



BC's Community Energy and Emission Inventories...supporting efforts towards Complete, Compact, Energy-Efficient Communities

Are we living more compactly? Housing Type

In BC, single family detached housing made up 49% of housing in 2006.

Are we driving less? Commute To Work

	1996	2006
	79.7%	76.7%
	6.2%	7.7%
	0.5%	0.7%
ķ	7.9%	8.9%
%	1.2%	1.1%

In BC, 10% of people took transit, 7% walked, and 2% cycled to work in 2006.

Residential Density

This data is only available for municipalities.

BC municipal average: 7.4 people per net ha

Are we living closer to where we work? Commute Distance

This data is currently unavailable in the CEEI 2007 Reports

In BC, 41% of people lived within 5km of their work in 2006.

For more information and to provide feedback on your Community Energy and Emissions Inventory (CEEI) Report see back page.

Sectors

On Road Transport	ation	<u>Vehicles</u>	Consumption	Measurement	Average-VKT(km)	Energy (GJ)	CO2e (t)
Small Passenger Cars	Gasoline	1,570	2,134,227	Litres	12,962	74,698	5,122
emain accornger care	Diesel Fuel	81	78,597	Litres	13,428	3,010	215
	Other Fuel	0	0	Litres	0	-	-
				Small Pa	77,708	5,337	
Large Passenger Cars	Gasoline	941	1,993,012	Litres	16,638	69,755	4,765
0	Diesel Fuel	33	66,160	Litres	16,632	2,534	180
	Other Fuel	< 10	12,819	Litres	15,553	491	20
				Large Pa	assenger Cars	72,780	4,965
Light Trucks, Vans, SUVs	Gasoline	3,381	9,929,593	Litres	19,343	347,536	23,877
, ,	Diesel Fuel	439	1,016,100	Litres	17,784	38,917	2,775
	Other Fuel	52	116,275	Litres	13,177	4,453	178
				Light Tr	ucks, Vans, SUVs	390,906	26,830
Commercial Vehicles	Gasoline	46	195,697	Litres	17,092	6,849	458
	Diesel Fuel	76	319,069	Litres	19,478	12,220	859
	Other Fuel	< 10	26,576	Litres	11,666	1,018	41
				Comme	cial Vehicles	20,087	1,358
Tractor Trailer Trucks	Gasoline	< 10	7,486	Litres	11,108	262	18
	Diesel Fuel	106	2,503,788	Litres	65,235	95,895	6,738
	Other Fuel	0	0	Litres	0	-	-
				Tractor	Trailer Trucks	96,157	6,756
Motorhomes	Gasoline	93	96,410	Litres	2,686	3,374	225
	Diesel Fuel	14	8,787	Litres	3,049	337	24
	Other Fuel	< 10	3,046	Litres	2,189	117	5
				Motorho	mes	3,828	254
Motorcycles, Mopeds	Gasoline	109	42,660	Litres	4,811	1,493	100
				Motorcy	cles, Mopeds	1,493	100
Bus	Gasoline	10	111,671	Litres	25,445	3,908	262
	Diesel Fuel	< 10	135,942	Litres	30,793	5,207	366
	Other Fuel	0	0	Litres	0	-	-
				Bus		9,115	628

Page 3 of 8 June 30, 2010

244
11,107
11,157
34,827

Buildings	<u>Type</u>	Connections	Consumption	Measurement	Energy (GJ)	CO2e (t)
Residential	Electricity	5,818	98,630,065	Kilowatt Hours	355,068	2,434
	Natural Gas	2,035	121,946	GigaJoules	121,946	6,219
	Heating Oil		53,044	GigaJoules	53,044	3,739
	Propane		9,139	GigaJoules	9,139	558
	Wood		64,744	GigaJoules	64,744	24
			Residential		603,941	12,974
Commercial/Small-Medium Industrial	Electricity	718	40,164,445	Kilowatt Hours	144,592	990
	Natural Gas	173	90,043	GigaJoules	90,043	4,592
			Commercial/Sma	III-Medium Industrial	234,635	5,582
			Electr	city:	499,660	3,424
			Natura	al Gas:	211,989	10,811
			Propa	ne:	9,139	558
			Wood		64,744	24
			Heatir	ng Oil:	53,044	3,739
Buildings Totals			Buildi	ings:	838,576	18,556

Solid Waste		Mass (t)	CO2e (t)
	Community Solid Waste	7,125	8,088

Grand Total		CONSUMPTION		ENERGY (GJ)	<u>CO2e (t)</u>
	Diesel Fuel	4,128,443	L	158,120	11,157
	Electricity	138,794,510	kWh	499,660	3,424
	Gasoline	14,510,756	L	507,875	34,827
	Heating Oil	53,044	GJ	53,044	3,739
	Natural Gas	211,989	GJ	211,989	10,811
	Other Fuel	158,716	L	6,079	244
	Propane	9,139	GJ	9,139	558
	Solid Waste	7,125	Т	0	8,088
	Wood	64,744	GJ	64,744	24
Total of Transportation / E	Buildings / Solid Waste:			1,510,650 GJ	72,872 tonnes

Memo Items

Buildings	<u>Type</u>	Connections	Consumption	Measurement	Energy (GJ)	<u>CO2e (t)</u>
Large Industrial	Electricity	0	0	Kilowatt Hours	-	-
	Natural Gas	0	0	GigaJoules	-	-
			Lar	ge Industrial	-	-

Supporting Indicators

Below you will find supporting indicators for which data is provided. These are the first five supporting indicators for which data is provided as a part of the updated 2007 CEEI. Columns with all zeros indicate data unavailable in these CEEI reports. Thirteen additional supporting indicators are under consideration for future reports (see next page). Local government feedback is requested on all supporting indicators. Please take the time to complete the short CEEI Survey at http://www.env.gov.bc.ca/cas/mitigation/ceei/index.html or contact us directly at CEEIRPT@gov.bc.ca

Housing Type - Private dwellings by structural type

Housing type is important for reducing building-related GHG emissions and energy consumption. A trend toward fewer single family dwellings indicates an increase in residential density, which is known to reduce transportation-related GHG emissions.

	1996		200	2001		2006	
	Units	%	Units	%	Units	%	
Single Detached House	3,220	25	3,285	89	3,265	84	
Semi-Detached House	60	0	45	1	55	1	
Row House	30	0	35	1	55	1	
Apartment, Duplex	10	0	35	1	30	1	
Apartment, 5 storeys or higher	0	0	0	0	0	0	
Apartment, under 5 storeys	85	1	25	1	65	2	
Other Single Attached House	0	0	5	0	5	0	
Movable Dwelling	430	3	275	7	400	10	

Commute to Work - Employed labour force - by mode of commute

An increase in the number of people choosing to walk, cycle and use transit reduces GHG emissions. More compact, complete, connected communities should see an increase in the use of these transportation modes.

	1996		20	2001)6	
	People	%	People	%	People	%	
Car, Truck, Van as Driver	3,335	80	2,885	77	3,135	77	
Car, Truck, Van as Passenge	260	6	255	7	315	8	
Public Transit	20	0	20	1	30	1	
Walked	330	8	315	8	365	9	
Bicycle	50	1	10	0	45	1	
Motorcycle	5	0	25	1	0	0	
Taxicab	0	0	0	0	0	0	
Other Method	190	5	220	6	195	5	

Residential Density

* Net of Crown land, parks, Indian Reserves, water features, airports, ALR,waste disposal sites.

Increasing residential densities is known to reduce vehicle use resulting in fewer transportation-related GHG emissions. There are many additional benefits from more compact development.

2009

This data is currently unavailable in the CEEI 2007 Reports.

Commute Distance

Shorter commute distances generally reduce GHG emissions by increasing the likelihood of people walking, cycling or using transit. Commute distance is also indicative of the 'completeness' of a community from an employment perspective.

200	16
People	%

This data is currently unavailable in the CEEI 2007 Reports.

Parks and Protected Greenspace

- * Total is net of Indian Reserves
- ** The quantity of parkland may be underestimated

Parks and protected greenspaces are important for the protection and enhancement of community carbon sinks.

	2009				
	Area (ha)	%			
National Parks	22,289.6	3.3			
Provincial Parks / Protected Areas	117,060.8	17.2			
Local Parks	18.6	0.0			
Agricultural Land Reserve	7,670.1	1.1			
Other land use	533,713.2	78.4			
Total Land Area	680,752.3	100.0			

Page 7 of 8 June 30, 2010

Supporting Indicators Under Consideration

The following supporting indicators are under consideration for inclusion in future CEEI reports. The 2007 CEEI reports provide these 'placeholder' indicators to give indication of data that may be provided in the future by the Province on an ongoing basis to assist in monitoring actions to reduce GHG emissions and energy consumption. Please submit feedback to CEEIRPT@gov.bc.ca (see survey on CEEI website).

On-Road Transportation (and Land Use)

Proximity to Transit Persons, dwelling units (du) and employment within 400m of a quality transit stop/line

Proximity to Services Persons and dwelling units (du) within 400m of services (e.g. grocery store, school, other retail etc.)

Transit Ridership Annual per capita transit ridership

Buildings

Residential; Public Building

Energy Intensity

Floor Space

Average energy use per person per square metre of floor space

Average residential dwelling unit size

Solid Waste (and Water)

Waste Diversion Tonnes of waste diverted

Avoided Waste Emissions Tonnes of CO2e of avoided future emissions due to reduced waste since 2007

Water Use Per capita residential water use

Land-Use Change

Impervious Surface Cover % change in impervious surface cover

Tree Canopy Cover % change in tree canopy cover

Community and Renewable Energy Supply

District Energy # and energy output (e.g. buildings connected, energy consumed in GJ or kWh) of district energy systems by energy type (e.g.

renewable or non-renewable)

On-Site Renewable Energy # and energy output (in GJ or kWh) from households producing and/or consuming on-site renewable heat (e.g. biomass, solar

thermal, geo-exchange) and/or electrical (e.g. solar photovoltaic, small wind, small scale hydro) energy

Energy Recovery From Waste Energy (GJ or kWh) recovered from waste (e.g. from landfill gas, sewage treatment, industrial operations, farm)

Page 8 of 8 June 30, 2010

This is your local government's Updated 2007 Community Energy and Emissions Inventory (CEEI) Report

What is a CEEI Report?

CEEI Reports are a result of a multi-agency effort to provide a province-wide solution to assist local governments in BC to track and report on community-wide energy consumption and greenhouse gas (GHG) emissions every two years. CEEI Reports are one of the many resources available through the Climate Action Toolkit (http://www.toolkit.bc.ca), a web-based service provided through the ongoing collaboration between UBCM and the Province.

Why does my local government need a CEEI Report?

A community energy and GHG emissions inventory can be a valuable tool that helps local governments plan and implement GHG and energy management strategies, while at the same time strengthening broader sustainability planning at the local level. CEEI reports fulfill local governments' Climate Action Charter commitment to measure and report their community's GHG emissions profile, establish a base year inventory for local governments to consider as they develop targets, policies, and actions related to BC's *Local Government Act* requirements, and fulfill Milestone One requirements for those local government members of the Federation of Canadian Municipalities' (FCM's) Partners in Climate Protection (PCP) program.

A first in North America!

CEEI is a first in North America and a first step for BC communities. The 2007 CEEI Reports are based on best available province-wide data. The accuracy and detail of CEEI reports will continue to improve to meet increasing local and provincial government information needs. Improvements have been made from the original draft 2007 CEEI Reports posted in Spring 2009. These include estimates for residential heating oil, propane and wood use, breaking out small and medium from large industrial buildings, including updated land-use change and new agricultural sectors as 'memo items', and the first of a suite of 'supporting indicators'. Following the 2010 CEEI Reports, inventories will be generated every two years, and will continue to improve as government information needs, international protocols and new data sources emerge.

For More Information:

- The full list of all BC local government Updated 2007 CEEI Reports, CEEI Data Summary Report, Technical Methods and Guidance Document, and additional information on the Secondary Indicators are available at: http://www.env.gov.bc.ca/cas/mitigation/ceei/index.html.
- For guidance on target setting and community actions, go to http://www.cd.gov.bc.ca/lgd/greencommunities/targets.htm.

We Need Your Feedback:

- To continue to guide us on CEEI, particularly now with the new Indicators. Please take the time to complete the short CEEI Survey at http://www.env.gov.bc.ca/cas/mitigation/ceei/index.html or contact us directly at CEEIRPT@gov.bc.ca

Notice to the Reader: This CEEI Report uses information from a variety of sources to estimate GHG emissions. While the methodologies, assumptions and data used are intended to provide reasonable estimates of greenhouse gas emissions, the information presented in this report may not be appropriate for all purposes. The Province of BC and the data providers do not provide any warranty to the user or guarantee the accuracy or reliability of the data contained in this report. The user accepts responsibility for the ultimate use of such data. We need your help to make these reports better, where you do note inaccuracies, please contact us.