Biosolids Forest Fertilization

A Complementary Mid-Term Timber Booster?

John M Lavery, R.P. Bio., A.Ag.

Biosolids Forest Fertilization

February 2011

Let's Fertilize Our Minds...

- An introduction to biosolids
- Biosolids management in BC
- Regulatory framework
- Why fertilize with biosolids
- Logistics: how we do it now
- Case studies
- Moving towards a biosolids fertilization program

What is Biosolids?

What is Biosolids?

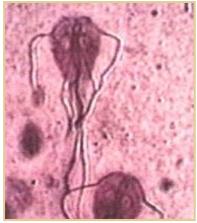
The *treated, stabilized* semi-solid product of a wastewater treatment process:

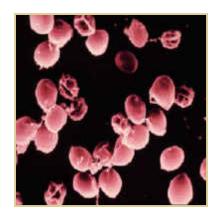
- Municipal wastewater
- Pulp and paper wastewater
- Contain:

Biosolids Forest Fertilization Organic matter (>50%) Nutrients (0.1%-10%) Trace element content

Interior Forest Fertilization Meeting February 17, Prince George BC

Trace Element Limits


Trace Element	Chemical Fertilizers	Biosolids	
Arsenic	75	75	
Cadmium	20	20	
Chromium	No limit	1,060	
Cobalt	150	150	
Copper	No limit	2,200	
Lead	500	500	
Mercury	5	15	
Molybdenum	20	20	
Nickel	180	180	
Selenium	14	14	
Zinc	1,850	1,850	



Biology of a Living Fertilizer

Treatment:

- Raw sludge is treated and stabilized to attenuate pathogens (giardia, cryptosporidium, salmonella, helminthes)
- Reduces indicator organisms (fecal coliform) to >2,000,000 MPN g (drywt) = 2e⁶ MPN/g
- Often reduced to less than 100,000 MPN/g
- High degree of die-off in environment
- Manures often contain 10⁸ MPN/g 10¹² MPN/g by comparison

A Rose By Any Other Name - Odour

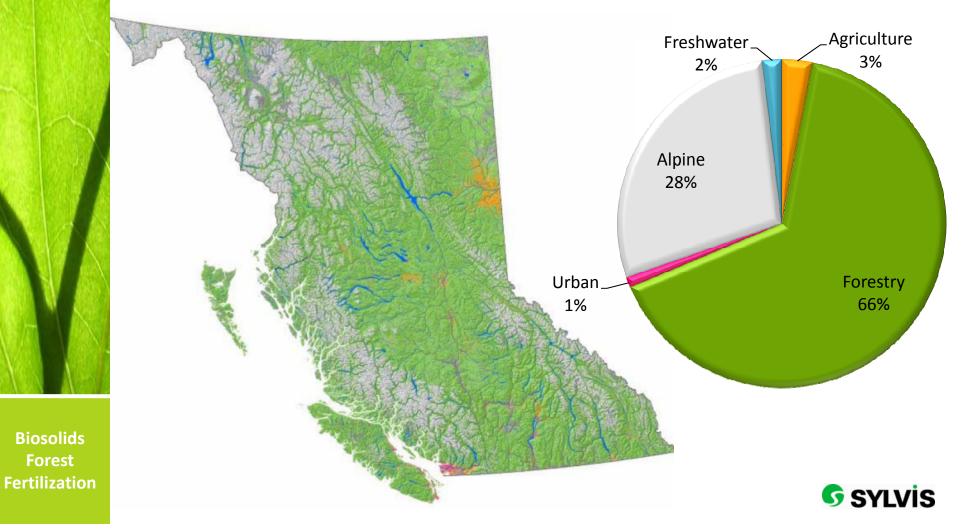
Stabilization:

- Reduces volatile solids by a minimum of 38% (significant cause of odour)
- Most biosolids have musty, peaty smell
- Odour is transient
- Generally contained to within 100 metres of the application site
- Dissipates rapidly after application

Interior Forest Fertilization Meeting February 17, Prince George BC

Biosolids Management in BC

- Land reclamation
- Agricultural application
- Silvicultural application
- Forest Engineering



Land Use in BC

Organic Matter Recycling Regulation

Regulates...

residuals • products

Regulatory Framework in BC

Organic Matter Recycling Regulation

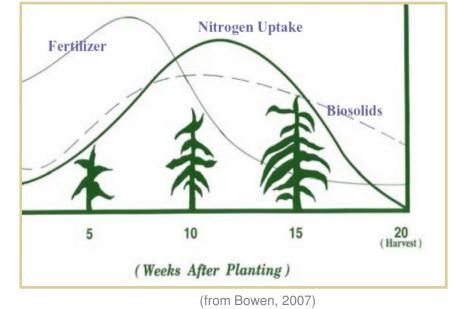
Applies to:

 production, distribution, storage, sale, use or land application of biosolids or compost

- Requires qualified professionals to author a LAP
- Biosolids process and quality criteria, post-application soil quality
- Same requirements apply for biosolids as for fertilizers in forest application (buffers, etc.)
- No additional approvals, no additional requirements to consult under OMRR (notification process)
- Biosolids is a component of the forest fertilization handook

Why Forest Fertilization with Biosolids?

Ecosystem benefits (interior)


Improves soil

Biosolids

Forest

Fertilization

- Increases water-holding capacity
- •Improves soil structure
- •Adds nutrients
- •Slow-release
- Understory vegetation
 - Increased growth
 - •Animal habitat
 - •Economic potential

Why Forest Fertilization with Biosolids?

Industry benefits

- Lowest cost fertilizer option
- Full suite fertilization
- Increased timber production
- Carbon sequestration
- Site improvement
- Industry perception
- Relationships

Growth BEFORE Biosolids 20 years Biosolids 9 years Biosolids 9 years

Comparing Fertilizer and Biosolids

Chemical fertilizer Biosolids

- Advantages
 - •Traditional
 - •Easy to apply
- Disadvantages
 - •Expensive
 - •Non-renewable
 - Efficacy
 - •Timing

Advantages

- Low cost
- •Recycled, C sequestering
- •High in organic matter
- Improves moisture retention
- •Macro and micronutrients
- Disadvantages
 - •Bulky, land-based application
 - Perception

Biosolids fertilization is a low-cost complement to a chemical fertilization program

Comparing Fertilizer With Biosolids – NPK+

Motorial	Percentage by Weight						
Material	N	Р	К	Са	Mg	S	
Ammonium nitrate	30	-	-	-	-	-	
Interior Urea/S	35	-	-	-	-	10	
Potassium nitrate	13	-	44	0.6	0.4	0.2	
Potassium magnesium sulfate	-	-	22	-	11	23	
Fish waste (acidulated)	5.7	3	-	6.1	0.3	0.2	
Biosolids	5	2.11	0.09	2.34	0.24	0.54	

Biosolids Forest Fertilization

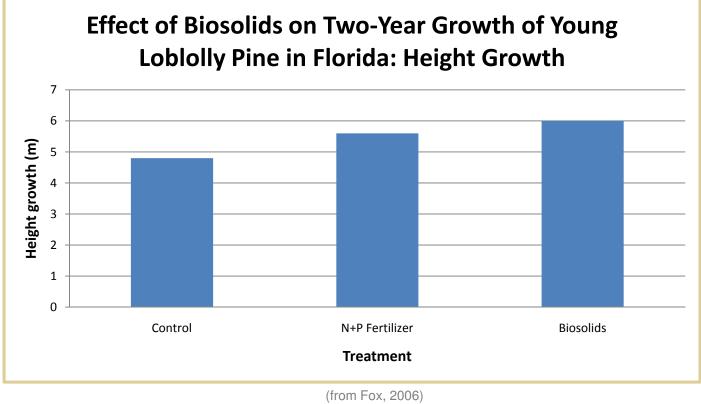
Typical biosolids application: 500 kg N, 200 kg P, 9 kg K, 54 kg S

(adapted from Fox *et al.*, 2006, and http://www.soil.ncsu.edu/publications/Soilfacts/AG-439-18/)

Regional Research

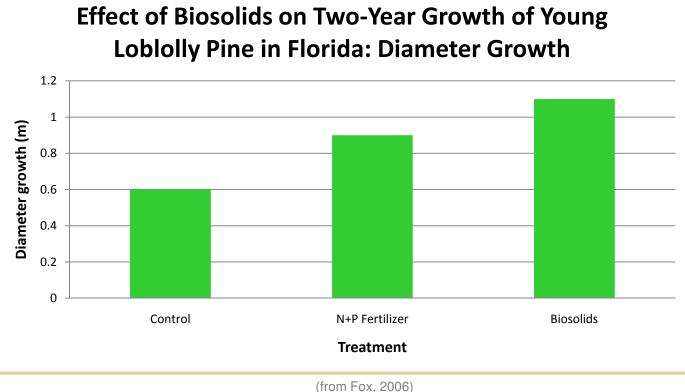
University of British Columbia

- Nutrient dynamics
- Ecosystem nutrient cycling
- Animal habitat
- Optimization of use
- Public and stakeholder education


Regional Research

TREATMENT	Control	Inorganic Fertilizer		Biosolids
Response	N/A	LOW	HIGH	YES
Rotation length - Years	11	11	11	11
MAI m ³ /ha/yr	36.4	38.8	43.8	48.1
Net Present Value per Ha - NPV	\$ 133	\$ 39	\$ 665	\$ 1,596

Continental Research


Florida - Loblolly Pine

Continental Research

Florida - Loblolly Pine

Interior Forest Fertilization Meeting February 17, Prince George BC

International Research

New Zealand - Radiata Pine

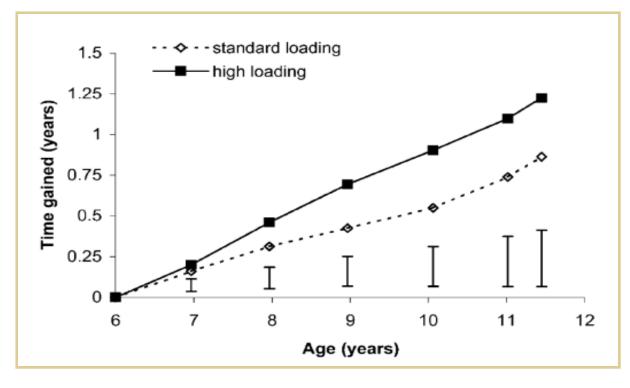
- Examined economic benefits
- Standard application rate

•300 kg N ha⁻¹

- •\$217 ha⁻¹ (NZD) increase in value
- High application rate

•600 kg N ha⁻¹

•\$411 ha⁻¹ (NZD) increase in value



Interior Forest Fertilization Meeting February 17, Prince George BC

International Research

New Zealand - Radiata Pine

(from Kimberleya et al., 2004)

Logistics – How we do it now

Dewatered biosolids – forestry equipment

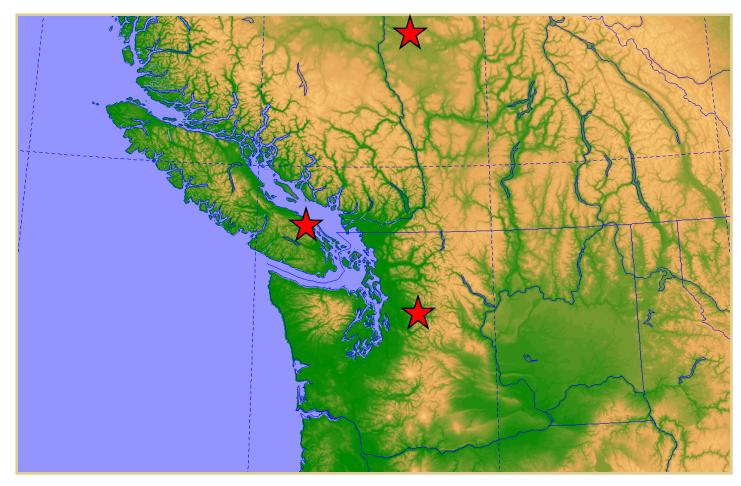
- Improved coverage
- Improved aesthetics
- Flexibility in use
- Longer growth response

Logistics – Division of Responsibilities

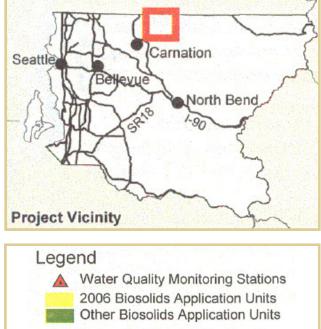
Land Manager:

• Site selection / Access

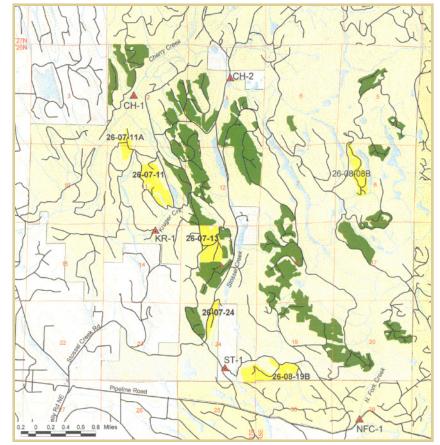
Integrated Biosolids


Contractor:

- Agronomic assessment
- Professional OMRR requirement
- Stockpiling
- Application
- Public Relations
- Post application assessment
- Producer pays



Case Studies



Case Study - King County, WA

/ Township, Range & Section Lines
/ 100-foot Contours
/ Roads

Rivers, Streams & Lakes State DNR Marckworth Forest Hancock Snoqualmie Forest

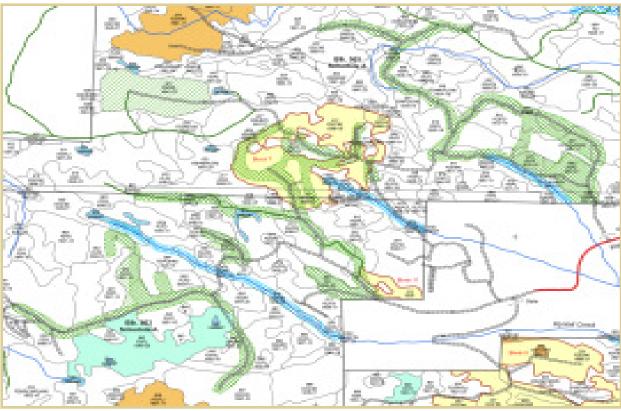
Interior Forest Fertilization Meeting February 17, Prince George BC

Case Study - King County

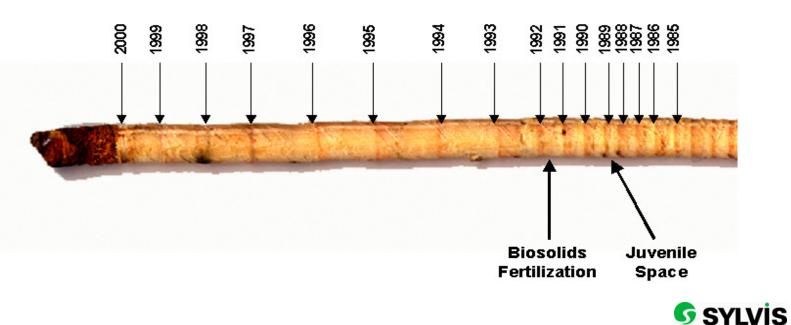
Summary

- Biosolids fertilization of public timber stands since 1985
- Applications to a private holding of a major forestry company initiated
- Monitoring parameters
 - •Ammonium-N
 - •Nitrate-nitrite-N
 - •Fecal coliform
 - •Enterococcus spp.
 - No effect on surface water quality

Case Study – King County


Growth Response

Case Study


Vancouver Island University Malaspina Woodlot, Nanaimo, BC

Case Study - Malaspina College

- Extensive soil and water monitoring no adverse impact
- High recreation value
- Excellent growth response

Interior Forest Fertilization Meeting February 17, Prince George BC

Case Study – Prince George

- Baldy Hughes rate trial
- Road and landing reclamation
- Demonstration on pine/fir/spruce
- Strong growth response observed

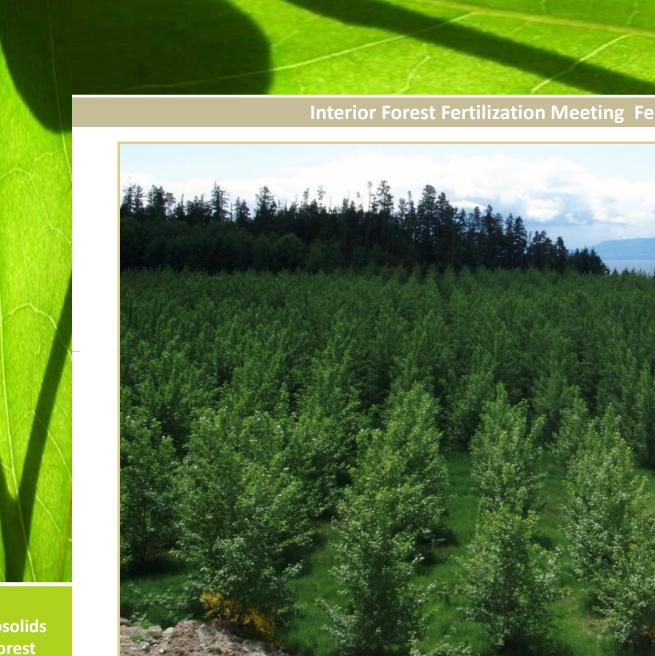
Case Study – Prince George

Interior Forest Fertilization Meeting February 17, Prince George BC

Let the biosolids hit the fan!

Site selection

- Proximate to population centres
- •Large scale (200-2000 ha)
- •N. Interior/ S. Interior
- •Turn award winning reclamation programs into award winning forest fertilization programs
- •Progressive and sustainable resource use
- •Turn biosolids into a tool to mitigate mid-term timber shortage
- •Add a new tool for C sequestration and climate change mitigation
- •Biomass/Bioenergy program development



Questions?

John M Lavery SYLVIS

T: 604-777-9788 F: 604-777-9791 427 Seventh Street New Westminster, BC V3M 3L2 jlavery@sylvis.com www.sylvis.com

Interior Forest Fertilization Meeting February 17, Prince George BC

References

- 1. Bowen, R. L. (2007). Workshop on Land Application of Biosolids. Virginia, USA.
- Carlson, M. 1992. <u>Municipal effluent irrigation of fast-growing hybrid poplar plantations near Vernon, British Columbia</u>. Forestry–Chronicle 68(2): 206–208.
- Cole, D. W. 1982. <u>Response of forest ecosystems to sludge and wastewater applications—A case study in western</u> <u>Washington.</u> In: W. E. Sopper, E. M. Seaker, and R. K Bastian (Eds.), Land Reclamation and Biomass Production with Municipal Wastewater and Sludge. University Park: Pennsylvania State University Press, pp. 274–291.
- 4. Fox, T. R. Land Application of Biosolids to Forests. College of Natural Resources, Virginia Polytechnic Institute and State University. Blacksburg, VA.
- 5. Henry, C.L.; Van Ham, M. D.; King, R.; Leonard, P. <u>Fertilizing Forests with Biosolids: Experiences in the Pacific Northwest.</u> University of Washington, WA.
- 6. Kimberley, M. O.; Wang, H.; Wilks, P. J.; Fisher, C. R.; Magesan, G. N. (2003) <u>Economic analysis of growth response from a</u> <u>pine plantation forest applied with biosolids</u>. Forest Research, Private Bag 3020, Rotorua, New Zealand.
- 7. King County Department of Natural Resources and Parks, Wastewater Treatment Division. <u>Project Summary 2006:</u> <u>Mountains to Sound Greenway Biosolids Forestry Program for the Hancock Snoqualmie Forest</u>. (2007). Seattle, WA.
- 8. King County Department of Natural Resources and Parks, Wastewater Treatment Division. <u>Project Summary 2006:</u> <u>Mountains to Sound Greenway Biosolids Forestry Program in Marckworth State Forest.</u> (2007). Seattle, WA.
- 9. Leonard, P. C.; Newlands, D. C. <u>Benefits to Forest and Landowner From New Biosolids Application Technology</u>. King County Department of Metropolitan Services, Seattle, WA.
- 10. Mercuri, A.M.; Duggin, J.A.; Grant, C.D. (2004). <u>The use of saline mine water and municipal wastes to establishplantations</u> <u>on rehabilitated open-cut coal mines, Upper Hunter Valley NSW, Australia.</u> *Ecosystem Management*, University of New England, Armidale, NSW 2351, Australia
- 11. Peot, C. (2006). <u>Wastewater Treatment and Biosolids Production Overview</u>. District of Columbia Water and Sewere Authority.
- 12. Washington State Department of Ecology. (2000). <u>Biosolids Management Guidelines for Washington State.</u> Olympia, WA.

