Nitinat River, Mt. Rosander area, and Caycuse
River	watersheds showing primary and secondary sites sampled May – November 1997.
Figure 2.	San Juan River watershed showing primary and secondary sites sampled May –
Nove	mber 1997

Acknowledgements

I would like to thank all the people who helped to make this project an overwhelming success. It was a dream come true for me, a wonderful opportunity, challenge, and learning experience.

Three very special people put up with me from the beginning right through to the very end. Rick Nordin made it all possible, shared great discussions, and encouraged me through the analysis and writing. Cheryl Pehl was there for me long after her job was finished, the Wild Wimin do live on. Andrew Bailey enabled me to focus on my work, and kept my computer running no matter how many times I made it crash.

John Deniseger offered helpful suggestions, shared his time, space, equipment, and experience. Bob Cook supplied maps, references, ideas, and planning assistance. Many others in the Nanaimo office of the Ministry of Environment, Lands and Parks facilitated this project in some way. Bill Wright cheerfully found all the field equipment I needed at the Ministry warehouse. Ute Muller, Nellie Peppin, and Guy Vallieres got the data in and the bugs out of the EMS system.

Joe Thorn and the Dididaht First Nation welcomed me in their traditional territory. Rob Brouwer and his staff gave me a warm and comfortable place to stay in their dorms at the Nitinat River Fish Hatchery. Mike Conlan in Port Renfrew made Alcatraz cottage available in the cold, November storms.

The Aquatic Envelope Committee of the Common Land Information Base provided funding for this study. The Ministry of Environment, Lands and Parks offices in Nanaimo and Victoria provided additional assistance.

Introduction

Water quality is an important issue in British Columbia. Land use planning depends on the quality of the water resource available. Water quality impacts land value and development potential, especially with regard to settlement, tourism, and recreation. Water quality surveys are important in identifying potential future uses and limitations for water resources. Information on drinking water suitability and sources of contamination may also be useful in treaty negotiations.

This study was conducted on Southwestern Vancouver Island between May and November, 1997. The region is in the Coastal Western Hemlock biogeoclimatic zone. The climate is characterized by warm and relatively dry summers, with mild and wet winters. The watersheds included in this study drain more than 1920 km² in total. Complete watershed information, including hydrology, instream flow requirements for fisheries resources, and present and projected water license demands is available in "San Juan River Water Allocation Plan - September 20, 1996" (Jackson and Blecic, 1996). Water quantity surveys for this area were conducted during the summer of 1997 by Ministry of Environment, Lands and Parks (MELP) staff in Nanaimo, B.C.

This study was funded by the Common Land Information Base (Aquatic Envelope Committee) funding initiative administered through the Land Use Co-ordination Office. The Pollution Prevention and Pesticide Branch in Nanaimo and the Water Management Branch in Victoria provided additional support.

The purpose of this study was to collect water quality data in treaty negotiation areas where little water quality data was previously available. This survey provides baseline information on water quality that can be used as a basis for: determining existing impacts, recognizing development potentials, identifying areas sensitive to disturbance, identifying limitations to drinking water or irrigation supply, identifying allocation related issues, and identifying land and water uses.

Methods

Sites

Sixty-one sites are included in this study, representing six major river systems and one lake area (Figures 1 and 2): Klanawa River, Little Nitinat River, Nitinat River, Mt. Rosander area, Caycuse River, Gordon River, and San Juan River. Most sites were sampled four times over the study period, three times during the spring and summer and once in the late fall of 1997. Carmanah Creek was sampled only once due to lengthy access time. Several sites were not sampled in late summer because the streams were either dry or flowing primarily subsurface.

Sampling sites were chosen to represent the range of stream and watershed conditions found in Dididaht and Pacheedaht treaty negotiation areas. Preliminary selection was made in consultation with the technical supervisor (Rick Nordin, Victoria), regional water quality and water quantity staff (John Deniseger and Bob Cook, Nanaimo), Ditidaht (Joe Thorn), and field staff (Cheryl Pehl and Barbara Lucas). Access to our sampling sites was primarily via

logging roads. Site selection, location, and access are detailed in the "Site Documentation and Access Manual for a Water Quality Inventory on the West Coast of Vancouver Island" (Pehl, 1997). Sites were geo-referenced using a Trimble GeoExplorer (Trimble Navigation Ltd., 1994). Site locations, field results, and laboratory results are available on the Environmental Monitoring System (EMS) information warehouse of the Ministry of Environment, Lands and Parks.

Parameters

Parameters were chosen that would provide information on water quality suitability for present and potential future uses. The most sensitive uses in this area are freshwater aquatic life and drinking water. The study area is used for recreational fishing, hunting, and camping. Commercial logging occurs throughout the area.

We tested field temperature, field dissolved oxygen (DO), true color, pH, total residue, filterable residue, non-filterable residue, turbidity, specific conductivity (SC), total hardness, total organic carbon (TOC), dissolved organic carbon (DOC), total inorganic carbon (TIC), dissolved inorganic carbon (DIC), total carbon, total phosphorus, dissolved phosphorus, total nitrogen, dissolved ammonia, nitrate + nitrite, nitrate, nitrite, total metals, fecal coliforms, *Giardia*, and *Cryptosporidium* (G/C).

All parameters were tested at each site during the first round of sampling. Sites deemed to be important or having results of concern were considered primary sites and continued to be tested for all parameters. The rest were considered secondary, and the following tests were omitted on subsequent samples: filterable residue, TOC, TIC, DOC, DIC, total carbon, and G/C. Since initial separate tests on nitrate and nitrite showed little nitrite was present, later samples were tested for nitrate + nitrite.

Nitrite, aluminum, cadmium, chromium, copper, lead and zinc are toxic to aquatic life in low concentrations. Toxic effects are usually increased at low pHs such as those on the coast (CCREM, 1987). Ammonia is toxic to aquatic life at low levels, and it can contribute to increased algal blooms that result in poor water quality for drinking water, aquatic life, and recreation. Temperature, pH, and hardness affect chemical solubility, influencing pollutant effects on aquatic life (Cavanagh *et al.*, 1998). Soft water may corrode metal plumbing. Specific conductivity (SC) is a measurement of the dissolved ions (metals and other dissolved solids) in the water.

Dissolved oxygen (DO) is required for most aquatic life, including fish and invertebrates. DO also influences availability of nutrients. Nitrate is a nitrogen source for plants. High levels can cause increased growth of plants and phytoplankton. Phosphorus is usually the limiting nutrient in fresh water systems because it is naturally low, yet essential to plant growth. Increased phosphorus levels can cause algal blooms and eutrophication. Carbon is an important requirement for aquatic biota. Inorganic carbon buffers aquatic systems and provides carbon for aquatic plant photosynthesis. High organic carbon levels can cause reduced DO concentrations and contribute the formation of carcinogenic trihalomethanes during chlorination of drinking water.

High temperature, color, and turbidity are aesthetically displeasing in drinking water. Warm waters are more suitable for recreation uses. Highly colored water can block light and impede photosynthesis. Turbidity can interfere with disinfection of drinking water, reduce light penetration, and increase surface area for bacterial growth. Non-filterable residue (suspended solids) increases turbidity. It can damage fish gills and clog spawning gravels. Fecal coliforms are indicators of pathogenic gastrointestinal microorganisms. *Giardia* and *Cryptosporidium* are pathogenic protozoans that can cause mild to severe gastrointestinal diseases. These protozoans are not killed by chlorination of raw water for drinking.

Sampling

Water samples were collected according to Resource Inventory Committee approved protocols (Cavanagh *et al.*, 1994a, b). Water chemistry was analyzed by the Pacific Environmental Science Center, Vancouver, B.C. Fecal coliforms were tested by JR Laboratories Inc., Burnaby, B.C.

Protozoans samples were collected by filtering a minimum 100 L of raw water through a 1µ nominal pore string-wound filter cartridge. A complete report of the field sampling method used is available in "Field Methods for *Giardia* and *Cryptosporidium* Sample Collection" (Lucas, 1997). Filters were analyzed primarily by Hyperion Research, Medicine Hat, Alberta. Health Canada Occupational and Environmental Health Services, Prince George, B.C. examined quality control/quality assurance (QA/QC) replicates. The British Columbia Center for Disease Control, Vancouver, B.C. analyzed initial protozoan filter samples.

Field temperature and DO were measured with an Orion WTW Oxi 320 or a YSI Model 57 DO meter. Statistical analyses were performed using Microsoft Excel.

Quality Assurance/Quality Control

Four replicate water quality samples were collected at randomly selected sites, representing > 6% of the study sites. In addition, duplicate samples for fecal coliform analysis were collected at sites where high coliform measurements indicated potential fecal contamination.

Three sets of quality assurance/quality control (QA/QC) samples were collected for *Giardia* and *Cryptosporidium* (G/C) analysis, at sites that had previously tested positive for G/C. Split samples were collected in two filters at the same time by splitting the raw water intake through a "Y" valve into two separate collection devices (Lucas, 1997). The first set of split sample filters was sent "blind" to Hyperion for analysis. One each of the second set of split sample filters was sent to Hyperion and Health Canada. The third set included four filters, two split sample sets collected sequentially. Three filters were sent "blind" to Hyperion and one was sent to Health Canada.

Water Quality Guidelines

Practical guidelines for the most sensitive water use were determined for important parameters in this study (Table 1). These guidelines are based primarily on "Approved and Working Criteria for Water Quality" (Nagpal, 1995). For parameters where objectives have not been set, recommendations from "Guidelines for Interpreting Water Quality Data" (Cavanagh *et al.*, 1998) and expected maximum levels for coastal streams and lakes (Nordin, 1998) were used as guidelines.

Parameter	MaxValue	Purpose	Reference			
Temp	< 15	drinking water (aesthetics)	AWC, GIWQD			
DO	> 8	aquatic life	AWC			
Color	< 15	drinking water (aesthetics)	AWC, GIWQD			
рН	6.5-8.5	drinking water	AWC			
Res: Filt	100	normal coastal maximum (WQ criteria 500)	Nordin			
Res: NF	10	level of concern for aquatic life	AWC			
Turb	1	drinking water (health)	AWC, GIWQD			
SC	100	expected coastal maximum (WQ criteria 700)	Nordin			
T Hard	80-100	drinking water (optimal)	AWC, GIWQD			
тос	2	drinking water (to prevent trihalomethane formation)	AWC			
DOC	2	drinking water (to prevent trihalomethane formation)	Nordin			
РТ	0.010	drinking water, aquatic life 5 - 15	AWC, GIWQD			
P T Diss	0.005	level of concern for aquatic life (excessive algal growth)	Nordin			
Tot N	0.20	expected coastal maximum (no WQ criteria)	Nordin			
NH4 Diss	0.005	expected coastal maximum	Nordin			
NO3 + NO2	0.200	expected coastal maximum	Nordin			
N-NO3	10	drinking water	AWC, GIWQD			
N-NO2	0.020	freshwater aquatic life (average)	AWC, GIWQD			
AI-T	0.10	freshwater aquatic life (dissolved @ pH>=6.5)	AWC, GIWQD			
As-T	0.025	drinking water	AWC			
Ca-T	20	expected coastal maximum	Nordin			
Cd-T	0.00002	freshwater aquatic life (@ 30 mg/L hardness)	AWC, GIWQD			
Cr-T	0.002	freshwater aquatic life (phyto- and zooplankton)	AWC			
Cu-T	0.002	freshwater aquatic life (@ 50 mg/L hardness)	AWC, GIWQD			
Fe-T	0.300	drinking water (aesthetics) + freshwater aquatic life	AWC			
КТ	20	livestock (dairy sanitation)	AWC			
Mg-T	100	taste threshold for sensitive people (dissolved)	AWC			
Mn-T	0.050	drinking water (aesthetics)	AWC			
Na-T	20	drinking water alert for very restricted diets	AWC			
Ni-T	0.025	freshwater aquatic life	AWC			
Pb-T	0.003	freshwater aquatic life (<= 8 mg/L hardness)	AWC, GIWQD			
Zn-T	0.007	freshwater aquatic life (<= 90 mg/L hardness)	GIWQD			
Fecals	0	no treatment, 10 disinfect, 100 partial treatment	AWC			
Giardia	0	drinking water	Warrington			
Crypto	0	drinking water	Warrington			
AWC	Approved	and Working Criteria for Water Quality - 1995				
		for Interpreting Water Quality Data - field test edition				
		n, Provincial Limnologist				
		lity Criteria for Microbiological Indicators - Technical App	endix			

Table 1. Water quality guidelines for protecting the most sensitive water use in theNitinat watershed inventory study.

Results

Quality Assurance/Quality Control

Laboratory results for phosphorus and nitrogen were inconsistent. Total phosphorus concentrations were as much as 0.005 mg/L lower than dissolved phosphorus in 12% of samples tested. Total nitrogen measured was as much as 0.7 mg/L lower than nitrate + nitrite in 6% of samples.

Field replicates showed low variability for most parameters. Variability increased when values were close to the detection limits. Field blank contamination with chromium and iron coincided with variability in sample concentrations. Color, turbidity, and organic carbon were each variable in one of four replicates on one occasion

Measured concentrations in metals trips blanks were higher than detection limits for 13 of the 16 metals examined in this study (Table 2). Only aluminum, arsenic, and calcium levels were below detection limits in all trip blanks. Systematic contamination of metals may be from the container or preservative, or may have occurred during handling, transportation, or storage. When the levels of contamination in trip blanks are low relative to the level measured in the water samples there is little impact on the reliability of the sample results. Such was the case for iron, potassium, magnesium, manganese, sodium, sulfur, and silica. When the levels of contamination of trip blanks are higher than the levels measured in the water samples, the results may be artificially high and biased high toward false positives (Cavanagh *et al.*, 1998). This was the case for cadmium, copper, lead, nickel, and zinc.

Metal	Maximum	Detection	Contaminated Blanks		
Species	Measured	Limit	#/18	%	
Cd	0.010	0.006	2	11	
Cr	0.019	0.006	7	39	
Cu	0.010	0.006	5	28	
Fe	0.024	0.006	13	72	
Κ	1.0	0.1	6	33	
Mg	0.1	0.1	2	11	
Mn	0.004	0.001	4	22	
Na	1.2	0.1	2	11	
Ni	0.03	0.02	2	11	
Pb	0.10	0.06	1	6	
S	0.06	0.06	1	6	
Si	0.10	0.06	4	22	
Zn	0.013	0.002	5	28	

Table 2. Contamination of metals trip blanks (mg/L).

Fecal coliform concentrations were highly variable throughout the study area (Table 3). Both the percent relative standard deviation for quadruplicate samples and the percent mean difference for duplicate samples were usually higher than recommended criteria (\leq 18% and \leq 25%, respectively; Cavanagh *et al.*, 1998). Though the results are imprecise, the presence of fecal coliforms is indicated at all sites. There is no temporal pattern in variability.

Site#	Date		Fec	al Co	olifor	ms/1	00 m	L		Mean	SD	% Rel SD	% Mean Diff
197	3-Jun		8		2		10		14	8.5	5.00	59	
199	26-Aug		6		11		3		7	6.8	3.30	49	
207	13-Aug	<	1		2					1.5	0.71		67
	27-Aug		1		5					3.0	2.83		133
208	30-Jul		11		17		12		13	13.3	2.63	20	
214	26-Aug		13		46					29.5	23.33		112
	5-Nov	<	1	<	1	<	1	<	1	1.0	0.00	0	
216	13-Aug		5		4					4.5	0.71		22
	27-Aug	<	1	<	1					1.0	0.00		0
219	13-Aug		6		4					5.0	1.41		40
	2-Sep		3		4					3.5	0.71		29
	3-Nov		58		54		48		68	57.0	8.41	15	
221	12-Aug		2	<	1					1.5	0.71		67
	27-Aug	<	1		7					4.0	4.24		150
223	29-Jul	<	1		1	<	1	<	1	1.0	0.00	0	
	24-Aug	<	1	<	1					1.0	0.00		0
249	25-Jun		8		9		1		14	8.0	5.35	67	
	3-Sep		2		2		11			5.0	5.20	104	
255	25-Jun		1		1					1.0	0.00		0
228	13-Aug	<	1	<	1	<	1	<	1	1.0	0.00		0
234	3-Jul	<	1	<	1	<	1	<	1	1.0	0.00		0
240	8-Sep		3		2		2		1	2.0	0.82	41	
408	25-Nov	<	1	<	1	<	1	<	1	1.0	0.00	0	
560	16-Jul		5		7		6		7	6.3	0.96	15	

Table 3. Summary of replicates for fecal coliform samples.

G/C replication showed good precision, considering the limitations of the methods and the heterogeneity of the source water (Table 4). One of the four sets of split samples (25%) found *Giardia* or *Cryptosporidium* in both filters. Two of the four samples (50%) collected on the same date from the Little Nitinat River detected *Giardia* and *Cryptosporidium* cysts. Cyst concentrations were very low, making detection of cysts in all samples difficult.

Site	Date	Time	Filter	Protozoan	Hyperion	Health Canada
E226216	Aug 27/97	15:05	А	Giardia		2
Nitinat River	C			Cryptosporidium		9
at One-Way			В	Giardia	1.35	
West				Cryptosporidium	0	
E226207	Aug 27/97	9:10	А	Giardia		0
Little Nitinat				Cryptosporidium		17
River at			В	Giardia	2.11	
Nitinat ML				Cryptosporidium	1.06	
u/s Hatchery		11:07	С	Giardia	1.38	
-				Cryptosporidium	0	
			D	Giardia	0	
				Cryptosporidium	0	
E226228	Sep 15/97	16.22	٨	Giardia	0	
	Sep 13/97	16:22	А		-	
Lower Seven			П	Cryptosporidium	0	
Mile Creek			В	Giardia	2.74	
				Cryptosporidium	0	

Table 4. G/C split sample replication results showing number of cysts found/100 mL.Hyperion Research Ltd. and Health Canada laboratories analyzed the filters.

Region Wide Results

The water quality throughout the Nitinat River and San Juan River watersheds had a variety of common characteristics (Appendix). Water temperatures were cool (12.0°C mean) throughout the study period. DO was at or near saturation (10.2 mg/L mean) and sufficient to protect freshwater aquatic life during the sampling period. Color was generally low (10 TCU mean), usually meeting the criteria for drinking water aesthetics and the desirable criteria for recreation (Nagpal, 1995). The pH was near neutral (7.33 mean), dropping slightly below the guidelines in only a few samples. As a result, the study area had a low buffering capacity. Total residue, SC, and hardness were very low (42 mg/L, 52 μ S/cm, and 20.9 mg/L CaCO₃ means, respectively). Non-filterable residue (6 mg/L mean) and turbidity (1.46 NTU mean) were low except following rain events. TOC was usually lower than drinking water criteria except during rain events (Nagpal, 1995). TIC averaged 4.8 mg/L. Inorganic carbon concentrations were generally higher than organic carbon concentrations.

Nutrient levels were low throughout the study area. Total and dissolved phosphorus were usually near or below guidelines for drinking water and within the acceptable range for aquatic life. Total nitrogen levels averaged 0.12 mg/L. There was rarely detectable ammonia (DL = 0.005 mg/L) or nitrite (DL = 0.002 mg/L). Most of the nitrogen was present as nitrate (0.043 mg/L mean), and was well below the criteria for drinking water (Nagpal, 1995).

The total concentrations for most metals were well below our guidelines. There was no detectable arsenic in any samples. Contamination of field blanks with copper, cadmium, chromium, and zinc confound the sample results for those metals. Pronounced increases in aluminum, iron, and magnesium concentrations were measured following heavy rain events, suggesting particulate input from soil in runoff. Manganese and silica showed the same trends, but to a lesser extent. Zinc and nickel concentrations peaked during dry periods.

Fecal coliforms were found at 50 of the 61 study sites, encompassing every watershed examined. Fecal coliform concentrations varied from low (< 10/100 mL) to moderate (11 - 100/100 mL) and high (> 100/100 mL). *Cryptosporidium* and *Giardia* were uncommon, but distributed throughout the study area. *Giardia* was detected in every monitoring area, whereas *Cryptosporidium* was detected in three of the seven monitoring areas. As the detection rate for this study was between 25 and 40 percent for *Giardia* and 15 percent for *Cryptosporidium*, negative results are not conclusive evidence that the protozoans are absent (Wallis, 1997).

The concentrations of filterable residue, ammonia, nitrite, arsenic, potassium, sulfur, silica, magnesium, and hardness measured in the study area give no cause for further concern. Some results provided by the ICP metals analysis package are not discussed in this report. The tests for these metals do not provide results that are pertinent to the water quality concerns in the study area: antimony, barium, beryllium, boron, cobalt, molybdenum, selenium, silver, strontium, titanium, and vanadium.

Turbidity was strongly correlated with non-filterable residue (r = 0.971). Conductivity was more strongly correlated with filterable residue (r = 0.898) than with total residue (r = 0.789). Turbidity was moderately correlated with the number of fecal coliforms/100 mL (r = 0.415), and slightly correlated with *Giardia* concentrations (r = 0.212). There were no correlations between turbidity and *Cryptosporidium* (r = -0.031), fecal coliforms and *Giardia* (r = 0.055), or fecal coliforms and *Cryptosporidium* (r = -0.021).

Klanawa River Monitoring Group

Most parameters measured relatively low values in the Klanawa River watershed. Mean residues, turbidity, SC, inorganic carbon, calcium, and pH were lower that the mean for the study area (Appendix). Chromium was high, but measurements are questionable due to field blank contamination. Color and concentrations of iron, zinc, and fecal coliforms were highly variable. Fecal coliforms were present at all sites, except where noted. No *Cryptosporidium* were found in the watershed. Only one site tested positive for *Giardia* on one occasion.

E226191 Gorge Mainline Creek at Gorge Mainline Bridge

In the Gorge Creek watershed, the following parameters were higher than our guidelines: non-filterable residue in October, dissolved phosphorus in August, and total nitrogen in May (Table 5). Fecal coliforms were low.

The water quality in October was different from the summer samples. Lower values for pH, SC, hardness, calcium, and sulfur were measured. Color and turbidity were slightly higher. Higher values for total aluminum and total iron were measured, probably due to soil particles in runoff following fall storms.

E226192 West Fork Klanawa River at Newstead Mainline Bridge

This site was uppermost of the Klanawa sites in our study. The following parameters were higher than our guidelines: turbidity, dissolved ammonia, and aluminum in October; and dissolved phosphorus in July and August (Table 6).

October samples had lower pH, SC, hardness, and calcium than in the summer. Turbidity, nitrogen, aluminum, and iron were higher. Low fecal coliform concentrations were found in the fall sample only.

E226193 Klanawa River at N400 on Newstead Mainline

At this site, the following parameters were higher than our guidelines: dissolved phosphorus in July and August; and non-filterable residue, turbidity (3.59 NTU), organic carbon, total phosphorus, total nitrogen, and aluminum in October (Table 7). Fecal coliforms were moderate in May. *Giardia* cysts (9.35/100 L) were found in October at this site.

This site had higher levels of color, non-filterable residue, turbidity, total phosphorus, nitrogen, aluminum, and iron in October samples. Lower levels of pH, hardness, calcium, and sodium were evident in the fall.

E226194 Dorothy Creek at Northfork Main

Dorothy Creek was sampled near the outlet of Dorothy Lake. The following parameters were higher than our guidelines: temperature was high in July and August, color was high in June and October, organic carbon was high in June, and aluminum was high in June and October (Table 8). pH was variable over the sample period. High fecal coliforms (80/100 mL) were present in August. This site showed no exceptional seasonal changes.

E226196 Klanawa River at Central South Main

Water quantity is the major limitation to drinking water and aquatic life at this site. Water flow was mostly subsurface in July and entirely subsurface in August. Therefore only June and October samples were taken. Color and organic carbon were higher than our guidelines in June, aluminum was higher in both samples, and total nitrogen was higher in October (Table 9). SC and pH were low in both samples. No fecal coliforms were found at this site.

E226197 Bagley Creek at Upper Klanawa Main

The following parameters were higher than our guidelines: color in October, organic carbon in June and October, total nitrogen (0.28 mg/L) in August, and aluminum in June and August (Table 10). Fecal coliform concentrations were moderate in June.

Dissolved organic carbon, aluminum, and iron were higher in October at this site. Calcium was slightly lower than in the summer. These concentrations probably result from higher flows in the fall. Higher zinc levels shown in June samples may be due to systematic errors in laboratory analysis, as the metals field blank for this trip measured 0.013 mg/L zinc.

E226198 East Klanawa River at Bridge between Upper Klanawa and Upper Klanawa Main

The pH at this site was below our guidelines in July (Table 11). Dissolved phosphorus was higher than our guidelines in August. Total nitrogen and aluminum were higher than our guidelines in October. Fecal coliform concentrations were low to moderate.

Fall samples at this site showed higher turbidity, nitrogen, nitrate + nitrite, aluminum, and iron.

Little Nitinat River Monitoring Group

The Little Nitinat River watershed had very low levels of non-filterable residue throughout the study period (Appendix). Fecal coliform concentrations (13.8/100 mL mean) were highly variable and indicate that at least partial treatment is required for drinking water purposes. Color, non-filterable residue, and turbidity were also variable.

E226199 Flora Lake at Nitinat

Temperatures in Flora Lake were elevated in July and August, suggesting suitability for recreational use (Table 12). Turbidity was higher than our guidelines in July. Fecal coliform concentrations were low to moderate. pH was lower than average in June and October, organic carbon was low in October, and nitrate and calcium were low in June. Total carbon and phosphorus were high in July.

E226201 Darlington Lake at Franklin South Main

Elevated temperatures in Darlington Lake in July and August make this lake suitable for recreational purposes (Table 13). Turbidity was higher than our guidelines in July. Fecal coliforms were low. Hardness was especially low in June.

E226202 Francis Lake at Franklin South Main Boat Ramp

Francis Lake temperatures in July and August indicate recreational suitability (Table 14). Organic carbon was higher than our guidelines in July and August. In June, total phosphorus was higher than our guidelines and higher than it was for the remainder of the study period. No fecal coliforms were found in Francis Lake.

E226203 Little Nitinat River at Nadira Main

This location on the Little Nitinat River had higher organic carbon than our guidelines in June, higher turbidity in July, and higher total nitrogen in August and October (Table 15). Fecal coliform levels were moderate. In July, turbidity, hardness, and calcium were above average for this site.

E226204 Little Nitinat River on East Side Franklin South Main

The following parameters were higher than our guidelines at this site: organic carbon in June and August, and color and total nitrogen in August (Table 16). *Giardia* was identified at this site in August. Calcium was low in June. Turbidity and nitrate + nitrite were high in August.

E226206 Little Nitinat River at Rock Cut

The following parameters were higher than our guidelines at this site: organic carbon in June and August, turbidity and total phosphorus in October, and aluminum in July and October (Table 17). Hardness, inorganic carbon, and calcium were elevated in July. Color was higher in August, nitrate + nitrite was higher in August and October, and iron was higher in October. The turbidity at this site in October (6.68 NTU) may be of concern for aquatic life. Fecal coliform concentrations were moderate at this site.

E226207 Little Nitinat River at Nitinat Mainline u/s Hatchery

Concentrations were higher at this site than our guidelines for turbidity in June and October, organic carbon in August, total phosphorus in June, and aluminum in June and August (Table 18). Hardness and calcium were high in July. Color and nitrate + nitrite were high and organic carbon was low in August. Very high concentrations of fecal coliforms were found in June (260/100 mL). This site tested positive for *Giardia* on three occasions and for *Cryptosporidium* once.

Nitinat River Monitoring Group

The Nitinat River watershed had very high mean values for several parameters: nonfilterable residue, turbidity, aluminum, iron, and manganese (Appendix). High levels were measured for organic carbon, total phosphorus, and total nitrogen. Variation was very high for color, non-filterable residue, turbidity, total phosphorus, total nitrogen, aluminum, iron, and manganese. Fecal coliform counts were high and variable.

The watershed showed clear seasonal patterns of water quality changes during the sampling period. Color, particulate matter, phosphorus, nitrogen, aluminum and iron tended to be higher in June and November samples (Tables 19 - 28). pH, SC, hardness, and calcium tended towards lower values in June and November.

E226208 Nitinat River near Rift Creek

This site is the uppermost of our sites in the Nitinat River. Concentrations of aluminum were greater than our guidelines in June and November (Table 19). Color, non-filterable residue, turbidity, organic carbon, total and dissolved phosphorus, total nitrogen, ammonia, and iron were above our guidelines in November. Three of these parameters had values high enough to be a risk to aquatic life: non-filterable residue (29 mg/L), turbidity (18.3 NTU), and total iron (1.97 mg/L). Fecal coliform concentrations were consistently at or above levels requiring partial treatment for drinking water.

This site had the seasonal concentration patterns characteristic of the entire monitoring group. Filterable residue and inorganic carbon were also low in November. Organic carbon, nitrate + nitrite, iron, manganese, and silica were high in November.

E226211 Granite Creek at Carmanah Main

Granite Creek had total and dissolved phosphorus levels higher than our guidelines in June (Table 20). SC was above our guidelines in July and September. Turbidity, ammonia, and aluminum were above our guidelines in November. Fecal coliforms were moderate in June. Samples tested positive for *Giardia* at this site in September. Inorganic and total carbon were low in November.

E226214 Worthless Creek at Summit BR100

This site is the uppermost site in the Nitinat watershed, near the headwaters of Worthless Creek. Active logging was underway further upstream during our study period. Color, turbidity, total and dissolved phosphorus, total nitrogen, ammonia, nitrate + nitrite, and aluminum were higher than our guidelines in August (Table 21). Only organic carbon was higher than our guidelines in November. Fecal coliforms were high (170/100 mL) in June and August.

The August sample had elevated concentrations more typical of spring or fall.

Heavy runoff from a summer storm into the creek during sampling probably account for these unseasonal results.

E226215 Worthless Creek at BR60

Only organic carbon, in July and September, had concentrations above our guidelines at this site (Table 22). Field temperature and DO measurements taken in June are unreliable due to DO meter irregularities and should be disregarded. High fecal coliform concentrations were measured in June (124/100 mL). *Giardia* was detected (1.21/100 L) at this site in September. Inorganic and total carbon, sulfur, and silica were low in November.

E226216 Nitinat River at One-Way West

This site had concentrations higher than our study guidelines for the following parameters: color, non-filterable residue, total phosphorus, and iron in June and November; turbidity, organic carbon, and total nitrogen in June, August, and November; ammonia in August and November; and aluminum, manganese, and silica in November (Table 23). Fecal coliforms were very high in June (156/100 mL). Samples tested positive for *Giardia* in June and August and for *Cryptosporidium* in August. The very high levels of non-filterable residue, turbidity, and iron at this site in November may be detrimental to aquatic life. In addition to the seasonal variations described for the entire watershed, turbidity, nitrogen, and ammonia were higher in August.

E226217 Jasper Creek at One-Way West

The following parameters were higher than our guidelines at this site: color in June; turbidity, total and dissolved phosphorus, and aluminum in June and November; organic carbon in June, July, and September; and total nitrogen and ammonia in November (Table 24). Fecal coliform concentrations were moderate. Turbidity and iron are sufficiently high in June (6.7 NTU and 1.05 mg/L, respectively) to suggest negative impact on aquatic life. In contrast to Nitinat watershed seasonal patterns, non-filterable residue was not particularly high at this site at any time.

E226218 Upper Jasper Creek at Washout

Upper Jasper Creek water quality is similar to the previous site with slightly lower concentrations of most parameters (Table 25). Turbidity is only slightly lower (4.00 NTU in June). Phosphorus and nitrogen are below our guidelines in November.

E226219 Nitinat River at Carmanah Mainline

This site in the lower Nitinat River had concentrations higher than our guidelines for the following parameters: color, non-filterable residue, turbidity, total phosphorus, total nitrogen, aluminum, iron, and manganese in June and November; organic carbon in all samples; lead in September; and ammonia in November (Table 26). High fecal coliforms (128/100 mL) were measured in June. *Giardia* was detected in July. Non-filterable residue, turbidity and iron measurements at this site in June and November are much higher than water quality guidelines for aquatic life.

Seasonal patterns of water quality throughout the watershed are evident here. In addition, manganese and silica concentrations were high in June and November.

E226221 Nitinat River downstream of Hatchery

This lowermost site on the Nitinat River includes flows from the Little Nitinat River. The following parameters measured higher than our guidelines: color, non-filterable residue, dissolved phosphorus, iron, and manganese in November; turbidity and organic carbon in June, August, and November; total phosphorus and aluminum in June and November; and total nitrogen in August and November (Table 27). Fecal coliforms were high in June and November. Temperature was high enough to be considered for swimming (19.2 °C) in August, but fecal coliform concentrations found upstream are a cause for concern. Non-filterable residue, turbidity, and iron concentrations in November were high enough to potentially impact aquatic life. *Giardia* was detected in November (5.98/100L).

In addition to the seasonal patterns found throughout the Nitinat watershed, this site had high filterable residue, calcium, and sodium on August 12; variable carbon; high turbidity and total nitrogen on August 27, and high manganese in November.

E226223 Small Creek near Nitinat Gravel Quarry

This creek flows into the Nitinat River downstream of the Little Nitinat, flowing subsurface during part of the summer. The following parameters were higher than our guidelines at this site: color in June; turbidity, total phosphorus, and aluminum in June and November; organic carbon and total nitrogen in June, August, and November; nitrate + nitrite in August and November; and non-filterable residue and ammonia in November (Table 28). Fecal coliform concentrations in June (146/100 mL) were high. *Giardia* was found at this site in July (4.98/100 L) and November (1.85/100 L).

Seasonal changes were evident at this site as in the rest of the watershed. In contrast, color remained low in November, and non-filterable residue was low throughout the study period. High nitrate + nitrite increased total nitrogen levels in August. Carbon levels were variable.

Rosander Monitoring Group

Water quality in the Rosander area was excellent during the study period (Appendix). pH, residues, turbidity, SC, inorganic and total carbon, and calcium were all below the means for the entire study area. Color, iron, and fecal coliforms were variable. Non-filterable residue was consistently low throughout the area. Raw water would be suitable for drinking with only disinfection at most sites.

E226247 Rosander Creek at Rosander Main

Organic carbon, aluminum, and nickel concentrations were higher than our guidelines in June at this site (Table 29). Fecal coliform levels were moderate. Turbidity, total nitrogen, and nitrate + nitrite were elevated in November. Sodium was lower and aluminum and nickel were higher in June.

E226249 South Fork Marchand Creek at Rosander Main

The following parameters measured higher than our guidelines at this site: organic carbon and nitrate + nitrite in June, total phosphorus in June and August, dissolved phosphorus in August, ammonia in June and September, and zinc in September (Table 30). One sample in June had moderate fecal coliform levels (14/100 mL). Samples from this site tested positive for *Giardia* in August and September.

E226251 Doobah Creek downstream of Doobah Lake at Rosander Main

This site is located near the outlet of Doobah Lake. Elevated temperatures in June, August, and September suggest the lake may be suitable for recreational purposes in the summer (Table 31). The following parameters were higher than our guidelines: organic carbon throughout the study period; color in June and November; total phosphorus in August; ammonia in June, August, and November; and zinc in August. DO was slightly lower (7.6 mg/L) than our guidelines in August. No fecal coliforms were found. Some seasonal variation in measurements is evident. Color and iron were higher in June and November, turbidity was lower. Filterable residue and temperature were lower in November.

E226253 Sprise Lake near Nitinat

Sprise Lake temperatures were elevated into the range suitable for recreational use in June, August, and September (Table 32). DO was lower than our guidelines in August and September. The following parameters measured higher than our guidelines: color in June and November; turbidity, total phosphorus, and zinc in August; organic carbon in June; total nitrogen in June, August, and November; and ammonia in June and September. Aluminum concentrations were variable. Low fecal coliform concentrations were measured. Color was higher in June and November.

E226254 UnID'ed Creek #2 flowing into Cheewhat Lake at Rosander Main

This creek had no flow in August and September, so only two samples were taken (Table 33). In June, organic carbon, aluminum, and nickel were higher than our guidelines. In November, ammonia was higher than our guidelines. Fecal coliform concentrations were low.

E226255 UnID'ed Creek #3 near Cheewhat Lake at Rosander Main

The following parameters measured higher at this site than our guidelines: turbidity and organic carbon in June; total and dissolved phosphorus, nickel, and zinc in August (Table 34). Fecal coliform concentrations in August were moderate. Little seasonal variation was evident. Phosphorus, nitrogen, and iron were higher in August. Residues and calcium were low in November.

E226256 Carmanah Creek near Heaven's Grove

This site was tested only once, in July, during our study period (Table 35). Aluminum measured higher than our guidelines at that time. Fecal coliforms were not detected.

Caycuse River Monitoring Group

Water quality in the Caycuse River watershed was better than the entire study area means for several parameters: color, non-filterable residue, turbidity, and organic carbon (Appendix). Inorganic carbon was higher than average for the study area. pH, total residue, and fecal coliforms were variable.

E226225 Malachan Creek at Carmanah Mainline

Only ammonia, in November, was higher than our guidelines at this site (Table 36). Seasonal changes include lower hardness in November and higher total nitrogen and nitrate + nitrite in September and November. Calcium was variable. Fecal coliforms were low.

E226225 Caycuse River near Nitinat Campsite

The following parameters were higher at this site than our guidelines: turbidity in September, hardness and calcium in July, aluminum in July and September, and ammonia in November (Table 37). DO was lower than our guidelines in September. Fecal coliform levels in September were moderate. Metal concentrations were higher in July than during the rest of the study period. Calcium, sulfur, and silica were much higher. Total nitrogen and nitrate + nitrite were higher in September and November.

E226227 Upper Seven Mile Creek at F1A

Only a few concentrations were higher at this site than our guidelines: SC in August, and total nitrogen and nitrate + nitrite in September (Table 38). Fecal coliforms were low. Some seasonal differences were evident at this site. pH, SC, hardness and calcium were lower, and iron was higher in November. Turbidity was higher in November and September. Total nitrogen and nitrate + nitrite were higher in September. Sodium was higher in August.

E226228 Lower Seven Mile Creek at Caycuse Mainline

The following parameters were higher at this site than our guidelines: color in one sample in August; turbidity in November; SC in July, August, and September; total nitrogen and nitrate + nitrite in September; and calcium in August (Table 39). Fecal coliforms were high in July. *Giardia* was found in June and September. *Cryptosporidium* was present in July. The November sample showed several variations from normal for this site. Turbidity, total nitrogen, and nitrate + nitrite were higher. Residues, SC, hardness, inorganic and total carbon, and calcium were lower. One replicate in August had very high color.

E226231 Caycuse River at Hatton Mainline

The following parameters were higher at this site than our guidelines: temperature, total and dissolved phosphorus, and zinc in August: and turbidity in November (Table 40). DO was lower than our guidelines in August. Fecal coliforms were moderate in July. Turbidity and iron were higher, and pH, SC, hardness, and calcium were lower in November than typical for this site. Total nitrogen was higher in August and September.

E226232 Cedar Creek at Caycuse 9

The following parameters measured higher at this site than our guidelines: conductivity in August and September; and total and dissolved phosphorus, calcium, nickel, and zinc in August (Table 41). Fecal coliform concentrations in September were moderate. Seasonal changes in water quality include higher turbidity, and lower SC, hardness, and calcium in November. Total nitrogen was low in July. Calcium, nickel, and zinc were high in August.

E226234 Mistery Creek at McLure Mainline

The following parameters measured higher at this site than our guidelines: nonfilterable residue in November; conductivity, total and dissolved phosphorus, nickel, and zinc in August; and total nitrogen and nitrate + nitrite in July (Table 42). Fecal coliform concentrations were moderate. Total nitrogen and nitrate levels were elevated in July. Total phosphorus and zinc were high in August. Turbidity and iron were high, and SC, hardness, and calcium were low in November.

E226235 McLure River at McLure Mainline & M10

The following parameters measured higher at this site than our guidelines: turbidity and aluminum in July, September, and November; and total and dissolved phosphorus, nickel, and zinc in August (Table 43). Temperatures were above guidelines for drinking water, but within acceptable range for recreational use in July and August. Fecal coliforms were consistently low. Hardness and calcium were lower in July and November. Total nitrogen and nitrate were lower in July. Turbidity and aluminum were low and total and dissolved phosphorus were high in August. Iron was high in September and November.

E226236 McLure River at McLure Mainline Bridge

This site is located just downstream of the outlet of McLure Lake. Turbidity and aluminum in July, and nickel and zinc in August measured higher at this site than our guidelines (Table 44). DO was well below our guidelines in August. pH was slightly below our guidelines in November. Temperatures in July, August, and September indicated suitability for recreational use. No fecal coliforms were detected at this site. No clear seasonal trends were evident at this site. Turbidity and aluminum were higher in July. Total nitrogen and iron were higher in August.

E226237 Upper Hatton Creek at H500

Only aluminum on July 3, iron in September, and lead on July 23 were higher at this site than our guidelines (Table 45). DO in September and pH in November were slightly below our guidelines. Fecal coliform concentrations in September were moderate. *Cryptosporidium* was found at this site in July. Turbidity and aluminum were elevated in July. Total nitrogen and nitrate + nitrite were higher in November.

Gordon River Monitoring Group

The Gordon River watershed had lower mean values for color, non-filterable residue, and turbidity than the entire study area (Appendix). Color and non-filterable residue were consistently low. Inorganic carbon measurements were higher, on average. Fecal coliform concentrations were low, but highly variable. Seasonal trends evident in this watershed include increased turbidity, phosphorus, nitrogen, aluminum, and iron in July and November; decreased hardness and calcium in July and November; and higher sodium in August.

E226238 Gordon River u/s Gordon River Camp

This site had higher turbidity and aluminum in November, and iron in July and November than our guidelines (Table 46). Lead was detectable in August. Fecal coliform concentrations were consistently low. Seasonal changes described for this watershed were evident in November. Total nitrogen and nitrate + nitrite began to increase in September. Iron was slightly higher in July.

E226239 Upper Gordon River at Gordon River Mainline

Turbidity, aluminum, and zinc at this site were above our guidelines in November (Table 47). Fecal coliform counts were low. As for the previous site, seasonal trends were

evident in November, with nitrogen increasing in September. Manganese was slightly elevated in November.

E226240 Gordon River at TR4

Nickel and zinc concentrations were slightly higher than our guidelines in August at this site (Table 48). Fecal coliform levels in July were moderate. Seasonal variations typical in the watershed were evident at this site with the following exceptions: nitrogen and aluminum were stable throughout the study, and inorganic carbon was lower in July and November.

E226241 Gordon River at TR10

Turbidity in July and November, and total organic carbon and nickel in August were higher at this site than our guidelines (Table 49). Temperatures in August and September were high for drinking water, therefore suitable for recreational uses. Fecal coliform concentrations in July were moderate. In contrast to the seasonal trends found in the watershed, this site had no increased phosphorus, nitrogen, or aluminum in July and November.

E226242 Loup Creek at Gordon River Mainline

Organic carbon and total phosphorus in July, nickel in August, and zinc in November measured higher at this site than our guidelines (Table 50). Temperature in July was above drinking water guidelines and into acceptable range for recreational uses. Fecal coliforms were consistently low. Seasonal trends typical of the watershed were evident with the following exceptions: nitrogen and aluminum were consistent throughout the study, total phosphorus was not elevated in November but was slightly higher in August, and SC was lower in July and November.

E226244 Gordon River at Baird Creek

The following parameters were higher at this site than our guidelines: turbidity in July and November; organic carbon in July; ammonia, nitrate + nitrite, and aluminum in November; and lead in August (Table 51). Temperature in August was higher than our guidelines, indicating potential recreational use. Fecal coliform concentrations were moderate. This site showed typical seasonal trends for the watershed except that there was neither increased phosphorus in July and November, nor nitrogen in July. There was increased organic carbon in July and November.

E226246 Brown's Creek at Gordon River Mainline

Only two samples were taken of Brown's Creek because there was no flow in the summer (Table 52). Seasonal comparisons, therefore, are not possible. Organic carbon was higher than our guidelines in both July and November. Fecal coliforms were moderate. *Giardia* was found at this site in July.

San Juan River Monitoring Group

The San Juan River watershed had low mean values with little variation for color and non-filterable residue (Appendix). Turbidity was also low compared to the entire study area. Mean fecal coliform levels were low but variable. Seasonal changes in water quality varied among creeks and will be discussed below.

E226190 Bavis Creek at Red Creek Mainline

The following parameters were higher at this site than our guidelines: color, turbidity, organic carbon, dissolved phosphorus, and aluminum in July and November; and non-filterable residue, total phosphorus, and iron in July (Table 53). Fecal coliforms were consistently moderate. *Giardia* and *Cryptosporidium* were present in November. Very high iron and aluminum concentration in July may be detrimental to aquatic life.

Seasonal changes evident in this creek include higher color, non-filterable residue, organic carbon, aluminum, and iron in July and November. pH, SC, hardness, calcium, sodium, sulfur, and silica were lower in July and November. Manganese was higher in July.

E226408 Fairy Creek at Harris Creek Mainline

Fairy Creek was sampled only twice during our study due to subsurface flow in the summer (Table 54). Color, turbidity, organic carbon, total and dissolved phosphorus, aluminum, iron, and lead were higher in July than our guidelines. Fecal coliforms in July were moderate. SC, hardness, and calcium were lower, and total carbon and manganese were higher in the July sample than in November.

E226410 Mosquito Creek at Red Creek Mainline

The following parameters measured higher at this site than our guidelines: color, organic carbon, and aluminum in July and November; turbidity and dissolved phosphorus in July, August, and November; total phosphorus in July and August; total nitrogen in July; and zinc in August (Table 55). Fecal coliforms were moderate. *Giardia* was found in September at this site.

Seasonal trends evident at this creek include higher color, turbidity, organic carbon, aluminum, and iron in July and November. pH, filterable residue, SC, hardness, calcium, sodium, and silica were lower in July and November.

E226548 Renfrew Creek at Harris Creek Mainline

The following parameters were higher at this site than our guidelines: color, turbidity, organic carbon, and aluminum in July and November; non-filterable residue, total phosphorus, and iron in July; and dissolved phosphorus and ammonia in August (Table 56). Temperature was higher than drinking water guidelines in August, therefore in the range suitable for recreational use. Fecal coliform levels were moderate.

Seasonal variations in water quality at this site include higher color, turbidity, organic carbon, aluminum, and iron in July and November. pH, filterable residue, SC, hardness, calcium, and sodium were lower in July and November. Non-filterable residue, total carbon, and total phosphorus were higher in July. Dissolved phosphorus and ammonia were higher in August.

E226549 Harris Creek at Harris Creek Mainline

Harris Creek water quality exceeded our guidelines for only three parameters, aluminum in July, and temperature and dissolved phosphorus in August (Table 57). pH, hardness and calcium levels decreased gradually from July to November. Turbidity was higher in November. Fecal coliform levels were low.

E226550 Upper Lens Creek at Lens Main West

This site had concentrations higher than our guidelines for aluminum in July, nitrate + nitrite and lead in August, and total and dissolved phosphorus in November (Table 58). DO was low (7.4 mg/L) in August and September. Fecal coliforms were low. Seasonal variation in water quality was as follows: high color and turbidity in July and November; low SC, hardness, calcium, and sodium in July and November; and low nitrate + nitrite and high iron in July.

E226551 Upper Lens Creek at Lens Main West & TR8

Upper Lens Creek had the following parameters higher than our guidelines: dissolved phosphorus in July and November, aluminum in July and August, lead in August, and zinc in July (Table 59). Fecal coliform levels were low. Seasonal highs for turbidity, and lows for SC occurred in July and November. Nitrate + nitrite was low and zinc was high in July. Hardness and calcium were low in November. Iron was lower and sodium was higher than average in August.

E226552 Lens Creek at Lens Mainline & Modeste Main

Samples taken at this site measured higher than our guidelines for aluminum in July and August, and for dissolved phosphorus in November (Table 60). Fecal coliform concentrations were low. Seasonal variation was minor in this creek. Sodium was low in July and November, turbidity was high in November, and hardness and calcium were low in November.

E226553 Lens Creek at Lens Mainline and Harris Creek Mainline

Temperature in August and dissolved phosphorus in November were higher at this site than our guidelines (Table 61). Fecal coliform concentrations were low. Seasonal changes in water quality were few. Turbidity was higher and calcium was lower in November. Nitrate + nitrite was higher in August.

E226554 San Juan River at San Juan River Bridge Campsite

Temperature was higher in August and September, dissolved phosphorus was higher in November, and aluminum was higher in August at this site than our guidelines (Table 62). Fecal coliforms were low. A few seasonal changes in water quality were evident. SC, hardness, calcium, and sodium were low in July and November; iron was high. Turbidity was high in November and aluminum was high in August.

E226556 Garbage Creek at Shawnigan Mainline

Garbage Creek was higher in dissolved phosphorus in July, August, and November; total phosphorus in August; ammonia in November; and zinc in August and September than our guidelines (Table 63). Fecal coliform levels were at or below detection limits (≤ 1). Seasonal decreases in SC, hardness, calcium, and iron were evident in July and November. pH and ammonia were also high in November. Total and dissolved phosphorus were high in August. Zinc was high in August and September.

E226560 San Juan River u/s Williams Creek

Dissolved phosphorus was the only parameter higher than our guidelines - in July,

August, and November (Table 64). Fecal coliforms were low. Some seasonal changes were evident in November. Non-filterable residue and iron were higher, pH, SC, hardness, and calcium were lower. Nitrate + nitrite was lower in July.

E226561 Fleet River at Fleet Mainline

Fleet River exceeded our water quality guidelines for organic carbon in July and November, and for dissolved phosphorus and aluminum in November (Table 65). Fecal coliform concentrations were moderate. Seasonal changes include higher turbidity and organic carbon in July and November, and lower pH, SC, and hardness in November.

Discussion

The water quality in the Nitinat River and San Juan River watersheds had few constraints to drinking water suitability for a raw water source, aquatic life, or recreation during the period of May to November 1997. The exceptions were usually associated with storm events. In addition to heavy spring and fall rains, frequent summer storms created substantial runoff, very quickly raising water levels throughout the region. Storm runoff was associated with increased particulates, nutrients, metals, and fecal coliforms. The parameters with concentrations of concern in this study were colour, turbidity, TOC, aluminum, fecal coliforms, *Giardia*, and *Cryptosporidium*.

In these naturally clear raw waters, the turbidity in 19% of our samples can create problems in drinking water (induced turbidity > 1 NTU; Singleton, 1995). The turbidity in 4% of our samples can be problematic to aquatic life (induced turbidity > 5 NTU; Singleton, 1995). Some of the highest turbidity levels were found in areas important to salmonids (*i.e.* Nitinat River). TOC in 38% of samples may result in trihalomethane formation in drinking water with chlorine disinfection (> 2 mg/L; Nagpal, 1995). Total aluminum concentrations in 25% of samples may be detrimental to freshwater aquatic life (> 0.1 mg/L maximum dissolved; Nagpal, 1995). Total aluminum in 14% of samples exceeded the criteria for recreation and aesthetics (> 0.2 mg/L dissolved maximum; Nagpal, 1995). The ratio of total:dissolved aluminum in these waters is not known.

Obvious seasonal changes in water chemistry were evident in the Nitinat River and Gordon River watersheds. The San Juan River watershed had a diverse range of water quality conditions. Throughout the study area, water chemistry in June reflected spring conditions. Concentrations were elevated, but not as high as in the fall. High aluminum concentrations were associated with wet periods in June, early July, late October, and November. Elevated particulates in spring and fall are a potential problem for both drinking water and aquatic life. Increased color and high fecal coliform levels in spring and fall reduce the quality of raw water as a drinking water source.

Warm and dry weather in August was associated with elevated conductivity, zinc, and nickel. Summer low flows restrict aquatic life and drinking water availability. Some creeks dry out entirely, or flow below the surface.

Although these results provide baseline data for the region, there are no pristine or undisturbed sites in the study. Water quality in the most nearly pristine site, Carmanah Creek, may have been affected by logging in the upper valley. The region has been an historically important timber supply area. Presently, several companies operate on private and public land in the region. Areas where there has been more human activity (*i.e.* Nitinat, Little Nitinat) seem to have poorer water quality than areas with less activity (*i.e.* Klanawa,

Rosander, Caycuse). In the areas with better water quality, remnants of old growth forests can be seen at high elevations and in parts of some valleys. This study did not investigate the cause of water quality deterioration, which could include vehicle traffic, roads, logging, wood debris, wild animals, or human activities.

Since several parameters were highly correlated in this study, results from some tests could be used to infer values for others. Turbidity and conductivity were good indicators of ambient water residues and could be effectively used as surrogate measures of non-filterable residue, filterable residue, and total residue. Turbidity was not a good predictor of fecal coliforms or *Giardia*. Increased fecal coliform concentrations were not indicative of *Giardia*. *Cryptosporidium* did not vary with either turbidity or fecal coliform concentrations.

All surface water used as a drinking water supply should be disinfected, according to the BC Ministry of Health (Warrington, 1988). Fecal coliform concentrations in 18% of samples (11-100/100mL) indicate partial treatment would also be required. Two percent of samples would require full treatment (> 100/100mL). A sample from the Little Nitinat River, upstream of a popular swimming spot, had concentrations that indicate primary-contact recreation may be risky (> 200/100mL; Warrington, 1994). Any *Giardia* or *Cryptosporidium* is a health hazard in raw water used for drinking purposes (Warrington, 1988). *Giardia* was detected in 14% of samples, *Cryptosporidium* in 4%. Full treatment, including flocculation, sedimentation, and slow or pressure filtration through a fine-pore media bed is required to ensure removal of these protozoans' cysts (Warrington, 1988).

Recommendations

Lakes and streams in the study area are generally clean and clear. The lakes are low in fecal coliforms and protozoans, and somewhat warmer during the summer. The region appears to have potential for increased tourism and recreational use and there seem to be few constraints in terms of water quality.

Fecal coliforms, *Giardia*, and *Cryptosporidium* are a problem in areas currently more heavily frequented by people (*i.e.* Little Nitinat and Nitinat Rivers). Less travelled areas have better water quality and fewer drinking water concerns (*i.e.* Klanawa River and Rosander area) but there are occasional levels of fecal coliforms, *Giardia*, and *Cryptosporidium* that are high enough to warrant concern. There are no parts of the study area where water should be used for domestic supply without treatment (disinfection is not likely sufficient and some form of treatment is likely needed at all locations). Studies to determine the sources of *Giardia* and *Cryptosporidium* contamination could lead to an identification of potential ways to reduce the health risk to people in this area.

Monitoring for long-term changes in water quality should be conducted in the region. This would allow the effects of watershed disturbance to be assessed. For example, areas of heavy logging (*i.e.* Nitinat River) should be compared to areas recently logged for the first time (*i.e.* Klanawa River) and to pristine areas. Such results could also be compared to those found in the long-term study of nearby Carnation Creek. For comprehensive land use planning, it would also be useful to know the water quality in the winter and how it relates to the spring, summer and fall conditions found in this study.

Measurement of filterable and non-filterable residues, ammonia, nitrate, and nitrite could be omitted in further studies. Conductivity can be used as a surrogate for filterable residue, and turbidity can be used as a surrogate for non-filterable residue. This will save analytical costs, shipping costs, and time. Levels of ammonia and nitrite in this study were

all near to or below the detection limit. Dissolved metals should be measured after storm events to see if elevated metal concentrations (especially aluminum and iron) are in dissolved and bioavailable form.

Literature Cited

- CCREM Canadian Council of Resource and Environment Ministers Task Force on Water Quality Guidelines. 1987. Canadian water quality guidelines.
- Cavanagh, N., R.N. Nordin, L.W. Pommen and L.G. Swain. 1998. Guidelines for interpreting water quality data: field test edition. Ministry of Environment, Lands and Parks, Victoria, B.C.
- Cavanagh, N., R.N. Nordin, L.G. Swain, and L.W. Pommen. 1994a. Ambient fresh water and effluent sampling manual. Ministry of Environment, Lands and Parks, Water Management Branch, Victoria, B.C.
- Cavanagh, N., R.N. Nordin, and P.D. Warrington. 1994b. Freshwater Biological Sampling Manual. Ministry of Environment, Lands and Parks, Water Management Branch, Victoria, B.C.
- Jackson, C. and B. Blecic. 1996. San Juan River Water Allocation Plan: September 20, 1996. Regional Water Management, Vancouver Island Region, Nanaimo, B.C.
- Lucas, B. 1997. Field methods for *Giardia* and *Cryptosporidium* sample collection. Unpublished.
- Nagpal, N. K. 1995. Approved and working criteria for water quality 1995. Water Quality Branch, Environmental Protection Department, Ministry of Environment Lands and Parks, Victoria, B.C.
- Nordin, R.N. 1998. Provincial Limnologist, B.C. Ministry of Environment, Lands and Parks. Personal communication.
- Pehl, C. 1997. Site documentation and access manual for a water quality inventory on the West Coast of Vancouver Island. Unpublished.
- Singleton, H.J. 1995. Water quality criteria for particulate matter. Resource Quality Section, Water Management Branch, Ministry of Environment, Victoria, B.C.
- Trimble Navigation Ltd. 1994. GeoExplorer Operation Manual. Trimble Navigation Ltd. Surveying and mapping division, Sunnyvale, CA.
- Wallis, P.M. 1997. President, Hyperion Research Ltd., Medicine Hat, Alberta. Personal communication.
- Warrington, P.D. 1988. Water quality criteria for microbiological indicators technical appendix. Resource Quality Section, Water Management Branch, Ministry of Environment and Parks, Victoria, B.C.
- Warrington, P.D. 1994. Water quality criteria for microbiological indicators. Water Quality Branch, BC Ministry of Environment, Victoria B.C.

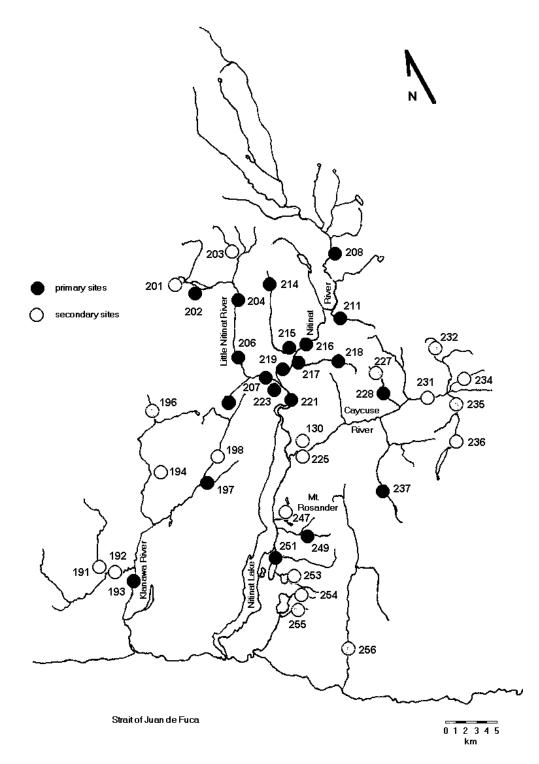


Figure 1. Klanawa River, Little Nitinat River, Nitinat River, Mt. Rosander area, and Caycuse River watersheds showing primary and secondary sites sampled May – November 1997.

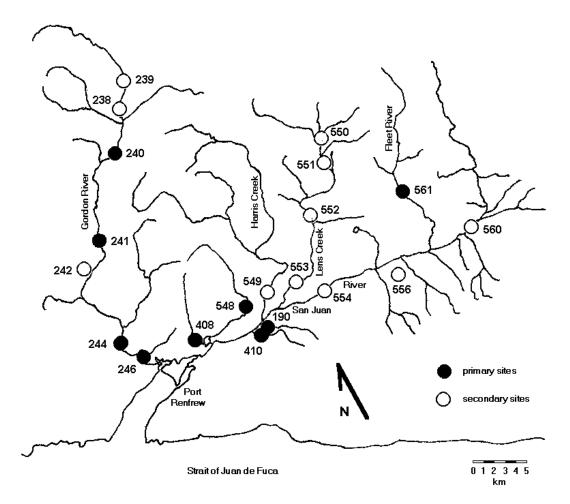


Figure 2. San Juan River watershed showing primary and secondary sites sampled May – November 1997.

	-	1997).		
			AT GORGE ML	
	5/28/97 10:20	7/29/97 10:00	8/20/97 11:42	10/29/97 9:45
Field Temp	10.6	12.5	14.2	11.0
Field DO	8.7	10.0	9.8	10.4
	< 5	< 5	5	15
рН Res: Tot	7.33 < 45	7.23 < 45	7.32	6.93
Res: Filt	< 45 40	< 45 40		
Res: NF	< 5	40 < 5	< 5	< 5
Turbidity	0.16	0.24	0.10	< 5 1.10
SC	42	44	48	26
Hardness	13.2	14.0	15.6	6.9
TOC	0.9	0.8	10.0	0.0
DOC	0.0	0.8		
TIC	3.3	3.1		
DIC	0.0	3.0		
Tot C		3.8		
СТ	4.2	3.9		
PT	0.005	0.004	0.008	0.007
P T Diss	0.004	0.003	0.008	0.003
Tot N	0.22	0.05	0.07	0.20
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005
NO3 + NO2	0.036	0.038	0.050	0.058
NO3	< 0.034	< 0.036		
NO2	< 0.002	< 0.002		
AI-T	< 0.06	< 0.06	< 0.06	0.25
As-T	< 0.06	< 0.06	< 0.06	< 0.06
Ca-T	4.3	4.6	5.1	2.1
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006
Cr-T	0.013	0.010	0.008	< 0.006
Cu-T	< 0.006	< 0.006	< 0.006	< 0.006
Fe-T	0.007	0.010	0.031	0.122
KT	< 0.1	0.2	0.4	0.3
Mg-T	0.6	0.6	0.7	0.4
Mn-T	0.002	< 0.001	< 0.001	0.006
Na-T	3.2	2.1	2.0	1.6
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02
Pb-T ST	< 0.06 1.19	< 0.06	< 0.06	0.08
Si-T	2.43	1.10 2.48	1.46 2.64	0.46 1.43
Zn-T	< 0.002	< 0.002	0.008	< 0.002
Fecal coliforms Giardia Cryptosporidium	2 0 0	< 1		2

Table 5. Ambient water quality data for site E226191 Gorge Mainline Creek at Gorge Mainline Bridge (May – November 1997).

Table 6. Ambient water quality data for site E226192 West Fork Klanawa River at Newstead Mainline Bridge (May – November 1997).

LOCATION E	E226192 W. FO	RK KLANAWA	R. AT NEWSTE	AD M/L BR
DATE	5/27/97 13:45	7/29/97 9:30	8/20/97 11:33	10/29/97 9:30
Field Temp	11.0	12.0	13.5	10.0
Field DO	10.9	12.8	11.8	9.8
Color True	< 5	< 5	< 5	15
рН	7.28	7.21	7.37	6.98
Res: Tot	< 35	< 45		
Res: Filt	30	40		
Res: NF	< 5	< 5	< 5	< 5
Turbidity	0.12	0.08	0.08	2.04
SC	50	51	53	33
Hardness	16.5	18.0	17.7	10.2
тос	< 0.5	0.5		
DOC	< 0.5	< 0.5		
TIC	3.9	4.1		
DIC	3.9	3.9		
Tot C	< 4.4	< 4.4		
СТ	< 4.4	4.6		
РТ	0.007	0.007	0.010	0.009
P T Diss	0.005	0.006	0.009	0.003
Tot N	0.11	0.10	0.13	0.22
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005
NO3 + NO2	0.097	0.107	0.123	0.127
NO3	< 0.095	0.105		
NO2	< 0.002	0.002		
AI-T	0.06	< 0.06	< 0.06	0.33
As-T	< 0.06	< 0.06	< 0.06	< 0.06
Ca-T	5.3	5.9	5.6	3.1
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006
Cr-T	0.013	0.008	< 0.006	0.006
Cu-T	< 0.006	< 0.006	0.006	< 0.006
Fe-T	< 0.006	< 0.006	< 0.006	0.193
КТ	0.2	0.2	0.4	0.2
Mg-T	0.8	0.8	0.9	0.6
Mn-T	< 0.001	< 0.001	0.002	0.005
Na-T	2.2	2.4	2.3	2.0
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06
ST	0.92	0.86	0.98	0.50
Si-T	3.26	3.15	3.42	2.23
Zn-T	< 0.002	< 0.002	0.014	< 0.002
Fecal coliforms	< 1	< 1		6
Giardia	0			
Cryptosporidium	0			

Table 7. Ambient water quality data for site E226193 Klanawa River at N400 on Newstead Mainline (May – November 1997).

LOCATION	E226193 KLAN	AWA RIVER A	F N400 ON NEV	VSTEAD ML
Date	5/28/97 13:25	7/29/97 10:37	8/20/97 12:25	10/29/97 10:30
Field Temp	10.7	12.8	13.5	9.5
Field DO	8.2	9.9	8.1	9.2
Color True	< 5	< 5	< 5	15
рН	7.13	6.95	7.11	6.76
Res: Tot	< 35	< 35	< 35	30
Res: Filt	30	30	30	20
Res: NF	< 5	< 5	< 5	10
Turbidity	0.06	0.64	0.08	3.59
SC	38	41	45	27
Hardness	11.5	12.3	14.1	7.8
тос	< 0.5	< 0.5	< 0.5	4.2
DOC		< 0.5	< 0.5	3.8
TIC	3.3	3.4	3.3	1.6
DIC		3.0	3.3	1.6
Tot C		< 3.5	< 3.8	5.4
CT	< 3.8	< 3.9	< 3.8	5.8
PT	0.005	0.006	0.007	0.013
P T Diss	0.004	0.006	0.008	0.004
Tot N	0.10	0.09	0.19	0.24
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005
NO3 + NO2	0.089	0.093	0.107	0.115
NO3	< 0.087	< 0.091		
NO2 AI-T	< 0.002	< 0.002	. 0.06	0.50
AI-T As-T	< 0.06 < 0.06	< 0.06 < 0.06	< 0.06 < 0.06	0.59 < 0.06
Ca-T	< 0.08	< 0.06 4.1	< 0.06 4.5	< 0.06 2.3
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006
Cr-T	< 0.006	< 0.006	0.007	< 0.006
Cu-T	< 0.000	< 0.000	0.007	< 0.000
Fe-T	0.008	0.007	0.010	0.338
KT	0.1	< 0.1	0.3	0.3
Mg-T	0.5	0.5	0.7	0.5
Mn-T	< 0.001	< 0.001	< 0.001	0.012
Na-T	2.9	2.1	2.1	1.7
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06
ST	0.81	0.78	0.91	0.44
Si-T	2.47	2.61	2.89	2.14
Zn-T	< 0.002	< 0.002	0.006	0.003
Fecal coliforms	42	< 1	1	20
Giardia	0	0	0	9.35
Cryptosporidium	0	0	0	0

Table 8. Ambient water quality data for site E226194 Dorothy Creek at NorthforkMain (May – November 1997).

LOCATION E226194 DOROTHY CREEK AT NORTHFORK MAIN					
Date	6/4/97 9:22	7/29/97 13:30	8/20/97 15:09	10/28/97 15:10	
Field Temp	11.6	20.0	19.6	8.0	
Field DO	11.4	8.6	9.1	11.8	
Color True	30	< 5	< 5	20	
рН	6.58	7.19	7.24	6.66	
Res: Tot	< 35	< 25			
Res: Filt	30	20			
Res: NF	< 5	< 5	< 5	< 5	
Turbidity	0.30	0.26	0.33	0.33	
SC	20	29	33	23	
Hardness	4.7	8.6	9.7	5.6	
тос	5.8	1.8			
DOC	5.7	1.6			
TIC	1.1	2.2			
DIC	1.1	2.1			
Tot C	6.8	3.7			
СТ РТ	6.9	4.0	0.000	0.000	
	0.005	0.006	0.009	0.006	
P T Diss Tot N	0.005	0.002	0.005	0.003	
NH4 Diss	0.10 < 0.005	0.07	0.16 < 0.005	0.14	
NO3 + NO2	< 0.005	< 0.005 0.006	< 0.005	< 0.005 0.028	
NO3 + NO2 NO3	< 0.021	< 0.004	0.015	0.020	
NO3 NO2	< 0.019	< 0.004			
AI-T	0.15	< 0.06	< 0.06	0.14	
As-T	< 0.06	< 0.06	< 0.06	< 0.06	
Ca-T	1.4	2.6	2.9	1.6	
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006	
Cr-T	0.012	0.017	< 0.006	< 0.006	
Cu-T	< 0.006	< 0.006	0.013	< 0.006	
Fe-T	0.074	0.063	0.120	0.081	
КТ	< 0.1	< 0.1	0.2	0.2	
Mg-T	0.3	0.5	0.6	0.4	
Mn-T	0.004	0.004	0.004	0.001	
Na-T	1.5	1.7	1.6	1.5	
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02	
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06	
ST	0.35	0.41	0.42	0.35	
Si-T	1.32	1.85	1.63	1.41	
Zn-T	0.010	0.003	0.005	0.003	
Fecal coliforms	5	1	80	6	
Giardia	0				
Cryptosporidium	0				

Table 9. Ambient water quality data for site E226196 Klanawa River at Central SouthMain (May – November 1997).

LOCATION E	E226196 KLAN	AWA RIVER AT	CENTRAL SOUTH
Date	6/4/97 11:34	10/29/97 15:35	
Field Temp	9.9	8.0	
Field DO	11.9	11.0	
Color True	25	15	
рН	6.59	6.54	
Res: Tot	< 35		
Res: Filt	30		
Res: NF	< 5	< 5	
Turbidity	0.42	0.46	
SC	17	20	
Hardness	3.8	4.7	
тос	5.2		
DOC	5.2		
TIC	0.7		
DIC	0.7		
Tot C	5.9		
СТ	5.9		
РТ	0.006	0.005	
P T Diss	0.004	0.002	
Tot N	0.09	0.22	
NH4 Diss	< 0.005	< 0.005	
NO3 + NO2	0.026	0.103	
NO3	< 0.024		
NO2	< 0.002		
AI-T	0.16	0.23	
As-T	< 0.06	< 0.06	
Ca-T	1.2	1.4	
Cd-T	< 0.006	< 0.006	
Cr-T	0.016	0.007	
Cu-T	< 0.006	< 0.006	
Fe-T	0.065	0.070	
KT	0.1	0.3	
Mg-T	0.2	0.3	
Mn-T	0.002	0.003	
Na-T	1.2	1.3	
Ni-T	< 0.02	< 0.02	
Pb-T	< 0.06	< 0.06	
ST	0.31	0.36	
Si-T	1.14	1.27	
Zn-T	< 0.002	< 0.002	
Fecal coliforms	< 1	< 1	
Giardia	0		
Cryptosporidium	0		

LOCATION E226196 KLANAWA RIVER AT CENTRAL SOUTH MAIN

Table 10. Ambient water quality data for site E226197 Bagley Creek at Upper Klanawa Main (May – November 1997).

LOCATION			REEKATU				
Date	6/3/97	6/3/97	6/3/97	6/3/97	7/29/97	8/20/97	10/29/97
Field Temp	10.7	Ν			14.0	15.0	9.2
Field DO	8.5	Ν			8.5	8.5	11.5
Color True	10	10	15	10	5	< 5	20
рН	6.84	6.80	6.75	6.76	6.62	6.67	6.55
Res: Tot	< 25	< 25	< 15	< 25	< 35	< 45	< 25
Res: Filt	20	20	10	20	30	40	20
Res: NF	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Turbidity	0.20	0.18	0.21	0.19	0.28	0.55	0.52
SC	22	22	22	21	35	41	20
Hardness	5.5	4.8	5.2	5.2	10.0	12.5	4.7
TOC	4.1	3.5	3.5	3.5	1.3	0.8	5.1
DOC	3.4	3.3	3.4	3.5	1.3	0.8	4.8
TIC	1.3	1.3	1.3	1.3	3.1	3.9	0.6
DIC	1.2	1.3	1.3	1.1	2.5	3.4	0.6
Tot C	4.6	4.6	4.7	4.6	3.8	4.2	5.4
CT	5.4	4.8	4.8	4.8	4.4	4.7	5.7
СТ РТ	0.003	0.004	0.004	0.003	0.006	0.007	0.006
P T Diss	0.003	0.004	0.004	0.003	0.000	0.007	0.005
Tot N	0.10	0.08	0.09	0.004	0.15	0.000	0.18
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	< 0.005	< 0.005	< 0.005 0.042	< 0.005 0.041	< 0.005 0.132	< 0.005 0.213	< 0.005 0.066
NO3 + NO2						0.213	0.066
NO3	< 0.042	< 0.040	< 0.040	< 0.039	< 0.130		
NO2	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.00	0.07
AI-T	0.10	0.10	0.16	0.16	< 0.06	< 0.06	0.27
As-T	< 0.06 1.7	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Ca-T		1.6	1.6	1.6	3.2	4.0	1.4
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Cr-T	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Cu-T	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Fe-T	0.023	0.029	0.028	0.029	0.060	0.110	0.166
KT	0.2	0.2	0.2	0.2	0.2	0.5	0.3
Mg-T	0.3	0.2	0.3	0.3	0.5	0.6	0.3
Mn-T	0.002	0.003	0.003	0.004	0.010	0.039	0.004
Na-T	1.6	1.6	1.6	1.6	1.8	1.8	1.5
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
ST	0.41	0.41	0.42	0.42	0.83	1.10	0.35
Si-T	1.25	1.23	1.23	1.22	1.93	2.16	1.1
Zn-T	0.008	0.011	0.012	0.027	< 0.002	< 0.002	0.003
Fecal coliforms	8	2	10	14	< 1	1	2
Giardia	0				0	0	0
Cryptosporidium	0				0	0	0

LOCATION E226197 BAGLEY CREEK AT UPPER KLANAWA MAIN

Table 11. Ambient water quality data for E226198 East Klanawa River at Bridgebetween Upper Klanawa and Upper Klanawa Main (May – November 1997).

LOCATION	E226198 EAST	KLANAWA RIV	ER AT BRIDGE	
DATE	6/3/97 10:50	7/29/97 12:39	8/20/97 14:30	10/29/97 14:30
Field Temp	9.4	9.8	10.0	9.0
Field DO	10.0	9.2	8.5	11.6
Color True	< 5	< 5	< 5	7
рН	6.56	6.37	6.56	6.52
Res: Tot	< 25	< 25		
Res: Filt	20	20		
Res: NF	< 5	< 5	< 5	< 5
Turbidity	0.06	0.11	0.07	0.43
SC	24	28	29	23
Hardness	5.8	7.9	8.4	5.7
тос	1.4	0.5		
DOC	1.4	0.5		
TIC	1.8	3		
DIC	1.7	2.1		
Tot C	3.1	2.6		
СТ	3.2	3.5		
PT	0.003	0.005	0.006	0.006
P T Diss	0.004	0.003	0.006	0.003
Tot N	0.09	0.11	0.13	0.21
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005
NO3 + NO2	0.066	0.106	0.103	0.132
NO3	< 0.064	< 0.104		
NO2	< 0.002	< 0.002		
AI-T	< 0.06	< 0.06	< 0.06	0.12
As-T	< 0.06	< 0.06	< 0.06	< 0.06
Ca-T	2.0	2.5	2.7	1.8
Cd-T	< 0.006	< 0.006	0.006	< 0.006
Cr-T	0.009	0.013	< 0.006	0.013
Cu-T	< 0.006	< 0.006	< 0.006	< 0.006
Fe-T	< 0.006	< 0.006	0.015	0.032
KT	< 0.1	< 0.1	0.3	0.2
Mg-T	0.2	0.4	0.4	0.3
Mn-T	0.002	< 0.001	0.001	0.004
Na-T	1.5	1.5	1.5	1.4
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06
ST	0.57	0.56	0.61	0.45
Si-T	1.51	1.93	2.15	1.37
Zn-T	0.007	0.003	< 0.002	< 0.002
Fecal coliforms	8	< 1	11	< 1
Giardia	0			
Cryptosporidium	0			

Table 12. Ambient water quality data for site E226199 Flora Lake at Nitinat (May – November 1997).

LOCATION	E226199	FLORA LA	KE AT NITIN	IAT			
DATE	06/04/97	07/28/97	08/26/97	08/26/97	08/26/97	08/26/97	10/29/97
Field Temp	14.9		18.5				9.0
Field DO	9.5	8.8	9.3				11.2
Color True	< 5		< 5	< 5	< 5	< 5	< 5
pН	7.06	7.21	7.27	7.34	7.34	7.34	6.97
Res: Tot	< 35		< 25	< 35	< 35	< 35	< 35
Res: Filt	30		20	30	30	30	30
Res: NF	< 5	7	< 5	< 5	< 5	< 5	< 5
Turbidity	0.34	1.40	0.65	0.46	0.36	0.40	0.65
SC	33	36	37	37	38	38	41
Hardness	11.0	13.1	13.8	13.4	14.2	13.1	14.0
тос	1.2	1.8	1.4	1.3	1.3	1.3	0.9
DOC	1.2	1.6	1.3	1.3	1.3	1.3	0.7
TIC	3	3.3	3.4	3.3	3.3	3.3	3.8
DIC	3.0	3.2	3.3	3.3	3.3	3.3	3.8
Tot C	4.2	4.8	4.6	4.6	4.6	4.6	4.5
СТ	4.2	5.1	4.8	4.6	4.6	4.6	4.7
РТ	0.003	0.008	0.004	0.004	0.003	0.004	0.006
P T Diss	0.003	0.004	< 0.002	< 0.002	< 0.002	< 0.002	0.002
Tot N	0.09	0.11	0.15	0.13	0.11	0.10	0.20
NH4 Diss	0.006	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.007
NO3 + NO2	0.038	0.022	0.014	0.008	0.004	0.005	0.140
NO3	< 0.036	0.020					
NO2	< 0.002	0.002					
AI-T	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	0.06
As-T	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Ca-T	3.9		4.7	4.7	4.7	4.6	4.8
Cd-T	< 0.006		< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Cr-T	< 0.006		0.020	0.020	0.010	< 0.006	< 0.006
Cu-T	< 0.006		0.007	< 0.006	0.009	< 0.006	< 0.006
Fe-T	0.034		0.036	0.064	0.081	0.053	0.055
КТ	< 0.1	< 0.1	0.6	0.3	0.5	0.3	0.2
Mg-T	0.3		0.5	0.4	0.6	0.4	0.5
Mn-T	0.004		0.006	0.005	0.008	0.004	0.016
Na-T	1.4	-	1.0	1.3	1.2	1.3	1.4
Ni-T	< 0.02		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Pb-T	< 0.06		< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
ST	0.47		0.41	0.42	0.45	0.41	0.49
Si-T	1.21	1.4	1.3	1.27	1.37	1.25	1.5
Zn-T	0.039	< 0.002	0.003	< 0.002	< 0.002	0.002	< 0.002
Fecal coliforms	< 1		6	11	3	7	< 1
Giardia		0	0				0
Cryptosporidium		0	0				0

LOCATION E226199 FLORA LAKE AT NITINAT

 Table 13. Ambient water quality data for site E226201 Darlington Lake at Franklin

 South Main (May – November 1997).

	226201 DARL	INGTON LAKE	AT FRANKLIN	SOUTH MAIN
DATE	6/5/97 12:10	7/22/97 12:31	8/26/97 12:36	10/28/97 11:05
Field Temp		18.0	16.5	8.9
Field DO		8.7	8.2	9.1
Color True	< 5	< 5	< 5	< 5
рН	6.87	7.17	7.20	6.94
Res: Tot	< 45	< 35		
Res: Filt	40	30		
Res: NF	< 5	< 5	< 5	< 5
Turbidity	0.18	1.50	0.28	0.61
sc	42	46	48	49
Hardness	15.5	18.4	18.9	18.5
TOC	1.5	1.6		
DOC	1.4	1.6		
TIC	4.2	5		
DIC	4.2	4.4		
Tot C	5.6	6.0		
СТ	5.7	6.6		
PT	0.004	0.006	0.004	0.006
P T Diss	0.006	0.003	0.002	0.005
Tot N	0.10	0.09	0.14	0.17
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005
NO3 + NO2	0.056	0.073	0.063	0.085
NO3	< 0.054	< 0.071	0.000	0.000
NO2	< 0.004	< 0.002		
AI-T	< 0.06	< 0.06	< 0.06	< 0.06
As-T	< 0.06	< 0.06	< 0.06	< 0.06
Ca-T	5.4	6.2	6.4	6.4
Cd-T	< 0.006	0.006	< 0.006	< 0.006
Cr-T	0.014	0.017	0.008	0.008
Cu-T	< 0.006	< 0.006	< 0.006	< 0.006
Fe-T	0.073	0.044	0.038	0.048
КТ	0.1	< 0.1	0.8	0.2
Mg-T	0.5	0.7	0.7	0.6
Mn-T	0.005	0.003	0.003	0.001
Na-T	1.3	1.2	1.3	1.4
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02
Pb-T	< 0.02	< 0.02	< 0.02	< 0.02
ST	0.00	0.37	0.44	0.39
Si-T	1.76	1.89	1.91	2.03
Zn-T	0.010	0.003	0.005	0.005
2 11 ² 1	0.010	0.000	0.000	0.005
Fecal coliforms	3	< 1	< 1	< 1
Giardia		0	0	
Cryptosporidium		0	0	

Table 14. Ambient water quality data for site E226202 Francis Lake at Franklin South Main Boat Ramp (May – November 1997).

LOCATION E	226202 FRAN	CIS LK AT FRA	NKLIN S MAIN	BOAT RAMP
DATE	6/4/97 14:45	7/28/97 14:19	8/26/97 13:25	10/28/97 12:05
Field Temp	12.2	21.0	17.1	9.0
Field DO	10.3	8.8	9.2	8.7
Color True	7	7	7	5
рН	7.23	7.32	7.32	7.07
Res: Tot	< 35	< 45	< 45	< 45
Res: Filt	30	40	40	40
Res: NF	< 5	< 5	< 5	< 5
Turbidity	0.15	0.32	0.41	0.56
SC	35	41	41	40
Hardness	12.9	16.3	15.8	14.3
тос	2	2.1	2.5	1.9
DOC	2	1.9	1.8	1.9
TIC	3.3	4.2	3.9	3.8
DIC	3.3	4.0	3.7	3.8
Tot C	5.3	5.9	5.5	5.7
СТ	5.3	6.3	6.4	5.7
PT	0.016	0.004	0.005	0.005
P T Diss	0.002	< 0.002	< 0.002	0.002
Tot N	0.06	0.08	0.18	0.14
NH4 Diss	0.006	< 0.005	0.005	< 0.005
NO3 + NO2	0.019	0.031	0.037	0.052
NO3	< 0.017	0.029		
NO2	< 0.002	0.002		
AI-T	< 0.06	< 0.06	0.10	< 0.06
As-T	< 0.06	< 0.06	< 0.06	< 0.06
Ca-T	4.5	5.7	5.5	4.9
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006
Cr-T	0.018	0.024	0.006	0.025
Cu-T	< 0.006	< 0.006	0.009	< 0.006
Fe-T	0.034	0.043	0.076	0.049
КТ	< 0.1	< 0.1	0.2	0.2
Mg-T	0.4	0.5	0.5	0.5
Mn-T	0.004	0.004	0.007	0.005
Na-T	1.0	1.0	1.0	1.2
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06
ST	0.30	0.34	0.35	0.34
Si-T	1.3	1.52	1.57	1.51
Zn-T	0.014	0.004	0.003	0.002
Fecal coliforms	< 1	< 1	< 1	< 1
Giardia		0	0	0
Cryptosporidium		0	0	0

Table 15. Ambient water quality data for site E226203 Little Nitinat River at Nadira Main (May – November 1997).

LOCATION E	226203 LITTL	E NITINAT RIV	ER AT NADIRA	MAIN
DATE	6/5/97 11:15	7/22/97 13:18	8/26/97 14:10	10/27/97 16:25
Field Temp	8.1	11.2	11.1	8.5
Field DO	12.2	10.5	11.6	10.4
Color True	5	< 5	15	5
рН	7.12	7.30	7.12	7.23
Res: Tot	< 35	< 45		
Res: Filt	30	40		
Res: NF	< 5	< 5	< 5	< 5
Turbidity	0.05	1.50	0.15	0.06
SC	25	42	29	35
Hardness	8.6	15.4	11.4	11.5
TOC	2.3	0.9		
DOC	2.3	0.8		
TIC	2.2	4		
DIC	2.2	3.9		
Tot C	4.5	4.7		
СТ	4.5	4.9		
PT	0.002	0.003	0.007	0.003
P T Diss	0.004	0.003	0.004	0.003
Tot N	0.07	0.07	0.32	0.23
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005
NO3 + NO2	0.036	0.075	0.198	0.119
NO3	< 0.034	< 0.073		
NO2	< 0.002	< 0.002	0.00	. 0.00
AI-T	< 0.06	< 0.06	< 0.06	< 0.06
As-T Ca-T	< 0.06 3.1	< 0.06 5.5	< 0.06	< 0.06 4.1
Cd-T	< 0.006	< 0.006	3.9 < 0.006	< 0.006
Cr-T	0.009	0.000	< 0.000	0.009
Cu-T	< 0.005	< 0.006	< 0.000	< 0.005
Fe-T	0.006	0.020	0.008	0.010
KT	0.1	< 0.1	0.8	0.2
Mg-T	0.2	0.4	0.4	0.3
Mn-T	0.002	0.003	< 0.001	0.002
Na-T	0.9	1.3	0.8	1.3
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06
ST	0.28	0.45	0.28	0.41
Si-T	1.1	1.6	1.29	1.41
Zn-T	< 0.002	< 0.002	< 0.002	0.004
Fecal coliforms	3	2	13	< 1
Giardia		0		
Cryptosporidium		0		

Table 16. Ambient water quality data for site E226204 Little Nitinat River on East Side Franklin South Main (May – November 1997).

LOCATION E	E226204 LITTL	E NITINAT R O	N E SIDE FRAM	IKLIN S MN
DATE	6/5/97 10:17	7/22/97 14:15	8/26/97 11:39	10/27/97 17:10
Field Temp	10.1	15.0	14.0	9.0
Field DO	10.8	9.5	9.9	11.5
Color True	5	< 5	20	< 5
рН	7.19	7.32	7.26	7.24
Res: Tot	< 35	< 25	< 45	< 35
Res: Filt	30	20	40	30
Res: NF	< 5	< 5	< 5	< 5
Turbidity	0.18	0.12	0.53	0.26
SC	34	45	37	41
Hardness	12.5	17.0	14.4	15.3
TOC	2.1	1.2	3.7	1.7
DOC	2.1	1.2	3.5	0.7
TIC	3.1	4.5	3.2	3.7
DIC	3.1	4.4	3.2	3.6
Tot C	5.2	5.6	6.7	4.3
СТ РТ	5.2	5.7	6.9	5.4
PI P T Diss	0.002 0.003	0.005 0.004	0.006 0.003	0.002 0.002
Tot N	0.003	0.004	0.003	0.002
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005
NO3 + NO2	0.042	0.005	0.157	0.104
NO3 + NO2 NO3	< 0.042	< 0.075	0.157	0.104
NO2	< 0.002	< 0.002		
AI-T	< 0.06	0.10	< 0.06	< 0.06
As-T	< 0.06	< 0.06	< 0.06	< 0.06
Ca-T	4.5	6.0	5.1	5.3
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006
Cr-T	0.014	0.010	< 0.006	0.012
Cu-T	< 0.006	< 0.006	< 0.006	< 0.006
Fe-T	0.040	0.048	0.041	0.026
КТ	0.2	< 0.1	0.5	0.3
Mg-T	0.3	0.5	0.4	0.5
Mn-T	0.004	0.001	< 0.001	< 0.001
Na-T	1.0	1.2	0.9	1.2
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06
ST	0.37	0.41	0.34	0.43
Si-T	1.35	1.77	1.47	1.58
Zn-T	0.006	< 0.002	< 0.002	0.002
Fecal coliforms	2	5	8	< 1
Giardia		0.71	0	0
Cryptosporidium		0	0	0

Table 17. Ambient water quality data for site E226206 Little Nitinat River at Rock Cut (May – November 1997).

LOCATION E226206 LITTLE NITINAT RIVER AT ROCK CUT					
DATE	6/5/97 8:52	7/23/97 8:48	8/26/97 10:54	10/28/97 13:10	
Field Temp	9.4	13.0	13.9	9.0	
Field DO	11.3	10.2	10.2	9.8	
Color True	5	5	15	7	
рН	7.29	7.49	7.29	7.37	
Res: Tot	< 35	< 25	< 45	< 35	
Res: Filt	30	20	40	30	
Res: NF	< 5	< 5	< 5	< 5	
Turbidity	0.24	0.14	0.92	6.68	
SC	32	45	35	40	
Hardness	11.2	17.5	13.5	14.3	
TOC	2.1	1.1	4.1	1.5	
DOC	2.1	1.1	4	1.5	
TIC	2.8	4.1	2.7	3.2	
DIC	2.8	4.0	2.7	3.2	
Tot C	4.9	5.1	6.7	4.7	
СТ РТ	4.9	5.2	6.8	4.7	
P T Diss	0.003 0.003	0.005 0.002	0.007 0.004	0.014 0.003	
Tot N	0.003	0.002	0.004	0.003	
NH4 Diss	< 0.007	< 0.005	< 0.005	< 0.005	
NO3 + NO2	0.047	0.003	0.178	0.107	
NO3	< 0.047	< 0.069	0.170	0.107	
NO2	< 0.002	< 0.002			
AI-T	0.10	0.24	0.08	0.35	
As-T	< 0.06	< 0.06	< 0.06	< 0.06	
Ca-T	4.0	6.0	4.6	4.9	
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006	
Cr-T	< 0.006	0.037	< 0.006	< 0.006	
Cu-T	0.007	0.010	0.006	0.006	
Fe-T	0.120	0.095	0.072	0.226	
КТ	< 0.1	0.3	0.7	0.3	
Mg-T	0.3	0.6	0.5	0.5	
Mn-T	< 0.001	0.003	0.003	0.006	
Na-T	1.0	1.3	1.0	1.4	
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02	
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06	
ST	0.43	0.72	0.46	0.61	
Si-T	1.44	2.19	1.57	2.06	
Zn-T	0.005	0.004	< 0.002	0.003	
Fecal coliforms	17	6	45	< 1	
Giardia		0	0	0	
Cryptosporidium		0	0	0	

Table 18. Ambient water quality data for site E226207 Little Nitinat River at Nitinat Mainline upstream Hatchery (May – November 1997).

	E226207	LITTLE NIT	INAT RIVE	r at nitin	IAT ML U/S H	IATCHERY	
DATE	06/16/97	07/29/97	08/13/97	08/13/97	08/27/97	08/27/97	10/28/97
Field Temp	13.0				13.0		8.5
Field DO	10.5				10.7		8.4
Color True	7	< 5			15		5
рН	7.52	7.63			7.36		7.52
Res: Tot	37	< 35			< 35		< 35
Res: Filt	30	30			30		30
Res: NF	7	< 5			< 5		< 5
Turbidity	4.90	0.14			0.94		2.29
SC	47	56			35		44
Hardness	19.6	22.7			13.6		16.5
TOC	1.3	1.1			4		1.3
DOC	1.3	1.1			4		1.3
TIC	4.3	5.3			2.8		3.8
DIC	4.2	5.3			2.8		3.8
Tot C	5.5	6.4			6.8		5.1
СТ	5.6	6.4			6.8		5.1
РТ	0.012	0.003			0.007		0.006
P T Diss	0.004	0.002			0.003		0.003
Tot N	0.10	0.09			0.26		0.19
NH4 Diss	< 0.005	< 0.005			< 0.005		< 0.005
NO3 + NO2	0.051	0.076			0.152		0.114
NO3	< 0.049	0.074					
NO2	< 0.002	0.002					
AI-T	0.22	< 0.06			0.15		0.10
As-T	< 0.06	< 0.06			< 0.06		< 0.06
Ca-T	6.7	8.1			4.8		5.8
Cd-T	< 0.006	< 0.006			< 0.006		< 0.006
Cr-T	< 0.006	< 0.006			< 0.006		< 0.006
Cu-T	< 0.006	0.006			< 0.006		< 0.006
Fe-T	0.215	0.016			0.153		0.110
KT	0.2	0.3			0.3		0.3
Mg-T	0.7	0.6			0.4		0.5
Mn-T	0.009 1.3	0.003 1.6			0.002 1.0		0.005 1.6
Na-T							
Ni-T Pb-T	< 0.02	< 0.02 < 0.06			< 0.02		< 0.02 < 0.06
ST	< 0.06 0.67	< 0.06 0.80			< 0.06 0.43		< 0.06 0.65
Si-T	1.92	1.85			1.59		1.76
Zn-T	< 0.002				0.005		0.002
211-1	< 0.002	< 0.002			0.005		0.002
Fecal coliforms	260	< 1	< 1	2		5	9
Giardia		2.94			0 2.11	1.38 0	0
Cryptosporidium		0			17 1.06	0 0	0

LOCATION E226207 LITTLE NITINAT RIVER AT NITINAT ML U/S HATCHERY

_

Table 19. Ambient water quality data for site E226208 Nitinat River near Rift Creek (May – November 1997).

LUCATION	E226208	NITINAL R	VER NEAR	RIFT CREE	K		
DATE	06/23/97	07/30/97	07/30/97	07/30/97	07/30/97	09/02/97	11/03/97
Field Temp	8.8	14.5				14.5	9.1
Field DO	12.0	10.2				9.4	10.6
Color True	5	< 5	< 5	< 5	< 5	< 5	20
рН	7.63	7.83	7.85	7.84	7.81	7.84	7.46
Res: Tot	< 45	< 55	< 55	< 65	< 45	< 55	59
Res: Filt	40	50	50	60	40	50	30
Res: NF	< 5	< 5	< 5	< 5	< 5	< 5	29
Turbidity	0.20	0.12	0.12	0.11	0.12	0.09	18.30
sc	62	88	88	88	87	89	37
Hardness	27.1	40.8	41.1	42.6	41.3	38.8	21.2
TOC	1		0.5	0.8	0.8	2.5	3.4
DOC	1	0.7	0.5	0.8	0.8	1.6	3.4
TIC	6.8	9.9	9.9	10	9.9	9.6	3.1
DIC	6.7	9.9	9.9	10.0	9.9	9.4	3.1
Tot C	7.7	10.6	10.4	10.8	10.7	11.0	6.5
СТ	7.8	10.6	10.4	10.8	10.7	12.1	6.5
РТ	0.005	0.003	0.004	0.004	0.004	< 0.002	0.043
P T Diss	0.004	0.002	< 0.002	0.003	0.002	< 0.002	0.006
Tot N	0.05	0.08	0.07	0.07	0.09	0.15	0.32
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.010
NO3 + NO2	0.037	0.061	0.060	0.059	0.060	0.109	0.172
NO3	< 0.035	0.059	< 0.058	< 0.057	< 0.058		
NO2	< 0.002	0.002	< 0.002	< 0.002	< 0.002		
AI-T	0.23	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	2.06
As-T	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Ca-T	9.7	14.7	14.8	15.4	14.9	13.9	6.0
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Cr-T	< 0.006	< 0.006	0.019	0.006	0.009	< 0.006	0.008
Cu-T	0.006	0.008	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Fe-T	0.030	0.021	0.019	< 0.006	0.006	0.018	1.970
КТ	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1	0.5
Mg-T	0.7		1	1	1	1	1.5
Mn-T	0.002	0.002	0.001	0.001	0.003	0.003	0.054
Na-T	< 0.1		0.9	1.0	0.9	1.2	0.9
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Pb-T	< 0.06		< 0.06	< 0.06	< 0.06	0.06	< 0.06
ST	0.32		0.55	0.59	0.60	0.60	0.28
Si-T	1.34		1.76	1.77	1.73	1.77	4.45
Zn-T	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.003	0.005
Fecal coliforms	10	11	17	12	13	11	74
Giardia	C	0				0	0
Cryptosporidium	C	0				0	0

LOCATION E226208 NITINAT RIVER NEAR RIFT CREEK

Table 20. Ambient water quality data for site E226211 Granite Creek at Carmanah Main (May – November 1997).

LOCATION	LOCATION E226211 GRANITE CREEK AT CARMANAH MAIN									
DATE	6/18/97 11:25	7/30/97 14:30	9/2/97 15:03	11/3/97 14:05						
Field Temp	9.1	12.5	14.0	9.5						
Field DO	12.2	10.2	11.0	10.4						
Color True	5	< 5	< 5	7						
рН	7.71	7.86	7.89	7.71						
Res: Tot	< 45	< 65	< 65	< 45						
Res: Filt	40	60	60	40						
Res: NF	< 5	< 5	< 5	< 5						
Turbidity	0.33	0.21	0.09	2.87						
SC	65	102	106	56						
Hardness	26.6	44.6	45.1	23.3						
TOC	1.4	0.6	2.2	1.3						
DOC	1.4	0.6	2.2	1.3						
TIC	6.1	9.7	9.4	5						
DIC	6.1	9.7	9.4	4.6						
Tot C	7.5	10.3	11.6	5.9						
СТ РТ	7.5	10.3	11.6	6.3						
PT P T Diss	0.020 0.007	0.005 0.004	0.002 < 0.002	0.009 0.005						
Tot N	0.007	0.004	< 0.002							
NH4 Diss	< 0.005	< 0.005	< 0.005	0.18 0.013						
NO3 + NO2	0.005	0.005	< 0.005	0.013						
NO3 + NO2	< 0.036	< 0.027	0.004	0.031						
NO2	< 0.002	< 0.023								
AI-T	< 0.06	< 0.06	< 0.06	0.28						
As-T	< 0.06	< 0.06	< 0.06	< 0.06						
Ca-T	10.0	16.7	16.9	8.5						
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006						
Cr-T	< 0.006	< 0.006	< 0.006	0.022						
Cu-T	< 0.006	< 0.006	< 0.006	< 0.006						
Fe-T	0.029	0.016	< 0.006	0.244						
КТ	0.1	0.3	0.1	0.4						
Mg-T	0.4	0.7	0.7	0.5						
Mn-T	< 0.001	0.004	< 0.001	0.007						
Na-T	1.2	1.5	1.4	1.4						
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02						
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06						
ST	1.46	2.51	2.71	1.00						
Si-T	1.84	2.27	2.28	2.03						
Zn-T	< 0.002	< 0.002	0.003	0.004						
Fecal coliforms	23	9	3	2						
Giardia	0	0	1.21	0						
Cryptosporidium	0	0	0	0						

Table 21. Ambient water quality data for site E226214 Worthless Creek at Summit BR100 (May – November 1997).

LOCATION E	E226214	WORTHLES	SS CREEK	AT SUMMIT	F BR100			
DATE	06/16/97	07/28/97	08/26/97	08/26/97	11/05/97	11/05/97	11/05/97	11/05/97
Field Temp	11.3	15.7	12.2		8.5			
Field DO	9.9	9.0	9.8		10.6			
Color True	7	-	45		10	10	10	10
pH	7.62		7.44		7.09	7.11	7.07	7.10
Res: Tot	< 45		< 55		< 25	< 25	< 25	< 15
Res: Filt	40		50		20	20	20	< 10
Res: NF	< 5		< 5		< 5	< 5	< 5	< 5
Turbidity	0.36		2.87		0.24	0.25	0.23	0.26
SC	64		46		27	27	27	28
Hardness	27.9		19.8		9.3	8.9	9.3	9.3
TOC	2		8.6		2.8	2.8	2.7	2.7
DOC	2		8.3		2.8	2.8	2.7	2.7
TIC	6.9		3.8		1.7	1.6	1.6	1.7
DIC	6.8		3.7		1.7	1.6	1.6	1.6
Tot C	8.8		12.0		4.5	4.4	4.3	4.3
СТ	8.9		12.4		4.5	4.4	4.3	4.4
PT	0.006		0.013		0.003	0.003	0.003	0.003
P T Diss	0.004		0.007		0.002	0.002	< 0.002	0.002
Tot N	0.07		0.45		0.06	0.05	0.05	0.05
NH4 Diss	< 0.005		0.007		< 0.005	0.007	< 0.005	< 0.005
NO3 + NO2	0.022		0.237		0.019	0.019	0.015	0.016
NO3	< 0.020							
NO2	< 0.002		0.05		0.10	0.10		
AI-T	< 0.06		0.25		0.10	0.12	0.14	0.09
As-T	< 0.06		< 0.06		< 0.06	< 0.06	< 0.06	< 0.06
Ca-T Cd-T	10.0 < 0.006		7.1 < 0.006		2.9 < 0.006	2.9 < 0.006	2.9 < 0.006	2.9 < 0.006
Cd-1 Cr-T	< 0.006		< 0.006		< 0.006	< 0.006	< 0.006	< 0.006
Cu-T	< 0.006		< 0.000		< 0.000	< 0.000	< 0.000	< 0.000
Fe-T	< 0.000		0.122		< 0.000 0.019	< 0.000 0.025	0.000	0.000
KT	0.038		0.122		0.019	0.025	0.031	0.021
Mg-T	0.4		0.4		0.2	0.2	0.5	0.2
Mg-T Mn-T	0.001		0.006		< 0.001	0.4	< 0.001	0.003
Na-T	1.2		1.0		1.0	1.0	1.0	1.0
Ni-T	< 0.02		< 0.02		< 0.02	< 0.02	< 0.02	< 0.02
Pb-T	< 0.02		< 0.02		< 0.02	< 0.02	< 0.02	< 0.02
ST	0.51		0.37		0.55	0.54	0.52	0.55
Si-T	1.61		1.55		1.59	1.62	1.62	1.63
Zn-T	0.003		0.005		< 0.002	0.003	0.004	< 0.002
Fecal coliforms	170	< 1	13	46	< 1	< 1	< 1	< 1
Giardia	0		0		0			
Cryptosporidium	0		0		0			

LOCATION E226214 WORTHLESS CREEK AT SUMMIT BR100

 Table 22. Ambient water quality data for site E226215 Worthless Creek at BR60 (May
 – November 1997).

LOCATION	LOCATION E226215 WORTHLESS CREEK AT BR60								
DATE	6/16/97 15:47	7/30/97 13:45	9/3/97 8:45	11/5/97 11:00					
Field Temp	33.3	15.2	15.3	9.8					
Field DO	7.0	9.6	9.7	10.8					
Color True	5	< 5	< 5	7					
рН	7.49	7.50	7.59	7.22					
Res: Tot	< 45	< 55	< 45	< 45					
Res: Filt	40	50	40	40					
Res: NF	< 5	< 5	< 5	< 5					
Turbidity	0.12	0.09	0.07	0.28					
SC	59	71	67	40					
Hardness	23.1	27.9	25.2	14.0					
TOC	1.3	3.8	4.8	1.7					
DOC	1.3	1.4	2.1	1.7					
TIC	4.9	5.9	5.3	2.8					
DIC	4.9	5.9	5.2	2.8					
Tot C	6.2	7.3	7.3	4.5					
СТ РТ	6.2	9.7	10.1	4.5					
P T Diss	0.005 0.003	0.003 0.005	0.002 < 0.002	0.003 0.002					
Tot N	0.003	0.003	< 0.002	0.002					
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005					
NO3 + NO2	0.003	0.007	0.019	0.027					
NO3	< 0.001	< 0.005	0.010	0.027					
NO2	< 0.002	< 0.002							
AI-T	< 0.06	< 0.06	< 0.06	< 0.06					
As-T	< 0.06	< 0.06	< 0.06	< 0.06					
Ca-T	8.1	10.0	9.1	4.8					
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006					
Cr-T	0.015	< 0.006	< 0.006	0.012					
Cu-T	< 0.006	0.033	0.007	< 0.006					
Fe-T	0.035	0.031	0.038	0.048					
КТ	0.3	0.5	0.3	0.4					
Mg-T	0.7	0.7	0.6	0.5					
Mn-T	< 0.001	0.003	< 0.001	0.002					
Na-T	1.5	2.0	1.8	1.3					
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02					
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06					
ST	1.88	2.64	1.96	0.76					
Si-T Zn T	2.01	2.13 0.017	2.13	1.63					
Zn-T	< 0.002	0.017	0.002	< 0.002					
Fecal coliforms	124	6	8	2					
Giardia	0	0	1.21	0					
Cryptosporidium	0	0	0	0					

Table 23. Ambient water quality data for site E226216 Nitinat River at One-Way West (May – November 1997).

LUCATION		NITINAT RI		NE-WAY WE	201		
DATE	06/17/97	07/22/97	08/13/97	08/13/97	08/27/97	08/27/97	11/03/97
Field Temp	11.0	13.5			13.5		9.7
Field DO	11.2	10.0			9.8		10.1
Color True	20	< 5			10		25
pН	7.47	7.72			7.65		7.53
Res: Tot	45	< 45			< 55		79
Res: Filt	30	40			50		30
Res: NF	15	< 5			< 5		49
Turbidity	11.00	0.22			1.41		36.90
sc	44	86			65		43
Hardness	21.8	38.1			30.8		27.4
тос	4.3	0.7			2.8		3.1
DOC	4.3	0.7			2.8		2.7
TIC	4.5	9.4			6.7		3.8
DIC	4.5	9.4			6.6		3.8
Tot C	8.8	10.1			9.4		6.5
СТ	8.8	10.1			9.5		6.9
PT	0.034	0.004			0.007		0.102
P T Diss	0.004	0.003			0.003		0.005
Tot N	0.21	0.06			0.27		0.31
NH4 Diss	< 0.005	< 0.005			0.006		0.013
NO3 + NO2	0.070	0.054			0.135		0.092
NO3	< 0.068	< 0.052					
NO2	< 0.002	< 0.002					
AI-T	0.99	< 0.06			0.10		3.52
As-T	< 0.06	< 0.06			< 0.06		< 0.06
Ca-T	7.1	13.6			11.0		7.5
Cd-T	< 0.006	< 0.006			< 0.006		< 0.006
Cr-T	0.011	0.017			0.025		< 0.006
Cu-T	< 0.006	< 0.006			< 0.006		0.009
Fe-T	0.988	0.033			0.094		3.390
КТ	0.3	0.2			0.1		0.6
Mg-T	1	1			0.8		2.1
Mn-T	0.032	0.004			0.006		0.093
Na-T	0.6	1.2			0.9		1.3
Ni-T	< 0.02	< 0.02			< 0.02		< 0.02
Pb-T	< 0.06	0.06			< 0.06		< 0.06
ST	0.33	0.66			0.49		0.31
Si-T	2.65	1.82			1.59		6.7
Zn-T	0.004	0.003			< 0.002		0.006
Fecal coliforms	156	6	5	4	< 1	< 1	48
Giardia	> 3	0	-		1.35	2	
Cryptosporidium	0	0			0	9	0

LOCATION E226216 NITINAT RIVER AT ONE-WAY WEST

 Table 24. Ambient water quality data for site E226217 Jasper Creek at One-Way West
 (May – November 1997).

LOCATION	LOCATION E226217 JASPER CREEK AT ONE-WAY WEST									
DATE	6/17/97 15:35	7/30/97 10:30	9/2/97 16:05	11/5/97 12:10						
Field Temp	10.5	11.5	15.0	9.5						
Field DO	10.8	10.4	13.5	10.2						
Color True	25	< 5	< 5	5						
рН	7.34	7.59	7.69	7.29						
Res: Tot	39	< 45	< 45	< 35						
Res: Filt	30	40	40	30						
Res: NF	9	< 5	< 5	< 5						
Turbidity	6.70	0.16	0.33	2.44						
SC	41	69	73	51						
Hardness	18.2	26.3	26.6	18.9						
TOC	4	2.1	2.5	1						
DOC	4	2.1	2.5	1						
TIC	3.7	6	6.2	4.4						
DIC Tat O	3.7	6.0	6.2	4.3						
Tot C CT	7.7	8.1	8.7	5.3						
СТ РТ	7.7	8.1	8.7	5.4						
P T Diss	0.026 0.007	0.006 0.004	0.005 0.002	0.019 0.012						
Tot N	0.16	0.004	0.002	0.012						
NH4 Diss	0.005	< 0.005	< 0.005	0.27						
NO3 + NO2	0.050	0.003	0.032	0.104						
NO3	< 0.048	< 0.019	0.002	0.104						
NO2	< 0.002	< 0.002								
AI-T	1.32	< 0.06	< 0.06	0.26						
As-T	< 0.06	< 0.06	< 0.06	< 0.06						
Ca-T	5.8	9.2	9.5	6.4						
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006						
Cr-T	< 0.006	0.012	< 0.006	< 0.006						
Cu-T	< 0.006	< 0.006	0.009	< 0.006						
Fe-T	1.050	< 0.006	0.028	0.175						
КТ	0.4	0.4	0.4	0.4						
Mg-T	0.9	0.8	0.7	0.7						
Mn-T	0.033	0.004	< 0.001	0.007						
Na-T	1.2	2.4	2.3	1.6						
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02						
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06						
ST	0.68	1.64	1.61	0.82						
Si-T	3.75	3.1	2.91	2.56						
Zn-T	0.007	< 0.002	< 0.002	< 0.002						
Fecal coliforms	56	7	5	16						
Giardia	0	0	0	0						
Cryptosporidium	0	0	0	0						

 Table 25. Ambient water quality data for site E226218 Upper Jasper Creek at Washout
 (May – November 1997).

LOCATION	LOCATION E226218 UPPER JASPER CREEK AT WASHOUT								
DATE	6/17/97 13:15	7/30/97 11:24	9/3/97 9:50	11/5/97 14:15					
Field Temp	10.0	13.0	12.3	9.2					
Field DO	10.5	9.6	9.7	10.9					
Color True	15	< 5	< 5	5					
рН	7.54	7.80	7.87	7.59					
Res: Tot	51	< 55	< 55	< 35					
Res: Filt	40	50	50	30					
Res: NF	11	< 5	< 5	< 5					
Turbidity	4.00	0.35	0.28	1.42					
SC	50	92	88	57					
Hardness	21.7	40.3	35.1	23.0					
TOC	3.1	2.7	2.9	0.7					
DOC	3.1	2.7	1.1	0.7					
TIC	5	9.4	8.7	5.3					
DIC	5.0	9.4	8.5	5.1					
Tot C	8.1	12.1	9.6	5.8					
СТ	8.1	12.1	11.6	6.0					
PT	0.017	0.006	0.004	0.007					
P T Diss	0.007	0.008	< 0.002	0.004					
Tot N	0.11	0.03	0.03	0.07					
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005					
NO3 + NO2	0.029	< 0.002	0.008	0.028					
NO3 NO2	< 0.027	. 0.000							
AI-T	< 0.002	< 0.002 < 0.06	< 0.06	0.16					
Al-1 As-T	0.63 < 0.06		< 0.06 < 0.06	0.16 < 0.06					
Ca-T	< 0.00	< 0.06 14.0	< 0.00	< 0.06 7.9					
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006					
Cr-T	0.010	< 0.000	< 0.000	0.006					
Cu-T	< 0.006	0.009	0.014	< 0.006					
Fe-T	0.457	0.023	0.052	0.097					
КТ	0.4	0.7	0.5	0.4					
Mg-T	0.9	1.3	1	0.8					
Mn-T	0.014	0.003	< 0.001	0.005					
Na-T	1.3	2.2	2.1	1.6					
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02					
Pb-T	< 0.06	< 0.06	0.08	< 0.06					
ST	0.60	1.82	1.59	0.65					
Si-T	2.93	2.92	2.73	2.58					
Zn-T	0.004	0.004	< 0.002	< 0.002					
Fecal coliforms	32	< 1	5	< 1					
Giardia	0	0	0	0					
Cryptosporidium	0	0	0	0					

Table 26. Ambient water quality data for site E226219 Nitinat River at Carmanah Mainline (May – November 1997).

LOCATION E	226219	NITINAT RIV	/ER AT CA	RMANAH N	//AINLINE				
DATE	6/17/97	7/30/97	8/13/97	8/13/97	9/2/97	9/2/97	11/3/97	11/3/97	11/3/97
Field Temp	10.5	13.5			17.0		9.5		
Field DO	11.3	9.6			10.0		10.4		
Color True	35	< 5			< 5		25	25	25
рН	7.42	7.64			7.82		7.47	7.49	7.44
Res: Tot	66	< 55			< 55		71	65	69
Res: Filt	30	50			50		30	20	30
Res: NF	36	< 5			< 5		41	45	39
Turbidity	17.00	0.23			0.46		29.70	28.70	27.10
SC	40	86			87		43	43	43
Hardness	21.3	38.7			37.9		24.1	24.9	25.1
TOC	4.9	4.9			8.5		2.7	2.7	2.7
DOC	4.9	4.9			5.2		2.7	2.7	2.7
TIC	4	9.5			8.7		3.6	3.7	3.7
DIC	3.9	9.5			8.7		3.9	3.7	3.7
Tot C	8.8	14.4			13.9		6.6	6.4	6.4
СТ	8.9	14.4			17.2		6.3	6.4	6.4
PT	0.046				0.002		0.067	0.069	0.063
P T Diss	0.005	0.003			< 0.002		0.004	0.004	0.004
Tot N	0.25	0.07			0.10		0.27	0.26	0.25
NH4 Diss	< 0.005				< 0.005		0.015	0.016	0.016
NO3 + NO2	0.058	0.052			0.066		0.095	0.096	0.097
NO3	< 0.056								
NO2	< 0.002								
AI-T	1.88				< 0.06		2.91	2.87	2.90
As-T	< 0.06	< 0.06			< 0.06		< 0.06	< 0.06	< 0.06
Ca-T	6.4	14.0			13.7		6.7	7.0	7.1
Cd-T	< 0.006	< 0.006			< 0.006		< 0.006	< 0.006	< 0.006
Cr-T	0.006				< 0.006		0.019	0.019	0.009
Cu-T	0.010				0.010		< 0.006	0.007	0.009
Fe-T	1.790				0.032		2.720	2.620	2.680
КТ	0.3	0.3			0.4		0.5	0.4	0.6
Mg-T	1.3				0.9		1.8	1.8	1.8
Mn-T	0.065				0.003		0.072	0.068	0.067
Na-T	0.8	1.4			1.6		1.2	1.3	1.2
Ni-T	< 0.02				< 0.02		< 0.02	< 0.02	< 0.02
Pb-T	< 0.06				0.07		< 0.06	< 0.06	0.07
ST	0.40				0.84		0.32	0.35	0.33
Si-T	3.83	1.97			1.92		5.9	5.79	5.95
Zn-T	0.004	< 0.002			0.002		0.008	0.006	0.005
Fecal coliforms	128		6	4	3	4		54	48
Giardia	0	1.23			0		0		
Cryptosporidium	0	0			0		0		

LOCATION E226219 NITINAT RIVER AT CARMANAH MAINLINE

Table 27. Ambient water quality data for site E226221 Nitinat River downstream ofHatchery (May – November 1997).

	E226221		/ER DOWI	NSTREAM O	F HATCHE	RY
DATE	06/18/97	08/12/97	08/12/97	08/27/97	08/27/97	11/03/97
Field Temp	10.0	19.2		14.0		9.8
Field DO	10.6	8.9		10.4		9.6
Color True	10	< 5		10		20
pН	7.47	7.68		7.53		7.44
Res: Tot	< 35	< 75		< 45		93
Res: Filt	30	70		40		30
Res: NF	< 5	< 5		< 5		63
Turbidity	1.90	0.22		1.38		32.80
SC	50	81		52		42
Hardness	20.4	33.4		22.1		25.5
тос	2.2	1.2		3.2		2.8
DOC	2.1	1		3.2		2.7
TIC	5.3	8.1		4.9		3.6
DIC	5.2	8.1		4.8		3.6
Tot C	7.3	9.1		8.0		6.3
СТ	7.5	9.3		8.1		6.4
PT	0.019	0.009		0.007		0.099
P T Diss	< 0.002	< 0.002		0.003		0.008
Tot N	0.10	0.08		0.27		0.39
NH4 Diss	< 0.005	< 0.005		< 0.005		0.028
NO3 + NO2	0.061	0.055		0.136		0.088
NO3	< 0.059					
NO2	< 0.002					
Al-T	0.15	< 0.06		< 0.06		3.25
As-T	< 0.06	< 0.06		< 0.06		< 0.06
Ca-T	7.2	11.9		7.7		6.9
Cd-T	< 0.006	< 0.006		0.006		< 0.006
Cr-T	< 0.006	< 0.006		0.032		< 0.006
Cu-T	0.008	0.009		< 0.006		< 0.006
Fe-T	0.131	0.053		0.081		3.110
КТ	0.3	1.2		2.2		0.6
Mg-T	0.6	0.9		0.7		2
Mn-T	0.004	0.005		0.006		0.089
Na-T	1.0	3.1		1.2		1.2
Ni-T	< 0.02	0.02		< 0.02		< 0.02
Pb-T	< 0.06	0.07		< 0.06		< 0.06
ST	0.45	0.76		0.54		0.31
Si-T	1.54	1.94		1.58		6.68
Zn-T	0.005	0.008		0.003		0.005
Fecal coliforms	36	2	< 1	< 1	7	
Giardia	0	0		0		5.95
Cryptosporidium	0	0		0		0

Table 28. Ambient water quality data for site E226223 Small Creek near Nitinat Gravel Quarry (May – November 1997).

LOCATION		SMALL CR						
DATE	6/17/97	7/29/97	7/29/97	7/29/97	7/29/97	8/27/97	8/27/97 10/29/	
Field Temp	11.1					14.0		9.0
Field DO	10.6					9.7		11.8
Color True	25	< 5	< 5	< 5	< 5	15		10
рН	7.20	7.62	7.65	7.64	7.57	7.37		7.12
Res: Tot	25	< 45	< 45	< 55	< 55	< 45	<	35
Res: Filt	20	40	40	50	50	40		30
Res: NF	5	< 5	< 5	< 5	< 5	< 5	<	5
Turbidity	2.20	0.10	0.11	0.09	0.13	0.49		1.50
SC	26	68	68	68	68	44		33
Hardness	9.9	27.9	28.3	27.9	27.9	15.6		10.6
TOC	5.5	1.2	1.3	1.2	1.2	4		2.8
DOC	5.5	1.2	1.2	1.2	1.1	3.9		2.6
TIC	2	6.8	6.8	6.8	6.8	3.4		2.5
DIC	2.0	6.8	6.8	6.8	6.8	3.4		2.4
Tot C	7.5	8.0	8.0	8.0	7.9			5.0
СТ	7.5	8.0	8.1	8.0	8.0			5.3
PT	0.019	0.004	0.004	0.004	0.004	0.006	(0.013
P T Diss	0.006	0.005	0.003	0.005	0.005	0.004	(0.005
Tot N	0.28	0.08	0.08	0.07	0.07	0.58		0.37
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	(0.024
NO3 + NO2	0.131	0.060	0.059	0.061	0.059	0.398	(0.230
NO3	< 0.129	0.058	< 0.057	0.059	< 0.057			
NO2	< 0.002	0.002	< 0.002	0.002	< 0.002			
AI-T	0.40	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06		0.18
As-T	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	<	0.06
Ca-T	3.3	10.0	10.0	10.0	10.0	5.6		3.6
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< (0.006
Cr-T	< 0.006		0.009	0.025	< 0.006	0.006	< (0.006
Cu-T	0.007	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< (0.006
Fe-T	0.262	0.010	0.008	0.007	0.010	0.047	(0.110
КТ	0.1	< 0.1	< 0.1	< 0.1	< 0.1	1.7		0.3
Mg-T	0.4	0.7	0.8	0.7	0.7	0.4		0.4
Mn-T	0.018		0.002	0.003	0.004	0.001	(0.004
Na-T	1.0	1.8	1.8	1.8	1.6	1.4		1.4
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<	0.02
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	<	0.06
ST	0.34	0.78	0.78	0.79	0.79	0.49		0.37
Si-T	1.48	2.26	2.3	2.25	2.26	1.66		1.3
Zn-T	0.006	< 0.002	< 0.002	0.003	< 0.002	0.003	< (0.002
Fecal coliforms	146	< 1	1	< 1	< 1	< 1	< 1	
Giardia	0	4.98				0		1.85
Cryptosporidium	0					0		0

LOCATION E226223 SMALL CREEK NEAR NITINAT GRAVEL QUARRY

Table 29. Ambient water quality data for site E226247 Rosander Creek at Rosander Main (May – November 1997).

LOCATION E	E226247 ROSA	NDER CREEK	AT ROSANDER MAIN
DATE	6/24/97 9:25	9/16/97 15:40	11/4/97 9:30
Field Temp	12.0	14.5	9.2
Field DO	10.8	9.2	9.8
Color True	15	15	15
pН	7.10	7.09	7.15
Res: Tot	< 25		< 25
Res: Filt	20		20
Res: NF	< 5	< 5	< 5
Turbidity	0.20	0.18	0.30
SC	30	31	32
Hardness	8.4	9.1	9.1
тос	3.6		
DOC	3.6		
TIC	1.7		
DIC	1.7		
Tot C	5.3		
СТ	5.3		
РТ	0.005	0.004	0.003
P T Diss	0.003	0.003	0.002
Tot N	0.08	0.09	0.12
NH4 Diss	< 0.005	< 0.005	< 0.005
NO3 + NO2	0.011	0.020	0.032
NO3	< 0.009		
NO2	< 0.002		
AI-T	0.28	0.09	0.09
As-T	< 0.06	< 0.06	< 0.06
Ca-T	2.7	3.0	2.8
Cd-T	< 0.006	< 0.006	< 0.006
Cr-T	< 0.006	< 0.006	< 0.006
Cu-T	0.008	< 0.006	< 0.006
Fe-T	0.044	0.062	0.031
КТ	< 0.1	0.1	0.4
Mg-T	0.4	0.4	0.5
Mn-T	< 0.001	< 0.001	< 0.001
Na-T	< 0.1	1.6	1.9
Ni-T	0.03	< 0.02	< 0.02
Pb-T	0.06	< 0.06	< 0.06
ST Si-T	0.42	0.66	0.45
	1.24 < 0.002	1.41	1.28
Zn-T	< 0.002	0.005	0.007
Fecal coliforms	2	26	6
Giardia	0		-
Cryptosporidium	0		

Table 30. Ambient water quality data for site E226249South Fork Marchand Creek atRosander Main (May – November 1997).

LOCATION E	E226249	SOUTH FOR	<u>rk of M</u> ar	CHAND CR	EEK AT RC	SANDER N	IAIN			
DATE	6/25/97	6/25/97	6/25/97	6/25/97	8/12/97	9/3/97	9/3/97	9/3/97	9/3/97	11/4/97
Field Temp	9.0				11.0	14.0				9.0
Field DO	11.2				10.2	9.5				11.8
Color True	7	7	7	7	< 5	7	7	7	< 5	7
pH	7.33	6.99	6.92	6.91	6.82	7.07	6.99	7.00	6.94	6.93
Res: Tot	< 35	< 35	< 25	< 25	< 25	< 25	< 25	< 15	< 25	< 25
Res: Filt	30	30	20	20	20	20	20	10	20	20
Res: NF	< 5	< 5	< 5	5	< 5	< 5	< 5	< 5	< 5	< 5
Turbidity	0.07	0.08	0.08	< 0.10	0.09	0.08	0.10	0.10	0.09	0.17
SC	29	29	29	28	30	31	30	30	30	29
Hardness	7.4	7.4	7.4	7.4	8.1	7.4	7.4	7.4	7.1	7.6
тос	2.1	1.7	1.7	1.9	0.8	1.3	1.5	1.9	1.4	1.8
DOC	1.8	1.7	1.7	1.8	0.8	1.3	1.5	1.4	1.4	1.8
TIC	2.2	2	1.9	1.9	1.9	1.9	1.9	1.9	1.9	3.8
DIC	1.9	1.9	1.9	1.9	1.6	1.8	1.8	1.8	1.8	1.3
Tot C	3.7	3.6	3.6	3.7	2.4	3.1	3.3	3.2	3.2	3.1
СТ	4.3	3.7	3.6	3.8	2.7	3.2	3.4	3.8	3.3	5.6
PT	0.005	0.014	0.005	0.006	0.019	0.002	0.003	0.003	0.002	0.002
P T Diss	0.006	0.003	0.004	0.005	0.008	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Tot N	0.08	0.09	0.09	0.10	0.28	0.17	0.18	0.18	0.19	0.15
NH4 Diss	0.020	0.008	< 0.005	< 0.005	< 0.005	0.007	< 0.005	< 0.005	0.007	< 0.005
NO3 + NO2 NO3	0.066	0.070	0.066	0.068	0.199	0.141	0.143	0.145	0.146	0.080
NO3 NO2	< 0.064 < 0.002	< 0.068 < 0.002	< 0.064 < 0.002	< 0.066 < 0.002						
AI-T		< 0.002 0.07				< 0.06	< 0.06	< 0.06		0.08
AI-T As-T	< 0.06 < 0.06	< 0.07	< 0.06 < 0.06	< 0.06 < 0.06	< 0.06 < 0.06	< 0.06 < 0.06	< 0.06 < 0.06	< 0.06 < 0.06	< 0.06 < 0.06	< 0.08
Ca-T	< 0.06	< 0.08	2.3	2.3	< 0.06	2.3	2.3	2.3	< 0.06	< 0.06 2.2
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Cr-T	< 0.000	< 0.000	< 0.000	0.007	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000	< 0.000
Cu-T	< 0.006	< 0.000	< 0.000	< 0.007	0.008	0.010	0.009	< 0.000	0.008	< 0.006
Fe-T	0.019	0.023	0.019	0.016	< 0.006	0.010	0.005	0.025	0.021	0.019
КТ	3.1	1.0	0.015	0.010	< 0.000	0.3	0.010	0.020	0.3	0.2
Mg-T	0.4	0.4	0.4	0.4	0.5	0.4	0.4	0.2	0.4	0.5
Mn-T	< 0.001	0.001	< 0.001	< 0.001	0.004	0.003	< 0.001	< 0.001	< 0.001	< 0.001
Na-T	2.2	1.9	1.9	1.7	1.2	2.0	2.2	2.0	2.0	2.0
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02	0.03	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	0.09	< 0.06	< 0.06	< 0.06	< 0.06
ST	0.45	0.46	0.46	0.45	0.39	0.46	0.48	0.47	0.45	0.34
Si-T	1.91	2.00	1.88	1.86	2.35	2.22	2.27	2.26	2.17	1.63
Zn-T	0.003	< 0.002	< 0.002	< 0.002	0.032	< 0.002	0.004	< 0.002	< 0.002	< 0.002
				/ -						
Fecal coliforms	8	9	1	14	1	2	2	1	1	< 1
Giardia	0				0.84	1.21				0
Cryptosporidium	0				0	0				0

LOCATION E226249 SOUTH FORK OF MARCHAND CREEK AT ROSANDER MAIN

Table 31. Ambient water quality data for site E226251 Doobah Creek downstream Doobah Lake at Rosander Main (May – November 1997).

LOCATION	E226251 DOOE	BAH CREEK AT		IAIN
DATE	6/25/97 12:24	8/12/97 10:57	9/3/97 14:40	11/4/97 11:15
Field Temp	17.0	22.8	22.5	11.0
Field DO	19.5	7.6	8.1	10.8
Color True	20	< 5	15	25
рН	6.73	6.79	6.86	6.67
Res: Tot	< 25	< 35	< 25	< 15
Res: Filt	20	30	20	10
Res: NF	< 5	< 5	< 5	< 5
Turbidity	0.33	0.42	0.61	0.35
SC	24	25	25	24
Hardness	5.6	5.5	5.2	6.1
TOC	3.5	3.9	3.7	3.9
DOC	3.4	3.9	3.5	3.8
TIC	1.1	1.2	1.3	1.2
DIC	1.1	1.1	1.1	1.2
Tot C	4.5	5.0	4.6	5.0
CT	4.6	5.1	5.0	5.1
PT	0.008	0.011	0.003	0.003
P T Diss	< 0.002	0.003	< 0.002	0.004
Tot N	0.09	0.18	0.11	0.16
NH4 Diss	0.007	0.007	0.005	0.012
NO3 + NO2	0.015	0.003	0.003	0.039
NO3	< 0.013			
NO2	< 0.002	< 0.06	< 0.06	0.10
AI-T As-T	< 0.06 < 0.06	< 0.06 < 0.06	< 0.06 < 0.06	0.10 < 0.06
Ca-T	< 0.00 1.6	< 0.00 1.7	< 0.00 1.6	< 0.00 1.6
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006
Cr-T	< 0.000	0.010	< 0.000	0.000
Cu-T	< 0.006	< 0.006	< 0.006	< 0.006
Fe-T	0.047	0.029	0.028	0.059
КТ	0.6	< 0.1	0.3	0.3
Mg-T	0.4	0.3	0.3	0.5
Mn-T	< 0.001	0.004	0.002	0.003
Na-T	1.7	1.0	1.7	1.8
Ni-T	< 0.02	0.03	< 0.02	< 0.02
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06
ST	0.38	0.33	0.37	0.35
Si-T	1.10	0.99	1.00	1.20
Zn-T	< 0.002	0.030	< 0.002	0.007
Fecal coliforms	1	1	1	< 1
Giardia	0	0	0	0
Cryptosporidium	0	0	0	0

Table 32. Ambient water quality data for site E226253 Sprise Lake near Nitinat (May – November 1997).

DATE	6/24/97 13:50	8/12/97 9:50	9/3/97 14:05	11/4/97 11:50
Field Temp	17.0	21.5	20.5	11.5
Field DO	9.4	6.4	7.1	10.4
Color True	25	15	10	20
рН	6.78	6.72	6.97	6.76
Res: Tot	< 25	29		< 25
Res: Filt	20	20		20
Res: NF	< 5	9	< 5	< 5
Turbidity	0.46	3.10	0.47	0.44
SC	25	26	27	27
Hardness	7.9	6.6	6.6	
тос	3.9			
DOC	3.9			
TIC	1.4			
DIC	1.4			
Tot C	5.3			
СТ	5.3			
РТ	0.007	0.026	0.005	0.006
P T Diss	0.005	0.003	< 0.002	0.005
Tot N	0.22	0.32	0.17	0.21
NH4 Diss	0.009	< 0.005	0.011	0.005
NO3 + NO2	0.007	< 0.002	< 0.002	0.095
NO3	< 0.005			
NO2	< 0.002			
AI-T	0.34	0.18	< 0.06	
As-T	< 0.06	< 0.06	< 0.06	
Ca-T	2.5	2.0	2.0	
Cd-T	< 0.006	< 0.006	< 0.006	
Cr-T	0.010	< 0.006	0.007	
Cu-T	< 0.006	< 0.006	< 0.006	
Fe-T	0.138	0.292	0.136	
КТ	< 0.1	< 0.1	0.2	
Mg-T	0.4	0.4	0.4	
Mn-T	0.014	0.023	0.010	
Na-T	< 0.1	1.0	1.8	
Ni-T	< 0.02	< 0.02	< 0.02	
Pb-T	< 0.06	< 0.06	< 0.06	
ST	0.32	0.33	0.37	
Si-T	1.22	1.35	1.19	
Zn-T	0.002	0.033	0.004	
ecal coliforms	< 1	< 1	< 1	2
Giardia	0			
yptosporidium	0			

Table 33. Ambient water quality data for site E226254 UnID'ed Creek #2 flowing into
Cheewhat Lake at Rosander Main (May – November 1997).

LOCATION	E226254 UNID'	ED CREEK #2 I	NTO CHEEWHAT LAKE
DATE	6/24/97 11:20	11/4/97 14:30	
Field Temp	10.0	8.9	
Field DO	10.5	11.8	
Color True	10	7	
рН	6.99	6.88	
Res: Tot	< 25	< 25	
Res: Filt	20	20	
Res: NF	< 5	< 5	
Turbidity	0.18	0.18	
SC	27	30	
Hardness	6.6	7.0	
тос	3		
DOC	3		
TIC	1.4		
DIC	1.3		
Tot C	4.3		
СТ	4.4		
PT	0.006	0.003	
P T Diss	0.005	0.002	
Tot N	0.07	0.10	
NH4 Diss	< 0.005	0.008	
NO3 + NO2	0.018	0.036	
NO3	< 0.016		
NO2	< 0.002		
AI-T	0.29	0.08	
As-T	< 0.06	< 0.06	
Ca-T	1.8	1.8	
Cd-T	< 0.006	< 0.006	
Cr-T	< 0.006	0.006	
Cu-T	0.009	< 0.006	
Fe-T	0.024	0.027	
КТ	0.1	0.5	
Mg-T	0.5	0.6	
Mn-T	< 0.001	0.002	
Na-T	< 0.1	2.3	
Ni-T	0.04	< 0.02	
Pb-T	< 0.06	< 0.06	
ST	0.41	0.37	
Si-T	1.81	1.63	
Zn-T	0.004	< 0.002	
Fecal coliforms	6	2	
Giardia	0		
Cryptosporidium	0		

Table 34. Ambient water quality data for site E226255 UnID'ed Creek #3 near	
Cheewhat Lake at Rosander Main (May – November 1997).	

LOCATION I	E226255	UNID'ED CF	REEK #3 NE	AR CHEEW	/HAT LK AT	ROSANDE	RML
DATE	6/25/97	6/25/97	6/25/97	6/25/97	8/12/97	9/3/97	11/4/97
Field Temp	10.0				14.8	15.5	9.2
Field DO	11.5				8.4	9.1	11.5
Color True	10	7	15	15	10	10	10
pН	7.09	7.08	7.08	7.10	7.11	7.18	7.10
Res: Tot	< 35	< 35	< 45	< 45			< 25
Res: Filt	30	30	40	40			20
Res: NF	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Turbidity	2.40	0.19	0.31	0.23	1.00	0.46	0.19
SC	39	39	38	38	46	43	38
Hardness	11.4	11.0		11.4	13.4	12.9	10.0
TOC	2.3	2.4	2.4	2.3			
DOC	2.3	2.4	2.3	2.3			
TIC	2.8	2.8	2.6	2.8			
DIC	2.8	2.7	2.6	2.8			
Tot C	5.1	5.1	4.9	5.1			
СТ	5.1	5.2	5.0	5.1			
PT	0.009	0.008	0.009	0.010	0.029	0.007	0.003
P T Diss	0.005	0.005	0.004	0.006	0.013	< 0.002	0.003
Tot N	0.06	0.05	0.05	0.05	0.19	0.10	0.08
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
NO3 + NO2	0.021	0.021	0.021	0.021	0.059	0.047	0.027
NO3	< 0.019	< 0.019	< 0.019	< 0.019			
NO2	< 0.002	< 0.002	< 0.002	< 0.002			
AI-T	< 0.06	< 0.06		0.08	0.08	0.09	0.10
As-T	< 0.06	< 0.06		< 0.06	< 0.06	< 0.06	< 0.06
Ca-T	3.1	3.1		3.1	3.7	3.5	2.7
Cd-T	< 0.006	< 0.006		< 0.006	< 0.006	< 0.006	< 0.006
Cr-T	< 0.006	< 0.006		< 0.006	< 0.006	< 0.006	< 0.006
Cu-T	0.007	< 0.006		< 0.006 0.084	< 0.006 0.238	< 0.006	< 0.006
Fe-T KT	0.079 0.8	0.069		0.084	< 0.238	0.132 0.4	0.041 0.3
Mg-T	0.8	0.6 0.8		0.7	< 0.1 1.0	0.4 1.0	0.3
Mg-T Mn-T	< 0.001	< 0.001		0.003	0.008	0.004	< 0.001
Na-T	2.2	2.1		2.1	2.0	2.6	2.4
Ni-T	< 0.02	< 0.02		0.02	0.04	< 0.02	< 0.02
Pb-T	< 0.02	< 0.02		< 0.02	< 0.06	< 0.02	< 0.02
ST	0.49	0.48		0.48	0.49	0.56	0.37
Si-T	2.73	2.71		2.75	3.29	3.17	2.24
Zn-T	< 0.002	< 0.002		< 0.002	0.026	< 0.002	< 0.002
211-1	÷ 0.002	₹ 0.00Z		₹ 0.00Z	0.020	4 0.00Z	4 0.00Z
Fecal coliforms	< 1	1	1	1	13	4	< 1
Giardia	0						
Cryptosporidium	0						

Table 35. Ambient water quality data for site E226256 Carmanah Creek near Heaven's Grove (May – November 1997).

LUCATION	E226236 CARIVIA
DATE	7/2/97 12:36
Field Temp	10.2
Field DO	11.0
Color True	5
рН	6.77
Res: Tot	< 15
Res: Filt	< 10
Res: NF	< 5
Turbidity	0.08
SC	26
Hardness	8.1
тос	1.2
DOC	1.1
TIC	2.1
DIC	2.0
Tot C	3.1
СТ	3.3
PT	0.004
P T Diss	0.002
Tot N	0.04
NH4 Diss	< 0.005
NO3 + NO2	0.026
NO3	< 0.024
NO2	< 0.002
AI-T	0.37
As-T	< 0.06
Ca-T	2.4
Cd-T	< 0.006
Cr-T	0.007
Cu-T	< 0.006
Fe-T	0.020
КТ	0.1
Mg-T	0.5
Mn-T	0.002
Na-T	1.6
Ni-T	< 0.02
Pb-T	< 0.06
ST	0.39
Si-T	1.81
Zn-T	0.003
Fecal coliforms	< 1
Giardia	0
Cryptosporidium	0

LOCATION E226256	CARMANAH CK NEAR HEAVEN'S GROVE
------------------	---------------------------------

Table 36. Ambient water quality data for site E226130 Malachan Creek at Carmanah Mainline (May – November 1997).

LUCATION	E226130 MALA	CHAN CK AT C	ARMANAH ML
DATE	7/7/97 14:25	9/16/97 17:00	11/6/97 9:30
Field Temp	11.2	13.0	9.9
Field DO	10.1	9.2	9.9
Color True	< 5	10	7
рН	7.27	7.36	7.27
Res: Tot	< 35		
Res: Filt	30		
Res: NF	< 5	< 5	< 5
Turbidity	0.27	0.20	0.21
SC	48	54	39
Hardness	16.8	20.4	12.9
тос	1.1		
DOC	1		
TIC	4.9		
DIC	4.8		
Tot C	5.8		
СТ	6.0		
PT	0.005	0.004	0.003
P T Diss	0.004	0.006	0.002
Tot N	< 0.02	0.17	0.11
NH4 Diss	< 0.005	< 0.005	0.007
NO3 + NO2	0.008	0.139	0.063
NO3	< 0.006		
NO2	< 0.002		
AI-T	< 0.06	< 0.06	< 0.06
As-T	< 0.06	< 0.06	< 0.06
Ca-T	5.9	7.2	4.5
Cd-T	< 0.006 < 0.006	< 0.006 0.006	< 0.006 < 0.006
Cr-T Cu-T	< 0.008	< 0.006	< 0.006
Fe-T	0.000	0.000	0.000
KT	0.4	0.014	0.007
Mg-T	0.4	0.6	0.2
Mg-T Mn-T	< 0.001	< 0.001	0.003
Na-T	1.8	1.8	1.6
Ni-T	< 0.02	< 0.02	< 0.02
Pb-T	< 0.02	< 0.06	< 0.02
ST	0.38	0.46	0.26
Si-T	1.59	1.80	1.47
Zn-T	< 0.002	< 0.002	< 0.002
£11 ⁻ 1	- 0.00Z	÷ 0.002	- 0.002
Fecal coliforms	1	10	< 1
Giardia	0		
Cryptosporidium	0		

LOCATION E226130 MALACHAN CK AT CARMANAH ML

Table 37. Ambient	vater quality data fo	r site E226225	Caycuse River ne	ar Nitinat
Campsite (May - No	vember 1997).			

LOCATION E226225 CAYCUSE RIVER NEAR NITINAT CAMPSITE					
DATE	7/2/97 17:38	9/16/97 16:35	11/6/97 9:15		
Field Temp	11.5	13.5	10.1		
Field DO	9.9	7.4	9.2		
Color True	5	10	5		
рН	7.17	7.36	7.29		
Res: Tot	< 25				
Res: Filt	20				
Res: NF	< 5	< 5	< 5		
Turbidity	0.13	3.34	0.31		
SC	44	53	38		
Hardness	157.1	19.6	12.9		
TOC	0.9				
DOC	0.8				
TIC	4.6				
DIC	4.5				
Tot C	5.3				
СТ	5.5	0.000	2 22 4		
PT	0.004	0.009	0.004		
P T Diss	0.004	0.005	0.003		
Tot N	0.02	0.18	0.12 0.006		
NH4 Diss	< 0.005	< 0.005 0.140	0.061		
NO3 + NO2 NO3	0.007 < 0.005	0.140	0.081		
NO3 NO2	< 0.003				
AI-T	0.002	0.24	< 0.06		
Ai-⊺ As-T	< 0.06	< 0.06	< 0.06		
Ca-T	55.5	6.7	4.5		
Cd-T	< 0.006	< 0.006	< 0.006		
Cr-T	0.037	0.015	0.010		
Cu-T	0.008	< 0.006	< 0.006		
Fe-T	0.233	0.191	0.025		
КТ	1	0.2	0.3		
Mg-T	4.5	0.7	0.4		
Mn-T	0.008	0.003	0.003		
Na-T	3.6	1.8	1.6		
Ni-T	< 0.02	0.02	< 0.02		
Pb-T	< 0.06	< 0.06	< 0.06		
ST	21.30	0.43	0.32		
Si-T	10	2.13	1.49		
Zn-T	0.006	0.003	< 0.002		
Fecal coliforms	3	28	< 1		
Giardia	0				
Cryptosporidium	0				

Table 38. Ambient water quality data for site E226227 Upper Seven Mile Creek at F1A (May – November 1997).

LOCATION E226227 UPPER SEVEN MILE CREEK AT F1A					
DATE	7/22/97 9:18	8/13/97 10:30	9/16/97 9:40	11/5/97 15:10	
Field Temp	10.2	13.0	11.0	8.5	
Field DO	10.6	10.0	11.4	10.8	
Color True	< 5	< 5	7	5	
рН	7.84	7.72	7.73	7.58	
Res: Tot	< 55				
Res: Filt	50				
Res: NF	< 5	< 5	< 5	< 5	
Turbidity	0.18	0.21	0.76	0.97	
SC	91	114	94	63	
Hardness	40.1	49.3	39.6	26.2	
тос	0.8				
DOC	0.8				
TIC	9.9				
DIC	9.9				
Tot C	10.7				
СТ	10.7	0.040	0.004	0.005	
PT	0.008	0.010	0.004	0.005	
P T Diss	0.002	< 0.002	0.004	0.004	
Tot N	0.03	0.09	0.28	0.16	
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005	
NO3 + NO2	0.035	0.066	0.256	0.096	
NO3 NO2	< 0.033 < 0.002				
AI-T	< 0.002	< 0.06	< 0.06	0.12	
Al-T As-T	< 0.06	< 0.06	< 0.06	< 0.06	
Ca-T	14.4	18.1	14.2	9.5	
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006	
Cr-T	0.010	0.008	< 0.006	< 0.006	
Cu-T	< 0.006	< 0.006	< 0.006	< 0.006	
Fe-T	0.026	0.034	0.026	0.074	
КТ	0.1	1.0	0.3	0.2	
Mg-T	1.0	1.0	1.0	0.6	
Mn-T	0.002	0.002	< 0.001	0.005	
Na-T	1.7	3.5	1.7	1.5	
Ni-T	< 0.02	0.02	< 0.02	< 0.02	
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06	
ST	0.67	1.10	0.84	0.37	
Si-T	1.96	2.1	2	1.87	
Zn-T	< 0.002	0.009	< 0.002	0.003	
Fecal coliforms	5	< 1	2	1	
Giardia	0				
Cryptosporidium	0				

Table 39. Ambient water quality data for site E226228 Lower Seven Mile Creek at Caycuse Mainline (May – November 1997).

LOCATION E226228 LOWER SEVEN MILE CREEK AT CAYCUSE ML							
DATE	7/21/97	8/13/97	8/13/97	8/13/97	8/13/97	9/15/97	11/5/97
Field Temp	11.8	14.0				14.0	9.0
Field DO	11.6	9.3				9.5	10.8
Color True	5	50	< 5	< 5	< 5	7	5
рН	7.89	7.95	7.98	8.00	7.99	8.04	7.68
Res: Tot	< 65	< 75	< 95	< 95	< 95	< 85	< 45
Res: Filt	60	70	90	90	90	80	40
Res: NF	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Turbidity	0.18	0.16	0.12	0.22	0.15	0.24	1.02
SC	104	131	132	132	132	112	71
Hardness	46.2	59.8	59.1	59.3	58.8	50.1	29.9
тос	1.2	0.8	0.7	0.7	0.7	1.7	0.5
DOC	1.1	0.8	< 0.5	< 0.5	0.6	1.1	0.5
TIC	10.9	14.3	14.3	14.3	14.3	11.3	7.1
DIC	10.9	14.3	14.3	14.3	14.3	11.3	7.1
Tot C	12.0	15.1	< 14.8	< 14.8	14.9	12.4	7.6
СТ	12.1	15.1	15.0	15.0	15.0	13.0	7.6
РТ	0.006	0.008	0.009	0.010	0.010	0.004	0.004
P T Diss	0.004	0.003	0.003	0.003	0.003	0.005	0.004
Tot N	0.03	0.08	0.08	0.08	0.08	0.23	0.15
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
NO3 + NO2	0.018	0.062	0.066	0.067	0.065	0.201	0.099
NO3	< 0.016						
NO2	< 0.002						
AI-T	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	0.07
As-T	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Ca-T	17.0	22.3	22.0	22.1	21.9	18.4	11.0
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Cr-T	0.017	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Cu-T	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Fe-T	0.032	0.025	< 0.006	0.012	0.012	0.016	0.053
КТ	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.3	0.3
Mg-T	0.9	1.0	1.0	1.0	1.0	1.0	0.6
Mn-T	0.002	0.002	< 0.001	0.002	< 0.001	< 0.001	< 0.001
Na-T	1.8	1.9	1.9	2.0	2.1	1.9	1.5
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
ST	1.10	1.80	1.78	1.74	1.73	1.47	0.54
Si-T	2.03	2.25	2.17	2.17	2.16	2.17	1.9
Zn-T	< 0.002	0.006	0.003	0.002	< 0.002	< 0.002	< 0.002
Fecal coliforms	108	< 1	< 1	< 1	< 1	2	< 1
Giardia	1.65	0	0	0	0	0 2.74	0
Cryptosporidium	0.82	0	0	0	0	0 0	0

LOCATION E226228 LOWER SEVEN MILE CREEK AT CAYCUSE ML

Table 40. Ambient water quality data for site E226231 Caycuse River at Hatton Mainline (May – November 1997).

LOCATION E226231 CAYCUSE RIVER AT HATTON ML						
DATE	7/21/97 13:53	8/11/97 16:55	9/15/97 15:20	11/24/97 15:10		
Field Temp	13.0	17.8	12.0	6.9		
Field DO	10.0	7.7	10.0	11.9		
Color True	< 5	< 5	10	7		
рН	7.79	7.91	7.85	7.41		
Res: Tot	< 45					
Res: Filt	40					
Res: NF	< 5	< 5	< 5	< 5		
Turbidity	0.26	0.12	0.44	1.64		
SC	72	89	70	44		
Hardness	31.2	38.6	28.3	17.7		
тос	0.9					
DOC	0.9					
TIC	7.4					
DIC	7.4					
Tot C	8.3					
CT	8.3					
PT	0.004	0.016	0.004	0.006		
P T Diss	0.003	0.008	0.004	0.002		
Tot N	< 0.02	0.13	0.13	0.05		
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005		
NO3 + NO2	0.011	0.030	0.083	0.071		
NO3	< 0.009					
NO2	< 0.002	4 0.00	4 0.00	0.00		
AI-T	< 0.06	< 0.06	< 0.06	0.08		
As-T	< 0.06	< 0.06	< 0.06	< 0.06		
Ca-T	11.0	13.8	10.0	6.1		
Cd-T	< 0.006 < 0.006	< 0.006 0.006	< 0.006 < 0.006	< 0.006 < 0.006		
Cr-T Cu-T	< 0.006	< 0.006	< 0.000	< 0.000		
Fe-T	0.039	0.000	0.000	0.000		
KT	0.009	< 0.1	< 0.1	0.2		
Mg-T	0.2	1.0	0.8	0.2		
Mg-T Mn-T	< 0.001	0.002	< 0.001	0.002		
Na-T	1.3	1.5	1.5	1.0		
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02		
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06		
ST	0.61	0.80	0.66	0.35		
Si-T	1.91	2.1	1.99	1.78		
Zn-T	< 0.002	0.041	< 0.002	< 0.002		
Fecal coliforms	32	3	8	4		
Giardia	0					
Cryptosporidium	0					

Table 41. Ambient water quality data for site E226232 Cedar Creek at Caycuse 9 (May – November 1997).

LOCATION E226232 CEDAR CREEK AT CAYCUSE 9						
DATE	7/3/97 15:40	8/11/97 15:55	9/15/97 14:20	11/24/97 15:40		
Field Temp	8.5	11.5	9.5	4.9		
Field DO	10.9	10.5	11.4	12.4		
Color True	5	< 5	5	< 5		
рН	7.86	8.00	8.07	7.77		
Res: Tot	< 65					
Res: Filt	60					
Res: NF	< 5	< 5	< 5	< 5		
Turbidity	0.11	0.17	0.10	0.29		
SC	93	122	107	69		
Hardness	42.5	57.8	47.4	29.9		
тос	< 0.5					
DOC	< 0.5					
TIC	11					
DIC	11.0					
Tot C	< 11.5					
СТ	< 11.5					
PT	0.003	0.015	0.005	0.003		
P T Diss	0.003	0.007	0.004	0.002		
Tot N	0.03	0.13	0.14	0.19		
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005		
NO3 + NO2	0.018	0.044	0.112	0.057		
NO3	< 0.016	••••	••••=			
NO2	< 0.002					
AI-T	0.08	< 0.06	< 0.06	< 0.06		
As-T	< 0.06	< 0.06	< 0.06	< 0.06		
Ca-T	15.7	21.5	17.5	11.0		
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006		
Cr-T	0.016	0.007	0.036	< 0.006		
Cu-T	< 0.006	< 0.006	< 0.006	< 0.006		
Fe-T	0.026	< 0.006	0.023	0.021		
КТ	< 0.1	< 0.1	< 0.1	< 0.1		
Mg-T	0.8	1.0	0.9	0.6		
Mn-T	0.003	< 0.001	< 0.001	< 0.001		
Na-T	1.4	1.0	1.4	1.0		
Ni-T	< 0.02	0.04	< 0.02	< 0.02		
Pb-T	< 0.02	< 0.06	< 0.06	< 0.06		
ST	0.34	0.39	0.35	0.26		
Si-T	1.6	1.81	1.62	1.42		
Zn-T	< 0.002	0.037	0.002	< 0.002		
Fecal coliforms	1	< 1	17	< 1		
Giardia	0					
Cryptosporidium	0					

Table 42. Ambient water quality data for site E226234 Mistery Creek at McLure Mainline (May – November 1997).

LOCATION E	226234	MISTERY C	<u>REEK AI M</u>	CLURE MA			
DATE	7/3/97	7/3/97	7/3/97	7/3/97	8/11/97	9/16/97	11/24/97
Field Temp	11.0				14.5	10.5	5.8
Field DO	10.1				10.7	10.7	12.4
Color True	5	5	5	5	< 5	10	7
рН	7.67	7.87	7.86	7.87	7.89	7.92	7.63
Res: Tot	< 55	< 55	< 65	< 65			
Res: Filt	50	50	60	60			
Res: NF	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Turbidity	0.35	0.22	0.16	0.21	0.14	0.35	1.15
SC	86	86	87	87	104	88	59
Hardness		37.3	39.2	38.9	48.0	38.7	26.0
тос	0.6	< 0.5	< 0.5	< 0.5			
DOC	0.5	< 0.5	< 0.5	< 0.5			
TIC	9.8	9.8	9.8	9.8			
DIC	9.6	9.6	9.6	9.7			
Tot C	10.1	< 10.1	< 10.1	< 10.2			
СТ	10.4	< 10.3	< 10.3	< 10.3			
PT	0.005	0.004	0.004	0.005	0.020	0.005	0.004
P T Diss	0.005	0.003	0.003	0.004	0.008	0.002	0.003
Tot N	0.34	0.03	0.03	0.03	0.13	0.11	< 0.02
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
NO3 + NO2	0.367	0.014	0.014	0.014	0.027	0.047	0.033
NO3	< 0.365	< 0.012	< 0.012	< 0.012			
NO2	< 0.002	< 0.002	< 0.002	< 0.002			
AI-T	NT	0.07	0.06	< 0.06	< 0.06	< 0.06	0.09
As-T		< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Ca-T		13.3	13.7	13.6	16.9	13.5	9.1
Cd-T		< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Cr-T		< 0.006	< 0.006	0.008	< 0.006	0.016	< 0.006
Cu-T		< 0.006	< 0.006	< 0.006	< 0.006	< 0.006	0.006
Fe-T		0.020	0.019	0.027	0.006	0.046	0.140
КТ		< 0.1	< 0.1	0.7	< 0.1	0.3	0.1
Mg-T		1	1.2	1.2	1.4	1.2	0.8
Mn-T		0.004	0.006	0.003	0.004	< 0.001	0.005
Na-T		1.3	1.4	1.3	1.0	1.4	1.0
Ni-T		< 0.02	< 0.02	< 0.02	0.03	< 0.02	< 0.02
Pb-T		< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
ST		0.38	0.41	0.41	0.37	0.40	0.32
Si-T		2.18	2.26	2.27	2.72	2.11	1.94
Zn-T		< 0.002	< 0.002	< 0.002	0.034	0.007	< 0.002
Fecal coliforms	< 1	< 1	< 1	< 1	< 1	27	8
Giardia	0						
Cryptosporidium	0						

LOCATION E226234 MISTERY CREEK AT MCLURE MAINLINE

Table 43. Ambient water quality data for site E226235 McLure River at McLure Mainline and M10 (May – November 1997).

LOCATION	E226235 MCLU	RE RIVER AT I	MCLURE MAINI	_INE & M10
DATE	7/3/97 12:25	8/11/97 14:45	9/16/97 12:15	11/24/97 14:15
Field Temp	16.0	16.5	12.0	6.8
Field DO	10.2	8.4	10.7	12.2
Color True	5	< 5	7	7
рН	7.03	7.37	7.29	7.01
Res: Tot	< 15			
Res: Filt	< 10			
Res: NF	< 5	< 5	< 5	< 5
Turbidity	1.20	0.50	1.68	2.86
SC	23	34	32	24
Hardness	7.9	14.2	11.0	7.1
TOC	1.3			
DOC	1.1			
TIC	1.9			
DIC	1.9			
Tot C	3.0			
CT	3.2	0.040	0.040	0.007
PT	0.005	0.016	0.010	0.007
P T Diss	0.003	0.007	0.004	< 0.002
Tot N NH4 Diss	0.04	0.16	0.12	0.11
NO3 + NO2	< 0.0050.011	< 0.005 0.067	< 0.005 0.071	< 0.005 0.069
NO3 + NO2 NO3	< 0.009	0.007	0.071	0.009
NO2	< 0.009			
AI-T	0.14	< 0.06	0.28	0.30
As-T	< 0.06	< 0.06	< 0.06	< 0.06
Ca-T	2.5	4.7	3.4	2.2
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006
Cr-T	< 0.006	< 0.006	0.012	0.010
Cu-T	< 0.006	< 0.006	< 0.006	< 0.006
Fe-T	0.086	0.027	0.222	0.234
КТ	< 0.1	< 0.1	0.2	0.3
Mg-T	0.4	0.6	0.6	0.4
Mn-T	0.004	0.004	0.005	0.010
Na-T	1.2	1.0	1.3	1.0
Ni-T	< 0.02	0.03	< 0.02	< 0.02
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06
ST	0.50	0.79	0.59	0.37
Si-T	1.59	1.99	2.18	1.90
Zn-T	< 0.002	0.036	< 0.002	0.003
Fecal coliforms	< 1	< 1	8	< 1
Giardia	0			
Cryptosporidium	0			

Table 44. Ambient water quality data for site E226236 McLure River at McLure Mainline Bridge (May – November 1997).

LOCATION E	E226236 MCLU	RE RIVER AT	MCLURE MAINI	
DATE	7/3/97 11:25	8/11/97 13:59	9/16/97 1:30	11/24/97 13:50
Field Temp	16.0	24.0	16.2	7.1
Field DO	8.1	5.5	8.8	12.1
Color True	5	< 5	5	5
рН	6.56	6.57	6.64	6.43
Res: Tot	< 25			
Res: Filt	20			
Res: NF	< 5	< 5	< 5	< 5
Turbidity	1.50	0.40	0.22	0.43
SC	18	20	20	21
Hardness	5.1	5.0	4.7	5.9
TOC	1.6			
DOC	1.5			
TIC	1.6			
DIC	1.4			
Tot C	2.9			
CT	3.2	0.000	0.000	0.000
PT	0.004	0.009	0.003	0.003
P T Diss	< 0.002	0.004	0.002	0.004
Tot N	0.06	0.18	0.05	< 0.02
NH4 Diss NO3 + NO2	< 0.005 < 0.002	< 0.005 0.003	< 0.005 < 0.002	< 0.005 0.030
NO3 + NO2 NO3	< 0.002	0.003	< 0.002	0.030
NO3 NO2	< 0.002			
AI-T	0.16	< 0.06	< 0.06	< 0.06
As-T	< 0.06	< 0.06	< 0.06	< 0.06
Ca-T	1.4	1.5	1.4	1.7
Cd-T	< 0.006	< 0.006	0.007	< 0.006
Cr-T	< 0.006	< 0.006	0.022	< 0.006
Cu-T	< 0.006	< 0.006	< 0.006	< 0.006
Fe-T	0.100	0.197	0.091	0.110
КТ	< 0.1	< 0.1	< 0.1	0.3
Mg-T	0.4	0.3	0.3	0.4
Mn-T	0.016	0.020	0.009	0.022
Na-T	1.2	0.4	1.0	1.1
Ni-T	< 0.02	0.03	< 0.02	< 0.02
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06
ST	0.28	0.25	0.27	0.29
Si-T	1.10	0.82	1.00	1.62
Zn-T	0.004	0.032	< 0.002	0.007
Fecal coliforms	< 1	< 1	< 1	< 1
Giardia	0			
Cryptosporidium	0			

Table 45. Ambient water quality data for site E226237 Upper Hatton Creek at H500 (May – November 1997).

LOCATION E226237 UPPER HADDON CREEK AT H500					
DATE	7/3/97 9:32	7/23/97 10:54	9/16/97 14:24	11/6/97 11:50	
Field Temp	9.5	12.0	12.5	10.0	
Field DO	10.0	8.0	7.9	9.3	
Color True	5	< 5	< 5	7	
рН	6.51	6.70	6.68	6.32	
Res: Tot	< 15	< 25	< 25	< 15	
Res: Filt	10	20	20	10	
Res: NF	< 5	< 5	< 5	< 5	
Turbidity	0.62	0.12	0.26	0.19	
SC	25	26	27	25	
Hardness	7.2	7.1	7.0	6.4	
TOC	0.9	0.6	1.3	1.6	
DOC	0.9	0.6	1	1.5	
TIC	2.8	3.1	3	2.5	
DIC	2.5	2.3	3.0	2.5	
Tot C	3.4	2.9	4.0	4.0	
СТ	3.7	3.7	4.3	4.1	
PT	0.003	0.005	0.004	0.004	
P T Diss	0.002	0.002	0.002	0.002	
Tot N	0.03	0.02	0.06	0.09	
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005	
NO3 + NO2 NO3	0.010 < 0.008	0.013 < 0.011	0.009	0.036	
NO2	< 0.008	< 0.002			
AI-T	0.19	< 0.002	< 0.06	< 0.06	
As-T	< 0.06	< 0.06	< 0.06	< 0.06	
Ca-T	2.4	2.2	2.3	1.9	
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006	
Cr-T	< 0.006	0.020	< 0.006	< 0.006	
Cu-T	< 0.006	< 0.006	< 0.006	< 0.006	
Fe-T	0.026	0.024	0.032	0.030	
КТ	< 0.1	0.3	0.2	0.3	
Mg-T	0.3	0.4	0.3	0.4	
Mn-T	0.006	0.003	< 0.001	0.002	
Na-T	1.3	1.3	1.4	1.3	
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02	
Pb-T	< 0.06	0.08	< 0.06	< 0.06	
ST	0.38	0.32	0.36	0.29	
Si-T	1.44	1.46	1.28	1.33	
Zn-T	0.003	< 0.002	< 0.002	< 0.002	
Fecal coliforms	< 1	< 1	32	2	
Giardia	0	0	0	0	
Cryptosporidium	0.90	0	0	0	

LOCATION E226237 UPPER HADDON CREEK AT H500

Table 46. Ambient water quality data for site E226238 Gordon River	upstream
Gordon River Camp (May – November 1997).	

DATE 7 Field Temp Field DO Color True pH Res: Tot Res: Filt Res: NF Turbidity SC Hardness TOC DOC TIC	7/16/97 16:03 11.0 11.2 < 5 7.62 < 45 40 < 5 0.51 60 24.6 0.5 0.5	8/18/97 15:06 15.0 9.0 < 5 7.80 < 5 0.14 74 28.7	9/8/97 12:30 10.5 10.8 < 5 7.62 < 5 0.36 74	11/24/97 12:10 6.5 11.8 < 5 7.35 < 5 3.86
Field DO Color True pH Res: Tot Res: Filt Res: NF Turbidity SC Hardness TOC DOC	11.2 < 5 7.62 < 45 40 < 5 0.51 60 24.6 0.5 0.5	9.0 < 5 7.80 < 5 0.14 74	10.8 < 5 7.62 < 5 0.36	11.8 < 5 7.35 < 5 3.86
Color True pH Res: Tot Res: Filt Res: NF Turbidity SC Hardness TOC DOC	< 5 7.62 < 45 40 < 5 0.51 60 24.6 0.5 0.5	< 5 7.80 < 5 0.14 74	< 5 7.62 < 5 0.36	< 5 7.35 < 5 3.86
pH Res: Tot Res: Filt Res: NF Turbidity SC Hardness TOC DOC	7.62 < 45 40 < 5 0.51 60 24.6 0.5 0.5	7.80 < 5 0.14 74	7.62 < 5 0.36	7.35 < 5 3.86
Res: Tot Res: Filt Res: NF Turbidity SC Hardness TOC DOC	< 45 40 < 5 0.51 60 24.6 0.5 0.5	< 5 0.14 74	< 5 0.36	< 5 3.86
Res: Filt Res: NF Turbidity SC Hardness TOC DOC	40 < 5 0.51 60 24.6 0.5 0.5	0.14 74	0.36	3.86
Res: NF Turbidity SC Hardness TOC DOC	< 5 0.51 60 24.6 0.5 0.5	0.14 74	0.36	3.86
Turbidity SC Hardness TOC DOC	0.51 60 24.6 0.5 0.5	0.14 74	0.36	3.86
SC Hardness TOC DOC	60 24.6 0.5 0.5	74		
Hardness TOC DOC	24.6 0.5 0.5		74	40
TOC DOC	0.5 0.5	20.7	21.0	46
DOC	0.5		31.2	18.5
	5.8			
DIC	5.7			
Tot C	6.2			
CT	6.3			
РТ	0.004	0.004	0.003	0.009
P T Diss	0.004	0.003	< 0.002	0.003
Tot N	0.05	0.07	0.16	0.17
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005
NO3 + NO2	0.059	0.058	0.132	0.181
NO3	< 0.057		••••=	•••••
NO2	< 0.002			
AI-T	< 0.06	< 0.06	< 0.06	0.28
As-T	< 0.06	< 0.06	< 0.06	< 0.06
Ca-T	8.7	10.0	11.0	6.4
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006
Cr-T	0.011	0.006	0.012	< 0.006
Cu-T	< 0.006	0.007	0.007	< 0.006
Fe-T	0.034	0.009	0.019	0.266
КТ	0.2	0.4	0.3	0.3
Mg-T	0.7	0.9	0.9	0.6
Mn-T	0.002	0.006	0.003	0.005
Na-T	1.4	2.1	1.6	1.0
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02
Pb-T	< 0.06	0.07	< 0.06	< 0.06
ST	0.90	1.10	1.21	0.55
Si-T	2.05	2.17	2.18	2.11
Zn-T	< 0.002	0.003	0.006	< 0.002
Fecal coliforms	6	4	1	4
Giardia	0			
Cryptosporidium	0			

Table 47. Ambient water quality data for site E226239 Upper Gordon River at Gordon River Mainline (May – November 1997).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55 6.5
Field DO 10.6 10.0 9.0 Color True < 5	6.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
pH 7.59 7.73 7.61 Res: Tot < 35	12.1
Res: Tot < 35 Res: Filt 30 Res: NF < 5 < 5 < 5 Turbidity 0.23 0.18 0.41 SC 58 70 70 Hardness 23.7 27.8 28.3 TOC 0.5 DOC < 0.5 TIC 5.7 DIC 5.6 PT 0.005 0.005 0.003 0 P T Diss 0.004 0.003 0.002 0 Tot N 0.06 0.07 0.17 NH4 Diss < 0.005 < <0.005 < 0.005	5
Res: Filt 30 Res: NF < 5 < 5 < 5 < Turbidity 0.23 0.18 0.41 SC 58 70 70 Hardness 23.7 27.8 28.3 TOC 0.5 DOC < 0.5 DIC 5.6 PT 0.005 0.003 0 P T Diss 0.004 0.003 0 NH4 Diss < 0.005	7.25
Res: NF <	
Turbidity 0.23 0.18 0.41 SC 58 70 70 Hardness 23.7 27.8 28.3 TOC 0.5 28.3 0.11 DOC < 0.5	F
SC 58 70 70 Hardness 23.7 27.8 28.3 TOC 0.5 28.3 28.3 DOC < 0.5	5
Hardness 23.7 27.8 28.3 TOC 0.5	4.53
TOC 0.5 DOC < 0.5 TIC 5.7 DIC 5.6 Tot C < 6.1 CT 6.2 PT 0.005 0.003 0 P T Diss 0.004 0.003 < 0.002 0 Tot N 0.06 0.07 0.17 0 NH4 Diss < 0.005 < 0.005 < 0.005 < 0.005	45 18.7
DOC < 0.5 TIC 5.7 DIC 5.6 Tot C < 6.1 CT 6.2 PT 0.005 0.003 0 P T Diss 0.004 0.003 < 0.002 0 Tot N 0.06 0.07 0.17 0 NH4 Diss < 0.005 < 0.005 < 0.005 < 0	10.7
TIC 5.7 DIC 5.6 Tot C < 6.1 CT 6.2 PT 0.005 0.003 0 P T Diss 0.004 0.003 < 0.002 0 Tot N 0.06 0.07 0.17 0 NH4 Diss < 0.005 < 0.005 < 0.005 < 0	
DIC 5.6 Tot C < 6.1	
Tot C < 6.1	
CT 6.2 PT 0.005 0.003 0.0 P T Diss 0.004 0.003 < 0.002	
PT 0.005 0.005 0.003 0.0 P T Diss 0.004 0.003 < 0.002 0 Tot N 0.06 0.07 0.17 0 NH4 Diss < 0.005 < 0.005 < 0.005 < 0.005	
P T Diss 0.004 0.003 < 0.002	.009
Tot N 0.06 0.07 0.17 NH4 Diss < 0.005	.009
NH4 Diss < 0.005 < 0.005 < 0.005 < 0.005	0.18
	.189
NO3 < 0.061	103
NO2 < 0.002	
	0.33
	0.06
Ca-T 8.5 9.8 10.0	6.5
Cd-T < 0.006 < 0.006 < 0.006 < 0.006	
	.009
Cu-T < 0.006 0.009 < 0.006 < 0.	
	.336
KT 0.2 0.3 0.2	0.1
Mg-T 0.6 0.8 0.8	0.6
•	.008
Na-T 1.3 2.3 1.5	1.0
	0.02
	0.06
	0.58
	2.15
	.012
Fecal coliforms 4 < 1 6	2
Giardia 0	
Cryptosporidium 0	

Table 48. Ambient water quality data for site E226240 Gordon River at TR4 (May – November 1997).

LOCATION	E226240	GORDON F	RIVER AT TR	34			
DATE	7/9/97	8/13/97	9/8/97	9/8/97	9/8/97	9/8/97	11/25/97
Field Temp	9.0	15.0	12.0				6.0
Field DO	11.2	10.0	10.1				12.2
Color True	< 5	< 5	< 5	< 5	< 5	< 5	< 5
рН	7.64	7.93	7.85	7.87	7.86	7.86	7.55
Res: Tot	< 45	< 75	< 65	< 65	< 65	< 65	< 45
Res: Filt	40	70	60	60	60	60	40
Res: NF	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Turbidity	0.57		0.20	0.14	0.26	0.14	0.98
SC	62		96	95	95	94	61
Hardness	25.2	44.1	41.9	41.4	41.8	41.2	26.4
TOC	1.3		< 0.5	< 0.5	< 0.5	< 0.5	0.8
DOC	1.3		< 0.5	< 0.5	< 0.5	< 0.5	0.6
TIC	6.5		9.6	9.5	9.5	9.4	6.3
DIC	6.5		9.5	9.5	9.4	9.4	6.2
Tot C	7.8		< 10.0	< 10.0	< 9.9	< 9.9	6.8
СТ	7.8		< 10.1	< 10.0	< 10.0	< 9.9	7.1
РТ	0.009		0.003	0.003	0.003	0.003	0.003
P T Diss	0.003		< 0.002	< 0.002	< 0.002	< 0.002	0.004
Tot N	0.09		0.10	0.09	0.09	0.09	0.13
NH4 Diss	< 0.005		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
NO3 + NO2	0.065		0.070	0.068	0.068	0.067	0.116
NO3	< 0.063						
NO2	< 0.002						
AI-T	< 0.06		< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
As-T	< 0.06		< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Ca-T	9.1		15.3	15.1	15.1	15.0	9.6
Cd-T	< 0.006		< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Cr-T	< 0.006		0.010	0.008	0.019	< 0.006	< 0.006
Cu-T	< 0.006		0.006	< 0.006	0.008	< 0.006	< 0.006
Fe-T	0.067		< 0.006	0.013	0.009	0.007	0.080
КТ	< 0.1		< 0.1	< 0.1	0.2	0.1	0.2
Mg-T	0.6		0.9	0.9	1.0	0.9	0.6
Mn-T	0.002		0.003	0.004	0.003	0.004	0.006
Na-T	0.9		1.6	1.7	1.7	1.8	1.0
Ni-T	< 0.02		< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Pb-T	< 0.06		< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
ST	0.45		0.85	0.84	0.84	0.84	0.49
Si-T	1.84		2.17	2.13	2.13	2.13	1.93
Zn-T	0.003	0.008	< 0.002	0.003	0.006	0.005	0.004
Fecal coliforms	18		3	2	2	1	2
Giardia	0		0				0
Cryptosporidium	0	0	0				0

LOCATION E226240 GORDON RIVER AT TR4

Table 49. Ambient water quality data for site E226241 Gordon River at TR10 (May – November 1997).

LOCATION E226241 GORDON RIVER AT TR10						
DATE	7/9/97 13:46	8/13/97 15:24	9/8/97 15:30	11/25/97 9:50		
Field Temp	9.0	19.2	16.0	6.0		
Field DO	11.3	8.9	9.8	12.3		
Color True	< 5	< 5	< 5	< 5		
рН	7.62	7.93	7.89	7.56		
Res: Tot	< 55	< 65	< 55	< 45		
Res: Filt	50	60	50	40		
Res: NF	< 5	< 5	< 5	< 5		
Turbidity	1.10	0.13	0.16	1.60		
SC	62	100	94	62		
Hardness	25.2	44.0	42.4	26.7		
тос	1.6	5.5	< 0.5	0.7		
DOC	1.6	< 0.5	< 0.5	0.7		
TIC	6.5	10.7	9.4	6.2		
DIC	6.5	10.6	9.4	6.1		
Tot C	8.1	< 11.1	< 9.9	6.8		
СТ	8.1	16.2	< 9.9	6.9		
РТ	0.008	0.008	0.003	0.004		
P T Diss	0.003	< 0.002	< 0.002	0.003		
Tot N	0.09	0.03	0.08	0.09		
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005		
NO3 + NO2	0.057	0.015	0.051	0.103		
NO3	< 0.055					
NO2	< 0.002					
AI-T	0.10	< 0.06	< 0.06	0.09		
As-T	< 0.06	< 0.06	< 0.06	< 0.06		
Ca-T	9.1	16.3	15.5	9.7		
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006		
Cr-T	< 0.006	0.017	0.014	< 0.006		
Cu-T	< 0.006	< 0.006	< 0.006	< 0.006		
Fe-T	0.110	0.024	0.007	0.119		
KT	0.2	1.0	< 0.1	< 0.1		
Mg-T	0.6	0.8	0.9	0.6		
Mn-T	< 0.001	0.002	< 0.001	0.005		
Na-T	1.0	3.3	1.7	1.0		
Ni-T	< 0.02	0.04	< 0.02	< 0.02		
Pb-T	< 0.06	0.06	< 0.06	< 0.06		
ST	0.45	0.76	0.88	0.48		
Si-T	1.86	2.0	2.09	1.96		
Zn-T	< 0.002	0.006	< 0.002	0.004		
Fecal coliforms	16	< 1	7	< 1		
Giardia	0	0	0	0		
Cryptosporidium	0	0	0	0		

LOCATION E226241 GORDON RIVER AT TR10

LOCATION E	226242 LOUP	CREEK AT GO	RDON RIVER	MAINLINE
DATE	7/9/97 0:00	8/13/97 14:15	9/8/97 16:20	11/25/97 11:40
Field Temp		17.0	14.0	6.5
Field DO		9.5	9.6	12.2
Color True	10	< 5	< 5	5
рН	7.36	7.74	7.64	7.39
Res: Tot	< 25			
Res: Filt	20			
Res: NF	< 5	< 5	< 5	< 5
Turbidity	0.89	0.11	0.18	0.67
SC	34	62	56	37
Hardness	12.4	24.9	23.3	14.5
тос	2.5			
DOC	2.5			
TIC	3.1			
DIC	3.1			
Tot C	5.6			
СТ	5.6			
РТ	0.011	0.010	0.003	0.003
P T Diss	< 0.002	< 0.002	< 0.002	0.003
Tot N	0.07	0.05	0.09	0.08
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005
NO3 + NO2	0.033	0.040	0.069	0.095
NO3	< 0.031			
NO2	< 0.002			
AI-T	0.10	< 0.06	< 0.06	0.09
As-T	< 0.06	< 0.06	< 0.06	< 0.06
Ca-T	4.3	8.8	8.0	5.0
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006
Cr-T	< 0.006	0.007	< 0.006	< 0.006
Cu-T	< 0.006	< 0.006	< 0.006	< 0.006
Fe-T	0.067	0.013	0.008	0.053
KT	< 0.1 0.4	0.9 0.7	0.2 0.8	0.1
Mg-T Mn-T	0.4	0.003	0.003	0.5 < 0.001
Na-T	1.0	3.1	1.4	1.0
Ni-T	< 0.02	0.03	< 0.02	< 0.02
Pb-T	< 0.02	< 0.06	< 0.02	< 0.02
ST	0.33	0.89	0.87	0.40
Si-T	1.65	2.34	2.32	1.74
Zn-T	< 0.002	0.007	0.002	0.009
∠11 ⁻ 1	× 0.002	0.007	0.002	0.009
Fecal coliforms	9	< 1	5	< 1
Giardia	0			
Cryptosporidium	0			

Table 50. Ambient water quality data for site E226242 Loup Creek at Gordon River Mainline (May – November 1997).

Table 51. Ambient water quality data for site E226244 Gordon River at Baird Creek (May – November 1997).

LOCATION E	226244 GORD	ON RIVER AT	BAIRD CREEK	
DATE	7/9/97 10:35	8/18/97 16:23	9/9/97 8:50	11/25/97 12:30
Field Temp	9.8	18.0	14.5	6.7
Field DO	11.4	9.8	10.4	12.3
Color True	10	< 5	< 5	< 5
рН	7.44	7.89	7.75	7.52
Res: Tot	< 35	< 55	< 55	< 35
Res: Filt	30	50	50	30
Res: NF	< 5	< 5	< 5	< 5
Turbidity	2.20	0.39	0.30	1.50
SC	45	82	75	51
Hardness	18.5	33.8	30.8	20.2
TOC	2.5	< 0.5	0.6	1.7
DOC	2.4	< 0.5	0.6	1.7
TIC	4.5	8.1	7.2	5.4
DIC	4.5	7.9	7.2	5.4
Tot C	6.9	< 8.4	7.8	
СТ	7.0	< 8.6	7.8	0.005
PT	0.007	0.004	0.003	0.005
P T Diss	0.003 0.10	0.003 0.05	< 0.002 0.09	0.002 0.17
Tot N NH4 Diss	< 0.005	< 0.005	< 0.005	0.009
NO3 + NO2	0.003	0.043	0.056	0.870
NO3 + NO2 NO3	< 0.044	0.045	0.050	0.070
NO3 NO2	< 0.002			
AI-T	0.23	< 0.06	< 0.06	0.15
As-T	< 0.06	< 0.06	< 0.06	< 0.06
Ca-T	6.4	11.9	11.0	7.1
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006
Cr-T	0.021	0.007	< 0.006	< 0.006
Cu-T	< 0.006	0.014	0.009	< 0.006
Fe-T	0.174	0.021	< 0.006	0.110
КТ	0.3	0.4	0.2	0.3
Mg-T	0.6	1.0	0.8	0.6
Mn-T	0.004	0.004	< 0.001	< 0.001
Na-T	1.0	2.2	1.6	1.4
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02
Pb-T	< 0.06	0.07	< 0.06	< 0.06
ST	0.38	0.89	0.78	0.45
Si-T	1.93	2.1	2.08	1.83
Zn-T	< 0.002	< 0.002	< 0.002	0.008
Fecal coliforms	30	16	3	2
Giardia	0	0	0	0
Cryptosporidium	0	0	0	0

LOCATION E226244 GORDON RIVER AT BAIRD CREEK

Table 52. Ambient water quality data for site E226246 Brown's Creek at Gordon River Mainline (May – November 1997).

LOCATION E	226246 BROV	VN'S CREEK AT GO
DATE	7/9/97 9:05	11/25/97 14:50
Field Temp	11.0	8.2
Field DO	10.8	11.2
Color True	10	7
рН	6.86	6.90
Res: Tot	< 15	< 25
Res: Filt	< 10	20
Res: NF	< 5	< 5
Turbidity	0.27	0.13
SC	20	26
Hardness	4.1	5.3
TOC	3.5	2.1
DOC	3.4	2.1
TIC	0.8	1
DIC	0.8	1.0
Tot C	4.2	3.1
СТ	4.3	3.1
РТ	0.005	< 0.002
P T Diss	0.004	0.006
Tot N	0.08	0.06
NH4 Diss	< 0.005	< 0.005
NO3 + NO2	0.028	0.042
NO3	< 0.026	
NO2	< 0.002	
AI-T	0.09	< 0.06
As-T	< 0.06	< 0.06
Ca-T	1.0	1.3
Cd-T	< 0.006	< 0.006
Cr-T	0.008	< 0.006
Cu-T Fe-T	< 0.006 0.028	< 0.006
KT	0.028	0.019 0.1
Mg-T	0.4	0.1
Mg-T Mn-T	< 0.001	< 0.001
Na-T	< 0.001 1.4	2.1
Ni-T	< 0.02	< 0.02
Pb-T	< 0.02	< 0.02
ST	0.34	0.32
Si-T	1.39	1.5
Zn-T	< 0.002	0.003
Fecal coliforms	37	< 1
Giardia	0.72	0
Cryptosporidium	0	0

LOCATION E226246 BROWN'S CREEK AT GORDON RIVER ML

Table 53. Ambient water quality data for site E226190 Bavis Creek at Red Creek Mainline (May – November 1997).

LOCATION E226190 BAVIS CREEK AT RED CREEK ML					
DATE	7/8/97 9:20	8/18/97 17:44	9/10/97 9:37	11/27/97 12:15	
Field Temp	11.0	14.5	12.5	7.1	
Field DO	11.4	9.6	10.5	11.2	
Color True	140	7	7	60	
рН	6.51	7.48	7.44	6.66	
Res: Tot	45	< 35	< 45	< 35	
Res: Filt	30	30	40	30	
Res: NF	15	< 5	< 5	< 5	
Turbidity	4.50	0.18	0.20	1.25	
SC	18	49	50	24	
Hardness	6.1	14.4	15.7	5.7	
тос	14.6	1.2	1.6	8.3	
DOC	14.4	0.9	1.6	8.1	
TIC	0.6	3.6	3.7	0.8	
DIC	0.6	3.5	3.6	0.8	
Tot C	15.0	4.4	5.2	8.9	
CT	15.2	4.8	5.3	9.1	
PT	0.029	0.008	0.007	0.007	
P T Diss	0.009	0.006	0.005	0.008	
Tot N	0.18	0.07	0.09	0.09	
NH4 Diss	< 0.005	< 0.005	< 0.005	0.008	
NO3 + NO2	0.004	0.059	0.058	0.006	
NO3 NO2	< 0.002				
AI-T	< 0.002 0.99	0.10	< 0.06	0.25	
Al-1 As-T	< 0.06	< 0.06	< 0.06	< 0.06	
Ca-T	1.6	4.3	4.8	1.8	
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006	
Cr-T	< 0.006	< 0.006	0.014	< 0.006	
Cu-T	< 0.006	< 0.006	< 0.006	< 0.006	
Fe-T	0.838	0.013	0.055	0.180	
KT	0.7	1.0	0.8	0.2	
Mg-T	0.5	0.9	0.9	0.3	
Mn-T	0.023	0.004	0.005	0.001	
Na-T	1.4	3.1	2.6	1.7	
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02	
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06	
ST	0.32	1.10	1.10	0.39	
Si-T	2.28	4.03	4.0	1.7	
Zn-T	< 0.002	< 0.002	< 0.002	< 0.002	
Fecal coliforms	90	13	18	26	
Giardia	0	0	0	1.45	
Cryptosporidium	0	0	0	1.45	

LOCATION E226190 BAVIS CREEK AT RED CREEK ML

Table 54. Ambient water quality data for site E226408 Fairy Creek at Harris Creek Mainline (May – November 1997).

LOCATION E	226408	FAIRY CRE	EK AT HAR		
DATE	7/8/97	11/25/97	11/25/97	11/25/97	11/25/97
Field Temp	9.5	6.9			
Field DO	13.8	11.8			
Color True	25	5	5	5	5
рН	7.00	7.22	7.23	7.25	7.28
Res: Tot	38	< 35	< 35	< 25	< 25
Res: Filt	30	30	30	20	20
Res: NF	8	< 5	< 5	< 5	< 5
Turbidity	3.90	0.12	0.12	0.14	0.18
SC	22	37	37	37	38
Hardness	7.8	12.7	12.7	12.2	12.7
тос	4.5	1.3	1.1	1.1	1.1
DOC	4.5	1.2	1.1	1.1	1.2
TIC	1.6	2.7	2.7	2.7	2.5
DIC	1.6	2.7	2.7	2.7	2.5
Tot C	6.1	3.9	3.8	3.8	3.7
СТ	6.1	4.0	3.8	3.8	3.6
РТ	0.017	< 0.002	< 0.002	0.006	0.009
P T Diss	0.006	0.004	0.005	0.005	0.004
Tot N	0.07	< 0.02	< 0.02	0.09	0.05
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
NO3 + NO2	0.015	0.022	0.024	0.023	0.024
NO3	< 0.013				
NO2	< 0.002				
AI-T	0.55	< 0.06	< 0.06	< 0.06	< 0.06
As-T	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Ca-T	2.3	4.1	4.1	3.9	4.1
Cd-T	< 0.006	< 0.006	0.006	< 0.006	< 0.006
Cr-T	< 0.006	0.006	0.015	< 0.006	< 0.006
Cu-T	< 0.006	< 0.006	< 0.006	< 0.006	< 0.006
Fe-T	0.356	0.017	< 0.006	< 0.006	< 0.006
КТ	0.3	0.2	< 0.1	0.2	0.2
Mg-T	0.5	0.6	0.6	0.6	0.6
Mn-T	0.010	< 0.001	< 0.001	0.002	< 0.001
Na-T	1.3	1.9	1.8	1.7	1.7
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Pb-T	0.07	< 0.06	0.06	< 0.06	0.07
ST	0.31	0.43	0.45	0.43	0.43
Si-T	2.02	1.86	1.84	1.79	1.91
Zn-T	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Fecal coliforms	41	< 1	< 1	< 1	< 1
Giardia	0	0			
Cryptosporidium	0	0			

 Table 55. Ambient water quality data for site E226410 Mosquito Creek at Red Creek
 Mainline (May – November 1997).

LOCATION E	226410 MOSO	QUITO CREEK	AT RED CREEK	ML
DATE	7/8/97 8:15	8/18/97 16:35	9/10/97 10:55	11/27/97 12:55
Field Temp	11.2	13.8	13.0	7.2
Field DO	11.2	10.0	9.8	11.2
Color True	90	7	7	45
рН	6.68	7.55	7.40	6.82
Res: Tot	< 35	< 55	< 55	< 35
Res: Filt	30	50	50	30
Res: NF	< 5	< 5	< 5	< 5
Turbidity	1.60	1.12	0.55	1.36
SC	21	59	58	28
Hardness	6.6	19.8	18.8	7.4
TOC	12.7	0.9	1.6	6.6
DOC	12.6	0.7	1.6	6.6
TIC	0.8	4.4	4.3	1.2
DIC	0.8	4.3	4.2	1.2
Tot C	13.4	5.0	5.8	7.8
CT PT	13.5 0.013	5.3	5.9	7.8
PI P T Diss	0.009	0.014 0.009	0.005 0.002	0.005 0.007
Tot N	0.009	0.009	0.002	0.16
NH4 Diss	< 0.005	< 0.005	< 0.005	0.005
NO3 + NO2	0.045	0.098	0.089	0.064
NO3 + NO2	< 0.043	0.000	0.000	0.004
NO2	< 0.002			
AI-T	0.45	0.06	< 0.06	0.22
As-T	< 0.06	< 0.06	< 0.06	< 0.06
Ca-T	2.0	6.6	6.2	2.3
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006
Cr-T	< 0.006	0.016	0.027	< 0.006
Cu-T	< 0.006	< 0.006	0.008	< 0.006
Fe-T	0.290	0.033	0.025	0.150
КТ	0.6	0.9	0.8	0.4
Mg-T	0.4	0.8	0.8	0.4
Mn-T	0.008	0.003	0.005	0.003
Na-T	1.6	2.4	2.6	1.8
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02
Pb-T	< 0.06	0.06	< 0.06	< 0.06
ST	0.46	1.65	1.51	0.58
Si-T	1.61	3.95	3.67	1.74
Zn-T	< 0.002	0.018	< 0.002	< 0.002
Fecal coliforms	< 1	9	10	14
Giardia	0	0	1.5	0
Cryptosporidium	0	0	0	0

Table 56. Ambient water quality data for site E226548 Renfrew Creek at Harris Creek Mainline (May – November 1997).

LOCATION E	E226548 RENF	REW CREEK A	T HARRIS CRE	EK ML
DATE	7/8/97 13:02	8/19/97 14:02	9/10/97 12:30	11/27/97 11:00
Field Temp	10.0	16.0	14.0	7.0
Field DO	11.3	9.3	9.8	11.4
Color True	40	< 5	< 5	25
рН	7.17	7.48	7.56	7.14
Res: Tot	43	< 45	< 45	< 35
Res: Filt	30	40	40	30
Res: NF	13	< 5	< 5	< 5
Turbidity	3.50	0.08	0.34	1.43
SC	24	62	58	26
Hardness	10.9		20.6	8.6
тос	6.5	0.5	0.7	3.6
DOC	6.4	0.5	0.7	3.6
TIC	2	4.7	4.8	1.8
DIC	2.0	4.5	4.7	1.7
Tot C	8.4	5.0	5.4	5.3
СТ	8.5	5.2	5.5	5.4
РТ	0.024	0.010	0.004	0.005
P T Diss	0.005	0.008	0.003	0.003
Tot N	0.10	0.15	0.11	0.06
NH4 Diss	< 0.005	0.026	< 0.005	< 0.005
NO3 + NO2	0.026	0.122	0.088	0.024
NO3	< 0.024			
NO2	< 0.002			
AI-T	0.91		< 0.06	0.32
As-T	< 0.06		< 0.06	< 0.06
Ca-T	3.2		6.6	2.6
Cd-T	0.007		< 0.006	< 0.006
Cr-T	< 0.006		0.009	< 0.006
Cu-T	< 0.006		< 0.006	0.008
Fe-T	0.529		0.013	0.110
KT	0.7		0.5	0.2
Mg-T	0.7		1.0	0.5
Mn-T	0.012		0.003	< 0.001
Na-T	1.3		2.3	1.3
Ni-T	< 0.02		< 0.02	< 0.02
Pb-T	< 0.06		< 0.06	< 0.06
ST	0.22		0.65	0.24
Si-T	2.74		2.49	1.55
Zn-T	0.002		< 0.002	0.004
Fecal coliforms	25	< 1	1	18
Giardia	0	0	0	0
Cryptosporidium	0	0	0	0

Table 57. Ambient water quality data for site E226549 Harris Creek at Harris Creek ML (May – November 1997).

LOCATION E226549 HARRIS CREEK AT HARRIS CREEK ML				
DATE	7/15/97 9:03	8/19/97 19:00	9/10/97 13:21	11/26/97 16:25
Field Temp	12.2	16.0	15.0	7.1
Field DO	9.8	8.9	10.8	10.4
Color True	< 5	< 5	< 5	5
рН	7.63	7.57	7.41	7.41
Res: Tot	< 55			
Res: Filt	50			
Res: NF	< 5	< 5	< 5	< 5
Turbidity	0.13	0.09	0.14	0.39
SC	78	84	79	66
Hardness	37.3	36.9	32.4	26.8
тос	0.8			
DOC	0.8			
TIC	8.6			
DIC	8.6			
Tot C	9.4			
СТ	9.4			
PT	0.003	0.007	0.003	0.004
P T Diss	0.003	0.006	< 0.002	0.004
Tot N	0.03	0.07	0.09	0.12
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005
NO3 + NO2	0.029	0.050	0.062	0.115
NO3	< 0.027			
NO2	< 0.002	< 0.06	< 0.06	< 0.06
AI-T As-T	0.39 < 0.06	< 0.06 < 0.06	< 0.06 < 0.06	< 0.06 < 0.06
AS-T Ca-T	13.3	< 0.00 12.8	< 0.00 11.0	< 0.00 9.4
Cd-T	< 0.006	< 0.006	< 0.006	< 0.006
Cr-T	0.021	0.000	0.000	< 0.000
Cu-T	< 0.006	< 0.006	< 0.006	< 0.006
Fe-T	0.050	0.030	0.042	0.046
КТ	0.1	0.2	0.3	0.2
Mg-T	1.0	1.2	1.2	0.8
Mn-T	< 0.001	< 0.001	0.005	0.003
Na-T	1.4	1.5	1.5	1.5
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06
ST	0.55	0.71	0.66	0.42
Si-T	2.42	2.63	2.65	2.01
Zn-T	< 0.002	0.006	< 0.002	0.003
Fecal coliforms	< 1	5	3	2
Giardia	0	·	·	-
Cryptosporidium	0			

Table 58. Ambient water quality data for site E226550	Upper Lens Creek at Lens
Main West (May – November 1997).	

LOCATION E	E226550 UPPE	R LENS CREEK	AT LENS MAI	N WEST
DATE	7/14/97 12:45	8/19/97 11:33	9/9/97 12:10	11/26/97 12:20
Field Temp	13.0	9.1	10.0	6.6
Field DO	9.0	7.4	7.4	9.2
Color True	10	< 5	< 5	10
рН	6.95	6.98	6.80	6.92
Res: Tot	< 45			
Res: Filt	40			
Res: NF	< 5	< 5	< 5	< 5
Turbidity	0.39	0.16	0.36	0.66
SC	44	73	75	39
Hardness	16.5	28.2		13.1
тос	1.9			
DOC	1.8			
TIC	5.3			
DIC	4.7			
Tot C	6.5			
СТ	7.2			
РТ	0.009	0.006	0.005	0.004
P T Diss	0.009	0.004	0.002	0.007
Tot N	0.14	0.20	0.19	0.24
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005
NO3 + NO2	0.096	0.215	0.165	0.165
NO3	< 0.094			
NO2	< 0.002			
AI-T	0.24	< 0.06		0.06
As-T	< 0.06	< 0.06		< 0.06
Ca-T	5.3	9.3		4.1
Cd-T	< 0.006	< 0.006		0.007
Cr-T	0.020	0.018		0.007
Cu-T	< 0.006	0.020		< 0.006
Fe-T	0.093	0.063		0.064
КТ	0.1	0.5		0.2
Mg-T	0.8	1.2		0.7
Mn-T	0.005	0.004		< 0.001
Na-T	1.9	2.7		1.7
Ni-T	< 0.02	< 0.02		< 0.02
Pb-T	< 0.06	0.07		< 0.06
ST	0.41	0.52		0.38
Si-T	2.93	3.24		2.77
Zn-T	< 0.002	0.006		0.003
Fecal coliforms	< 1	1	1	4
Giardia	0			
Cryptosporidium	0			

Table 59. Ambient water quality data for site E226551 Upper Lens Creek at Lens Main West and TR8 (May – November 1997).

LOCATION E	E226551 UPPE	R LENS CREEK	AT LENS MAI	N W & TR8
DATE	7/14/97 13:53	8/19/97 12:03	9/9/97 12:35	11/26/97 12:40
Field Temp	11.5	10.2	10.3	6.2
Field DO	10.0	9.6	9.4	11.5
Color True	5	5	< 5	5
рН	7.29	7.37	7.26	7.37
Res: Tot	< 55			
Res: Filt	50			
Res: NF	< 5	< 5	< 5	< 5
Turbidity	0.33	0.11	0.14	0.52
SC	68	76	81	59
Hardness	28.7	31.1	31.6	22.9
тос	1.2			
DOC	1			
TIC	7.8			
DIC	7.5			
Tot C	8.5			
CT	9.0			
PT	0.009	0.005	0.004	0.003
P T Diss	0.009	0.003	< 0.002	0.007
Tot N	0.12	0.13	0.13	0.17
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005
NO3 + NO2	0.084	0.132	0.112	0.126
NO3	< 0.082			
NO2	< 0.002	0.40	4 0.00	4 0.00
AI-T	0.15	0.19	< 0.06 < 0.06	< 0.06 < 0.06
As-T Ca-T	< 0.06 10.0	< 0.06 10.0	< 0.06 11.0	< 0.06 8.0
Cd-T	< 0.006	0.010	< 0.006	< 0.006
Cr-T	0.000	< 0.006	< 0.006	0.000
Cu-T	0.008	< 0.000	0.007	< 0.006
Fe-T	0.066	< 0.000	0.049	0.056
KT	0.2	0.7	0.3	< 0.1
Mg-T	0.9	1.5	1.0	0.7
Mn-T	0.004	0.003	0.004	0.003
Na-T	1.9	2.7	1.7	1.5
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02
Pb-T	< 0.06	0.15	0.06	< 0.06
ST	0.48	0.51	0.52	0.39
Si-T	2.75	3.19	3.22	2.43
Zn-T	0.008	< 0.002	0.003	0.003
Fecal coliforms	2	< 1	1	4
Giardia	0			
Cryptosporidium	0			

Table 60. Ambient water quality data for site E226552 Lens Creek at Lens Mainlineand Modeste Main (May – November 1997).

	E226552 LENS	CREEK AT LEN	NS ML & MODE	STE MAIN
DATE	7/14/97 15:00	8/19/97 12:41	9/9/97 13:20	11/26/97 14:05
Field Temp	13.5	15.0	15.0	6.5
Field DO	10.5	9.7	9.8	11.6
Color True	< 5	< 5	< 5	5
рН	7.68	7.78	7.77	7.55
Res: Tot	< 45			
Res: Filt	40			
Res: NF	< 5	< 5	< 5	< 5
Turbidity	0.25	0.32	0.14	0.69
SC	63	69	73	55
Hardness	26.0	28.3		21.4
TOC	1.1			
DOC	1.1			
TIC	6.5			
DIC	6.5			
Tot C	7.6			
CT	7.6	0.005	0.005	0.000
PT	0.004	0.005	0.005	0.003
P T Diss	0.004 0.08	0.003	< 0.002	0.007
Tot N		0.07	0.09	0.08
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005
NO3 + NO2	0.057 < 0.055	0.064	0.067	0.095
NO3 NO2	< 0.005			
AI-T	< 0.002 0.25	0.13		< 0.06
Al-T As-T	< 0.06	< 0.06		< 0.06
Ca-T	9.1	9.2		7.4
Cd-T	< 0.006	< 0.006		< 0.006
Cr-T	0.016	< 0.006		< 0.006
Cu-T	0.010	< 0.006		0.006
Fe-T	0.126	< 0.006		0.057
КТ	0.2	0.6		0.2
Mg-T	0.8	1.3		0.7
Mn-T	0.003	0.002		< 0.001
Na-T	1.7	2.2		1.5
Ni-T	< 0.02	< 0.02		< 0.02
Pb-T	< 0.06	< 0.06		< 0.06
ST	0.47	0.53		0.40
Si-T	2.78	2.88		2.25
Zn-T	< 0.002	< 0.002		0.003
Fecal coliforms	2	1	3	< 1
Giardia	0			
Cryptosporidium	0			

Table 61. Ambient water quality data for site E226553 Lens Creek at Lens Mainline
and Harris Creek Mainline (May – November 1997).

	E226553 LENS			IS CK ML
DATE	7/14/97 16:36	8/19/97 13:27	9/10/97 13:45	11/26/97 14:40
Field Temp		16.5	14.0	6.8
Field DO		9.9	10.8	11.2
Color True	< 5	< 5	< 5	5
pH	7.65	7.56	7.55	7.50
Res: Tot	< 45			
Res: Filt	40			
Res: NF	< 5	< 5	< 5	< 5
Turbidity	0.22	0.23	0.40	0.78
SC	59	64	68	52
Hardness	24.0		27.3	19.5
тос	1.2			
DOC	1			
TIC	6			
DIC	5.9			
Tot C	6.9			
СТ	7.2			
РТ	0.003	0.005	0.003	0.002
P T Diss	0.003	0.003	< 0.002	0.007
Tot N	0.07	0.11	0.08	0.09
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005
NO3 + NO2	0.051	0.105	0.059	0.085
NO3	< 0.049			
NO2	< 0.002			
AI-T	< 0.06		< 0.06	< 0.06
As-T	< 0.06		< 0.06	< 0.06
Ca-T	8.3		9.3	6.8
Cd-T	< 0.006		< 0.006	< 0.006
Cr-T	0.027		0.009	< 0.006
Cu-T	< 0.006		0.006	< 0.006
Fe-T	0.040		0.015	0.036
КТ	0.4		0.2	0.2
Mg-T	0.8		1.0	0.6
Mn-T	0.002		0.005	< 0.001
Na-T	1.7		2.0	1.5
Ni-T	< 0.02		< 0.02	< 0.02
Pb-T	< 0.06		< 0.06	< 0.06
ST	0.46		0.55	0.42
Si-T	2.47		2.81	2.17
Zn-T	< 0.002		< 0.002	0.004
Fecal coliforms	< 1	3	4	< 1
Giardia	0			
Cryptosporidium	0			

Table 62. Ambient water quality data for site E226554 San Juan River at San Juan River Bridge Campsite (May – November 1997).

LOCATION	E226554 SAN J	IUAN RIVER AT	CAMPSITE	
DATE	7/15/97 10:35	8/19/97 17:17	9/10/97 14:55	11/26/97 15:50
Field Temp	14.0	18.5	15.5	6.2
Field DO	9.6	8.8	9.8	11.4
Color True	< 5	< 5	< 5	10
рН	7.46	7.62	7.62	7.34
Res: Tot	< 45			
Res: Filt	40	_	_	_
Res: NF	< 5	< 5	< 5	< 5
Turbidity	0.17	0.08	0.11	0.83
SC	50	80	83	41
Hardness	19.3	31.6	31.6	14.7
TOC DOC	1.6 1.4			
TIC	4.8			
DIC	4.8			
Tot C	6.1			
CT	6.4			
PT	0.007	0.010	0.004	0.004
P T Diss	0.007	0.009	0.002	0.007
Tot N	0.04	0.08	0.08	0.05
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005
NO3 + NO2	0.019	0.044	0.042	0.045
NO3	< 0.017			
NO2	< 0.002			
AI-T	0.09	0.33	< 0.06	0.10
As-T	< 0.06	< 0.06	< 0.06	< 0.06
Ca-T	6.4	11.0	11.0	4.9
Cd-T	< 0.006	< 0.006	< 0.006	0.008
Cr-T	< 0.006	< 0.006	< 0.006	< 0.006
Cu-T	< 0.006 0.050	< 0.006	< 0.006	< 0.006
Fe-T KT	0.050	0.010 0.7	< 0.006	0.067 0.3
Mg-T	0.8	1.0	1.0	0.6
Mg-T Mn-T	0.001	0.002	0.003	< 0.001
Na-T	1.8	2.2	2.1	1.7
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06
ST	0.83	1.51	1.46	0.62
Si-T	2.93	3.17	2.91	2.41
Zn-T	< 0.002	0.005	< 0.002	0.004
Fecal coliforms	< 1	2	1	< 1
Giardia	0			
Cryptosporidium	0			

LOCATION E226554 SAN JUAN RIVER AT CAMPSITE

Table 63. Ambient water quality data for site E226556 Garbage Creek at Shawnigan Mainline (May – November 1997).

LOCATION I	E226556 GARB	AGE CREEK A	T SHAWNIGAN	MAIN LINE
DATE	7/15/97 12:22	8/19/97 16:35	9/10/97 14:23	11/26/97 15:20
Field Temp	10.9	13.5	14.0	5.8
Field DO	10.7	10.5	9.9	11.8
Color True	< 5	7	< 5	7
pН	7.23	7.45	7.51	7.08
Res: Tot	< 25			
Res: Filt	20			
Res: NF	< 5	< 5	< 5	< 5
Turbidity	0.14	0.16	0.22	0.53
SC	30	47	51	27
Hardness	8.6	14.1	16.2	6.2
тос	1.8			
DOC	1.6			
TIC	2.3			
DIC	2.3			
Tot C	3.9			
СТ	4.1			
РТ	0.009	0.018	0.008	0.005
P T Diss	0.009	0.016	0.005	0.008
Tot N	0.06	0.10	0.09	0.10
NH4 Diss	< 0.005	< 0.005	< 0.005	0.012
NO3 + NO2	0.038	0.056	0.046	0.069
NO3	< 0.036			
NO2	< 0.002			
AI-T	< 0.06	< 0.06	< 0.06	< 0.06
As-T	< 0.06	< 0.06	< 0.06	< 0.06
Ca-T	2.6	4.5	5.0	2.0
Cd-T	< 0.006	< 0.006	< 0.006	0.010
Cr-T	0.015	< 0.006	0.030	< 0.006
Cu-T	< 0.006	< 0.006	0.009	< 0.006
Fe-T	0.037	0.068	0.068	0.034
KT	0.7	0.7	0.9	0.5
Mg-T	0.5	0.7	0.9	0.3
Mn-T	0.003	0.002	0.003	< 0.001
Na-T	2.0	2.4	2.7	2.0
Ni-T Pb-T	< 0.02 < 0.06	< 0.02 < 0.06	< 0.02 < 0.06	< 0.02 < 0.06
ST	0.67	0.81	0.84	< 0.00 0.55
Si-T	3.37	4.77	4.69	2.61
Zn-T	< 0.002	0.009	0.012	0.003
211-1	< 0.002	0.009	0.012	0.005
Fecal coliforms	< 1	< 1	1	< 1
Giardia	0			
Cryptosporidium	0			

Table 64. Ambient water quality data for site E226560 San Juan River upstream Williams Creek (May – November 1997).

LOCATION	E226560	SAN JUAN	RIVER U/S	WILLIAMS (CREEK		
DATE	7/16/97	7/16/97	7/16/97	7/16/97	8/19/97	9/9/97	11/26/97
Field Temp	12.0)			13.1	12.0	5.8
Field DO	10.8	1			10.4	10.4	12.5
Color True	< 5	s < 5	< 5	< 5	< 5	< 5	7
рН	7.71	7.72	7.73	7.75	7.90	7.70	7.46
Res: Tot	< 45	< 55	< 45	< 55			
Res: Filt	40		40	50			
Res: NF	< 5		< 5	< 5	< 5	< 5	< 5
Turbidity	0.14		0.15	0.15	0.09	0.16	0.65
SC	69		69	69	91	92	52
Hardness	29.1		29.1	28.3		39.7	19.4
тос	1.4		1.4	1.4			
DOC	1.2		1.4	1.4			
TIC	7.3		7.2	7.2			
DIC	7.2		7.1	7.1			
Tot C	8.4		8.5	8.5			
СТ	8.7		8.6	8.6	0.000	0.000	0.000
PT	0.007		0.008	0.007	0.008	0.006	0.006
P T Diss	0.007 < 0.02		0.006 0.02	0.008	0.006	0.004 0.06	0.008 0.03
Tot N	< 0.02		0.02 < 0.005	< 0.02 < 0.005	0.03 < 0.005	< 0.005	0.03 < 0.005
NH4 Diss NO3 + NO2	0.005		< 0.005 0.014	< 0.005 0.007	< 0.005 0.029	< 0.005 0.028	< 0.005 0.037
NO3 + NO2 NO3	< 0.007		< 0.014	< 0.007	0.029	0.020	0.037
NO2	< 0.003		< 0.012	< 0.003			
AI-T	< 0.06		< 0.002	< 0.002		< 0.06	0.07
As-T	< 0.06		< 0.06	< 0.06		< 0.06	< 0.06
Ca-T	10.0		10.0	9.7		13.6	6.6
Cd-T	< 0.006		< 0.006	< 0.006		< 0.006	0.006
Cr-T	0.014		0.022	< 0.006		0.025	< 0.006
Cu-T	< 0.006		< 0.006	< 0.006		< 0.006	< 0.006
Fe-T	0.012		0.014	0.008		< 0.006	0.046
КТ	0.3		0.2	0.3		0.4	0.2
Mg-T	1.0	1.0	1.0	1.0		1.4	0.7
Mn-T	< 0.001	< 0.001	< 0.001	0.003		< 0.001	< 0.001
Na-T	1.9	1.9	1.9	1.8		2.1	1.7
Ni-T	< 0.02	< 0.02	< 0.02	< 0.02		< 0.02	< 0.02
Pb-T	< 0.06	< 0.06	< 0.06	< 0.06		< 0.06	< 0.06
ST	0.86		0.87	0.83		1.17	0.65
Si-T	2.76		2.76	2.68		2.86	2.43
Zn-T	< 0.002	< 0.002	< 0.002	< 0.002		0.006	< 0.002
Fecal coliforms	5		6	7	1	3	< 1
Giardia	0						
Cryptosporidium	C						

LOCATION E226560 SAN JUAN RIVER U/S WILLIAMS CREEK

Table 65. Ambient water quality data for site E226561 Fleet River at Fleet River Mainline (May – November 1997).

LOCATION I	E226561 FLEE1	FRIVER AT FLI	EET ML	
DATE	7/16/97 14:05	8/19/97 10:34	9/9/97 11:35	11/26/97 11:30
Field Temp	13.8	13.5	12.5	5.3
Field DO	10.2	10.2	9.9	12.0
Color True	< 5	5	< 5	10
рН	7.36	7.50	7.44	7.00
Res: Tot	< 35	< 35	< 35	< 35
Res: Filt	30	30	30	30
Res: NF	< 5	< 5	< 5	< 5
Turbidity	0.19	0.11	0.09	0.28
SC	35	47	47	28
Hardness	12.6		17.1	9.1
TOC	2.1	0.9		3.1
DOC	2.1	0.6		3.1
TIC	3.3	3.8		2
DIC	3.1	3.6		1.9
Tot C	5.2	4.2		5.0
СТ	5.4	4.7		5.1
PT	0.005	0.004	0.003	< 0.002
P T Diss	0.005	0.003	< 0.002	0.006
Tot N	0.03	0.09	0.11	< 0.02
NH4 Diss	< 0.005	< 0.005	< 0.005	< 0.005
NO3 + NO2	0.004	0.084	0.059	0.007
NO3	< 0.002			
NO2	< 0.002			0.40
AI-T	< 0.06		< 0.06	0.12
As-T	< 0.06		< 0.06	< 0.06
Ca-T	3.9		5.2	2.8
Cd-T	< 0.006		< 0.006	0.006
Cr-T	0.007		0.014	< 0.006
Cu-T Fe-T	< 0.006 0.025		0.012 0.032	< 0.006 0.044
KT	0.025		0.032	< 0.1
Mg-T	0.2		1.0	0.5
Mg-T Mn-T	< 0.001		< 0.001	< 0.001
Na-T	1.5		1.4	1.4
Ni-T	< 0.02		< 0.02	< 0.02
Pb-T	< 0.06		< 0.06	< 0.06
ST	0.38		0.53	0.32
Si-T	2.55		2.78	2.12
Zn-T	< 0.002		0.004	< 0.002
	0.002		0.001	0.002
Fecal coliforms	28	2	3	< 1
Giardia	0	0		0
Cryptosporidium	0	0		0

LOCATION E226561 FLEET RIVER AT FLEET ML

2 (<								F		-									NON		
EMS ID	DATE	Temp	DO		Hq	_	Filt						TIC	DIC	Tot C	CT	PT	P T Diss	Tot N	NH4 Diss	102 + 100	EON-N	N-N02
	MIO oritorio	deg C	° mg/L	Rel U	Rel U				NTU uS/cm	cm mg/L	- mg/L		- mg/L	mg/L	mg/L	mg/L	mg/L	n nor	n go	n one	n Jnn	mg/L	mg/L
			•		0.0-0.0				+		1						0.010	onn:n	N.2U	COD:D	0.2.U	2	07070
₹	RIVER MONITORING	NG GROU	đ																				
E226191	05/28/97 10:20	10.6	8.7 <	ιΩι	7.33 <	4 5	40	ιΩι	0.16	42 13	13.2 0.	0				4.2	0.005	0.004	0.22 <	0.005	0.036 <	0.034 <	0.002
E226191	U//29/9/ 10:00		10.0	J. L		4		.n u	0.24		Ď		20		20	 	0.004	2000 O			3	3	200.0
E226191	10/29/97 9:45			n ta	76-7		/ /	0 40	1 10		0 0						0000	0000	v Viciu	0.005	0000		
E226192	05/27/97 13:45		10.9		7.28 <	8		-un	0.12		Ö	V 10		m		4	0.007	0.005			0.097 <	> 0.095 <	0.002
E226192	07/29/97 9:30					45	40 <	υ	0.08		Ö	V V	0.5 4.1	3.9	4.4	4.6	0.007	0.006		0	0.107	0.105	0.002
E226192	08/20/97 11:33		11.8		7.37		v	S	0.08		2						0.010	0.009			0.123		
E226192	10/29/97 9:30			5	6.98			S	2.04								0.00	0.003			0.127		
E226193	05/28/97 13:25		8.2		7.13 <	ж		ŋ	0.06		v	μΩ				m	0.005	0.004		0	> 680.0	0.087 <	0.002
E226193	07/29/97 10:37					35		S	0.64		O V	V Q		3.0	3.5	m	0.006	0.006			0.093 <	60	0.002
E226193	08/20/97 12:25		0.0		7.11 <	88	× 88	ω ę	80.0		• •	V V	0.5	V () () () () () () () () () () () () ()	× 8		0.007	0.008	0.19 <	0.005	0.107		
E226193	02:01.76/67/01			£ 6		3		2	50 20 20 20 20 20 20 20 20 20 20 20 20 20		4	NC			0 4 0		0.0013	0.004	V 74 V		0.115 0.002	0 Č	0000
E226194	00/04/3/ 3:24 07/09/97 13:30		4 (0		> 00.00	8 K		0 40	92.0		0 -	0 00			3.7		0000		× 200		> 12000	< 2000	700.0
E226194	08/20/97 15:09					3		ոտ	270 1939		-	_			÷		0.00	0.005	0.16 <	0.005	0.015	5	700.0
E226194	10/28/97 15:10		11.8		6.66		~	-un	0.33		9						0.006	0.003	0.14 <		0.028		
E226196	06/04/97 11:34			25	6.59 <	99	× 8	S	0.42		9 0	2	.2 0.7	0.7	5.9	5.9	0.006	0.004	> 60:0		0.026 <	0.024 <	0.002
E226196				15	6.54			S	0.46								0.005	0.002	0.22 <	0.005	0.103		
E226197	06/03/97 13:20			9		25		S	0.20		4	-			4.6	5.4	0.003	0.004	0.10 <		0.044 <	042	0.002
E226197	06/03/97 13:45			₽	9.9	52		Ś	0.18		m	س			4.6	4.8	0.004	0.005	× 80.0	0.005	0.042 <	0:040 <	0.002
EZ26197	06/03/9/ 14:00			<u>5</u>		£ 5			0.21			م ر			4.7	4 .	0.004	0.004	× 100		0.042 <	140	0.002
E226197	05/03/9/ 14:15 07/09/97 11:46			⊇ v	0.0 0.0	Ω¥	2 2	n u	0.13 80.0		יי ר	0 0	1.5 1.2 1.5	- 4	4 0 0	4 V	500.0	0.004	0.15 <		0.132 <	0.130 <	700.0
E226197	08/20/97 13:44			0 40		34		0 40	0.55		- 0	0 00			4.2	4.7	0.007	0.008	0.28 <	0.005	0.213	3	1
E226197	10/29/97 10:45			2		35		Ś	0.52		Ś	1			5.4	5.7	0.006	0.005	0.18 <	0	0.066		
E226198		9.4	10.0 <		6.56 <	25		ω	0.06		- '				÷.	3.2	0.003	0.004	> 60:0	0.005	> 990.0	0.064 <	0.002
E226198	07/29/97 12:39		9.2			25		I	0.11						2.6	9.2 9.2	0.005	0.000	0.11		99	10	0.002
E226198	UB/2U/9/ 14:3U 10:00:07 14:30		0.5 0.0		0 0 0 0 0 0 0				/n:n		4						900 0	qnn:n	2.5		U.1U3		
CZ20130	Klanawa mean			10	70:0	62		0 47	0.45						44	4.6	0.006	0.005	7		ZCI '0	0.060	0.002
	Klanawa SD			-	0.30	, o	5 0	• ••	0.72		4.4 1.9		1.8 1.2	; ::	1.0	0.9	0.002	0.002	0.06	0.000	0.047	0.037	0.000
								<u> </u>															
LITTLE NIT	LITTLE NITINAT RIVER MON	MONITORING GROUP	GROUP													-							
EZ26199	U6/U4/9/ 13:11	14.9	V V 4.0 0	ภม	/.U6 <	£ 6	× ≅ 8	Q P	0.34	23 8 27 2	- C	-i -	1.7 2.6 2.6		4 4	4 4	50000	2000 0	0.19	9000	× 89.0	∨ 920.0	700.0
E226199	08/26/97 9:05	18.5	/ V 0.0 0.0		7.27 <	32		- 40	0.65	Ĺ	- 00		n m	n m	4 4	- 00	_	0.002	0.15 <		0.014	0700	70010
E226199	08/26/97 9:15		V			35	× R	S	0.46			_	m	m	4.6	4.6		0.002			0.008		
E226199	08/26/97 9:20		V		7.34 <	35		ъ	0.36				m	m	4.6	4.6	800	0.002		-	0.004		
E226199	08/26/97 9:30				7.34 <	99		S	0.40				m	m	4.6	4.6	8	0.002		0	0.005		
E226199	10/29/97 16:15	0.6	11.2 <		6.97 <	кя ч		u i	0.65				m'	m .	4.5	4.7	0.006	0.002			0.140		
E2262U1	05/05/07 12:10				6.8/ ×	8 6			19 19 19		_	_	4	4	0 0 0	\	0.004	9nnn			> 0.070 o	> 1004 <	700.0
E226201	08/26/21 12:21 08/27/10		> 0 > 0 > 0 > 0 > 0		< /1.7	ß		n 4	nc:-					वं	0	0	0000		0.14 ×			5	700.0
E226201	10/28/97 11:05				6.94			0 40	0.61		2 40						0.06	0.005		0.06	0.085		
E226202	06/04/97 14:45				7.23 <	35		S	0.15				m	m	5.3	5.3	0.016	0.002			0.019 <	0.017 <	0.002
E226202	07/28/97 14:19		8.8	7	7.32 <	45	40 <	υ	0.32		3 2.1		1.9 4.2	4.0	5.9	6.3	0.004 <	0.002			0.031	0.029	0.002
E226202	08/26/97 13:25		9.2	~	7.32 <	45		Ś	0.41				m	m	5.5	6.4	0.005	0.002			0.037		
E226202	10/28/97 12:05		8.7	Q	> 10.7	45		S	0.56				m	m	5.7	5.7	0.005	0.002		0			
E226203	06/05/97 11:15		12.2		7.12 <	ж,		un i	0.05		_				4.5	4.5	0.002	0.004			V 980.0	0.034 <	0.002
E226203	0//22/9/ 13:18 09/06/07 14:10	7 F	2.01 2.11		N.3U	ą	4 ∖	n u	1.50		10.4 11.4			nj	4./	4 D	0.003	200.0	> \/\n\n	900 0	0.10/5 <		700.0
E226203	10/20/3/ 14.10 10/77/97 16:25		10.4	2 40	7 23			5 40	900		t un						0003	t 0000			0.130		
E226204	06/05/97 10:17		10.8	ι LΩ	7.19 <	Я		u.	0.18				m		5.2	5.2	0.002	0.003				940	0.002
E226204	07/22/97 14:15		9.5 <		7.32 <	25		ъ	0.12				4	4	5.6	5.7	0.005	0.004			0.077 <	0.075 <	0.002
E226204	08/26/97 11:39			8	7.26 <	\$	4	s i	0.53		_	3.7	3.5 3.2	3.2	6.7	6.9	0.006	0.003	0.32 <		0.157		
E2262U4	10/27/97 17:10		11.5 <	.n	7.24 <	æ		Ģ	0.26		_	_	m	m	4.3	5.4	0.002	0.002	5	0.005	0.104	_	

Appendix

	L mg/L		0.045 < 0.002	v		0	200.0 × 640.	0							0.053 0.002	_		0 V	.059 0.002	0	057 < 0.002	v		0	700.0 × 950	5 /		0	015 0.002						001 < 0.002	v		0	052 < 0.002					048 < 0.002	v		C \	200.0 > /20.	5		.056 < 0.002
EON-N	mg/L		v	v		, ,		0										0 V	0	0	v	v	-	0) /		0 V	0						V	v								v	v		۰ ۱	⊃ ∨			~
N03 + N02		0		0.071						0.152				0.114	0.083	0.050		0.037	0.061	0:060	0.059	0.060	0.109	U.1/2	85U.U	0.054	0.091	0.022	0.017	0.237	0	0.019	0.015	0.016	0.00	0.007	0.019	720:0	0.054		0 135	5	0.092	0:050	0.021	0.032	0.104	670'0	800.0	0.028	0.058
NH4 Diss	mg/L	0.005	0.005	0.005	900 0	0,000	6000	200		0.005				0.005	0.005	0.000		0.005	0.005	0.005	0.005	0.005	0.005	U.U1U	900 0	0.005	0.013	0.005	0.005	0.007	1000	900'0	/00.0	000	0.005	0.005	0.005	9000	0.005		0.008	20.0	0.013	0.005	0.005	0.005	990.0	900.0	0.005	0.005	0.005
Tot N			v	> 200	v	v	v v	'		0.26 <				0.19 <	0.15	0.08			0.08 <							/ V	0.18		0.04 <	0.45		v 91 j					V V 90:0				70.0	75	0.31	0.16	0.04 <			0.11 ×			
ŝ	mg/L		e	0.002	0.004		*n0.0	4		0.003				0.003	0.003	0.001		0.004	0.002	0.002	0.003	0.002	0.002	9000	/0010		0.005	0.004	0.002	0.007		700.0	7mmm	0.002	0.003	0.005	0.002	70070	0.003		500.0	2000	0.005	0.007	0.004	0.002	0.012	/00.0	0.002	0.004	0.005
	mg/L			0.005	0.0U/	4 0.0	710.0	200		0.007				0.006	0.006	0.003		0.005	0.003	0.004 <	0.004	0.004	0.002 <	0.000	0.005		8	0.006	> 200.0	0.013		500.0	2000 V	88	0.005	0.003	0.002	0.034	0.004		2000	50.5	0.102	0.026	0.006	0.005	0.019	0.006	0.004 <	0.007	0.046
C-T	mg/L		4.9	5.2	0 F	- U	0.0	ŗ		6.8				5.1	5.6	0.8		7.8	10.6	10.4	10.8	10.7	12.1 <	Ω I I	0.7	116	6.3	8.9	10.7	12.4	L	0.4	4 (*	7.4	6.2	9.7	10.1	4 00	10.1		40	2	6.9	7.7		8.7	54	2 C	11.6	6.0	о 0
Tot C	mg/L		4.9	5.1	9./ 7.1	- 1	0.0	ŗ		6.8				5.1	5.4	0.8		7.7	10.6	10.4	10.8	10.7	11.0	Ω ØF	0.7	116	5.9	8.8	10.4	12.0		4	4,4	0.4 1	6.2	7.3	7.3	n 00	10.1		4.0	ŗ	6.5	7.7	8.1	8.7	0.0 0.7	1 c 1 c	9.6	5.8	α
DIC	mg/L		2	4.0	7 0	א רי י	4 10	2		2.8					3.6			ف	ை	ை	Ę	ெ	ത്	mi u	ہ م	n o	4.6	G	ெ			-		-	4.	члi	5.2	<u>ч</u> 4			9	j	m	m	ı ف	، ف	4 4	0.0 V D	ni coi	ú	C
	-			40						0 2.8					3.7			ى	9.9								19										0 0 0				5							00			
DOC	mg/L	2.0	2.1	÷.	4 -					4.0				<u></u>	1.8	0.9		-	0.7	90	0.0	ö	<u> </u>	- in	4 U		1.3	2.0	4.1	8	(70	57	1.0	4.	2.1	- 4	0.7		C	i	2.7	4.0	5	2	 	1.5 7 C	1 =	0.7	-
TOC	mg/L	2.0	2.1	:	4.1	<u>0</u>	 	-		4.0				1.3	1.9	0.9		1.0	0.7	0.5	0.8	0.0	2.5	4	4 0	0.0	1.0	2:0	1.4	8.6	0	20 0	D.2	27	1.3	80. CT	4.0	4.3	0.7		a c	i i	Э.1	4.0	2.1	2.5	1. 1. c	1.5	2.9	0.7	0 4
Hard	mg/L	80-100	11.2	17.5	0.51	n (13.0			13.6				16.5	15.1	5		27.1	40.8	41.1	42.6	41.3	8.8	212	0.07	45 L	23.3	27.9	37.6	19.8	0	τ, ο σ	ກ ຕ ວັວ	0.0	23.1	27.9	25.2	21.8	38.1		α Uc)))	27.4	18.2	26.3	26.6	18.5 2 4	21.7	2 2 2 2 2 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3	23.0	c c
sc		6	32	\$	£, Ş	₹	÷ ۲	3		8				44	40	~		62	8	88	8	87	8	ۍ ۲	8 5	3 9	3 6	64	8	46	ţ	72	77	3 8	8	71	67	4	88		8	3	43	41	69	2	55	36	; 88	22	QV
Turb		1.00	0.24	0.14	0.92	0.0	0.14	t i		0.94				2.29	0.93	1.55		0.20	0.12	0.12	0.11	0.12	60.0	18.30	5.0	0.09	2.87	0.36	0.23	2.87	ò	U.24	88	0.26	0.12	0.09	0.07	11.00	0.22		1 11	Ē	36.90	6.70	0.16	0.33	2.44	4.00 75	0.28	1.42	17 00
NF Kes	mg/L	1	чО	ω	<u>م</u> 4	n r	- v)		чо				S	· 0	•		Ś	ΥΩ	ų	v	υ	ω (R 1	n u	n w	n n	S	Ś	чО	L	ۍ <i>د</i>	04	0	S	ŋ	un u	n tā	ц.		ч	2	49	0	ω	u u	÷ 0	۲ ا	ο Ω	S	g
Filt Filt	mg/L	100	× 8	× 2;	₽ 6	788	2 7 7 7 7	3		> 08				× 8	32												/ × 3 4										4 4 9 9		40 <		7		R				× 8	4 5	/ v 3 5		
Tot .	mg/L		Ж	Ю.	8 %	88				35					37	۵		45	55				33				45										45	44	45		44		79	R				5-22			g
Hq	Sel .	.5-8.5		7.49 <			> 63 Z			7.36 <				7.52 <	7.26	0.78			7.83 <		7.84 <		7.84 <				7.71 <				8				7.49 <		7.59 <	7.47	7.72 <		7 65 /		7.53	7.34	7.59 <		7.29 <	7.80 <	7.87 <		CF 2
	∍	15 6.	S	υį	<u>0</u> r	~ ^	- 4)		15				Ś	- '	4		S	υ	υ	S	ъ	S I	2	n u	-	2	2	S	45	\$	29	₽₽	20	S	ŋ	40 1	20	-u		Ę	2	25	25	ω	LO I	υų	ρu	, w	Ś	ų
	mg/L	ω	11.3	10.2	7.0L	D 1		,		10.7				8.4	10.1	1.1		12.0	10.2 <		v	V	9.4 <	10.6	7.7	11 0 <	10.4	9.9	9.0	9.8	0	9.U	t		7.0	9.6	9.7 <	11.2	10.0 <		a o			10.8	10.4 <	13.5 <	10.2	10.5 A R	9.7 <	10.9	5
Temp		_	9.4	13.0	<u>17</u> .0	2) C	2	-		13.0				8.5	12.1	3.0	GROUP	8.8	14.5				14.5		- 4 - 4	14.0	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11.3	15.7	12.2	L	0 0	+	-	33.3	15.2	15.3	11.0	13.5		с С	2	9.7	10.5	11.5	15.0	9.5 0.5	13.0	12.3	9.2	407
DATE T		WQ criteria	06/05/97 8:52	07/23/97 8:48	UB/26/9/ 1U:54	01/20/3/ 13:10	02.71 76/01/00 07/26/27 16:10	01/2/201 10.10 08/13/97 8:55	08/13/97 9:00	08/27/97 9:10	08/27/97 9:10	08/27/97 9:20	08/27/97 9:20	10/28/97 14:10	Little Nitinat mean	Little Nitinat SD	RIVER MONITORING G	06/23/97 14:43	07/30/97 15:30	07/30/97 15:40	07/30/97 15:50	07/30/97 16:00	09/02/97 13:25	11/U3/9/ 12:24 00:40:07:44:05	97:11 /6/91/90	04/17/97 15:03	11/03/97 14:05	06/16/97 13:47	07/28/97 15:25	08/26/97 17:30	08/26/97 17:35	11/05/9/ 9/10	11/05/97 9:00	11/05/97 9:20	06/16/97 15:47	07/30/97 13:45	09/03/97 8:45	06/17/97 13:39	07/22/97 11:04	08/13/97 9:50	08/13/97 9:55 08/27/07 16:06	08/27/97 15:10	11/03/97 14:55	06/17/97 15:35	07/30/97 10:30	09/02/97 16:05	11/05/97 12:10 06:47:497 12:15	U6/17/9/ 13:15 07/90/97 11:24	03/03/97 9:50	11/05/97 14:15	00.417.407.10-24
EMS ID			E226206	E226206	EZZ6Z06		E226207	E226207	E226207	E226207	E226207	E226207	E226207	E226207			NITINAT RIV	E226208	E226208	E226208	E226208	E226208	E226208	EZZ6ZU8	E226211	E226211	E226211	E226214	E226214	E226214	E226214	EZZbZ14	E226214	E226214	E226215	E226215	E226215	E226213	E226216	E226216	E226216	E226216	E226216	E226217	E226217	E226217	E226217	EZZ6218 E226218	E226218	E226218	F226240

	DATE DATE	F	2	True		Res:	Res:	Res:										-		-		+ EON		
	DAIL		ma/		Rel U	ma/l	ma/	ma/l		nS/cm		ma/L			ma/L		ma/L	-	ma/L		ma/L	ma/L	ma/L	ma/L
	WQ criteria	<u>ب</u>	, 200			5	100	; 10			80-100		-	-				0.010	0.005	0.20	0.005	0.200	10	0.020
E226219	08/13/97 9:3																							
E226219	09/02/97 17:10	0 17.0	10.0 <	Q	7.82	22	2	۰۵ V	0.46	87	37.9	8.5	5.2	8.7	8.7	13.9	17.2	0.002 <	0.002	0.10 <	0.005	0.066		
E226219 E226219	09/02/97 17:15 11/03/97 16:20	0 0 2	10.4	75		71	F	41		43	1 10	27	27	6		9	۳ ن	0.067	700	7C U	0.015	0.095		
E226219	11/03/97 16:30	Ś		38	7.49	: 18	88	5	28.70	₽ 1	24.9	27	2.7	3.7	3.7	6.4	6.4	0.069	0.004	0.26	0.016	0.096		
E226219	11/03/97 16:40	9		25		8	R	R		43	25.1	2.7	2.7	3.7		6.4	6.4	0.063	0.004	0.25	0.016	260.0		
E226219	11/03/97 16:50			20		75				43	24.5	4.7	4.7	3.2		7.9	7.9	0.062	0.005	0.31	0.016	0.097		
E226221	06/18/97 14:25	5 10.0	10.6	10	74.7	~ 35		2		20	20.4	2.2	2.1	5.3		7.3	7.5	0.019 <	0.002		0.005	0.061 <	0.059 <	0.002
E226221	08/12/97 16:10				7.68	< 75				9	33.4	1.2	1.0	8.1	8.1	9.1	9.3		0.002	0.08 <	0.005	0.055		
E226221	08/12/97 16:15																							
E226221	08/27/97 14:1	0 14.0	10.4	10	7.53	< 45	40	۰۵ ۷	1.38	23	22.1	3.2	3.2	4.9	4.8	8.0	8.1	200.0	0.003	0.27 <	0.005	0.136		
E226221	08/27/97 14:20																					1		
E226221	11/03/97 15:45	2 9 9 9 9 9 9	9.9	8	7.44	S I	8	8	32.80	4	25.5	5.8	2.7	9.0	3.6		6.4	0.099	800.0	89 H	0.028	0.088	_	
E226223	06/17/97 9:30		10.6		7.20						6.6	9.9 9	5 5		2.0	5.5	7.5	0.019	0000		0.005	0.131 <	0.129 <	
E226223	07/29/97 5:00		V		7.62	×					27.9	1.2	1.2		0.0	0.8	8.0	0.004	0.005		0.005	8	8	
EZ26223	01/29/9/ 5:10		v		99. / /						20 C				000	D.8 0		0.004	500.0		900.0	> 0.059	> /9N:N	
EZ26223	0//29/9/ 5:20	20			7.64	8 t		v 1			6.72	7.0	2	000	000		200	0.004	9000	> /n:n	900'0	190.0	38	70000
EZ26223	DE:9 /6/67//D		t (/9//						6.72	7.7	1.1			P. /	0.0 8	0.004	900.0		900.0	> 690.0	> /9n:n	
EZ26223	UB/2//9/ 11:55 00:07:07:07:12:00	14.U	9.7	2		4					9.6	4.U	с С		4		+	9000	U.UU4		9NU.U	0.398		
E220233	10/2/ /2//2/00			ę	7 40	2		4		6	10.01	0	G			0	0	0010	2000	10.07	1000			
L22022J	Mitinat mean			2 5	7.52					3 22	25.4	0.7 7	5.7		5.5	6	5.5	0.024	0.005	0.10	0.011	0000	0.061	0.00
	Nitinat SD	0 3.0	0.7	6	0.19	16	2	18	12.06	10	8.0	1.8	1.5	2.3	2.3	2.5	2.9	0.028	0.002	0.14	0.014	0.082	0.027	0.000
DOCANDE	D ODEO MONITOL																							
F226247				1	7 10	ЧС /	Ę			Ċ,	α	3	u r	1 7	1 7	(r 4	с Ч	0.005	2000	800	200.0	100	0000	0000
E226247	09/16/97 15:40			2 42	2.00				0.18	9 6	1.0) j	3	1	2) ;	0.004	0.003	/ / 000	0.005	_	3	
E226247	11/04/97 9:30	9.2	9.6	15	7.15	V			0:0	3	9.1							0:003	0.002		0.005	0.032		
E226249	06/25/97 14:30			2	7.33	v			0	33	7.4	2.1	1.8	2.2	1.9	3.7	4.3	0.005	0.006	0.08	0.020	0.066 <	0.064 <	
E226249	06/25/97 14:40			7	6.99	V				39	7.4	1.7	1.7	2	1.9	3.6	3.7	0.014	0.003	0.09	0.008			
E226249	06/25/97 14:50				6.92		R	س ا ∨		8	7.4	1.7	1.7	<u>6</u> .	0; I 0; I	3.6	3.6	0.005	0.004	> 60.0	0.005	0.066 <	0.064 <	0.002
E226249	06/25/97 15:00		0		6.91	v				88	7.4	9.6	0. 0. 0.	<u>.</u>	ei e	3.7		0.006	0.005		0.005	_		
E226249	08/12/9/ 13:15	D. 11 . 0	× 7.01		20.5	v				₹ 8	 0 r	20 0	20 C	 	0 0	470	7.7		900.0		900'0	U.199		
E226249	U9/U3/9/ 15:4U		5		/0/2	~ `			8 9 5 6	5 6	4.7	n 4		 2) 0	0.0	- c	7.5	> 2000	700.0		/nn/n	0.141		
E226240	U3/U3/3/ 13.3U					/ \				8 8	4.7	0.0	0 7	 v a	o 0		4 0		70000	0 0	200 U	0.145		
F226249	09/03/97 16:10					/ V			000	3 6	71	14	1	0.0	0.00	100	5 m	< 2000 V	20000		200.0	0.146		
E226249	11/04/97 10:30		11.8		6.93	v				29	7.6	1.8	1.8	3.8	ť.	3.1	5.6		0.002	0.15 <	0.005	080.0		
E226251	06/25/97 12:24			20	6.73	v				24	5.6	3.5	3.4	1.1	1.1	4.5	4.6	80	0.002	0.09	200.0	0.015 <	0.013 <	0.002
E226251	08/12/97 10:57				6.79	v				52	9.9 1	6 E	9.9 1	<u>1</u>		2:0	5.1		0.00	0.18	0.007	0.003		
F22621	14:40 14:40			2 2	0.00 2.0	v 1			19:0	87	7.0	7.00	0 0 7 0			4. P	0. u	> Pinnin	700.0		0.000	50000		
C20223	05/04/37 13-20			8 2	0.0	/ \				4	- 0			<u>1</u>	7.1		- 0	2000	*n000	2 2		200.0	7000	
E226233	08/12/97 9-50	215	4 9 9	14	6.70	/	, 7 F			3 %	. u	0.0	2	<u>+</u>	<u>†</u>		7	0.000		> CE U				5
E226253	09/03/97 14:05			20					0.47	22	99							0.005 <	0.002	0.17	0.011 <	0.002		
E226253	11/04/97 11:50			20	6.76	V	2			27								0.006	0.005	0.21	0.005	0.095		
E226254	06/24/97 11:20			10	6.99	v	20			27	6.6	3.0	3.0	1.4	1.3	4.3	4.4	0.006	0.005	> 20.0	0.005	0.018 <	0.016 <	0.002
E226254	11/04/97 14:30			7	6.88	v	2			8	7.0							0.003	0.002	0.10	0.008	0.036		
E226255	06/25/97 9:25			9	7.09	v	R			8	11.4	2.3	23	2.8	2.8	5.1	5. 1	0000	0.005	> 90.0	0.005	0.021 <		
EZ26255	06/25/9/ 9:35	<u>ي</u>		~ -	2007	v				8	11.0	2.4	2.4	8.7	2.7	6.1	5.2	800.0	9000		900.0			
E226255	06/25/9/ 9:45	Ωu		5 7	7 108 107		- ₽ ₽			3 7 8	4 4	470	5 C	900	970	4.4 V. 4	0.5 1	0000	0.006	> 900	900 0	> 1/U/U	0.019 <	
CC20223	22:0 LU(C7)00			<u></u>	7.10	/	₹			۶¥	4	0.4	3	0	0	- ri	ō		0.000		600 O			5
E226255	00/12/3/ 0.33 00/13/32 13:15			2 6	7 10					₽ ¢	4.0			+				2000		010	2000	200.0		
F226255	11/04/97 13:45			20	7.10	~				2 85	10.01		+	+	+		+		70000		0.06	0.077		
E226256	07/02/97 12:36	6 10.2	11.0	2 40	6.77	, ^ 1 (× 1 5	v v		88	0 1.0	1.2	1.1		2.0	بن 1	3.3	0.004	0.002		0.005	0.026 <	0.024 <	
	Rosander mean			11	6.96	27	22			31	8.1	2.3	2.2	2.0	1.8	4.0	4.3	0.00\$	0.004		0.007			0.002
	Rosander SD			Û			~	~		ŷ	2.2	1.0	1.0		0.6	0.9	0.9	0.007	0.002	0.07	0.003	0.053	0.024	0.000

	deg C mg/L ReIU ReIU mg/L mg/L mg/L mg/L 00. WQ.criteria >15 8 15 6.5-8.5 mg/L 100 10
4 0.0 0.0 0.0 0.0 0.0 0.00 <td>ONITORING</td>	ONITORING
	11.2 10.1 < 5 7.27 < 35 30 <
	9.9 9.9 7 7.27
	11.5 9.9 5 7.17 < 25 20 <
	7.4 10 7.36 <
	10.1 9.2 5 7.29 F
	A UC 0C 400.7 C 400.1 C 40.01 Z 10.01 Z 10.
	11.0 11.4 7 7.73
	15:10 8.5 10.8 5 7.58 <
	11.8 11.6 5 7.89 < 65 60 <
	9.3 50 7.95 < 75 70 <
	 2 3 3 4 4 5 7 9 6 9 7 9 9
	14.0 9.5 7 8.04 < 85 80 <
	100
	130 100 5 7 7 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16:55 17 8 77 < 5 791
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12.0 10.0 10 7.85
	6.9 11.9 7 7.41 <
	8.5 10.9 5 7.86 < 65 60 <
107 47.4 7.4 0.005 0.014 0.012 0.014 0.012 0.014 0.005 0.014 0.005 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.014 0.0014	10.5 < 5 8.00
233 0.6 0.5 9.8 10.11 10.00 0.002 0.003 0.00	9.5 11.4 5
	110 101 5 767 5 55 50 5
87 332 0.05 0.05 0.014 0.014 0.014 0.011 <	5 7.87 < 55 50 <
97 38.9 0.05 0.05 0.004 0.013 0.005 0.014 0.017 0.017 104 38.7 1 <td>5 7.86 < 65 60 <</td>	5 7.86 < 65 60 <
	5 7.87 < 65 60 <
33/ 111 11 119 13 111 119 119 310 3102 01016 01036 01046 01036 01014 01016 01002 01016 01002 01016 01002 01016 01002 01016 01002 01016 01002 01016 01002 01016 01002 01016 01016 01016 01016 01016 01016 01016 01016 01016 01016 01016 01016 01016 01016 01016 01016	14.5 10.7 < 5 7.89
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	58 10 1 10 10 10 10 10 10 10 10 10 10 10 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12:25 16:0 10.2 5 7.03 < 15 < 10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.5 8.4 < 5 7.37 <
	10.7 7 7.29 <
	6.8 12.2 7 7.01 <
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16.0 8.1 5 6.56 < 25 20 <
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 1 10.2 C 0.0 2.01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	79:37 95 100 5 651 < 15 10 <
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.0 8.0 < 5 6.70 < 25 20 <
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.5 7.9 < 5 6.68 < 25 20 <
60 24.6 0.9 0.8 6.5 6.4 7.2 7.4 0.006 0.004 0.10 0.005 0.054 0.055 0.055 0.055 0.054 0.056 0.056 0.054 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.055 0.055 0.056 0.056 0.056 0.056 0.056 0.056 0.056	11:50 10:0 9.3 7 6.32 < 15 10 <
37 77.7 0.5 0.4 3.8 3.6 3.6 0.005 0.002 0.06 0.004 0.074 0.178 60 246 0.5 58 57 6.2 6.3 0.004 0.005 0.065 0.069 0.069 0.067 0.178 74 287 0.5 58 57 6.2 6.3 0.004 0.003 0.07 0.059 0.053 74 287 0.5 0.004 0.003 0.07 0.056 0.058 0.053 74 312 0.5 0.5 5.8 5.7 6.2 6.3 0.003 0.07 0.035 0.058 74 312 0.5 0.5 0.003 0.003 0.17<	11 & 10 0 6 7 30 43 38
60 246 0.5 6.8 5.7 6.2 6.3 0.004 0.005	se SD 4.3 1.7 1 0.59 23 23
60 246 0.5 6.8 5.7 6.2 6.3 0.004 0.005 0.131 74 31.2 0.5 5.7 5.6 6.1 6.2 0.003 0.17 0.005	GROUP
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.0 11.2 < 5 7.62 < 45 40 <
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15.0 9.0 < 5 7.80
46 18.5 0.5 0.5 5.7 5.6 6.1 6.2 0.005 0.005 0.181 0.065 0.181 0.061 0.005 0.141 70 28.3 7 28.3 0.002 0.002 0.002 0.17<	12:30 10.5 10.8 < 5 7.62 <
58 237 0.5 0.5 5.7 5.6 6.1 6.2 0.005 0.004 0.005	6.5 11.8 < 5 7.35 <
70 27.8 0.005 0.007 < 0.005 70 28.3 0.003 0.17 < 0.005	16:55 10.8 10.6 < 5 7.59 < 35 30 <
00000 / HOO	08/18/97 14:28 15:0 10:0 < 5 7.73 < 5 5 09/08/07 12:00 10:5 9:0 < 5 7.61 < 5

N-N02	mg/L	0.020		0.002						0.002				0.002			000	700.0			0.002		0.002	0.000		0.002				0.002				0.002			0000	700.0			0.002			0.000	4000			0.002			000	100.0	
EON-N	mg/L	10		0.063 <						0.055 <				0.031 <			 CK0.0 	4			0.026 <		0.048	0.015		0.002 <				0.013 <				0.043 <			ē	0.U24 <			0.027 <			> 10.04 <	5			0.082 <			0.055 <	3	
N03 + N02	mg/L	0.200	g	0.065 <	1000	0.068	0.068	0.067	0.116	0.057 <	0.015	0.051		0.033	0.040	0.005	4AU.U	# 62	0.050	0.870	0.028 <	0.042	0.100	0.154		0.004 <	0.059	0.058	0.006	0.015 <	77N'N	0.024	670 U	0.045 <	0.098	0.089		0.127 <	1980.0	0.024	0.029 <	0:050	U.U62	2 960 0		0.165	0.165	0.084 <	0.132	0.112	0.057 <	_	0.067
NH4 Diss	mg/L	0.005	0.005	0.005	9000	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	200 O	900 0	500.0	9000	600.0	0.005	0.005	0.005	0.001		0.005	0.005	0.005	0.008	0.005	900 0	000 000	200 U	0.005	0.005	0.005	900.0	9000	0.005	0.005	0.005	0.005	900 0	900 U	0.005	0.005	0.005	0.005	0.005	0.005	900 U	0.005	0.005
Tot N	mg/L	0.20	m	88	v v 010	8			0.13 <		0.03 <	0.08	> 60:0	0.07 <	0.05	v v Bio	V 10		/ \ 3 8			> 90:0	0.09	0.04		0.18 <	0.07 <	8	0.0	68	v v 70:0		v v 2010	0.21 ×	12	0.14 <	_	0.10		0.06	8	6		0.14 <		19			0.13 <		v v 210	/ × 2010	> 60.0
P T Diss	mg/L	0.005	0.003	0.00	7000	0.002	0.002	0.002	0.004	0.003	0.002	0.002	0.003	0.002	0.002	700.0	500.0			0.002	0.004	0.006	0.003	0.001		0.009	0.006	0.005	0.008	_	0.004 <	_	0000	t 0000	0.009	0.002	0.007	9000	800	0.003	0.003	0.006	0.00 A	40000	0.004	0.002	0.007	0.009	0.003	0.002	/00.0	t 0000	0.002
		0.010	0.009			0.003 <			0.003		0.008 <		8		0.010		0.003	/nn/n	V 8000		0.005	0.002	0.005	0.003		0.029	0.008	0.007	0.007	0.017	7nn:n	70000	0000	0.013	0.014	0.005	9000	0.010	0.004	0.005	0.003			4 nn n	0.006	0.005	0.004	0.009	0.005	0.004	500.0	0.005	0.005 <
C-T	mg/L			7.8	0.101	10.0	10.0	9.9	7.1	8.1	16.2	9.9	6.9	5.0			0 2	0.0	0 00	2	4.3	3.1 <	8.2	2.9		15.2	4.8	5.3	9.1	6.1	V V		0 (C	13.5	5.3	0.9	9.7	0 C	1 10	5.4	9.4			C 2	<u>-</u>			9.0			76		
Tot C	mg/L			7.8			ெ	ை	6.8	œ	£	ை	6.9	5.6			0	ν 0.0 0	τα 5 Ν	2	4.2	3.1	7.9	2.3		15.0	4.4	5.2	8.9					13.4		5.8	8.7	4 C	5.4	5.3	9.4			5	2			8.5			76		
DIC	mg/L			6.5 0 0		9.6	9.4	9.4	ى	6.5	2	9.4	6.1						0.7	2.4						0.6								0.0							8.6			4.7				7.5			ц Ц	5	
TIC	mg/L			6.5																2.4			6.8			0.6								, 0 8.0							8.6			ст 42	ò			7.8			с С	j –	
DOC	mg/L	2.0		1.3				0	0.6	-	0	0	0.7	52			C			1.7	θ.G	2.1	1.1	0.9		14.4	0.0	1.6	ώ	4.5	- -			12.6	0.7	- 1 9	9 . 9 0	9 C	2.0	9.0	0.8			-	-			1.0			-	:	
TOC	mg/L	2.0		с. С. с	0.2	- 9:0 - V	0.5	0.5	0.8	۵	≥ 5.5 2.5	ъ	0.7	2.5			40	× 40		1.7	3.5	2.1	1.4	1.3		14.6	1.2	1.6	8.3	4.5		-		12.7	0.9	1.6	9 4 9 0	0 4 0	2.0	3.6	0.8			6	2			1.2				-	
T Hard	mg/L	80-100	18.7	25.2		41.4	41.8	41.2	26.4	25.2	44.0		26.7	12.4	24.9	79.5	1 1 1 1 1 1	0 0 0 0 0	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20.2	4.1	6.3	27.2	11.0		6.1	14.4	15.7	5.7	7.8	12.1	7.7	7.7	- 9 9 9	19.8	18.8	10.01	ם. כו	20.6	8. 0	37.3	36.9	87.4 92.5	0 9 19 7	282		13.1	28.7	31.1	31.6	275.0	28.3	
sc			45	CG É	3 %	8	8	94	6	62	6	94	62	æ	63 5	3 8	'nΨ	8 8	3 12	2 50	8	26	99	23		18	49	9	24	51	75	56	ĥ 🖗	3 2	6	8	87	48	38	36	78	81	ک 8	44	12	75	æ	8	76	20 E	86	3 8	2
Turb			4.53	0.57	7 12	0.14	0.26	0.14	0.98	1.10	0.13	0.16	1.60	0 80	0.1	0.0	/9/C	02.0	86	39	0.27	0.13	0.77	1.09		4.50	0.18	0.20	1.25	8.9	2 C		4 0	9	1.12	9:0	99. C	n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.34	1.43	0.13	60.0	0.00	88	0.16	0.36	0.66	0.33	0.11	0.14	220	33	0.14
Res: NF			S	un u	0 40	u n	S	чО	чл	ч	w	чЛ	w	w	vo u	n 4	n u	0 40	л ч.	о к о	ω	чл	ŝ	0		15	S	S	ŋ		0 U	0 4	n u	о ю	ι LO	ω,	υÇ	24	0	ι. O	S	s i	JO 4	0 40	0 40	-un	чО	S	ω	-0 -	ה ע	5 40	μŋ
Res: Filt		100		4 F			× 09	× 09	40 <	> 09	× 09	× 29	4	20		~ `	v \ F				10		44	16		R		40 <	v R		∨ \ ₩		7 7	/	205			₽ ₽		R	> 09	v	v 1	< 10 40		V		20 20	v	v	v v	/ V 7	V
Res: Tot	mg/L			5 1	e 12	8	99	-8	45	55	85	5	45	52			ų	8 1	3 12	3 8	15 <	25	49	16		45	8	45	Ж	89 k	ន អ	8 8	6 X	2 8	22	8	£9 \$	44	8	Я	55			45	2			55		_	45	2	
Hq	Rel U	.5-8.5	25	7.64 <									7.56 <		7.74	100		7 80 7			6.86		7.61	0.28		6.51		7.44 <						/ V 0.7 2					7.56 <			7.57	7.41	6 95 <	38	6.80	6.92	7.29 <	7.37	7.26	7.68 <		77.7
		15 6.	ч	un u	0 40	۰u	Ś	чл	чл	ч	ΥΩ	чл	w	6	ιΩ μ	n u	υĘ	2 40	, w	n 40	9	7	9	2		140	7	2	8	52 '	n u	0 4	n v	. 8	2	~ !	49	₹ 4	n 10	55	S	ω	J. L	0 E	2 40	-un	9	Ś	ω	5	n u	5 40	чо
00		8	12.1	11.2	10.1		V			11.3 <					0.5	0.0 V C C C	11.4	τ. 0 1	10.4	12.3 ×	10.8	11.2	10.7	1.1		11.4	9.6	10.5	11.2	13.8	0			11.2	10.0	8.6	11.2		v v 9.86		9.8 <	V 9.9	V 10.8	4 U	7.4 <	7.4 <	9.2	10.0		9.4	0.11 10.5	- 2.0	9.8
			6.5	9.0	0.0	1			6.0	9.0	19.2	16.0	6.0		17.0		n o o o	0.0	14 10	2.7	11.0	8.2	11.3	4.0	ROLP	11.0	14.5	12.5	7.1	9.5	D. G			11.2	13.8	13.0	7.7	0.0	14.0	7.0	12.2	16.0	15.U	130	0.0	10.0	6.6	11.5	10.2	10.3	13.1	15.0	15.0
Te	ę						3:20	3:30																	JRING C	9.20						200	100																81		2 8	34	5
DATE		WQ criteria	11/24/97 11:	07/09/97 14	00/13/9/ 10:23 09/08/97 13:00	09/08/97 13	09/08/97 13	09/08/97 13	11/25/97 10	07/09/97 13:46	08/13/97 15	09/08/97 15:30	11/25/97 9	00:0 26/60/20	08/13/97 14:15	11 DE 07 11:40	04:11 /6/67/11	07/10/2/10/10/10	00/10/2/ 10:20 00/00/07 8:50	11/25/97 12:30	90:6 26/60/20	11/25/97 14:50	Gordon mean	Gordon SD	SAN JIJAN RIVFR MONITORING GROUP	07/08/97 5	08/18/97 17:44	09/10/97 9:	11/27/97 12:15	07/08/97 12	11/25/9/ 15:40 11/25/9/ 15:40	11/20/2/11	11/05/01	07/08/97 8:15	08/18/97 16	09/10/97 10:55	11/2//9/ 12:55 07/09/07 12:00	0//UB/9/ 13:U2	09/10/97 12	11/27/97 11:00	07/15/97 9:03	08/19/97 19:00	13:21 /0/0/0/ 13:21	07/14/97 15		09/09/97 12	11/26/97 12:20	07/14/97 13:53		09/09/97 12: 11 00/09/97 12:	07/14/97 15: 07/14/97 15:		09/09/97 13
EMS ID			E226239	E226240	E226240	E226240	E226240	E226240	E226240	E226241	E226241	E226241	E226241	E226242	E226242	E220242	E226242	E226244	F7062AA	E226244	E226246	E226246			SAN JIIAN R	E226190	E226190	E226190	E226190	E226408	E226408	CZZ0400	E226400	E226410	E226410	E226410	E226410	E226348	E226548	E226548	E226549	E226549	EZZ6549	E226550	E226550	E226550	E226550	E226551	E226551	E226551	E226331	E226552	E226552

				True		Res:	Res:	Res:		-	F		-									+ EON		
EMS ID	DATE	Temp	DO	_	Hq	Tot	Filt	NF	Turb		Hard	_	DOC			Tot C	C-1	PT	P T Diss	Tot N	NH4 Diss	N02	EON-N	N-N02
		deg C	mg/L	-	Rel U	mg/L	mg/L	mg/L		uS/cm r	mg/L n	mg/L	mg/L n	mg/L mg	mg/L r	ng/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	WQ criteria	× 15	ω	15 6	6.5-8.5		6	6	1.00									0.010	0.005	0.20	0.005	0.200	0	0.020
E226552	11/26/97 14:05	6.5	11.6	ΥΩ	7.55	-			0.69	5	21.4							0.003	200.0	0.08	< 0.005	0.095		
E226553	07/14/97 16:36		V	чл	7.65 <	45	40 <	ΥΩ	0.22	<u>6</u>	24.0	1.2	1.0	G	5.9	6.9	7.2	0.003	0.003	0.07	0.005	0.051 <	0.049	0.002
E226553	08/19/97 13:27	16.5	9.9 <	чо	7.56		~		0.23	64								0.005	0.003	0.11 <		0.105		
E226553	09/10/97 13:45	14.0	10.8 <	чо	7.55		~	чО	0.40	8	27.3							0.003 <	0.002	0.08 <		0.059		
E226553	11/26/97 14:40	6.9	11.2	ч	7.50		V	ч	0.78	62	19.5							0.002	0.007	· 60:0	0.005	0.085		
E226554	07/15/97 10:35		9.6 <	S	7.46 <	45	40 <		0.17	20	19.3	1.6	1.4	4.8	4.7	6.1	6.4	0.007	0.007	0.04 <		0.019 <	0.017 <	0.002
E226554	08/19/97 17:17		8.8	ч	7.62		V	ΥΩ	0.08	8	31.6							0.010	0.00	0.08		0.044		
E226554	09/10/97 14:55	15.5	9.8 <	чо	7.62		~	чо	0.11	8	31.6							0.004	0.002	0.08 <		0.042		
E226554	11/26/97 15:50	6.2	11.4	9	7.34		V	υ	0.83	41	14.7							0.004	200.0	> 90.0		0.045		
E226556	07/15/97 12:22		10.7 <	ч	7.23 <	25	20 <	Υ	0.14	R	8.6	1.8	1.6	2.3	2.3	3.9	4.1	0.00	0.00	> 90:0	0.005	0.038 <	0.036 <	0.002
E226556	08/19/97 16:35		10.5	2	7.45		~		0.16	47	14.1							0.018	0.016	0.10		0.056		
E226556	09/10/97 14:23	-	9.9	S	7.51		~	S	0.22	51	16.2							0.008	0.005	· 60:0		0.046		
E226556	11/26/97 15:20	5.8	11.8	2	7.08		V	Ś	0.53	27	6.2							0.005	0.008	0.10		0.069		
E226560	07/16/97 12:00	12.0	10.8 <	чл	7.71 <	45	4	ΥΩ	0.14	8	29.1	1.4	1.2	7.3	7.2	8.4	8.7	0.007	> 200.0	0.02 <		> 200.0	0.005 <	0.002
E226560	07/16/97 12:10		v	Ś	7.72 <	53	× 93	S	0.14	8	28.6	1.5	1.3	7.2	7.2	8.5	8.7	0.007	0.007 <	0.02 <		> 2007 <	0.005 <	0.002
E226560	07/16/97 12:20		V	Ś	7.73 <	45	40 <	Ś	0.15	69	29.1	1.4	1.4	7.2	7.1	8.5	8.6	0.008	0.006	0.02		0.014 <	0.012 <	0.002
E226560	07/16/97 12:30		V	чО	7.75 <	5	20 <	Ś	0.15	69	28.3	1.4	1.4	7.2	7.1	8.5	8.6	0.007	0.008 <	0.02		> 200.0	0.005 <	0.002
E226560	08/19/97 9:31	13.1	10.4 <	ч	7.90		V	Υ	0.09	9								0.008	0.006	0.03		0.029		
E226560	09/09/97 11:00	12.0	10.4 <	Ś	7.70		~	Ϋ́	0.16	92	39.7							0.006	0.004	> 90:0		0.028		
E226560	11/26/97 10:40		12.5	2	7.46		~	ΥΩ	0.65	52	19.4							0.006	0.008	0.03 <		0.037		
E226561	07/16/97 14:05		10.2 <	S	7.36 <	8	20 <	ç	0.19	32	12.6	2.1	2.1	3.3	3.1	5.2	5.4	0.005	0.005	0.03		0.004 <	0.002 <	0.002
E226561	08/19/97 10:34		10.2	чO	7.50 <	Я	R	S	0.11	47		0.9	0.6	3.8	3.6	4.2	4.7	0.004	0.003	0.09	0.005	0.084		
E226561	09/09/97 11:35	-	9.9 <	S	7.44 <	8	× œ	Ś	0.09	47	17.1							0.003 <	0.002	0.11		0.059		
E226561	11/26/97 11:30	5.3	12.0	9	> 00.7	Я	R	ĥ	0.28	8	9.1	ы Г	Э.	2	0. Di	5.0	5.1 <	0.002	0.006 <	0.02	0.005	0.007		
	San Juan mean	11.6	10.5	9	7.53	42	37	ŝ	0.28	59	22.2	1.6	1.5	5.2	5.1	6.6	6.8	0.006	0.006	0.07	0.005	0.050	0.021	0.002
	San Juan SD	3.9	0.9		0.21	6	6	0	0.22	18	8.5	0.6	0.7	2.1	2.1	1.8	1.8	0.003	0.003	0.04	0.001	0.033	0.021	0.000
	studic area mean	12.0	10.2	8	7 33	6 F	35	e	1 46	65	20.0	6.6	0.0	4.8	47	67	3.0	0 008	0 004	0.12	0.006	0.060	0.043	0.002
	study area SD		1.4	5	0.30	; g	27 27	~	4.78	2	15.3	2.0	1.9	3.1	3.1	2.0	3.0	0.012	0.002	0.08	0.005	0.075	0.043	0.000
	famo			Ī		-						-				-					1 1 1 1 2			

mml ml ml ml	EMS ID	DATE	AI-T		Ca-T	Cd-T	Cr-T	Cu-T	Fe-T	-	Mg-T	Mn-T	Na-T	Ni-T	Pb-T	S-T	Si-T	Zn-T	Fecals		Giardia Crypto	
Matrix matrix Matrix		WQ criteria	mg/L 0.10	mg/L 0.025	20 Z0	mg/L 2.E-5	mg/L 0.002	mg/L 0.002	mg/L 0.300	20 L	100 100	mg/L 0:050	mg/L 20	mg/L 0.025	mg/L 0.003	mg/L	mg/L	0.007	CFU/100m		0 m	
Markaria Constrained			GRO																			
1 1	+		0.0	900	m (0.006	0.013 <		> 0.007	0.0		0.002				1.19	ф Ф	0.002	-			
10.1 10.1 0.000 0			90 0 90 0	9.0	o -	900 0	> 010.0		0.01U	7.0		10000				1.10		700.0	v	-		
010 51 0001 00	-		0.25	800		> 900.0	0.006	9000	0.122	t 00		9000		0.02	800	0.46		0.002			0	
000 00000 0000 0000 <th< td=""><td></td><td>05/27/97 13:45</td><td></td><td>0.06</td><td>m</td><td>0.006</td><td>0.013 <</td><td></td><td>0.006</td><td>0.2</td><td></td><td>0.001</td><td></td><td>0.02 <</td><td>0.06</td><td>0.92</td><td>3.26 <</td><td>0.002</td><td>v</td><td></td><td></td><td></td></th<>		05/27/97 13:45		0.06	m	0.006	0.013 <		0.006	0.2		0.001		0.02 <	0.06	0.92	3.26 <	0.002	v			
0000 0000 <th< td=""><td></td><td></td><td>0.06</td><td>0.06</td><td>m</td><td>0.006</td><td>800</td><td></td><td>0.006</td><td>0.2</td><td></td><td>0.001</td><td></td><td>0.02 <</td><td>0.06</td><td>0.86</td><td></td><td>0.002</td><td>v</td><td>1</td><td></td><td></td></th<>			0.06	0.06	m	0.006	800		0.006	0.2		0.001		0.02 <	0.06	0.86		0.002	v	1		
0000 0000 <th< td=""><td></td><td></td><td>0.06</td><td>0.06</td><td>۵</td><td>900</td><td>0.006</td><td>80</td><td>0.006</td><td>0.4</td><td>0.9</td><td>0.002</td><td></td><td>0.02 <</td><td>0.06</td><td>0.98</td><td>3.42</td><td>0.014</td><td></td><td></td><td></td><td></td></th<>			0.06	0.06	۵	900	0.006	80	0.006	0.4	0.9	0.002		0.02 <	0.06	0.98	3.42	0.014				
0000 0000 <th< td=""><td></td><td>10/29/97 9:30</td><td>8</td><td>0.06</td><td>-</td><td>900.0</td><td></td><td>0.006</td><td>0.193</td><td>0.2</td><td>0.6</td><td>0.005</td><td>2.0 <</td><td></td><td>0.06</td><td>0.50</td><td></td><td>0.002</td><td></td><td></td><td></td><td></td></th<>		10/29/97 9:30	8	0.06	-	900.0		0.006	0.193	0.2	0.6	0.005	2.0 <		0.06	0.50		0.002				
41 0006 000			0.06	0.06				900:0	800.0	0.1		0.001	2.9 <	0.02 <	0.06	0.81		0.002				
31 0000 0			0.06	0.0				0.006				0.001	2.1 <		0.06	0.78		0.002	v	-		
13 0005 0			0.06	0.0		8	200.0	0.007	0.010	0.3		0.001	2.1 <		0.06	0.91	2.89	0.006				
		10/29/97 10:30						0.006	0.338		0.5	0.012	1.7 <	_	0.06	0.44	2.14	0.003		ை		
0000 25 0000 0001 0000 0001 0000 0001 00000 0000 0000		7 9:22	0.15			0.006		0.006	0.074 <		0.3	0.004	1.5 <		0.06	0.35	1.32	0.010				
Mixtory 150 Distance	1	13:30	0.06			8		0.006	0.063 <		0.5	0.004	1.7 <		0.06	0.41	1.85	0.003		.		
		15:09	0.06				900.0	0.013	0.120	0.2	0.6	0.004	1.6 <		0.06	0.42	1.83	0.005		0		
Biology 133 Dist 0 Dist 0 <thdist 0<="" th=""> <thdist 0<="" th=""> <thdist0< td=""><td></td><td>10/28/97 15:10</td><td></td><td></td><td>ى</td><td></td><td></td><td>0.006</td><td>0.081</td><td>0.2</td><td>0.4</td><td>0.001</td><td>1.5 <</td><td></td><td>0.06</td><td>0.35</td><td>1.41</td><td>0.003</td><td></td><td></td><td></td><td></td></thdist0<></thdist></thdist>		10/28/97 15:10			ى			0.006	0.081	0.2	0.4	0.001	1.5 <		0.06	0.35	1.41	0.003				
	E226196					0.006	016	0.006	0.065	0.1	0.2	0.002	1.2 <		0.06	0.31		0.002				
060397 35.1 0101 <						0.006		0.006	0/0/0	0.3	0.3	0.003	1.3 <		0.06	0.36		0.002		1		
		06/03/97 13:20					0.006	0.006	0.023	0.2	0.3	0.002	1.6 <		0.06	0.41	1.25	0.008				
00000971116 016 0106 00006		06/03/97 13:45					0.006	0.006	0.029	0.2	0.2	0.003	1.6 <		0.06	0.41	1.23	0.011		2		
		06/03/97 14:00		0.06	۵		0.006	0.006	0.028	0.2	0.3	0.003	1.6 <		0.06	0.42	1.23	0.012	-	0		
		06/03/97 14:15		0.06	ى		0.006	0.006	0.029	0.2	0.3	0.004	1.6 <		0.06	0.42	1.22	0.027	-	4		_
11 1000 1000 0100 0		11:45	0.06	0.06	N		0.006	0.006	0.060	0.2	0.5	0.010	1.8 <		0.06	0.83		0.002				_
010 114 0106 0		13:44	0.06	0.06	0			0.006	0.110	0.5	0.6	0:039	1.8 <		0.06	1.10		0.002		1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				0.06		900		0.006	0.166	0.3	0.3	0.004	1.5 <		0.06	0.35	1.1	0.003		2		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		10:50	0.06	0.06	0	0.006		900	> 900.0	Ö	0.2	0.002			0.06	0.57	1.51	0.007				
		12:39	0.06	0.06	Ψ	0.006		900		0		0.001			0.06	0.56	1.93	0.003	v	-		
	-	14:30	0.06	0.06	2.7	90	8	0.006	0.015	0.3	0.4	0.001			0.06	0.61		0.002	_	-		
0.006 3.00 0.006 0.006 0.006 0.006 0.005		10/29/97 14:30		0.06	ω	0.006	0.013 <	0.006	0.032	0.2	0.3	0.004			0.06	0.45		0.002				
0.000 1.000 0.003 0.001 0.003 <th< td=""><td></td><td>Klanawa mean</td><td>0.73</td><td>0.06</td><td>3.0</td><td>0.006</td><td>0.008</td><td>0.006</td><td>0.059</td><td>0.2</td><td>0.5</td><td>0.004</td><td>1.8</td><td>0.02</td><td>0.06</td><td>0.65</td><td>1.96</td><td>0.005</td><td>60</td><td></td><td></td><td></td></th<>		Klanawa mean	0.73	0.06	3.0	0.006	0.008	0.006	0.059	0.2	0.5	0.004	1.8	0.02	0.06	0.65	1.96	0.005	60			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Klanawa SD	0.12	0.00	1.5	0.000	0.003	0.001	0.074	0.1	0.2	0.007	0.5	0.00	0.00	0.31	0.70	0.005	16.			_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				9																		_
$ \left $		DEADARY NUNIL			σ	Ű		9000	_		e C	0000	14 <	_	900	0.47	1 21	0.030	\ \			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		07/28/97 16:37 <	90.0	900	o co	80	0.008	0.006	_		0.4	0.005	- V - M	_	900	0.43		0.002	· v			
			0.06			0.006	0.020	0.007	0.036	0.6	0.5	0.006	10 <	0.02 <	0.06	0.41		0.003				-
$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1		0.06			0.006	0.020 <	0.006	0.064	0.3	0.4	0.005	1.3 <	0.02 <	0.06	0.42		0.002		-		
			0.06			0.006	0.010	0.009	0.081	0.5	0.6	0.008	1.2 <	0.02 <	0.06	0.45		0.002		m		
			0.06					0.006	0.053	0.3	0.4	0.004			0.06	0.41	1.25	0.002		7		
		10/29/97 16:15			00			0.006	0.055	0.2	0.5	0.016			0.06	0.49		0.002	v	1	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			0.06		4	900.0		0.006	0.073	0.1	0.5	0.005			0.06	0.41	1.76	0.010		m		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			0.06		N	0.006		0.006		0	0.7	0.003			0.06	0.37	1.89	0.003	v	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		12:36	0.06		4	0.006		0.006	0.038	0.8	0.7	0.00			0.06	0.44	1.91	0.005	v	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		11:05	0.0	0.0	4	0.006		0.006	0.048	0.2	0.6	0.001			0.06	0.39	2.03	0.005	v	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		14:45	90.0	90.0	ωI	0.006	13	0.006	0.034 <		4.0	0.004			0.06	8.9	<u>.</u>	0.014	v	- ·		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		14:19	90.0	90.0	~ 1			9000	0.043 <		9 I I I	0.004			90 N	0.34	1.52	0.004	v			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		13:25	0.1	8	s,			600.0	0.076	2.0	9.9	200.0			90	8	1.57	0.003	v	-		_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	+	90:7L	90'n	9	5	900.0		900 N	U.U49	7.0	9:D	900.0			9	1.34 0		7007	v			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		11:15	0.06	90	- 1	0.006	8	0.006	0.006		0.2	0.002		_	0.06	0.28		0.002				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	+	13:18	90.0	80	ω	_		0.006	0.020		0.4	0.003			0.06	0.45		0.002				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+	14:10	9.0	99		8		0.006	800.0	8.0		0.001			0.06	87 :		0.002		m ·		
< 0.06 < 0.06 4 0.06 4.5 < 0.006 0.014 < 0.006 0.040 0.2 0.3 0.004 1.0 < 0.02 < 0.06 0.37 1.35 0.006 2		16:25	90.0	90		0.006		0.006	0.010	0.2	6.9	0.002		_	0.06	0.41	1.41	0.004		, - 1		
U10 U10 <td>+</td> <td>10:17</td> <td>0.0</td> <td>98</td> <td>ω</td> <td>0.006</td> <td>014</td> <td>0.006</td> <td></td> <td></td> <td></td> <td>0.004</td> <td></td> <td></td> <td>0.0</td> <td>0.37</td> <td></td> <td>0.00</td> <td></td> <td>0</td> <td>0</td> <td></td>	+	10:17	0.0	98	ω	0.006	014	0.006				0.004			0.0	0.37		0.00		0	0	
	+			90	→ -	98	38	900 0	_	jo	0.7	100.0			en o	14.0		700'0		ì		
	+		90:0	9 7 7	- 0	8	88	900 0	0.041		4 4	0.001	ກ່		90 0 0	47 C		700.0				

EMS ID	DATE	AI-T	As-T	Ca-T	Cd-T	Cr-T	Cu-T	Fe-T		Mg-T	Mn-T	Na-T	Ni-T	Pb-T	ST	Si-T	Zn-T	Fecals	Giardia Crypto	Crypto
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	CFU/100mL		ہے۔ 80
	m,	0.10	0.025	8	2.E-5	0.002	0.002	0.300	-	ē	0.050	20	0.025	0.00			0.007	0		0
E226206	06/05/97 8:52			4.0		0.006	0.007	0.120 <		V 0.3	0.001			90.0	0.43	1.44	0.005	-		
E226206	00//23/9/ 8:48			99 19	9000 0		0.010	960.0	50 M	9.9	SUUC			99. in	0.12 0.46		0.004	ים ע		
E226206	10/26/37 13:10			0 0 4 5	0000		9000	270.0		0.12					9-19-0	< 90 c	700.0	τ ν		
F226207	06/16/07 17:35			n n F G	0000	0000		0.245	30		0000			800	0.67			ſ		
E226207	_	<pre></pre>	90.0	, <u>v</u>	v 900:0	0.006	0000	0.016	7.0 0.3	. 90	0.003	, <u>1</u>	0.02 <	900	0.80	1.85 ×	0.002		1 2.94	
E226207	_																	v	-	
E226207	08/13/97 9:00																		- [1	
E226207	08/27/97 9:10	0.15 <	0.06	4.8 <	> 900.0	0.006	< 0.006	0.153	0.3	0.4	0.002	1.0 <	0.02 <	0.06	0.43	1.59	0.005	v	1 2.11	1.06
E226207	08/27/97 9:10																		0	
E226207	08/27/97 9:20																		5 1.38	0
E226207	08/27/97 9:20																		0	
E226207	10/28/97 14:10	0.10 <		5.8 <	0.006	8	0.006	0.110	0.3	0.5	0.005	1.6 <	0.02 <	0.06	0.65	1.76	0.002			
	Little Nitinat mean	0.09	0.06	5.3	0.006	0.011	0.006	0.066	0.3	0.5	0.04	1.2	0.02	0.06	0.45	1.62	0.004	13.8	8 0.4	
	Little Nitinat SD	0.07	0.00	1.0	0.000	0.008	0.001	0.058	0.2	0.1	0.003	0.2	0.00	0.00	0.14	0.27	0.003	48.		
NITINAT	NITINAT RIVER MONITORING GROUP	ROIP																		
F226208	DB/03/97 14:43	g			0.006			E		0.7		01 <	8	900	032		0000			
F226208	07/30/97/15/30 <	27:0 90.0	800	147 <		9000		0.070		; C	0.007	. 0	· 20:0 - 0100	800	50		0.000	-	2	
E226208	15:40	800			0.006	0.000		119		2 0	0.001	_	38	80	890		1000	1		
E226208	15:50					900		0.006		20	0.00		8	990	0.59	1.77 <	0.002			
E226208	16:00	0.06		14.9		60		900		10			0.02 <	0.06	09.0		0.002		0	
E226208	09/02/97 13:25 <	0.06		13.9		0.006		018		2	0.003		8	90.0	09.0		0.00	-		
E226208	12:24	2.06	0.06			8		970	0.5	1.5	0.054	> 0.0	0.02 <	0.06	0.28	4.45	0.005	~	74 0	0
E226211	11:25			10.0	0.006	0.006	0	0.029	0.1	0.4 <	0.001		0.02 <	0.06	1.46	1.84 <	0.002	0		
E226211	07/30/97 14:30 <	0.06		16.7		0.006		0.016	0.3	~	0.004		8	0.06	2.51		0.002			
E226211	09/02/97 15:03 <	0.06		16.9	0.006	0.006	0	0	0.1	0.7 <	0.001		8	0.06	2.71	2.28	0.003		-	
E226211	11/03/97 14:05	0.28 <		8.5		022	Ö	0.244	0.4	0.5	0.007		0.02 <	0.06	1.00	2.03	0.004		2	0
E226214	06/16/97 13:47 <		0	10.0 <	0	01	< 0.006	0.038	0.4	0.7	0.001		0.02 <	0.06	0.51	1.61	0.003	170		0
E226214		0.06	0.06	13.9 <	0	0.006	0	0.015	0.2	0.7 <		1.5 <	0.02 <	0.06	0.52	1.69	0.003	v		0
E226214	08/26/97 17:30		0	-	0.006	0.006		0.122	0.4	9.0	0.006	1.0 <	8	0.06	0.37	1.55	0.005	0		0
E226214	08/26/97 17:35																			
E226214	11/05/97 9:10		Ó		0.006	0.006	Ö	0.019					8		0.55	1.59 <	0.002	v	-	0
E226214	11/05/97 9:00			2.9	0.006	0.006	0.006	0.025		4	0.00		0.02	90.0	0.54	1.62	0.03	v	-	
E226214	11/05/97 9:30		90.0	5.0	0.06	0.006		0.031		V 9:0	0.0		8	8	0.52		0.04	v	_	
E226214	_	60.0		2.9	0.006	0.006		0.021		ωı	0.03		8	90.0	0.55	- 1 1 1 1 1 1 1	0.002			
EZ26215		90 O		- C	90000 0 0000	U.U15		950.0		× //n	0.001	n (90.0 0	8.2		0.0UZ	17		
EZ26215	-	90 0 0	⇒ (⇒ o		102 102	15U.U		~ (500.0		38	90.0	2.64	2.13	/10.0			
E226215			90.0	N 1	ignn:n	900'n		89 0 0 0			1000		× 7		96. - 9	7.13 7.13	70000	00 (-	
E120213	> UU.11 /6/CU/11 00:47 70/7 MDD							0.0			700.0		3 8		0,0	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	700 U	. 4	> 9	
E226210	> NO-11 70/07/70					14		0000		2 -	700.0		3 8	800	890	7 19 19 19 19 19 19 19 19 19 19 19 19 19	+0000	2		
F226216	_	8	j	5	j		j			2			1	8	8	3	8			
E226216	08/13/97 9:55																		5	
E226216	08/27/97 15:05	0.10 <	0.06	11.0 <	0.006	0.025	< 0.006	0.094	0.1	0.8	0.006	0.9 <	0.02 <	0.06	0.49	1.59 <	0.002		1 1.35	0
E226216	08/27/97 15:10																	v		6
E226216	11/03/97 14:55	3.52 <			Ö	0	0.00	3.390	0.6	2.1	0.093	1.3	0.02 <		0.31	6.7	0.006	4		
E226217	06/17/97 15:35			v 9.9	0.006	0.006	0.006	1.050		6.0	0.033		8	0.06	89.0	3.75	0.007	5		
E226217	10:30	0.06	0.06	9.2 <	0.006	0.012		0.006			0.004		8	0.06	1.64	3.1 <	0.002			
E226217	-			9.5		0.006		0.028		0.7 <	0.0		8	0.0	1.61		0.002			
E226217	11/05/97 12:10	0.26 <		9.4	0.006	0.006	0.006	0.175		0.7	200.0		0.02 <	9.0	0.82		0.002	19		
E226218	_	29 N			onun ooo	0.000 o		0.45/ 0.000		5 C	0.014		38	en e		2.93	0.004			
EZZ6240	> 11:24 <	90 10 00			900 0		0.00	57D-D			0.003		38	90 0 0	20.5		0.004	v		
C220210	_	0.0				0000		700 0			3000		3 8	8 8	8.0	V 02 C			0 +	
E226240	01.14/14/14/14/14/14/14/14/14/14/14/14/14/1	2 0 0 0 7 0		ע א איר א איר א			0.000	1 700	7 C	0. C	600 0	v \ 0 0 - 0		9 9	89	V 20 10 10	700 0			
E220213	> 35.01 /01/10/24	800			0000					. 0	500 U		3 8		7 7 8 0	1 97 <		2	-	
E226219		0	j _		000.0	0000	00000			2	202.2		8	3	3		700.0		- 9	
	CONTRACTOR AND	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	1	

EMS ID	DATE	AI-T	As-T	Ca-T	Cd-T	Cr-T	Cu-T	Fe-T	KT	Mg-T	Mn-T	Na-T	Ni-T	Pb-T	S-T	Si-T	Zn-T	Fecals	Giardia Crypto	Crypto
	W/O criteria	mg/L	mg/L	J/Gm	mg/L ⊃ ⊟.5	n nn2	n on?L	n 300 Mg/L	J/Gm	mg/L 100	mg/L	J/gm	n 075	n ona	mg/L	mg/L	n nn7	CFU/100mL	cysts/100 mL	
F776749		2	r7n'n	77	4.L.S	700.0	700.0	nnrin	3	3	0000	7	r7n'n	30.0			inn:n			
E220219	3.30	 0.06 	900	137 <	0.006	0.006	0.010	0 032	V U	σ	0.003	10	00	20.0	0.84	1 97 <	000	4 (*	C	C
E226219	2 40	3			3	0000	200	7000	t		2000	2	70.0	č		8	700-0			2
E226219	10	2.91 <		6.7 <	0.006	0.019 <	0.006	2.720	0.5	1.8	0.072			0	0.32	5.9	0.08	8	0	0
E226219	11/03/97 16:30			7.0 <	0.006	0.019	0.007	2.620	0.4	6	0.068		0.02 <	0	0.35	5.79	0.006	54		
E226219	19	2.90 <	0.06	7.1 <	0.006	0.009	0.009	2.680	0.6	1.0	0.067	1.2 <	0.02		0.33	5.95	0.005	49		
E226219	19	2.93 <		7.0 <	0.006	0.034	200.0	2.600	0.6	1.7	0.072		0.02	0.06	0.33	5.8	0.008	89		
E226221	06/18/97 14:25	0.15 <		7.2 <		0.006	0.008	0.131	0.3	0.6	0.004		0.02 <	0.06	0.45	1.54	0.005	æ	0	0
E226221		> 90.0>		11.9 <	> 900.0	0.006	0.00	0.053	1.2	0.9	0.005	Э.1	0.02	0.07	0.76	1.94	0.008	5	0	0
E226221	16:15																			
E226221	08/27/97 14:10 <	> 90:0	0.06	7.7	0.006	0.032 <	0.006	0.081	2.2	0.7	0.006	1.2 <	0.02 <	0.06	0.54	1.58	0.003	V	0	0
E226221	08/27/97 14:20																	2		
E226221	11/03/97 15:45				900	> 900:0	0.006	3.110	0.6	2.0	0.089			0	0.31	<u>6.68</u>	0.005	8	с, С	0
E226223	06/17/97 9:30			3.3	> 900.0	0.006	0.007	0.262	0.1	0.4	0.018			0	0.34	1.48	0.006	146		0
E226223	07/29/97 5:00 <	0.06		10.0	900		0			0.7	0.003			0	0.78	2.26 <	0.002	~	4.98	0
E226223	07/29/97 5:10 <	> 90:06	0.06	10.0 <	0.006	> 600:0	0			8.0	0.002	1.8	0.02 <		0.78	2.3 <	0.002	-		
E226223	07/29/97 5:20 <	0.06		10.0	8		0			0.7	0.003			0	0.79	2.25	0.003	v		
E226223	07/29/97 5:30 <	0.06		10.0	0.006 <	> 900:0	0	0.010 <		0.7			8	Ö	0.79	2.26 <	0.002	~		
E226223		0.06		5.6	0.006	> 900:0	0.006	0.047	1.7	0.4	0.001		0.02 <	0.06	0.49	1.66	0.003	v	0	0
E226223	08/27/97 12:00				C C C	0000	0000	0770	0		1000				5		0000	v		C
EZ20223	97:71 /6/67/01		00.00	V 7.0				0.110	5.0 7	4 C ¥	0.004	V T T	> 70'0	90'0	0.3/	> D.1	700.0	6 36		
	Milliont CD		00.0	 	0000	2200	0000	1 143	2.0	2.0	1000		20.0	00.0	00.0	171	0.000	3.05	0.0 7	0.0
	UC TERTIN	7.7	00.0		0.000	0.009	0.002	1.143	3	C.0	0.031	c: 7	0.00	5	0.30	3	0.002	c.87		2.2
ROSANDEF	ROSANDER AREA MONITORING	G GROUP																		
E226247	6	0.28 <	0		> 900.0	0.006	0.008	0.044 <	0.1	0.4 <	0.001 <	0.1	0.03	0.06	0.42	1.24 <	0.002	2	0	0
E226247	09/16/97 15:40	> 60:0			900	> 900:0	0.006	0.062	0.1	0.4 <	0.001	1.6 <		Ö	0.66	1.41	0.005	26		
E226247	7 9:30	0.09			> 900:0			0.031	0.4	> 9:0	0.001		0.02 <	Ö	0.45	1.28	0.007	۵		
E226249	14:30	> 0.06		2.3	8			0.019		-	0.001			Ö	0.45		0.003	00	0	0
E226249		0.07		2.3	88			0.023	- (0.00		0.02		0.46	V CV 8	0.002	Б ·		
E226249	14:50	90.0		n o N o	88	0.006		0.019	5 F	V 7	0.00	V 1 6. 1			0.46		0.002			
E226249	15:00	en de Sin de		2.4	88			0.U16							£.0	v 8. c	700.0	4		C
E220249	> 01:01 /8/21/00 > 00:02 /2/20			4 C		00000		20000			400.0		v 3, 6 5, 6		R y	р 2 2 2 2	700 0	- c	40.0 FC F	
E220243	09/02/37 15:50 <	800		0 C	88		0.0.0	0.015			0.00				9 0		700.0	ч с		
E226249	16:00	800		2.0	88			0.025			000				0.47		0.002	1 -		
E226249					0.006 <	0.006		0.021	0.3	0.4 <	0.001	2.0 <	0.02 <		0.45	2.17 <	0.002	~~~~		
E226249	11/04/97 10:30			2.2	900		0	0.019	0.2		0.001				0.34		0.002	~	0	0
E226251	06/25/97 12:24 <	0.06		1.6	900		0	0.047	0.6		0.001				0.38	-	0.002	-	0	0
E226251		0.06			8				v 5.0	0.3	0.004				8.0	_	0:030	~ ·	0	
E226251	09/03/97 14:40 <	0.06		1.6	0.006			0.028	6.0	6.0 0	0.002	1.7 <			0.37	V .	0.002	· ·	0	
E226251	11/U4/9/ 11:15			<u>د</u> د	900.0	0.012 <					0.003			⊐ o	88	7.6	/nn:n	v	-	
E20233		v v 19		V 0 C	2000 V		0000	< 001-0		4 7	< #IU.U				200	- 1 2 K	700.0	/ V		
E226253	-	> 90:0 > 0:00		2.0	80	> 200:0		136		0.4	0.010	, v 9 1 0	8		20.37	119	0.004			
E226253																		7		
E226254	06/24/97 11:20	0.29 <		0. 00	0.006 <	0.006	0.00	0.024	0	> 9.0	0.001 <		3	0	0.41	1.81	0.004	9	0	0
E226254		80.0	0.06		88	> 90:00		0.027	9.0	و	0.002	23 <	0.02		0.37	1.63	0.002			0
E226255	00,007,007,007,007			m c	> 900.0	900.0	/nn:n	6/N/N		× •			× 7000		9 9 9		7000 0	v	-	7
E226233	0 5 5 6	9))		'n		> qnn:n	ann:n	Rau.u	e D	D)	INN'N		·	5	₽		700'0			
E226253	06/25/27 9:45	800		ć,	0.006	0.006		0.084	Þ U	o C	0.003	, ,			0,40	275 <	0000			
E226255	00/2/0/ 0/33 08/12/97 8/55				88	/ V 000 / V		58	010	10	0000	- ¹	<pre>> 70.0</pre>		040		0.076			
E226255	im	> 60:0	0.06	9.0	0.006	> 900:0		0.132	0.4	1.0	0.004	2.6 <	0.02 <	0.06	0.56	3.17 <	0.002	1		
E226255	έ			2.7	90	> 900:0		0.041	0.3	0.8 <	0.001	2.4 <			0.37		0.002	v		
E226256	07/02/97 12:36			2.4	0.006			0.020	0	0.5	0.002		0.02 <		0.39	1.81	0.003		0	0
	Kosander mean	0.10	0.06		0.006	0.007	0.007	0.062	0.5	0.5	0.004	8.7	0.02	0.06	0.42	1.93	0.007	0.5		0.0
	Kosander SU	0.09	0.00		0.00	0.002	0.001	0.070	0.0	0.2	0.005	0.0	0.01	0.03	0.0	60.0	0.010	3.1		0.0

EMS ID	DATE	AI-T	As-T	Ca-T	Cd-T	Cr-T	Cu-T	Fe-T	КТ	Mg-T	Mn-T	Na-T	Ni-T	Pb-T	S-T	Si-T	Zn-T	Fecals	_	Crypto
	WQ criteria	mg/L 0.10	mg/L 0.025	mg/L 20	mg/L 2.E-5	mg/L 0.002	mg/L 0.002	mg/L 0.300	20 J	mg/L 100	mg/L 0.050	mg/L 20	mg/L 0.025	0.003 D.003	J/Bm	mg/L	0:007	CFU/100mL 0	. cysts/100 mL 0 0	0 m
ш	ت	GROUP	(000							8		0					
E22613U	> 0//U//9/ 14:25 <	> 90.0	9,0	v v 6.6 ►	> 90000	> 900 0	9000	0.010	4 0	V V 9 9	1.001	N N		9.0	8 ¥	1.55	700 0	- ç		-
E226130		800				38	0000	10.00	7.0	0 v				80	9 9		7000			
E226225			Ö	55.5 <	0.006	8	0.008	0.233	-	4.5	0.008		0.02 <	0.06	21.30		0.006			
E226225			Ö	\sim	0.006	015	0.006	0.191	0.2	0.7	0.003	1.8	0.02 <	0	0.43	2.13	0.003	79	0	0
E226225	11/06/97 9:15 <				0.006	0:010 <	0.006	0.025	0.3	0.4	0.003	1.6 <	0.02 <		0.32	1.49 <	0.002	v		
E226227		0.06	o		0.006	0.010 <	0.006	0.026	0.1	1.0	0.002	\sim			0.67		0.002	S	0	0
E226227		0.06	Ó		0.006	> 800.0	0.006	0.034	-	1.0	0.002	3.5		0	1.10	2.1	0.009	v		
E226227			Ö	14.2 <			0.006	0.026	0.3	1.0 <	0.001	1.7 <			0.84	7	0.002		~	
E226227		0.12			0.006 <	> 900:0			0.2	0.6	0.005	1.5		0.06	0.37	1.87	0.003	v		
E226228	07/21/97 15:57 <	0.06	Ö		0.006	0.017 <	0		0.1	0.9	0.002	1.8	0.02 <		1.10	2.03 <	0.002	108	1.	0.82
E226228		0.06	Ö		> 900.0	> 900.0		0.025 <	0.1		0.002	1.9 <			1.80	2.25	900.0	V	0	0
E226228	08/13/97 11:10 <	0.0	Ö		> 900:0	0.006 <			0.1	10	0.001	1.9 <	0.02		1.78	2.17	0.003	v		
E226228	08/13/97 11:20 <	0.06	Ö	23	0.006 <	0.006		012	0		0.002		0.02	0.06	1.74	2.17	0.002	v		
E226228	08/13/97 11:30 <			21.9 <	> 900.0	> 900:0	0.006	0.012 <	0.1	1.0	0.001	2.1 <	0.02	0.06	1.73	2.16 <	0.002	v		
E226228	09/15/97 16:22 <	0.06	ő	18.4 <	> 9000	> 9000	9000	0.016	0.3	1.0 <	0.001		0.02	0.06	1.47		0.002			
EZZ6ZZ8	U9/15/9/ 16:22	, 200	C		0000	0000	0000	0.00	C		000	1 1	0	000	, L 0		0000	,	77	
0770771			8 8									- + 0 0		0.0	5 G	2. 5 V V	70000			
F226231	08/11/07 16:45 <	900			/ 9000		9000		7.0			_		800			0.041	30		
E226231		800			> 9000	38	0000	> 10.04	5	2 8	1000		/ / / / / / / / / / / / / / / / / / /		86	- თ	1000			
F226231					V 000	V 1006	9000	119	; C	20 (0	0.000	· v	18		880	1 78 <	1002		0 4	
E226232	07/03/97 15:40	, × 80:0	90.0	15.7 <	0.006	016	0.006		10	0.8	0.003		0.02		0.34	1.6 <	0.002			0
E226232			Ö		0.006	200	0.006 <		0.1	0	0.001		4		0.39	1.81	0.037	v		
E226232	09/15/97 14:20 <		Ö		0.006	0.036 <	0.006	0.023 <	0.1	> 0.0	0.001	1.4 <			0.35	1.62	0.002	17		
E226232		0.06	Ö		> 900:0	900	0.006	021	0.1	يى	0.001		0.02 <	0.06	0.26	1.42 <	0.002	v		
E226234							1		i				1		1	_		V	0	0
EZ26234	07/03/97 1:50			1 02	0.006	98	0.006	× 0700	5	0.0	0.004		V 000	90.0	99 3 10 0	2.18 <	0.002	v		
E220234	U7/U3/9/ 2:UU	v v 90.0				V 0000 0 000000	9000	0.077		- -	900.0	_		9 0	4.0	> 07.7 > 27.7	700.0	v v		
E226234	-	0.06		0	0.006 <	800	0.006	0.006 <		1.4	0.004	2 0.1		0.06	0.37		0.034			
E226234		0.06	Ö		0.006	016	0.006	0.046	0.3	1.2 <	0.001		0.02 <	0.06	0.40	2.11	0.007	27		
E226234	11/24/97 14:30		Ö		> 900.0		0.006	0.140	0.1	0.8	0.005	1.0 <			0.32	1.94 <	0.002	00		
E226235		0.14			> 9000		0.006	> 980 0	0.0	400	0.004				03 G	_	0.002	v		0
E220233	06/11/9/ 14:45 <	9.0	5 0		v ann:n		90000	> /ZU:U		0 U	0.004			9.0 0	2/10	- 22 0 1 0	95U.U	- 0 V		
F226235	11/04/07 14:15				0000	0.010 <		V52.0	7 C		0.00				8 C		0.003			
E226236	07/03/97 11:25	0.16 <		14	> 900:0	0.006			20	50	0.016	12	0.02		0.28	<u>;</u>	0.004			0
E226236	08/11/97 13:59 <	0.06	Ö			> 900:0		0.197 <	0.1	0.3	0.020				0.25	0.82	0.032	V		
E226236			Ö	1.4	0.007	0.022 <			0.1	0.3	0.009	1.0 <	8		0.27	-	0.002	v		
E226236	11/24/97 13:50 <			1.7	0.006		0.006		с. О	4.0	0.022		0.02		0.23	1.62	0.007	v	0	0
E226237	U//U3/9/ 9:32	0.19	50		> 900 0	V 90000	90000	> 97N'N	- 0		qnn:n	<u>ب</u> ن د ۸ ۱	V 70:0	9 0 0	88	1.44	500.0	v		DB:U
1620221	< 40.01 /0/07/00	900			> 900 0			0.037	30		2000	/ \ ? \			20.0	- 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	70000	~ ~		
F226237		800				38	0000	1000	100	7	0000				88	13.6	0.000	40		
	-	0.09	0		0.006	000	0.006	0.064	0.2	0.7	0.005	1.2			0.46	1.77	0.009	5.6	0	
	Caycuse SD	0.07	0.00	6.4	0.000	0.007	0.000	0.065	0.1	0.3	0.006	0.3	0.00	0.00	0.25	0.43	0.013	9.3	0.8	
RDON R	GORDON RIVER MONITORING C	ROUP																		
E226238	07/16/97 16:03 <	90		8.7 <	9000	0.011 <	0.006	0.034	0.2	0.7	0.002	1.4	0.02		6.0	2.05 <	0.002		0	-
E226238	08/18/97 15:06 <	900			0.006	0.006	2000	0.009	4 0	6.0	0.00		88	0.07		2.17	0.003		4,	
EZZ6238	14/08/9/ 12:3U <	9 C			900 0	710		0.019	50	5 U	0.003	v v 0.0			17.1					
E220230	07/16/07 16/66 <	v v 900	9 9	ν ν φ 4	v 900 0	v ann:n 0.000 n	9000	007.U		0 0 0	0.000	- (- (800	v v = 6 0	700.0		C 4 5	C
E20233	00/10/20 10:30 <	890				88	0000	0.028	7.0	5 00		/ V - C		900	1 19		70000	v		2
E226239	> 09/08/97 12:00 <	0.06	0.0		0.006 <	0.006 <	0.006	0.032	0.2	× 8.0	0.001	1.5	8		1.25	2.17	0.003		(0)	

	EMS ID	DATE	AI-T	As-T	Ca-T	Cd-T	Cr-T	Cu-T						Ni-T			Si-T	Zn-T	Fecals		Crypto
		W/D criteria	mg/L	n 025	J/Gm	mg/L 2 ⊟-5	n nn?	0 007			_			n 075	_	r Mg/L	mg/L	0 007	CFU/100mL	_	
University Constrained	6		10		1.0	10	lø		6	-	6		V		90.0	0.58	2.15	0.012		_	
Memory 13 (2) Object Object O Object O O O O<		-	0.06				90		067	0.1	0.6	0.002			0.06	0.45	1.84	0.003	ι Ψ		0
MMMMM MMMM MMM MMM MMM MMM MMM MMM MMM MMM MMMM MMMM MMM MMMM MMMM MMMM MMMM MM		16:23	0.06	Ö	0	0.006	0.020	800:0	018	~	1.0	0.005			0.06	0.71	2.15	0.008			0
MMMMM 11 MMMM 11 <			0.06	Ö		0.006	0.010	> 900:0		0.1	6.0	0.003			0.06	0.85		0.002			0
0000001130 01000 0100 0100		13:10	0.06	Ö		0.006	800			0.1	0.9	0.004			0.06	0.84	2.13	0.003		01	
Manuality 15 0.01		13:20	0.06	Ó		0.006	0.019	0.008	0.00	0.2	1.0	0.003			0.06	0.84	2.13	0.006		01	
Mutabeline Mutabel			0.06	Ö		0.006 <	8		200.0	0.1	6.0	0.004			0.06	0.84	2.13	0.005	-		
Matrix Matrix<			0.06	Ö		0.006 <	900		0.080	0.2	0.6	0.006			0.06	0.49	1.93	0.004			0
Matrix Matrix<	-	07/09/97 13:46		Ö	9.1	> 900.0	900		0.110	0.2	۵	0.001			0.06	0.45		0.002	φ		0
1 1	-		0.06	Ő	16.3 <	0.006	017		0.024	-	00	0.002			0.06	0.76	2	0.006			0
11.0537133 0.00 0.00 0.000			900			9000	014		100		σ	1000			900	8		000			
model model <th< td=""><td></td><td></td><td>80</td><td>i c</td><td></td><td>2000 0000</td><td></td><td></td><td></td><td></td><td>0 0</td><td>5000</td><td></td><td></td><td>800</td><td>80</td><td></td><td>7000</td><td></td><td></td><td></td></th<>			80	i c		2000 0000					0 0	5000			800	80		7000			
Mutuation District of the construction District of the co	- ,	00.6 76/02/11		50			88			50	0.0					9 6 0		40000			0
0000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 0000000 00000000000 000000000000000000000000000000000000	~	_	2.5	j		> qnn:n	8			5	4.U	100.0			9N'N	33		700.0			-
Machine Machine <t< td=""><td>2</td><td></td><td>0.06</td><td>Ö</td><td></td><td>0.006</td><td>6</td><td></td><td>0.013</td><td>0.9</td><td>0.7</td><td>0.003</td><td></td><td></td><td>0.06</td><td>0.89</td><td>2.34</td><td>0.007</td><td></td><td></td><td></td></t<>	2		0.06	Ö		0.006	6		0.013	0.9	0.7	0.003			0.06	0.89	2.34	0.007			
Triddy Tide Disk	2		0.06	Ö		0.006 <	80		0.008	0.2	0.8	0.003			0.06	0.87		0.002	4)	10	
	2	11/25/97 11:40		Ö		> 900.0	900		0.053	0.1	чO	0.001			0.06	0.40	1.74	0.009			
0000097 001 0010 <	P	07/09/97 10:35		-		0.006	5		0.174	03	(C	0 004			900	850		0,000	in the second se	-	C
Inderform Indefform Indefform <t< td=""><td></td><td></td><td>0.06</td><td></td><td></td><td>0.006</td><td>200</td><td></td><td>1000</td><td></td><td>0 0</td><td></td><td></td><td></td><td>200</td><td>800</td><td></td><td>100.0</td><td>3 4</td><td></td><td></td></t<>			0.06			0.006	200		1000		0 0				200	800		100.0	3 4		
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $	± :		8 6	jo			/0000	ŧ 8	120.0	† (. o	t 000				B P		70000			
Invision 000 000 0000 <	t 3	_	9 4	jc			88	2000	0.000	7.0		0.00		_		2.0		70000			
		00.21 /6/07/11		jo			88				0, -					9 6 0			1		
Outboling 000 010 0		_	B 0	jc			88		0.020	† -	t, Li	0.00		_		500	_	70000			
Montenting Dirty Dirty <thdirty< th=""> Dirty Dirty</thdirty<>	,			∍ <	0 P	_			0.010		O N			< 70'0	00.0	70'D				5	
General by intermediate Out All		Gordon mean	0.09	0.0		0.00	0.009	0.007	0.059	0.2	1.0	0.003	0.1	0.02	0.0	0.72	2.07	0.04	0 .4	s' '	0.0
Interfactor	+	Gordon SD	0.07	0.00	4.2	0.000	0.005	0.002	0.079	0.3	0.2	0.002	0.7	0.01	0.00	0.28	0.23	0.003	8.9	0.2	0.0
	UAN F	VIVER MONITORING																			
		S,		Ö		90	900	0	0.838	0.7		0.023		0.02 <	0.06			0.002	6		0
		08/18/97 17:44		Ö			900	0	0.013	-		0.004			0.06	1.10		0.002	0		0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			0.06	Ö		0.006	014	0	0.055	0.8	0.9	0.005		8	0.06	1.10	4 <	0.002	Ψ		0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	11/27/97 12:15		Ö		> 900.0	900	0	0.180	0.2	0.3	0.001			0.06	0.39		0.002	3	-	1.45
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		07/08/97 12:06		Ö		0.006 <	900	0	0.356	0.3	0.5	0.010		0.02	0.07	0.31		0.002	4		0
			0.06	Ö		0.006	900	0	0.017	0.2	Q	0.001			0.06	0.43		0.002	v	0	0
	_		0.06	Ö	4.1	0.006	015	0.006	900	0.1	ω	0.001		0.02	0.06	0.45		0.002	V		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_		0.06	Ö	m	> 900.0	900	0.006	0.006	0.2	0.6	0.002			0.06	0.43		0.002	v		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_		0.06	Ö		0.006 <	900	0.006	0.006	0.2	ى	0.001		0.02	0.07	0.43		0.002	V		
09(19)7(15)5 0.06 0.06 0.006	_	07/08/97 8:15		Ö		> 900.0	900		0.290	0.6	4	0.008			0.06	0.46		0.002	v	0	0
09/109/1055 0.005 0.006	_	08/18/97 16:35		o		0.006	016	0	0.033	0.9	0.8	0.003		0.02	0.06	1.65	3.95	0.018	0,		0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_		0.06	Ö		0.006	0.027	0.008	0.025	0.8	0.8	0.005		8	0.06	1.51		0.002	É	-	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_	11/27/97 12:55	3	Ö		80	900	Ö	0.150	0.4	0.4	0.003		8	0.06	0.58		0.002	14		0
	_	07/08/97 13:02	5			20	900		0.529	0.7	0.7	0.012		8	0.06	0.22	2.74	0.002			
	_	08/19/97 14:02				1								-							0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-	0.06	0		0.006	600		0.013	0.5	1.0	0.003	_	0.02 <	0.06		49	0.002		0	0
			0.32	0			0.006	0.008	0.110	0.2	LO.	0.001		0.02	0.06	0.24	1.55	0.004			0
	6	07/15/97 9:03		Ö		0.006	62	0	0.050	0.1		0.001		8	0.06	0.55		0.002			0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5		0.06	Ö		0.006	017		0:030	0.2		0.001		8	0.06	0.71	2.63	0.006		10	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6	09/10/97 13:21 <	0.06	0		0.006	018		0.042	0.3		0.005		8	0.06	0.66		0.002			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		11/76/97 16:25 <	0.0			g	90		0.046	0.0	80	0,003		8	900	0 47	2 01	0.003			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		07/14/97 12:45	0.74 0.74			0.006	86		0.093	1		0.005		18	900	0.41		0.007			C
		11:33	0.06			0.006	018		0.063	- 45 0	1 2	0.004		000		0.57		0.006		2)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	11/26/97 12:20	8	0	4.1	0.007	200	0	0.064	0.2		0.001		8	0.06		2.77	0.003	4		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	07/14/97 13:53		0		0.006	0.016	0.008	0.066	0.2	60	0.004		8	0.06		2.75	0.008		0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	08/19/97 12:03		o	10.0	_	90	Ö	0.006	0.7	1.5	0.003		0.02	0.15	0.51		0.002			0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-		0.06	Ő		90	0.006	0.007	0.049	0.3	1.0	0.004		0.02	0.06	0.52	3.22	0.003			
0 07/14/97 15:00 0.25 0.006 9.1 0.016 0.016 0.0126 0.2 0.8 0.003 1.7 0.02 2.78 0.002 2 1 0.038/97/14/97 0.13 0.016 0.016 0.126 0.26 1.3 0.002 2.78 0.002 2 2 1 0.038/97/12/41 0.13 0.002 2.2 0.002 0.66 0.002 1 <	-	12:40	0.06	Ö		0.006	016	0	056	0.1	0.7	0.003			0.06	0.39	2.43	0.003	7		
08/19/37 12:41 0.13 0.06 9.2 0.006 0.006 0.006 0.6 0.206 0.6 2.2 0.002 2.2 0.06 0.53 2.88 0.63 08/19/37 12:41 0.13 0.016 0.006 0.006 0.006 0.006 0.6 0.6 0.63 2.88 0.65	~		8	Ö		0.006	0.016	0.010	0.126	0.2	0.8	0.003		8	0.06	0.47		0.002		0	0
26/60/60	2	08/19/97 12:41	₽	Ö		900	900	0.006	0.006	0.6	1.3	0.002		8	0.06	0.53		0.002			
	2	09/09/97 13:20																			

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ĩ	As-I C	-e-1	5	-	-										5			
W(0 criteria 0.10 0.025 2.0.5 0.002 0.002 0.002 0.002 0.001 0.0		-			mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/100mL		cysts/100 ml
	0.10	-			0.002	0.002	0.300	-	00	0.050	20	0.025	0.003			0.007	0	0	0
	> 90:00 >	0.06	7.4 <	> 900.0	0.006	0.006	0.057	0.2	0.7 <	0.001	1.5 <	0.02 <	0.06	0.40	2.25	0.003	V	-	
	< 0.06 <	0.06		0.006		0.006	0.040	0.4	0.8	0.002	1.7 <	0.02 <	0.06	0.46	2.47 <	0.002	V	-	
	3:27																	m	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.06 	0.06	9.3 <	0.006	0.00	0.006	0.015	0.2	1.0	0.005	2.0 <	0.02 <	0.06	0.55	2.81 <	0.002		ষ	
	> 90:0	0.06	6.8	> 900.0		0.006		0.2	0.6 <	0.001	1.5 <	0.02 <		0.42	2.17	0.004	V	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	> 60:0	0.06	6.4 <	> 900.0		0.006		0.6	0.8	0.001	1.8 <	0.02 <	0.06	0.83	2.93 <		v	-	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.33 <	0.06		> 900.0	> 900.0	0.006		0.7	1.0	0.002	2.2 <	0.02 <	0.06	1.51	3.17	0.005		2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	< 0.06 <		11.0 <	> 900.0	> 900.0	> 900.0		0.6	1.0	0.003	2.1 <	0.02 <	0.06	1.46	2.91 <	0.002		-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.10 <	0.06	4.9	> 800.0	> 900.0	0.006		0.3	0.6 <	0.001	1.7 <	0.02 <	0.06	0.62	2.41	0.004	V	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	< 0.06 <	0.06	2.6 <	0.006	0.015 <	0.006	0.037	0.7	0.5	0.003	2.0 <	0.02 <	0.06	0.67	3.37 <	0.002	v	-	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	< 0.06 <	0.06		> 900.0	> 900.0	0.006	0.068	0.7	0.7	0.002	2.4 <	0.02 <		0.81	4.77	0.00	v	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	< 0.06 <	0.06	5.0 <	0.006	0:030	0.009	0.068	0.9	0.9	0.003	2.7 <	0.02 <	0.06	0.84	4.69	0.012		-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	< 0.06 <	0.06	2.0	0.010 <		0.006	0.034	0.5	0.3 <	0.001	2.0 <	0.02 <		0.55	2.61	0.003	v	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	< 0.06 <	0.06	10.0 <	0.006		0.006	0.012	0.3	1.0 <	0.001	1.9 <	0.02 <	0.06	0.86	2.76 <	0.002		μ	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	< 0.06 <	0.06	9.8	0.006		0.006	0.019	0.3		0.001	1.9 <	0.02 <	0.06	0.86	2.74 <	0.002		2	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	< 0.06 <	0.06		0.006		0.006	0.014	0.2	1.0 <	0.001	1.9 <	0.02 <	0.06	0.87	2.76 <	0.002		ى	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	< 0.06 <	0.06		> 900.0		0.006	0.008	0.3	1.0	0.003	1.8 <	0.02 <	0.06	0.83	2.68 <	0.002		2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9:31																	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	< 0.06 <	0.06	13.6 <	0.006	0.025 <	0.006 <	0.006	0.4		0.001	2.1 <	0.02 <		1.17	2.86	0.006		m	
	> 20.0	0.06	6.6	> 900.0	> 900.0	0.006	0.046	0.2	0.7 <	0.001	1.7 <	0.02 <		0.65	2.43 <	0.002	v	-	
	< 0.06 <	0.06		0.006	> 200.0	0.006	0.025	0.2	0.7 <	0.001	1.5 <	0.02 <	0.06	0.38	2.55 <	0.002		38	0
1 09009X11:35 006 0.012 0.032 0.4 10 1 11/26x971:35 0.06 5.2 0.006 0.006 0.012 0.044 0.1 0.5 1 11/26x971:35 0.012 0.056 0.006 0.006 0.0144 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 3.8 0.4 0.8 3.8 0.8 0.8 0.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3	0:34																	2	0
I 11/26/97 11:30 0.12 0.06 2.8 0.006 0.006 0.014 0.1 0.5 San Juan mean 0.09 0.06 7.5 0.006 0.072 0.077 0.037 0.4 0.8 0.8 0.6 0.8 0.07 0.037 0.4 0.8 0.	< 0.06 <	0.06		0.006	0.014	0.012	0.032	0.4		0.001	1.4 <	0.02 <		0.53	2.78	0.004		m	
0.09 0.06 7.5 0.006 0.012 0.007 0.037 0.4 0.8 0.07 0.00 3.1 0.001 0.008 0.002 0.258 0.2 0.3 0.07 0.06 7.9 0.006 0.012 0.022 0.2 0.3	0.12 <	0.06	2.8	> 900.0	> 900.0	0.006	0.044 <	0.1	0.5 <	0.001	1.4 <	0.02 <		0.32	2.12 <		v	-	0
0.07 0.00 3.1 0.001 0.008 0.022 0.028 0.2 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.09	0.06	7.5	0.006	0.012	0.007	0.037	0.4	0.8	0.002	1.9	0.02	0.06	0.70	2.86	0.003	,	3.2	0.0 0.0
	0.07	0.00	3.1	0.001	0.008	0.002	0.028	0.2	0.3	0.001	0.3	0.00	0.00	0.31	0.64	0.002	~~	5.1	0.0 0.0
	à	000	e T	000				4	ŗ	0000	4	44	0			100 0			
	0.27	0.00	1.2	0.000	0.010	0.00/	0.149	0.3	0.7	0.000	1.0	0.02	0.00	0.72	2.79	0.005	-		
0.002 0.462 0.3 0.4	0.49	0.00	5.6	0.000	0.006	0.002	0.462	0.3	0.4	0.013	0.6	0.00	0.01	1.34	1.02	0.007	3	28.0	1.1 1.6