TECHNICAL SUMMARY REPORT

Updated November 2008-11-17

Pit Name: Strimboldt Pit

Provincial Pit #: P5579

Location

Strimboldt Pit is located on Hwy 16 east, approximately 0.5 kilometres west of the Hwy 16 and Hwy 118 intersection. The pit is on the north side of Hwy 16.

Legal Description

The Strimboldt Gravel Reserve is legally described as the "East half of unsurveyed portion of District Lot 2629, Range 5, Coast District."

Material Gradation

The material gradation and durability characteristics are based on the 1993 subsurface investigation results. The investigated areas are shown on the attached sketch plan.

The table below shows the average overall gradation of the granular areas.

Fines	Sand	Gravel	Ove	rsize		
40.075mm	0.075 -	4.75 -	75 - 150mm	. 150mm		
<0.075mm	4.75mm	75mm	75 - 150mm	>150mm		
2%	54%	42%	2%	0%		

Material Durability

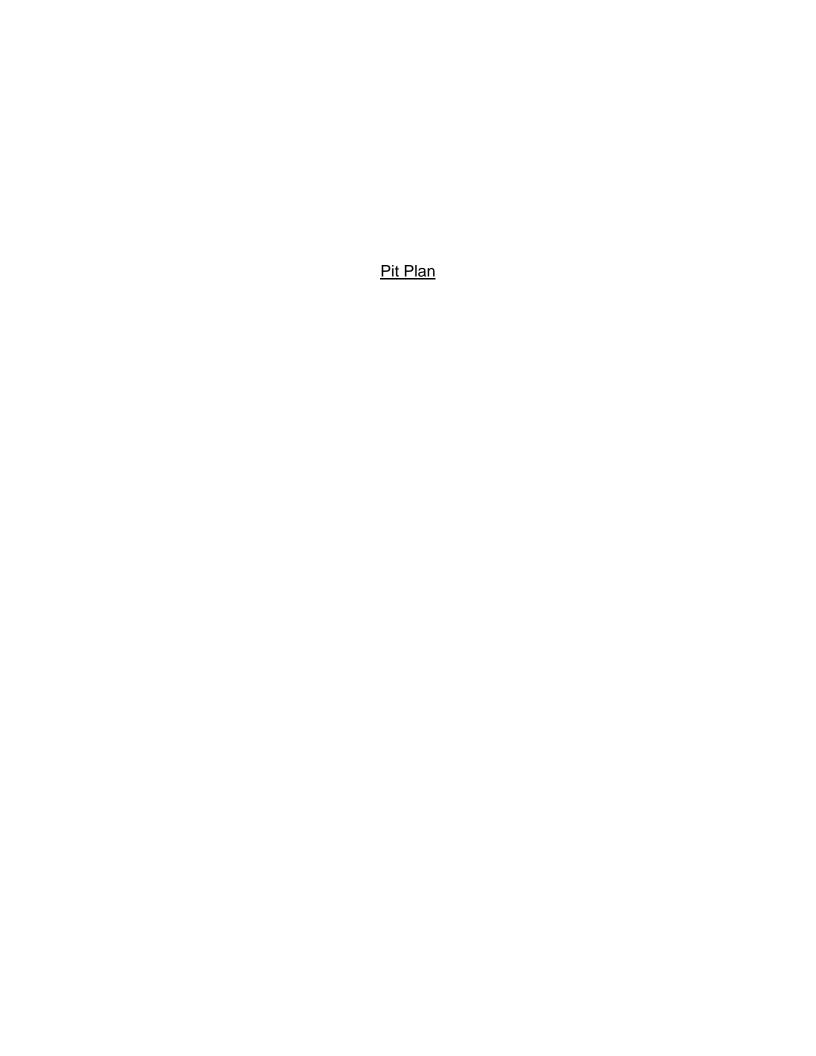
Average Degradation	Durability	y Index	MgSO ₄ Soundness Average Sand Equivalent				
	Course Aggregate	Fine Aggregate	Course Aggregate	Fine Aggregate			
69	73	75	4.1% loss	7.8% loss	87		

The generally accepted durability index value for base course & paving aggregates is above 65 on the coarse fraction.

Gravel Volume Estimates

Area	Α	В	С	Total
Volume (m³)	14,000	89,000	30,000	133,000

Based on the useable gravel thickness of 2.8 - 4.0m, the gravel volume is estimated to be 133,000m³ in the areas investigated.


Suitability

Based on the 1993 investigation results, the gravel within the investigated areas at the Strimboldt Gravel Reserve is suitable for the production of 25mm Base Course and Paving Aggregates. Production of these may require selective screening to achieve the required fracture counts.

Due to the high durability characteristics of the gravel in this pit, it is recommended that the gravel be used for the production of only quality aggregates.

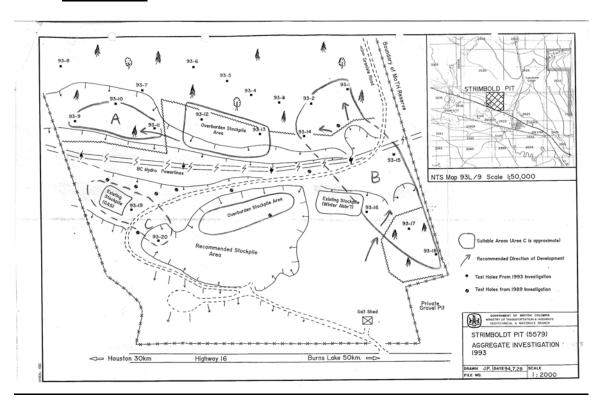
Pit Development Notes

- The landform in which the gravel is found is a glacial outwash terrace.
- The water table was not encountered during this investigation but was encountered at 1.5 metres below the pit floor in the earlier 1989 investigation.
- Most of the pit area south of the hydro power lines is cleared except for some patches of light brush. The area north of the hydro power lines is treed with mixed poplar, pine, and spruce.
- Overburden, where present, consists of an average of 0.5 metre thick silty sand or silt.
- · Access to the pit is directly off Highway 16.

Test Pit Summary

							EO	TEC	CHN	ICAL	AND) MA		ALS E	NGIN	IGHWA IEERIN IEET			-
PI	30,	JE(CT _	57	TRI	ΣM	1 B	01	P	4	PIT						FILE N	o	T 16/93
			5 D													-	CALCUL SHEET	ATIONS	BY
* ¥	ğ	. 8	NOLLY	G	RADA	ATIO	N O	F M	ATER	IAI S	PLASTIC FINES	SO	UNDNE	ss / r	DURABI	LITY	MATERIAL AT		
TESTHOLE	DEPTIN OF OVERBURDEN	DEPTH OF SOIL BOUNCARES	SOIL CLASSIFICATION		VERSIZ						SAND EQUINALENT	CORPORATOR'S	MAGNESIUM SOUNDS	SULPHATE NESS COARSE AGG	DUR INC	COARSE AGG	BOTTOM OF HOLE	WATERTABLE DEPTH	COMMENTS
<u></u>	.5 M	0.5	OB			na.	9.5	93				σ-	PINE AUG	COMIL AND	TIME ADD	COMSE ALC			WASTE
		1.5	5M,	1			_		20										
-		袋	GW	4			67	29	4	125	74	65					EW		
ζ	.5M	0.0	оВ		-														WASTE
		0.5	SHI	1			25	55	20	75							41.5		
		4.0	GPGM	2	-		57	31	12	150	41	70					GPGM		
3	.5 H	0.0	oВ															-	WASTE
			SM2	2			25	55	20	125			-						1
_		2.0 4.0	GPGM				57	32	//	125	17	- ·		-			GPGM		
7	5 H	0.0	ØВ	_															WASTE
		2.0	SMI	1			25	55	20	75									
		2.0 4.0	GW	3		-	_	36		150					69	73	GW		
<u></u>	.5H	0.0	OB																WASTE
_	,=.,	0.5	GM2	2			55	25	20	150								tt	-511 5/ 16
		3.5	GM3	1			45	25	30	100							GM3		-

MINISTRY OF TRANSPORTATION AND HIGHWAYS GEOTECHNICAL AND MATERIALS ENGINEERING AGGREGATE TESTHOLE SUMMARY SHEET FILE No. DATE SEPT 16/93 CALCULATIONS BY JP 2 OF 4 PROJECT STRIMBOLD PIT REGION _ S DISTRICT _ LAKES SOUNDNESS / DURABILITY WATERTABLE DEPTH DEPTH OF OVERBURDEN OF SOIL. SOIL. SOIL. CLASSIFICATION MATERIAL AT GRADATION OF MATERIALS COMMENTS MAGNESIUM SULPHATE SOUNDNESS BOTTOM OF HOLE 6 .5M 0.5 OB 0.5 GH 2 20 GH 2 20 GH 3 2 WASTE 45 35 20 150 40 30 30 150 GM3 7 .5M 0.0 OB 0.5 OB 0.5 SM4 WASTE 23 33 44 100 SM4 8 .5H 0.0 OB 0.5 OH3 / WASTE 35 30 35 150 GH3 9 .5M 00 0B 00 0PEM 3 WASTE 70 23 7 200 67 30 3 150 10 30 60 75 40 56 4 75 61 50 SP 10 5H 05 0B 05 0B 08 6PCH 2 18 40 SP WASTE


SP

60 33 7 125 8 90 2

MINISTRY OF TRANSPORTATION AND HIGHWAYS GEOTECHNICAL AND MATERIALS ENGINEERING AGGREGATE TESTHOLE SUMMARY SHEET FILE No. DATE SEPT 16/93 CALCULATIONS BY 3 P THE T 3 OF 4 PIT PROJECT ___STRIMBOLD REGION 5 DISTRICT LAKES | SH | Section | WATERTABLE DEPTH PLASTIC FINES SOUNDNESS / DURABILITY GRADATION OF MATERIALS COMMENTS MAGNESIUM SULPHATE DURABILITY SOUNDNESS INDEX BOTTOM OF HOLE FINE AGG COARSE AGG FINE AGG WASTE 60 32 8 150 50 20 30 150 GC3 12 .5H 0.0 OB 0.5 GC3 / WASTE 50 20 30 200 603 13 1H 00 GP 2 10 GH3 1 60 35 5 125 50 20 30 200 GM3 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 14 WASTE GP 59 40 1 150 75 74 15 15H 0.0 OB WASTE 45 53 2 100 45 51 4 100 78 69 40 SP 1 5P 0.0 SP 2 96 68 SP 16 39 59 2 100

T_STRIMBOLD PIT FILE NO	
DISTRICT LAKES DISTRICT LAKES DISTRICT LAKES	/93 TP
GRADATION OF MATERIALS PASTO SOUNDNESS / DURABILITY MATERIAL AT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COMMENTS
TOVERSIZE LE S S S S S S S S S S S S S S S S S S	<u> (</u>
	ASTE
EPCH 2 55 38 7 150	
SP 30 67 3 76 SP	· · · · · · · · · · · · · · · · · · ·
ов и	VASTE
SP 2 44 55 / 100 75 73	OHSTE
SP / 35 63 2	
	WASTE
SP / 48 51 / 100 SP	
SP 8 90 2 100 90 65 SP	,
ST	

Sketch Plan

Photos: taken in Nov 2008

Prepared by: Julie Vineham Geoscientist In Training Northern Region

For: Regional Aggregate Resources Manager Northern Region