

Introduction to Climate Based Seed Transfer

Webinar

May 17, 2018

Margot Spence

Tree Seed Policy Officer
Forest Improvement and Research Management Branch

What is Climate Based Seed Transfer (CBST)?

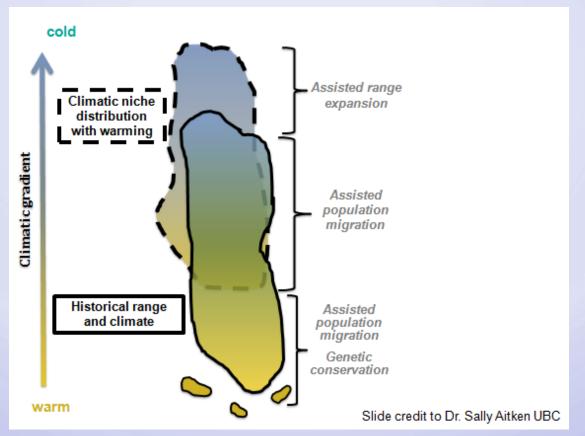
"Climate Based Seed Transfer (CBST) refers to a seed transfer system based on climate, for the purposes of adapting to and mitigating the impacts of climate change."

How does CBST compare with BC's current seed transfer approach?

Current

 A geographically-based methodology using, longitude, latitude, elevation and biogeoclimatic zone,

CBST

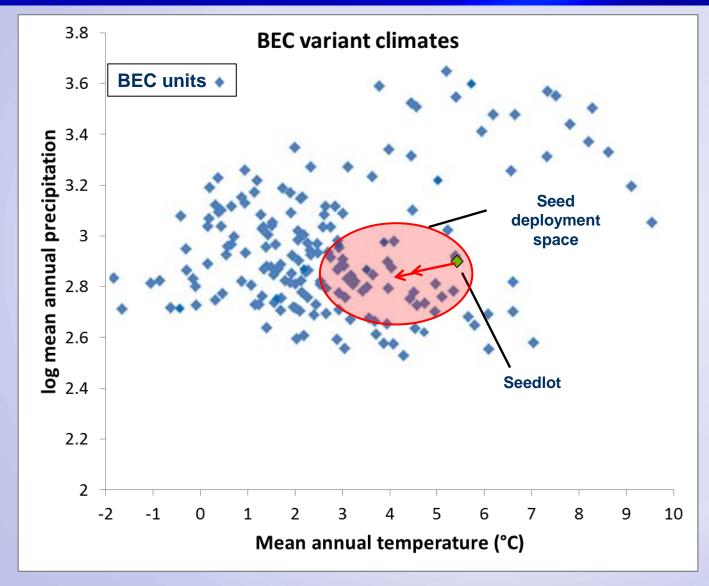

- A climate-based methodology that matches the climate of the seed source with the current and (near) future climate of a planting site.
- Based on new and emerging climate and forest genetic science.
- Includes "assisted migration."

Both systems are science based and supported by data from provenance trials

"Assisted Migration"

- (1) is a climate change adaptation strategy;
- (2) is the intentional movement of tree seed, from areas they grow naturally, to planting sites that are climatically suitable for their growth at the present time and in the near future.

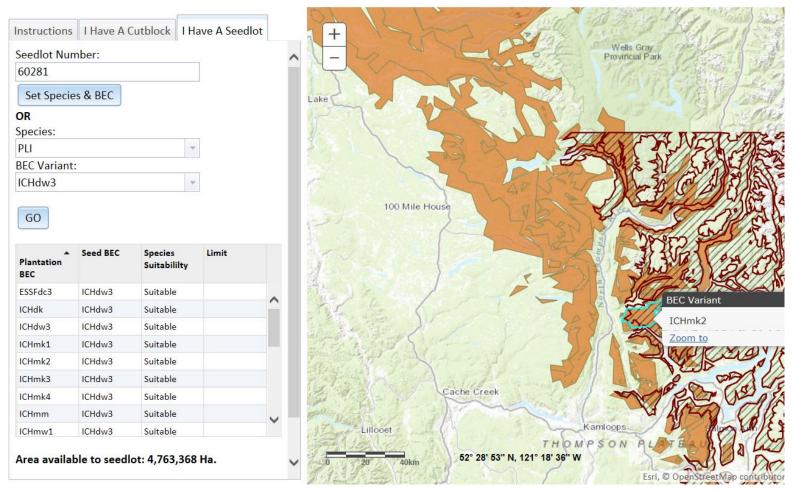
CBST Science Foundation


- Based on climate and forest genetic (provenance) data
- Climate represented by BEC variants
- CBST accounts for <u>both</u> past (adaptation lag ~70years) and future climate change (15yrs coast; 20yrs interior)
 = Climate migration distance is to the <u>first</u> quarter rotation

Baseline data sets

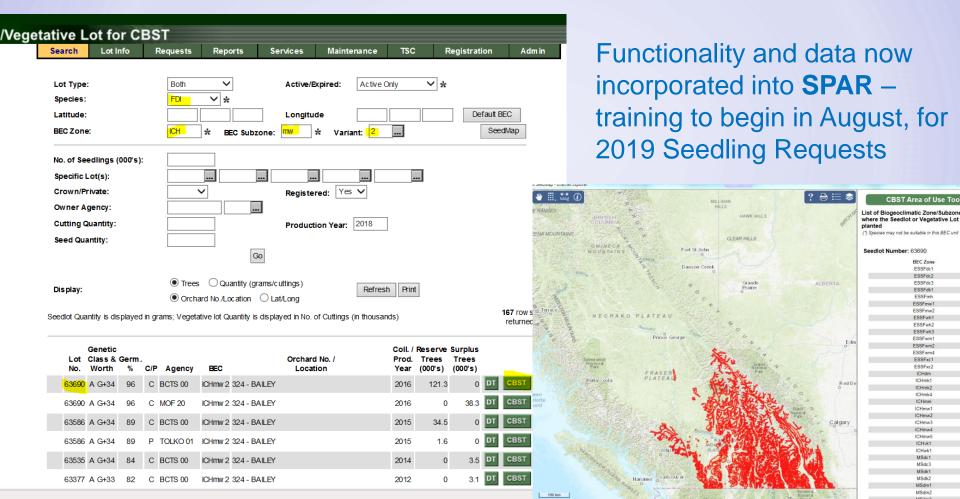
- BEC10
- ClimateBC
- Transfer functions
- Minimum genetic and species suitability thresholds
- Expert opinion

For more information, see Technical Report 099: "A Proposed Climate-based Seed Transfer System for British Columbia" by G O'Neill, T Wang, N Ukrainetz, L Charleson, L McAuley, A Yanchuck and S Zedel. (2017)



Migrating
the climate
space
(BEC variants
represent
climate space)

Example of Shift to a Seedlot Area of Use


CBST Seedlot Selection Tool Version 2.0

The CBST seed deployment area (i.e. CBST Area of Use) comprises the **orange** areas marked on the map. The current seed deployment area (or Area of Use) is marked in the **brick red** colour.

The CBST Seedlot Selection Tool enabled mapping of shifts in seed deployment and procurement areas under CBST

Chief Forester's Standards for Seed Use

Section 169 of the Forest and Range Practices Act the chief forester may establish, vary or revoke standards respecting (a) tree gene resources for purposes related to this Act...

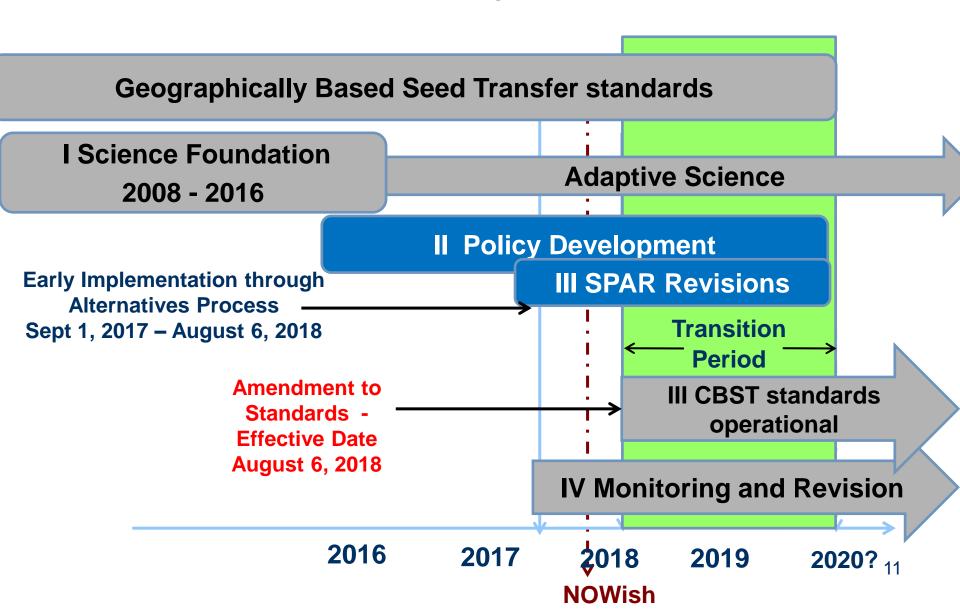
Section 43 of the Forest Planning and Practices Regulation & Section 32 of the Woodlot Licence Planning and Practices Regulation

a person who plants trees to establish a free growing stand must use only seed registered, stored, selected and transferred in accordance with the standards established by the chief forester

Rule of Law not Professional Reliance

Chief Forester's Standards for Seed Use

Amendments of April 5, 2018 come into effect August 6, 2018¹


Introduction of:

- Option to use CBST standards, continue with Geographically Based Seed Transfer standards (GBST) or use a mix of both
- New cone collection requirements that align with CBST
- Other minor amendments to update reference and administrative provisions

https://www2.gov.bc.ca/gov/content/industry/forestry/managing-our-forest-resources/tree-seed/legislation-standards/chief-forester-s-standards-for-seed-use

1Notice period may be waived

CBST Policy Timeline

Transition Period

The Transition Period

- Time to learn the new CBST system the GBST standards will be removed as an option at end of transition period
- Opportunity to use up seed that you may no longer be able to use in your operating area under CBST
- Current thinking is a 2 year transition
 - subject to broader stakeholder consultation and results of the impact assessment and gap analysis

Transition Period

Strategic Use of Policy Options in Transition Period

If your goal is to maximize productivity of your site, use policy options is this order of priority:

- 1. Use CBST seed transfer and Class A seed with the highest Genetic Gain
- 2. Use Current transfer standards with Class A seed with the highest Genetic gain
- 3. Use CBST seed transfer and Class B seed
- 4. Use Current transfer standards and Class B seed

If none of these policy options have seed availability – consult with FIRM.

Revised Cone Collection Standards

- New requirements come into effect
 August 6, 2018 with no transition period.
- Seed now required to be collected from a single BEC variant and seed collection area to be mapped in SPAR
- No change to min of 10 trees and max 8 of km radius.
- Needed to create a CBST area of use.

Revised Cone Collection Standards

For more information:

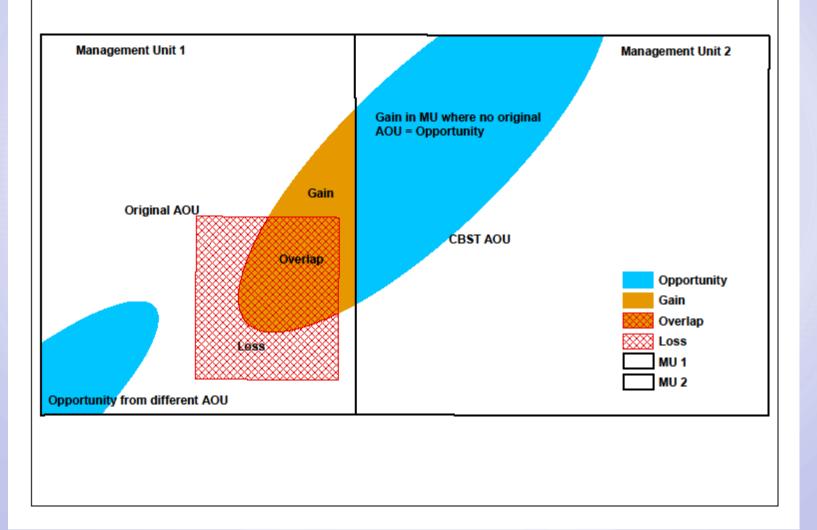
- Cone Collection and Climate Based Seed Transfer Information Bulletin (May 2018)
- Cone Collection workshops in June 2018 (Nanaimo, Vernon, Castlegar, Prince George).
 - Review collection planning, methods and implementation, cone and seed pests, TSC services, projected seed needs and discuss new CBST collection standards.

Risks related to Introduction of CBST

- Doing nothing about climate change is high risk
 - Losses from increased wildfire and pests
 - Loss of productivity through maladaptation
- Using CBST mitigates the impacts of climate change and reduces risk
 - We are currently planting into sites that are too warm for the seed
 - With CBST, we will be planting into sites that are slightly colder (in anticipation of ongoing climate change)
 - CBST takes a conservative approach focusing more on catching up with climate change to date, rather than projecting too far into the future

Establishment Risk

- There is both establishment risk and productivity risk associated with climate change – CBST lowers both.
- Risk of extreme weather impact during establishment need to be managed regardless of the seed transfer system.
- Foresters have to use all their establishment tools:
 - Use Class A seed with high genetic worth
 - Make robust stock choices
 - Species selection
 - Microsite selection
 - Considerations for pests and disease



Impact Assessment - key questions

- To what degree does CBST impact seed use, investments, and assets, including impacts to:
 - Seed Users
 - Seed Owners; and
 - Seed Producers?
- How are CBST impacts characterized compared to previous deployability of a seed lot (losses, gains)?
- What are the opportunities (e.g. new seed sources moving in)?
- Where are the gaps in CBST coverage? What are the opportunities to fill them (in short and long term)?
- What do we do about "orphans"? Seedlots with no where to plant, or BEC variants with no seed source?

Schematic of Quantified Impact Analysis:

Impacts on TFL 37 (WFP North Island), all species

										ANALYSIS	2			ANALYSIS 1		
			100	cood or											CBST AOU	
		A CIC	155	seed or	IIV						Losses				(gain+overlap)	
											relative				relative to	
Losses re	CBST AOU relative to curre	nt AOU								Impact	to AOU			Assessment	current AOU	
0-33%	>100%	0.34	0.5											new seed source	n/a	1NEW
34-66%	50-100	0.66	1							low	0-33%		new+sa	expanded deplo	>100%	2GAIN
67-100%	<50%									med	34-66%			reduced deployr	50-100	3LOSS
ty										high	67-100%			significantly red	<50%	4SLOSS
Species	Management_Unit	BECvarGroup Name	Seed_BEC	Orchards	Current AOU	Current	Gain HA	Gain PCT	Loss HA	Loss PCT	Loss	Overlap	Overla	CBST AOU HA	CBST PCT	CBST
		•	1				_	_	_						_	
			-		_HA	_AOU_P	-	-	_	_	Impact	HA	p_PCT		_	Impact
		·			_HA	_AOU_P CT_Suit	_		_		·	на	- 1		_	Impact
•	л Д	·	_	▼	_HA		_	_	_	_	Impact		- 1	*	_	Impact
CW		· •		set([152L, 184L, 140L, 198L, 993L	▼	CT_Suit able	_	-	_			на	p_PCT			Impact The state of the state
	TFL37	CWMLOW3	CWHvm1	set([152L, 184L, 140L, 198L, 993L set([996L, 197L, 166L, 199L, 405L	186,232	CT_Suit able	_	_	_	47%	2-M	HA 🔻	p_PCT ▼	-	81%	·
CW	TFL37 TFL37	CWMLOW3 FDCMLOW2	CWHvm1 CWHdm		186,232	CT_Suit able 98%	53,343	29%	₹ 87,862	47% 31%	2-M 1-L	98,370	p_PCT ▼ 53%	150,220	81% 69%	3Loss
CW FDC	TFL37 TFL37 TFL37	CWMLOW3 FDCMLOW2 FDCMHIGH2	CWHvm1 CWHdm CWHms2	set([996L, 197L, 166L, 199L, 405L	186,232 238,438	CT_Suit able 98%	53,343 157	29% 0%	87,862 74,412	47% 31% 55%	2-M 1-L	98,370 164,026	p_PCT	150,220 164,169	81% 69% 69%	3Loss 3Loss
CW FDC FDC	TFL37 TFL37 TFL37 TFL37	CWMLOW3 FDCMLOW2 FDCMHIGH2 FDCSMALL1	CWHvm1 CWHdm CWHms2 CWHms2	set([996L, 197L, 166L, 199L, 405L set([406L])	186,232 238,438 105,578	CT_Suit able 98%	53,343 157 25,259	29% 0%	87,862 74,412 58,134	47% 31% 55%	2-M 1-L 2-M 1-L	98,370 164,026 47,444	p_PCT	150,220 164,169 72,703	81% 69% 69%	3Loss 3Loss 3Loss 1New
CW FDC FDC FDC	TFL37 TFL37 TFL37 TFL37 TFL37	CWMLOW3 FDCMLOW2 FDCMHIGH2 FDCSMALL1 HWMLOW3	CWHvm1 CWHdm CWHms2 CWHms2 CWHvh1	set([996L, 197L, 166L, 199L, 405L set([406L]) set([181L])	186,232 238,438 105,578	CT_Suit able ▼ 98% 99% 100%	53,343 157 25,259 72,703	29% 0% 24%	87,862 74,412 58,134	47% 31% 55%	2-M 1-L 2-M 1-L 1-L	98,370 164,026 47,444	p_PCT 53% 69% 45%	150,220 164,169 72,703 72,703	81% 69% 69%	3Loss 3Loss 3Loss 1New 2Gain
CW FDC FDC FDC HW	TFL37 TFL37 TFL37 TFL37 TFL37 TFL37	CWMLOW3 FDCMLOW2 FDCMHIGH2 FDCSMALL1 HWMLOW3 HWMHIGH2	CWHvm1 CWHdm CWHms2 CWHms2 CWHvh1 CWHvm2	set([996L, 197L, 166L, 199L, 405L set([406L]) set([181L]) set([170L, 182L])	186,232 238,438 105,578 0 157,061	CT_Suit able ▼ 98% 99% 100%	53,343 157 25,259 72,703 16,829	29% 0% 24%	87,862 74,412 58,134 0 9,721	47% 31% 55% 6% 14%	2-M 1-L 2-M 1-L 1-L 1-L	98,370 164,026 47,444 0 147,340	p_PCT 53% 69% 45%	150,220 164,169 72,703 72,703 164,169	81% 69% 69% 105% 111%	3Loss 3Loss 3Loss 1New 2Gain
CW FDC FDC FDC HW	TFL37 TFL37 TFL37 TFL37 TFL37 TFL37 TFL37	CWMLOW3 FDCMLOW2 FDCMHIGH2 FDCSMALL1 HWMLOW3 HWMHIGH2	CWHvm1 CWHdm CWHms2 CWHms2 CWHvh1 CWHvm2	set[1996L, 197L, 166L, 199L, 405L set([406L]) set([181L]) set([170L, 182L]) set([187L, 196L])	186,232 238,438 105,578 0 157,061 122,534	CT_Suit able 98% 99% 100%	53,343 157 25,259 72,703 16,829 30,527	29% 0% 24% 11% 25%	87,862 74,412 58,134 0 9,721 17,119	47% 31% 55% 6% 14%	2-M 1-L 2-M 1-L 1-L 1-L	98,370 164,026 47,444 0 147,340 105,415	p_PCT 53% 69% 45% 94% 86%	150,220 164,169 72,703 72,703 164,169 135,942	81% 69% 69% 105% 111%	3Loss 3Loss 3Loss 1New 2Gain 2Gain

Impacts on Bulkley TSA - Fdi AOU opportunities!

A class seed only

Species	Management_Unit	BECvarGroup Name	Seed_BEC	Orchards	Current_AOU	Current	Gain_HA	Gain_PCT	Loss_HA	Loss_PCT	Loss	Overlap_	Overla	CBST_AOU_HA	CBST_PCT	CBST
					_HA	_AOU_P					Impact	HA	p_PCT			Impact
						CT_Suit										
Ţ	T,	▼	~	▼	~	able▼	₩	~	~	~	•	~	~	~	~	~
FDI	Bulkley TSA	FDIQLLOW1	ICHmk3	set([232L, 226L])	0		21,223		0		1-L	0		21,223		1New
FDI	Bulkley TSA	FDIPGLOW1	SBSdh1	set([225L, 233L])	0		249,148		0		1-L	0		249,148		1New
FDI	Bulkley TSA	FDICTLOW1	SBSdw1	set([231L])	0		69,724		0		1-L	0		69,724		1New

Impacts on Revelstoke TSA - Pli AOU losses!

A class seed only

Species	Management_Unit	BECvarGroup Name	Seed_BEC	Orchards	Current_AOU	Current	Gain_HA	Gain_PCT	Loss_HA	Loss_PCT	Loss	Overlap_	Overla	CBST_AOU_HA	CBST_PCT	CBST
					_HA	_AOU_P					Impact	HA	p_PCT			Impact
						CT_Suit										
T.	T,	~	~	▼	~	able▼	~	~	~	~	*	~	~	~	~	~
PLI	Revelstoke TSA	PLINELOW1	ICHdw3	set([307L])	203,847	100%	0	0%	203,847	100%	3-H	0	0%	0	0%	4SLoss
PLI	Revelstoke TSA	PLINELOW2	ICHdw4	set([337L])	203,847	100%	0	0%	203,847	100%	3-H	0	0%	0	0%	4SLoss
PLI	Revelstoke TSA	PLIPGLOW1	ICHwk2	set([237L])	68,959	100%	0	0%	68,959	100%	3-H	0	0%	0	0%	4SLoss
PLI	Revelstoke TSA	PLINELOW3	IDFmw1	set([313L])	203,847	100%	0	0%	203,847	100%	3-H	0	0%	0	0%	4SLoss
PLI	Revelstoke TSA	PLINELOW4	IDFmw2	set([347L])	203,847	100%	0	0%	203,847	100%	3-H	0	0%	0	0%	4SLoss
PLI	Revelstoke TSA	PLIPGLOW2	SBSdh1	set([220L])	68,959	100%	0	0%	68,959	100%	3-H	0	0%	0	0%	4SLoss
PLI	Revelstoke TSA	PLIPGLOW3	SBSdw3	set([352L])	68,959	100%	0	0%	68,959	100%	3-H	0	0%	0	0%	4SLoss
PLI	Revelstoke TSA	PLIPGLOW5	SBSmw	set([244L, 236L, 222L])	68,959	100%	0	0%	68,959	100%	3-H	0	0%	0	0%	4SLoss

Road Map

Near Term (now to 2 years)

- Complete impact and gap analysis, make assessment tools available to all stakeholders / licensees
- Amended standards Effective Date August 6, 2018
- Broader stakeholder engagement on transition plans and selected policy development
- Transition strategy and full implementation plan
- Ongoing data and climate updates
- Monitoring framework developed

Road Map

Short Term (2 to 5 years)

- New "SPUs"/Breeding Zones defined
- Amendments to Chief Foresters Standards to end transition period
- Increased monitoring and evaluation
- Additional research identified and initiated public licence

Longer term (5+ years)

- New Seed Orchards come on stream
- Coordination with the Climate Informed Species Selection (CISS) Tool, led by RPB.

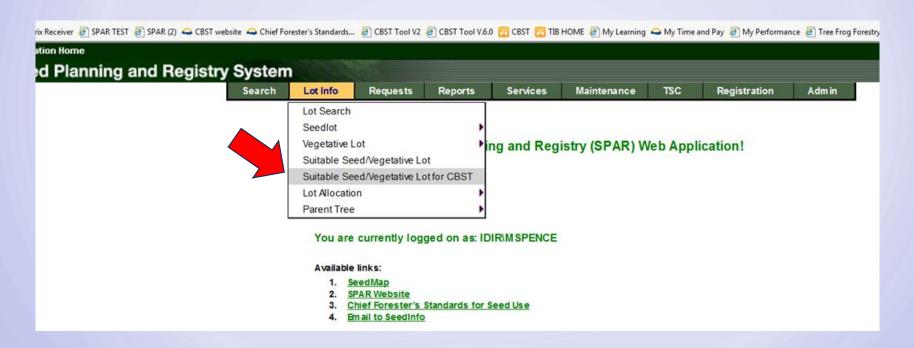
See, Ministry of Forests, Lands, Natural Resource
Operations and Rural Development, **Tree Seed** and
CBST webpages,

www.gov.bc.ca/climatebasedseedtransfer

Margot Spence, Seed Policy Officer/CBST project lead, Forest Improvement and Research Management Branch (Margot.Spence@gov.bc.ca)

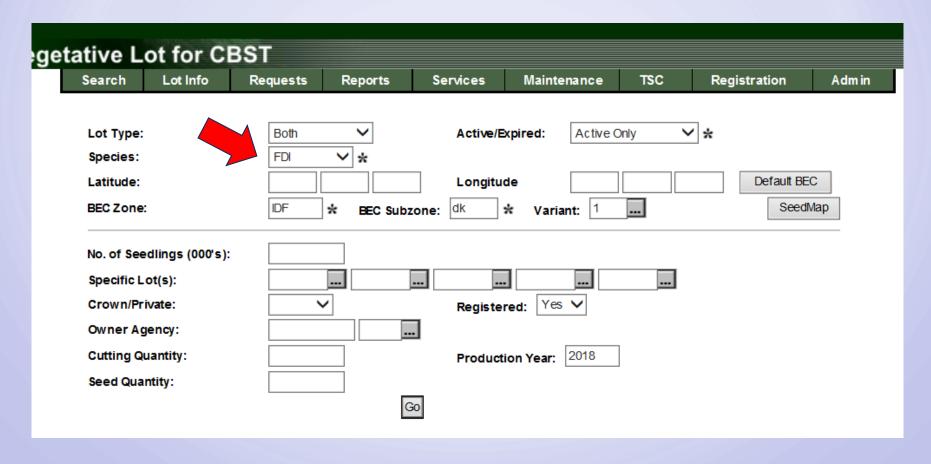
Susan Zedel, Seed Resource Specialist, Forest Improvement and Research Management Branch (<u>Susan.Zedel@gov.bc.ca</u>)

Leslie McAuley, Decision Support Officer, forest Improvement and Research Management Branch (<u>Leslie.Mcauley@gov.bc.ca</u>)



SPAR Quick Start Tutorial

SPAR Quick Start

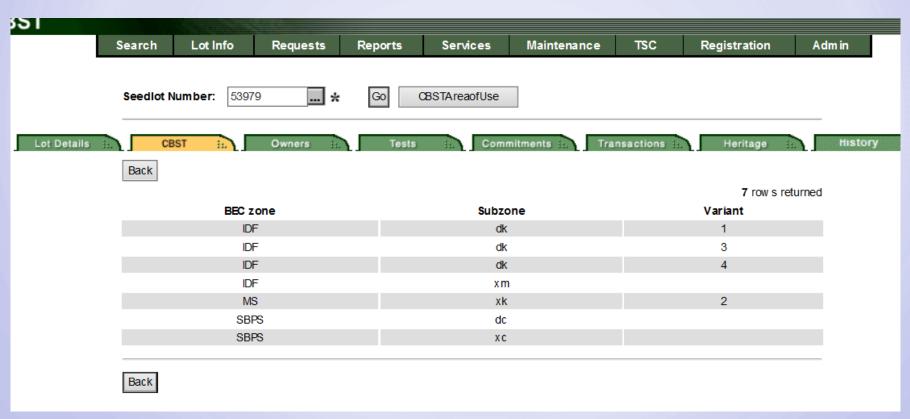

"I have a Cutblock" Mode

SPAR Quick Start

"I have a Cutblock" Mode

SPAR Quick Start

Note – does not show BECvars without registered seed – so if wanted to collect seed check with CBST Tool

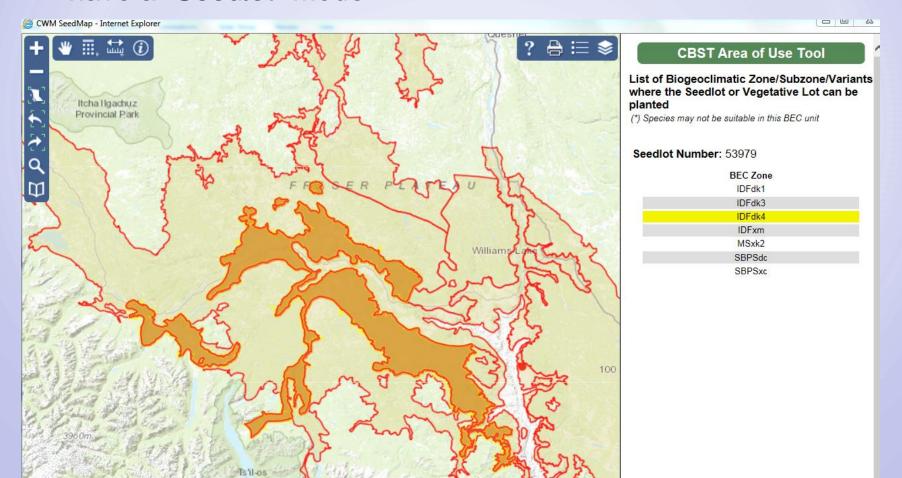

"I have a Cutblock" Mode – switching to "I have a Seedlot" Mode

Lo No			C/P	Agency	BEC	Orchard No. / Location	Coll. / Prod. Year	Reserve Trees (000's)	Surplus Trees (000's)		
4220	65 B	99	Р	COWANW 00	IDFx h2	HEFFLEY MTN	1995	142.9	0	DT	СВ
5359	97 B	99	С	BCTS 00	IDFdm1	GRANBY RIVER	2009	174.3	0	DT	СВ
5388	36 B	99	Р	TOLKO 01	IDFmw 1	SPA CREEK	2015	448.2	0	DT	СВ
539	79 B	99	Р	ARML 00	IDFxm	MAYFIELD FSR, ALKALI LAKE	2016	4577.2	0	DT	СВ
539	79 B	99	Р	WFM 09	IDFxm	MAYFIELD FSR, ALKALI LAKE	2016	2000	0	DT	СВ
3086	55 B	98	Р	IFP 03	IDFmw 2	VAVENBY	1992	3.6	0	DT	CBS
4850)8 B	98	Р	CANOEFP 00	IDFmw 2	SKIMIKIN CREEK	2002	34	0	DT	СВ
534	55 B	98	С	BCTS 00	IDFx h4	MCLAREN CREEK	2009	12.2	0	DT	СВ
5340	66 B	98	С	BCTS 00	IDFdm1	VOLCANIC CREEK	2009	5.5	0	DT	СВ
5360	00 B	98	С	BCTS 00	IDFx h4	JULY CREEK	2009	349.4	0	DT	CBS
5360	00 B	98	С	MOF 27	IDFx h4	JULY CREEK	2009	33.2	0	DT	CBS
520)5 B	00	C	MOE 27	IDEmw 2	SKMANALAKE	2012	201	0	DT	CRS

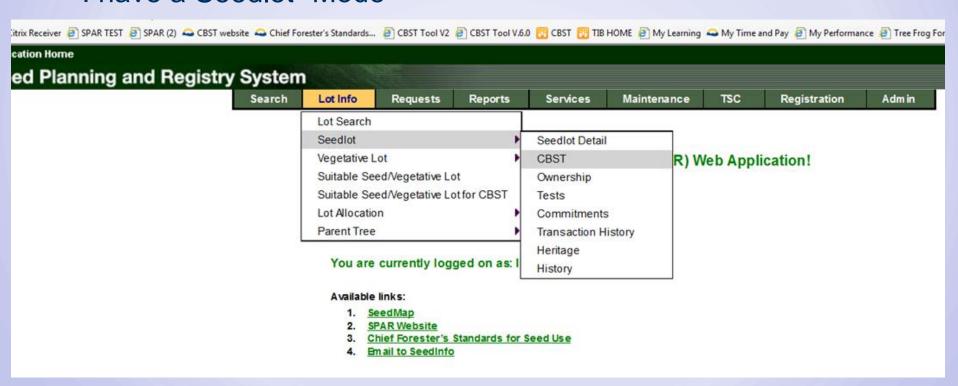
SPAR Quick Start


I have a "Seedlot" Mode

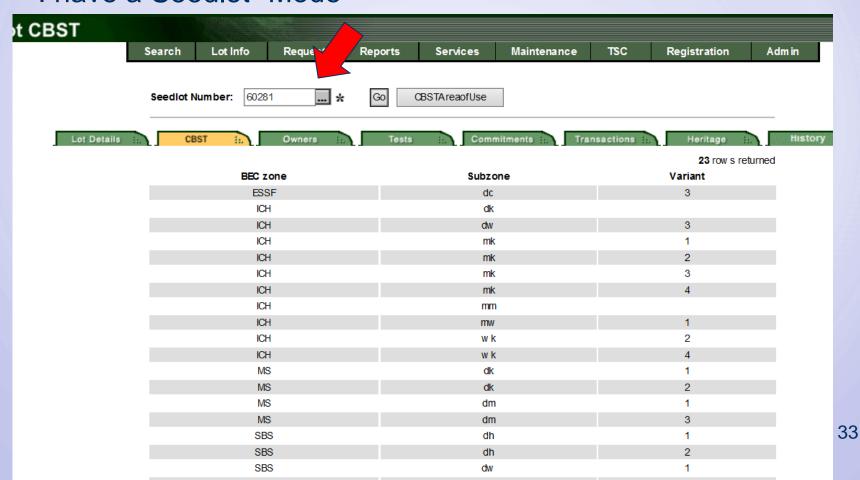
SPAR Quick Start


I have a "Seedlot" Mode

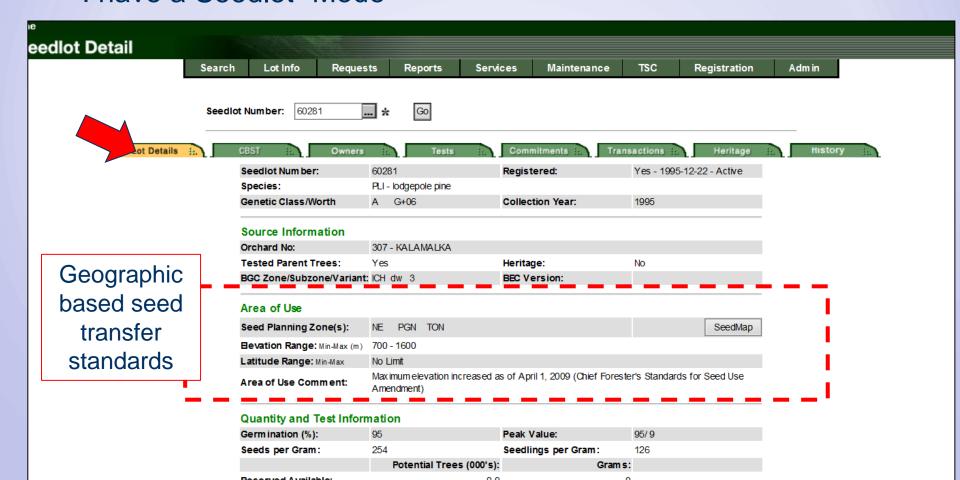
SPAR Quick Start


I have a "Seedlot" Mode

SPAR Quick Start


"I have a Seedlot" Mode

SPAR Quick Start


"I have a Seedlot" Mode

SPAR Quick Start

"I have a Seedlot" Mode

