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INTRODUCTION 

The presence of suitable petroleum source rocks is a 
necessary condition for the presence of an effective total 
petroleum system which constrains the petroleum 
potential of under-explored basins such as those within 
the Intermontane region of British Columbia (Curiale, 
1994). Hayes (2002), in his report on the crude oil and 
natural gas potential of the Nechako area of British 
Columbia, indicated that a major issue for the basin was 
the lack of recognition of a good petroleum source rock 
horizon. This perception is applicable to all the 
Intermontane basins due to the limited amount of crude 
oil and natural gas exploration activity and a subsequent 
lack of relevant information. 

This paper summarizes some of our current 
understanding of Early and Middle Jurassic stratigraphy 
within parts of the Intermontane region of the Canadian 
Cordillera which may have petroleum source rock 
potential. It also provides an update on the activities 
undertaken by the Resource Development and Geoscience 
Branch (RDGB) of the British Columbia Ministry of 
Energy and Mines to address the issue through 
recognition and basic characterization of potential source 
bed horizons within the Intermontane region. This is part 
of a much larger collaborative program which began in 
2001, between the Geological Survey of Canada (GSC) 
and the RDGB to look at energy related aspects of the 
Intermontane Basins. The RDGB is also collaborating 
with the GSC on a new, multiyear initiative, which started 
in 2003 entitled “Integrated Petroleum Resource Potential 
and Geoscience Studies of the Bowser and Sustut 
Basins”. 

Subsurface characterization of potential Cretaceous 
and Tertiary petroleum source rocks within the Nechako 
area has been documented by Hunt (1992) and Hunt and 
Bustin (1997). Osadetz et al. (2003) obtained RockEval 
pyrolytic and total organic content (TOC) data for well 
cuttings from all bore holes within the Nechako and 
Bowser basins. Evenchick et al. (2003) reported bleeding 
crude oil from paleomagnetic coring operations in fine 
grained clastics that may be either migrated petroleum or 
residual crude oil stains in potential petroleum source 
rocks. The purpose of the present study was to sample 
potential source bed horizons of Early and Middle 
Jurassic age in areas where subsurface data is lacking. In 
addition, the following brief summary on the extent of 
potential source bed horizons of this age within certain 
parts of the Canadian Cordillera inidicates these units are 
potentially regionally distributed. 

The author, as part of the regional mapping program 
examining Bowser Lake and Sustut group rocks within 
the western portion of the McConnell Creek sheet (094D; 
see Evenchick et al., 2003), sampled potential petroleum 
source rock horizons in this area (Figures 1, 2). In 
addition, one week was spent examining possible source 
beds on the east side of the Nechako area, within the 
Quesnel Trough (Figures 1, 3 and 4). Approximately 25 
samples were collected in the McConnell Creek area and 
12 samples were taken from the Quesnel Trough. Further 
sampling is planned in both regions during the 2004 field 
season. 

Current research in the Bowser Basin has recognized 
crude oil staining in surface and subsurface samples of the 
Bowser and Sustut groups (Osadetz et al., 2004, 2003; 
Evenchick et al., 2003). The data suggests the presence of 
at least three source bed horizons, one of Jurassic to 
Cretaceous age, another within carbonate sequences of 
Paleozoic age and a third of fresh water origin. Data in 
this paper, in part, reviews sampling undertaken in the 
field in an attempt to locate the stratigraphic horizons 
responsible for the staining.
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Figure 1. Geomorphological belts of the Canadian Cordillera together with selected terranes and locations of areas 
mentioned in text or shown in subsequent diagrams. The regional distribution of Early to Middle Jurassic clastics is also 
indicated. Base map modified from Osadetz et al., 2003. 

 

In Bowser-Sustut and Quesnel Trough areas, the 
focus of sampling was within black carbonaceous 
sequences of Early to Middle Jurassic age which are 
believed to underlie coarser clastic units of the basins. 
This stratigraphic interval encompasses the Toarcian – 
Aalenian time period, which on a world-wide scale, is 
inferred to record an interval of anoxic water conditions 
resulting in enhanced preservation of accumulated organic 
material (Jenkyns, 1988). 

World wide oceanic anoxic events are documented at 
several stratigraphic levels within Jurassic and Cretaceous 
sedimentary rocks. In addition to the Toarcian, these 
include intervals within the Aptian-Albian, Cenomanian-
Turonian and the Santonian stages (Jenkyns, 1980, 1988). 
Most of these time periods are well represented within the 
Western Canada Sedimentary Basin and have contributed 
a large proportion of the petroleum within known pools 
(e.g. First and Second White Speckled Shale, Base of Fish 
Scales and Fernie Formation; see Creaney et al., 1994). 

 

BOWSER AND SUSTUT BASINS 

The Bowser and Sustut basins are overlap 
assemblages deposited on an allochthonou terrane of the 
Canadian Cordillera. Located in north-central British 
Columbia, they are found within the northern part of the 
Intermontane Belt and sit on Devonian to Jurassic rocks 
of Stikinia (Figure 1). 

There are three main successions within these basins: 
the Middle Jurassic to mid-Cretaceous Bowser Lake 
Group; the Lower to mid-Cretaceous Skeena Group and 
the mid- to Upper Cretaceous Sustut Group. Bowser Lake 
strata represent a southwestward, prograding delta to 
distal submarine fan sequence and contains marine to 
non-marine sediments (Evenchick et al., 2001). Skeena 
rocks, located along the southern part of Bowser Basin, 
are inferred to have been deposited in marine to non-
marine deltaic environments, but their relationship to 
Bowser Lake stratigraphy is uncertain (Tipper and 
Richards, 1976). The Sustut Group is inferred to have 
been deposited in fluvial to lacustrine environments 
(Eisbacher, 1974) which were deposited in a foreland 
basin east of deforming Bowser Lake strata (Evenchick 
and Thorkelson, in press).
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Figure 2. Generalized geology of the McConnell Creek map area showing sample locations. Modified from Evenchick et al., 2003. 
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Figure 3. Generalized geology map of the Ashcroft area showing extent of 
Ashcroft Formation and sample locations. Modified from Travers, 1978. 
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Figure 4. Generalized geology of Quesnel Terrane west of Quesnel Lake, showing 
distribution of Early to Middle Jurassic clastics and sample location. 

Resource Development and Geoscience Branch, Summary of Activities 2004 91



 

Bowser, Skeena, Sustut and underlying Stikinia rocks 
are deformed into dominantly northwest-trending fold and 
thrust structures comprising the Skeena Fold Belt 
(Evenchick, 1991). Evenchick (1991) demonstrated that 
this thin skinned structural belt of mid-Cretaceous age 
contains a well developed triangle zone at its northeastern 
margin within Sustut strata. 

Potential Source Beds 

In the area of the Bowser and Sustut basins, black 
organic-rich shales have been recognized within the 
Lower to Middle Jurassic sediments of the upper Hazelton 
Group (Thomson et al., 1986). In addition, slope and 
submarine fan facies of the Bowser Lake Group contain 
abundant sections of black shale which may have elevated 
organic contents. 

Effective Mesozoic and Paleozoic petroleum source 
rocks are postulated based on analysis of crude oil stains 
from surface and subsurface samples of Bowser and 
Sustut lithologies (Evenchick et al., 2003; Osadetz et al., 
2003; 2004). Indirect confirmation of a Paleozoic source 
horizon is indicated by crude oil staining in cored 
paleomagnetic samples taken from Permian and Triassic 
sequences (Evenchick et al., 2003). Stikine Assemblage 
strata contain black, carbonaceous sequences of Devono-
Mississippian age (Logan et al., 2000) similar in 
composition to other time-equivalent sequences 
throughout Cordilleran terranes and within the 
miogeocline (e.g. Exshaw and Bakken formations). 

HAZELTON GROUP 

Strata of the Bowser Lake Group overlie fine grained 
clastic sedimentary rocks of the upper Hazelton Group 
(Figure 2). This latter succession is dominantly a volcanic 
sequence of broadly Early to Middle Jurassic age (Tipper 
and Richards, 1976). Although upper Hazelton clastics 
are well developed below the Bowser Lake Group, these 
rocks locally grade into dominantly volcanic sequences. 

Terminology of the Hazelton Group varies along the 
basin margins. In the northwestern part of the basin, upper 
clastics are termed the Spatsizi Formation (Evenchick and 
Thorkelson, in press) whereas further west, in the Eskay 
Creek and Forrest Kerr areas this horizon contains 3 
facies with varying proportions of volcanic rocks and is 
referred to as the Salmon River Formation (Anderson, 
1993; Logan et al., 2000). In southern Bowser Basin, 
Tipper and Richards (1976) subdivided upper Hazelton 
clastics into the Nilkitkwa and Smithers formations. 

Upper Hazelton Group clastic rocks span Early 
Pliensbachian to Bajocian-Bathonian times in the northern 
Bowser Basin (Thomson, et al., 1986; Evenchick et al., 
2001). Volcanic rocks become increasingly volumetric 
northward in Spatsizi River map area (Thomson et al., 
1986). There, upper Hazelton Group rocks have been 

formally assigned to the Spatsizi Formation (Evenchick 
and Thorkelson, in press). In the Joan Lake area of this 
map region, Thomson et al. (1986) initially assigned these 
rocks to group status and defined the Joan, Wolf Den, 
Melisson, Abou and Quock formations. Although 
subdivision of this horizon is possible in the Joan Lake 
area, Evenchick and Thorkelson (ibid.) suggested this 
succession be lowered to formation status (and the 
constituent formations to members) because it was 
difficult to recognize all units on a regional scale and 
strata in similar stratigraphic positions around the Bowser 
basin are formations in the Hazelton Group. 

In the Joan Lake area, Upper Pliensbachian to Middle 
Toarcian Wolf Den and Aalenian Abou members are 
dominanted by black to dark grey shales which, together 
with their faunal assemblages, suggest anoxic water 
conditions (Thomson et al., 1986). The Bajocian Quock 
Member, with its distinctive sections of interlayered black 
siliceous carbonaceous siltstone, shale and light coloured 
ash tuff (“pyjama beds”), are also inferred to have been 
deposited in anaerobic conditions. Thomson et al. (ibid.) 
describe parts of these lithologies as containing up to 20 
per cent organic material. The authors speculated this 
horizon would have acted as an excellent petroleum 
source rock and noted its well-placed stratigraphic 
position at the base of the Bowser Lake sequence. 

Although the members of the Spatsizi Formation in 
the Joan Lake area may represent a restrictive facies of 
the upper Hazelton Group, the overall basinal, anoxic 
conditions (as inferred for upper Hazelton clastics around 
the margins of the Bowser Basin, and within structural 
windows or culminations) suggests that these organic-rich 
lithologies may underlie much of the basin (Thomson et 
al., 1986). 

MCCONNELL CREEK MAP AREA (094D) 

The author spent approximately 5 weeks in the 
western and central parts of the McConnell Creek map 
area as part of a provincial-federal cooperative regional 
mapping program (Evenchick et al., 2003). During this 
time sections of the upper Hazelton Group were examined 
and sampled in the Diagonal Mountain and Motasse Peak 
areas for characterizing of organic content. In addition, 
parts of the lower Bowser Lake Group together with black 
siltstone or shales in the Ritchie-Alger and Todagin 
assemblages were also sampled. 

Upper Hazelton rocks in this area have been 
previously described by Tipper and Richards (1976), 
Jeletzky (1976), Evenchick and Porter (1993), Jakobs 
(1993) and Evenchick et al. (2003). The largest area 
covered by these rocks in the western McConnell Creek 
map sheet is roughly centred on Diagonal Mountain. The 
total thickness of the upper Hazelton Group is difficult to 
determine as the base is not exposed, however the 
exposed section is conservatively in the order of 300 m 
thick. The dominant lithology is variably cleaved, rusty to 
orange weathering, blocky, dark grey to black, siliceous 
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siltstones and shales with variable proportions of thin 
bedded white to pinkish tuff (Photo 1). These tuffaceous 
lithologies comprise the typical Toarcian to Bajocian 
sections of the upper Hazelton Group seen around the 
Bowser Basin and are informally referred to as the 
“pyjama beds”. The amount of tuff is variable within 
sections exposed in the Diagonal Mountain area, but is 
usually less than 30 per cent of the section, where present. 
Tuff varies from less than 1 mm to 10 centimeters thick 
and, although usually homogenous, can display graded 
bedding or ripple-marks. Parts of the sequence are 
composed almost entirely of dark grey to black, platy 
siltstone or shale. Some sections are blue-grey in colour 
and quite carbonaceous. 

Minor lithologies include light grey to grey 
weathering, calcareous siltstone exhibiting a dark grey-
brown colour on fresh surface and brown to grey-brown 
weathering, grey, micritic to clastic limestone up to 30 
centimetres thick, which forms lenses up to several metres 
in length. Sections of this sequence are rusty weathering 
and contain several per cent authigenic (or detrital?) 
pyrite. Pyrite is best developed within tuffaceous sections, 
although it is also present siliceous siltstone. The anoxic 
conditions inferred for this sequence, together with the 
abundance of pyrite, suggests the potential to host 
sedimentary exhalative mineral deposits. 

The contact between the upper Hazelton clastics and 
overlying Bowser Lake Group is transitional (Evenchick 
et al., 2003; Jakobs, 1993). Interbedded tuff is lost up-
section and the siliceous nature of the siltstone disappears 
resulting in well cleaved, rusty to brown weathering 
shales and slate up to 20 m thick. The first thin beds of 
chert? sandstone are observed at the top of this lithology, 

together with the first indications of bioturbation in shale 
and siltstone. Sandstone becomes more abundant up 
section and the percentage of rusty weathering horizons 
decreases. The contact has been placed at the top of the 
rusty-weathering section, occurring some 100 m above 
the first sandstone horizon and approximately 15 metres 
below the base of the first chert pebble conglomerate 
typical of the Bowser Lake Group (Evenchick et al., 
2003). 

The present interpretation of the upper contact for the 
Hazelton Group, would make it as young as late 
Bathonian (see Evenchick et al., 2001; 2003). Evenchick 
et al. (2003) argue that considering the Oxfordian ages for 
the Bowser Lake Group in the area, the age of this contact 
may be younger and within the Callovian. The oldest ages 
for the Hazelton Group in the Diagonal Mountain area are 
Toarcian (Evenchick et al., 2001). Palfy et al. (2000) 
reported an age of 167.2 +10.5 –0.4 Ma for tuff sampled 
from ‘pyjama beds’ approximately 4.5 km south-
southeast of Diagonal Mountain. 

Lithologies at Diagonal Mountain are similar to those 
of the Quock Member (Thomson et al., 1986). Based on 
fossil ages (Evenchick et al., 2001), sections at Diagonal 
Mountain would also be equivalent age to units of the 
Abou, Melisson and Wolf Den members. The lack of 
shallower water lithologies at Diagonal Mountain 
(represented by the Melisson Member) suggests that this 
unit was either removed below the Late Toarcian 
unconformity or that it was not deposited. Descriptions of 
the Wolf Den, Abou and Quock members are entirely 
consistent with lithologies observed at Diagonal 
Mountain, although they are not distributed in a simple 
stratigraphy that can be mapped.

 

�����

 
Photo 1. Typical interlayered tuff and dark grey to black siliceous siltstone of the “pyjama 
beds”, upper Hazelton Group clastics, McConnell Creek map area. 
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At Motasse Peak, the Hazelton Group also contains 
the striped, interlayered siltstone and tuff as described in 
the Diagonal Mountain area. Tuff is also lost up-section 
resulting in rusty weathering siltstone and shale. The 
recognition of the upper contact is difficult because of the 
thick section of rusty weathering siltstones and shales 
together with a lack of coarse clastic lithologies typical of 
the basal Bowser Lake Group. There is no definite break 
in the rusty nature of the siltstone lithologies. This may be 
due to the presence of nearby Tertiary intrusions, in 
conjunction with structural complication. 

Ritchie-Alger and Todagin assemblages represent 
coeval, slope and submarine fan assemblages, 
respectively, of Late Jurassic to Early Cretaceous age. 
These units have an abundance of dark grey and black 
fine grained lithologies which may have accumulated 
abundant organic matter. The Todagin assemblage 
contains dark grey and black weathering siltstone and 
shale which are not as dominant within the Ritchie-Alger. 
These units also are inferred to have been deposited in 
turbidic deposits and higher energy sequences of chert 
sandstone and conglomerate, which are volumetrically 
more important in the Ritchie-Alger assemblage as 
compared to the Todagin (Evenchick et al., 2001; 2003). 

Siltstone units are typically orange-brown to dark 
grey weathering and massive to thickly bedded. They can 
display poor cleavage, but are typically blocky to crumbly 
weathering. They commonly contains thin, orange-brown 
weathering laminae which are commonly bioturbated. 
Nodules or discontinuous horizons of orange weathering, 
grey limestone up to several 10’s of centimeters thick are 
also present within sections of the siltstone. Several 
horizons (up to 5 m thick) of rusty weathering, black 
siltstone were also observed in these units. 

QUESNEL TROUGH 

The senior author spent several days sampling 
sections of organic-rich shale within parts of the Quesnel 
Trough. These localities are described by Macauley 
(1984) as potential oil shale horizons based on 
descriptions of earlier workers. These sections are within 
Lower to Middle Jurassic fine clastic rocks, similar in 
composition to the upper Hazelton Group, and include the 
Ashcroft Formation in the south and an unnamed 
sequence near the town of Likely. Both units overlie 
Triassic to Jurassic arc sequences of the Quesnel Terrane 
and are considered part of the overlap succession. 

Ashcroft Formation 

The Ashcroft Formation is well exposed in the area 
of Ashcroft and comprises approximately 1200 to 1600 
metres of carbonaceous shale, siltstone and minor 
sandstone and conglomerate (Travers, 1978; Duffell and 
McTaggart, 1952). Exposures east of Ashcroft are 

believed to be non-marine in origin (McMillan, 1974; 
Monger, 1982). Conglomerate, although a minor 
constituent, is distinctive by its polymict nature, 
containing clasts derived from Ancestral North America 
and the Cache Creek and Quesnel Terranes (Travers, 
1978; Duffell and McTaggart, 1952). The unit rests 
unconformably on the volcanics of Quesnellia and 
possibly the Cache Creek Terrane (Travers, 1978; 
Monger, 1982). 

The age of the Ashcroft Formation is broadly Early to 
Middle Jurassic and a compilation of fossil localities 
show this succession to be possibly Sinemurian to 
Callovian in age (Monger and Lear, 1989; Travers, 1978). 
Fossils collected from near the base of the unit are 
possibly Sinemurian in age (Travers, 1978, Frebold and 
Tipper, 1969) and range up to Bajocian at the same 
locality (Monger and Lear, 1989). Along the eastern, non-
marine part of the sequence, fossil data suggest an 
unconformity between Pliensbachian and Callovian 
lithologies (Travers, 1978). Travers (1978) believed that 
the western succession of Ashcroft strata are inferred to 
have been potentially deposited during an interval of 
continuous sedimentation between Sinemurian to 
Callovian time based on the lack of regolith and channel 
conglomerate associated with the unconformity in eastern 
sections. This may be true, however no fossils of Toarcian 
or Bathonian age have been recovered from this area 
which could indicate non-deposition, erosion or lack of 
data. 

McMillan (1974) describes up to 10 m of fetid, dark 
grey, crystalline limestone, in the Barnes Creek area, 
which he believed to be of bioclastic origin. In other 
sections along the creek, fetid limestone occurs as clasts 
within conglomerate deposited above a regolith. 
Associated shales, as elsewhere in the Ashcroft 
Formation, are black and carbonaceous. The section here 
contains Callovian fossils. 

In Black Canyon and near the mouth of Minaberriet 
Creek, Duffel and McTaggart (1952) describe thick 
sections of black, carbonaceous shale containing 
Callovian age fossils. This may have been the locality of 
the suspected oil shale. Similar carbonaceous sequences 
were recently sampled along the highway into Ashcroft. 
Further sampling is planned in this area during 2004. 

The Ashcroft Formation was sampled near the town 
of Ashcroft where the unit is well exposed in road and 
railway cuts (Figure 3). Travers (1978) shows this 
sequence as being an overturned panel along the footwall 
of a thrust carrying the Nicola Group. No fossil data is 
available at this locality, although fossil collections to the 
south along strike, are Pliensbachian or Sinemurian and 
Bajocian (Monger and Lear, 1989). 

At this locality, the Ashcroft Formation consists of 
platy and blocky, rusty weathering, dark grey to black 
siliceous siltstone. Cleavage is well developed locally, but 
is commonly a spaced parting. Non siliceous siltstone 
units typically exhibit blue-grey weathering and yellow 
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sulpha salt residue. Discontinuous light coloured bands 
were observed (tuffaceous?) and locally contained 
authigenic pyrite crystals. Some horizons are quite coarse 
and texturally approached a sandstone. Interbedded with 
these typical siliceous siltstone sequences are sections of 
black, crumbly, sooty (carbonaceous) siltstone and shale 
ranging from 5 to 10 metres thick. These graphitic 
horizons locally contain 2 to 5 cm thick beds of pale to 
medium grey, micritic limestone. The entire section at this 
locality is at least 100 m thick. Both lithologies were 
sampled at several points along the section. Results of 
organic petrographic and anhydrous pyrolysis analysis of 
these samples will be reported subsequently. 

Central Quesnel Trough 

Oil shales were described southwest of Likely in the 
early part of the 20th century (Robertson, 1904, 1905; Ells, 
1925; Macauley, 1984). Analysis of these rocks 
demonstrated that they contain appreciable amounts of 
kerogen and one report indicated a potential value of 25 
litres/tonne for producible liquid petroleum (see 
Macauley, 1984). Macauley (ibid.) suggested that, based 
on descriptions and local geology, the unit that was 
sampled was probably part of the Lower to Middle 
Jurassic clastic succession overlying arc sequences of 
Quesnellia (Figure 4). 

These Lower to Middle Jurassic sediments are 
considered overlap assemblages as they contain coarse 
clastics in their upper parts with cobbles derived from 
Cache Creek, Quesnel and Ancestral North American 
sources indicating that they formed after amalgamation of 
these terranes. This succession is also shown to overlap 
both Cache Creek and Quesnel Terrane rocks northwest 
and southeast of Likely (Tipper, 1978). 

Panteleyev et al. (1996) detailed the geology and 
metallogeny of central Quesnel Terrane. Units described 
by these authors which could have potentially been the 
source of the early samples include the fine grained 
Pliensbachian to Aalenian siltstones and shales (Units 5 
and 6). The older Upper Triassic “Black Phyllite”, 
although composed of dark, fine grained clastics, is 
generally of too high metamorphic grade (greenschist and 
higher) to contain any residual kerogen. 

These Pliensbachian to Aalenian sediments contain 
sections of thin-bedded dark grey to grey calcareous 
siltstone, siltstone and sandstone in the lower part. 
Polymictic conglomerate occurs in the top of the sequence 
and can also be interbedded with the finer lithologies. A 
Pliensbachian to possibly Toarcian age is suggested for 
the lower fine grained unit whereas Aalenian ammonites 
were extracted from interbedded fine grained lithologies 
within the upper conglomeratic sequence (Panteleyev et 
al., 1996; Poulton and Tipper, 1991). The thickness of 
these sections is not reported, although structural sections 
based on the geology of Panteleyev et al. (1996) would 
suggest several hundred metres. 

Numerous sections were visited in 2003 based on 
mapping by Panteleyev et al. (1996), but due to the 
recessive nature of the units and limited time available, 
only one exposure was found on a road cut along the main 
highway, near Beaver Lake. This exposure consists of 
black, sooty siltstone and dark grey to black calcareous 
siltstone. Both lithologies appear to be quite organic rich. 
The entire section at this locality was some 10 metres 
thick. Results of organic petrographic and anhydrous 
pyrolysis analysis of these samples will be reported 
subsequently. 

REGIONAL IMPLICATIONS 

Sampling of Lower to Middle Jurassic organic-rich 
horizons within the Stikine and Quesnel terranes has 
shown these lithologies to be quite similar, not only in 
age, but in overall composition. Both sequences were 
deposited after underlying terranes coalesced and 
amalgamated to Ancestral North America, suggesting that 
sedimentary basins may have been contiguous. 

Deep water, fine grained sediments of Early to 
Middle Jurassic age (Toarcian to Bajocian) appear to be 
wide spread within the Canadian Cordillera and overlie 
many of the allochthonous terranes (Monger et al., 1991; 
Poulton and Tipper, 1991). These units are characterized 
by dark shales and siltstones interbedded with varying 
amounts of volcanics and coarser clastics. They are found 
within northern and central Stikine Terrane (Tipper and 
Richards, 1976), along the Chilcotin Ranges underlying 
rocks of the Tyaughton Trough (Umhoefer and Tipper, 
1998; Figure 1) and eastward within the Quesnel Terrane 
(Panteleyev et al., 1996). Clearly the deeper water 
conditions leading to the deposition of these sediments 
were extensive in the Canadain Cordillera, although 
punctuated by several volcanic edifices. The present 
configuration of these depocentres is a result of dextral 
strike-slip motion along major, terrane bounding faults 
since the Cretaceous (Gabrielse, 1991). 

Lower to Middle Jurassic black shale within both 
northern Stikine Terrane and Quesnellia are inferred to 
have been deposited in anaerobic depositional conditions. 
This time period brackets a major, world wide anoxic 
event (Jenkyns, 1988) which suggests that many of these 
sedimentary sequences within the Canadian Cordillera 
were also deposited in these environments. These low 
oxygen conditions are conducive to the preservation of 
organic matter. To the east, within the Western Canada 
Sedimentary Basin, shale, siltstone and carbonate of the 
Fernie Group were deposited during the same time period 
and are inferred to have been deposited under similar 
conditions. These rocks have proven to be one of the 
major petroleum source horizons within this basin. 

The wide geographic distribution of Lower and 
Middle Jurassic fine grained sediments suggests these 
units potentially underly coarser, clastic successions of 
the Interior Basins. Furthermore, the implied anoxic 
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depositional environment recorded by these Lower and 
Middle Jurassic clastics suggests that these successions 
could have been, under the right conditions, potential 
sources of petroleum that migrated into overlying clastics. 
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