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Multiple Regression: Selecting the best subset

Researchers with a multiple regression at hand, frequently wonder if all the independent

variables are necessary. Suppose a multiple regression with k variables fits the data quite well.

The question is: "Would a regression with, say, p variables (p < k) fit just as well?" Stepwise

methods have traditionally been used to answer this question, primarily because of computing

limitations. Weisberg (1980, page 195) states that:

"Unfortunately, there are important drawbacks to the use of stepwise procedures. Firstly, ... the model

chosen by stepwise regression need not be the best of any criterion of interest; indeed, because of the nature of

the one-at-a-time philosophy of stepwise methods, there is no guarantee that the model chosen will in fact

include any of the variables that would be in the best subset. Stepwise methods are best when the independent

variables are nearly uncorrelated, the condition under which finding a subset model is least likely to be

relevant. Also, it is possible to construct examples in which the best subset of size p = 2 is completely disjoint

from the best subset for p = 3, and so on.

Probably the worst indictment of stepwise techniques, at least for the user who is not statistically

sophisticated, is that they produce a single result that appears to be the model. Similarly, many users pay

undue attention to the order in which the variables are entered or deleted from a model ...The ordering of the

variables that we get from stepwise regression is an artifact of the algorithm used and need not reflect

relationships of substantive interest."

Why not fit all possible subsets? Many computing packages do this quite readily now.

Computing limitations are not the problem anymore.

SAS, for instance, will fit all subsets, or, selected "best" subsets if there are many independent

variables. Suppose that Y is the dependent variable with X1, X2, ..., Xk, as independent variables.

i) The older versions of SAS (i.e. those before Version 6) would use the following code:

PROC RSQUARE CORR;
MODEL Y = X1 X2 -- Xk/CP ADJRSQ MSE;

ii) Version 6 uses:

PROC REG CORR;
MODEL Y = X1 X2 -- Xk/SELECTION = CP ADJRSQ MSE;
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DEFINITIONS:

1. SS = sums of squares

2. MS = mean square

3. CP = Mallow's C(p) statistic:

SS(k variable mode l) - SS ( p variable model)C(p) = ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss+ 2p - (k + 1)MS ( k variable mode l)

If the p variable model is as good as the k variable model then C(p) ≤ p+1

4. RSQUARE = R2 = squared correlation coefficient:

2R = SS(Model) / SS(total) = 1 - SS(residuals) / SS(total)

2R is often interpreted as the proportion of the variability in the data which is explained by the

model.

25. ADJRSQ = Adjusted R :

2 2Radj = 1 - (n-1)(1-R )/(n-p)
2= R adjusted for the influence of the sample size, n, relative to the number of

2 2variables, p. Thus, if n >> p then Radj J R .

An example of the output (SAS/PC version) is shown below:

ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss

EXAMPLE FOR SAS/PC PRACTICE
---- PROGRAM SEC41 ----

REGRESSION OF Y ON X1, X2, and X3

N = 192 Regression Models for Dependent Variable: Y

C(p) R-square Adjusted MSE Variables in
In R-Square Model

0.39001 0.39522833 1 0.39204532 32.979444 X2
2.10964 0.39612839 2 0.38973821 33.104596 X1 X2
2.29141 0.39554487 2 0.38914852 33.136585 X2 X3
4.00000 0.39648035 3 0.38684971 33.261287 X1 X2 X3
4.11890 0.38325781 1 0.38001179 33.632221 X1
6.02869 0.38354739 2 0.37702408 33.794294 X1 X3

120.73759 0.00888723 1 0.00367085 54.047419 X3

ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss

2Note that the subsets are sorted by C(p) since it was listed first in the MODEL statement. R is also

output although it was not specified in the MODEL statement. The column titled In is the number

of variables (p) in the model. Thus, look for models with C(p) ≤ In + 1.
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The output can be used:

i) to test an individual model or regression by:

2R /dfnF = rrrrrrrrrrrrrrrrrrrrrrrrr , dfn = p, dfd = n - (p + 1)
2(1 - R )/dfd

2ii) to compare two models when one model (with p1 variables and R1) contains more variables
2than the other (with p2 variables and R2). The comparison tests whether adding the extra variables

explains a significant amount of variation in the data (using the additional sums of squares

principle). The test is calculated by:

2 2(R1 - R2)/dfnF = rrrrrrrrrrrrrrrrrrrrrrrrrrr, dfn = p1-p2, dfd = n - (p1 + 1)
2(1-R 1 )/dfd

2 2Note: In this case, you mmmiiiggghhhttt choose the R for the model with ALL the variables (instead of R1)

for the denominator (see Example 3 below), since an assumption of Mallow's C(p) statistic is that

the model with all variables in it is a "correct" model.

EXAMPLES:

1. Test model: Y = X2

(0 . 3952/1)F = ssssssssssssssssssssssssssssssssssssssssssssssss = 124.2, df = 1, 190(1-0.3952) / (192-2)

2. Test model: Y = X1, X2

(0 . 3961)/2F = ssssssssssssssssssssssssssssssssssssssssssssssss = 62.0, df = 2, 189(1-0.3961) / (192-3)

3. Test contribution of X1 to model: Y = X1, X2

(0 . 3961-0 . 3952) / (2-1)F = sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss = 0.28, df = 1, 188(1-0 . 03965) / (192-4)

Tests 1 and 2 indicate that both models provide a statistically "significant" fit. Nevertheless

the third test indicates that X2 does as good a job explaining the variation in the data as does X1

and X2 together. Thus a model with only X2 in it may be sufficient.

The next step in the data analysis is to examine the model with X2 for lack of fit,

heterogeneity of variance etc. In other words, you still don't know if X2 is the best model. For

instance, the model with X1 and X2 may have better looking residuals, etc.
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Using the example output, test the 3 variable model and the contribution made by X1 and X3.

In other words, does X2 do as good a job as all three variables?

ANSWER: In the next pamphlet.


